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Abstract
Advancements in low-power electronic devices integrated with wireless com-
munication capabilities and sensors have opened up an exciting new �eld in
computer science. Wireless sensor networks (WSN) can be developed at a
relatively low-cost and can be deployed in a variety of di�erent settings. The
emergence of WSNs, has brought a signi�cant interest towards decentralized
detection, estimation and classi�cation for use in monitoring, surveillance,
location sensing, and distributed learning applications.

Processing sensor data locally requires considerably less energy than com-
municating it to a distant node, yielding an interesting communication-
computation tradeo�. To reduce global communication requirements, one
needs to perform signal processing to extract key information in a distributed
fashion and without losing �delity. In this dissertation, we focus on the dis-
tributed training of Support Vector Machine (SVM) classi�ers by taking ad-
vantage of the sparseness representation of their decision boundary determined
only by a small subset of the training samples, the so-called support vectors.

First, we present two incremental algorithms for distributed SVM training
where the updates of the classi�er are di�used sequentially in the network.
We show that after a single complete pass through all the clusters, a good
approximation of the optimal separating hyperplane is achieved. Then, we
present two gossip-based algorithms, that are robust to unexpected failures
of nodes and to changes in the network topology. In the �rst scheme, each
sensor updates its hyperplane at every iteration by combining its support
vectors with the support vectors communicated by the neighbors, resulting in
a close-to-optimal e�cient distributed scheme. In the second approach, the
information exchanged between sensors describes uniquely and completely the
convex hulls of the two classes. This approach guarantees convergence to the
optimal classi�er at the expense of increased complexity associated with the
construction of the convex hulls.

Finally, by exploiting notions of convex optimization and duality theory, we
derive a novel mathematical characterization for the sparse representation of
the most important measurements that neighboring sensors should exchange
in order to reach an agreement to the optimal linear classi�er. We propose a
function which ranks the training vectors in order of importance in the learning
process. The amount of information to be exchanged is controlled by a user
de�ned threshold, depending on the desired tradeo� between classi�cation
accuracy and power consumption. We prove that a threshold value exists
for which the proposed algorithm converges to the optimal classi�er. We
explore the e�ect of the network topology to the convergence and we study
the performance through simulation experiments.
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PerÐlhyh

H prìodoc thc mikrohlektronik c kai twn ulik¸n epètreye thn kataskeu  polÔ
mikr¸n aisjht rwn dieurÔnontac touc orÐzontec gia èreuna stic perioqèc twn
thlepikoinwni¸n kai thc plhroforik c. Ta asÔrmata dÐktua aisjht rwn eÐnai
mia suneq¸c anaptussìmenh, qamhloÔ plèon kìstouc teqnologÐa, h opoÐa è-
qei all�xei ton trìpo me ton opoÐo o �njrwpoc allhlepidr� me to perib�llon.
Oi apait seic aut¸n twn diktÔwn èqoun odhg sei sthn an�gkh gia an�ptuxh
katanemhmènwn algorÐjmwn gia thn anÐqneush shm�twn, thn ektÐmhsh paramètr-
wn, kai thn taxinìmhsh dedomènwn se plei�da efarmog¸n ìpwc h periballontik 
parakoloÔjhsh kai o prosdiorismìc thc jèshc antikeimènwn.

Sun jwc, h topik  epexergasÐa dedomènwn stouc aisjht rec apaiteÐ qamh-
lìtera pos� enèrgeiac apì ì,ti ja katanal¸nontan e�n ìloi oi aisjht rec metè-
didan asÔrmata ta dedomèna touc se ènan kentrikì kìmbo. H elaqistopoÐhsh
thc katan�lwshc enèrgeiac se èna dÐktuo aisjht rwn eÐnai meÐzonoc shmasÐac,
epomènwc apaiteÐtai tìso h topik  epexergasÐa dedomènwn ìso kai h an�p-
tuxh apl¸n apodotik¸n algorÐjmwn sun�jroishc kai sumpÐeshc, kaj¸c oi
kìmboi qarakthrÐzontai apì mikr  upologistik  dÔnamh kai periorismènh m-
n mh. Sth paroÔsa didaktorik  diatrib  meletoÔme kai sqedi�zoume katanemh-
mènouc algìrijmouc gia thn ekpaÐdeush taxinomht¸n Mhqan¸n EdraÐwn Di-
anusm�twn (SVMs), ekmetalleuìmenoi thn idiìtht� touc ìti h epif�neia apì-
fashc kataskeu�zetai apì èna polÔ mikrì uposÔnolo twn dedomènwn, ta legìm-
ena edraÐa dianÔsmata.

Arqik�, parousi�zoume dÔo auxhtikoÔc algìrijmouc gia katanemhmènh ek-
paÐdeush enìc SVM, stouc opoÐouc h ananèwsh thc ektÐmhshc tou uperepipèdou
apìfashc pragmatopoieÐtai diadoqik� stouc kìmbouc tou diktÔou. DeÐqnoume
me ekteneÐc prosomoi¸seic ìti mìno me èna pèrasma apì k�je kìmbo, katal -
goume se mia kal  ektÐmhsh tou bèltistou taxinomht . 'Epeita, parousi�zoume
dÔo epanalhptikoÔc algìrijmouc pou basÐzontai se teqnikèc "Gossip", ¸ste
na apofeÔgontai probl mata pou prokaloÔntai apì mh problepìmenec allagèc
sthn topologÐa tou diktÔou. O pr¸toc proteinìmenoc algìrijmoc epitrèpei se
k�je epan�lhyh thn ananèwsh tou taxinomht  me thn di�dosh mìno twn edraÐ-
wn dianusm�twn mèsw geitonik¸n kìmbwn, sugklÐnontac se mia prosèggish tou
bèltistou taxinomht . SÔmfwna me ton deÔtero algìrijmo, oi geitonikoÐ kìm-
boi antall�ssoun ta dedomèna ta opoÐa qarakthrÐzoun monadik� ta kurt� peri-
gr�mmata pou dhmiourgoÔntai se k�je kìmbo. O algìrijmoc autìc eggu�tai
sÔgklish ston bèltisto taxinomht , me kìstoc thn auxhmènh poluplokìthta
pou apaiteÐtai gia ton prosdiorismì twn kurt¸n perigramm�twn.

Tèloc, jewroÔme thn ekpaÐdeush enìc SVM wc èna prìblhma
beltistopoÐhshc upì periorismoÔc kai qrhsimopoioÔme stoiqeÐa apì th duadik 
jewrÐa gia na proteÐnoume èna susthmatikì trìpo gia thn bèltisth epilog  twn
dedomènwn pou prèpei na antall�ssoun oi kìmboi tou diktÔou, ¸ste na epèljei



viii

koin  sÔgklish sth bèltisth lÔsh. ProteÐnoume mia sun�rthsh h opoÐa taxi-
nomeÐ ta dedomèna kata seir� spoudaiìthtac sthn diadikasÐa ekm�jhshc. To
pl joc twn dedomènwn pou antall�soun oi geitonikoÐ kìmboi kajorÐzetai apì è-
na kat¸fli, an�loga me thn epijumht  exisorrìphsh an�mesa sthn akrÐbeia thc
taxinìmhshc kai thn katanaliskìmenh enèrgeia. ApodeiknÔoume ìti up�rqei èna
kat¸fli, ¸ste o proteinìmenoc algìrijmoc na eggu�tai sÔgklish sto bèltisto
taxinomht . EreunoÔme thn epirro  thc topologÐac tou diktÔou sthn taqÔth-
ta sÔgklishc tou algìrijmou kai meletoÔme thn apìdosh tou algorÐjmou me
ektetamènec prosomoi¸seic.
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1.1 Wireless Sensor Networks: Description and chal-
lenges

Recent advances in the micro-sensor and semiconductor technology have opened a new �eld
for computer science. The electronic miniaturization and the advances in the semiconduc-
tor manufacturing process enable for low-power and low-cost hardware. Small and smart
devices equipped with a processing unit, storage capacity, and small radios for wireless
communication provide new application opportunities. Augmented with di�erent kinds of
sensors, e.g., for temperature, pressure, light, humidity, movement, etc., such sensor devices
can be deployed to observe physical phenomena both accurately and reliably.

The dense deployment of hundreds or even thousands of sensor nodes that comprise a
Wireless Sensor Network (WSN) facilitates a wide range of applications covering habitat
monitoring, environmental monitoring, health care, structural health monitoring, security
and surveillance. Sensors are usually very small in size, have micro-sensing capabilities,
they can process, communicate and exchange data, and all these ideally with a low energy
cost. Therefore, they can be placed close to the phenomenon one wants to study. Since
they are deployed in unattended areas, human interaction is needed only for the set up
of the network. Ideally, WSNs nodes are only once deployed but can be used for many
experiments.

Any protocol used in a WSN should be power-aware and be designed by considering
energy e�ciency. In contrast to traditional networks, the forwarding of data packets is
not address-based but data-centric. That is, sensor nodes are not addressed by a globally
unique identi�er but rather based on data attributes. For example, instead of requesting
the temperature value of an individual node, an application may be more interested if there
are any nodes which detect a temperature above a given threshold or what is the average
temperature in a speci�c region. This paradigm shift also implies that a WSN will likely
be tailored for the sensing application task. Application-speci�c data forwarding may re-
duce signi�cantly the amount of information that need to be transmitted. By in-network
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processing and data aggregation, redundant and useless data can already be �ltered out
along the forwarding path. For example, consider the scenario where a sink node is inter-
ested in the average temperature each node measures over a certain period of time. Rather
than forwarding the data readings individually, they can be aggregated by intermediate
nodes along the path without any loss of information by only transmitting the sum and the
number of readings.

A sensor network can be of great bene�t when used in areas where dense monitoring
and analysis of complex phenomena over a large region is required for a long period of
time. The design criteria and requirements of sensor networks di�er from application to
application. Some typical requirements are:

• Scalability: As sensor nodes get cheaper and cheaper, it is highly likely that sensor
networks will consist of a huge number of nodes. Algorithms for sensor networks
must therefore scale well with thousands and tens of thousands of sensor nodes.

• Adaptiveness: All protocols should be able to adapt to changes in the environment,
e.g., changes concerning the connectivity or changes concerning the sensing of physical
phenomena.

• Resistance to failures: Due to the low-cost hardware or outside in�uences, sensor
nodes are prone to failure. However, achieving the common application task should
not be a�ected. In case of node failures, the network must be able to re-organize
itself and if needed change assigned application tasks.

• Self-organization: Since a WSN is usually deployed in an unattended area, the net-
work must operate without the need of manual con�guration. For example, commu-
nication paths throughout the network should be established automatically. Also the
cooperation between nodes must be organized in an unattended manner in order to
achieve the global application task.

• Energy e�ciency: As most sensor nodes are restricted concerning their energy capac-
ity, all protocols and algorithms must be energy-e�cient and save as much energy as
possible. Since most energy is consumed during wireless communication, the radio
must be turned o� most of the time. But also the transmission of data should be
energy-e�cient in order to minimize the number of sent and received packets.

• Simplicity: Besides their energy capacity, sensor nodes are also limited in their pro-
cessing and storage capabilities. Thus, algorithms should be as simple as possible in
order to minimize their computational complexity and memory usage.

In the following, interesting real life applications of WSNs are presented for habitat moni-
toring, environmental monitoring, and military applications along with the vision of WSNs.

1.1.1 Applications of Wireless Sensor Networks
Recent advances in sensor network research allow for small and cheap sensor nodes which
can obtain a lot of data about physical parameters, e.g., temperature, humidity, lightning
condition, pressure, noise level, carbon dioxide level, oxygen level, soil makeup, soil mois-
ture and magnetic �eld. Sensing devices can also extract characteristics of objects such as
speed, direction, and size, deduce the presence or absence of certain kinds of objects, and
measure all kinds of values about machinery, e.g., mechanical stress level or movement. This
huge choice of options allows to use sensor networks in a number of scenarios, e.g., habi-
tat and environment monitoring, health care, military surveillance, industrial machinery
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surveillance, home automation, as well as smart and interactive places [2]. The application
of a sensor network usually determines the design of the sensor nodes and the design of
the network itself. No general architecture for sensor networks exists at the moment. In
this Section, some examples of habitat monitoring, environmental monitoring, military and
health care applications are presented.

Habitat monitoring: The main objective of habitat monitoring is to track and observe
wild life. In the past, habitat monitoring has been done by researchers hiding and observing
the wild life using cameras and microphones. However, this technique is intrusive and
uncomfortable, and long term observations are di�cult and expensive. Usually, live data
is not available. Sensor networks o�er a better way for habitat monitoring. The sensor
network technology is less intrusive than any other technique. Thus, the wild life is less
a�ected, resulting in better research results. Also, long-term observations are possible and
sensor networks can be designed in a way that live data is available on the Internet. Human
interaction is usually needed only for setup of the sensor network and for removal of the
sensors after the end of the observation. Hence, sensor networks help to reduce the costs of
habitat monitoring research projects.

The Great Duck Island project [3] was one of the �rst applications of sensor networks
in habitat monitoring research. The main objective of the research project was to monitor
the micro climates (e.g., temperature and humidity) in and around nesting burrows used
by the Leach's Storm Petrel. The great advantage of this sensor network compared to
standard habitat monitoring was its non-intrusive and non-disruptive nature. The project
is named after a small island at the coast of Maine, Great Duck Island, where the research
took place. At �rst, a network of 32 sensor nodes was deployed (see Figure 1.1). The sensor
network platform consisted of processor radio boards commonly referred to as motes. They
were manually placed in the nesting burrows by researchers. The sensor nodes periodically
sent their sensor readings to a base station and got back to sleep mode. The base station
used a satellite link to o�er access to real-time data over the Internet. To get information
about the micro climate in the nesting burrows, the sensor nodes collected data about
temperature, humidity, barometric pressure and mid-range infrared. Between spring 2002
and November 2002, over 1 million sensor readings were logged from the sensor network.
In June 2003, a larger sensor network, consisting of 56 nodes, was deployed, and it was
extended in July 2003 by 49 additional sensor nodes and again augmented by 60 more
sensor nodes and 25 weather station nodes in August 2003. Hence, the network consisted
of more than 100 sensor nodes at the end of 2003. The network used multi-hop routing
from the nodes to the base station. The software of the sensor nodes was based on the
sensor network operating system TinyOS [4]. The sensor network of the Great Duck Island
project was pre-con�gured and did not self con�gure, e.g., each sensor node got assigned a
unique network layer address during compilation of the code prior to deployment.

Environmental monitoring: While habitat monitoring deals with observation of
animals and their surroundings, the task of environmental monitoring is to sense the state
of the environment. Sensor networks in environment monitoring are extremely helpful in
research and they allow exploration of areas that were not accessible up to date such as
habitat monitoring, structural health monitoring, etc. With a sensor network consisting of
a large number of nodes, it is possible to explore the macrocosmos in a much better way
because it is easier to obtain data of natural phenomena at many di�erent places. Hence,
better prediction models can be build. Other applications of environmental monitoring
include structural monitoring, which ensures the integrity of bridges, buildings, and other
man-made structures. In the following, an environment monitoring research project is
presented.
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Figure 1.1: Placement of sensor nodes in the Great Duck Island project: sensor nodes
were placed in the nesting burrows of storm petrels (1) and outside of the burrow
(2). Sensor readings are relayed to a base station (3), which transmits them to a
laptop in the research station (4), that sends it via satellite (5) to a lab in California.
Image source: http://www.wired.com/wired/archive/11.12/network.html

Figure 1.2: This diagram shows how this sensor web works. Image source:
http://radio.weblogs. com/0105910/2004/05/31.html

Figure 1.3: A sensor node of GlacsWeb. Image source: http://radio.weblogs.
com/0105910/2004/05/31.html

Glaciers are very important in climate research because climate changes can be identi�ed
by observing size and movement of the glaciers. GlacsWeb [5] is a sensor network for
monitoring glaciers. A sample network was installed at Briksdalsbreen, Norway, in 2004
(see Figure 1.2). The aim of GlacsWeb is to understand glacier dynamics in response to
climate change. Sensor nodes (see Figure 1.3) were deployed into the ice and on the till. A
base station was installed on the surface of the glacier. The sensor network was designed
to acquire data about weather conditions and the GPS position at the base station from
the surface of the glacier. The sensor nodes used a simple duty cycle. Every sensor node
sampled every 4 hours temperature, strain (due to stress from the ice), pressure (if immersed
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Figure 1.4: MICA2 Mote. Image source: http://computer.howstu�works.com/
mote.htm

in water), orientation (in 3 dimensions), resistivity (to determine if the sensor is sitting in
sediment till, water, or ice) and battery voltage. Thus, there were 6 sets of readings for each
sensor node every day. The sensor nodes directly communicated with the base station once
a day at a �xed time. All sensor nodes were queried during a 5 minutes interval each day.
The base station recorded its location once a week using GPS. Obtaining the GPS position
took 10 minutes. During those 10 minutes, remote administration of the base station was
also possible. After this, the base station sent all its readings to a reference station PC via
long range radio. The radio range of the sensor nodes was signi�cantly reduced in ice to
less than 40 m while it is 500 meters in air. The sensor nodes had a clock drift of 2 seconds
a day. The base station synchronized them daily. The base station was equipped with a
solar panel which failed when the panels were covered with snow. Future versions of the
base station will also have a wind turbine.

Military applications: Sensor networks in military applications are often used for
surveillance missions. The focus of surveillance missions is to collect or verify as much
information as possible about the enemy's capabilities and about the positions of hostile
targets. Sensor networks are used to replace soldiers because surveillance missions often
involve high risks and require a high degree of stealthiness. Hence, the ability to deploy
unmanned surveillance missions, by using wireless sensor networks, is of great practical
importance for the military.

EnviroTrack is a middleware for tracking of objects. In [6] the design and implemen-
tation of a system for energy-e�cient surveillance based on EnviroTrack is described. The
main objective of the system is to track the positions of moving vehicles in an energy-e�cient
and stealthy manner. For the prototype, a network consisting of 70 sensor nodes was used.
The sensor nodes are based on MICA2 Motes (see Figure 1.4). They are equipped with
dual-axis magnetometers. Issues in the design of the network were long network lifetime,
adjustable sensitivity, stealthiness, and e�ectiveness. To prolong the network lifetime, it
is important to use as little energy as possible. The system allows for a trade-o� between
energy consumption of the sensor nodes and the accuracy of the tracking. To save energy,
only a subset of nodes, the so-called sentries, are active at a given time. The sentries mon-
itor events. When an event occurs, the sentry nodes awake the other sensor nodes of the
network and form groups for collaborate tracking. Hence, in the absence of an event, most
sensor nodes are in a sleep mode, using only very little energy. The sensor nodes can adjust
the sensitivity of their sensors to adapt to di�erent terrains and security requirements. To
achieve stealthiness, zero communication exposure is desired in the absence of signi�cant
events. The sensor network can only be used in challenging military scenarios if the tracking
is e�ective. Especially, the estimated location of a moving object must be precise enough
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and the event must be communicated as fast and reliable as possible to the base station. As
the collaborative detection and tracking process relies on the spatio-temporal correlation
between the tracking reports sent by multiple sensor motes, it is important that the sensor
nodes are timesynchronized and that the positions of the sensor nodes are known.

Health applications: In health care, especially in hospitals, a lot of sensors are used
today to monitor the vital signs and states of patients 24 hours a day. Most of those
sensors are wired, so patients are often severely restricted in their mobility. Hence, the use
of wireless sensors would result in a great gain in life quality for the patients and it even
would give them more security, because an automated system may react fast on emergency
situations. Another issue in health care is the seamless transfer of patients between �rst
aid personal, emergency rescuers and doctors at a hospital, so that a seamless monitoring
and data transfer can take place. Sensor networks can solve a lot of problems in health care
scenarios. The most important design criteria for applications in health care are security
and reliability.

CodeBlue [7] is a system to enhance emergency medical care with the goal to have a
seamless patient transfer between a disaster area and a hospital. Wearable vital sign sensors
(body sensors) are used to track a patient's status and location. They also operated as active
tags, which enhance �rst responders ability to assess patients on the scene, ensure seamless
transfer of data among emergency personal, and enable an e�cient allocation of hospital
resources. Current body sensors are able to obtain heart rate, oxygen saturation, end-tidal
CO2, and serum chemistries measurements. Figure 1.5 shows a typical body sensor node
of the CodeBlue project. The network of CodeBlue does not rely on any infrastructure but
is formed ad hoc. It is intended to span a large disaster area or a whole building, e.g., a
hospital. The system is designed to scale with a very dense network consisting of lots of
nodes. The nodes of the network are heterogeneous and range from simple body sensors
and PDAs to PCs. CodeBlue addresses data discovery and data naming, robust routing,
prioritisation of critical data, security, and tracking of device locations. For data discovery,
a publish/subscribe model is used. Body sensors publish data and devices used by nurses or
doctors, e.g., a PDA, can subscribe to that data stream. CodeBlue also uses data �ltering
and data aggregation. For example, a doctor may be interested in the full data stream of
one patient and wants only to be noti�ed if some other patients are in an unusual or critical
state. The CodeBlue project uses a best-e�ort security model: if an external authority can
be reached, strong guarantees are needed to access data. However, if no external authorities
are available because of poor connectivity or infrastructure loss, weaker guarantees may be
used. This situation may arise for example in a disaster area where it is not possible to
spend time setting up an infrastructure, keying in passwords or exchanging keys.

1.1.2 Types of applications
Many of these applications share some basic characteristics. In most of them, there is a
clear di�erence between sources of data and the actual nodes that sense data, sinks and
nodes where the data should be delivered to. These sinks sometimes are part of the sensor
network itself; sometimes they are clearly systems "outside" the network. Also, there are
usually, but not always, more sources than sinks and the sink is oblivious or not interested
in the identity of the sources; the data itself is much more important. The interaction
patterns between sources and sinks show some typical patterns. The most relevant ones
are:

Event detection: Sensor nodes should report to the sink(s) once they have detected
the occurrence of a speci�ed event. The simplest events can be detected locally by a single
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Figure 1.5: A body sensor node of the CodeBlue Project which is build into a
wristband. Image source: http://www.eecs.harvard.edu/ mdw/proj/codeblue/.

sensor node in isolation (e.g. a temperature threshold is exceeded); more complicated types
of events require the collaboration of nearby or even remote sensors to decide whether a
(composite) event has occurred (e.g. a temperature gradient becomes too steep). If several
di�erent events can occur, event classi�cation might be an additional issue.

Periodic measurements: Sensors can be tasked with periodically reporting measured
values. Often, these reports can be triggered by a detected event; the reporting period is
application dependent.

Function approximation and edge detection: The way a physical value like tem-
perature changes from one place to another can be regarded as a function of location. A
WSN can be used to approximate this unknown function (to extract its spatial charac-
teristics), using a limited number of samples taken at each individual sensor node. This
approximate mapping should be made available at the sink. How and when to update this
mapping depends on the application's needs, as do the approximation accuracy and the
inherent trade-o� against energy consumption. Similarly, a relevant problem can be to �nd
areas or points of the same given value. An example is to �nd the isothermal points in a
forest �re application to detect the border of the actual �re. This can be generalized to
�nding "edges" in such functions or to sending messages along the boundaries of patterns
in both space and/or time [8].

