UNIVERSITY OF CRETE
SCHOOL OF SCIENCES AND TECHNOLOGY
DEPARTMENT OF COMPUTER SCIENCE

PROBABILISTIC GESTURE RECOGNITION

MARKOS SIGALAS

M. Sc. THESIS

HERAKLION, DECEMBER 2008

Table of Contents

JLIEE 1 <2 (=001 0o 0 =T o | Y i
Table Of FIBUIES.... ettt rreas e s es e s s e nssesesnssassensssssenassenennns v
AcknNOoWIedgements.......cccciiiiiiiiiiieiiiiiiiiiiinierenee s renessesennssssensssesesnssssennssenaes vii
DLEPIANIN e iiieeeeeeeeeeteeteneeeeeteeeenseeeeeeeennssssssesreensssssssesssnnsssssssenssnnssssssssssnnnnssnnnanns xi
Y 2] 1 T ot N Xiii
Chapter 1 INtroduction........cciveeeeciiiiiiiinniiiiiiiieeneiiiiiiiiesseseeee 1
1.1 Problem StAtemMENtceeveueeeieeeiiie et ette et 2
1.2 Approaches Towards Gesture RecoOgnitioncccceeeeevvvevveeeeeeesciiivennnanann. 3
1.2.1 Glove-based teChNIQUEScccei i 3
1.2.2 Vision-based teChNIQUES........cooceiiiiieeee e 4
1.2.2.1 Model-based approaches........ccccuurieeeieiieccciiiieeee e 4
1.2.2.2 Appearance-based approaches......cccccceeecciviiieiiee e 6
1.2.2.3 Approaches based on low-level features........cccccovveeviiieeeiiciieecennnn. 7

1.3 Applications of Hand Gesture RecoOgnition.............cccoueeeeecveeeesciieeeesiiieneeannns 7
I T YT = W =T oY= { U - = PP 7
1.3.2 Virtual @nVIiroNmMeNtS.......coiiiiiiiiiiiiee ettt e e e 8
I TS T | D N 4 Vo o F=] 110 V=R RSP 8
1.3.4 Human-robot manipulation and inStructionccc.cccceeeevvveeeeeeeeeencinneeen.. 8
1.3.5 Multimodal interaction.........cceeiiieeiieiiieeeeeee e 8
1.3.6 Television CONTIOlciiiiiiiiiii e 9

1.4 PropoSEd APPIOGCHueveeeeeeeeeeeeceeeeeeeeeeeeeectieeeeeeeeeeesssssseeeseeeessssissssesesaes 9
Chapter 2 Hand GEStUIEScccceeereeneereeeniertenneereenseerrensereensesssnssesssnssessenssesssnnnnns 11
2.1 HANA GESLUIES iN HCl ...t e e a st ae s s ssaeaa s 12
2.1.1 Spatial modeling of GEStUIeSccvvvciiieieiiie e 13
2.1.2 Temporal modeling of SeStUIreS.......cuviviiiiiiie e 13
Chapter 3 Background Tools and Mathematicsccccccerremeiiriiniieieccceneeeceneean. 15
3.1 Preliminary Phase -- Camera Calibration...............cccccevvvevcuvvvvcrcrcrcueenncnnnee. 16
3.2 Skin-Color Detection and Tracking TOOIS............ccuuveeeeieeeeecciiiiieeaeeeeeccae, 18
3.2.1 Foreground-background subtractioncccccccoeeicciiieieee e, 18
3.2.1.1 Background MOUElcccovveeeiiiiiiiiiiiiieeieee et eeeeans 19
3.2.1.2 Update egUAtioNS...cccceeeeieieeeeeeeeee e 20

3.2.1.3 EXGMPIES cooeiiiieeieee ettt e e e e e e s e enbrr e e e e e e e eenn 21

3.2.2 Skin-color detection and tracking.......cccovvveeeeiiiiiiiciiirrieeeee e 22
3.2.2.1 Off-liN@ training .eeeeeiieiieiieeeeee et eebrrae e e e e e e e e 22
3.2.2.2 SKin-color detectionceeeeciiieieiiiee e 23
3.2.2.3 Skin-colored object tracking.......ccccvvveeiieiieiiciiieeeee e 24

3.3 Hand Kinematics TraCKiNG...........coueevevueeeeeeeeeeiiiiireeieeeeeeissiiseereessessesiisssennns 27

3.3.1 Perspective ProjeCtion.......cuuuciiii e eeeeees 27

3.3.2 Particle filterS .o a e 28

3.3.3 Human arm KinematiCS.......ccciirrieeiee et e e e 31
3.3.3.1 Forward KiNematiCS......cccevurieieeee it 31
3.3.3.2 ArmM MOAEIING .cciiiiiiee ettt e e e 33
3.3.3.3 Inverse KiNemMatiCs......ccccouuiiiiiiii it 34

3.4 Neural Network - Multi-Layer Perceptron.............cccecccuveeveevuveeessciveeessiiunnnnnn 36

3.4.1 MuUlti-layer PercePtrON c.occvviie ettt e e e 38

3.4.2 MLP Eraining oo 40

3.4.3 BacKpropagation......cccceeieiuiiieiiiiiiee ettt 42
3.4.3.1 Backpropagation with momentumcccoociiiiieiiiiiiccceeeee, 44
3.4.3.2 On-line backpropagation.......ccccceeeuriiiiieiei e 44

Chapter 4 Hand Parameters Extraction and Tracking......ccccceeeeirirrrnnnciiininnnnnnnnnnns 47
4.1 Head and HANAS POSItIONS...........cceuieeeeeeeeeiieiaeeeeeeeccieeeeaaaeeesscssaeneaaaeessssnes 48
4.2 Shoulder Position EStiMQLiON...........ccoeeeeeuveeeiieeeeeeecicieieeeaeeeesscssaeeeaaaeeeeeenns 50
4.3 KinemQ@tiCS TrACKING ...ccovveeeeeeeeeeeeee ettt e e ttttee e e e e e sse s eaaaaeeeeesnes 52

4.3.1 HaNd traCking.....cccccuueiieieee et e e e e e e e e e e e e e e e e ean 52
4.3.1.1 INitialization ..o 52
4.3.1.2 Hand particles weighting functioncccceeeeiiiee i, 53

4.3.2 ROtAtioN traCKiNg c.cvvvveeeieeiiiieiirieeeee et eescrr e e e e e e s e saarareeeeeeeean 54
4.3.2.1 RESAMPING ccoiiieieeeeeiee e e e e 55

4.3.3 Hand particles reSampling....cccccvveeeeeeeiieiiiiieeeeeeee e e sesnrreee e e e e 55

4.4 Tracker’s QULPUL - CIUSEEIINGeeeveeeeeeeeceieeeeieeeeeeecciieeeeeeeeeeesscsiseeeeseseeeesiians 56
Chapter 5 Gesture RECOZNItION......cccceireeeiirreeniirienererrenniereeneneerensseerennseessnnsessennnes 59
5.1 Gesture Recognition SCheme OVEIVIEW.............cccuueeeeccuveeeesiiiieeessiiieneesiisnenens 60
5.2 Neural NetWork Archit@CtUIEuevveeeeeeeeeeeeceteeeeee et e e e e eeeecaaaeeas 61
5.2.1 Training datasels ..ccccuuiieiiiiiiie it 62
5.2.2 NetWork training......eeiee e e e e 63

5.3 Gesture Modeling and Network CROICEuuveeeeeeeeeeeecciiiiiaea e, 64
5.4 RECOGNIZING GOSLUIESeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e e eeeeeeese s e s s s e s e s s s s s e s s sssesssesessssseaas 66

Chapter 6 RESUILS....cccceiteuiirieenieitinnierteeneeeteeniereenseerensessenssesssnssessenssessenssesssnnnans 67

6.1 HANA TraCKING RESUILSuvvveeeeeeeeeeeereiieee e ettt eeeesstirevaaes e e ssssisssvens 68
6.1.1 Calculation accuracy and prior scene knowledgecccceeeeeevecnreveennennnn. 68
6.1.2 Initialization ProCeAUIecoiveiiiieieciee e 68
6.1.3 RODUSTNESS..cci ittt e e e e e e e s bae e e e e snnaneeennnes 69
6.1.4 TiME INVATIANCE ..cciiiiiiiiiii i 71
6.1.5 Pose and depth ambiguitiescccceevuiiiiiiciiie e 71
6.1.6 EXECULION tIME..ccciiiiiiiiie 72
6.2 Gesture Recognition RESUILS..........cuuueeeeeueeeeesiiiieeeseiieeeesieeeeescieaeessiaee e 72
6.2.1 Neural Nnetwork trainingcooccviii i 72
6.2.2 GeStUre reCOBNITION s 73
6.2.2.1 Pointing gesture recognition..........ccccccciiiii, 74
6.2.2.2 Hello and attention gestures........ccccvviieeiee e, 76
Chapter 7 DiSCUSSIONciiiiiiruuiiiiiiiienniiiiitiennessssiiiensssssssismnsssssssssssesssssssssssenns 79

7.1 FULUIE WOIKoooooeeeeeeeeeeeeeeeeteete ettt a ettt a e e e e s se st naaaaaeeeeaaans 80

231 o110 Y= =T o] 1 1V PPN 83

Table of Figures

Figure 1: Block diagram of vision-based gesture interpretation system. [48] 2
Figure 2: Skeleton-based model of the human hand.cccoeeevrieeieiiiiiciiieeeeeeee, 5
Figure 3: HaNd 3D MOdELeeeiiiiieeeee ettt e e e e nrrrr e e e e e e e 5
Figure 4: POSE 3D MOAEL. oot e e e e e e e e e e e e e e aes 10
Figure 5: Gestural TaXonomy [48].....ccoucccirieieeee ittt eeeeerrree e e e e e e eesetrraeeeeeeeeenans 11
Figure 6: Gesture Recognition System OVEIVIEWcccccccvvciviuununnunaae 16

Figure 7: (a) Chessboard pattern for camera calibration. (b) Extracted grid. (c)

CamMEra INTIINSICS. tiiviiiiiii i 17
Figure 8: Extrinsics of the Stereo pair. ..ccoccveeiveciiei e 17
Figure 9: (a) Original Input, (b) Subtracted Foreground, (c) Foreground Mask 21

Figure 10: (a) The original image, (b) Marked image for tracker’s training. Non skin-
color regions are marked with green and skin-color ones with red. Some areas
have not been marked in order to avoid ambiguities........ccccccevveiiiiiiieeeeeiieicnns 22

Figure 11: Cases of skin-colored blobs and object hypotheses........cccccccoevurrrvvennnnnnn. 24

Figure 12: Particle Filter. Particles are drawn over the posterior distribution and

propagated according to their weights.ccvvvveiiiiiiic e, 29
Figure 13: The particle filter algorithm........cceeeiieiieii e 30
Figure 14: Flow Diagram of the Particle Filter Algorithm.c.coccvveveiviiiieiiniiee e, 30
Figure 15: Frame {i} is attached rigidly to lINK i.cccoveririiiiiiiie e, 32
Figure 16: The model of the robotic arm (left) and its parameters (right). 33
Figure 17: Arm Model Parameters. ...ttt 34
Figure 18: Elbow position based on swivel angle.cccceveiiieicciiieeee e, 36
Figure 19: Typical Neural Network Layout........ccooveeciiiiiiiieei e 37
Figure 20: Minimal 2-2-1 MLP architeCture.ccceeveeiieiecciee e 39
Figure 21: Example of MLP error surface.cccceee e 42
Figure 22: Kinematic Parameters derived from low-level features........ccccccevvvverreennn. 47

Figure 23: (a) Initial deployment of particles. (b) Particles have converged to the

head (DIUE PArtiCIES). ..cece et e e e 50

Figure 24.
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:

Arm length proportionally to height.......ccccooeiiiie e, 51
(a) Original foreground mask. (b) Contracted foreground mask................ 53
Kinematics Tracker OULPUL.coeiiiiiccceee e e 56
Gesture Recognition SChEME........oeeiiii i 61
Gesture Recognition Neural Network Architecture.cccccccvvvvivvveeenennnn. 62
Neural Network Training.ccuveeeeriieie e e e e e saaee e 64
Final Gesture Recognition SCheme.oeevieiiiiicciieeee e 65
Right Camera moved after calibration..........cccoeeevieeiiiiiiiciiieec s 68
Initialization using Inverse KinematiCs.......cccvevvieiiriiieeiniiieee e 69
Missing frames do not affect the tracking process.ccccoeeevvivveeeeiieiccnnns 70
Tracker failure due to unsuitable deviation value..........ccccooeriieniennenne 70
Correct tracker results after parameter fine-tuning.cccoeevvevivviieeennns 71
Despite the uncertainty, the network converges to the expected output.73

Successful recognition of right pointing gesture.cccceevvvveeeeeieeiicccnnnnnen. 74

Figure 38: Failure to recognize the performed gesture due to unsuitable resampling
EVIATION. .ttt 75
Figure 39: Successful recognition after resampling deviation fine-tuning.................. 75
Figure 40: Gesture Preparation.eeeeeeeeeeereieieieiiieeeeeieeeeereeereeererereeereeeeereeeeeaeeee.. 77
Figure 41: Uncertainty concerning the gesture performed by left arm..................... 77
Figure 42: Attention Gesture successfully recognized.cccoeevveeivciieeeecciiee e, 78

Vi

Acknowledgements

During these years of my graduate studies, several people have contributed -each
with his/her own way- to the success of this work. | would like to dedicate some lines
to express my graditude to each and everyone of them.

First, | would like to thank Professor Panos Trahanias, my supervisor, for giving me
the opportunity to work on such an interesting research topic. The interest
stimulation combined with the freedom of choice offered by him, facilitated the
transition to a, till few years ago, unknown for me research field. Additionally, | am
thankful to him for his sincere and patient support during the last few years, which
proved to be sine qua non for my work.

| would also like to express my gratitude to the members of my thesis committee,
for the perfect collaboration and their valuable help on various aspects concerning
my research.

Especially, | would like to thank Antonis Argyros, Associate Professor and member
of my thesis committee, for the irreplaceable help he offered me and for the -mostly
late- hours he spent with me, trying to solve some of my problems. Moreover, | want
to express my gratitude to Antonis Argyros and Manolis Lourakis, Principal
Researcher, for kindly allowing me to use their work on skin-color detection and
tracking, essential part of my project.

| want to express my sincere gratitude to Haris Baltzakis, Associated Researcher
and member of my thesis committee, for the unending hours of brainstorming he
spent with me, putting aside his own tasks. His assistance was crucial for the
outcome of my work while his advices proved to be beneficial for my work. | also
want to thank him for kindly offering me the source code he developed for the latest
version of the skin-color tracker.

Many thanks to the Department of Computer Science of the University of Crete
for giving me the opportunity to expand my research knowledge. Furthermore, the
scholarship offered from the Institute of Computer Science - FORTH together with
the pleasant working environment and the perfect infrastructure and technical
support offered by the Computational Vision and Robotics Laboratory - FORTH, were
important "equipments" for my path.

| would also want to thank all my colleagues at CVRL for the friendly atmosphere
we formed and for the inspiring discussions we held. With no intension to neglect
the rest, | want to say a special thank to Nikos Kyriazis, lasonas Economides and

Vii

Manolis Hourdakis for their selfless assistance and support and for the good time we
had together.

Angeliki's patience and true interest played an important role in my work. By
never hesitating to support me with her advice and by never resenting to hear my
problems, she gave me courage to continue. | feel deeply thankful to her.

This work, however, would have never been reality without the love and constant
support of my family, Marinos, Anastasia and Michael. | know that they were, are
and will always be by my side. | will always be grateful to them for that and for the
fact that they never stopped believing in me, encouraging me to continue even in
harsh times.

viii

"Wise men speak because they have something to say;
Fools because they have to say something."

Plato (428-348 BC)

MepiAnym

H emkowvwvia pe T Xprion XELPOVOULWVY amoTteAel pia 1ooo kowr 600 Katl LWtk
nopdn aAAnAemibpaong petafl twv peAwvV TG avBpwrivng kowwviag. EkTég amod
™V aAAnAemnidpaon pe GANQ ATOMA N AVTIKE(MUEVA, OL XELpOVOULEC TIOANEG PopEG
avtikaBOlotouv KABe GAAN popdn eMKOWVWVIOG, OMWG OTNV TEPIMTTWON TWV KWPWV.
Ao tnv AAAn, n Xprnon NAEKTPOVIKWY UTIOAOYLOTWY, OTOTEAEL £VOl AVOITOOTIOOTO
KOMMATL TNG KOWwwviag pag, eEMnpealovtog MOLKINOTPOMWGS TNV KABNUEPLVOTNTA TWV
avBpwrniwv. H €€€AEn otov Topéa NG MANPodopikng, kablotd mAéov Suvatn tnv
avamtuén kat xpnon VEwv peBOSwv oAAnAemidpaong HeTafl avOpwmwv Kot
HNXOVWV OL OTIOLEC EKUETAANEVOVTAL OTO ETTOKPO TN SUVOLLLKA TWV XELPOVOULWV.

H mnapovoa epyacia mapouctdlel M TOAVOKPATIKY TPOCEYYLON OTNV
avayvwpLlon XEPOVoulwv. Baollopevn otnv umobeon nw¢ n povieAomoinon
Slapopwv kowvwv xelpovoulwv Sev amattel mAnpodopia uPnAou emumédou, n
TIPOTELWVOUEVN TIPOOCEYYLON EMITUYXAVEL VA HELWOEL TNV TOAUTTAOKOTNTA TOU
e€etalopevou MPOPBANUATOC LELWVOVTAC TIC SLOOTACEL] TOU XWPOU TIAPAUETPWY OL
ormnolec neplypadouv tn B€on Tou KABE XePLOU.