Tracking: The source of an event can be mobile (e.g. an intruder in surveillance
scenarios). The WSN can be used to report updates on the event source's position to the
sink(s), potentially with estimates about speed and direction as well. To do so, typically
sensor nodes have to cooperate before updates can be reported to the sink.

These interactions can be scoped both in time and in space (reporting events only
within a given time span, only from certain areas, and so on). These requirements can also
change dynamically overtime; sinks have to have a means to inform the sensors of their
requirements at runtime. Moreover, these interactions can take place only for one speci�c
request of a sink (so-called "one-shot queries"), or they could be long-lasting relationships
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between many sensors and many sinks.

1.1.3 Vision of Future Sensor Networks
Sensor networks facilitate e�cient solutions for applications that were not possible in the
past. This is especially true for applications that require dense monitoring and analysis
of complex phenomena covering a large region and lasting for a long time. Meteorologic
research is one of the research �elds that deals with complex phenomena. Even today, we
still do not know a lot about the climate of earth. Hence, more sensor network applications
in meteorology research can be expected for the near future. Sensor networks are also good
to advance into areas that have limited accessibility. The oceans are one example. A better
knowledge of the oceans will result in a better understanding of the climate because the
oceans are an important factor, e.g. for the emergence of hurricanes. However, to explore
the oceans with sensor networks, research into underwater communication and sensor design
for underwater missions is necessary. In the long run, sensor networks may be of good use
in space-related research. For example instead of sending one single sensor system like the
Mars Rover to a distant planet, it would perhaps be possible in the future to deploy a sensor
network consisting of thousands of nodes. As the system would consist of a lot of nodes, a
total failure of the overall system would be not very likely. Thus, the risk of a failure of a
mission would be smaller.

The vision of WSNs is to make human life easier by connecting the physical world.
Future sensor networks are envisioned to be ubiquitous, large-scale and interconnected,
and to evolve in the so-called World Wide Sensor Network (WWSNs). Currently, most
of the WSNs are working as isolated islands. Without sharing sensor data across di�erent
domains, the most important features of ubiquitous computing (e.g., context awareness) will
not be easily achieved. For sharing among WWSN, the �rst nut to crack is to interconnect
di�erent WSNs which are spatially deployed in di�erent locations with IP based Internet;
the second one is to integrate them into a single WWSN over the Internet for publishing,
sharing and searching of sensor data.

Moreover, an interesting research area where sensors and social networks can fruitfully
interface, from sensors providing contextual information in context-aware and personalized
social applications, to using social networks as "storage infrastructures" for sensor infor-
mation has recently gained attention. Sensors provide information about various aspects
of the real world. Online social networks on the other hand, provide insights into the com-
munication links and patterns between people. They have enabled novel developments in
communications as well as transforming the Web from a technical infrastructure to a social
platform, the so-called Social Web. By combining Social Network and sensors, applications
can provide an extension of social activities through sensors, as user activity is modelled not
by voluntary user input, but can be automatically generated by sensors. Hence it enhances
the idea of ubiquitous social networking, that can be observed on micro-blogging services
such as Twitter, where some people tend to publish simple updates containing only their
current location as GPS coordinate.

1.2 Motivation and Research Question
Although the application of a sensor network usually determines the design of the sen-
sor nodes and the design of the network itself, there is one common requirement for all
applications: energy e�ciency. As most sensor nodes will be restricted concerning their
energy capacity, all protocols and algorithms must be energy-e�cient. Processing sensor
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data locally requires considerably less energy than communicating it to a distant node,
yielding an interesting communication/computation trade-o�. To reduce global communi-
cation requirements, one needs to perform signal processing to extract key information in
a distributed fashion and without losing �delity.

One of the most important tasks to be performed in a wireless sensor network (WSN),
is classi�cation, that is, it is important to infer whether the samples measured by sensors
in a WSN belong to a certain hypothesis (class) or not. It is well known that Support
Vector Machines (SVMs) have been successfully used as classi�cation tools in a variety of
areas [9, 10, 11]. Training a SVM calls for solving a quadratic programming (QP) problem
in a number of coe�cients equal to the number of training examples. An appealing feature
of SVMs is the sparseness representation of the decision boundary they provide. The
location of the separating hyperplane is speci�ed via real-valued weights on the training
samples. Training samples that lie far away from the hyperplane do not participate in
its speci�cation and therefore receive zero weight. Only training samples that lie close to
the decision boundary between the two classes, the so-called support vectors, receive non-
zero weights. In fact, since their design allows the number of support vectors to be small
compared to the total number of training samples, they provide a compact representation of
the data, to which new examples can be added as they become available. Therefore SVMs
seem well suited to be trained in a distributed fashion.

Our goal is to be able to train a SVM in an e�cient and distributed fashion so that: a)
we can get good classi�cation results on test data and b) our algorithms can be used easily
in the context of WSN, where the training must take place across sensors. The research
questions that we answer in this thesis are the following:• Which sensor protocol is suitable for in-network information exchange? Ideally, in a

sensor network we would like all sensors to have the same estimate of the classi�er,
so that each sensor would be trained to classify any new measurement.

• What kind of data should neighboring sensors exchange in order to get high classi-
�cation accuracy but with low energy consumption? WSN nodes should exchange a
su�cient amount of data in order to ensure or approximate optimality. On the other
hand, the more data is exchanged, the more energy is consumed.

1.2.1 Contribution
This dissertation work comprises a study of distributed optimization techniques for in-
network data processing so as to eliminate the need to transmit raw data to a central point.
SVM gained our attention as it is considered a very popular classi�cation tool in the litera-
ture, an interesting convex optimization problem, and a topic to be studied in a distributed
aspect for applications to sensor networks. Taking advantage of the sparse representation
that SVMs provide for the decision boundaries, we designed classes of incremental and
gossip-based distributed consensus algorithms for training the classi�er.

The �rst class of the algorithms are two energy e�cient algorithms that involve a
distributed incremental learning for the training of a SVM in a WSN both for stationary
and non-stationary data. The key idea behind our proposed incremental algorithm was
that as the number of support vectors is typically very small compared to the number of
training samples, the data of previous clusters can be compressed to their corresponding
estimated hyperplane (support vectors and o�set) and forwarded to the next cluster. We
showed that after a single complete pass through all the clusters, a good approximation of
the optimal separating plane is achieved, that is, the separating hyperplane is very close
to the one obtained using a centralized, energy-consuming algorithm, where all the sample
data is used at once in a single training step at the base station.



14 Chapter 1. Introduction

With an eye to the non-stationary environments, we designed an alternative incremental
algorithm. In many real world applications, the concept of interest (de�nition of classes
to be separated) may be time-varying or space-varying. Consequently, these changes make
the model built on old data inconsistent with the new data, hence regular updating of the
model is necessary. This problem, known as concept drift, complicates the task of learning
in SVM. A typical example of this phenomenon is weather prediction, where the rules
may vary radically depending on the season. On the other hand, one may also observe
changes in the training data, which have no correspondence to controllable parameters of
the experiment [12]. For example, in engineering applications, the quality of a machine
deteriorates over the course of its life-cycle. Therefore, there is a need to have a robust
system that can adapt easily to these uncontrollable changes. In the case of distributed
sequential training of a SVM in a WSN, this e�ect is even more accentuated. In order
to address this problem, we modi�ed the previous algorithm for non-stationary data. We
showed that our proposed algorithms are much more e�cient in terms of energy cost, since
they reduce the energy spend up to 50% of the energy spend in the centralized case.

In all incremental techniques, the update of the estimate is di�used sequentially in
the network and the convergence to the global estimate is reached at the �nal step of the
algorithm. Hence, at each time slot only one node has the updated critical information and
consequently the optimal estimate. In this case, the trained SVM classi�er is constructed at
the �nal step of the algorithm. However, nodes in a WSN, usually operate in environments
that are prone to link and node failure. Hence, it is important to design algorithms that are
robust to unexpected failures of nodes and consequently to changes in the topology. Thus,
to maximize robustness, all nodes should ideally achieve convergence to the same optimal
estimate.

To that goal, we designed gossip-based distributed consensus algorithms for training a
SVM. Opposed to incremental algorithms, gossip-based approaches rely on communication
with one-hop neighbors only, to develop iterative algorithms that eventually converge to the
desired estimate. After some iterations, all sensors reach consensus to the optimal solution.
Sensors keep re�ning their estimate concurrently at each time slot in order to reach �nally
convergence (consensus) to a common global estimate. We propose two gossip-based algo-
rithms: the �rst provides a suboptimal solution but with the minimum energy consumption
and the second guarantees convergence to the optimal solution while communicates more
data, hence more energy is consumed.

Concluding the thesis, we provide a mathematical characterization for the sparse rep-
resentation of the most important measurements that neighboring nodes should exchange
in order to reach an agreement near the optimal SVM classi�er. We introduce a selection
function which ranks each training vector in order of importance. Therefore, the amount
of information exchange can vary allowing for a desired trade-o� between classi�cation ac-
curacy and power consumption. We investigate this trade-o� for linearly and non linearly
separable data sets and for high dimensionality measurements.

Concluding, the main contributions of this thesis are:

• The design of two incremental algorithms for distributed training of SVM in the
context of a WSN for stationary and non stationary data.

• The design of two gossip-based distributed algorithms for the consensus of the network
to an estimate of the optimal SVM classi�er of linearly and non linearly separable
data sets.

• The mathematical characterization of the required partial information that neighbor-
ing sensor nodes should exchange in order to achieve consensus in the network, while



1.2. Motivation and Research Question 15

minimizing the number of transmissions.

• The design of the corresponding gossip algorithm achieving global consensus with
minimal inter-node network communication.

This thesis is structured as follows. Chapter 2 �rst provides a general introduction to the
concept of convex optimization problems, investigating distributed optimization problems
with emphasis on applications of sensor networks. Then, a class of distributed algorithms
(gossip algorithms), motivated by the needs of ad hoc and wireless sensor networks, is
presented. Finally, the problem of centralized SVM training is reviewed, both for linearly
separable and linearly inseparable classes. Chapter 3 presents the proposed incremental
distributed algorithm for SVM training for stationary and non-stationary data, along with
a set of experimental results. Chapter 4 describes the proposed gossip-based distributed
consensus approach for SVM training in the context of WSNs. Linearly and non linearly
data sets are used in order to test performance in terms of classi�cation accuracy and
energy e�ciency. Chapter 5 concludes our research with a mathematical analysis for the
characterization for the sparse representation of the most important measurements that
neighboring nodes should exchange in order to reach an agreement near the optimal SVM
classi�er. Experimental results are presented using a variety of data sets in several network
topologies. Finally, in Chapters 6 and 7, we present the conclusions and future work
directions, respectively.
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With the advent of wireless sensor networks, there has been a growing interest to-
wards decentralized detection, estimation and classi�cation algorithms for use in moni-
toring, surveillance, location sensing and distributed learning applications. Moreover, the
development of visual sensor networking technology will require e�cient distributed process-
ing for automated event detection and classi�cation. Indeed, many of the signal processing
problems that occur in WSN applications can be viewed as distributed optimization prob-
lems. In one of the �rst related studies, Nowak et. al presented an incremental algorithm
for the robust optimization of a cost function of interest, applied to the source localization,
clustering, and density estimation problems [13]. More recent studies of distributed opti-
mization have mainly focused on estimating simple functions of the data, analyzing issues
such as convergence criteria and convergence rate [14, 15]. Moreover in [16], power con-
sumption has been taken into account for the algorithmic design and the minimum required
amount of communication power has been studied.

An important class of distributed algorithms employ the so-called gossip techniques.
They seem well suited in the context of a WSN, since gossip techniques are robust to changes
in the topology of the network in case of node failures: neighboring sensors can exchange
data, and hence the information is di�used in the network. They are based on successive
re�nement of local estimates maintained at individual sensors. Gossip-based approaches
rely on communication with one-hop neighbors only, to develop iterative algorithms that
eventually converge to the desired estimate. After some iterations, all sensors reach con-
sensus to the optimal solution. The notion of consensus averaging for the estimation of
deterministic unknown parameters using linear data models was introduced in [1] whereby
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each sensor updates its local estimate by appropriate weighting the estimates of its neigh-
bors. A more elaborate approach entailing distributed computation of the sample average
estimator with the aid of dual decomposition techniques was studied in [17]. For distributed
estimation of a Gaussian random parameter in a scalar linear model, Baraniuk et al. ap-
plied the Jacobi iteration [18]. The same scalar linear model in a dynamical system was also
considered in [19]. More recently, a consensus-based distributed expectation-maximization
algorithm was proposed in [20] for density estimation and classi�cation. Finally, in [21],
a linear iterative strategy is developed that enables a subset of the nodes to calculate any
given function of the node values.

Support Vector Machines constitute a modern classi�cation tool, that has been suc-
cessfully applied to a number of applications ranging from face recognition and text cate-
gorization to engine knock detection, bioinformatics and database marketing [22, 23, 24].
Training involves optimization of a convex cost function meaning that there are no false
local minima to complicate the learning process. SVMs are the most well-known of a class
of algorithms that use the idea of kernel substitution and which are broadly referred to as
kernel methods. SVMs can also construct linear classi�cation functions with good theoret-
ical and practical generalization properties even in very high-dimensional attribute spaces.
The major advantage of linear classi�ers is their simplicity and low complexity.

In general, pattern classi�cation algorithms assume that all the features are available
centrally during the construction of the classi�er and its subsequent use. But in many
practical situations, data are recorded in di�erent geographical locations by sensors, each
observing features of local interest and having a partial view of the data.

The outline of this Chapter is the following. In Section 2.1 we brie�y discuss why WSNs
are di�erent from traditional networks and present the design challenges of a WSN. To
realize these requirements, innovative mechanisms for a communication network have to be
found, as well as new architectures, and protocol concepts. In Section 2.2 we present some of
the mechanisms that will form typical parts of WSNs. We describe some fundamental sensor
protocols and we analytically describe the so-called gossip algorithms. Next, in Section 2.3,
we provide the necessary background on convex optimization, the notion of duality, and
the KKT conditions for primal-dual optimality. We then present an interesting distributed
optimization approach of the well-known steepest decent algorithm, for the purpose of a
WSN scenario, where the entire data set is not available, [13]. Finally, in Section 2.4
we view the problem of centralized Support Vector Machine (SVM) training as a convex
optimization problem, both for linearly separable and linearly inseparable classes and we
brie�y describe some interesting applications that made SVMs so popular in WSNs. We
also introduce the notion of Distributed SVM training in WSN applications, and we brie�y
present some interesting works on this topic.

2.1 Why Are Sensor Networks Di�erent?
Sensors existed long before the emergence of new sensing technologies. The simplest sensors
have been in operation for decades, e.g., thermostats that adjust interior air-conditioning
and heating. They were expensive, bulky and big storage units. Due to their size, human
intervention was necessary for their deployment, or the replacement of their batteries.

The increasing miniaturization of radio frequency (RF) devices, micro-
electromechanical systems (MEMS) and the advances in wireless technologies, have
generated a great deal of research interest in the area of WSNs. WSNs nowadays, employ
a large number of miniature autonomous devices known as sensor nodes to form the
network without the aid of any established infrastructure. In a wireless sensor system,
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the individual nodes are capable of sensing their environments, processing the information
locally, or sending it to one or more collection points through a wireless link. Each node
has a short-range transmission due to low RF transmit power. Short-range transmission
minimizes the possibility of the transmitted signals being eavesdropped; also, it helps in
prolonging the lifetime of the battery. In some sensor system applications, the nodes are
hard to reach and it is impossible to replace their batteries. In other applications, the
nodes must operate without battery replacement for a long time. Such conditions make
the system power consumption a very crucial parameter.

2.1.1 Wireless Sensor Networks vs. Ad hoc Networks
WSNs use ad hoc topology because of its ease of deployment and decreased dependence
on infrastructure. Although WSNs use an ad-hoc architecture, this architecture is di�erent
from that of a conventional wireless ad hoc networks. A WSN is comprised of thousands
of sensors whose batteries are often irreplaceable. The data rate is low but with high
redundancy. On the other hand, a conventional wireless ad hoc network is comprised of a
smaller number of nodes with replaceable batteries. The data rate in this network is high
but with low redundancy. The simplest example of an ad hoc network is perhaps a set of
computers connected together via cables to form a small network, like a few laptops in a
meeting room. In this example, the aspect of self-con�guration is crucial - the network is
expected to work without manual management or con�guration.

Usually, however, the notion of a mobile ad hoc network (MANET) is associated with
wireless communication and speci�cally wireless multihop communication; also, the name
indicates the mobility of participating nodes as a typical ingredient. Examples for such
networks are disaster relief operations, e.g., �re�ghters communicating with each other, or
networks in di�cult locations like large construction sites, where the deployment of wireless
infrastructure (access points etc.), let alone cables, is not a feasible option. In such networks,
the individual nodes together form a network that relays packets between nodes to extend
the reach of a single node, allowing the network to span larger geographical areas than
would be possible with direct sender- receiver communication. The two basic challenges
in a MANET are the reorganization of the network as nodes move about and handling
the problems of the limited reach of wireless communication. Literature on MANETs that
summarize these problems and their solutions abound, as these networks are still a very
active �eld of research; popular books include [25, 26, 27]. These general problems are
shared between MANETs and WSNs. Nonetheless, there are some principal di�erences
between the two concepts, warranting a distinction between them and demanding separate
research e�orts for each one.

These general problems are shared between MANETs and WSNs. Nonetheless, there
are some principal di�erences between the two concepts, warranting a distinction between
them and regarding separate research e�orts for each one.

Applications and equipment: MANETs are associated with somewhat di�erent
applications as well as di�erent user equipment than WSNs: in a MANET, the terminal
can be fairly powerful (a laptop or a PDA) with a comparably large battery. This equipment
is needed because in typical MANET applications, there is usually a human in the loop:
the MANET is used for voice communication between two distant peers, or it is used for
access to a remote infrastructure like a Web server. Therefore, the equipment has to be
powerful enough to support these applications.

Application speci�c: Owing to the large number of conceivable combinations of
sensing, computing, and communication technology, many di�erent application scenarios
for WSNs become possible. It is unlikely that there will be a "one-size-�ts-all" solution
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for all these potentially very di�erent possibilities. As one example, WSNs are conceivable
with very di�erent network densities, from very sparse to very dense deployments, which
will require di�erent or at least adaptive protocols. This diversity, although present, is not
quite as large in MANETs.

Environment interaction: Since WSNs have to interact with the environment, their
tra�c characteristics can be expected to be very di�erent from other, human-driven forms of
networks. A typical consequence is that WSNs are likely to exhibit very low data rates over
a large timescale, but can have very bursty tra�c when something happens (a phenomenon
known from real-time systems as "event showers" or "alarm storms"). Long periods (days)
of inactivity can alternate with short periods (seconds or minutes) of very high activity in
the network, pushing its capacity to the limits. MANETs, on the other hand, are used to
support more conventional applications (Web, voice, and so on) with their comparably well
understood tra�c characteristics.

Scale: Potentially, WSNs have to scale to much larger numbers (thousands or perhaps
hundreds of thousands) of entities than current ad hoc networks, requiring di�erent, more
scalable solutions. As a concrete case in point, endowing sensor nodes with a unique
identi�er is costly (either at production or at runtime) and might be an overhead that could
be avoided. Hence, protocols that work without such identi�ers might become important
in WSNs, whereas it is fair to assume such identi�ers exist in MANET nodes.

Energy: In both WSNs and MANETs, energy is a scarce resource. But WSNs have
tighter requirements on network lifetime, and recharging or replacing WSN node batteries
is much less an option than in MANETs. Owing to this, the impact of energy considerations
on the entire system architecture is much deeper in WSNs than in MANETs.

Self con�gurability: Similar to ad hoc networks, WSNs will most likely be required
to selfcon�gure into connected networks, but the di�erence in tra�c, energy trade-o�s, and
so forth, could require new solutions. Nevertheless, it is in this respect that MANETs and
WSNs are probably most similar.

Dependability and QoS: The requirements regarding dependability and QoS are
quite di�erent. In a MANET, each individual node should be fairly reliable; in a WSN, an
individual node is next to irrelevant. The quality of service issues in a MANET are dictated
by traditional applications (low jitter for voice applications, for example); for WSNs, entirely
new QoS concepts are required, which also take energy explicitly into account.

Data centric: Redundant deployment will make data-centric protocols attractive in
WSNs. This concept is alien to MANETs. Unless applications like �le sharing are used
in MANETs, which do bear some resemblance to data centric approaches, data-centric
protocols are irrelevant to MANETs, but these applications do not represent the typically
envisioned use case.

Simplicity and resource scarceness: Since sensor nodes are simple and energy sup-
ply is scarce, the operating and networking software must be kept orders of magnitude
simpler compared to today's desktop computers. This simplicity may also require breaking
with conventional layering rules for networking software, since layering abstractions typi-
cally cost time and space. Also, resources like memory, which is relevant for comparably
heavy-weight routing protocols as those used in MANETs, is not available in arbitrary
quantities, requiring new, scalable, resource-e�cient solutions.

Mobility: The mobility problem in MANETs is caused by nodes moving around,
changing multihop routes in the network that have to be handled. In a WSN, this problem
can also exist if the sensor nodes are mobile in the given application. There are two addi-
tional aspects of mobility to be considered in WSNs. First, the sensor network can be used
to detect and observe a physical phenomenon (in the intrusion detection applications, for
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example). This phenomenon is the cause of events that happen in the network (like rais-
ing of alarms) and can also cause some local processing, for example, determining whether
there really is an intruder. What happens if this phenomenon moves about? Ideally, data
that has been gathered at one place should be available at the next one. Also, in tracking
applications, it is the explicit task of the network to ensure that some form of activity
happens in nodes that surround the phenomenon under observation. Second, the sinks of
information in the network (nodes where information should be delivered to) can be mobile
as well. In principle, this is no di�erent than node mobility in the general MANET sense,
but can cause some di�culties for protocols that operate e�ciently in fully static scenarios.
Here, carefully observing trade-o�s is necessary. Furthermore, in both MANET and WSNs,
mobility can be correlated, e.g., a group of nodes moving in a related, similar fashion. This
correlation can be caused in a MANET by, for example, belonging to a group of people
traveling together. In a WSN, the movement of nodes can be correlated because nodes are
jointly carried by a storm, a river, or some other �uid.

In summary, there are commonalities, but the fact that: a) WSNs have to support very
di�erent applications; b) they have to interact with the physical environment; and c) they
have to carefully mediate various trade-o�s, justi�es WSNs as a system concept distinct
from traditional networks.

2.1.2 Challenges and design issues for WSNs
Although he design criteria and the requirements of sensor networks di�er from application
to application, nonetheless certain common traits appear, especially with respect to the
characteristics and the required mechanisms of such systems. Realizing these characteristics
with new mechanisms is the major challenge of the vision of wireless sensor networks. The
following characteristics are shared among most of the application examples.

Type of service: The service type rendered by a conventional communication network
is evident (moving bits from one place to another. For a WSN, moving bits is only a
means to an end, but not the actual purpose. Rather, a WSN is expected to provide
meaningful information and/or actions about a given task: "People want answers, not
numbers" [28]. Additionally, concepts like scoping of interactions to speci�c geographic
regions or to time intervals will become important. Hence, new paradigms of using such a
network are required, along with new interfaces and new ways of thinking about the service
of a network.

Quality of Service: Closely related to the type of a network's service is the quality of
that service. Traditional quality of service requirements, e.g., bounded delay or minimum
bandwidth in multimedia, are irrelevant when applications are tolerant to latency [29], or
the bandwidth of the transmitted data is very small in the �rst place. In some cases,
only occasional delivery of a packet can be more than enough; in other cases, very high
reliability requirements exist. In yet other cases, delay is important when actuators are to
be controlled in a real time fashion by the sensor network. The packet delivery ratio is an
insu�cient metric; what is relevant is the amount and quality of information that can be
extracted at given sinks about the observed objects or area. Therefore, adapted quality
concepts like reliable detection of events or the approximation quality of a temperature
map for example, are important.

Fault tolerance: Since nodes may run out of energy or might be damaged, or since the
wireless communication between two nodes can be permanently interrupted, it is important
that the WSN as a whole is able to tolerate such faults. To tolerate node failure, redundant
deployment is necessary, using more nodes than would be strictly necessary if all nodes
functioned correctly.
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Lifetime: In many scenarios, nodes will have to rely on a limited supply of energy
(using batteries). Replacing these energy sources in the �eld is usually not practicable,
and simultaneously, a WSN must operate at least for a given mission time or as long
as possible. Hence, the lifetime of a WSN becomes a very important �gure of merit.
Evidently, an energy-e�cient way of operation of the WSN is necessary. As an alternative
or supplement to energy supplies, a limited power source (via power sources like solar
cells, for example) might also be available on a sensor node. Typically, these sources are
not powerful enough to ensure continuous operation but can provide some recharging of
batteries. Under such conditions, the lifetime of the network should ideally be in�nite. The
lifetime of a network also has direct trade-o�s against quality of service: investing more
energy can increase quality but decrease lifetime. Concepts to balance these trade-o�s are
required. The precise de�nition of lifetime depends on the application at hand. A simple
option is to use the time until the �rst node fails (or runs out of energy) as the network
lifetime. Other options include the time until the network is disconnected in two or more
partitions, the time until 50% (or some other �xed ratio) of nodes have failed, or the time
when for the �rst time a point in the observed region is no longer covered by at least a
single sensor node (when using redundant deployment, it is possible and bene�cial to have
each point in space covered by several sensor nodes initially).

Scalability: Since a WSN might include a large number of nodes, the employed archi-
tectures and protocols must be able scale to these numbers.

Wide range of densities: In a WSN, the density of the network can vary considerably.
Di�erent applications will have very di�erent node densities. Even within a given appli-
cation, density can vary over time and space because nodes fail or move; the density also
does not have to be homogeneous in the entire network (because of imperfect deployment,
for example) and the network should adapt to such variations.

Programmability: Not only will it be necessary for the nodes to process information,
but also they will have to react �exibly on changes in their tasks. These nodes should
be programmable, and their programming must be changeable during operation when new
tasks become important. A �xed way of information processing is insu�cient.

Maintainability: As both the environment of a WSN and the WSN itself change
(depleted batteries, failing nodes, new tasks), the system has to adapt. It has to monitor
its own health and status to change operational parameters or to choose di�erent trade-o�s
(e.g., to provide lower quality when energy resources become scarce). In this sense, the
network has to maintain itself; it could also be able to interact with external maintenance
mechanisms to ensure its extended operation at a required quality [30].

2.2 Required Mechanisms
In the previous Section we discussed about the evolution of sensor nodes from bulky, big
storage units to very small and cheap devices. The emergence of sensing technologies and
the fact that the architecture and the applications of WSNs are di�erent from those of
conventional networks, enables separate research e�orts and new mechanisms for designing
a WSN.

To realize the requirements of WSNs, innovative mechanisms for a communication net-
work have to be found, as well as new architectures, and protocol concepts. A particular
challenge is the need to �nd mechanisms that are su�ciently speci�c to the idiosyncrasies
of a given application to support the speci�c quality of service, lifetime, and maintainability
requirements [31]. On the other hand, these mechanisms also have to generalize to a wider
range of applications lest a complete "from scratch" development and implementation of a
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WSN becomes necessary for every individual application. This would likely render WSNs
as a technological concept economically infeasible. Some of the mechanisms that will form
typical parts of WSNs are:
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Multihop wireless communication: While wireless communication will be a core
technique, a direct communication between a sender and a receiver is faced with limita-
tions. In particular, communication over long distances is only possible using prohibitively
high transmission power. The use of intermediate nodes as relays can reduce the total
required power. Hence, for many forms of WSNs, so-called multihop communication will
be a necessary ingredient.

Energy-e�cient operation: To support long lifetimes, energy-e�cient operation is
a key technique. Options to look into include energy-e�cient data transport between two
nodes or, more importantly, the energy-e�cient determination of a requested information.
Also, nonhomogeneous energy consumption, the forming of "hotspots", is an issue.

Auto-con�guration: AWSN will have to con�gure most of its operational parameters
autonomously, independent of external con�guration. The sheer number of nodes and
simpli�ed deployment will require that capability in most applications. As an example,
nodes should be able to determine their geographical positions only using other nodes of the
network. Also, the network should be able to tolerate failing nodes (because of a depleted
battery, for example) or to integrate new nodes (because of incremental deployment after
failure, for example).

Collaboration and in-network processing: In some applications, a single sensor is
not able to decide whether an event has happened but several sensors have to collaborate
to detect an event and only the joint data of many sensors provides enough information.
Information is processed in the network itself in various forms to achieve this collaboration,
as opposed to having every node transmit all data to an external network and process
it "at the edge" of the network. An example is to determine the highest or the average
temperature within an area and to report that value to a sink. To solve such tasks e�ciently,
readings from individual sensors can be aggregated as they propagate through the network,
reducing the amount of data to be transmitted and hence improving the energy e�ciency.
How to perform such aggregation is an open question.

Data centric: Traditional communication networks are typically centered around the
transfer of data between two speci�c devices, each equipped with (at least) one network
address. The operation of such networks is thus address-centric. In a WSN, where nodes
are typically deployed redundantly to protect against node failures or to compensate for
the low quality of a single node's actual sensing equipment, the identity of the particular
node supplying data becomes irrelevant. What is important are the answers and values
themselves, not which node has provided them. Hence, switching from an address-centric
paradigm to a data-centric paradigm in designing architecture and communication protocols
is promising. An example for such a data-centric interaction would be to request the average
temperature in a given location area, as opposed to requiring temperature readings from
individual nodes. Such a data-centric paradigm can also be used to set conditions for alerts
or events ("raise an alarm if temperature exceeds a threshold"). In this sense, the data-
centric approach is closely related to query concepts known from databases; it also combines
well with collaboration, in-network processing, and aggregation.

Locality: Rather a design guideline than a proper mechanism, the principle of locality
will have to be embraced extensively to ensure, in particular, scalability. Nodes, which
are very limited in resources like memory, should attempt to limit the state that they
accumulate during protocol processing to only information about their direct neighbors.
The hope is that this will allow the network to scale to large numbers of nodes without
having to rely on powerful processing at each single node. How to combine the locality
principle with e�cient protocol designs is still an open research topic, however.

Exploit trade-o�s: Similar to the locality principle, WSNs will have to rely to a large
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degree on exploiting various inherent trade-o�s between mutually contradictory goals, both
during system/protocol design and at runtime. Examples for such trade-o�s have been
mentioned already: higher energy expenditure allows higher result accuracy, or a longer
lifetime of the entire network trade-o�s against lifetime of individual nodes. Another im-
portant trade-o� is node density: depending on application, deployment, and node failures
at runtime, the density of the network can change considerably. Therefore, the protocols
will have to handle very di�erent situations, possibly present at di�erent places of a single
network.

2.2.1 Sensor Protocols for Information Exchange
Protocols and architectures for communication among sensor nodes is a very crucial topic
in WSNs. It has been given a lot of attention, since they might di�er depending on the
application and network architecture. One can �nd more details and analytic classi�cation
of sensor protocols in the literature [32, 33, 34, 35]. In this Section, we review two main
protocols for information exchange between sensor nodes, �ooding and routing. We then
describe an alternative �ooding approach, the so-called gossip algorithms.

Routing in WSNs: Routing in wireless networks has been an active research area
for many years. Routing techniques rooted in computer data communications have been
thoroughly explored for use in wireless networks, resulting in the emergence of many self-
organizing, self-healing models in commercial implementations.

The reason for all this activity is that robust operation within changing propagation
conditions and under energy and communication bandwidth constraints precludes the use
of traditional IP-based protocols and creates a di�cult challenge for dedicated WSN rout-
ing algorithms. The task of �nding and maintaining routes in WSNs is nontrivial because
energy restrictions and sudden changes in node status (including failure, jamming, or tem-
porary obstructions) cause frequent and unpredictable changes. Building and propagating
automatic routing through the network requires powerful node processors, large amounts
of memory, and additional dedicated routers, as well as network downtime until alternative
routing is established.

Determining routing tables is the task of the routing algorithm with the help of the
routing protocol. In wired networks, these protocols are usually based on link state or
distance vector algorithms (Dijkstra's or Bellman-Ford). In a wireless, possibly mobile,
multihop network, di�erent approaches are required. Routing protocols here should be
distributed, have low overhead, be self-con�guring, and be able to cope with frequently
changing network topologies. Building and maintaining routing tables with alternate rout-
ing (for responding to changing propagation conditions) while using low cost, low power
processors proves to be a formidable challenge, which is ampli�ed when the size and number
of hops increase.

Many new and sophisticated algorithms have been proposed to resolve these issues. The
resulting routing schemes take into consideration the inherent features of WSNs along with
application and architecture requirements. To minimize energy consumption, routing tech-
niques employ some interesting techniques special to WSNs, such as data aggregation and
in-network processing, clustering, di�erent node role assignment, and data-centric methods.

These routing techniques seek balance between simple solutions with limited robustness
and sophisticated solutions. Even in sophisticated solutions, there is still the risk that in
large networks or when messages are short, the routing overhead will consume valuable
resources such as bandwidth and power and sometimes cause packet collisions. Worst case,
these factors combine to �nally degrade network robustness, throughput, and end-to-end
delay.
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Figure 2.1: Signal propagation in networks based on routing, http://www.industrial-
embedded.com/articles/id/?4098.

One basic routing attribute related to the dynamic nature of an RF environment has yet
to be solved: One moment after the routing table is created, it is already obsolete because
the RF conditions have changed.

Flooding the network: The simplest forwarding rule is to �ood the network: Send
an incoming packet to all neighbors. As long as source and destination node are in the same
connected component of the network, the message is sure to arrive at the destination. To
avoid message exchange endlessly, a node should only forward those messages that has not
yet seen. In �ooding, instead of using a speci�c route for sending a message from one node
to another, the message is sent to all the nodes in the network, including those to whom it
was not intended.

The attractiveness of the �ooding technology lies in its high reliability and utter sim-
plicity. There is no need for sophisticated routing techniques since there is no routing. No
routing means no network management, no need for self-discovery, no need for self-repair,
and, because the message is the payload, no overhead for conveying routing tables or routing
information.

Flooding technology has additional advantages related to propagation. Signals arriving
at each node through several propagation paths bene�t from the inherent space diversity,
thus maximizing the network robustness of handling obstructions, interferences, and re-
sistance to multipath fading, with practically no single point of failure. In other words,
blocking one path or even a limited number of paths is usually of no consequence.

Figures 2.1 and 2.2 exemplify the di�erent propagation patterns for the two mesh tech-
nologies in the same 24-node, three-hop network. The �rst hop signal propagation is blue,
the second is purple, and the third is green. In Figure 2.1, the e�ect of a signal obstruction
or interference in the route on the left precludes the signal from arriving at its destination.
Sophisticated routing-based schemes identify the problem and try to reroute the signal. If
no alternative route helps, a new routing is recalculated, leading to side e�ects such as
latency and possible service interruption until the new route it completed, veri�ed, and
propagated. In the �ooding-based scheme in Figure 2.2, a signal obstruction will most
likely not a�ect the operation at all because of the numerous redundant paths.

An alternative to forwarding data to all neighbors is to forward it to an arbitrary one.
Such gossiping results in the messages randomly traversing the network in the hope of
eventually �nding the destination node.
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Figure 2.2: Signal propagation in networks based on �ooding,
http://www.industrial-embedded.com/articles/id/?4098.

Gossiping in WSNs: Gossiping [36] is an alternative to the classic �ooding approach
that uses randomization to conserve energy. The goal is to spread updates to all nodes as
fast as possible while minimizing the message overhead. The question is to select neighbors
for gossiping the rumor at hand (how often, which neighbors, etc.). Gossip algorithms
essentially consist of information propagation through nodes randomly selecting neighbors
to transmit to in each round. If a gossiping node receives data from a given neighbor, it
can forward data back to that neighbor if it randomly selects that neighbor. There has
been considerable work on constructing gossip algorithms to compute aggregate functions
in networks [37, 38]. In comparison to other approaches, gossip-based approaches are more
limited in that the functions considered in most cases are limited to averages, sums and
extremal values. The advantage however is fault tolerance as well as simplicity in imple-
mentation; the computational operations that nodes have to perform are restricted to very
simple ones. Gossip algorithms are reviewed in Section 2.2.2.

2.2.2 Gossip Algorithms
In this Section, we review distributed asynchronous algorithms, also known as gossip al-
gorithms, for computation and information exchange in an arbitrarily connected network
of nodes. Nodes in such networks operate under limited computational, communication
and energy resources. These constraints naturally give rise to "gossip" algorithms: schemes
which distribute the computational burden and in which a node communicates with a ran-
domly chosen neighbor.

Gossip algorithms are distributed message-passing schemes designed to disseminate and
process information over wireless sensor and ad-hoc networks. They have received signi�-
cant interest because the problem of computing a global function of data distributively over
a network, using only localized message-passing, is fundamental for numerous applications.

Ad-hoc networks, such as sensor networks, peer-to-peer networks and mobile networks
are not deliberately designed with an "infrastructure". Sensor networks, for example, are
formed by randomly deployed sensors in a geographic area in order to sense or monitor
environment, surveillance or order applications. In such networks, nodes need to collect,
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Figure 2.3: The red line depicts the infrastructure for computing in a distributed
manner the average temperature by exchanging the temperature values in an orderly
fashion.

process and communicate information over a wireless channel. Nodes in such networks do
not have access to addressing or routing information. They also have limited energy and
computation resources, therefore nodes may hibernate or leave the network or die. Since the
global topology of the network is not available to the nodes, they only have access to local
information or information of the neighboring sensors. Therefore, algorithms deployed in
such networks need to be completely distributed, robust against node failure and changes in
topology. These constraints have motivated the design of gossip algorithms: schemes which
distribute the computational burden and in which a node communicates with a randomly
chosen neighbor.

The simplest setup is the following: n nodes are placed on a graph whose edges corre-
spond to reliable communication links. Each node is initially given a scalar (which could
correspond to some sensor measurement like temperature) and we are interested in solving
the distributed averaging problem: namely, to �nd a distributed message-passing algorithm
by which all nodes can compute the average of all n scalars. A scheme that computes
the average can easily be modi�ed to compute any linear function of the measurements
as well as more general functions. Furthermore, the scalars can be replaced with vectors
and generalized to address problems like distributed �ltering and optimization as well as
distributed detection in sensor networks [39, 40, 41].

A toy example described to motivate the averaging problem is sensing the temperature
of some small region of space using a sensor network, [42]. Sensors are deployed to measure
the temperature T of a source. Sensor i, measures Ti = T+ni, where the ni are independent,
identically distributed (i.i.d), zero mean Gaussian sensor noise variables. Consider the
case of 6 sensors i.e., i = 1, . . . , 6. The unbiased, minimum mean squared error (MMSE)
estimate is the average T̂ =

∑6
i=1 Ti/6. Thus, to combat minor �uctuations in the ambient

temperature and the noise in sensor readings, the nodes need to average their readings. The
average temperature can be calculated by interchanging the values in an orderly fashion for
a speci�c infrastructure, Figure 2.3. In case of a node failure, the infrastructure and hence
the algorithm needs to be re-computed. Since the algorithm needs to be robust for this kind
of applications, sensors can "gossip" with their neighbors without having knowledge of the
topology of the network. Therefore, a node contacts one of its neighbors and forms a pair,
Figure 2.4. Paired nodes average their current estimated and after some communication
the estimate of each node converges to the average.

Distributed averaging can be done in many ways. One straightforward method is �ood-
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Figure 2.4: Averaging using gossip algorithms.

ing. Each node maintains a table of the initial node values of all the nodes, initialized with
its own node value only. At each step, the nodes exchange information from their own
tables and the tables of their neighbors. After a number of steps equal to the diameter of
the network, every node knows all the initial values of all the nodes, so the average (or any
other function of the initial node values) can be computed.

Another interesting approach described in [1], considers distributed linear iterations.
More speci�cally, consider a network (connected graph) G = (N, E) consisting of a set of
nodes N = {1, . . . , n} and a set of edges E, where each edge {i, j} ∈ E is an unordered pair
of distinct nodes. The set of neighbors of node i is denoted Ni = {j|{i, j} ∈ E}. Each node
i holds an initial scalar value xi(0) ∈ R, and x(0) = (x1(0) . . . , xn(0)) denotes the vector of
the initial node values on the network. The network gives the allowed communication be-
tween nodes: two nodes can communicate with each other if and only if they are neighbors.
The goal is to compute the average of the initial values, (1/n)

∑n
i=1 xi(0), via a distributed

algorithm, in which nodes only communicate with their neighbors. The distributed linear
iterations have the form

xi(t + 1) = Wiixi(t) +
∑

j∈Ni

Wijxj(t), i = 1, . . . , n (2.1)

where t = 0, 1, 2, . . . is the discrete time index, and Wij is the weight on xj at node i.
Setting Wij = 0 for j /∈ Ni, this iteration can be written in vector form as

x(t + 1) = Wx(t). (2.2)
The constraint on the sparsity pattern of the matrix W can be expressed as W ∈ S, where

S = {W ∈ Rnxn|Wij = 0 if {i, j} /∈ E}. (2.3)
The linear iteration (2.2) implies that x(t) = Wtx(0) for t = 0, 1, 2 . . .. Weight matrix

W is chosen so that for any initial value x(0), x(t) converges to the average vector

x̄ = (1Tx(0)/n)1 = (11T /n)x(0), (2.4)
i.e.,

lim
t→∞

x(t) = lim
t→∞

WT x(0) = (11T /n)x(0). (2.5)

Here 1 denotes the vector with all coe�cients one. This is equivalent to the matrix equation

lim
t→∞

W t = lim
t→

11T

n
. (2.6)
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The asymptotic convergence factor is de�ned as

rasym(W) = sup
x(0) 6=x̄

lim
t→∞

( ‖ x(t)− x̄ ‖2
‖ x(0)− x̄ ‖2

)1/t

, (2.7)

and the associated convergence time

τasym =
1

log(1/rasym)
, (2.8)

which gives the (asymptotic) number of steps for the error to decrease by the factor 1/e. It
is obvious that as the di�erence of the value of each node from the average value increases,
so does the convergence time of the linear iterations, Figure 2.5.
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Figure 2.5: The convergence time of the distributed linear iterations as a function
of the asymptotic convergence factor.

2.2.2.1 Convergence Conditions
The distributed linear iteration (2.1) converges to the average, i.e. equation (2.6) holds, for
any initial vector x(0) ∈ R if and only if

lim
t→∞

Wt =
11T

n
. (2.9)

The necessary and su�cient conditions for this matrix equation to hold are the following,

1W = 1T , (2.10)

W1 = 1, (2.11)

ρ(W− 11T

n
) < 1, (2.12)

where ρ(·) denotes the spectral radius of a matrix. Moreover,

rasym = ρ(W− 11T

n
), (2.13)

The above theorem is proved in [1]. Here, we provide some interpretations.
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Figure 2.6: A small graph with 8 nodes and 17 edges. Each edge and node is labeled
with the optimal symmetric weights, [1].

• Equation (2.10) states that 1 is a left eigenvector of W associated with the eigenvalue
one. This condition implies that 1x(t + 1) = 1Tx(t) for all t, i.e., the sum (and
therefore the average) of the vector of node values is preserved at each step.

• Equation (2.11) states that 1 is also a right eigenvector of W associated with the
eigenvalue one. This condition means that 1 (or any vector with constant entries) is
a �xed point of the linear iteration (2.1).

• Together with the �rst two conditions, condition (2.12) means that one is a simple
eigenvalue ofW, and that all other eigenvalues are strictly less than one in magnitude.

• If the elements of W are nonnegative, then (2.11) and (2.12) state that W is doubly
stochastic, and (2.13) states that the associated Markov chain is irreducible and
aperiodic.

Concluding, the averaging time of a gossip algorithm depends on the spectral radius
of the weight matrix W and consequently on the second largest eigenvalue of this matrix.
Hence, the smaller the eigenvalue, the faster the averaging problem.

Boyd also presented in [1] an example of a network that consist of 8 nodes and 17 edges,
shown in Figure 2.6. The histogram of the eigenvalues of the weight matrix is depicted in
Figure 2.7. The second largest eigenvalue is 0.6 and the largest eigenvalue is of course 1, as
we demanded in conditions (2.10), (2.11).

Now assume that each sensor measures the temperature of the environment. Due to
minor �uctuations in the temperature and the noise in sensor readings, the nodes do not
have exactly the same data measured. So, they need to average their data. Data are
generated using gaussian distribution with mean value 30 and standard deviation 5. The
mean value of the measurements of each node is 29.5 and it is depicted with the straight
line in Figure 2.9. The blue dots depict the value of one sensor at each iteration. One
can easily notice that after only a few iterations, the value of one sensor converges to the
average value of the initial value of the temperature as it was measured from all sensors.

Moreover, Boyd in [1] proposed some heuristics based on the Laplacian in order to choose
W that guarantees convergence of the distributed linear averaging iterations. Figure 2.8
depicts the histogram of the eigenvalues of another matrix with constant edge weights. The
second largest eigenvalue is 0.65, which is greater than eigenvalue 0.6, of the �rst weight
matrix, thus we expect a slower convergence. This is depicted comparing Figures 2.9 and
2.10 and it is con�rmed by equation (2.8) since τasym(0.65) = 2.36 > 1.95 = τasym(0.6).
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Figure 2.7: The histogram of the eigenvalues of the weight matrix of the above
graph.