H xpnowuomololpevn pebodoloyia yla tnv mapoakoAoubnon Twv TAPoUETPWY
QUTWV €AYEL Pl EUPWOTN avamopdcTachn tng B€ong Tou XEPLOU, ETILTUYXAVOVTOG
€TOL TNV QTIOTEAECUATIK XWPOXPOVIKI HOVTEAOTIONGCN TWV XELPOVOULWYV. APXLKA,
TIEPLOXEG UE XPWUO TIAPOUOLO LE AUTO TOU SEPUATOC AVIXVEUOVTOL OTLG ELKOVEG.
Aedopévou mwg, ouvnBwg, To KePAAL ival n vPnAoTEPN QVLXVEVUOLUN TIEPLOXN, TO
U o¢ prmopel eUKOAQ val UTTOAOYLOTEL Kal, HECW OQUTOU, VO EKTIUNBOUV Ta UAKN TwV
AKPWV, KE TN XpHon amAwv avOpwITOUETPIKWY avaloylwv. Katoriy, ot e€lowoELg TG
avtiotpodnG KWNUATIKAG €EAYOUV HLA APXLKA EKTILNON TWV TOPAUETPWY TOU
Bpaxiwva, oL omoieg kal mapakoAouBouvtal oto Xpovo péow particle filters. H
Xxpnotormnoinon twv particle filters onuaivel mwg mapakoAouBouvtal Tautdxpova
MOAAQMAEG umoBéoelg, kaBlotwvtag duvat TtV avakoudn amnod TMEPUTTWOELS
AavBoopévwy ektiunoswy. MNa va dtaodaAlotel n xpovik otabepotnta kot va
npoAndOoUV acUVEXELEG, OL e€QYOUEVEC TTOPAUETPOL GIATPAPOVTAL avAAoyd LE TN
OXETIKOTNTA TOUG WE TIG TPonyoUuEevVeC €€060UG, He QmOTEAeoHa TV e€aywyn

Xi

opaAwv akoAouBlwv, oL OTOoIEG Kal XpNOLUOmMolouvTal yla Th HOVIEAOToinon tng
KAOe xelpovouiag.

To TeAlkd 0TASLO TNG QVAYVWPELONG XELPOVOULWY aTtoTEAETal amd €va cUVoAo
VEUPWVIKWV SLlKTUWwV, umebBuva, to KABe €va, yla TNV avayvwplon piag povo
XElpovouiag. H xpnolpomnoinon moAAAMAWY VEUPWVLKWVY SIKTUWV —aVTL EVOG YEVIKOU-
amnokAeiel mBaveg audBolieg, oL omoieg eyeipovtal e€attiog TwWV EMKAAUTTTOUEVWY
HOVOTIOTLWV TWV XELPOVOULWV. Asdopévou wg eV UTIAPXEL KATTOLA TIPOTEPN YVWaon
OXETIKA ME TNV €KONAOUMEVN XELPOVOULO, oL oKoAouBieg TmapaAUETPWY
tpododotouvTtal TAUTOXPOVA O OAX TA VEUPWVIKA Siktua. H kataAAnAn ekmaideuon
Twv SIKTOWVY, gyyudtal mwe Hovo éva diktuo Ba €xel uPnAn £€€060 og KABe Xpovikn
OTLYMN, KATAAAYOVTAC OTNV OQTTOTEAECHATIKY OVAYVWPELON TNG €KTEAOUUEVNC
XElpovopuiag.

Xii

Abstract

Communication with the use of gestures is a very crucial and common form of
interaction in human societies. Gestures not only allow us to interact with other
people and objects, but, in some cases, substitute every other form of
communication —deaf people for example. On the other hand, computers have
become an inseparable part of our society, influencing many aspects of our daily
lives in terms of communication and interaction. Evolution in the field of informatics
has seen tremendously high speeds, mostly in the last few decades, enabling new
forms of /Human-Computer Interaction/ (HCI) which fully exploit the dynamics of
hand gestures.

In the current thesis, a probabilistic approach towards Hand Gesture Recognition
is proposed. Based on the assumption that various common gestures can be
modeled without the need of high-level information, the proposed approach
achieves to reduce the complexity of the problem by decreasing the space
dimensionality of the parameters, which describe the configuration of the arm.

The methodology for tracking the mentioned parameters, manages to extract a
robust representation of the arm's pose and to end up with an efficient spatio-
temporal gesture model. Initially, skin-colored blobs are being detected on the
images. Since, usually, the highest detected skin-colored blob is the head, the height
of the actor is easily calculated, which leads to an estimation of the size of the limbs,
with the aid of simple anthropometric proportions. Once this is done, inverse
kinematics equations serve for the extraction of an initial estimation of the arm's
parameters, which are then tracked over time with the use of particle filters. The
usage of particle filters implies that multiple hypotheses are being tracked
simultaneously, enabling the recovery from cases where erroneous estimations
occur. In order to assure time invariance and to prevent discontinuities, the
extracted parameters are being filtered according to their relevancy to previous
outputs, resulting with smooth parameter sequences, which are, therefore, used in
order to model each hand gesture.

Xiii

The final, gesture recognition, step consists of a set of neural networks, each of
them responsible for the recognition of a single gesture. The usage of multiple
neural networks —instead of using a global one- ensures the elimination of possible
ambiguities due to overlapping gesture paths. Since there is no prior knowledge
regarding the possible gesture being performed, the parameter sequences are being
fed to all neural networks simultaneously. Appropriate supervised training of the
networks, ensures that only one network at each time will produce high output,
resulting in the successful recognition of the performed gesture.

Xiv

Chapter 1

Introduction

Communication with the use of gestures is a very crucial and common form of
interaction in human societies. Gestures not only allow us to interact with other
people and objects, but, in some cases, substitute every other form of
communication —deaf people for example. On the other hand, computers have
become an inseparable part of our society, influencing many aspects of our daily
lives in the meaning of communication and interaction.

Evolution in the field of informatics has seen tremendously high speeds, mostly in
the last few decades, enabling new forms of Human-Computer Interaction (HCI) and
giving birth to new technologies such as Virtual Environments (VEs) and Intelligent
Machines. Despite the great advance, current ways of interaction —keyboard, mouse-
limit the potential, together with the effectiveness and naturalness of HCIl. Recent
studies have shown that it is very natural to point at an object with our index finger
or manipulate objects with our hand [37]. Moreover it is easier to understand other
people while seeing them manipulating objects [24, 48]. These make clear the fact
that new technologies should be emerged in order to achieve naturalness in
interaction with computers, which, consequently, will increase the effectiveness of
such systems.

The first step has been made towards interaction using speech [48]. The idea was
to make computers understand our language, so that they could complete tasks,
help in education (e-Learning), interact or just communicate with humans, with the
use of audio analysis and speech synthesis. Combined with Human Face Analysis and
Recognition, a more sophisticated —or semantic- way of interaction has been
achieved, by exploiting the variety of emotional states a human face can express,
which also means a “better” communication with computers [48, 58, 70]. However,
interaction using speech and facial expressions covers just a part of human-to-
human interaction. In the last several years there has been an effort so that other

1

means of communication are introduced in HCI. “These new means include a class of
devices based on the spatial movement of the human arm: hand gestures” [72].

Hand gesture recognition first implementations were launched in the late 70’s,
when gloves, equipped with sensors and processors, were recognizing movements of
the hand and its fingers. However, glove-based gesture recognition systems,
although accurate, impose limitations because of the equipment needed, which
leads to a reduction of naturalness, the basic requirement for HCI. Therefore,
research turned to vision-based gesture recognition systems [51], which is also the
subject of the current thesis.

1.1 Problem Statement

The recognition of hand gestures using visual input is not a trivial task. It involves
several steps which need to be carefully designed. The first step is the modeling of
gestures. Usually this means a mathematical representation of hands, pose and
gesture trajectories which will be used in order to interpret a gesture. Interpretation
of each gesture contains a large amount of ambiguity, as gestures are directly
dependent on the context. Thus, it is clear that the success of a gesture recognition
system relies on the gesture model to be chosen.

&
ool
¥ GF g o
L3
EI = Sy
.- Analysis h Recognition Ges!ur_e
EI:';H Description

Model Parameter Space and Classes
W
£ ") 1 |l
N
A

Mathematical
Model of Gestures

Figure 1: Block diagram of vision-based gesture interpretation system. [48]

Once the gesture model has been determined, the main task takes place. The
input stream —video(s) or image(s) - is processed and some features are extracted.

The extracted set of features —which is consequently used in order to recognize a
gesture- is another important factor in the gesture recognition process. They are
context dependent and the effectiveness of the system is based on them.

These image features are being analyzed and in combination with a Grammar,
they lead to a gesture description —interpretation. The Grammar contains the syntax
of each gesture (for example a pointing gesture should consist of a specific sequence
of movements) together with possible interaction with other communication modes
like speech and facial expressions. In order to demonstrate the phases of gesture
recognition process, Pavlovic in [48] presents the following global vision-based
gesture interpretation system (Figure 1).

1.2 Approaches Towards Gesture Recognition

As mentioned earlier, gesture modeling and analysis is the most important part of
Gesture Recognition. Huang and Pavlovic discriminate hand gesture recognition
techniques according to the feature extraction method, and therefore to the gesture
analysis approach, that each of them uses. Therefore we end up with two categories
[37]:

e Glove-Based Techniques
e Vision-Based Techniques

Further —or different- classification is also possible. However, this categorization
highlights the two basic approaches towards hand gesture recognition. Glove-based
systems use a cloth-made glove equipped with sensors in order to capture hand and
finger movements. As mentioned earlier, these techniques, although robust,
constraint the user, as he has to be equipped, apart from the glove, with sensors and
wires. On the other hand, vision-based techniques process video sequences of the
user, and try to detect hand movements —and consequently hand gestures- using
features detected on the images. This section presents major works based on these
techniques.

1.2.1 Glove-based techniques

A Glove-Based Gesture Recognition system consists of cloth made glove, sensors,
electronics for data processing and power supply. While worn by a user, the glove
extracts features concerning the configuration of his/her hand together with its
movement (trajectories) [80]. By analyzing and, thereafter, interpreting these
features, one can extract information about the ongoing gesture.

The first glove-based system was introduced by Rich Sayre in 1977. By using
flexible tubes and photocells, it could sense finger bending/movement. Gary Grimes,
in 1983 designed the Digital Data Entry Glove, which could recognize up to 80
characters of the Single Hand Manual Alphabet for Deaf. These gloves were hard
wired and served a very specific number of applications; moreover they were never
commercialized [28, 80].

The VPL DataGlove, developed by Zimmerman [14], was, on the other hand, the
most successful glove and the one that made glove-based systems popular. Similarly
to Sayre’s glove, the DataGlove could recognize finger bending and hand movement
using sensors both for the fingers and the hand itself. After that, many more glove-
based gesture recognition systems were implemented for both research and
commercial purposes. Indicatively some of them are cited. The PowerGlove
introduced by Mattel in 1989 was used for Nintendo game consoles [19]. CyberGlove
(1992) and Humanglove (1997) are considered two of the most accurate gloves
currently available whilst DigjiGlove and StrinGlove are the most recent ones [80]. All
of the mentioned glove-based systems sense the bending of fingers and track hand
movements.

1.2.2 Vision-based techniques

Vision-based techniques use visual input(s) in order to extract the features to be
used in the gesture analysis phase. Based on the nature of these features, vision-
based techniques can be further broken into three categories [72]:

e Model-Based Approaches
e Appearance-Based Approaches
e Low-Level Features Approaches

1.2.2.1 Model-based approaches

Features used in this first category are derived from kinematics models. The aim is
to compute the pose of the arm and/or hand together with the joint angles.
Kinematics parameters are being extracted from the 2D projections of a 3D hand
model. Most models are based on the simplified skeletons of the human hand/arm
[48] as shown in Figure 2, or more complicated models designed with the help of
CAD systems (Figure 3).

Middle

Index

Ring
@ @
Pinky
Distal phalanx
Thumb =-}— Distal interphalangeal (DIP)
Middle phalanx
Distal phalanx =-1— Proximal interphalangeal (PIP)
Interphalangeal (IP) = Proximal phalanx
—1— Metacapophalangeal (MCF)
Proximal phalanx

Metacapophalangeal (MCP}=

Metacarpal
Metacarpal P

Trapeziometacarpal (TM) —_

Figure 2: Skeleton-based model of the human hand.

Figure 3: Hand 3D model.

Based on the model tracking work of Lowe [21], Rehg and Kanade, in 1994, [33]
proposed one of the very first approaches towards hand tracking. By fitting a 3D
hand model into the image, the goal is to extract a total of 27 parameters, 21 for
joint angles and 6 for the hand pose. At each image, this method generates several

hypotheses for the parameters, selecting the one with the less miscorrespondence.
The number and the range of parameters to be estimated, impose a great
disadvantage to this method. Apart from the fact that the initial parameter
estimation has to be close to the real values, this approach is vulnerable to image
noise and hand self-occlusions. Similar approaches with equal or lesser DoFs have
been used by other authors [1, 26, 39].

Recent works on model-based hand gesture recognition use probabilistic methods
in order to estimate hand parameters. Wu et al. [65], use a Bayesian framework for
the optimal estimation of the parameters. Kalman filter can also be used to
“estimate, interpolate and predict the motion parameters” [63], although the
assumptions of linear systems and Gaussian noise do not always stand. Due to high-
dimensionality of the parameter space, probabilistic techniques usually turn to be
very expensive (in computational terms), and, thus, far from real time
implementations.

The Condensation algorithm and its extensions are also used in some other works,
for hand tracking and model fitting. Black and Jepson in [52] and Rittscher and Blake
in [61] estimate motion parameters and trajectories using extensions (and mixtures)
of the Condensation algorithm.

1.2.2.2 Appearance-based approaches

Appearance or view based approaches model the hand as a collection of 2D
intensity images [72] (can be thought of as a template) and relate the appearance of
the hand (in the image) with it. Consequently each gesture is modeled as a sequence
of views. In order to relate each pose to a template image, a similarity factor has to
be used.

Towards this direction, eigenspace seems to be an efficient approach as it can
represent a high-dimensional space with a small set of vectors. One of the first tasks
that was addressed using eigenspace formulation was face recognition. Turk and
Pentland in 1991 [23], instead of trying to estimate 3D geometry parameters of the
face, attempt to describe it with a set of 2D characteristics and, thus, transform the
face recognition problem to a 2D one. The features used for recognition are called
“eigenfaces”, as they are eigenvectors of the set of faces.

Face recognition using eigenspace methods has been quite successful and,
therefore, the same framework has been applied for hand gesture recognition. Black
and Jepson [53] proposed such an approach. Their work introduces major
improvements to the original eigenspace approach [72] being able to cope with
occlusions, background and transformation invariance. The method developed

works adequately for a small set of gestures —the authors track four gestures- while
its efficiency is reduced for larger ones.

Contours is another approach used for hand gesture recognition. Usually, a
contour is formed from the edge of the hand [27, 30] or from the polar coordinates
[34] —termed as “signature”. The idea in these approaches is to match the contour of
the hand with the template model. Moreover contours can be used as the basis for
further eigenspace analysis [35, 40, 48].

Finally, another technique is the use of fingertips positions as features for the
gesture analysis, based on the assumption that the palm is rigid and that finger DoF
number is limited [25, 39, 48]. Most of these approaches use the 2D locations of
fingertips and palms in order to match the image with the template gesture. The
works of Davis and Shah [31] and Quek et al. [42] are examples of fingertips
approach.

1.2.2.3Approaches based on low-level features

Because of the fact that previous approaches are vulnerable to image noise, many
researchers turned to methods that use low-level image characteristics. This idea is
based on the assumption that in hand gesture recognition application, “all that is
required is a mapping between input video and gesture” [72], and therefore, the full
reconstruction of the hand is not needed. The centroid of the palm , ellipsoid
descriptors [56] and optical flow of the hand [54, 67] are examples of low-level
image features used for hand gesture recognition. Although accurate and noise
invariant, low-level features seem inefficient in arbitrary scenes.

1.3 Applications of Hand Gesture Recognition

As gesture recognition techniques turn to be more and more accurate, they offer
efficient solution to various applications. Some of them are Sign Language, Virtual
Environments (VEs), 3D Modeling, Human-Robot Instruction, Multimodal interaction,
Gesture-to-Speech, Presentations, Television Control and other [60]. In this section
we present several works done on some of these fields.

1.3.1 Sign language

An important area where gesture recognition techniques apply is that of sign
language. Since sign languages consist of gestures, it came naturally for gesture
recognition research to help towards this direction. Starner [50] and Kadous [38]
managed to recognize forty words of the American Sign language and 95 words of

7

the Australian sign language, respectively. Murakami and Taguchi [22] recognized
both finger and sign words of the Japanese sign language, while Imagawa et al. [55]
implemented a bi-directional sign language translator.

1.3.2 Virtual environments

Virtual environments is a relatively new field in HCI. Virtual conferencing or
chatting (like the new lively from Google [81]) or virtual reality games (as Second life
[69]) are some applications where users can interact with other people and objects,
while navigating through the virtual world. The need for more naturalness in such
applications gave birth to the idea of using gesture recognition together with the
VEs. Battle-View of Pavlovic and Berry [51] is an example of a virtual battlefield,
where hand gestures are used in order both to navigate the VE and manipulate
objects in it. Other works as well [18, 31, 43, 44] use hand gestures in order to
interact with and manipulate objects in VEs.

1.3.3 3D modeling

3D modeling applications can gain easiness by using hand gestures. Users can
design, create and manipulate 3D objects faster and in a more natural way since they
don’t have to use a keyboard and/or mouse; devices which limit the potentials of a
3D designer. Zeleznik’s SKETCH [74] or VLEGO of Kiyokawa et al. [45] are examples of
applications where hand gestures help to the creation of 3D models.

1.3.4 Human-robot manipulation and instruction

Hand gestures can also facilitate the manipulation and “teaching” of robots and
therefore boost the effectiveness of human-robot interaction. GripSee of Becker et
al. [59] and Rogalla et al. [66] present platforms for manipulating and instructing
robots, while Lee and Xu developed a system which allows robots to interactively
“learn” new hand gestures.

1.3.5 Multimodal interaction

The field of multimodal interaction applications can also be thought of as an
extension to the previous section or, moreover, as a subpart of Virtual Environment
applications. The combination of speech and hand gestures offers more naturalness
to the human-machine interaction together with the raise of its effectiveness, as
speech recognition mistakes can be corrected —or minimized- by hand gesture
recognition and vice-versa [46]. Brewster et al. [68] propose a method for
multimodal interaction using both audio and gestural input.