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 2.8: The histogram of the eigenvalues of matrix W with constant edge
weights.
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Figure 2.9: The convergence of one sensor after 20 distributed linear iterations.
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Figure 2.10: The convergence of one sensor of the graph with constant edge weights
after 20 distributed linear iterations.
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2.3 Basic Concepts of Optimization problems
The concept of optimization is basic to much of what we do in our daily lives: a desire to
do better or be the best in one �eld or another. Engineers, try to produce the best possible
result with the available resources. In a highly competitive modern world it is no longer
su�cient to design a system whose performance on the required task is just satisfactory. It
is essential to design the best system. Therefore, many problems that an engineer has to
solve are expressed as optimization problems.

Figure 2.11: Locate the top of the hill while blindfolded,
http://www.vrand.com/education.html.

Consider an example in Figure 2.11. One hiker bets that he can locate the top of
the hill while blindfolded. The other one agrees but asks the �rst one to also stay inside
the fences. Translating this situation into optimization problem formulation, one can see
that the objective is to �nd the highest point on the hill. Therefore, objective function
is the height achieved by the �rst hiker with respect to his original position. The design
variables are longitude and latitude - the coordinates, de�ning the position of the hiker.
The constraints are that the hiker has to stay inside the fences. Note here, that in general,
the hiker may start the search from outside the fences.

This simple problem can be expressed as the following optimization problem:

max
x

Y = f(x)

subject to f1(x) ≤ 0,

f2(x) ≤ 0,

(2.14)

where f1, f2 are the constraints for each fence and x = [x1 x2]T . The optimization process
is illustrated in Figure 2.12. This optimization problem can be divided into the following
steps. Find a search direction that will improve the objective while staying inside the fences;
Search in this direction until no more improvement can be made by going in this direction;
The process can be repeated, until no search direction can be found that improves the
objective.

The optimization problem formulation and the optimization process presented above
are very general and can be applied to any design problem in any �eld. For example, let
G = (V,E) be an undirected network. Consider a set of nodes K, where each node k ∈ K

is determined by a source-terminal pair (sk, tk) of vertices, and a demand dk, which is to be
routed over the network from sk to tk. Let uij represent an upper bound on the capacity of
edge {i, j}. The problem is to decide how much demand is routed over each edge, without
violating capacity constraints. The (linear) costs cij are determined by the actual capacity
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Figure 2.12: Optimization process, http://www.vrand.com/education.html.

usage, and should be minimized. Variables fk
ij indicate the demand of node k ∈ K that is

routed from i to j over edge {i, j}. The formulation of this problem is the following:

min
∑

{i,j}∈E

∑
k∈K

cij(fk
ij + fk

ji)

subject to
∑

j:{i,j}∈E

fk
ij −

∑
j:{i,j}∈E

fk
ji =





dk, if i = sk

−dk, if i = tk

0, otherwise.
∀k ∈ K, ∀i ∈ V,

∑
k∈K

(fk
ij + fk

ji), ∀{i, j} ∈ E,

fk
ij , fk

ji ≥ 0, ∀k ∈ K, ∀{i, j} ∈ E.
(2.15)

The �rst constraint is the standard �ow conservation constraints for each node. The
capacity on an edge is undirected because installed capacity can be set-up for usage by
tra�c in both directions. Thus, the sum of forward and backward �ow on an edge should
not exceed its capacity. This is re�ected by the next constraint. The cost function may be
used to set preference on shortest paths (in length or number of connections).

2.3.1 Convex Optimization
By recognizing and formulating a problem as a convex optimization problem, one can solve
it e�ciently, using interior-point or other special methods [43]. These solution methods
are reliable enough to be embedded in a computer-aided design or analysis tool, or even a
real-time reactive or automatic control system. Even more importantly, there are also theo-
retical and conceptual advantages since the associated dual problem often has an interesting
interpretation and sometimes leads to a distributed method for solving it.

Convex optimization is a well-developed area in both the theoretical and practical
aspects, especially during the last two decades when a number of fundamental and practical
results have been obtained. A convex optimization problem (or convex program) is one of
the form:

min
x

f0(x)

subject to fi(x) ≤ 0, 1 ≤ i ≤ m,

hi(x) = 0, 1 ≤ i ≤ l,

(2.16)

where x ∈ Rn is the optimization variable, f0 is the convex objective function, f1, . . . , fm

are m convex inequality constraint functions, and h1, . . . , hl are l linear equality constraint
functions. A point is feasible if it satis�es all the constraints fi(x) ≤ 0 and hi(x) = 0. The
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problem (2.16) is said to be feasible if there exists at least one feasible point and infeasible
otherwise.

The basic idea in Lagrangian duality is to take the constraints in (2.16) into account
by augmenting the objective function with a weighted sum of the constraint functions. The
Lagrangian L : Rn ×Rm ×Rl −→ R associated with the problem (2.16) is de�ned as

L(x, λ, ν) = f0(x) +
m∑

i=1

λifi(x) +
l∑

i=1

νihi(x), (2.17)

where λi is the Lagrange multiplier associated with the i-th inequality constraint, while νi

is the Lagrange multiplier associated with the i-th equality constraint. The vectors λ and
ν are called the dual variables or Lagrange multiplier vectors associated with the problem
(2.16). Similarly, the original objective function f0(x) is referred to as the primal objective,
whereas the dual objective is de�ned as the minimum value of the Lagrangian over x

g(λ, ν) = inf
x

L(x,λ,ν). (2.18)

Note that the in�mum in (2.18) is with respect to all x (not necessarily feasible points),
and that the dual variables λ, ν are dual feasible if λ ≥ 0.

For each pair λ, ν with λ ≥ 0, the Lagrange dual function gives a lower bound on
the optimal value p∗ of the optimization problem (2.16), which depends on the parameters
λ, ν. A natural question is: What is the best lower bound that can be obtained from the
Lagrange dual function? This leads to the optimization problem

max
λ,ν

g(λ, ν)

subject to λ ≥ 0.
(2.19)

The di�erence between the optimal primal value p∗ and the optimal dual objective d∗ is
called the duality gap, which is always nonnegative (weak duality). A central result in
convex analysis [43], [44] is that when the problem is convex, under some mild conditions,
the duality gap reduces to zero at the optimal (i.e., strong duality holds). Hence, the primal
problem (2.16) can be equivalently solved by using the dual problem formulation (2.19).

The so-called Karush-Kuhn-Tucker (KKT) conditions constitute an important analysis
tool when dealing with convex optimization problems with di�erentiable objective and
constraint functions. Speci�cally, if fi are convex and hi are a�ne in problem (2.16), and
x∗, λ∗, ν∗ are any points that satisfy the KKT conditions:

fi(x∗) ≤ 0, i = 1, . . . , m (2.20)
hi(x∗) = 0, i = 1, . . . , l (2.21)

λ∗i ≥ 0, i = 1, . . . , m (2.22)
λ∗i · fi(x∗) = 0, i = 1, . . . , m, (complementary slackness) (2.23)

∇f0(x∗) +
m∑

i=1

λ∗i∇fi(x∗) +
l∑

i=1

ν∗i ∇hi(x∗) = 0, (2.24)

then x∗ and (λ∗, ν∗) are primal and dual optimal, with zero duality gap.
Summarizing, convexity can be viewed as the watershed between easy and hard opti-

mization problems. This is in part because a local optimum of convex optimization is also
globally optimal, the duality gap is zero under certain constraint quali�cations, and the
KKT conditions are both necessary and su�cient for primal-dual optimality.
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2.3.2 Distributed Optimization
In many envisioned applications of wireless sensor networks, the ultimate objective is not
merely the collection of raw data, but rather the estimation of certain environmental pa-
rameters or functions of interest (e.g., source localization, spatial distributions). Following
standard methodology all measurements should be transmitted to a central point for pro-
cessing, in order to derive an estimate of a parameter or a function. However, this trans-
mission may place a signi�cant drain on communication and energy resources. Bertsekas
and Nedic introduced in [45] a distributed algorithm for in-network data processing, aiming
at reducing the amount of energy and bandwidth used for communication.

The estimation problems they consider are addressed through the optimization of a
cost function (e.g., maximum likelihood, minimum mean squared error, or maximum a
posteriori) involving data from all sensors. The distributed algorithms are based on an
incremental optimization process. Speci�cally, a parameter estimate is circulated through
the network, and along the way each node makes a small gradient descent-like adjustment
to the estimate based only on its local data. Moreover, Bertsekas and Nedic in [46] present
an extended convergence analysis of the proposed incremental subgradient method.

Applying results from the theory of incremental subgradient optimization, Nowak and
Rabbat show in [47], that for a broad class of estimation problems (robust estimation,
energy-based source localization and clustering estimation), the distributed algorithms con-
verge to within an e-ball around the globally optimal value. In the following Section, we
present these two approaches, as an example of a distributed optimization technique for a
WSN application, that is based on a centralized well-studied optimization algorithm.

2.3.2.1 Incremental Subgradient Optimization
The basic theory, methods and convergence behavior of incremental subgradient optimiza-
tion were presented by Nedic and Bertsekas in [45], [46]. As an illustration of the basic
idea, consider a sensor network comprised of n nodes randomly distributed uniformly over
a region, each of which collects m measurements. Many estimation criteria possess the
following important form:

f(θ) =
1
n
·

n∑

i=1

fi(θ), (2.25)

where θ is the parameter of function to be estimated, and f(θ) the cost function, which can
be expressed as a sum of n local functions {fi(θ)}n

i=1 in which fi(θ) only depends on the
data measured at sensor i.

So we formulate the incremental optimization problem as an estimation problem of
a set of parameters, which describe the global phenomena being sensed by the network.
Denote by Θ this set of parameters which describe the global phenomena being sensed by
the network and by xi,j the j-th measurement taken at the i-th sensor. One can write:

θ̂ = arg min
θ∈Θ

1
n
·

n∑

i=1

fi({xi,j}m
j=1, θ). (2.26)

The functions fi : Rd → R are convex and Θ is nonempty, closed and convex subset of Rd.
To simplify the notation we will write fi(θ) instead of fi({xi,j}m

j=1, θ); that is, the function
fi(θ) depends on the data at the i-th sensor as well as the global parameter θ.

Gradient and subgradient descent methods are popular techniques for iteratively solv-
ing optimization problems of this nature [48]. Nowak in [47] introduces the concept of a
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subgradient by �rst recalling an important property of the gradient of a convex di�eren-
tiable function. For a convex di�erentiable function, f : Θ → R, the following inequality
for the gradient of f at a point θ0 holds for all θ ∈ Θ:

f(θ) ≥ f(θ0) + (θ − θ0)T · ∇f(θ0). (2.27)

In general, for a convex function f , a subgradient of f at θ0 (observing that f may not be
di�erentiable at θ0) is any direction g such that

f(θ) ≥ f(θ0) + (θ − θ0)T · g (2.28)

and the subdi�erential of f at θ0, denoted by ∂f(θ0), is the set of all subgradients of f at
θ0. Note that if f is di�erentiable at θ0, then ∂f(θ0) ≡ {∇f(θ0)}. The update equation for
a centralized subgradient descent approach to solving (2.26) is

θ̂(k+1) = ˆθ(k) − α ·
n∑

i=1

gi,k, (2.29)

where gi,k ∈ ∂fi(θ̂(k)), α is a positive step size, and k is the iteration number. The subgra-
dient method was originally developed by Shor in the Soviet Union in the 1970s. Basic ref-
erences on subgradient methods and their convergence properties include Shor's book [49],
and Bertsekas' book [48] combined with an convergence analysis of the subgradient method
for optimization problems.

2.3.2.2 Incremental Subgradient Method in Sensor Networks
Bertsekas' decentralized incremental approach for solving (2.26), was employed by Nowak
who applied this method in an optimization problem considering a network of n sensors in
which each sensor collects m measurements. The estimation problem Nowak considers is
addressed through the optimization of a cost function involving data from all sensor nodes
as shown in (2.25). The decentralized approach is based on a parameter estimate that is
circulated through the network. Nodes make sequentially updates of the estimate based on
sensor's local data.

In the following, a decentralized incremental approach is used for solving (2.26) in which
each update iteration (2.29) is divided into a cycle of n subiterations, and each subiteration
focuses on optimizing a single component fi(θ). If θ̂(k) is the vector obtained after k cycles,
then

θ̂(k) = ψ(k)
n , (2.30)

where ψ
(k)
n is the result of n subiterations of the form

ψ
(k)
i = ψ

(k)
i−1 − α · gi,k, (2.31)

where i = 1, 2, ...n, gi,k ∈ ∂fi(ψ
(k)
i−1) and ψ

(k)
0 = ψ

(k−1)
n . For the purposes of analyzing the

rate of convergence, we can assume that the algorithm is initialized to an arbitrary starting
point θ̂(0) ∈ Θ.

As mentioned before, Bertsekas and Nedic in [46] presented some convergence results
for the incremental subgradient method for various stepsize rules (constant stepsize, dimin-
ishing stepsize and dynamic stepsize) and gave proofs of the convergence rate estimates.
Their results are based on two assumptions. First, they assume that an optimal solution,
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θ∗, exists. Additionally, they assume that there is a scalar, ζ > 0, such that all subgradients
of the functions fi(θ) are upper bounded:

‖ gi,k ‖≤ ζ. (2.32)

They also assume that the distance between the starting point θ̂(0) and an optimal solution
θ∗ is bounded:

‖ θ̂(0) − θ∗ ‖≤ c0. (2.33)
Under these assumptions and for a constant positive stepsize α, setting

e = α · ζ2, (2.34)

guarantees convergence to a solution, which brings the objective function within an e-ball
of the optimal value f(θ∗) after at most K cycles:

K ≤ c0 · ζ2

e2
. (2.35)

In addition to a theoretical analysis of distributed estimation algorithms of this sort,
Nowak et. al also investigate this application in three problems:

• Robust estimation: Robust estimates are often derived from criteria other than the
sum-of-squared errors including Huber loss function.

• Cluster and density estimation: In the discovery process, one may have very little
prior information about characteristics of the environment and distribution of the
data. Clustering and density estimation are standard �rst-steps in data exploration
and analysis and usually lead to non-quadratic optimizations.

• Source localization: Source localization algorithms are often based on a squared-error
criterion (e.g., Gaussian noise model), but the location parameter of interest is usually
nonlinearly related to the data (received signal strength is inversely proportional to
the distance from source to sensor) leading to a nonlinear estimation problem.

All three problems can be tackled using distributed algorithms, and simulation experi-
ments in these applications demonstrate the potential gains obtainable in practical settings.
In the following Section, we present simulations experiments for an energy based source
localization problem based on Nowak's distributed algorithm and we present simulation re-
sults, investigating the performance of the decentralized incremental algorithm in a variety
of scenarios.

2.3.2.3 Application in Energy-Based Source Localization
Estimating the location of an acoustic source is an important problem in both environmen-
tal and military applications. In this application described in [47], an acoustic source is
positioned at an unknown location in the sensor �eld. Since the source emits isotropically
a signal, the problem is to estimate the source's location using the distributed incremental
method described above, using received signal energy measurements taken at each sensor.

Assume that n sensors are uniformly distributed over an area 50 × 50, and that each
sensor knows its own location, ri = (ri,x, ri,y), i = 1, ..., n, relative to a �xed reference
point. Consider an isotropic energy propagation model for the j-th received signal strength
measurement at node i supposing that the source is positioned at point θ∗ = (θ∗x, θ∗y):

xi,j =
A

‖ θ∗ − ri ‖β
+ wi,j , (2.36)



40 Chapter 2. Background Theory

where A > 0 is a constant and
‖ θ∗ − ri ‖> 1 (2.37)

for i = 1, 2, ..., n. The exponent β ≥ 1 describes the attenuation characteristics of the
medium through which the acoustic signal propagates while wi,j are i.i.d. samples of a
zero-mean Gaussian noise process with variance σ2. A maximum likelihood estimate for
the source's location is found by solving

θ̂ = arg min
θ

1
mn

n∑

i=1

m∑

j=1

(xi,j − A

‖ θ − ri ‖β
)2. (2.38)

The cost function of this optimization problem is denoted by f(θ).

f(θ) =
1

mn

n∑

i=1

m∑

j=1

(xi,j − A

‖ θ − ri ‖β
)2. (2.39)

It is obvious that the cost function can be expressed as the sum of n local functions
{fi(θ)}n

i=1, where

fi(θ) =
1
m

m∑

j=1

(xi,j − A

‖ θ − ri ‖β
)2. (2.40)

The non linear least squares problem (2.38) clearly �ts into the general incremental subgra-
dient framework described in Section 2.3.2.1. In order to implement the iterative distributed
algorithm described in Section 2.3.2.2, the gradient of fi(θ) is computed:

∇fi(θ) =
2βA

m ‖ θ − ri ‖β+2
·

m∑

j=1

(xi,j − A

‖ θ − ri ‖β
)(θ − ri). (2.41)

The distributed optimization algorithm can be implemented in the two components of
θ = (θx, θy) separately and rewrite (2.41) as:

∂fi(θ)
∂θx

=
2βA

m ‖ θ − ri ‖β+2
·

m∑

j=1

(xi,j − A

‖ θ − ri ‖β
)(θx − ri,x), (2.42)

∂fi(θ)
∂θy

=
2βA

m ‖ θ − ri ‖β+2
·

m∑

j=1

(xi,j − A

‖ θ − ri ‖β
)(θy − ri,y), (2.43)

or
∂fi(θ)
∂θx

= ki · (θx − ri,x), (2.44)

∂fi(θ)
∂θy

= ki · (θy − ri,y), (2.45)

where
ki =

2βA

m ‖ θ − ri ‖β+2
·

m∑

j=1

(xi,j − A

‖ θ − ri ‖β
). (2.46)

Equation (2.31) can be updated using the expressions (2.44) and (2.45):

gi,x =
∂fi(θ)
∂θx

, (2.47)

gi,y =
∂fi(θ)
∂θy

. (2.48)
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Therefore, the update equation of a distributed optimization algorithm for source location
for each component can be expressed as:

ψi,x = ψi−1,x − α · gi,x, (2.49)

ψi,y = ψi−1,y − α · gi,y, (2.50)

or
ψi,x = (1− α · ki) · ψi−1,x + α · ki · ri,x, (2.51)

ψi,y = (1− α · ki) · ψi−1,y + α · ki · ri,y. (2.52)

Having started at an arbitrary point θ(0), after k cycles the algorithm is expected to converge
to a solution θ̂(k) = (ψ(k)

i,x , ψ
(k)
i,y ) that is close enough to the optimal value, which is the real

location of the source θ∗. The magnitude is bounded of the gradient by �rst observing that

‖∇fi(θ)‖ ≤ 2βA ‖ θ − ri ‖
m ‖ θ − ri ‖β+2

·
m∑

j=1

| xi,j − A

‖ θ − ri ‖β
| . (2.53)

Taking under consideration that ‖ θ − ri ‖> 1, one can rewrite (2.53) as:

‖∇fi(θ)‖ ≤ 2βA

m
·

m∑

j=1

| xi,j − A

‖ θ − ri ‖β
| (2.54)

and for a constant c, one can set the expression:

‖∇fi(θ)‖ = 2 · β ·A · c (2.55)

So, for i = 1, 2, ...n there is a scalar ζ = 2 ·β ·A · c such that ‖ gi,k ‖≤ ζ for all subgradients
of the functions fi(θ) and θ ∈ Θ. Now, the optimal value of the step size α can be computed
from the expression (2.34) and then the algorithm converges to a solution with certainty,
which brings the objective function within an e-ball of the optimal value after at most K

cycles.
Now, consider a network consisting of n = 100 sensors uniformly distributed in a 50×50

square. Point (20,20) is chosen to be the source location. The exponent, which describes
the attenuation characteristics of the medium through which the acoustic signal propagates,
is equal to 1 (i.e., β = 1). The source emits a signal with strength A = 100 and each sensor
makes 10 measurements at a signal to noise ratio (SNR) of 3 dB. The algorithm is initialized
at the starting point θ̂(0) = (10, 10). The optimal value of the step size is calculated using the
theoretical analysis of Bertsekas [46] for the speci�c scenario. The value of α for a speci�c
deployment of these sensors is α = 2.8409e − 008, and the number of cycles needed for a
guaranteed convergence to a solution is K = 165.934.718. Consider that the convergence is
accomplished when the solution is within an e-ball with radius e=3 of the optimal solution
θ̂ = (20, 20). For such a small step size, the number of cycles is expected to be big.

Figure 2.13 depicts a path produced by the decentralized incremental subgradient
algorithm and displayed on top of contours of the log-likelihood function. The values
of the parameters are exactly the same as the ones of the previous simulation (that is
m = 10, n = 100, b = 1, SNR = 3) but for a step size α = 0.001. It can be seen in Fig-
ure 2.13(a) that the algorithm for a signal with strength A = 30 converges to the solution
θ̂ = (17.1976, 19.1751) after K = 114 cycles, but in �gure 2.13(b) for another deployment of
sensors for a signal with strength A = 100, the algorithm converges faster, within K = 23
cycles, to the solution θ̂ = (17.2029, 18.9235).
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Figure 2.13: An example path taken by the decentralized incremental subgradient
algorithm displayed on top of contours of the log-likelihood function. The true source
location is at the point (20,20). The green squares correspond to the 100 sensors
that are uniformly distributed in the area [0, 50] × [0, 50]. Each sensor makes 10
measurements. (a) The signal strength is A = 30, the signal to noise ratio is 3
dB and the attenuation characteristics of the medium are de�ned by the parameter
β = 1. (b) The signal strength is A = 100, the signal to noise ratio is 3 dB and the
attenuation characteristics of the medium are de�ned by the parameter β = 1.

The convergence of the algorithm is investigated for a speci�c deployment of n = 10
sensors, making m = 5 measurements each but for di�erent values of the signal strength
A. Figure 2.14 shows how many cycles are required so that the algorithm converges to a
solution within an e-ball (e=3) of the optimal solution θ̂ = (20, 20). The signal to noise
ratio is equal to 3, and β = 1 and the step size α = 0.001. Moreover, the convergence
of the algorithm is investigated for the same deployment but with di�erent values of the
parameter β. Comparing Figure 2.15(a) to Figure 2.15(b) one can easily notice that the
algorithm converges faster for a stronger signal (A = 100) than for a weaker signal (A = 3).
Figure 2.15(a) depicts six cases where the algorithm converges in K < 104 cycles while in
Figure 2.15(b) only in one case the algorithm converges in K < 4.5 · 104 cycles. Finally,
Figure 2.16 depicts the number of cycles needed for a convergence with the same parameters
that were used in Figure 2.15(a) but for di�erent deployment of sensors. Observing the two
�gures, parameter β does not a�ect the time of convergence. On the other hand, the
convergence depends greatly on the deployment of the sensors in the area.

2.4 Support Vector Machines
Support Vector Machines (SVMs) is a learning system based on recent advances in statistical
learning theory. Training an SVM involves optimization of a convex cost function. SVMs
deliver state-of-the-art performance in real-world applications such as text categorization,
hand-written character recognition, image classi�cation, biosequences analysis, etc., and
are now established as one of the standard tools for machine learning and data mining.