8

1.3.6 Television control

Towards the idea of the “Intelligent House”, where the user can automatically
adjust the lightning, humidity, or answer phone calls, it came naturally for the hand
gestures to play an important role. An aspect of Intelligent House, in which hand
gesture recognition techniques apply, is the control of a television. Freeman’s and
Weissman’s system [36] is a paradigm of such an application, where users can adjust
the volume, change channels or turn on and off a television by the use of their
hands.

1.4 Proposed Approach

In this work, a probabilistic approach towards hand gesture recognition is
proposed. The modeling of the hand has been made using kinematics equations for
the hands [4, 76, 78], the features extracted from images are skin color and
centroids of face and hands, and, finally, the tracking of the hands and the
recognition of the pose is being done using Particle Filtering [73]. Neural networks
are being used in order to recognize the ongoing gesture.

The proposed approach relies on the assumption that human perception of basic
gestures is mainly based on the arm and not on the end effector (palm and fingers).
One does not need to know the exact position and pose of fingers and the values of
joint angles or the orientation of the palm in order to recognize a pointing or a
“STOP” gesture. This allows us to reduce the number of DoFs for each hand to a
minimum of four —three for the shoulder and one for the elbow [78]. For both hands
and by taking into account the rotation of the body (around the y-axis) we end up
with a total of nine DoFs.

First, face and hands are being determined by detecting skin color areas in the
image [71]. The 2D projections of face and hands are being used in order to estimate
their position in the world. Once the 3D coordinates have been calculated, the image
is being represented by the kinematics model. As mentioned earlier, the points of
interest are solely the face and the joints of shoulders and elbows, as shown in
Figure 4. In order to have an initial estimation for the model parameters (joint
angles) —which will serve as seed for hand tracking- as close as possible to the real
values, we use the Inverse Kinematics method proposed in [76].

Figure 4: Pose 3D model.

This initial estimation is the seed for new hypotheses generation from the
parameters tracking mechanism implemented with particle filters. Our weighting
factor consists of simple Euclidean distance of the 2D projections of the estimated
pose and the actual hand. Foreground-background subtraction is also used in order
to ensure that joints that cannot be tracked (the elbow) will match the model.

The tracked parameters serve as input to the Neural Networks for the
determination of the current gesture. In this phase, we face three problems:
complexity, scalability and time/duration dependency of gestures. The first two
problems have been approached with the use of a separate neural network for each
gesture. The aim of this decision was to keep neural networks as simple as possible
and to overcome any limitations on the number of gestures to be recognized in the
future. The third problem concerns the training phase of the neural networks (will
refer to it in Section 5). We want to ensure that a gesture will be recognized even if
the ongoing gesture differs in duration from the one used in the training data.
Therefore, input is given to neural networks whenever there is a significant change
of the parameters values.

10

Chapter 2

Hand Gestures

Finding a suitable definition for hand gestures is not an easy task. There have
been many psycholinguistic studies, trying to describe and analyze human hand
gestures. Thieffry in [9] states that “every gesture is the physical expression of mental
concept”. Webster dictionary definition for gestures is: “... the use of motion of the
limbs or body as a means of expression; a movement usually of the body or limbs
that expresses or emphasizes an idea, sentiment, or attitude” [48]. In general,
gestures can be conceived as a non-verbal form of communication and expressions
of emotions and information.

Hand/Arm Movements

Ges;:ures Unintentic_n_lial Movements

/h"-\.x
7 e
7 —
o ~
T —
- T
Manipulative Communicative
.
N
e
\\x
Acts Symbols
P
/\ ’/// ‘MHMH
Mimetic Deictic Referential Modalizing

Figure 5: Gestural Taxonomy [48]

Hand gestures have a wide variety, depending on the context. Thus, several
categorizations can arise such as conversational, controlling, manipulating and
communicative gestures [64]. One can assume that conversational and controlling
gestures consist subsets of communicative gestures. Sign languages for deaf or a

11

navigation gesture —“go there”- are examples of communicative and controlling
gestures, respectively. Communicative and controlling gestures are the classes of
gestures that research is mainly turned to, as vision-based recognition systems can
efficiently help. The next figure, borrowed from Pavlovic [48], shows the various
aspects of hand gestures.

2.1 Hand Gestures in HCI

Hand gestures, in the context of HCI, have a somewhat different meaning, while
equally difficult to define. Apart from the natural use of the hand as a manipulator,
in HCI, one should emphasize on its use for interacting with a computer —the
“practical gestures” [12]. This implies that gestures could —or even should- be
represented differently in the scope of HCI than in real life, in order to exploit to the
maximum current technologies. In many cases, simple models or representations of
hand gestures turn to be very efficient.

A high-level classification of hand gestures is into static and dynamic [77]. Static
gestures assume a certain pose of the body and hand, while dynamic ones present
temporal and spatial variation. It is obvious that for static gestures, the points of
interest are solely the pose and the position in space of the hands and/or arms,
while, for the dynamic, the movement(s) of the hand/arm is also needed to describe
the gesture. Although static gestures do not need any information on the trajectories
of hands/arms, they can be thought of as being dynamic gestures without changes
through time. By gathering these together, we end up with the following general
definition [48]:

Definition 1: Let /A7) € S be a vector that describes the pose of the hands and/or
arms and their spatial position within an environmental at time £ in the parameter
space S. S is application dependent and should be defined accordingly. A hand

gesture is represented by a trajectory in the parameter space S over a suitably

defined interval 7.

Generally speaking, the gesture modeling phase defines the corresponding
gesture. As obvious, from the above definition, a spatiotemporal model is suggested.
In the next sections, we describe the spatial and temporal model of hand gestures
used in the current work.

12

2.1.1 Spatial modeling of gestures

Determination of the parameter space of a hand gesture is strictly dependent on
the context of each application. For some applications the parameter space consists
only of the positions of the palm or fingertips while for other the values of all joints
of the arm and fingers are needed to form the parameter space. For the purpose of

this work (as stated in 1.4), the parameter space S consists of the angles of shoulder

and elbow joints. Although 3D-space information is needed to describe position and
movements of hand/arm, we prefer using the angles since, by using the forward and
inverse kinematics equations (we will refer in a following section), we can easily map
one parameter space to the other —angles and 3D parameter space.

Definition 2: Parameter space §':

S'={x: x=angles of shoulder and elbow joints}

The above definition allows us to minimize the size of parameter space and thus
the complexity of the model. An assumption made is that, since deformations of
human skin do not provide any additional information [48], a human arm can be
represented as an articulated object as shown in Figure 4.

2.1.2 Temporal modeling of gestures

What remains is the determination of a suitable time interval 7. Kendon [12]

analyzes dynamic gestures into three phases: preparation, stroke and retraction.
Preparation and retraction phases consist of movement from and towards resting
position, before and after the gesture, respectively. As stroke contains most —if not
all- of the information —“definite for and enhanced dynamic qualities” [12]- of the
gesture, it can be clearly distinguished [47]. Moreover, gesture phases can also be
distinguished by the speed of changes. Preparation and retraction show rapid
position changes, while stroke in general presents slower hand motion [48].

In the current research, in order to define the gesture temporal model, we
adopted a set of rules proposed by Quek [32, 41] and Pavlovic [48]:

Definition 3: Temporal segmentation of gestures:

1. Gesture interval consists of three phases: preparation, stroke and retraction.

2. Hand configuration during the stroke follows a classifiable path in the
parameter space.

3. Gestures are confined to a specified spatial volume (workspace).

13

4. Repetitive hand movements are gestures.

While this set of rules is sufficient for most of gestures, it fails to describe gestures
related to the speech (also known as “beats”). Since, however, this is not the subject
of this work, we won’t expand further.

14

Chapter 3

Background Tools and Mathematics

The method used in the proposed gesture recognition approach can be broken
down into four phases: preliminary, head and palms location, hand kinematics
tracking and gesture recognition.

e In the preliminary phase, cameras are calibrated in order to extract the intrinsic
and extrinsic parameters of the stereo system. These parameters —although not
needed to be very accurate- are vital for the system, since all following
calculations are based on them.

e After having calibrated the cameras, the 3D position of the head and palms is
extracted during the second phase. Firstly, a skin-color tracker is responsible for
locating skin-color blobs on the images. In order to cope with depth ambiguities,
particle filters are applied, resulting with an estimation about the location in
space of the detected skin-colored blobs.

e Each arm is then represented by a set of four angles which can fully describe its
pose. These parameters are called kinematics and are being extracted and tracked
during the third phase. The calculated 3D position of skin-colored blobs is used for
the initial estimation of kinematics, while particle filters are responsible for
tracking these parameters over time.

e Neural networks, are finally responsible for processing the extracted kinematic
parameters and recognize a possible ongoing gesture.

As it may be obvious from the above, this work covers several research fields.
Image processing techniques are combined with probabilistic tracking methods,
kinematics equations and neural networks so that an efficient gesture recognition
system is composed as depicted thoroughly in Figure 6. This section is intended to
describe the Mathematics borrowed from each research field and/or the tools used
for their implementation.

15

w
L4}
5
j= Input c Calibrati
: amera Calibration
E Videos
eh}
=t
a
g
<
S Methodological Tools | Tl
= x 7 | Methodological Tools
& s Foreground — -
g Background
Subtraction Particle
w
£ Head and Palms Head and Palms Filters
= e Skin f_30|0|' Detection & Tracking Location Estimation
- Tracking
=
m
kS
o g
T @
= E
e
o
@ Methodological Tools | §
=z i Methodological Tools
=
© & Forward v
= : ’
p Kinematics Inverse
= Bl Hand Kinematics ,/l— Initial Pose Kinematics
© . article 2 L : :
£ : Extraction & Tracking | Estimation
o Filters
£
=
=]
c (3}
[1] =
w
I a :
D g
E g
B &
=i
S \E
.E T Methodological Tools
e
8 Neural
o Gesture Network
g Recognition
®
)
o

Gnal Decision

Figure 6: Gesture Recognition System Overview

3.1 Preliminary Phase -- Camera Calibration

During the preliminary phase, parameters which describe the camera model(s)
are being extracted. This process is called Camera Calibration, and is essential for the
system’s operation, as the extracted parameters determine —up to a scale- the way
that the input will be translated. The accuracy of the Calibration parameters affects
the accuracy of all future calculations. Therefore, minimization of the estimation
error is one of the main goals.

In order to preserve depth information, a stereo pair is used to capture the input
video. This fact implies that cameras should be calibrated before processing the
input. From the camera calibration process, intrinsic and extrinsic parameters (or

16

simply intrinsics and extrinsics, respectively) are derived for the stereo pair. Intrinsics
concern the internal parameters of each camera, such as focal length(s), aspect ratio,
principal points, and distortion coefficients, together with the corresponding
uncertainty. Extrinsics refer to the relative position of the two cameras in space.
Both intrinsics and extrinsics are necessary and a good calibration of cameras is
crucial for the accurate operation of the system.

Calibration results after optimization {with uncertainties):

Focal Length: fc = [657 .39535 657 .763089] + [B8.34691 8.37111]
Principal point: cc = [382.98368 242.616308 1 = [8.708546 B.64553]
Skeu: alpha_c = [8.68688808] = [8.88088]
=> anqle of pixel axes = 90.80000 : 0.00000 degqrees
Distortion: kc = [-8.25584 B.12758 -08.800821 8.88882 8.90888]
= [B.88271 8.010876 8.0880815 8.90814 @.0806888]
Pixel error: err = [B.12668 a.12684]

(c)

Figure 7: (a) Chessboard pattern for camera calibration. (b) Extracted grid. (c) Camera intrinsics.

500

200 O

Figure 8: Extrinsics of the stereo pair.

17

For the purposes of camera calibration, the Matlab® toolbox of Jean-Yves
Bouguet [3] has been used. The user marks the four external corners of a calibration
pattern, as the one shown in Figure 7a, and defines the number of bounded squares
and their dimensions. Once this is done, the corners on the grid are detected (Figure
7b). Since the distance between two corners is known and, thus, their relative (not
absolute) position in space, the projection matrix can be calculated®. The intrinsic
parameters can now be derived from the estimated projection matrix (Figure 7c).

For the estimation of the extrinsics, the process is more or less the same. Note
that the images used for the calculation of the intrinsics of each camera should be
snapshots of the same scene (from the corresponding point of view). This implies
that the correspondence problem is solved, and therefore, the Fundamental as well
as the Essential Matrices can be estimated, from which, the extrinsic parameters are
extracted (Figure 8).

3.2 Skin-Color Detection and Tracking Tools

The Skin-color Detection and Tracking Phase provides the necessary information
for the kinematics tracking phase. Skin-colored object, namely head and hand palms,
are extracted and tracked over time. Argyros and Lourakis [71] proposed a method
for detecting and tracking skin-colored objects over time. An improved version of the
tracker, as the one used in [79], implements foreground-background subtraction
prior to skin-color detection. By subtracting the foreground from the background
(namely the dynamic from the static area of the image), the image area to be
processed is minimized, while ambiguities due to color similarities of the background
are practically eliminated.

3.2.1 Foreground-background subtraction

Stauffer and Grimson [62] proposed a recursive algorithm for the problem of
foreground-background subtraction, by imposing a Gaussian Mixture Model (GMM)
on each pixel of the image. The parameters of the model are updated for each input
sample (image frame) and by simultaneously selecting the appropriate number of its
(model’s) components, foreground and background areas are determined.

In general, by denoting the value of a pixel at time t in RGB by ¥, a pixel will
probably belong to the background when

! Projection is discussed thoroughly in section 1.7.1.

18

p(BGIZ®) p(¥®|BG)p(BG)
p(FGIZ®) — p(FO|FG)p(FG)’

(1)

is larger than 1 and vice versa. In the general case, however, it is more likely that no
information about the place, time and frequency of appearance of a foreground
object is a priori known. Moreover, changes to the scene due to illumination changes
and shadows, or even the addition (or equally the subtraction) of an object, should
be adapted by the algorithm [75]. Therefore, a background model p(a‘c’(t)IBG), which
takes into account the history of each pixel and is updated through time, should be
formed.

3.2.1.1 Background model

By assuming a uniform distribution for the appearance of the foreground objects
p(X®|FG), a pixel belongs to the background if

p(XO1BG) > ¢ (= p(XVIFG)P(FG)/p(BG)), (2)

where c;,, is an appropriate threshold value. The background model is estimated
from a training set X and is denoted by p(¥®|X, BG). In order to cope with the

scene changes, the training set should be updated for each new sample so that old
ones are discarded and the model’s density is re-estimated [75].

At time t, the training set consists of Xy = {x®,..,.x® ™} where T is a
reasonable adaptation period and x® denotes the corresponding sample.
Whenever a new sample arrives, the training set is updated and the density is re-
estimated. As it is probable that foreground objects will be contained in the new
sample, the model is now denoted as p(¥)| X7, BG + FG). The model is described
by a GMM with M components:

P(EIX7,BG + FG) = IM_y 7, N'(F; fin, 621), 3)

where [i,..., fly are the estimates of the means, &7,...,65 the estimates of the

variances of the Gaussian components and 7, are the estimated mixing weights.

The number of the GMM’s components basically denotes the states of the pixel
and is self-determined. Assume for example that the scene consists of tree leafs
which are moved by the wind. Therefore a certain pixel’s value might change
continuously from green (leaf) to blue (sky). In this case M=2 and whenever this pixel
gets a value close to the means of either of two components, the pixel should be
labeled as belonging to the background. However if the value of the pixel turns to
white, a new component will be created. The update functions together with the

19

decision of whether the pixel belongs to the foreground are described in the next
section.

3.2.1.2 Update equations

When a new data sample ¥ arrives, the model parameters are recursively
updated as follows [10]:

iz:m<_7’z\-m+a(0r$1t)_7%m)' (4)
Fiy < iy +03) (@ 7,)6,, (5)
62 &2 +oWalz)b15, —52), (6)

whered, = x® — 4. a defines an exponential decaying envelope so that old samples

influence is decreased and is equal to 1/T so that the components of the GMM add
up to 1. ogp is the ownership factor and is equal to 1 for the “close” component with

the largest weight and O for the rest. A component is “close” to the sample when the
Mahalanobis® distance is less than a predefined value. If there is no “close”

t)

component, a new component is generated with 7, , =, iy, =X and &,,,, =0,

where o, an appropriate initial variance.

A method for determining whether a component refers to a foreground object —if
any- is finally needed. During the GMM update, the algorithm simultaneously
clusters the components. Usually, foreground objects will be represented by clusters
with relatively small weights. So, the background model can be approximated by the
first B largest clusters [75]:

B ~
P(X]X;,BG) ~ D Z,N(X; i, 67 1) - (7)
m=1

By sorting the components according to their weight in descending order we can
easily define B as:

B=arg mbin(zb:fzm >(1-c,), (8)

m=1

where ¢; denotes the temporal portion of the data that can belong to foreground
objects. For example, let ¢;=0.3. This means that an intruding object is determined as

? The Mahalanobis distance general formis D, (X) = \/(X —)" (x—).

; . 2 ST ~2
Here the squared distance from the m™" component is calculated as Dm = 5m 5m /Gm .

20

foreground for time up to 0.3T. If that object remains for more than 0.3T, it will form
a new cluster and, thus, will be considered as background.

3.2.1.3Examples

The results of the foreground-background subtraction algorithm are demonstrated
in the following figure. In Figure 9(a) the original input is shown. Figure 9(b) shows
the result of the application of the algorithm on the original image, where the
foreground object is indeed distinguished. Finally, in Figure 9(c) the foreground mask
is demonstrated. Pixel values represent the probability of the corresponding pixel to
belong to the foreground. This is the reason why in some parts of the mask image,
pixels are not white (increased certainty) but grey. Shadow or illumination changes,
impose changes to the background which, however, are not strong.

(b)

Figure 9: (a) Original Input, (b) Subtracted Foreground, (c) Foreground Mask

21

3.2.2 SKkin-color detection and tracking

For the purposes of this thesis, a method that can detect and track over time
multiple skin-colored objects, namely the features of interest, should be
implemented. Argyros’s and Lourakis’s method [71] suitably satisfies our system’s
need, as it offers the possibility of real-time (low-cost) detection and tracking of
multiple skin-color objects. Moreover, this method copes with the problem of
illumination changes, as it self-adapts skin-color probabilities over time.

The skin-color tracker can be broken down into three phases: off-line training,
skin-color detection and hypothesis tracking. During the training phase, the user
manually marks skin-color areas so that prior probabilities are calculated. On
detection phase these probabilities are being used to detect skin-color blobs and are
updated simultaneously. The detected blobs give birth to object hypotheses, which
are then tracked over time on the last phase.

3.2.2.10ff-line training

For training, a small set of YUV 4:2:2 input images is used, on which, the user
manually marks skin-colored regions (ground-truth), as shown in Figure 10. As the Y-
Component of this color representation corresponds to image illumination it can be
easily omitted in order achieve two goals:

e Robustness to illumination changes and
e Increase of tracker’s efficiency as problem’s dimensionality is reduced.

(b)

Figure 10: (a) The original image, (b) Marked image for tracker’s training. Non skin-color regions are marked
with green and skin-color ones with red. Some areas have not been marked in order to avoid ambiguities.

22

Let ¢(x,y) be the color of image point I(x,y). The marked input set is used to
compute the prior probability P(s) of skin color in the image, P(c) of the occurrence
of each color in the image and P(c/s) of a color being skin color.

3.2.2.2 Skin-color detection

After the calculation of prior probabilities, the wanted probability P(s/c) —namely
the probability of each color being skin-color- can be easily derived from the Bayes
rule as follows:

P(c|s)P(s)

P(s[c) = P(C)

(9)

In order to decide if a color is skin-color, P(s|c)>T,, should stand, where T__, isa

suitable selected threshold (based mostly on the scene). Points which satisfy the
above condition are the seeds of potential blobs. Adjacent points with P(s|c)>T,_,,

belong to the same blob. For the neighboring points of the seed ones, hysteresis
thresholding is imposed to determine whether or not they should be treated as skin-
color. Therefore, adjacent to skin-color point with P(s|c)>T

min 7

where T, <T

max ’
are recursively added to the corresponding blob. A connected components algorithm
is then responsible to assign labels to image points of each blob. Finally, in order to
eliminate small blobs, formed due to noise, size filtering is applied.

Because of the fact that the input set is relatively small, wrong results may occur —
false positives or negatives. In this case, the user can manually correct this error by
providing the ground-truth to the tracker. Moreover, the results of the tracker can
be used as a self-adaptation method by continuously updating the prior
probabilities.

Despite the fact that the chosen color representation provides illumination
invariance up to a scale, poor results may occur due to illumination changes. In order
to cope with this problem, the tracker maintains two sets of prior probabilities. Off-
line training ones (P(s), P(c) and P(c[s)) and P,(s), P,(c), Pu(c|s) which correspond
to the updated on-line probabilities for the detections in the w most recent frames.
As illumination variations are context-dependent, the second set represents better
the actual probabilities and can adapt to illumination conditions. Skin-color detection
is then performed based on:

P(s|c)=yP(s|c)+(@-y)P,(s|c), (10)
where P(s/c) and P,(s/c) can be computed by Eq.9 using, however, the updated

prior probabilities produced from both the training set and the detections during the

23

last w frames. y is a sensitivity parameter which defines the influence of the training
set in the detection process.

3.2.2.3Skin-colored object tracking

The detected blobs are associated with object hypotheses, which are tracked over
time. The relation here is not necessarily 1-1 which means that a blob can be
supported by more than one hypothesis and vice versa. An example of such a case is
two crossing hands which in reality are two different skin-colored objects but are
detected as one blob.

As the features needed for this work are the head(s) and the hand palms, the
assumption that the spatial distribution of skin-colored objects can be approximated
by an ellipse seems both valid and suitable. Let N be the number of skin-colored
objects in the scene at time t and0;,1<i < N, the set of skin-colored pixels of the it

object. The ellipse model is denoted ash, =h.(c, ,c, ,&;, 5,,6,), where (c, ,c,)is the

ellipse centroid, «; and g, the length of its major and minor axis, respectively and

M
6, its orientation on the image plane. B :Ubj denotes the union of skin-colored
j=1

N N
pixels (detected blobs), O =Uoi the union of object pixels and H :Uhi the union
i=1 i=1

of the hypotheses>.

During tracking phase hypotheses are generated, removed and tracked. The
proposed data association algorithm is analyzed in the following sections. For
exemplifying each task, we borrow the next Figure from Argyros’s and Lourakis’s
work [71], with three skin-colored blobs (b, b, and bs) and four object hypotheses
(hy, hy, hz and hy) produced from the previous frame.

Figure 11: Cases of skin-colored blobs and object hypotheses.

* For compatibility purposes, we use the notations and examples used by the authors.

24

Object hypothesis generation

In order to generate a new object hypothesis, there should be at least one skin-
colored object which is not supported by any of the existing hypotheses. This means
that none of that blob’s pixels lie into any of the ellipses of the object hypotheses,
namely the intersection of the blob with all existing ellipses is empty. Such a case is
blob b, in Figure 11.

A safe metric for deciding whether or not a blob lies into an ellipse is the distance
of each blob’s pixels from the ellipses. The distance D(p,h) of a point p= p(X,Y)

from an ellipse h(cx,cy,a,ﬁ,e) is defined as follows:

D(p,h)=+i-0, (11)

where

_[cos(d) —sin(0) |(x—c, y—C,
= sin@@ cos@) |« B)

A value, of D(p,h), equal or smaller than 1.0 means that a point lies on or inside the
ellipse respectively, while D(p,h) >1.0 means that the point is outside the ellipse.

Therefore, generation of a new object hypothesis for a blob b is triggered whenever:

Vpeb,rpiHn{D(p,h)}>1.O. (12)

The parameters of the new object hypothesis’s ellipse can be derived directly
from the statistics of the distribution of blob’s points. The centroid of the blob
becomes the center of the ellipse while the rest of the parameters can be computed
from the covariance matrix of the distribution of blob’s points on the image plane.

(o) (o)

o, O
Let Zz{ * Xy}be the covariance matrix of blob’s points distribution. Then,
Xy yy

ellipse’s parameters are defined as:

az\/z, ,Bz\/z, H:tan’l(l), (13)
ﬂ‘l_o-yy
+o,+A +o0,—A
where 4 :%, A :% and A=\/((7XX—O'W)2—4O'XVZ :

False hypothesis removal

An object hypothesis has to be removed when it is not supported by any skin-
colored blob. This can occur when the object moves out of the camera’s view or
when the object is occluded entirely by a non skin-colored object. Hypothesis h; in

25

Figure 11 demonstrates such a case. A hypothesis is allowed to exist for a certain
amount of time before being removed, in order to cope with situations of poor skin-
color detection or temporal occlusion of the skin-colored object due to movement.

Object hypothesis tracking

After finishing with hypotheses generation and removal, all of the remaining
blobs should support the existence of past object hypotheses. This data association
problem’s solution is based on two rules:

e If a skin-colored pixel of a blob lies inside the ellipse of some object hypothesis,
then this pixel is considered to belong to this hypothesis.

e [f a skin-colored pixel of a blob lies outside all ellipses, then it is associated with its
closest object hypothesis, using the distance metric of Eq.11.

These two rules manage to cope with two problems that can arise during the data
association process. Apart from the simple case, where a skin-colored blob is easily
associated with an ellipse, cases, where a) a blob is located within two or more
hypotheses (blob b, in Figure 11) or b) a hypothesis covers two or more blobs
(hypothesis h, in Figure 11), can occur.

In a situation where two or more object hypotheses are “competing” for a single
skin-colored blob, the pixels of the blob which lie inside an ellipse are assigned to the
corresponding object hypothesis. If there are pixels which lie inside more than one
ellipse, then they will be assigned to all corresponding hypotheses. Finally, pixels
outside all ellipses are associated with their closest hypothesis, by using the distance
metric of Eq.11. It is not safe to make any assumption and remove any of the existing
hypotheses because there’s no knowledge of whether the blob is actually one skin-
colored object or multiple occluded ones.

In the case where the ellipse of a hypothesis covers more than one blobs, similar
strategy is followed. If the hypothesis was assigned to one of the blobs at a previous
frame, then it is assigned to that blob. If none of the blobs is predicted by that
hypothesis, then the hypothesis is assigned to the blob with which shares the largest
number of skin-colored pixels.

Prediction

The process of hypothesis tracking involves prediction of the hypothesis next
position. This is easily achieved with a linear way and by using the location of
hypotheses in the previous frames. Therefore the estimated hypothesis model

becomes h =h (€,.C,.a;,/,6) where éi t)=C,(t-1)+AC,(t). C.,(t) denotes
(c, (t).c, (1)) and AC;(t) =C;(t-1)-C,(t—2) . Although the above equations assume

26

that the direction remains unchanged, experimental results have proved that this
prediction mechanism performs efficiently.

3.3 Hand Kinematics Tracking

3D position of the detected skin-color objects can be easily estimated by
triangulation". Unfortunately, this method can lead to very poor results as it is
sensitive to noise and strictly dependent to the calibration process —which by its own
bears estimation errors. Therefore, instead of calculating 3D coordinates by
triangulation, the “inverse” way is chosen. Particles are deployed in space and, by
projecting them to the image planes of the cameras, head(s) and palms positions are
estimated. Using the resulting 3D positions, an initial estimation for the kinematics
parameters of the hands is derived by the use of Inverse Kinematics Equations.
Finally the kinematics parameters are being tracked over time with the use of
Particle Filters and Forward Kinematics.

3.3.1 Perspective projection

The intrinsic and extrinsic parameters derived from the camera calibration (3.1),
are essential for the projection of a 3D point P=(X, Y, Z) onto the image plane of a
camera (px, py). The interesting point here is that a point’s location in space is
expressed in the world frame, whereas its projection onto the plane is expressed
according to the image reference frame (pixels). Therefore, a transformation
between the world and the image reference frame is needed.

Let f, and fy5 be the focal lengths of the camera and c, and c, its principal points
(or image center); namely the intrinsics of the camera. The matrix which describes
the intrinsics is therefore denoted as:

-fx 0 cx
M,.,=| 0 —fy cy (14)
0 0 1

and performs the transform between the camera frame and the image reference
frame [57].

As stated in 3.1, the extrinsics of a camera represent its relative position
according to the principal point of the world. A rotation matrix R and a translation

* The process for estimating the 3D position of a point using a stereo pair of cameras.
> f,=f/s, and f,=f/s,, where s, and s, are the effective pixel sizes in the horizontal and vertical direction
respectively.

27

vector T describe this transformation from O=(0, 0, 0) to the position of the camera.
We define Mgy, the matrix which describe the extrinsics, as follows:

T
h, h, I _R1T
T
, Ly —RTY, (15)
T
I I _R3T

<
|
',:‘;1

N
where 1, ...1,, are the elements of the rotation matrix R=|r, I, I,|, Tis the
r-31 r-32 r33
translation vector T=[T,, T,, T,] and R;, i=1..3, denotes the i"™ row of the rotation
matrix. Mey performs the transformation between the world and the camera
reference frame [57]. The product of M,y and Mg, expresses the transformation
between the world and the image plane reference frame.

By expressing the point in 3D space in homogeneous coordinates as Py=[Xw, Yw,
Zw, 1]T and by forming the product Mi: Mex: Pw We end up with “a linear matrix
equation describing perspective projections” [57]:

X w
% Y
X =M M_| " 16
2 int ext ZW ()
X, 1

Finally, the pixel coordinates of the projection on the image plane are derived by
normalizing the resulting vector by its 3" element:

Xin =% 1 Xg,

Vi =X, [X5 (17)

3.3.2 Particle filters

The particle filter is a nonparametric Bayes implementation which can model
nonlinear transformations of random variables [73]. The key idea is to represent the
target distribution by a set of random weighted samples drawn by this distribution
and to compute estimates based on these samples and on these weights. The next
figure (borrowed from Miodrag Bolic [2]) illustrates the general idea of Particle
Filters on a nonlinear distribution. Random samples (measures), which approximate
the distribution of the unknowns, are recursively generated. The posterior to be
approximated is denoted by blue and the samples with yellow. As new observations
arrive, the samples and weights are propagated by exploiting Bayes theorem.

28

Posterior density

Y

paroa 9999 T

* Sample space

Figure 12: Particle Filter. Particles are drawn over the posterior distribution and propagated according to their
weights.

The samples of the posterior distribution are called particles and are denoted as
[73]:

X, =X X, X (18)

where M is the number of particles in the particle set X, . Each particle represents a

hypothesis on the current state at time t and its likelihood is (ideally) proportional to

its Bayes posterior

X'~ P | Yor Yireenr Y1) (19)

where 1<m<M and y; with 0<i<tthe observations up to time t. The above figure
also illustrates that the true state is more likely to be approximated by particles
sampled from a dense area of the sample space.

The general idea of the particle filtering algorithm can be described as follows:

29

1. Initialization
s X =X,=02
o =0,
» Form=l,....M sample x; ~ p(x,) . An initial estimation of the distribution.
+ Setr=1.

2. Importance Sampling
e Form=1___M:

i. sample & ~ p(x|%5).
ii. evaluate importance weights w/" = p(y, | %").
i, X, =X, +{x)
Mo
* Normalize importance weights W, =w; / > w .
-1
3. Resampling]
e Form=1___M:
i. Draw jfrom X, accordingygmﬁf.
il. Add x to X,.

4. Set t —¢+1 and repeat steps 2 and 3 till no other observations arrive.

Figure 13: The particle filter algorithm.

In order to simplify the particle filter algorithm, the next flow diagram [2] is cited:

“Initialize
/. particles

New observation

‘computation

Normalize weights

Output estimates

Resampling | . l

" Out put '

Figure 14: Flow Diagram of the Particle Filter Algorithm.

30

The efficiency of the particle filter lies basically on the resampling (or importance
sampling) step which transforms the temporary set of M particles into another set of
particles of equal size which will finally be propagated and will constitute the seed
for the next resampling. M particles are being drawn with replacement from the

temporary set)_(t. The importance weight of each particle defines its probability to

be drawn. Therefore the metric of the importance factor should be carefully chosen
according to the context of the implementation.

3.3.3 Human arm Kkinematics

“Kinematics is the science of motion that treats motion without regard to the forces
which cause it” [16].

The human arm consists of limbs (links) and joints which are described by their
angles. Since the length of each limb is known and constant, if the angles of the
joints and the location of the shoulder are also known, then the position of the
elbow and the palm —namely the end effector- can be estimated. The process, during
which the location of the end effector is calculated by using the joint angles, is called
forward kinematics. The inverse process, that is estimating joint angles by knowing
the location of the end effector, is called inverse kinematics.

3.3.3.1 Forward kinematics

In some simple cases, the calculation of the location of the end effector is
straightforward. However, in most cases —such as that of the human hand- more
effort is required. The next figure[16] illustrates the parameters which will be used
for estimating the forward kinematics equations.

31

Axisi— 1 Axis i

Linki—1

Figure 15: Frame {i} is attached rigidly to link i.

Figure 15 shows two effectors with different coordinate systems. Therefore, a
transformation which will lead from one system to the other, and thus depicting the
locations according to the reference system (either of two or even the base) is
required. The important parameters derived from the manipulator illustrated above
are [16]:

e a;: the distance of the two rotation axes (Z and ZAM) measured along)Zi.
e q; the angle between the two axes measured about)Zi.

e d;: the distance between)zi_land)Zi measured along Zi .

e 0;: the angle between)Zi_land)Zi measured about 2i .

The parameters described above will be used for the derivation of the kinematics
equations.

Consider now, a manipulator with N effectors, with any one of them having a
separate frame. As stated before, the required transformation should transform the
parameters from one’s reference frame to the others, and, finally, to the reference
frame of the end effector. A very efficient way of representing these transformations
is the one proposed by Denavit and Hartenberg in [8]. The transformation which
transforms the i-1" to the i"" frame is denoted as T :

32

cos(d,) —sin(4,) 0 C
| Sin(@)cos(ey,) cos(@)cos(er ;) —sin(e,) —d;sin(e;,)

T = 20
' sin(@)sin(e; ;) cos(é)sin(e; ,) cos(e;, ,) d.cos(e; ;) (20)
0 0 0 1
Finally the product of all matrices leads to the parameters of the end effector:
ST=7...MT. (21)

In order to switch over two coordinate systems, a rotation matrix R and a translation
vector T is needed. i‘liT is nothing more than a representation of R and T, where R is

the upper left 3x3 matrix and T is the leftmost 1x3 vector such as:

ap | ROT (22)
"olo 1)

3.3.3.2Arm modeling

The model of the arm chosen for the purposes or this work is the one proposed
by Tsetserukou et al. in [78]. Although the work refers to a robotic arm, it can
efficiently represent a human one as it supports the same degrees of freedom. In
Figure 16 the chosen model is illustrated, together with its kinematics parameters
expressed to both the global reference frame and the reference frame of each joint.

Distribution of the
optical torque sensors

Figure 16: The model of the robotic arm (left) and its parameters (right).

33

J1, J, and J; represent the three degrees of freedom of the human shoulder while J,
represents the human elbow. L; is the distance between the shoulder and the elbow
and L, is the forearm’s length. Finally the angles of joints J4, J,, J3 and J; are denoted
as 94, 8, 93 and 9, respectively. The parameters which describe this arm model are
given by the authors as follows:

i a.1[deg] aia[m] di[m] Uildeg]
1 90 0 0 9,-90
2 -90 0 0 9,+90
3 90 0 Ly 95+90
4 -90 0 0 9,-90
5 0 L, 0 0

Figure 17: Arm Model Parameters.

By using the Denavit — Hartenberg representation, as described in Eq.20 and Eq.21,
the location in space of both the elbow and the palm can be easily extracted from
7T and T respectively.

3.3.3.3Inverse kinematics

Although the calculation of forward kinematics equations is more or less
straightforward, calculation of inverse kinematics equations is a more complex
process, strictly dependent to the context of the application. In many cases there is
not a single solution for the parameters’ values, whereas in some others, finding a

solution is almost impossible (cases wherei’liT cannot be inverted for example).