As a principle approach to machine learning, and particular to various types of machine,
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Figure 2.14: The number of cycles required so that the algorithm converges to
a solution within an e-ball (e=3) of the optimal solution θ̂ = (20, 20) vs. signal
strength A. The algorithm does not reach a convergence point.
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Figure 2.15: The number of cycles required so that the algorithm converges to a
solution within an e-ball (e=3) of the optimal solution θ̂ = (20, 20) vs. the exponent
which describes the attenuation characteristics of the medium β. The algorithm does
not reach a convergence point. (a) The signal strength is A = 100 and the signal to
noise ratio is 3 dB. (b) The signal strength is A = 3 and the signal to noise ratio is
3 dB.
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Figure 2.16: The number of cycles required for another deployment of sensors so
that the algorithm converges to a solution within an e-ball (e=3) of the optimal
solution θ̂ = (20, 20) vs. signals' strength A. When the number of cycles is 9 · 104,
the algorithm does not reach a convergence point.

i.e., classi�cation, regression, or novelty detection tasks, SVMs exhibit a good generalization
to new data. The motivation for SVMs, actually came from statistical learning theory [50].
Unlike other approaches to machine learning, such as neural networks, SVM is a learning
approach, using a training set with unknown statistics in order to make inferences and de-
cision rules with small loss for any new data. Relatively very few parameters require tuning
(kernel function and soft margin), therefore they are very easy to use in any application.
In contrast to neural networks, SVM is a quadratic problem that involves optimization of
a convex cost function, hence, there are no false local minima and no problems �nding the
global minima.

The idea behind the support vector machines is to look at the radial basis function
(RBF) network as a mapping machine, through the kernels, into a high dimensional feature
space. Then a hyperplane linear classi�er is applied in this transformed space utilizing
those patterns vectors that are closest to the decision boundary. These are called support
vectors corresponding to a set of data centers in the input space. The hyperplane in this
feature space (or the nonlinear decision surface in the original space) will be optimized in
giving the largest tolerance margin. The algorithm computes all the unknown parameters
automatically including the number of these centers. In the last decade, signi�cant advances
have been made in support vector machine research [24], both theoretically using statistical
learning theories [50, 51], and algorithmically based on optimization techniques [52]. Since
this is a relatively new design methodology for pattern classi�cation, we give a substantially
detailed review in this section, and then present a case study on right ventricle shape data.

The SVM algorithm is a maximal margin algorithm. It seeks to place a hyperplane
between classes of points such that the distance between the closest points are maximized.
It is equivalent to maximum separation of the distance between the convex hulls enclosing
the class member points. Vladimr Vapnik is respected as the researcher who primarily laid
the groundwork for the support vector algorithm. The �rst breakthrough came in 1992
when Boser et al. in [53] constructed the SVM learning algorithm as we know it today.
The algorithm worked for problems in which the two classes of points were separable by a
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hyperplane. In the meantime, this work was extended to a soft margin approach, [54]. It
involves the introduction of slack variables, or error margins that are introduced to absorb
errors that are inevitable for non-separable problems. The SVM was primarily constructed
to address binary classi�cation problems. This has been adapted by introducing versions
of the SVM that can train a multi-classi�er concurrently.

Other approaches involved the use of voting schemes in which a meta-learner takes
the votes from the individual binary classi�ers and casts the �nal vote. A particularly easy
voting scheme is the one-against-all voter, which for SVMs amounts to training C classi�ers
and �nding the Ci classi�er with the hyperplane furthest away from the new point to be
tested. The SVM has been extended to other learning areas as well, such as regression
and clustering. The regression algorithm extension has been re�ned by Alex Smola and
Bernhard Scholkopf and pioneered by Vapnik [50]. The regression case is carried out by
using the slack variable approach once again. A so-called ε-tube is constructed around the
regression line. The width ε constitutes the error free zone, and the points that fall within
this zone are regarded as error free. If a point falls outside the tube, then a slack vector
approach is introduced, which for the L2 norm case amounts to minimizing the square
distance to the regression line. It can be noted that the regression line is identical to the
OLS regression should the width of the tube be set to zero.

Next, we formulate the learning task or training of a binary SVM classi�er as a convex
optimization problem, assuming that all the computation is performed in a centralized
manner at a certain fusion center. First, we examine the case of two linearly separable
data sets, and then we describe an alternative formulation of an linear SVM for linearly
inseparable data sets, also called as ν − SV M . Both cases can be described using several
equivalent formulations, each of them having a concrete geometrical interpretation.

2.4.1 SVM for Linearly Separable Data Sets
This problem is a wonderful example of a mathematical programming concept of duality.
The solutions of the primal and the dual problems are identical (i.e, strong duality holds),
and both have interesting geometrical interpretations.

2.4.1.1 Primal Problem
Consider a binary classi�cation task with data vectors xi, i = 1, . . . , n from class {+1}
and yj , j = 1, . . . ,m from class {-1}. Assume that these data sets are linearly separable.
Intuitively, the plane that best separates the data sets, is the one further from both classes.
With this choice of hyperplane, small changes in the data will not yield misclassi�cation
errors. Thus, intuitively, one is interested in constructing a hyperplane that maximizes the
minimum distance from the plane to each set. A plane supports a class if all points in
that class are on one side of that plane. For the points in class {+1} and class {-1}, the
goal is to �nd a vector w and an o�set b such that w · xi + b ≥ 1 and w · yj + b ≤ 1,
respectively. Maximizing the slab 2

‖w‖ , is equivalent to minimizing ‖w‖
2 in the following

quadratic programming problem:

min
w

‖w‖2
2

subject to wT · xi + b ≥ 1, i = 1, . . . , n

wT · yj + b ≤ −1, j = 1, . . . , m.

(2.56)

This problem turns out to be a convex optimization problem since the objective and the
constraint functions are convex [43]. It is very interesting at this point to examine also the
dual problem and interpret the results geometrically.
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2.4.1.2 Dual Problem
Using the Lagrangian duality described in Section 2.19, it is possible to obtain an equivalent
alternative formulation given by:

min
θ,γ

‖ ∑n
i=1 θixi −

∑m
j=1 γjyj ‖2

subject to
∑n

i=1 θi = 1,
∑m

j=1 γj = 1,

θi ≥ 0, γj ≥ 0.

(2.57)

where θ = [θ1, . . . , θn], γ = [γ1, . . . , γm]. In the framework of optimization theory, the
convex optimization problems (2.56) and (2.57) are said to be dual of each other.

Observing (2.57), one can easily notice that it can be interpreted as the problem of
�nding the minimum distance between two convex hulls1: the convex hull that contains the
data {xi} of one class and the convex hull that contains the data {yj} of the other class (cf.
Figure 2.17(a)). The optimal discriminant (classi�er) is de�ned by vector w∗ and o�set b∗

as follows:

w∗ =
n∗∑

i=1

θ∗i xi −
m∗∑

j=1

γ∗j yj , (2.58)

b∗ = 1−w∗Txi, or b∗ = 1−w∗Tyj , (2.59)
The resulting separating hyperplane is expressed by means of a linear combination of the
so-called support vectors, i.e., those xi

′s and yj
′s corresponding to non-zero θ∗i and γ∗j ,

respectively, (cf. Figure 2.17(b)). Note that n∗ + m∗ << n + m, i.e, the support vectors
are a small subset of the original data and hence they can be considered to constitute a
sparse representation of the measurements.

2.4.2 ν-SVM for Linearly Inseparable Data Sets
In real word applications, it is common to encounter the case of linearly non separable
classes. It is possible to solve this kind of problems with a linear SVM only by relaxing
the data constraints. In the following, we present the primal and the dual formulation of a
SVM in this case, and we also describe the ν − SV M formulation that leads also to a very
interesting geometrical interpretation.

2.4.2.1 Primal Problem
The width of the classi�er's margin, which determines the number of weak and wrong
classi�cations in the training set, is de�ned as the distance between the pair of parallel
support planes described by wT · xi + b = 1, wT · yj + b = −1. The training vectors now
can be any of the following:

• vectors xi, yj that are outside the support planes and are correctly classi�ed, i.e.,
wT · xi + b ≥ 1, wT · yj + b ≤ −1,

• vectors xi, yj falling inside the slab of the support planes but are correctly classi�ed,
i.e.,
0 ≤ wT · xi + b ≤ 1, −1 ≤ wT · yj + b ≤ 0,

• vectors xi, yj that are misclassi�ed, i.e.,
wT · xi + b ≤ 0, wT · yj + b ≥ 0.

1A convex hull of X is the set of points of the form
∑n

i=1 tixi, where the numbers ti are
non-negative and sum to 1, n is an arbitrary natural number and the points xi are in X.
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Figure 2.17: a) The optimal hyperplane is orthogonal to the shortest line connecting
the convex hulls of the two classes, and intersects it half-way between the two classes.
b) The optimal hyperplane is constructed only from the three support vectors. The
other measurements give no information about the hyperplane.
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Figure 2.18: An example of two non separable classes and the resulting SVM linear
classi�er (full line) with the associated margin for the values a) C1 = 0.1 and the
margin 2

‖w1‖ and b) C2 = 100 and the margin 2
‖w2‖ < 2

‖w1‖ .
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All three cases can be expressed in one inequality by introducing the so called slack
variables ui, and vj for each class respectively, so that wT · xi + b ≥ 1− ui, wT · yj + b ≤
−1 + vj , for i = 1, 2, . . . , n and j = 1, 2, . . . ,m. The �rst category of the data are vectors
corresponding to ui = 0, the second to 0 < ui ≤ 1 and the third to ui > 1. Similarly for
vj . The goal now is to make the margin as large as possible but at the same time to keep
the number of points with ui > 0, vj > 0 as small as possible. In mathematical terms, this
is equivalent to the following optimization problem:

min
w,u,v

1
2 ‖ w ‖2 +C

( ∑n
i=1 ui +

∑m
j=1 vj

)

subject to wT · xi + b ≥ 1− ui, i = 1, . . . , n

wT · yj + b ≤ −1 + vj , j = 1, . . . , m,

u º 0, v º 0. (component-wise ≥ 0)

(2.60)

The parameter C is a positive constant which gives the relative weight of the number of
misclassi�ed points, compared to the width of the slab. Figures 2.18(a) and 2.18(b) depict
an example of the trade-o� between the width of the margin and the number of misclas-
si�ed data. Notice also that for u = v = 0, problem (2.60) coincides with optimization
problem (2.56) for the case of linearly separable data sets.

However, since the margin is such an important entity in the design of a SVM, an
alternative formulation is the also known as ν −SV M method. The margin now is de�ned
by the support planes:

wTx+ b = ρ,

wTy+ b = −ρ,

where ρ ≥ 0 is a free variable to be optimized. Under this new setting, the primal prob-
lem (2.56) is now given by:

min
w,u,v,ρ

‖w‖2
2 − νρ + 1

n+m

( ∑n
i=1 ui +

∑m
j=1 vi

)

subject to wT · xi + b ≥ ρ− ui, i = 1, . . . , n,

wT · yj + b ≤ −ρ + vj , j = 1, . . . , m,

u º 0, v º 0, (component-wise ≥ 0)
ρ ≥ 0.

(2.61)

Notice that for ui = vj = 0, the constraints in (2.61) state that the margin separating the
two classes is equal to 2ρ

‖w‖ . The larger the parameter ρ, the wider the margin and the
higher the number of vectors within the margin, for a speci�c w. The parameter ν controls
the in�uence of the second term in the cost function [55], and its value lies in the range
[0, 1]. Dividing the cost function by ν2

2 and the set of the constraints by ν, the solution is
not e�ected, so the optimization problem now becomes:

min
w′,u′,v′,ρ′

‖w′‖2
2 − 2ρ′ + δ

( ∑n
i=1 u′i +

∑m
j=1 v′j

)

subject to w′T · xi + b′ ≥ ρ′ − u′i, i = 1, . . . , n,

w′T · yj + b′ ≤ −ρ′ + v′j , j = 1, . . . , m,

u′ º 0, v′ º 0, (component-wise ≥ 0)
ρ′ ≥ 0,

(2.62)
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where δ = 2
ν(n+m) , w′ = w

ν , b′ = b
ν , ρ′ = ρ

ν , u′i = ui

ν , v′j = vj

ν . For simplicity, we use the
same notation:

min
w,u,v,ρ

‖w‖2
2 − 2ρ + δ

( ∑n
i=1 ui +

∑m
j=1 vi

)

subject to wT · xi + b ≥ ρ− ui, i = 1, . . . , n,

wT · yj + b ≤ −ρ + vj , j = 1, . . . , m,

u > 0, v > 0,

ρ ≥ 0.

(2.63)

This formulation leads to a very interesting geometrical dual interpretation of the problem,
analyzed in the following Section.

2.4.2.2 Dual Problem
Using optimality theory, one can write (2.63) with the equivalent dual formulation

min
θ,γ

‖ ∑n
i=1 θixi −

∑m
j=1 γjyj ‖2

subject to
∑n

i=1 θi = 1,
∑m

j=1 γj = 1,

0 ≤ θi ≤ δ, i = 1, . . . , n,

0 ≤ γj ≤ δ, j = 1, . . . ,m.

(2.64)

The optimal classi�er is de�ned by the vector w and the o�set b as in Equations (2.58)
and (2.59) respectively. Again, the discriminant is de�ned by the support vectors, i.e., the
vectors corresponding to the non zero Lagrange multipliers θ∗, γ∗. The support vectors in
the case of linearly inseparable sets, are vectors lying on the support planes and the vectors
inside the margin (misclassi�ed vectors).

This optimization problem is almost the same with the one de�ning the nearest point
between two convex hulls in the separable class case, cf. Equation (2.57), with a small,
yet signi�cant, di�erence. The Lagrange multipliers are bounded by the parameter δ. This
parameter de�nes the size of the reduced convex hulls, [55]. In general, the reduced convex
hull of a vector space X, is denoted as R(X, δ) and is de�ned as the convex set:

R(X, δ) =
{

c : c =
∑n

i=1 λixi : xi ∈ X,
∑n

i=1 λi = 1, 0 ≤ λi ≤ δ.
} (2.65)
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Figure 2.19: The reduced convex hulls (full lines) and the resulting reduced convex
hulls (dotted lines) corresponding to δ1 = 0.4 and δ2 = 0.1.

Figure 2.19 shows the respective convex hulls for the case of two intersecting data
classes. The solid lines indicate the convex hulls, and the dotted lines the reduced convex
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Figure 2.20: An example of two non separable classes. The wider the margin, the
more misclassi�ed data. a) For δ1 = 0.4 and margin equal to 2

‖w1‖ , there is only one
misclassi�ed data. b) For a wider margin 2

‖w2‖ > 2
‖w1‖ and δ2 = 0.1 there are three

misclassi�ed data.

hulls for δ = 0.4 and δ = 0.1, respectively. The smaller the value of δ, the smaller the size
of the reduced convex hull. The smaller the size of the reduced convex hulls, the thicker
the margin and hence the larger the number of misclassi�ed vectors. This is illustrated in
Figure 2.20.

Now, it is quite clear that (2.60) can be interpreted in geometrical terms as �nding
the minimum distance between two reduced convex hulls. In the separable case, cf. Equa-
tion (2.57), the constraints imply that 0 ≤ θi ≤ 1, 0 ≤ γj ≤ 1, which in its geometric
interpretation means that the full convex hulls are searched for the nearest points. In con-
trast, in the linearly inseparable class case, a lower upper bound (δ ≤ 1) is imposed for
the Lagrange multipliers. Therefore, the search for the nearest points is limited within the
respective reduced convex hulls.

Concluding, in both cases, the optimization problem can be interpreted as �nding the
minimum distance between two convex hulls, in the case of separable sets, and the minimum
distance between two reduced convex hulls, in the case of non linearly separable sets. The
discriminant for linearly separable sets is constructed by the support vectors corresponding
to vectors lying on the support planes, while in the case of linearly inseparable sets by the
support vectors corresponding to vectors lying on the support planes and the ones within
the margin area.

2.4.3 Distributed SVM Training
Processing sensor data locally requires considerably less energy than communicating it to
a distant node, yielding an interesting communication/computation trade-o�. To reduce
global communication requirements, one needs to perform signal processing to extract key
information in a distributed fashion and without losing �delity.

In general, pattern classi�cation algorithms assume that all the features are available
centrally during the construction of the classi�er and its subsequent use. But in many
practical situations, data are recorded in di�erent geographical locations by sensors, each
observing features of local interest and having a partial view of the data. In a WSN
application, where sensors can be randomly scattered in the area of interest, traditional
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(centralized) SVM training requires the transmission of the data of each sensor to a fusion
center. Hence, distributed learning may be used to keep the memory and energy consump-
tion of the learning algorithm at a manageable level as well as to make predictions at a
time when the whole data is not yet available.

An appealing feature of SVMs is the sparseness representation of the decision boundary
they provide. The location of the separating hyperplane is speci�ed via real-valued weights
on the training samples. Training samples that lie far away from the hyperplane do not
participate in its speci�cation and therefore receive zero weight. Only training samples that
lie close to the decision boundary between the two classes, the so-called support vectors,
receive non-zero weights. Therefore SVMs seem well suited to be trained incrementally. In
fact, since their design allows the number of support vectors to be small compared to the
total number of training samples, they provide a compact representation of the data, to
which new examples can be added as they become available.

Various incremental algorithms have been proposed [56, 57, 58, 59] for training a SVM.
The key idea in incremental algorithms is to preserve only the current estimation of the
decision boundary at each incremental step along with the next batch of data (or part of
it). A disadvantage of these techniques is that they may give only an approximate solution
and may require many passes through the whole data set to reach a reasonable level of
convergence. In principle, all working methods used to train SVMs, especially shrinking
[60], use only a small part of the samples for optimization in each step. This is because
in all these methods, none of the samples are discarded during the training and thus all of
them have to be considered in each working set selection step. As a consequence, both the
memory and the power required are too high to be used in WSNs.

More recently, the research community has focused on algorithms that are based on ran-
dom communication among sensors, without the aid of any established infrastructure. The
idea behind these approaches for distributed SVM training, is that sensors exchange partial
information according to a speci�c form, e.g., support vectors, or vectors that lie on the
convex hulls. Independently of our work, Vandenberghe et al. proposed a distributed paral-
lel SVM training mechanism based on the same idea of exchanging support vectors among
multiple servers in a strongly connected network [61]. In [62], Navia-Vazquez developed
a distributed semiparametric SVM, which aims at further reducing the total information
passed between nodes. Finally in [63], an SVM scheme is applied to distributed image
classi�cation in a sensor network. In the following Chapters, we present our contribution
on distributed algorithms for SVM training.
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As the research �eld of mobile computing and communication advances, so does the
idea and the need of a distributed, ad-hoc wireless network of hundreds to thousands of mi-
crosensors, which can be randomly scattered in the area of interest. Network microsensors
enable a variety of new applications such as environmental monitoring, warehouse inven-
tory tracking, location sensing, patient and structural health monitoring. Moreover, in the
near future, the development of visual sensor networking technology employing content-rich
vision-based sensors will require e�cient distributed processing for automated event detec-
tion and classi�cation. Hence, the ability to incrementally learn from batches of data with
minimal communication requirements is important for real-world applications. Distributed
learning may be used to keep the memory and energy consumption of the learning algorithm
at a manageable level as well as to make predictions at a time when the whole data is not
yet available. This kind of incremental algorithms formulate the exact solution at step i+1
in terms of the solution at step i and the new set of available data samples.

Various incremental algorithms have been recently proposed [56, 57, 58, 59] for training
a SVM. The key idea in all of them is to preserve only the current estimation of the decision
boundary at each incremental step along with the next batch of data (or part of it). Taking
advantage of the compact representation of the data set that SVM provide, we design two
energy-e�cient distributed learning algorithms in the context of a WSN. In Section 3.1
we present the proposed distributed algorithms, while in Section 3.2, we present a set
of simulation experiments in order to assess the performance of our proposed approaches
comparing them to the performance of a representative centralized SVM algorithm. Finally,
in Section 3.3 we provide some conclusions of this work.

3.1 Distributed training of a SVM in a WSN
Let us consider a deployment of m sensors taking measurements in a certain area. Our
goal is to be able to train a SVM in an e�cient and distributed fashion so that: a) we can
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get good classi�cation results on test data and b) our algorithms can be used easily in the
context of a WSN, where the training must take place across sensors.

Notice that under the traditional centralized approach, the measurements should be sent
�rst to a base station, where all the processing takes place and a decision boundary that
separates the two classes is found. However, direct communication between each sensor and
the base station (end-user) in a WSN is both cumbersome (due to the usually large number
of sample vectors involved) and highly energy ine�cient for a variety of reasons. First,
the base station may be far away from the sensing area, and thus direct communication
of raw sensor data to the base station can be quite energy costly. In addition, as the
number of sensors in a network grows larger and larger, it becomes di�cult to manage the
vast amount of data collected from the sensors. Also, with increased node density in one
location, multiple sensors may view the same event giving rise to sample vectors that are
similar to each other, and thus, may be redundant in terms of being useful to determining
the separating plane.

On the other hand, as shown in previous work (e.g. [64]), in various practical problems
related to WSN, it is possible to design energy-e�cient clustering network protocols that
greatly reduce the power dissipation. In such protocols, sensors are organized into local
spatial clusters. Each cluster has a clusterhead, a sensor which receives data from all
other sensors in the cluster, performs data fusion, and transmits the results to the base
station. This greatly reduces the amount of data sent to the base station and thus achieves
an improved energy e�ciency. With this motivation, we propose two novel distributed
algorithms in order to train incrementally a SVM in a WSN scenario using a energy-e�cient
clustering protocol, [65, 66].

3.1.1 Distributed Fixed-Partition SVM training

Typical �xed-partition techniques divide the training samples in batches clusters of sample
vectors of �xed size [58]. These kind of algorithms seem appropriate for training incremen-
tally a SVM using only partial information at each incremental step [57]. For the WSN
scenario, we propose to use a Distributed Fixed-Partition algorithm (DFP-SVM) where the
�nal estimation of the separating hyperplane is obtained incrementally through a sequence
of steps, each step taking place at a given cluster.

The key motivation behind this incremental algorithm is that as the number of support
vectors is typically very small compared to the number of training samples, the data of pre-
vious clusters can be compressed to their corresponding estimated hyperplane (support vec-
tors and o�set). Thus, instead of transmitting to the next clusterhead all the measurements
stored in the previous one, only the current estimation of the hyperplane is transmitted,
which reduces the energy spent. More speci�cally, suppose there are K clusterheads in the
sensor deployment. For each i = 1, 2, . . . , K, the estimation SVMi = {wi, bi} at clusterhead
i is obtained combining the previous estimation SVMi−1 calculated at cluster i− 1 and all
the sample vectors measured by the sensors belonging to clusterhead i; after this estimation
is obtained, the i-th clusterhead transmits SVMi to the (i + 1)-th clusterhead, Figure 3.1.

As we show in our experimental results of Section 3.2, after only a complete pass through
all the clusters, a good approximation of the optimal separating plane is obtained, that is,
the separating hyperplane is very similar to the one obtained using a centralized energy-
ine�cient algorithm, where all the sample data is used at once in a single training step at
the base station.
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Figure 3.1: Scheme of distributed training of a SVM: For each cluster, the estimation
SVMi at clusterhead i is obtained combining the support vectors (SVi−1) of the
previous estimation SVMi−1 calculated at cluster i − 1 and all the sample vectors
measured by the sensors belonging to cluster i.

3.1.2 Weighted DFP-SVM training
In many real world applications, the concept of interest (de�nition of classes to be sepa-
rated) may be time-varying or space-varying; similarly, the underlying data distribution
may change as well. Often these changes make the model built on old data inconsistent
with the new data, hence regular updating of the model is necessary. This problem, known
as concept drift, complicates the task of learning in SVM. A typical example of this phe-
nomenon is weather prediction, where the rules may vary radically depending on the season.

On the other hand, one may also observe changes in the training data, which have
no correspondence to controllable parameters of the experiment [12]. For example, in
engineering applications, the quality of a machine deteriorates over the course of its life-
cycle. Therefore, there is a need to have a robust system that can adapt easily to these
uncontrollable changes.

In the case of distributed sequential training of a SVM in a WSN, this e�ect is even
more accentuated: As the data is presented in several batches, changes in the target concept
may occur between di�erent batches of data. We are interested in possible concept drifts
in WSN applications. For instance, consider a number of sensors distributed in a building,
taking measurements of temperature, humidity and light in order to determine which rooms
in the building are shinny or not. It is clear that the data distribution changes over time
depending on the time of the day. Another example is vehicle tracking for surveillance or
monitoring of a hostile environment. In this case, sensors should track all kinds of vehicles
that pass through the area and probably have di�erent characteristics such as weight, size,
and shape.

We modify our previously proposed algorithm DFP-SVM in order to make it more
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Figure 3.2: Discriminant planes of the training set resulting from: (a) the �rst
incremental step of the DFP-SVM, (b) the second incremental step of the DFP-
SVM, and (c) the centralized algorithm.

suitable for WSN applications where there exist concept drifts. Our approach consists
of adapting Ruping's algorithm [56] to the WSN context. We call this algorithm as the
Weighted Distributed Fixed-Partition SVM training (WDFP-SVM).

As an illustrative example, consider the 300 samples in Figure 3.2 taken by 300 sensors
distributed in a �eld. Let us assume that the data is divided into two batches, such that
the �rst cluster contains the sample vectors with x < 0. Training the SVM on this �rst
cluster of data leads to the decision boundary denoted by line (a) in Figure 3.2. If we
perform the distributed training for the SVM according to the DFP-SVM algorithm with
two incremental steps, the resulting decision boundary (line (b)) largely ignores the old
support vectors and it practically corresponds to the decision boundary that would have
been learned if only the second cluster of samples had been used ignoring the �rst cluster.
Although in general, this is a desired property of the SVM algorithm (because it means that
the SVM is somehow robust against outliers), in the case illustrated in Figure 3.2, it can
be seen that most of the outliers are the old support vectors, which causes an important
misclassi�cation error.

To address this problem, one needs to make the error on the old support vectors (rep-
resenting the old learning set), more costly than the error on the new samples. This can be
easily achieved by training the SVM with respect to a new loss function [56]. Let (xi, yi)i∈S

be the old support vectors from both classes and (xi, yi)i∈I be the new sample vectors. The
alternative cost function that should be used instead of (2.60) is:

Φ(w, ξ) =
1
2
‖ w ‖2 +C(

∑

i∈I

ξi + L
∑

i∈S

ξi), (3.1)
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where the parameter L increases the cost for the old support vectors. An appropriate
heuristic choice for the parameter L is to let it be equal to the number of training samples
in the previous cluster divided by the number of support vectors. This arises from the idea
of approximating the average error of an arbitrary decision function (over all samples) by
the average error calculated only over the support vectors. In this way, every support vector
in�uences a constant fraction of all sample vectors.

3.2 Results and Discussion
In this Section, we present a set of simulation experiments covering both the cases with and
without concept drift in order to assess the performance of the two proposed distributed
SVM algorithms. We evaluate our incremental algorithms comparing them to the tradi-
tional centralized SVM training algorithm [60]. At the same time, we also demonstrate that
the energy consumption decreases when the SVM is trained incrementally as compared to
the centralized case.

3.2.1 Performance of the DFP-SVM algorithm
In the centralized algorithm proposed in [60], there is only an evolving subset of sample
data used, making it necessary to address all the constraints associated with large data sets.
In our WSN scenario, all the sample data is sent to the base station for processing so that
none of the samples are discarded during the training and thus all samples are considered
in each working set selection step.

We consider a sensor network composed of n = 300 nodes uniformly distributed in the
�eld, where each of the sensors collects sample vectors from two classes. In our experi-
ments, we generate the sample data of the two classes using two Gaussian distributions
with two di�erent mean values. Figure 3.3 illustrates the training set of l = 300 sample
vectors generated by two Gaussian distributions with means ~µ1 = [2, 2] and ~µ2 = [22, 2] re-
spectively. The corresponding representation ellipses are thus centered at (2, 2) and (22, 2),
with eigenvalue ratios λ1 = λ2 = 35

25 and rotation angles θ1 = θ2 = 200, respectively. The
whole training set is partitioned into 12 clusters, each one with a �xed size of 25 sample
vectors. Figure 3.3 illustrates our results. Plane (a) is the decision boundary found with
the centralized algorithm. The planes denoted by (b) and (c), are the decision boundaries
constructed after training the SVM using the DFP-SVM and WDFP-SVM algorithms, re-
spectively. Both distributed algorithms give a good approximation of the decision boundary
constructed with the centralized algorithm (plane (a)), in particular, the plane constructed
using the WDFP-SVM algorithm (line (c)) coincides exactly with the one obtained using
the centralized algorithm.

We also simulated 500 Monte Carlo runs in order to test the performance of these
two distributed algorithms on another test data set drawn from the same distributions.
Figure 3.4 represents the average error rates (%) for our two proposed algorithms as a
function of the consecutive incremental steps. At each step, only the hyperplane parameters
are used together with the sample vectors of the next cluster of nodes, and it is shown that
with only one pass across the clusters, both distributed algorithms converge to the same
average error rate obtained with the centralized algorithm, which requires more energy.

On the other hand, Figure 3.5 simulates a scenario with a concept drift. The �rst
cluster of data consists of measurements of two Gaussians with mean vectors ~µ1 = [2, 2],
~µ2 = [−12,−2], eigenvalue ratios λ1 = 2

1 , λ2 = 35
25 and rotation angles θ1 = 900, θ2 = 200,

respectively. The decision boundaries for this subset of training vectors obtained using
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Figure 3.3: Discriminant planes obtained using the centralized algorithm (line (a))
and the two proposed distributed algorithms DFP-SVM (line (b)) and WDFP-SVM
(line (c)).
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Figure 3.4: Performance of the training algorithms: The average error rate of 500
Monte Carlo runs after training the SVM for consecutive incremental steps applying
the centralized algorithm (line (a)), DFP-SVM (curve (b)) and WDFP-SVM (curve
b(c)).
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Figure 3.5: Concept drift: Discriminant planes obtained with the centralized algo-
rithm (line (a)), the DFP-SVM algorithm (line (b)) and two consecutive steps of
the WDFP-SVM (lines (c),(d)).

DFP-SVM and WDFP-SVM coincide (line (d)). At the next step, once the parameters
of the estimated hyperplane are transmitted to the next cluster, in order to introduce the
concept drift, we now assume that the next batch of sample vectors consists of samples from
the following 2 classes: one class is the same �rst Gaussian of the previous batch (mean
vector ~µ1 = [2, 2]), while the other class consists of a shifted Gaussian with mean vector
~µ2 = [16,−3]. Since the DFP-SVM algorithm ignores the hyperplane obtained from the
�st batch of sample vectors, the resulting plane illustrated in Figure 3.5 (line (b)) almost
corresponds to the decision boundary that would have been learned using only the second
batch of samples alone. However, the WDFP-SVM constructs a plane (line (c)) that lies
much closer to the result obtained in the centralized case (line (a)).

3.2.2 Energy e�ciency of the DFP-SVM algorithm
At this point we would like to investigate the bene�ts in terms of energy in a wireless
sensor network using these distributed algorithms for training a SVM. Speci�cally, we are
interested in the comparison of energy consumed by the proposed distributed algorithm to
a scheme where all sensors transmit their data to a fusion center for processing.

The total energy consumed in the distributed training can be expressed as the sum
of the energy consumed in each cluster and the energy consumed for the transmission of
the support vectors to the next clusterhead. The energy cost for the transmission of a
measurement from node A to node B is proportional to the squared distance of node A to
B.

Consider the arrangement of n sensors in a cubic lattice where each sensor is at distance
d of a neighbor sensor. Now, separate the sensors in K clusters of (2k+1)×(2k+1) sensors
each. EK(d) depicts the energy consumption at each cluster for the transmission of the
measurements of the sensors (in the cluster) to the clusterhead. Esv(d) depicts the energy
consumption for the transmission of the support vectors from one clusterhead to the next
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dk )12(

Figure 3.6: Transmission path: Each clusterhead (black dot) transmits the support
vectors to the next clusterhead.

clusterhead.
The total energy consumed for the distributed training of a SVM after one pass of all

K clusterheads through the path depicted in Figure 3.6 using the proposed algorithms is
Ed(d) = Esv(d) + EK(d)K, or:

Ed(d) = (2k + 1)d2(N1 + N2 + ... + NK−1)

+(6d2k(k + 1) + 8d2
k−1∑

j=1

k−j∑

i=1

2(k − i) +
k−1∑

j=1

j(k − j)) ·K · l,

where Ni, i = 1, . . . K depicts the number of support vectors at clusterhead i and l is the
number of vectors collected at each sensor. On the other hand, the energy cost for the
direct transmission of the measurements of n sensors to the base station, which we assume
it is in the center of the cubic lattice, is given by the expression:

Ec(d) =
(
4b
√

n

2
cd + 8(b

√
n

2
cd)2 + 8d2

b
√

n
2 −1c∑

j=1

j∑

i=1

i2 + j2(j + 1)2
)
· l

We simulated 500 Monte Carlo runs in order to estimate the energy consumed during
the distributed training of a SVM. For a scenario of n = 225 sensors in a square grid
arrangement separated in K = 9 clusters consisting of 25 sensors each (hence k = 2),
the energy cost for the training of the SVM using the proposed distributed algorithm is
Ed(d) = 7505·d2, while in the centralized case the cost is Ec(d) = 148200·d2.This simulation
experiment shows that the proposed distributed algorithm is much more e�cient in terms
of energy consumption than the centralized algorithm, since it reduces the energy cost by
more than 500%.



3.3. Conclusions 61

3.3 Conclusions
In this Chapter, we introduced the concept of distributed training of a SVM in a wireless
sensor network. Our research was motivated by the need to have energy-e�cient distributed
algorithms to be used in large-scale WSNs, whose goal is to perform classi�cation tasks.
We presented two distributed algorithms for training a SVM in a WSN. The DFP-SVM
algorithm constructs a hyperplane that converges to the plane, which is very close to the one
obtained with a centralized algorithm. On the other hand, for the case where concept drift
is present, we proposed the WDFP-SVM algorithm which adapts to the non-stationarity.
We presented several simulation experiments in order to assess the performance of our
proposed approaches. Both algorithms performed only one sequential pass through clusters
of sensors.
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In the previous Chapter, we presented two energy-e�cient algorithms that involve a
distributed incremental learning for the training of a SVM in a WSN. In all incremental
techniques, the update of the estimate is di�used sequentially in the network and the
convergence to the global estimate is reached at the �nal step of the algorithm. Hence,
at each time slot only one node has the updated critical information and consequently
the optimal estimate. In this case, the trained SVM classi�er is constructed at the �nal
step of the algorithm. However, nodes in a WSN, usually operate in environments that
are prone to link and node failure. Hence, it is important to design algorithms that are
robust to unexpected failures of nodes and consequently to changes in the topology. Thus,
to maximize robustness, all nodes should ideally achieve convergence to the same optimal
estimate.

Distributed consensus is broadly understood as agents (sensors) achieving a consistent
view of the state of nature by interchanging information regarding their current state with
their neighbors. Motivated by applications to sensor networks, gossip algorithms (Sec-
tion 2.2.2) have been studied, for computation and information exchange in an arbitrarily
connected network of nodes. Exhaustive research has been made mostly on the averaging
problem, where each sensor updates its local estimate by appropriate weighting the esti-
mates of its neighbors [37, 67]. Gossip algorithms are typically based on iterative schemes,
whose energy consumption is proportional to the time necessary to achieve consensus and
hence the topology of the network [1].

In this Chapter, we use the inherent characteristic speci�c to SVMs to propose two dis-
tributed consensus algorithms for the e�cient training of SVM classi�ers in WSNs, [68, 69].
Namely, we use the property that the decision hyperplane of a SVM is completely speci�ed
by a small fraction of the whole data vectors, the so-called support vectors, (Section 2.4).
In the �rst scheme, each sensor updates its hyperplane at every iteration by combining
its support vectors with the support vectors communicated by the neighbors. This results
in a close-to-optimal e�cient distributed scheme. In a second approach, the information
exchanged between sensors describes uniquely and completely the convex hulls of the two
classes. Section 4.1 presents the two proposed selective gossip algorithms. In Section 4.2, we
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illustrate a set of simulation experiments in order to assess the performance of our proposed
approaches and �nally in Section 4.3 we present the conclusions of this work.

4.1 Selective Gossiping for SVM Training
Let us consider a deployment of n sensors taking measurements in a certain area. Our
goal is to be able to train a SVM in an e�cient and distributed fashion so that: a) we
can get good classi�cation results on test data, b) all sensors keep re�ning their estimate
concurrently at each time slot in order to reach �nally convergence (consensus) to a common
global estimate.

In this work, we use gossip algorithms in the context of a SVM. There is a successive
re�nement to the estimate of each sensor based on communicating information with one-hop
neighbors only. Therefore, at each time slot, the new estimate is di�used to the next-hop
neighbors and �nally at some point all sensors will reach a consensus. Hence, all sensors
in the network converge to the same trained SVM classi�er, and can classify any new
measurements.

The question at this point is what kind of data should neighboring sensors exchange
in order to get high classi�cation accuracy but with low energy consumption? WSN nodes
should exchange a su�cient amount of data in order to ensure or approximate optimality.
On the other hand, the more data is exchanged, the more energy is consumed. The trade-o�
between optimality and energy consumption led our research to two di�erent algorithms:
a) the Minimum Selective Gossip algorithm (MSG-SVM) where the minimum amount of
data is selected for di�usion and b) the Su�cient Selective Gossip algorithm (SSG-SVM)
where su�cient data is di�used to achieve optimality, that is, same performance as a global
centralized algorithm. The proposed algorithms are analyzed in Sections 4.1.1 and 4.1.2,
respectively.

4.1.1 Minimum Selective Gossip Algorithm (MSG-SVM)
Communication links in the WSN comprised of n sensors, are represented by a graph whose
vertices are the sensors and whose edges are formed by the available communication links.
The set of sensors having an active link with the i-th sensor are denoted as the neighborhood
Ni. The WSN is deployed to train the SVM using the distributed measurements Mi(0) :=
{xi,j(0)}n

i=1, where 1 ≤ j ≤ k and k is the total number of measurements acquired by
sensor node i.

We begin by taking k measurements at each node i and then training the SVM locally
(for each sensor). The �rst estimate of the hyperplane is denoted by wi(0), i = 1, . . . , n, for
each node i. When training a SVM, only the support vectors determine the discriminant
that separates the data collected by each sensor in two classes [70]. Therefore, the data of
each node can be compressed to their corresponding estimated hyperplane and thus to the
associated support vectors:

SVi(0) = {xi(0) :
∑

i

αiyixi(0) = wi(0),

yi = class{1,−1}, αi 6= 0}. (4.1)

In general, it holds that | SV i(0) |<<| Mi(0) |, where
| SV i(0) | and | Mi(0) | denote the cardinality of SV i(0) and Mi(0), respectively [65].
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Our proposed MSG-SVM algorithm is a gossip-based algorithm, where the support
vectors SVi(0) are communicated between one-hop neighbors. Therefore, for each node i,
at time t+1, we update its estimate wi(t+1) by using all the information available at that
moment, namely, the previously estimated set of support vectors SVi(t) at node i, as well
as the union of the sets of support vectors SVNi(t) that have been previously estimated by
the neighbor nodes. Notice that once we decide (at a given step t + 1) what is the new set
of support vectors SVi(t + 1) at a given node i, this determines uniquely the corresponding
estimate of the hyperplane wi(t + 1), so there is a one-to-one mapping. A description of
the algorithm for each sensor i is the following:

INPUT
• Data set Si contains the measurements collected by the i-th sensor.
PROCEDURE
1. Initialize time slot t=0, and the set Si := Si(0).
2. Train the SVM on the current data set Si, and obtain optimal hyperplane w∗i (t) ( ≡

set of support vectors SVi(0)).
3. Transmit SVi(t) to neighboring sensors Ni. To save power, transmit only those vec-

tors that were not transmitted to neighboring sensors in previous time slots.
4. Update Si(t + 1) = {SVi(t) ∪ SVNi(t)}.
5. Increment t, and return to Step 2, if SVi(t) 6= ∅.
OUTPUT
• Hyperplane w∗i (t) that classi�es the data at sensor i.
The proposed algorithm seems well suited for the distributed training of a SVM in

a WSN. To begin with, MSG-SVM is concurrent for each sensor, so �nally all n sensors
get the measurements that are characterized as support vectors in the n sub-problems.
Hence all sensors converge to the same discriminant constructed by those support vectors.
Therefore, WSN nodes converge to the same trained SVM classi�er, and can classify any
new measurements. Additionally, it is an energy e�cient algorithm since in order to reduce
the energy consumption, each sensor transmits to its neighbors only the support vectors
that have not been transmitted in previous steps.

On the other hand, it can be shown that MSG-SVM provides a sub-optimal discrimi-
nant hyperplane, with respect to a global centralized algorithm, while communicating the
minimum necessary information at each step. As we already mentioned, the data of a
node can be compressed to their corresponding support vectors. But it cannot be guar-
anteed that a vector x such that x ∈ Mi(t) and x /∈ SV i(t), is not a support vector in
Mi(t + 1) = {Mi(t)

⋃
j∈Ni

Mj(t)}. In other words, at each step, the set of support vectors

associated with the entire data set is not always the same as the overall union of the support
vectors obtained after training separately each of the two sets.

Lemma 4.1.1 The MSG-SVM algorithm is sub-optimal, that is, the consensus achieved
by training the SVM using only the support vectors from each of the sub-problems is sub-
optimal.

Proof. We only need to �nd a case where a support vector in the training set is not a
support vector in any sub-problem. Consider the case of a network comprised of only two



66 Chapter 4. Gossip-based Distributed SVM training

sensors collecting measurements in two dimensions. Sensor 1 collects a set of measurements
S1 and the other one collects a set of measurements S2. For the geometrical aspect of
this problem, we need to �nd a vector in the union of the measurements of both sensors
S = S1 ∪ S2 that is a support vector in S, but not in set S1 nor in set S2. Let the smallest
distance between the two convex hulls of set S1 be d1 and the corresponding distance of
set S2 be d2, (cf. Figure 4.1). The convex hull of one class of set S is the smallest set that
contains the measurements of set S, hence it also contains the convex hulls of the same
class of sets S1 and S2. As a counter example one can �nd a point in the convex hull of set
S that is a support vector but it is not a support vector in S1 nor in S2. In Figure 4.2, the
squared point is a support vector in S but neither a support vector in S1 nor in S2, since
the distance between the convex hulls is d, where d < d1 and d < d2.

S
1

S
1

S
2

S
2

d
1

d2

Figure 4.1: The closest distance between the two dotted convex hulls of S1 is d1.
Thus, the circled points on the boundary of the convex hulls are the support vectors
in set S1. The closest distance between the two dashed convex hulls of S2 is d2.
Thus, the circled points on the boundary of the convex hulls are the support vectors
in set S2.

4.1.2 Su�cient Selective Gossip Algorithm (SSG-SVM)
We propose an alternative algorithm, the Su�cient Selective Gossip Algorithm (SSG-SVM),
in order to eliminate the possibility of not converging, such as in MSG-SVM, to the optimal
solution. Each sensor sends the amount of data to the one-hop neighbors that guarantees
convergence to the optimal solution. Which is the su�cient amount of data that sensors
should exchange to converge to the optimal solution while training a SVM?

We can exploit the geometrical description of a SVM training, illustrated in Section 2.4,
Figure 2.17. We examine the convex hull of the training data of each class, and construct
the plane that bisects the two closest points of the convex hulls, [70]. This is an alternative
equivalent perspective for training a SVM. The closest points can be found by solving the
following dual quadratic problem:

min
α

1
2
‖ c− d ‖2 (4.2)
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S
1

S
1

S
2

S
2

d

Figure 4.2: The convex hull depicted in solid line is the convex hull of set S = S1∪S2.
The squared point on the convex hull is a support vector in S, since it is one of the
closest points between the two convex hulls. Notice that this is not a support vector
in S1 nor in S2.

c =
∑

yi∈class 1

αixi, d =
∑

yi∈class −1

αixi,

subject to ∑
yi∈class 1 αi = 1,

∑
yi∈class −1 αi = 1

αi ≥ 0 for i = 1, 2, ...n.

SSG-SVM takes advantage of the geometrical property of the SVM discriminant hy-
perplane. The su�cient amount of data for the hyperplane construction are the vectors
that lie on the boundary of the convex hulls of the two classes. For each node, the SSG-
SVM discards all the vectors of the WSN nodes, except those located at the boundary of
the convex hulls. Thus, neighboring sensors exchange the su�cient data only. After some
communication, all WSN nodes have the information to construct a separating plane iden-
tical to the plane that would have been constructed if all sensors had access to the entire
information. A description of the algorithm for each sensor i is the following:
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1 2 3 4 5

6 7 8 9 10

Figure 4.3: The sensor network is composed of n = 10 nodes distributed in a grid
topology. The communication links for each sensor are depicted with arrows.

INPUT

• Data set Si contains the measurements collected by the i-th sensor.

PROCEDURE

1. Initialize time slot t=0, and the set Si := Si(0).

2. Train the SVM on the current data set Si, and obtain optimal hyperplane w∗i (t).
Calculate set CONVSi(0), i.e., vectors lying on the convex hulls at time slot 0.

3. Transmit set CONVSi to neighboring sensors Ni. To save power, transmit only those
vectors that were not transmitted to neighboring sensors in previous time slots.

4. Update Si(t + 1) = {SVi(t) ∪ CONVNi(t)}.
5. Increment t, and return to Step 2, if CONVNi(t) 6= ∅.
OUTPUT

• Hyperplane w∗i (t) that classi�es the data at sensor i.

Both algorithms are energy e�cient, since data need not be transmitted to a fusion
center and the amount of data exchanged by sensors is substantially smaller than the
overall generated data. Instead, WSN nodes di�use partial information to neighboring
sensors. Furthermore, each node communicates only information that has not been sent
previously, thus the energy spent for transmission is reduced.