Fortunately, this is not the case for the human arm model inverse kinematics, which
can be solved analytically as described in [76].

Let

=
=
=
N
=
w
e
=

g
I

N-1
S
l\)ﬂ
N
I\)ﬂ
w
L+
N

o
ey
W
N
W
%)
N
w

(23)

o
o
()
[EY

be the matrix which leads us from the shoulder to the palm (or wrist). Then, the

vector p=[t;,,t,,t,] depicts the location of the wrist, measured in the base

reference frame (in our case the shoulder’s coordinate system). Since the length of
links is known, ¢, can be calculated from the cosine rule as:

34

2 2 2
+L,° -
0, = & +arccos L+ L[] : (24)
2L L,
Clearly, only one solution is physically acceptable due to limitations imposed by the
elbow joint.

The interesting part though is the estimation of elbow’s position. As Korein [11]
notes, even if wrist’s and shoulder’s position is fixed, the elbow is still free to rotate
about the shoulder-wrist axis. Figure 18 illustrates this case, where the elbow is free
to move on a circle lying on a plane whose normal is parallel to the shoulder-wrist
axis. Shoulder’s, elbow’s and wrist’s positions are denoted by s, w and e respectively.

Elbow’s position can therefore be expressed as a function of the circle’s center
and the rotation angle ¢ as follows:

e =r[cos(¢)u +sin(p)V]+c, (25)

where (land Vare the unit vectors that form the elbow’s local coordinate system, ¢
is the center of the circle and ¢ is the rotation angle. land V can be expressed as a
function of the normal vector of the circle’s plane N and the z axis of the system:

0= —Z+(Z'r:'])|'j ’ (26)
|-z +(z-A)A

vV=nx0, (27)

where

=S (28)
[w—s]

Finally, the circle’s center ¢ and its radius r can be calculated by simple
trigonometric functions:

c=s+cos(a)yn,

r=L sin(a) (29)
with
L2 L2~ |w-s| L, sin(y)
cos(a) = , sin(a) =—2—"~
T] s
w=n-0,. (30)

35

Figure 18: Elbow position based on swivel angle.

By assuming that the value of ¢ is known, and therefore the elbow’s position, the
inverse kinematics problem can be solved analytically for the rest of the joint angles.
Note that the elbow’s position is a function of the first three joints:

=TT —e=| Y |. (31)

Therefore, by solving Eq.31 we get the values of the rest joint angles &;, &, and 0s.

3.4 Neural Network - Multi-Layer Perceptron

“A network of simple processing elements (neurons), which can exhibit complex
global behavior, determined by the connections between the processing elements
and element parameters.” [82]

36

Neural Networks are the result of an effort to describe how human mind works
and, although the idea behind them was first started in late 1800s, they are currently
used for performing several complex tasks as clustering, function estimation, robot
navigation etc. The term “Neural Network” stands for two distinct cases: The
Biological Neural Network which consists of real biological neurons in the human
brain and the Artificial Neural Network (ANN), or simply Neural Network (NN), which
is a mathematical or computational model based on biological neural networks [7,
82].

A neural network consists of sets of interconnected neurons. Each neuron can
perform a simple 2-class classification, assuming that the classes are linearly
separable. By adding neurons, additional classifications are feasible. The number of
neurons to be added depends on the task to be performed, together with the input
and output dataset provided to the network.

A typical neural network is consisted of three layers of neurons, as depicted in
Figure 19; input, output and hidden layer. The neurons of each layer are connected
to all neurons of the next layer. However, there is no interconnection between
neurons of the same layer. The hidden layer is task specific and is constructed during
the training phase, depending on the given input dataset and the corresponding
output, and is responsible for the modeling of the function that translates the input
to the output.

Hidden
Input

Output

Figure 19: Typical Neural Network Layout
The number of neurons of each layer depends on the task. Therefore there are as

many input and output neurons as the input and output data respectively. The
number of neurons in the hidden layer affects directly the effectiveness of the

37

network. Too few and the network will produce poor results (unable to learn the
problem), too many and the network will be over-determined.

For each task to be performed, the neural network has to be trained first. Training
phase is crucial for the efficiency of the network and, thus, needs to be designed
carefully. During training, the structure of the network changes so that it adapts to
the needs of the information provided and the desired output. In general, training
can be thought of as the estimation of a function f that solves optimally a specific
task by using a set of observations (inputs) together with the minimization of the
error of that function.

Three are the dominant training techniques:

e Supervised Training where both input and the corresponding desired output are
provided to the neural network and the network estimates the function
f: X =Y, where X andY stand for the set of inputs and outputs, respectively.

e Unsupervised Training where there is no correspondence between the input and
the output, and the network tries to relate them —and thus estimate the
proportional function f - by detecting patterns in the data set.

e Reinforcement Training where there is neither given input nor output dataset,
but are generated from the interaction between the network and the
environment.

In this work, Multi-Layer Perceptron Neural Networks are being used for the task
of gesture recognition, having as input the kinematic parameters which describe the
arm. This section intends to present the Multi-Layer Perceptron Networks and
describe the rules that govern its training phase.

3.4.1 Multi-layer perceptron

Multi-Layer Perceptron (MLP) is the most widely used class of neural network,
mostly due to its success on many information processing tasks, such as pattern
classification, function estimation and time series prediction. Moreover, MLPs have
been used in many practical fields, such as speech recognition, medical diagnosis,
autonomous vehicle control and financial prediction [49].

MLP’s architecture follows the classical neural network layout, with input, output
and hidden Iayerss. Nodes (neurons) of different layers are connected with real
valued weights, whereas there is no connection between nodes of the same layer.

® Note that a hidden layer may consist of several layers.

38

Figure 20 illustrates a minimal 2-2-1 MLP —that is two nodes for the input and hidden
layer and one output node.

.[Network output

Figure 20: Minimal 2-2-1 MLP architecture.

The notation of Shepherd [49] is used here as well. Therefore:

e The network consists of L layers, withl =0denoting the input layer andl =L
denoting the output layer.

e Each node is denoted asn, with (1<i<N')where N'is the number of nodes in

layerl .

e The strength of a node’s output —namely the activation- depends on the strength
of the input to that node with respect to a threshold value. In order for the
thresholds to be treated uniformly, an extra node with fixed output of 1.0 —called

the bias unit and denoted as n(') forl = L - is added to all but the output layer.
e Each noden; has a set of source nodes S and a set of target nodesT,'. LetN] and
n! two connected nodes. Ifm <, noden{ is a source node of n! (i.e.n} € /) and

ni' is a target node of nT (i.e.niI eij). It is obvious that all input nodes and bias

units have no source nodes and all output nodes have no target nodes.
e Network weights are denoted with respect to the nodes they connect. Therefore

W;" connects N and n! withm <1.

Despite the fact that MLPs support networks of arbitrary connectivity, it is more
convenient to consider architectures of restricted form, namely MLPs with fully
connected adjacent layers but with no connections between nodes of non-adjacent

39

layers. This architecture is denoted as “standard” MLP architecture. The MLP of
Figure 20 is an example of a “standard” architecture.

The number of input and output nodes depends on the pattern and target size,
respectively. An MLP is supervised trained, using a fixed training set of P training
pairs, with each training pair consisting of two real-valued vectors — a pattern p, with

1<g<Pand the corresponding desired outputt, . Individual pattern and output

elements are denoted as pi'q(lsisNO) and tj‘q(lSjSNL), respectively. The

output yi'yq of node n; is a function of its activation ai',q :

a,= > W'y, 1>0, m<l (32)
njmeSiI
| |
Yio = fa,), 1>0. (33)

It is obvious that the output of an input noden? is p;,for patternq. The squashing or

activation function f (x) is both monotonic and continuously differentiable. The most

frequently used function is the sigmoid function:

1

f(x)= .
) 1+e™*

(34)

3.4.2 MLP training

MLP training is a supervised iterative process. At each iteration (or at each epoch)
the network output for each pattern in the training set is calculated and the weights
are being progressively adjusted according to the difference between the actual and
the desired output, so that the output of the network is acceptably close to the
desired output. How much “acceptably close” is the actual to the desired output is
measured by an error (or energy) function for each epoch. Therefore, the main
target of the training phase of an MLP is to minimize this error.

Before training starts, the weights are initialized to small random values, in order
to prevent saturation (where nodes are highly active or inactive for all patterns, and
therefore insensitive to the training process) and symmetry. The choice of the
initialization range of weights affects directly the performance of the MLP training.
Weight initialization should ensure that the initial standard deviations of the network
activations are in the same range for each node and lie within the normal operation
region of the squashing function. A widely used weight initialization which satisfies
all previously mentioned prerequisites is [17]:

40

24 (35)

r(wm = ,
(w;")]

N

which sets each weight randomly with a distribution in the range of [-r,+r].

The error function E for each epoch is the sum of all partial errors Epproduced

from each pattern p :

E=>E,. (36)

Two are the most popular functions for the error of each pattern: the sum-of-
squares error function (SSE)

1P N- Lo
E=EZZ(ti,p_yi,p) (37)

p=1 i=1

and mean-squared-error (MSE) which is a normalized version of sum-of-squares

1 P Nt
E:ZPNLZ;Z;('[Lp—yfp)Z. (38)
p=l i=

The advantage of the MSE over the SSE is that it is insensitive to both the number of
patterns in the training set and the number of output nodes in the network.

However, both MSE and SSE proved to be sensitive in cases where the error

Ill

function presents local-minima and multi-dimensional “plateaus”. In such cases, the
network result is suboptimal, since the minimum number of misclassifications has
been achieved. Therefore, other functions which improve network’s ability to escape
from such regions are adopted. An example of such a function is the cross-entropy

error function [15]:

P Nt

E=-Y>In[(y,)" @-y,) 1. (39)

p=1l i=1

The above error function gives the ability to the network to progress in (and escape
from) flat regions in weight space, since error gradients for poorly classified patterns
are higher than MSE or SSE.

The success of MLP training depends on how “acceptably small” E becomes.
Once more, “how small” is task specific and needs not to be as small as possible —i.e.
finding the minimum achievable E -, since, in such a case, the network will become
over-trained, and therefore, MLP ability to generalize will decrease. The
characteristics of the surface of the error function, indicates the strategy which most

41

probably lead to a reliable training. Most MLP error surfaces share a number of
broad characteristics, such as [49]:

e a high degree of smoothness,

e extensive “plateaus”,

e “narrow valleys” or “ravines”,

e many weak minima, some of which local ones,

e adegree of symmetry around the origin of the coordinate system used to plot the
error surface.

An example of an error surface with some of these characteristics is illustrated in the
next figure.

-r'-

n-‘-
'.,,""\- .n— -. .-.J'
"‘.f

¢
:’ﬁ‘ ol “ﬁ‘ﬂ'

Figure 21: Example of MLP error surface.

The role of the hidden nodes is crucial for the MLP training dynamics. A hidden
node which duplicates the function of another hidden node and, therefore, is not
needed for the training phase, is called redundant. Annema et al. [29] in their
analysis of the MLP training dynamics, depict the importance of redundancy for the

training phase. Letw be the weight vector consisting of all weightsW.", connecting

I] ’
node ni to its source nodes. The weight vector of a neuron corresponds to a

hyperplane dividing the input space into two classes. During training, the weight
vectors tend to converge towards specific attractor in the weight space [20].

3.4.3 Backpropagation

Error-backpropagation, or simply backpropagation, is a reliable method for
updating the MLP weights during the training phase. The backpropagation algorithm

42

for an MLP, implements the steepest (or gradient) descent method. The traditional
backpropagation algorithm is known as batch or offline backpropagation and works
as follows [13]: at each epochk, the gradient g, is calculated and the weights of the

network are updated according to

W, =W, +Aw,

Aw, =-ng,, 1n>0 (40)

wherenis a constant heuristically chosen scalar, usually in range (0,1). The above
equation is known as the generalized delta rule and 7 as the training rate. It can be
also thought of as the backpropagation algorithm sets the search direction to—g, and
moves towards this direction by a step length ofn for every iteration k. This rule
ensures the reduction of total network errorE as long as g, is greater than zero, but,

however, it does not guarantee that the network will escape from a local minimum.

The calculation of the gradient g, is being done in two phases: a forward and a
backward pass. The forward pass generates the output yi',p(see Eq.33) for the

pattern layerl =1tol =L. The backward pass calculates the partial error E for

pattern p and the corresponding partial gradient g, with elements I& such as:
i

OE

p :_5| y|.71 (41)

Im ip2j.p’
oW
where the error term ¢ is given by

L L ! L
é‘i,p = (ti,p - yi,p)f (ai,p)
' | |
5?92 f (a;np)z é‘i,pWijm' m<L. (42)
ni'eij

If the activation function is the sigmoid, "is simply
f'(a)=y(-y). (43)

Although efficient for many training tasks, batch backpropagation has several
important drawbacks:

e Whenever flat regions or narrow valleys appear, it often takes long to converge to
a satisfactory error level.

e Training effectiveness depends directly on the training rate. If training rate is too
small, the network error will not be reduced sufficiently, whereas if it is too large,
network error may stuck to a high level.

43

e |t tends to get trapped in local minima.

Due to these vulnerabilities, many variations of the original backpropagation
algorithm have been proposed, in order to cope with problems such as local minima
and flat regions. We present two of them, not necessarily the most efficient ones,
but very helpful for this work.

3.4.3.1 Backpropagation with momentum

Rumelhart et al. [13] proposed a simple variation of the batch backpropagation
algorithm, in order to speed up the training phase, by adding a momentum term in
the generalized delta rule of Eq.40:

AW, =-ng, +aAw, . (44)

The parameter « is user defined and is set in the range 0 < a <1.Although « is task
specific, it is typically set to 0.9. This approach actually made the algorithm to cope
more efficiently with problematic regions —i.e. plateaus and narrow valleys- and
therefore speed up the whole training process. However, there might have to be a
reduction in7, in order to maintain network stability —i.e. constraint excessive

weight changes.

3.4.3.2 On-line backpropagation

The most important variation of the original batch backpropagation algorithm is
known as on-line backpropagation. The main difference between batch and on-line
backpropagation, is that instead of updating the weights once per P backward passes
(once per epoch), they are updated at each backward pass (i.e. P times per epoch).
The weight update rule for the on-line backpropagation becomes as follows:

Wk, p+1

AW, , =-110, .7 >0’

=W, +AwW
wp kR (45)

An important issue aroused here is the choice of a suitable 77 for each iterationk .

Darken et al. [5] proposed the search then converge (STC) schedule, given by:

) 1+ (c/)k / 7)
~ O i) (KI D) + (K4 72)’

7, (46)
wherer, is the training rate at iterationk, parametercis set greater than a
threshold1/ 24

‘min 7

with 4, being the smallest eigenvalue of the Hessian matrix of E .

Parameter z is related to the number of training epochs. The above guarantees an
asymptotic rate of convergence for the on-line backpropagation. However,

44

convergence is highly dependent on parametersz,and z which are estimated either

heuristically or by prior knowledge about the task.

Theoretically, on-line backpropagation has certain disadvantages compared with
batch backpropagation. Although requiring more computational effort per epoch,
on-line backpropagation does not ensure the reduction of total network error and
does not provide highly accurate solutions. On the other hand, on-line
backpropagation characteristics make it preferable in many cases. Due to its
stochastic nature, on-line backpropagation prevents MLP to get trapped in local
minima. Additionally, in cases where training set contains redundant information —as
it usually does- since weights are updated more often, on-line propagation
converges faster. Finally, on-line training is essential in cases where not all training
patterns are known at the start of the training [49].

45

46

Chapter 4

Hand Parameters Extraction and Tracking

The extraction and tracking over time of the kinematics parameters, which
express the position and pose of the human arm, constitutes the core of this work.
The tracked parameters, namely the angles of arm’s joints, will be, eventually, the
input of the neural network during the last phase of gesture recognition.

W
g O |E
[7]
X 5
B
(&}
£ L
& 1
A
| Particle Filters] | Anthropometry |
Head and Palms 3D Coordinates L1,Lz Estimation L2
Location Estimation / Proportional to Height
\

I

AN

3D Coordinates

:

Particle Filters, |

Inverse Kinematics | o 3
e T - e
Forward Kinematics 01‘02'93'94 i it @: 9 O«
01, 2, 03, 04 L1, L2, 3D Coordinates g e ol s o~
Tracking Initial Estimation

91, 92, 03, 04

) ¢

Figure 22: Kinematic Parameters derived from low-level features.

L

47

The choice of the model has been based on three factors: simplicity, flexibility and
efficiency. The key idea is to extract high-level information by using primitive
features of the image, while, at the same time, keeping the processing cost at low
levels. In other words, pixel values, provided by the input videos, are transformed
into kinematic parameters which fully describe the pose of body and arms.

The skin color tracker —presented in 3.2.2- detects skin-colored objects in the two
images. By defining one blob as the head, the height of the user can be easily
calculated, according to the extrinsics of the cameras, which finally is used to
estimate the lengths of the upper limbs, based on anthropometric measures and
proportions.

Having estimated the position and the size of the upper body of the performer,
inverse kinematics provide an initial estimation for the kinematic parameters (angles
of shoulder and elbow as described in 3.3.3) of the arm. Finally, particle filters track
the extracted parameters, and feed them to the gesture recognition module.

Figure 22 illustrates the above described procedure. The input of the algorithm is
solely the values of the images pixels. No previous knowledge about the scene or the
user (e.g. height) is required. The only information about the setup provided is the
intrinsics and extrinsics —extracted from cameras calibration- together with the
height where the reference camera (arbitrary choice) has been placed.

4.1 Head and Hands Positions

Triangulation can provide the location of skin-colored objects (detected from skin-
color tracker as described in 3.2.2). However, in many cases, the estimation of 3D
position with the use of triangulation is subject to considerable error, since it is
sensitive to image noise and strictly dependent on the accuracy of the camera
calibration process.

Instead, particle filters are being used for estimating the position in space of the
hypotheses by back projection of themselves. The first step is the determination of
the hypothesis that stands for the head. This issue can be solved by assuming that a
user will enter the scene in its normal pose; that is with the body straight (not bent)
and with the hands hanging free at the height of thighs. This ensures that head will
be the highest skin-colored object and, surely, in the upper part of the image.