4.2 Results and Discussion
In this Section, we evaluate the performance of the two proposed distributed algorithms in
terms of the average classi�cation error rate and we compare them to the ideal case where
WSN nodes have access to the entire information.

We consider a sensor network composed of n = 10 nodes distributed in a grid topology,
where each sensor i, i = 1, . . . , 10, collects | Mi(0) |= 14 sample vectors from two classes,
at each step. WSN nodes communicate with their one-hop neighbors. The communication
links between the sensors in the network are depicted in Figure 4.3. In our experiments, we
generate three sample data sets of two di�erent classes each, using Gaussian distributions
with two di�erent means. We choose three data sets, such that their Mahalanobis distance1
is increasing, Figure 4.4.

1For linear classi�ers the Mahalanobis distance is given by the expression d = (µ2 −
µ1)

T (Σ1+Σ2
2

)−1(µ2 − µ1), where µ1, µ2 are the mean values and Σ1, Σ2 the covariance matri-
ces of the two distributions, respectively.
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(a) Data set 1
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(c) Data set 3

Figure 4.4: The representation ellipses of di�erent data sets generated by Gaussian
distributions.

We simulated 100 Monte Carlo runs in order to test the performance of the two proposed
Selective Gossip Algorithms. Figure 4.5 represents the average classi�cation error rates (%)
for a randomly chosen sensor, as a function of the iteration steps. After only a few iterations,
both algorithms result in trained SVM classi�ers which exhibit similar performance to a
centralized SVM trained using the entire data from all sensors. SSG-SVM gives an optimal
estimate of the discriminant after at most 8 iterations using only partial data. The small
divergence of SSG-SVM from the optimal solution (only 2% on average), can be diminished
by tuning the parameters of the optimization problem (4.2). On the other hand, even
though MSG-SVM is a sub-optimal solution, it gives a good approximation of the optimal
separating plane. Most importantly, with both introduced distributed schemes, all n sensors
reach, with a small �nite number of steps, an agreement on the nearly optimal discriminant
function. Both proposed algorithms behave similarly for all data sets.

The results also show that the di�erence in performance between MSG-SVM and SSG-
SVM is very small. This happens because sensors collect measurements from the same
distribution. Therefore, it is very rare to encounter the case where a measurement that
is not a support vector in the data set of one sensor, happens to be a support vector in
a set containing data from all sensors. In other words, the counter example in Figure 4.2
is actually an event of low probability; however, such an event may occur more often in
scenarios where the class distributions are time-varying.

Moreover, we have also analyzed the trade-o� between classi�cation accuracy and energy
consumption. Figure 4.6 illustrates the number of measurements that a particular sensor
(tested in data set 2) transmits to its neighbors at each iteration. MSG-SVM gives a sub-
optimal solution but uses less measurements than SSG-SVM, thus less energy. SSG-SVM,
on the other hand, transmits more data at each iteration, in order to ensure optimality.
One can notice that after 5 iterations, in both algorithms, nodes do not need to send any
more measurements to their neighbors.

After gossiping in the network, WSN nodes have exchanged in previous steps all the
necessary measurements. Hence, only after a few iterations su�cient amount of data has
been di�used to all WSN nodes, each of whom can construct the same trained SVM with
the minimum classi�cation error.

4.3 Conclusions
In this Chapter, we propose two distributed selective gossip algorithms for training a SVM
in a Wireless Sensor Network, based on successive re�nement of local estimates. In both
cases, information is communicated to one-hop neighbors in order to update the estimate
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Figure 4.5: Performance, at a given particular sensor, of the training algorithms for
three di�erent data sets. SSG-SVM gives an optimal estimate of the discriminant
after at most 4 iterations. MSG-SVM is a suboptimal solution but gives a good
approximation of the optimal plane. The ideal case where sensors have access to
the entire data is depicted by the straight line.
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Figure 4.6: MSG-SVM gives a sub-optimal solution using less measurements than
SSG-SVM, which reaches optimality using more data at each iteration.

at each iteration. The sub-optimal algorithm MSG-SVM, uses only the support vectors of
each node to reach an agreement. The SSG-SVM, on the other hand, communicates larger
amount of data, i.e., vectors lying on the convex hull boundaries, but converges closer to
the optimal solution in a few iterations.
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In this Chapter, we derive a novel mathematical characterization for the sparse repre-
sentation of the most important measurements that neighboring sensors should exchange
in order to reach an agreement to the optimal SVM classi�er, [71]. We propose a selection
function which ranks the training vectors in order of importance in the learning process.
The amount of information exchange can vary, based on an appropriately chosen threshold
value of the selection function, providing a desired trade-o� between classi�cation accuracy
and power consumption. Through simulation experiments, we show that even though the
proposed algorithm uses partial information for inter-node communication, all sensors con-
verge to the same hyperplane obtained using a centralized SVM classi�er that employs the
entire sensor data at a fusion center. Tuning appropriately the threshold, the network can
converge to the optimal solution, or to an estimate close to the optimal solution. We �nally
generalize our convergence conclusions for n- dimensional feature vectors and for a random
network topology.

5.1 Adaptive Consensus SVM training
In the previous Chapter, we discussed the framework of the gossip-based distributed
training of an SVM classi�er by means of data sets collected with a WSN. Consider now a
simple case where the network is composed of two sensors. Each sensor collects n and m
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Figure 5.1: Example of a case where the global SVM solution makes use of a vector
which is not a support-vector in neither of the two subproblems associated to each of
the sensors. Vectors 1, 4 and 5, become support vectors of the global SVM solution.

measurements from each class respectively. We de�ne these two sets as,

S1 := {x(1)
1 ,x(1)

2 , . . . ,x(1)
n ,y(1)

1 ,y(1)
2 , . . . ,y(1)

m }
S2 := {x(2)

1 ,x(2)
2 , . . . ,x(2)

n ,y(2)
1 ,y(2)

2 , . . . ,y(2)
m }

We want to train a SVM, and therefore classify all the measurements in the network.
In the ideal case with no power constraints in the network, each sensor sends their data
to a fusion center where the SVM is trained on the whole data set S := S1 ∪ S2, and the
separating hyperplane is constructed from the support vectors. Let SVS be the set that
contains the support vectors obtained when the training is performed with all the data
(centralized case). Clearly, SV S ⊂ S. Moreover, notice that if s ∈ SV S , then s ∈ S1 or
s ∈ S2.

Since the measurements of each node can be represented by their associated support
vectors, one could expect that the support vectors are the su�cient data, i.e, the su�cient
statistic, to send to the neighboring sensors in order to construct the optimal hyperplane
(MSG-SVM). However, an important observation is that in general, a support vector in the
centralized case, i.e, on the whole set S, might not be a support vector in the subproblems,
i.e, on the sets S1, . . . SN , or in other words SV

(
N∪

i=1
Si

)
6= SV

(
N∪

i=1
SV (Si)

)
.

Transmitting only the support vectors is an obvious scheme for distributed learning
although convergence to the optimal is not guaranteed. Caragea et al. give another mathe-
matical example for the same purpose [72]. Syed et al. on the other hand, showed through
simulation experiments that the support vectors chosen by the SVM algorithm is a mini-
mal set and removing any more samples would result in the loss of vital information about
the class distribution [73]. Therefore, even though Vandenberghe et al. claim in [61] that
this scheme converges to the optimal classi�er, this cannot be generalized for every data
distribution.

Yet, it has been proved that conv
(

N∪
i=1

Si

)
= conv

(
N∪

i=1
conv(Si)

)
, where conv is the

convex set of set Si, i = 1, · · · , N , [74]. Hence, the convex hulls of two sets that belong to
the two classes represent su�cient statistics for learning SVMs from distributed data, [72].
Therefore, the important vectors in order to achieve optimality, i.e., the vectors that become



5.1. Adaptive Consensus SVM training 75

support vectors in the centralized case, lie on the facets of the convex hulls. For example,
in Figure 5.1 the important vectors are vectors 1, 4 and 5 which lie on the same facet with
the local support vectors 2, 3, 6 and 7. Although this inference cannot be generalized for
high dimensional convex sets or for all data distributions, from the geometrical formulation
of the SVM problem it can be inferred that except of the support vectors (which are the
closest vectors to the hyperplane), vectors that are "close" to the hyperplane should be
exchanged among neighboring sensors.

On the other hand, the complexity of the convex hull computation has a linear depen-
dence on the number of facets of the convex hull and the number of facets can be exponential
in the dimension of the space [74]. The energy-limited capacity of the sensors and the high
dimensional data that sensors usually collect in real life applications, make this approach
likely to be practical only when the convex hulls are simple (have few facets), but not in
general.

The question at this point is what kind of information should neighboring sensors
exchange in order to get the best possible classi�cation accuracy while keeping the power
consumption low. In the previous Chapter, we proposed two distributed algorithms, a) the
MSG-SVM, where the minimum amount of data, corresponding to the support vectors of
each node, is selected for di�usion and b) the SSG-SVM, where su�cient data corresponding
to the vectors de�ning the convex hull of each class, is di�used to achieve optimality, that
is, same performance as the one by a global centralized algorithm. MSG-SVM provides a
sub-optimal solution, while SSG-SVM achieves optimality but with a greater power cost.

In the following, we �rst give an intuition for the optimal characterization of the mea-
surements during gossiping among sensors, for the convergence to the optimal estimate of
the classi�er. Then, we de�ne a novel function, the so-called Selection Function, that ranks
the measurements in order of importance during the learning process. Finally, we discuss
the geometrical interpretation of the selection function and we study how the choice of
the threshold on this function a�ects the trade-o� between learning accuracy and power
computation.

5.1.1 Motivation
In the previous Section, we discussed about data exchange during distributed training of
a SVM. Communicating more data during gossiping among sensors, the network reaches
convergence to the optimal estimate of the classi�er. In Figure 5.1, we gave an example that
clearly shows that when only the support vectors are exchanged during gossiping (MSG-
SVM), the network reaches a sub-optimal solution. Therefore additional data should be
exchanged in order to achieve convergence to the optimal solution. Observing Figure 5.1,
important vectors, besides support vectors, are vectors lying close to the hyperplane. More
speci�cally, vectors lying on the facets of the convex hulls (SSG-SVM) provide the su�cient
statistics for optimality, (cf. Section 5.1). We enumerate the reasons that necessitate a
further exploration of data exchange during distributed training of a SVM.

• As mentioned in Section 5.1, the SSG-SVM algorithm is not applicable in real life
applications where sensors collect high dimensional data, because of the complexity
of the construction of the convex hulls.

• Even in the case of low dimensionality, there exist vectors that carry extra information
that is not necessary for optimality, i.e., vectors lying away from the hyperplane.

• The energy-limited capacity of sensors forces the need for optimal selection of data.
Therefore, the amount of data to be exchanged must be selected depending on a
desired trade-o� between energy consumption and classi�cation accuracy.
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• Intuitively, one can say that the important vectors are the ones lying close to the
hyperplane. Yet, this heuristic approach is not �exible and powerful in general,
and also lacks systematic formulation in mathematics. Thus, there is a need for
an optimization learning approach, through which the amount of data that sensors
should exchange is selected in a systematic way, given a desired trade-o� between
classi�cation accuracy and power consumption.

5.1.2 The Selection Function
In the framework of distributed SVM training, each sensor trains a SVM with its cur-
rent data locally. Training the SVM involves solving the optimization problem (2.64),
where {xi,yj}, i = 1, . . . , n, j = 1, . . . ,m, are the measurements from two di�erent
classes collected by the sensor. Hence, each sensor determines the optimal Lagrange
multipliers (θ∗, γ∗), that correspond to the support vectors of each class. Therefore,
after local SVM training the variables (θ∗, γ∗) and their corresponding measurements
{xi,yj}, i = 1, . . . , n, j = 1, . . . ,m, are known for each sensor. We formally de�ne the
selection function for each measurement xi and yj from both classes respectively.

Di�nition 1 The Selection Function F (xi) is given by the following expressions for each
measurement xi, (similarly for yj):

F (xi) = 2
∑

k θ∗k < xi,xk > −2
∑

l γ
∗
l < xi,yl >

F (yj) = 2
∑

l γ
∗
l < yl,yj > −2

∑
i θ∗i < xi,yj > .

The selection function can be calculated for each measurement vector locally at each sensor,
that is, the corresponding processing is distributed. In the following Section, we provide
the geometrical interpretation of the selection function and we show that it can be used
for ranking the training vectors in order of importance in the learning process. Here, we
provide the detailed mathematical development of the selection function.

Consider the optimization problem as de�ned by (2.64). The Lagrangian of (2.64) is
expressed as follows:

L(θ,γ,λ,µ, ξ, ψ, ν1, ν2) =<

n∑

i=1

θixi −
m∑

j=1

γjyj ,

n∑

k=1

θkxk −
m∑

l=1

γlyl >

−
n∑

i=1

λiθi −
m∑

j=1

µjγj +
n∑

i=1

ξi(θi − δ)

+
m∑

j=1

ψj(γj − δ) + ν1

( n∑

i=1

θi − 1
)

+ ν2

( m∑

j=1

γj − 1
)
. (5.1)

where (λ, µ, ξ, ψ) are the optimal Lagrange multipliers (dual variables) corresponding to
the inequality constraints, and (ν1, ν2) are the Lagrange multipliers corresponding to the
equality constraints of (2.64).

Since this problem is convex, optimality is achieved when the Karush Kuhn Tucker
(KKT) conditions are satis�ed [43]. In other words, if (θ∗,γ∗) are the optimal values, then
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for i = 1, . . . , n, and j = 1, . . . , m:

−θ∗i ≤ 0,

−γ∗j ≤ 0,
n∑

i=1

θ∗i = 1,

m∑

j=1

γ∗j = 1,

λ∗i ≥ 0,

µ∗j ≥ 0,

ξ∗i ≥ 0,

ψ∗j ≥ 0,

∇L(θ∗, γ∗, λ∗,µ∗, ξ∗, ψ∗, ν∗1 , ν∗2 ) = 0,

−λ∗i θ
∗
i = 0,

−µ∗jγ
∗
j = 0,

ξ∗i (θi − δ) = 0,

ψ∗j (γj − δ) = 0,

The last four equalities are known as the complementary slackness conditions. Setting the
partial derivatives of the Lagrangian in 5.1 with respect to θi and γj equal to zero we get
that θ = θ∗ and γ = γ∗, the KKT conditions must hold, which results in :

0 = 2θ∗i ‖ xi ‖2 +2
∑

k 6=i

θ∗k < xi,xk > −2
∑

l

γ∗l < xi,yl > −λ∗i + ξ∗i + ν∗1 , (5.2)

0 = 2γ∗j ‖ yj ‖2 +2
∑

l 6=j

γ∗l < yl,yj > −2
∑

i

θ∗i < xi,yj > −µ∗j + ψ∗j + ν∗2 . (5.3)

From complementary slackness, at optimality λ∗i θ
∗
i = 0, µ∗jγ

∗
j = 0, ξ∗i (θ∗i −δ) = 0, ψ∗j (γ∗j −

δ) = 0. Therefore λ∗i = 0 when θ∗i 6= 0 and ξ∗i = 0 when θ∗i = 0, i = 1, . . . , n. Similarly for
the other class, µ∗j = 0 when γ∗j 6= 0 and ψ∗j = 0 when γ∗j = 0, j = 1, . . . , m. In conclusion,
if xi,yj are not support vectors, i.e., when θ∗i = 0, then (5.2), (5.3) become:

2
∑

k 6=i

θ∗k < xi,xk > −2
∑

l

γ∗l < xi,yl > −λ∗i + ν∗1 = 0,

2
∑

l 6=j

γ∗l < yl,yj > −2
∑

i

θ∗i < xi,yj > −µ∗j + ν∗2 = 0.

On the other hand, if xi,yj are support vectors, i.e., when θ∗i 6= 0, then (5.2), (5.3)
become:

2θ∗i ‖ xi ‖2 +2
∑

k 6=i

θ∗k < xi,xk > −2
∑

l

γ∗l < xi,yl > +ξ∗i + ν∗1 = 0,

2γ∗j ‖ yj ‖2 +2
∑

l 6=j

γ∗l < yl,yj > −2
∑

i

θ∗i < xi,yj > +ψ∗j + ν∗2 = 0 .
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This mathematical analysis concludes to the de�nition of the selection function F (xi)
and F (yj) for each vector xi and yj , respectively as follows:

F (xi) = 2θ∗i ‖ xi ‖2 +2
∑

k 6=i

θ∗k < xi,xk > −2
∑

l

γ∗l < xi,yl >, (5.4)

F (yj) = 2γ∗j ‖ yj ‖2 +2
∑

l 6=j

γ∗l < yl,yj > −2
∑

i

θ∗i < xi,yj > . (5.5)

This selection function can be calculated for each measurement vector locally at each sensor,
that is, the corresponding processing is distributed. In the following Section, we provide
the geometrical interpretation of the selection function and we show that it can be used for
ranking the training vectors in order of importance in the learning process.

5.1.3 Geometrical Interpretation of the Selection Function
In Section 2.4, we emphasized that in SVMs, the resulting separating hyperplane is ex-
pressed by means of a linear combination of the support vectors, (cf. Equation (2.58)). The
support vectors are the closest points to the hyperplane among all the measurements of each
class. In other words, the important vectors are the ones lying close to the hyperplane. The
following theorem allows us to use the selection function for ranking the measurements in
order of importance during the learning process.

Theorem 5.1.1 The selection function is monotonically increasing with respect to the dis-
tance of a measurement from the hyperplane.

Proof.
The distance of a measurement x of class {1} from the optimal hyperplane is given by:

d2(x,w∗) =
‖ w∗Tx+ b∗ ‖2

‖ w∗ ‖2 , (5.6)

where w∗ and b∗ are the variables that de�ne the hyperplane. For a measurement x of class
{1}, since the hyperplane is determined by (2.58), it follows that:

xT ·w∗ = xT · (
n∗∑

i=1

θ∗i xi −
m∗∑

j=1

γ∗j yj) =
1
2
F (x). (5.7)

Therefore, from (5.6) and (5.7), it can be concluded that:

d2(x,w∗) =
(F (x)/2 + b∗)2

‖ w∗ ‖2 . (5.8)

For a �xed b∗ ∈ R, the function (F (x)/2+b∗)2 is monotonically increasing since by de�nition
w∗Tx+ b∗ > 1. Similarly, for a vector y from class {-1} it can be shown that:

yTw∗ = −1
2
F (y), (5.9)

and
d2(y,w∗) =

(F (y)/2− b∗)2

‖ w∗ ‖2 (5.10)
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Figure 5.2: F (xi) increases as the distance of xi from the hyperplane increases.
Hence the measurements that are closer to the hyperplane have smaller values of
the selection function.

Again, the function (F (y)/2 − b∗)2 is monotonically increasing for a �xed b∗ ∈ R, since
w∗Ty+ b∗ < −1.

Therefore, as the value of F (x) increases, so does d2(x,w∗). Since d(x,w∗) > 1 by
de�nition, then as d2(x,w∗) increases, the distance increases as well. Similarly for class
{-1}, as the value of F (y) increases, so does the distance of y from the hyperplane.

We draw the same conclusions through simulation experiments. Consider one sensor
taking 10 measurement pairs {(xi,yj)} from two linearly inseparable Gaussian distribu-
tions. This node trains a SVM and constructs a discriminant of the data set in two classes.
Figure 5.2 illustrates the variation of the selection function F (xi) versus the distance of
measurement xi from the hyperplane obtained at the local training, after 100 Monte Carlo
runs. We obtain similar results for the variation of F (yj) with respect to the distance of
each measurement yj from the hyperplane. It is clear that the value of the selection function
is directly proportional to the distance of the data points from the SVM hyperplane.

In other words, by calculating the selection function for each measurement, we have
information about the distance of each measurement to the hyperplane (cf. Figure 5.3).
Notice that the support vectors which by de�nition are the measurements closer to the
discriminant, have the smallest value of the selection function. Clearly this way, all the
training vectors can be ranked in order of importance in the learning process.

5.1.4 Thresholds
In real life applications, one can determine a priori the percentage of the measurements
of each sensor they can a�ord to use at each iteration. This percentage corresponds to
threshold values, F1 and F2 for classes {1}, {−1} respectively. In the general case where
sensors collect a di�erent number of measurements, we can determine di�erent thresholds
for each sensor k as F

(k)
1 and F

(k)
2 , for both classes respectively. Given the thresholds F

(k)
1

and F
(k)
2 , we choose to transmit to the neighboring sensors those vectors with selection

function value less than this threshold (cf. Figure 5.3).
Given a desired trade-o� between classi�cation accuracy and power consumption, the

amount of information exchange can vary, based on user-de�ned threshold values F
(k)
1 and
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Figure 5.3: All training vectors are ranked through the selection function as follow-
ing: F (x2) < F (x6) < F (x1) < F (x3) < F (x4) < F (x5) < F (x7) < F1. Vector
x2 is a support vector and hence it has the minimum value. The rest vectors are
discarded because F (xi) > F1, for i = 8, 9, 10, 11, 12, 13, 14.

F
(k)
2 of the respective selection functions. The larger the values of the thresholds, the

more data will be exchanged among neighboring sensors. The range of the values of the
threshold for sensor k is F1min ≤ F

(k)
1 ≤ F1max, and F2min ≤ F

(k)
2 ≤ F2max. Notice that

for simplicity, we assume that the sample vectors of each class are enumerated such that the
support vectors correspond (in any pre-agreed order) to the �rst l and m sample vectors,
respectively. The next Lemma follows immediately from Theorem 5.1.1.

Lemma 5.1.2 Among all measurements (vectors) of the same class, the support vectors
minimize the selection function.

Proof. Support vectors SVk by de�nition, are the closest vectors to the hyperplane. Thus,
since F (x) is monotonically increasing with respect to the distance of a measurement from
the hyperplane, the minimum value of F (x) is taken at {x : x ∈ SVk}. Similarly for F (y).
In other words F1min = F

(k)
l and F2min = F

(k)
m .

From the above Lemma it follows that the range of the threshold values is F
(k)
l ≤

F
(k)
1 ≤ F1max, and F

(k)
m ≤ F

(k)
2 ≤ F2max. Notice that for F1min = F

(k)
l and F2min = F

(k)
m ,

the ASG-SVM coincides with the MSG-SVM.

5.1.5 The ASG-SVM Algorithm
In this Section, we introduce the Adaptive Selective Gossip (ASG-SVM) algorithm. Con-
sider a network where communication links are represented by a graph whose vertices are
the sensors and whose edges are formed by the available communication links. The set of
sensors having an active link with the k-th sensor is denoted as the neighborhood Nk.

Given threshold values F
(k)
1 and F

(k)
2 , the set of vectors to be transmitted and exchanged

by a certain sensor at the initial time step t = 0, is determined as: Selected_Setk(0) =
{xi : F (xi) < F1, i = 1, . . . , n} ∪ {yj : F (yj) < F2, j = 1, . . . ,m}. The vectors of the set
Selected_Setk(t) selected by each sensor at time t, are communicated to all its one-hop
neighbors. Therefore, for each node k, at time t+1, we update its estimate w∗

k(t+1) by using
all the information available at that moment, namely, the previously estimated set of the
support vectors SVk(t) at node k, as well as the union of the sets Selected_SetNk

(t) that
have been previously generated by the neighboring nodes using the selection functions.
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Notice that each sensor can apply the selection functions in a completely autonomous
manner. A description of the algorithm for each sensor k is the following:
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INPUT

• Data set Sk contains the measurements collected by the k-th sensor.