Let p=[X, Y, Z] be the position of a particle in space. The above assumption limits
the Y-dimension. Z-dimension, namely the depth, is also by definition limited from
the room’s size, which can be directly defined by the user or even calculated from a
laser sensor. In either case, particle filter converges to a satisfactory estimation of

48

the depth. Note the reference to“estimation” and not to an accurate calculation. As
will be described later in this section, accuracy of calculations is not a necessary goal,
since the algorithm can sufficiently work with relative positions and proportions.

As soon as at least two hypotheses have been tracked over a time period t;,
particles are deployed uniformly in space as shown in Figure 23(a). t, is imposed in
order to ensure that the hypotheses to be tracked are not accidental. Each particle is
projected on each camera as explained in 3.3.1 and the distance of its projection
from the corresponding centroid of the hypothesis will determine its weight as
follows:

(47)

Wm — max(M10]’

w

with 1<m <M where M is the predefined number of the particles. d(x™,c)denotes
the Euclidean distance of the particle from the hypothesis’s centroid c. Finally T,
denotes the window, in pixels, —or equivalently the maximum distance- around the
centroid where a particle can lie in order to take part in the resampling step.

Although, this way may seem brutal, it works fine since the dimensionality and the
nature of the space does not allow ambiguities.

The weights are then normalized so that particles will be resampled accordingly
in the next step. Two weight thresholds are imposed: W_, andW__ withW_.. <W__ .
Particles with w™ <W_. are excluded from the resampling step and new ones are
generated from the remaining particles (note that sampling is done with
replacement). As soon as there are particles with w" >W,__ the filter is considered to

have converged and the centroid of these particles becomes the centroid of the
head. Usually three frames are enough for the algorithm to converge. Finally, in
order to lower the processing cost, whenever convergence happens, the number of
remaining particles is decreased below the half of the original.

49

Figure 23: (a) Initial deployment of particles. (b) Particles have converged to the head (blue particles).

Once the position of the head is estimated, separate particles for each hand are
deployed. The process is the same as the one described before and is repeated until
both hands are detected. The discrimination between left and right hand is of no use
and, thus, isn’t performed. Finally, no motion model is used, since the framerate of
the video ensures that possible movements will have small, or even negligible,
effect.

4.2 Shoulder Position Estimation

The next step before the extraction of kinematics parameters is the estimation of
the positions of the shoulders. As already stated, there is no need for accurate
calculation of the depth, which is the factor that defines the relevant size of the user
on the image. Therefore, arms and body size should be estimated according to the
depth and height detected so far, since absolute values cannot be calculated.

Art seemed to be very helpful in this issue. Leonardo Da Vinci was the first who
studied the ideal proportions of the human body, as depicted in his drawing
“Vitruvian Man”. What is equally interesting is that the length of each part of the
human body can be approximated proportionally to the height of that human. More
specifically, in “The Physics HypertextTM" [6], an essay on human body proportions
analyzes the length of the upper limbs with respect to the height. The results of this
essay proved to be very helpful for our work since the height can be easily estimated
from the previous step of head detection. The table below presents the results of
this essay. All arm parts can be estimated proportionally to the wingspan length,
with ratios 0.15 and 0.11 for the forearm and the hand, respectively. Considering
that the length of the wingspan is equal to the height of the human, and assuming

50

that the upper arm is approximately equal to the forearm, both shoulders position
and arm length can be estimated.

. . Wingspan- ForearmHand-
Wingspan (cm) | Height (cm) Height proportion Forearm+Hand (cm) | Forearm (cm) Forearm praportion
1723 172 1,002 44.5 26 1,712
159.4 154 .4 1,032 414 24,4 1,697
1821 178,2 1,022 46,1 26,4 1,746
169,6 168,6 1,006 43,2 23,6 1,831
1645 167.6 0,982 431 26 1,658
165,5 1694 0,977 41,3 23 1,796
1724 167 1,032 46.8 27,2 1,721
163.2 1642 0,994 43,6 26 1,677
164.5 162 1,015 42,5 255 1,667
162,5 160,5 1,012 43,8 26 1,685
180,5 1735 1,040 47 27,5 1,709
170.9 161.5 1,058 45,7 26 1,758
160,5 150,56 1,000 39.1 23,8 1,643
165,6 161.4 1,026 42,7 26 1,642
1751 165.9 1,065 46,6 27,6 1,688
175 166 1,054 46,3 27,2 1,702
192.5 187 1,029 46,7 27 1,730
188.5 179.9 1,048 47.8 28 1,707
184 176,5 1,042 47.5 275 1,727
169 168,65 1,002 43,6 252 1,730
178.4 1741 1,025 47,7 28 1,704
167 166,5 1,003 452 26 1,738
158 167 1,006 42,4 24,6 1,724
190,7 179 1,065 48,7 27,6 1,764

48,8 28 1,743

Figure 24: Arm length proportionally to height.

One more issue still persists. There is no knowledge of whether the user looks
straight to the camera or there is some angle to its pose; namely the rotation of the
body about the Y-axis (vertical). This leads to the existence of several rotation angles
which can correspond to the user’s pose seen by the camera. For example assume
that the original rotation is around 90°, that is when the camera sees the profile of
the user. Based on the available information, such a case is exactly the same with a
rotation angle of around 180°. It is at least risky, if not pointless, to make any
assumption here and exclude some of the cases. Therefore, for now, every rotation
is considered —and will be treated- as valid until the dominant ones are decided. The
number of rotations is predefined. Testing showed that an amount of 15-20
rotations is adequate.

51

4.3 Kinematics Tracking

Each of the candidate rotations represents a pair of shoulders, which will
eventually be the “starting point” for the arms. This means that the arms are
somehow coupled together, since they should “belong” to the same rotation. With
respect to that, one would treat rotations and arms as one. Unfortunately, this
would raise the complexity of the algorithm, since the dimensionality of the
parameters space increases dramatically. Therefore, instead of treating the rotations
and arms as one, we tried to decouple them, without neglecting the natural
limitations imposed.

4.3.1 Hand tracking

Two sets of particles are deployed for every rotation; one for each arm. Each arm
is tracked separately to the other, but with respect to the corresponding rotation.
Thinking of this abstractly (with no correspondence to particle filters), it would be
acceptable to say that every rotation particle “proposes” two arms. The proposed
arms determine the weight of each rotation particle. Finally, the dominant rotation is
determined by the resulting weights.

Each arm particle keeps track of the kinematic parameters of the correspondent
arm; the four angles as discussed in 3.3.3.2. By solving the forward equations, its
location in space can be estimated. The projection of particle on the camera will
determine its weight. Still, no motion model is necessary.

4.3.1.1Initialization

Although the dimension of the parameter space is small enough, the number of
particles required to cover all cases is prohibitive. Therefore, in order to use only a
small number of particles, a good initial estimation of the kinematic parameters is
crucial. This can be done by solving the inverse kinematics equations presented in
3.3.3.3, since the positions of both the base (shoulder) and the end effector,
together with the length of the links, are known.

The kinematic parameters are estimated for both hands, for every rotation.
Moreover, since the rotation angle of the elbow around the shoulder-palm axis is
still unknown, particles for every possible pose of the elbow (that is every possible
elbow for every hand for every rotation) will be created. Certainly, there will be
cases where the kinematic equations give no solution. This is desirable since not
every rotation fits to the real one.

52

4.3.1.2 Hand particles weighting function

The weighting function is similar to the one used for the position estimation in
4.1. Once the kinematic parameters have been estimated —either from inverse
kinematics or from previous iterations- the locations of the elbows and the palms
can be estimated, by solving the forward kinematics equations. The distance
between the projection of these locations and the centroid of the correspondent
object hypothesis will determine the weighting factor of each particle.

However, there is still a factor which can lead to poor results: the angle of the
elbow rotation ¢. It is obvious that not every value of ¢ is acceptable since it can
sometimes lead to unnatural results. In order to cope with that, not only the
shoulders and palms are projected, but also the elbow. The projection of the elbow,
in order to be “acceptable”, should lie inside the foreground area.

The ideal foreground image, on which the elbow should be projected, would be a
representation of the actor’s skeleton. In that case, every estimated elbow would be
limited only to its real position. Unfortunately, this is not yet feasible because of two
factors: 1) performing skeletonization on the input image would add an excessive
computational cost and 2) the foreground image contains “unnecessary” parts, such
as clothing or even the skin.

However, the foreground mask could be very helpful in order to approximate the
actor’s skeleton. Since accuracy in this task is not one of the main goals, this problem
can be solved by simply contracting the foreground mask by some pixels. Therefore,
the area of each arm is decreased, approximating the actor’s skeleton shape, as
depicted in Figure 25(b). The resulting image consists of values equal to 1 for pixels
lying in the contracted (thinned) foreground area, and 0 otherwise.

- (a) (b)

Figure 25: (a) Original foreground mask. (b) Contracted foreground mask.

53

The elbow is, therefore, projected on the contracted foreground mask image. The
corresponding value will determine the influence of the elbow on the particle’s
weight. Finally the weighting function for the arm particles is given by:

w" = hmax [M,O}%EF, (48)

w

where h and e denote the influence of each factor on the weighting function and add
up to 1. E; denotes the value of the projection of the elbow on the enhanced

foreground mask image.

Two thresholds are introduced: W/

min

andW_ . As in 4.1, particles withw"™ <W/,

min

will be replaced during the resampling step, whereas, particles withw™ >W’' _will

max

determine the centroid of the candidate solution. Additionally, since resampling will

!

take place from only particles withw™ >W the weights of these particles are

min 7
normalized for the number of particles withw™ >W,. such as:
M .
W =w" /D w (49)
j=1

H m ' j '
with w" >W_ . and w'>W_ .

The normalized weight of each particle represents

the probability of that particle to be drawn during resampling phase.

Resampling of arms cannot be done at this moment because of the coupling
between arms and rotations. This coupling enforces the resampling of hand particles
to depend directly on the rotation particles weights which is discussed in the
following section. However, due to this coupling, rotation weights depend on the
hand weights as well.

4.3.2 Rotation tracking

The resulting rotations from section 4.2 constitute the initial estimation for the
rotation particles. Note that the only parameter tracked by rotation particles is solely
the rotation angle. Therefore, as discussed in the previous section, the weight of
each rotation particle depends on the weights of the hand particles assigned to each
rotation. The weighting function for the rotation particles can be then given by:

M N
w' :o.s(Zw[‘ IM j+o.5(2wg / NJ,
m=1 n=1

w'>W' wi >W/

min ? min

(50)

54

with 1<r <RandRthe number of rotation particles and1<m<M ,1<n<N with
M and N the number of particles withw >W/, for the left and right hand,

respectively. Note that the above equation uses the mean value of the non-
normalized weights of the particles. Finally, the weight of the rotation particles is
normalized. Once more, two thresholds are being used: W[andW[which

determine the influence of the particles during resampling as described in 4.1.

R
min

What is interesting here is that the weight of each rotation particle withw" >W,
not only represents the probability of this sample to be drawn, but also determines
the resampling for the hands. To make this clear consider the following example. Let
L1 and L2 be two particles of the left hand with normalized weights of 0.2 and 0.4,
respectively. Additionally there are two rotation particles, R1 and R2, with
normalized weights equal to 0.4 and 0.1, respectively and M =1000 . This means that
400 hand particles have to be drawn from the set of particles assigned to R1 and 100
from those assigned to R2. Assume finally that L1 is assigned to R1, L2 is assigned to
R2 and that there are other hand particles as well assigned to both rotations. Then,

80 left hand particles will be drawn from L1 and 40 from L2.

This is reasonable since, as stated earlier, each rotation particle “represents” a set
of pairs of hands. By doing this, we manage to limit the participation of rotation
particles which are not naturally —by means of human joints limitations- acceptable.
On the other hand, multiple pose hypotheses are being tracked simultaneously.

4.3.2.1 Resampling

The resampling of the rotation particles is done according to the weight of each
particle. The weight represents the probability of each particle to be drawn. The new
samples are drawn from a Normal distribution with mean the value of the particle
parameter —in this case the rotation angle- and deviation either a predefined value,
or a function of the weight. Finally, in order to keep computational cost as low as

possible, whenever there is at least a particle withw" >W? , which means certainty

max ’

about the real rotation, the number of rotation particles is reduced as well.

4.3.3 Hand particles resampling

The resampling of the hand parameters particle is based on both the weights of
each hand particle and the weight of the correspondent rotation, as explained in the
previous example. Each new sample’s parameters, namely the four joint angles, is
drawn from a —separate for each parameter- normal distribution with mean value
the corresponding parameter value of the seed particle and deviation equal to a

55

predefined value. Like before, whenever there is at least one hand particle with
w" >W

max /

the number of the remaining particles is reduced.

4.4 Tracker’s Output - Clustering

The algorithm presented in the previous sections, manages adequately to export
high-level information, such as kinematic parameters, with the use of a minimum
amount of input. Moreover simplicity and efficiency is preserved, while
computational cost is kept low.

The result, however, of previous stages is a set of weighted particles and not a
single pose. Note that although multiple poses are being tracked, they are similar to
each other’. Therefore, they could be represented by a single pose. A very efficient
way for representing the output pose is by clustering the hand particles with

w" >W_/_ of the most dominant rotation particle. The centroid of the bigger cluster

(which contains most of the nodes) will constitute the output of the tracking
algorithm. Unfortunately, due to the number of deployed particles (several
thousands) and the dimensionality of parameter’s space, clustering adds a large
computational load to the system, and thus increases the time needed for the
processing of each frame —at least 10 seconds per frame, depending on the number
of particles.

Right Camera

Left Camera

Logs Tracking

Head: 0.051712 0.372019 2.199357 » || Rotation Angle: 180.000000 -
[Frame 53]:

Head: 0.051091 0372577 2,199997 Left Hand Angles (f1,f2,f3,theta): -2.265393 -2, 765882 -183.561188 1,190222

[Frame 60]: Left Hand Shoulder Coords {X,Y,Z):(-0. 105745 0.166730 2.200000)

Head: 0.051207 0370095 2,199397 Left Hand Elbow Coords (X,Y,2):(-0. 118050 -0.087714 2.139232)

[Frame 61]: Left Hand Hand Coords (X,Y,Z):(-0. 132786 -0.384309 2,172027)

Head: 0.045100 0.368583 2.199357

[Frame 62]: Right Hand Angles (f1,2,f3,theta): -31.883593 61,377300 274.574707 5.969420 =
Head: 0.045767 0.374202 2,199997 Right Hand Shoulder Coords (X,Y,2):(0.251255 0. 166790 2,200000)

[Frame 63]: Right Hand Elbow Coords (X, 2):{0.475092 0053065 2. 135478)

Head: 0.037873 0378852 2.199997 Right Hand Hand Coords {X,Y,2):(0. 749594 -0.035607 2.077008)

[Frame &4]:

Head: 0.037644 0.374778 2199297 Left: 23558, Right: 11963

4 [m

Figure 26: Kinematics Tracker Output.

The extracted kinematic parameters, will be the input for the last stage; the
gesture recognition phase. Figure 26 illustrates the output produced by the

7
Their projections on the camera are more or less the same, despite the actual pose.

56

kinematics tracker, depicting the extracted kinematic parameters, joint locations in
space and their projections on the cameras. It is obvious that the constructed model
is accurate enough, although abstract. Therefore, the gesture recognition process
becomes even easier, due to the stability of the output.

57

58

Chapter 5

Gesture Recognition

In this final phase of the hand gesture recognition system, the extracted
kinematic parameters of the hands are being translated into meaningful information
about a possible ongoing gesture. This involves a mechanism capable of discovering
and recognizing gesture patterns from the input data. Moreover, apart from
efficiency, that mechanism should fulfill a crucial requirement: ability of
generalization.

Here, generalization has both spatial and temporal meaning. Both aspects can be
easily understood by considering the variety of each gesture together with the way
with which each human carries out a gesture. To clarify this, assume a pointing
gesture (“go there”) carried out by a person with the left hand. First of all, depending
on the desired direction, a pointing gesture can have various spatial representations.
Additionally, even when the direction of the gesture is the same, there will always be
slight differences in the exact pose of the hand. Finally, when executed by the same
or different persons, the duration of each gesture may differ.

A tool which fulfills the above criteria is Neural Networks. More precisely, MLPs
(as described in 3.4) proved to be very efficient in pattern classification tasks, having,
in the same time, great generalization capabilities. Moreover, supervised
backpropagation training of MLPs, seems more likely to adapt to the needs of the
gesture recognition nature, since it is most probable that, due to the complexity of
the parameter space, error surface will present local minima and plateaus. Before
proceeding to the presentation of the neural network used in this phase, we have to
cope with two problems produced by the output of the pose tracker: output
interruptions and discontinuities.

Due to corrupted video input —i.e. lost frames- or poor tracking results, there is a
possibility for some frames to produce no output. On the other hand, as multiple
pose hypotheses are being tracked simultaneously and it is not —and should not be-

59

guaranteed that the same hypothesis will be the one producing the output over
time, hands movement may not be smooth, jumping from a certain pose to a very
distant one. Both problems can be solved by filtering the output passed to the neural
network. Instead of producing an output at each frame, it will be produced either
whenever there is a significant change of the hand pose or after a predefined period
of inactivity (with no new output produced).

In order to constrain output discontinuities though and, thus, preserve as much
motion smoothness as possible, the change of the pose should not be too intense. In
combination with the previous, this implies the use of two threshold values which
determine if and when an output set should be produced. An output will be
produced only when the observed pose change lies between the two threshold
values. The use of these threshold values ensures time invariance of the output,
since regardless of the speed with which a gesture is executed, it will be
discriminated spatially and not temporally.

5.1 Gesture Recognition Scheme Overview

In the observed scene, the actor is supposed to perform gestures with both
hands, possibly simultaneously. Therefore, the output of both hands has to be
processed for possible ongoing gestures. Since there is no prior knowledge of
whether a hand performs a gesture —and which hand is the performing one- the fact
that both hands are being tracked implies that at each frame, nine parameters (4
angles for each hand and the body rotation around the Y-axis) should be fed as input
to the neural network. The complexity and the dimensionality of the parameter
space, however, restrict any successful training of the neural network.