• Set the thresholds F
(k)
1 and F

(k)
2 .

PROCEDURE

1. Initialize time slot t=0 and the set Sk := Sk(0).

2. Train the SVM on the current data set Sk, and obtain optimal hyperplane w∗k(t) ( ≡
set of support vectors SVk(t)).

3. Calculate F (xi) and F (yj) for the measurements xi of class {1} and yj of class {−1},
respectively.

4. Determine Selected_Setk(t)

5. Transmit Selected_Setk(t) to neighboring sensors Nk. To save power, transmit only
those vectors that were not transmitted to neighboring sensors in previous time slots.

6. Update Sk(t + 1) = {SVk(t) ∪ Selected_SetNk
(t)}.

7. Increment t, and return to Step 2,
if Selected_Setk(t) 6= ∅.

OUTPUT

• Hyperplane w∗k(t) that classi�es the data at sensor k.

Notice that the algorithm is applied at every node. After some gossiping has taken
place, all nodes have the su�cient information to construct a plane close to the plane
that would have been constructed if all sensors had access to the entire information. So,
all sensors reach convergence near the optimal solution. Consensus in the network to the
optimal discriminant is shown through simulations in the following Section.

5.1.6 Optimality of the ASG-SVM algorithm
The performance of the proposed algorithm can adapt depending on the selection of the
threshold values. In the following Theorem we prove that optimality is achieved with the
appropriate threshold values.

Theorem 5.1.3 For appropriately chosen thresholds, the distributed ASG-SVM algorithm
actually converges to the optimal classi�er.

Proof. In Section 5.1.4 we argued that for the minimum threshold values F1min = F
(k)
l and

F2min = F
(k)
m , the ASG-SVM algorithm coincides with the MSG-SVM algorithm, which

converges to a suboptimal solution (Section 4.1.1). Therefore, the ASG-SVM algorithm
exhibits the same performance for F1min = F

(k)
l and F2min = F

(k)
m . The following Lemma

shows that for greater threshold values i.e., F
(k)
1 ≥ F

(k)
l and F

(k)
2 ≥ F

(k)
m the algorithm

converges to the optimal solution.

Lemma 5.1.4 The objective value of the SVM training subproblem at each sensor mono-
tonically increases when sensors receive data in each iteration from neighboring sensors.
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Proof. See reference [61].
This simply implies that when more sample vectors are added (and therefore the value

of the thresholds increase), the optimal objective value cannot decrease. Notice that for
F

(k)
1 = F1max and F

(k)
2 = F2max the ASG-SVM coincides with the centralized case where

sensors exchange all their data and hence optimality is guaranteed. Therefore, on the
interval [F (k)

l , F1max] and [F (k)
m , F2max] the ASG-SVM will �nally converge to the optimal

solution.

5.2 Results
In this section we present the performance of the proposed algorithm in terms of classi�ca-
tion error rate. We test our algorithm for di�erent threshold values and compare it with the
distributed approach in [61] and the centralized case, where the entire data set is available.
Through simulation experiments we show that for di�erent threshold values, our algorithm
actually converges to the optimal classi�er. We also investigate the e�ect of the network
topology, in terms of connectivity among sensors, on the time of convergence. In our ex-
periments, we use a variety of data sets following multidimensional Gaussian distributions
and test the various algorithms under several network topologies.

5.2.1 Performance
We consider a WSN with a grid topology, where each sensor collects {xi}40i=1, {yj}40j=1

sample vectors from two classes, at each time slot. WSN nodes communicate synchronously
with their one-hop neighbors every time slot. In our experiments, we generated the data
set for the general case of two linearly inseparable classes using multi-dimensional Gaussian
distributions with two di�erent means.

Increasing threshold values

Figure 5.4: Performance, at a given particular sensor, of the distributed training
algorithm. MSG-SVM is a suboptimal solution, hence it does not converge to the
optimal hyperplane. The ideal case where sensors have access to the entire data is de-
picted by the straight line. ASG-SVM gives an optimal estimate of the discriminant
when sensor exchange the support vectors and 8 more vectors. The classi�cation
error rate decreases as the threshold value increases.

We simulated 100 Monte Carlo runs in order to compare the performance of the pro-
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Increasing threshold values

Figure 5.5: MSG-SVM achieves a sub-optimal solution using less measurements than
the proposed algorithm. Using ASG-SVM, sensors exchange more measurements,
hence they reach convergence closer to the optimal solution. The more measure-
ments they exchange, the less the classi�cation error rate is at convergence.

posed ASG-SVM algorithm with MSG-SVM [68] and a centralized SVM training scheme
where sensors send all their data to a fusion center. Figure 5.4 illustrates the average
classi�cation error rates (%) for a randomly chosen sensor, as a function of the iteration
steps. The straight line depicts the classi�cation error rate for the centralized case. Since
the data set contains linearly nonseparable measurements, the achieved classi�cation error
rate is expected not to be equal to zero. The black dotted curve (with the stars) depicts
the performance of the MSG-SVM distributed algorithm [68], where neighboring sensors
exchange only their support vectors. MSG-SVM is a suboptimal algorithm, as we argued
in Section 4.1.1, hence it exhibits worse performance than the proposed algorithm. The
other two dotted curves illustrate the performance of the proposed ASG-SVM distributed
algorithm for di�erent threshold values. As the threshold increases, the performance of the
ASG-SVM improves, since the amount of information exchange among neighboring sensors
increases. Notice that all sensors exhibit similar behavior in terms of classi�cation error
rates for the three algorithms. This is illustrated in the following Section, were we provide
simulation results for the mean and the variance error of the estimates of the variables that
determine the classi�er.

To quantify the amount of data exchange required, Figure 5.5 illustrates the number
of measurements that a particular sensor transmits to its neighbors at each iteration. At
time slot t = 0 each node has collected |Sk(0)| = 80 vectors and at time slot t = 1
they start communicating. As expected, MSG-SVM transmits less measurements, (only
the support vectors) than the ASG-SVM, thus consumes less power. ASG-SVM, on the
other hand, transmits more data than the MSG-SVM at each iteration, in order to achieve
more accurate training. Comparing Figures 5.4 and 5.5 , one can notice that the more
measurements are exchanged, the lower the classi�cation error rate per iteration and �nally
at convergence.

5.2.2 Comparison of ASG-SVM with DPSVM
In this Section we compare the proposed algorithm with the approach proposed in [61].
Independently of our work, Vandenberghe et al. proposed a distributed parallel SVM
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Figure 5.6: Percentage di�erence of achieved cost function values between DPSVM
and ASG-SVM at convergence. The more measurements are included in the training
set, the better solution achieved by the ASG-SVM.
training mechanism (DPSVM) based on the same idea of exchanging support vectors among
multiple servers in a strongly connected network.

In these simulation experiments we use the WSN scenario described in Section 5.2.1.
We run 100 Monte Carlo runs in order to calculate the cost function value for a randomly
selected sensor for both ASG-SVM and DPSVM algorithms. CDP denotes the cost function
value (cf. (2.60)) achieved by the DPSVM algorithm at convergence, i.e., at the �nal
iteration step. We then calculate the same cost function values achieved by the ASG-SVM
algorithm for di�erent selection function threshold values. Ci depicts the cost function
value for the ASG-SVM with threshold values Fl+i and Fm+i, i.e., when neighboring
sensors exchange the support vectors and i extra measurements from each class. Now, we
calculate the percentage di�erence of cost function values between DPSVM and ASG-SVM
at convergence as

∆C =
CDP − Ci

CDP
%. (5.11)

The percentage di�erence increases as the di�erence of the achieved cost function values
between DPSVM and ASG-SVM increases. Figure 5.6 depicts the percentage di�erence of
the DPSVM from the proposed algorithm at convergence, for a randomly selected node.
The experiment begins for i = 0 and m + n = 38, i.e., only the support vectors are
exchanged. Apparently for i = 0 it holds that CDP = C0, since sensors exchange only
the support vectors in both algorithms. On the other hand, when sensors exchange the
support vectors and a few extra vectors during gossiping, ASG-SVM achieves a better
solution, i.e., a lower cost function value for the optimization problem (2.60) than DPSVM.
Consequently, this simulation experiment shows that the ASG-SVM algorithm goes down
the error performance surface by 40% more than what DPSVM does, by exchanging 8 (or
20%) more vectors than DPSVM.

5.2.3 E�ect of the distribution of the measurements
We test the performance of the algorithms in terms of the classi�cation error rate for
several data sets. We generate three sample data sets of two di�erent classes each, using
4-dimensional Gaussian distributions with two di�erent means, such that their Mahalanobis
distance is increasing. This simply implies that the �rst data set contains measurements
from two nonlinearly separable distributions, the second one, data with less correlated data
and the third data set contains measurements from two linearly separable distributions.

We simulated 100 Monte-carlo runs for the network topology, in all three data sets. In
all cases, the MSG-SVM algorithm does not converge to the optimal solution. Clearly, for a
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randomly chosen sensor in the network, exchanging only the support vectors of each sensor
which corresponds to the 20% of the measurements of the sensor, leads to a suboptimal
solution as the classi�cation error rate of the MSG-SVM is 18% while the classi�cation error
rate of the centralized case is only 4%, (cf. Fig. 5.7(a), (c) and (e)). On the other hand,
the ASG-SVM algorithm with 35% of the measurements exchanged at each step, exhibits
better performance than the MSG-SVM in all cases.

1 2 3 4 5 6
18

18.5

19

19.5

20

20.5

21

21.5

22

22.5

Iterations

P
e
rc

e
n
ta

g
e
 o

f 
m

is
c
la

s
s
if
ie

d
 d

a
ta

Mahalanobis Distance 0.985

centralized

ASG−SVM

MSG−SVM

(a)

1 2 3 4 5
0

10

20

30

40

50

60

Iterations

N
u
m

b
e
r 

o
f 

v
e
c
to

rs

ASG−SVM 35%

MSG−SVM 45%

(b)

1 2 3 4 5 6
11

12

13

14

15

16

17

Iterations

P
e
rc

e
n
ta

g
e
 o

f 
m

is
c
la

s
s
if
ie

d
 d

a
ta

Mahalanobis Distance 2.032

centralized

ASG−SVM

MSG−SVM

(c)

1 2 3 4 5
0

5

10

15

20

25

30

35

40

45

Iterations

N
u
m

b
e
r 

o
f 

v
e
c
to

rs

ASG−SVM 35%

MSG−SVM 25%

(d)



5.2. Results 87

1 2 3 4 5 6
2

4

6

8

10

12

14

16

18

20

Iterations

P
e
rc

e
n
ta

g
e
 o

f 
m

is
c
la

s
s
if
ie

d
 d

a
ta

Mahalanobis Distance 4.148

centralized

ASG−SVM

MSG−SVM

(e)

1 2 3 4 5
0

5

10

15

20

25

30

35

40

45

Iterations

N
u
m

b
e
r 

o
f 

v
e
c
to

rs

ASG−SVM 35%

MSG−SVM 10%

(f)

Figure 5.7: Three data set of two classes with Mahalanobis distance. On the left, the
performance of ASG-SVM algorithm is depicted compared to the MSG-SVM and
the centralized case, for a randomly selected sensor in the network. The number of
the measurements exchanged at each iteration is depicted on the right.

Figures 5.7 (b), (d) and (f) illustrate the number of vectors that are exchanged in a
randomly selected sensor in the network. One can notice in Figure 5.7 (b) (which corre-
sponds to data set 1), that the MSG-SVM transmits a larger number of vectors than that
of the ASG-SVM algorithm. This is because the misclassi�ed data are also support vectors.
Hence, the number of the support vectors in such data sets is large when the two classes are
highly correlated. This also explains Figure 5.7 (b) where the MSG-SVM and ASG-SVM
exhibit similar performance. For distributions with larger Mahalanobis distance and thus
less misclassi�ed data, the MSG-SVM communicates less data than ASG-SVM.

5.2.4 E�ect of network topology
Size and connectivity of the network have an impact on the performance of the distributed
algorithm. These two parameters determine the number of the nodes that may work con-
currently and the frequency at which a node receives training data from neighboring nodes.

In distributed SVM applications, one can notice that upon convergence, each node
must at least contain the hole set of the support vectors, i.e., the support vectors after a
centralized training with the entire data set. Therefore, it is not very meaningful to have
more than n+m

NSV
nodes, where (n + m) are the number of measurements for both classes

respectively, and NSV denotes the number of support vectors for the centralized training. In
this section we illustrate through simulation experiments the convergence of the distributed
algorithm ASG-SVM to the global optimal classi�er for grid topology and random sparse
topology networks, in terms of connectivity among sensors.

Figure 5.8 depicts the consensus achieved by all sensors to the optimal hyperplane in
a grid topology. We measure the mean of the error of the estimates for the variables that
de�ne the hyperplane, i.e., two components of vectors w and parameter b at convergence.
The vertical lines indicate the error variance of the variables that de�ne the hyperplane.
It is clear that as the threshold for the selection function increases, i.e., the amount of
information that neighboring sensors exchange increases, the estimation error decreases.
The mean and the variance estimates for the variables w and b upon convergence tend to
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Figure 5.8: The mean and variance error of the estimates of parameters w and b.
As the threshold increases, both the mean and the variance error tends to zero.

zero, hence all sensors converge to the global optimal solution.

(a)
/

(b)

Figure 5.9: Di�erent network topologies in terms of connectivity among sensors a)
Sparse network topology b) Dense network topology.

In the following, we investigate how the connectivity of the network topology a�ects
the convergence of the proposed distributed algorithm. Consider two random network
topologies with random sparse connectivity and random dense connectivity, as in Figures 5.9
(a) and (b) respectively. The network topology depicted in Figure 5.9 (a) is constructed
from a grid topology of N = 25 nodes, where the node activity is 60% of the total number of
nodes (sparse connectivity). The network topology depicted in Figure 5.9 (b) is constructed
from the same grid topology, where the node activity is 90% of the total number of nodes
(dense connectivity). We estimate at each time step of the algorithm the variables w and
b for the di�erent topologies. We expect that the convergence to the optimal classi�er is
faster for the dense topologies. This is illustrated in Figure 5.10. Again the error estimates
of the mean and the variance (vertical lines) of the variables that determine the classi�er
tend to zero for all connectivities, hence all sensors converge to the global classi�er.
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Figure 5.10: The mean and variance error estimate of parameters w and b at each
time step tends to zero. Denser topologies exhibit faster convergence.
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5.3 Conclusions
In this Chapter, we derived a novel mathematical characterization for the sparse representa-
tion of the most important measurements that neighboring sensors should exchange in order
to reach an agreement to the optimal linear classi�er. The proposed selection function is
associated with the distance from the hyperplane. This function ranks the training vectors
in order of importance in the learning process. The amount of information to be exchanged
is controlled by a user de�ned threshold, depending on the desired trade-o� between classi-
�cation accuracy and power consumption. The more measurements communicated between
neighboring sensors, the lower the classi�cation error rate.

The motivation for the development of the proposed algorithm was the need for opti-
mality during the distributed training of a SVM. More speci�cally, since the most obvious
procedure of transmitting only the support vectors leads to a sub-optimal solution, the
su�cient amount of data for convergence to the optimal classi�er needs to be determined.
We proposed a systematic way to optimally select partial information during gossiping so
that the network reaches convergence to the optimal solution. We proved that a threshold
value exists for which the proposed algorithm converges to the optimal classi�er. We ex-
plored the e�ect of the network topology to the time convergence. Finally, we compared the
proposed algorithm with the DPSVM approach [61]. This simulation experiment showed
that the ASG-SVM algorithm goes down the error performance surface by 40% more than
what DPSVM does, by exchanging or 20% more vectors than DPSVM.



Chapter 6

Conclusions

The purpose of this thesis was to answer a crucial question in WSN application: what
kind of information should sensors communicate in order to achieve the desired trade-o�
between computation accuracy and energy consumption. This thesis comprised a study of
distributed optimization techniques for in-network data processing so as to eliminate the
need to transmit raw data to a central point. We focused on a very interesting classi�cation
tool (SVM) and studied it as a quadratic problem that involves optimization of a convex
cost function. In order to apply the SVM training in a WSN application one needs to
perform the training in a distributed fashion. This is exactly our contribution: the design
of distributed algorithms for SVM training in the context of a WSN.

Taking advantage of the sparse representation that SVMs provide for the decision
boundaries, we presented classes of incremental and gossip-based distributed consensus
algorithms for training the classi�er. In all incremental algorithms, the update of the es-
timate is di�used sequentially in the network. In our proposed algorithms (DFP-SVM,
WDFP-SVM), we proved through simulation experiments that after only one pass through
all nodes, the network converges to the optimal estimate of the classi�er, at the �nal step.
Therefore, only one node, at the �nal incremental step, has the updated information and
therefore the optimal estimate. This is not ideal for a WSN application because WSNs
usually operate in environments that are prone to link or node failures. Therefore, we
used gossip-based algorithms, that are robust to unexpected failures of nodes and conse-
quently to changes in the topology. We proposed the MSG-SVM algorithm that gives a
suboptimal solution, but consumes less possible energy, and the SSG-SVM algorithm that
guarantees convergence to the optimal solution but consumes more energy since more data
is communicated among neighboring sensors.

The key question we answered in this thesis, is what kind of data should sensors ex-
change in order to reach convergence to the optimal solution given a desired trade-o� be-
tween energy consumption and classi�cation accuracy. We derived a rigorous mathematical
characterization of the importance of a vector sample as to be selected for exchanging it
with other neighboring sensors. We provided a selection function which ranks the training
vectors in order of importance in the learning process of the SVM linear classi�er. Through
simulation experiments, we showed that even though the proposed algorithm uses partial
information for inter-node communication, all sensors converge to the same hyperplane ob-
tained using a centralized SVM classi�er that employs the entire sensor data at a fusion
center. Tuning appropriately the threshold, the network can converge to the optimal solu-
tion, or to an estimate close to the optimal solution. The classi�cation error rate decreases
as the threshold value increases, as expected.

We �nally investigated the parameters that in�uence the convergence of this approach.
First, we measured the mean of the error of the estimates for the variables that de�ne
the hyperplane. It was clear that as the threshold for the selection function increases,
i.e., the amount of information that neighboring sensors exchange increases, the estimation
error decreases. Hence all sensors converge to the global optimal solution. The size and
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connectivity of the network have an impact on the performance of the distributed algorithm.
Simulation experiments illustrated that the convergence to the optimal classi�er is faster for
dense topologies and slower for sparse topologies. This work resulted in several publications:

• K. Flouri, B. Beferull-Lozano, and P. Tsakalides, "Optimal Gossip Algorithm for
Distributed Consensus SVM Training in Wireless Sensor Networks," in Proc. 16th
International Conference on Digital Signal Processing (DSP'09), Santorini, Greece,
July 5-7, 2009.

• K. Flouri, B. Beferull-Lozano, and P. Tsakalides, "Distributed Consensus Algorithms
for SVM training in Wireless Sensor Networks," in Proc. 16th European Signal
Processing Conference (EUSIPCO '08), Lausanne, Switzerland August 25-29, 2008.

• K. Flouri, B. Beferull-Lozano, and P. Tsakalides, "Selective Gossiping for SVM train-
ing in Wireless Sensor Networks," in Proc. 5th European Conference on Wireless
Sensor Networks (EWSN '08), Bologna, Italy, January 30-1, 2008.

• K. Flouri, B. Beferull-Lozano, and P. Tsakalides, "Training a SVM-based Classi�er in
Distributed Sensor Networks," in Proc. 14nd European Signal Processing Conference
(EUSIPCO '06), Florence, Italy, September 4-8, 2006.

• K. Flouri, B. Beferull-Lozano, and P. Tsakalides, "Energy-E�cient Distributed Sup-
port Vector Machines for Wireless Sensor Networks," in Proc. 2006 European Work-
shop on Wireless Sensor Networks (EWSN '06), Zurich, Switzerland, February 13-15,
2006.

• K. Flouri, B. Beferull-Lozano, and P. Tsakalides, "Adaptive consensus SVM training
in wireless sensor networks with power-aware gossip algorithms," to be submitted to
the IEEE Trans. on Signal Processing.



Chapter 7

Future Work Directions

In this work we focused on the speci�c problem of distributed SVM training in WSNs. The
variety of the applications and the nature of the optimization problem of SVM, trigger many
research questions in this area. In the following, we present some future work directions.

In many applications of machine learning, abundant amounts of data can be cheaply
and automatically collected. However, manual labelling for the purposes of training learning
algorithms is often a slow, expensive, and error-prone process. Due to its wide applicability,
the problem of semi-supervised classi�cation is attracting increasing attention in machine
learning. Semi-Supervised Support Vector Machines are based on applying the margin
maximization principle to both labelled and unlabelled examples. Unlike SVMs, where all
measurements are labelled, their formulation leads to a non-convex optimization problem.
Therefore, one can address this problem by solving the standard SVM problem while treat-
ing the unknown labels as additional optimization variables [75, 76]. Our approach could
be applied in a distributed semi-supervised SVM in combination with the already existing
algorithms. It would be very interesting to investigate the convergence of the algorithm for
di�erent network topologies and how convergence is in�uenced by the number of labelled
and unlabelled data.

Furthermore, one can also study the case of active learning of a SVM. Active learning
is the procedure during which the learner can improve the classi�er by actively choosing
the optimal data from the potential training data set and adding it into the current labelled
training set, after getting its label during the processes, [77, 78]. The key point of active
learning is again the sample selection criteria. Since the optimization problem is the same,
then a modi�ed version of the presented selection function could rank the data in order of
importance so as to optimize the classi�cation problem. Another research question arising
in active learning that can be included in this scenario is to try to take into account the
redundancy among examples. There is no need to select multiple examples in the training
procedure that are similar (or even identical) to each other.

Networks of interconnected devices with storage and processing capabilities are
widespread: internet, intranets, computing grids, sensor networks, etc. In the internet for
example one can �nd an increasing number of databases (such as weather, oceanographic,
remote sensing, �nancial, etc.) becoming on line and distributed. Similar examples can
easily be found in other networks. Distributed scenarios naturally emerge when data are
captured in many places and their transport and storage to a unique location in infeasible
or suboptimal. Consider examples like image or video where images can even reach the
terabyte range (such as astronomy telescope images), high dimensional data, such as doc-
uments. In the problem studied in this work and especially for high dimensional data and
classes that are not linearly separable, even the number of support vectors might increase
rapidly during the training procedure. Therefore, other techniques could also be applied
for further reduction of the measurements to be selected for transmission [62].

Finally, the optimization techniques presented in this work can be also applied in other
cases where distributed optimization needs to take place. Many engineering tasks can be
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expressed as optimization problems of a certain cost function. Therefore, it would be very
interesting to follow relative strategies and optimization techniques for similar distributed
optimization problems.
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