To cope with this, a first step is to use a separate neural network for each hand.
The space dimensionality is now reduced to 5 —the body rotation has to be kept for
both hands- which enables an acceptable training of the network. Unfortunately,
parameters are vaguely deployed in space resulting to possible ambiguities between
different gestures. Despite the fact that the complexity of the dataset is decreased
by processing each hand separately, trying to recognize different gestures with a
single neural network, will most probably lead to very poor results. Moreover, if
each neural network is responsible for the recognition of multiple gestures, the final
“translation” of each network’s output will not be an easy task.

Consequently, further division of neural networks is compulsory. A distinct neural
network will be assigned to each gesture for each hand. This means that if there are
N=3 gestures to be recognized, a total number of six neural networks will be
employed. The independency of the neural networks guarantees the absence of

60

recognition ambiguities, since each network will be responsible for a linear 2-D
classification; namely ‘0’ if the trained gestured is not being executed and ‘1’

otherwise.

Left Hand Dataset Right Hand Dataset

Neural Neural Neural Neural Neural Neural
Gesture Geslure Gesture Gesture Gesture Gesture
1 2 N 1 2 N

»<_ OQOutput Filtering =

c
2
L
©
@
a
£
=
2
7]
@
Qo

Figure 27: Gesture Recognition Scheme.

However, a case where more than one neural networks claim that a gesture is
being carried out is possible. In reality, the output of each network is set in the
continuous range of [0, 1], depicting the certainty for the corresponding gesture.
Therefore, all outputs can be set and combined together in order to end up with a
final decision of the ongoing gestures. Plural is used since both hands might perform
gestures simultaneously. Figure 27 illustrates the idea described above. The outputs
of the neural networks are being “filtered” by a simple the-winner-takes-it-all gate,
which is responsible for the final decision.

5.2 Neural Network Architecture

The architecture of each neural network, should adapt to the needs of the gesture
modeling in order to provide accurate results. In this work, each gesture is a dynamic
structure, which means that it is formed by a set of sequential arm poses. In other
words, a single frame (i.e. a single arm pose) does not provide any information about
a possible ongoing gesture. Therefore, each output, provided by the kinematics
tracker, should be processed in combination with the preceding outputs.

61

By considering the way that each output is produced —as described at the
beginning of this section- it is guaranteed that a small amount of preceding outputs
can depict a significant pose change (or movement) of the arm. This fact implies that
only a small number of input nodes is needed. The neural network architecture used
is illustrated in Figure 28, where p(t) denotes the angle quadruplet (85, &, 03 and §y)
attime t.

Input Layer Hidden Layer 1 | Hidden Layer 2 Output Layer

7o) 7o
| H11 | [H21 |
- N N/
4 .’| N g
t-2
b 2] \;/l (H12 |\/ sz\; S
- Mg S (o Network Output
N) |
p (t-1) 12) R
L
_ . >/ TN
p(t \ I3 |
Sl | N s
| HIN | [H2m |
N L

Figure 28: Gesture Recognition Neural Network Architecture.

In the above figure, the connections between nodes of different layers have been
omitted for the sake of brevity, while each input node represents, in reality, four
separate input nodes. The output produced lies in the range [0, 1], where values
close to 0 and 1 depict that the trained gesture isn’t, or is, respectively, being
performed. Here, the second layer is used for generalization reasons. With M>N the
data are spread throughout the network, achieving better representation and
relevance between them.

Having determined the architecture of the neural network, we can proceed to the
description of the training phase. At first, a closer look on the training datasets needs
to be taken.

5.2.1 Training datasets

The datasets used during the training phase have to be both realistic and, if
possible, accurate. Obviously, the output of the tracker will be the input dataset for
the training phase, in order to maintain relevance between training and actual data.
However, even in this case, a great obstacle occurs, imposed by one of the main
advantages of the kinematics tracker: tracking of multiple hypotheses. As several

62

body (rotation around the Y-axis) and arm (kinematic parameters) hypotheses are
being tracked simultaneously, and given that there is no apparent way to eliminate
some of them, multiple possible outputs are extracted. Since hypotheses are
irrelevant to each other, severe discontinuities of angle values might appear, making
training impractical.

Fortunately, kinematics tracker results for each body rotation seem to be stable.
Here, ‘stable’ means that, given a fixed rotation value, the promoted arm hypothesis
—chosen by clustering or by simply comparing the weights- represents the actual
scene and preserves relevance from frame to frame. Therefore, it is convenient to
use datasets produced with a fixed body rotation value, simplifying network training
both in efficiency and time consuming terms.

5.2.2 Network training

Having a realistic representation of each gesture through the training datasets
enables fast and efficient training of the neural network. It also gives the possibility
of using simple training techniques and error functions, as the nature of the datasets
overcomes most of their disadvantages.

As described before, each gesture consists of a sequence of poses (outputs),
which imposes that network weights should be updated for every new input.
Therefore, the training technique that suits the most to the examined problem is
that of online backpropagation (as discussed in 3.4.3.2). Additionally, in order to
impose pattern continuity, the weight of each node is calculated based on the
momentum weighting function described in 3.4.3.1 Eq. 44.

For each new input, the current output is calculated based on the estimated node
weights. The error which depicts the difference between the current and the
expected output is calculated based on the Mean SSE function presented in Eq. 38.
The reason of this choice is that input data present many similarities —different
gestures may have similar or same subsequences-, which leads to the existence of
sub-optimal solutions. Mean SSE copes efficiently with this type of problems.

Since the desired output lies between 0 and 1 (gesture isn’t or is performed), a
fine representation is the sigmoid function of Eq. 34. Figure 29 presents a snapshot
captured during training phase, where current and desired (expected) output
together with the average network error are shown.

63

etwork error: B.AB6583 AvSSE: A.A71102
Findex:

Findex:
Findex:
Findex:
Findex:

. . @95
E H if :—@.868138>]1 Findex:
etwork error: B.084642 AvSSE: B.871693

= B.932750 (Exp:1.800000> (Dif:-A._867258>]1 Findex:
etwork error: B.084523 AvSSE: B.8716%92
:—8.368616)] Findex:

Findex:
Findex:

Findex:
etwork error: B.BB6HLS AvSSE: B.A71686
= A.7219661 (Exp:1.000000> (Dif:-A.@A8A337>]1 Findex:
etwork error: B.AB6454 AuvSSE: A.A71685_

Figure 29: Neural Network Training.

Learning rate, momentum value and number of epochs should be adjusted
according to the specific task. Although momentum value can be the same for all
input datasets, the more complex the dataset is, the smaller learning rate and the
larger number of epochs is needed in order to cope with discontinuities and
suboptimal solutions. For example, in some cases where datasets presented
similarities up to 1000 epochs were needed for the network to converge, while in
cases where the datasets where simpler (classification of data was more “obvious”)
the network converged in only 400-500 epochs. However, the values for these
parameters should be chosen carefully in order to avoid over-training of the
network, which will eventually prevent generalization.

Finally, the convergence threshold (i.e. the acceptable average error value) is
another parameter which should be carefully chosen: too high and the network
won’t perform efficiently; too low and the network won’t be able to generalize. An
acceptable value for the convergence parameter seemed to be approximately 0.05.

5.3 Gesture Modeling and Network Choice

The above issues concern the sequential nature of each gesture. However, this
does not unambiguously distinguish gestures, since parts of their motion paths are
similar —if not identical. While different gestures share the same —or similar- paths, it
is possible that both training and recognition phase will fail. In order to cope with
this problem, the first two rules of the Definition 3, expressed in 2.1.2, seem to be
very helpful:

64

Rule 1: Gesture interval consists of three phases: preparation, stroke and retraction.

Rule 2: Hand configuration during the stroke follows a classifiable path in the
parameter space.

Indeed, most of the hand gestures can be divided into three phases: preparation,
stroke and retraction. Additionally, whereas preparation and retraction phases of
each gesture are practically identical, the stroke phase is clearly distinguishable
between gestures. This fact can be used to minimize possible ambiguities, since it
enables a stricter and more robust gesture modeling.

In order to employ these rules into our neural network scheme, each phase is
assigned to a separate neural network. Assuming that preparation and retraction
phases are the same for every gesture, the additional computational load is limited,
since only two neural networks will be added. Moreover, the proposed gesture
modeling clearly outlines the “borders” between different gestures and thus,
facilitates the classification between both the gestures and the phases they are
consisted of. The resulting gesture recognition scheme is illustrated in Figure 30.

Hand Dataset

III Preparation /rr\leura\ Neurh / eur$ Retraction '|

\Neural .': Gesture || Gesture | : Gesture I' Neural
N /
/ \\ / \ - NS \“ /

Figure 30: Final Gesture Recognition Scheme.

The above scheme increases the accuracy of the gesture recognition system, since
it makes different gestures clearly distinguishable. It eliminates most of the possible
ambiguities, since gestures no more share common “paths”. Still, some factors have
to be tuned in order to end up with a capable gesture recognizer.

65

5.4 Recognizing Gestures

Although for training purposes it is feasible to have a fixed body rotation, this is
not the case when trying to recognize a gesture performed by an actor, in an
unknown scene without previous knowledge of its pose. Therefore, gesture
recognition might become tricky, since we are not able to promote just one
hypothesis. Moreover, kinematic parameter values of different body rotations are
completely irrelevant to each other, having large difference, even if the actual pose
is the same.

A solution to that is given by clustering the candidate body rotation hypotheses
and applying the gesture recognition scheme presented in Figure 27 for each of the
clusters. This is derived from the fact that, no matter the explicit angle values, there
is direct relevance between the angles of the training fixed rotation and the ones of
each rotation extracted from the kinematic tracker.

The decision for a possible ongoing gesture is therefore an easy task. Although
there will be several network outputs (one for each cluster), only those
corresponding to the cluster representing the actual pose will be valid. However, the
number of clusters should be carefully chosen, since a large amount of clusters could
increase execution times and might decrease recognition efficiency.

The gesture recognition from the neural network follows more or less the
procedure of the training phase. Each new input is propagated through the network
(based on the nodes weights calculated during training) in order to have the final
output. Output with value close to O depicts that no gesture is recognized, whereas
output value close to 1 means that the trained gesture is being performed.

66

Chapter 6

Results

The main target of the current thesis was to develop a robust and efficient
gesture recognition system. Moreover, this work focused on the extraction of high-
level information —like kinematic parameters-, which will finally facilitate the gesture
recognition problem, with minimum a priori information.

Indeed, the developed system performed more than adequately in the examined
cases. Evidently, the novelty introduced by this work is the abstraction achieved in
gesture modeling. The assumption that common gestures can be expressed, and
therefore recognized, without detailed knowledge of the arm configuration proved
to be valid. On the other hand though, gestures which contain high level of detail —
e.g. where the configuration of the fingers is needed- are excluded from recognition.
Still, the number of gestures that can be recognized remains large, including mostly
deictic, navigating and manipulative types of gestures (see Chapter 2).

Since hands are being tracked independently, gestures can be recognized on one
or both hands. Therefore, combinatorial gestures, where actions from both hands
are needed, can be easily recognized. In our test cases, three types of gestures have
been examined: pointing, hello and attention. A straight raised arm indicates a
pointing gesture, while a bouncing forearm might imply a hello gesture. Whilst
pointing and hello gestures are being carried out by a single hand (they can also be
tracked for both hands), attention gesture is being performed by both hands. In fact,
it is recognized whenever both hands perform a hello gesture simultaneously.

Although our main goal is the recognition of hand gestures, the process of hand
tracking, which extracts the parameters that are fed to the neural network, is crucial.
Accurate hand tracking facilitates hand gesture recognition. Therefore, a closer look
at the results of the kinematics tracker needs to be taken.

67

6.1 Hand Tracking Results

As already discussed, the basic idea behind the hand tracker is the development
of a simple and efficient system. This target has been more or less achieved, since
with the use of simple mathematics and algebraic transformations, pixel values lead
to the extraction of high-level information, which can adequately model the human
arm. Hence, the performance of the hand tracker is accurate in most cases at hand.

6.1.1 Calculation accuracy and prior scene knowledge

One of the main advantages of the proposed methodology is that there is no need
for highly accurate calculations. On the contrary, possible errors produced at each
stage (skin-color tracking, particle filters, kinematics), do not have an immense effect
on the final outcome. A representative example of this is depicted in Figure 31. In
this result, the right camera accidentally moved after the calibration process, which
means that the extracted extrinsics did not anymore match the actual ones.
Although this was noticed during the experiments, it did not have a significant

)
l

Figure 31: Right Camera moved after calibration.

impact on the produced results.

(b}

What’s also worth mentioning is that there is no need for prior knowledge about
the scene and/or the actor. The anthropometric proportions used ensure the
adequate limb length estimation, regardless of the actual proportions of the actor.
Therefore, the performance of the hand kinematics tracker is within acceptable
limits without prior training with respect to the actor and/or environment.

6.1.2 Initialization procedure

The initial estimation of arms pose is a crucial part of the hand tracking process.
Ideally, most of the deployed particles should reflect —or should be close to- the

68

actual pose. However, the dimensionality of the sampling space —i.e. four degrees of
freedom for each hand- presents an obstacle to particle initialization. Interestingly,
the use of inverse kinematics for initial pose estimation gave promising results,
facilitating the rest of the process.

Right Camera Right Camera

o
Ly wing,

Lt

Tracking
Head Pos: 0.0716506 0.378121 2. 184555 Head Pos: 0.062574 0,378325 2.191432
Rotation NOT Locked Rotation NOT Locked

Left: 105, Right: 105 gl =ft: 542, Right: 3583

(al (o)

Figure 32: Initialization using Inverse Kinematics.

In Figure 32, two cases are presented, being appropriate to demonstrate the
effect that inverse kinematics have on the initialization process. In Figure 32(a)
initialization has been done randomly, while in Figure 32(b), inverse kinematics have
been used for obtaining the initial estimation of the kinematic parameters. As a
result, more particles reflect the actual arms pose for various body rotations. This
fact has a beneficial impact to the tracking process, as convergence is largely
facilitated.

6.1.3 Robustness

During our experiments, simple web cameras have been used as input devices.
This led to poor video quality and/or corrupted videos with missing frames. Although
this constitutes an additional problem, it was easily solved by fine-tuning two of the
parameters used in kinematics particle filtering: window margin T, and resampling

deviation value. By increasing T, , the acceptable distance of the hand projection

from the projection of the skin-colored blob increases proportionally. In cases where
some frames are lost, particles, which in other cases would have been eliminated,
continue to be part of the tracking process, increasing the odds for the tracker to
converge. On the other hand, resampling deviation declares the margin inside which
a particle can lie. Small deviation value does not allow particles to approach the

69

actual arm pose, in case of missing frames. Another factor that contributes toward
this is the multiple hypotheses tracking. Despite the significantly small number of
particles used, tracking multiple possible poses ensures, up to a scale, that,
eventually, the tracker will converge to the actual actor pose.

T—

{b)

Figure 33: Missing frames do not affect the tracking process.

Figure 33 illustrates an example where some frames are missing from the input
video. Although the difference was immense (consider that the framerate of the
input video is approximately 25 fps, which normally implies slight changes from
frame to frame), the tracker managed to converge in only 4 frames. Additionally, due
to the thresholds imposed (discussed in Chapter 5), tracker output remained stable,
as transitional outputs might be unpredictable.

Margin window and resampling deviation values, however, should be carefully
chosen, in order to be both realistic to human capabilities and able to cope with
discontinuities. Excessive increase of these values might lead to unwanted results,
which will eventually lead to failure of the tracking process. The next figure depicts a
case where the deviation chosen could not represent the actual pose of the actor.
Consequently, the tracking process produced false results.

Left Camera 13D Result _Rj‘gh‘tCan'iaa
—

Figure 34: Tracker failure due to unsuitable deviation value.

70

On the other hand, if window margin and resampling deviation are set so that
they reflect the reality, hand tracking performs efficiently in most cases, even
ambiguous ones as the one presented in Figure 35. For comparison reasons, the next
figure is cited, illustrating a similar scene but with altered deviation value. The
results, apart from obvious, are quite accurate.

The resampling deviation can be abstractly thought of as being a measure of
change priority of the kinematic angles. In general, resampling deviation of ¥, angle
—namely the angle of the elbow- should be kept smaller than the ones for the rest
angles. However, large differences of resampling deviations might end up with false
outputs (like the one illustrated in Figure 34). An acceptable value for the deviations
of &4, B, U5 seemed to be approximately 0.08 and 0.05 for the &, angle.

Left Camera _30. Result Right Camera
T —

--0.175000 —

Figure 35: Correct tracker results after parameter fine-tuning.

6.1.4 Time invariance

Due to the rate and the criteria, based on which the output is produced,
invariance on the timing that each gesture is performed has been achieved. Having
fixed gesture duration, or fixed gesture path, would limit the gesture recognition to
the actor that trained the system. Instead, by imposing appropriate rules to the
produced output, gesture recognition can be equally efficient for different actors,
and consequently different gesture speeds and paths. This, along with the fact that
no prior information exists regarding the actor and/or the scene (see section 6.1.1),
makes the hand tracker completely independent on the actor and the scene.

6.1.5 Pose and depth ambiguities

Although accurate for the majority of the examined cases, uncertainties
concerning the depth, and consequently the actual pose, may arise. This is caused
mostly due to the absence of depth calculation (except for the initial estimation),
which therefore implies that two completely different poses can have equal weights.
Figure 34 can also be an example of failure due to depth ambiguity. In that case, it is
possible that the tracker could never resume on the actual pose.

71

Hopefully, tracking of multiple hypotheses can cope with this problem, as the
tracker will eventually converge to the actual pose if the corresponding hypothesis is
being tracked. Moreover, since several gesture recognition modules are being
executed simultaneously (discussed in 5.4) —one for each rotation hypothesis cluster-
it is likely that depth ambiguities might not be an intractable obstacle.

6.1.6 Execution time

The main drawback of the proposed methodology is the long execution time
needed. Despite the efforts to minimize the number of deployed particles, which are
the most time consuming modules, this figure cannot be limited significantly, since
there should be an adequate number of particles in order to cover several
hypotheses. To make things worse, the already long execution time has also some
important side-effects: it prevents the clustering of the hypotheses, which would
lead to even more accurate (and stable) results.

Without performing hypotheses pose clustering, in order to process each video
frame, up to four or five seconds are needed. By performing clustering, this number
becomes excessively large. In some cases, the time needed to process a single frame
was more than 30 seconds, which is clearly prohibitive.

6.2 Gesture Recognition Results

Having an output as accurate as possible from the hand tracker facilitates both
neural network training and gesture recognition processes. However, although
gesture recognition performed efficiently in most cases, some small problems may
occur. For example, gestures might have similar (or same) subparts, which will lead

III

to a temporal false positive outcome. The term “temporal” is used since, eventually,
the network will converge to the desired output, as input data are being fed
sequentially. In order to have a better overview of the produced results, both

network training and gesture recognition results will be presented.

6.2.1 Neural network training

Various configurations have been tested in order to find a balance between
effectiveness and training time. Despite the fact that the chosen architecture itself —
the use of two hidden layers- imposes a significant processing load, it should not be
altered due to the nature of the input data (similar gesture subparts as discussed
earlier). On the other hand, the addition of a third hidden layer does not guarantee
increase of effectiveness.

72

Neural Network training phase is directly dependent on the nature of the input
datasets. Consequently, training parameters -such as learning rate, momentum,
number of epochs and number of hidden nodes, should be adjusted so that they
ensure increased efficiency and ability for generalization (or should constraint
network’s over-training). After numerous trials, an acceptable number of nodes of
the two hidden layers found to be N=25 and M=90, while, in order to keep
reasonable training times, the number of epochs was limited to 100.

[[lOut B = B.934146 (Exp:@. EBEEEE) (Dif:@A.934146>1
Network eprpomn-

[Out B < B.898571 (Exp: a. BBBBBB) (Dif :B.898571>1]
Network errorT B 8@87E3E8 AVESE: B.BA58538

[Out B = B_820872 (Exp:0.00000@> <Dif:@A_828872>]
Metwork error: B.673IB30 AvESE: B._ALH625

[Out B = A.634613 (Exp:@.0AAAAA> <Dif:A.634613>1
Hetwork error: A.4082734 AvSSE: B.A%8675

[Out B = A.372012 (Exp:0.00000A> <Dif:@A.3726012>1
MNetwork error: B.138393 AvSSE: B.AL068YT

[Out B = B.121687 (Exp:0.000008) <(Dif:A.121687>1
Network error: B.814888 AvSSE: B.BA58682

[Out B = B.@98353 (Exp:@.880008> <(Dif:A.A28353>1
Metwork error: B.008164 AvSSE: B.A%H8676

[Out B = A.A77638 (Exp:0.0000AA> <Dif :A.AY7638>1
Metwork error: BA.AB6H28 AVSSE: A.A%@67A

[Out B = A.A81333 (Exp:0.0000AA> <Dif:A.A81333>1
Network epmpors 3.336615 avEEE: B.B58664

Network error 2 RUSEE: B.858657
[Out B = A_@71526 (Exp:@.0000AA> <Dif :@_A71526>]

Figure 36: Despite the uncertainty, the network converges to the expected output.

Due to the sequential nature of the datasets, learning rate preferred to be kept in
low-levels and approximately around 0.1. Finally, the momentum value was set to
0.8, not deviating significantly from the proposed value in 3.4.3.1.

In general, network training was successful with the use of the above
configuration. The above figure, illustrates the case where the trained gesture
presents similarities with another one, leading to false positive outputs. After the
weight update, and within a few iterations, the network managed to converge to the
desired output (depicted as Exp). Training, however, took long enough for each
gesture (approximately two hours), which was the only drawback of the training
phase.

6.2.2 Gesture recognition

It is obvious that the success of the gesture recognition does not rely solely on the
effectiveness of the training phase. Without a representative gesture modeling,
which implies the clear distinction between different parts of each gesture, many
false positives might occur due to large overlapping areas. However, temporary
ambiguities do not completely vanish, since gestures, naturally, continue to share
similar subparts, no matter their modeling. Fortunately, these ambiguities are being
eliminated fast enough.

73

As already mentioned, resampling deviation plays a crucial role to the recognition

procedure. Additionally, if the chosen deviation isn’t capable of covering the real

case, it can even enhance the depth ambiguity problem, leading to unsuccessful

tracking results and, consequently, to gesture recognition failure.

During the experiments, three different types of gestures have been tested:

pointing, hello and attention gestures. While pointing and hello gestures need to be

trained first, attention gesture does not require any further training since it is

formed whenever both hands perform a hello gesture. Let’s have a closer look to the

results produced for each of the examined gestures.

6.2.2.1 Pointing gesture recognition

Pointing gesture can be generally characterized as an “easy” gesture to be

recognized. However, there are cases —like the one when the actor points directly to

the camera- where depth ambiguities and wrong resampling deviation can prevent a

successful recognition.

In the simple case where the real pose can be straightforwardly derived —namely

cases where there is no ambiguity concerning the depth- the gesture recognition

met almost no obstacles. Figure 37 illustrates a successful recognition of the pointing

gesture, with the actor pointing on his right side.

W | Gestures
—

Commands Optiens View Other
Left Camera 3D Result

Tracking
[Frame 93]

Head Pos: -0.090646 0,359652 2,353002
Rotation Angle: 1&5.000000

Left Hand Angles (f1,f2,3,theta): -18.205347 -0.034950 -194.236823 0.505834
Left Hand Shoulder Coords (X,Y,Z):{-0.267045 0. 121440 2.341322)

Left Hand Elbow Coords {X,,Z):(-0.260448 -0.113956 2.264185)

Left Hand Hand Coords (X,Y,Z):(-0.252579 -0.410155 2. 164258)

Right Hand Angles (f1,2,f3, theta): -86.480728 61.561787 275.385345 13.652254
Right Hand Shoulder Coords (X,,2): (0.085608 0. 121440 2.372176)

Right Hand Elbow Coords (X,¥,2):(0. 312343 0. 114196 2.273832)

Right Hand Hand Coords (X,Y,2):(0.620913 0. 102366 2.220358)

Left: 37920, Right: 33456

Right Camera

Gestures

+ || Left PREPARATION Met Qutput: 0.457518
Left Pointing Net Qutput: 0028371
Left Hello Met Qutput: 0.008725
Left RETRACTION Met Qutput: 0,261529

Right PREPARATION Net Output: 0.642373
Right Painting Net Output: 0.863501

Right Hello Net Output: 0.2471585

Right RETRACTION Net Qutput: 0.227091

Left Hand Gesture: UNCLASSIFIED
Right Hand Gesture: POINTING

Attention Gesture: UNCLASSIFIED

o]

Figure 37: Successful recognition of right pointing gesture.

However, when the actor points directly to the camera, the recognition can

sometimes fail; mostly because of the false parameters produced by the tracker.

74

Figure 38 depicts such a case, where, obviously, the parameters do not match the
actual arm pose. Therefore, no matter how effective the network training has been,
there is no gesture pattern which could match with the produced parameters.

Gestures

Commands Options View Other
Left Camera 3D Result

Tracking
[Frame 95]:

Head Pos: -0.062352 0,350481 2,.341914
Rotation Angle: 185.000000

Left Hand Angles (f1,f2,f3,theta): -26.916182 -16.734834 -218. 244247 65.775665
Left Hand Shoulder Coords (%,Y,2):(-0.242453 0.111329 2.326230)

Left Hand Elbow Coords (X,¥,2):(-0. 304172 -0. 100268 2,213046)

Left Hand Hand Coords (X,Y,Z):(-0.489130 -0.063121 1.963663)

Right Hand Angles (f1,f2,f3, theta): -27.805563 2. 101017 185.055496 -9.391460
Right Hand Shoulder Coords (x,¥,Z):(0. 110200 0, 111329 2.357134)

Right Hand Elbow Coords (X,¥,2):(0.129317 -0. 107712 2,242851)

Right Hand Hand Coords (X,Y,Z):(0. 136145 -0.403830 2, 142603)

Left: 29824, Right: 37824

Right Camera

Gestures

|| Left PREPARATION Net Qutput: 0.075261
Left Pointing Net Qutput: 0.039172
Left Hello Met Output: 0, 218642
Left RETRACTION Net Qutput: 0.192741

Right PREPARATION Met Qutput: 0.355182
Right Pointing Net Output: 0.018572

Right Hello Net Output: 0.006291

Right RETRACTION Net Output: 0.115273

Left Hand Gesture: UNCLASSIFIED
Right Hand Gesture: UNCLASSIFIED

Attention Gesture: UNCLASSIFIED

Figure 38: Failure to recognize the performed gesture due to unsuitable resampling deviation.

' Gestures

Commands Options View Other

Left Camera 3D Result

Tracking
[Frame 94]:

Head Pos: -0.066127 0,350279 2.341707
Rotation Angle: 185.000000

Left Hand Angles (F1,f2,f3, theta): -68. 484749 -23.080242 -235.699722 6.905056
Left Hand Shoulder Coords (¥,Y,Z):(-0.240391 0. 111970 2.329335)

Left Hand Elbow Coords (,Y,: .313680 0.028364 2. 110195)

Left Hand Hand Coords (X,Y,Z):(-0. 445528 -0.052199 1.535068)

Right Hand Angles (f1,f2,3,theta): -196.882813 170.753062 284.473633 8.855015
Right Hand Shoulder Coords {x,,Z):(0. 108674 0. 117834 2.350334)

Right Hand Elbow Coords (X,Y,Z): (0. 154420 -0. 116152 2,283093)

Right Hand Hand Coords (X,,Z):(0. 166929 -0.411636 2,181532)

Left: 13600, Right: 39888

Right Camera
—

Gestures

= || Left PREPARATION Met Qutput: 0.439011
Left Pointing Met Output: 0.818809
Left Hello Net Output: 0.092846
Left RETRACTION Net Output: 0.253006

Right PREPARATION Met Output: 0.369822
Right Pointing Net Output: 0.072615

Right Hello Net Output: 0.01918%

Right RETRACTION Net Qutput: 0.152409

Left Hand Gesture: POINTING
Right Hand Gesture: UNCLASSIFIED

i-\tbenﬁun Gesture: UNCLASSIFIED

Figure 39: Successful recognition after resampling deviation fine-tuning.

75

The above failure occurred because of the fact that the chosen resampling deviation
led to wrong pose estimation. Fortunately, a careful choice for the deviation values —
as the ones mentioned in 6.1.3- was beneficial for the recognition procedure, having
as result the successful recognition of the performed gesture, as illustrated in Figure
39.

6.2.2.2 Hello and attention gestures

As already stated, the attention gesture is being performed whenever both hands
perform the hello gesture. The following figures illustrate a representative example
of an attention gesture recognition experiment. During this test case, although the
preparation step has been successfully recognized, for a short time period after that,
two networks were producing high outputs and were competing with each other for
the final gesture decision. Although, this case is, unfortunately, inevitable, the
appropriate gesture modeling and network training enable the fast recovery of the
system.

As the sequence starts, no gesture (or part of a gesture) is recognized. After a few
frames of inactivity, the preparation phase is recognized for both hands, as depicted
in Figure 40. This does not affect the rest of the neural networks, which keep
producing outputs, since all kind of actions can follow. However, notice that the two
main gesture networks (responsible for hello and pointing gesture) do produce an
average output, around the value of 0.5. This occurs because during the training of
the preparation phase, and in order to apply the meaning of “preparation” into the
gesture and to preserve smooth state transitions, the main gesture networks were
producing an output of 0.5.

With the above fine-tuning in place, the transition from one phase to the other
was indeed smooth. However, as depicted in Figure 41, the decision was not the
correct immediately. As observed, although the actual gesture of both hands is the
“hello” gesture, the recognition of the gesture performed by the left arm failed, due
to both tracking misdetection and the fact that the state of the arm fits to both
gestures.

76

B | Gestures

Commands Options View Other
Left Camera 3D Result

Tradkng
[Frame 52]:

Head Pos: -0.069299 0.353318 2,251892
Rotation Angle: 190,000000

Left Hand Angles (f1,f2,3,theta): -12.633837 -30.502422 -146.474258 2.687336
Left Hand Shoulder Coords (X,¥,Z):(-0.246565 0, 110818 2,220635)

Left Hand Elbow Coords (X,¥,Z):(-0. 364234 -0, 101050 2, 1516586)

Left Hand Hand Coords (%,Y,Z):(-0.503419 -0.363474 2.053094)

Right Hand Angles (f1,f2,f3,theta): -32.666743 9.083846 256,786285 1274223
Right Hand Shoulder Coords (X,Y,2):(0. 107966 0. 110818 2,283148)

Right Hand Elbow Coords (X, Z):(0. 170470 -0.098661 2, 157786)

Right Hand Hand Coords {X,Y,2):(0.256 154 -0, 361151 2.000048)

Left: 15632, Right: 24800

Right Camera

Gestures

Left PREPARATION Net Qutput: 0.781923
Left Pointing Net Output: 0,421256

Left Hello Met Output: 0.358623

Left RETRACTION Net Qutput: 0,023512

Right PREPARATION Net Qutput: 0,752351
Right Pointing Met Qutput: 0,522315

Right Hello Net Output: 0.421982

Right RETRACTION Met Qutput: 0005817

Left Hand Gesture: PREPARATION
Right Hand Gesture: PREPARATION

Attention Gesture: UNCLASSIFIED

Figure 40: Gesture Preparation.

Commands Options View Other
Left Camera 3D Result

Tracking
[Frame 75]:

Head Pos: -0.069299 0.353818 2.251892
Rotation Angle: 190.000000

Left Hand Angles (f1,f2,f3,theta): -10,399348 -100.572227 -142, 785187 -16,327501
Left Hand Shoulder Coords {X,Y,Z):{-0. 246565 0. 110818 2,220635)

Left Hand Elbow Coords (X,Y,Z):(-0.451973 0.156294 2. 135838)

Left Hand Hand Coords (¥,Y,2):(-0. 793221 0.250793 2.223830)

Right Hand Angles (F1,£2,f3,theta): -56.407017 48.511864 239, 295524 50.404320
Right Hand Shoulder Coords (X,¥,Z):(0. 107986 0. 110818 2. 233148)

Right Hand Elbow Coords (X,¥,2):(0.315017 0.018451 2, 178980)

Right Hand Hand Coards (X,Y,2):(0.6 13606 0,135704 2,130732)

Left: 27488, Right: 27264

Gestures

Left PREPARATION Net Qutput: 0.332761
Left Pointing Met Qutput: 0. 772635

Left Hello Met Output: 0.589185

Left RETRACTION Met Output: 0.018664

Right PREPARATION Met Output: 0.281643
Right Pointing Net Output: 0,627359

Right Hello Net Output: 0.786452

Right RETRACTION Net Qutput: 0.002871

Left Hand Gesture: POINTING
Right Hand Gesture: HELLO

Attention Gesture: UNCLASSIFIED

Figure 41: Uncertainty concerning the gesture performed by left arm.

A few frames later, however, things seem to clear up, since the followed path
differs completely from that of the pointing gesture (where the arm remains
practically stable). Observe the difference of the outputs between these two frames
(Figure 40 and Figure 41). The output of the network responsible for the hello
gesture has been increased, while the output of the pointing network has been

77

decreased significantly, allowing the extraction of a safe decision about the ongoing

gesture.

Commands Options View Other
Left Camera 3D Result

Tracking
[Frame 111]:

Head Pos: -0.069239 0.353818 2.251832
Rotation Angle: 190.000000

Left Hand Angles (f1,f2,f3,theta): -11.807405 -83.310074 -218.367264 114.662346
Left Hand Shoulder Coords (X, Y,2):(-0.246565 0.110818 2.220635)

Left Hand Elbow Coords (X,Y,Z):(-0.492003 0.082082 2.171258)

Left Hand Hand Coords (X,Y,2):(-0.351163 0.317964 2.011109)

Right Hand Angles (f1,f2,f3,theta): -54.908009 38.433708 193255432 103.359329
Right Hand Shoulder Coords (X,Y¥,Z):{0. 107966 0, 110818 2,283148)

Right Hand Elbow Coords (%,¥,Z):{0,290279 -0.002665 2, 151286)

Right Hand Hand Coords (X,Y,Z):(0. 332660 0305473 2.085113)

Left: 20815, Right: 29936

Right Camera

Gestures

« || Left PREPARATION Net Output: 0.192746

Left Pointing Net Output: 0.308645
Left Hello Net Output: 0.839612
Left RETRACTION Net Output: 0.097152

Right PREPARATION Met Output: 0.033015
Right Pointing Met Output: 0.287611

Right Hello Net Cutput: 0.798625

Right RETRACTION Met Qutput: 0,059816

Left Hand Gesture: HELLO
Right Hand Gesture: HELLO

Attention Gesture: ATTENTION

Figure 42: Attention Gesture successfully recognized.

78

Chapter 7

Discussion

In the current thesis, a probabilistic approach for recognizing hand gestures has
been proposed. The main goal was the extraction of high-level information with the
minimum knowledge regarding the scene and/or the actor. The core of our work was
based on the assumption that many common hand gestures do not require detailed
information in order to be recognized. This facilitated the decrease of the space
dimensionality and, hence, the complexity of the problem. By doing so, the tracking
of arm parameters and, consequently, the task of gesture recognition became more
tractable.

One of the main achievements was that, for most of the subtasks involved,
accurate calculations are not necessary. This manifests itself in the tasks of camera
calibration and the calculation of the size of the limbs. In both cases, the extracted
estimations contained a (possibly) large amount of error. Nevertheless, this did not
prevent the successful recognition of the examined gestures.

The proposed recognizer may be useful in various applications. Communication
between humans and machines can be boosted, since gestures are a very common
form of interaction, facilitating tasks such as navigation in virtual environments,
object manipulation or control of devices. Moreover, it can serve as a method for
interactively action/gesture robotic arm learning, since the kinematic parameters
produced can be directly translated and incorporated by a robotic system.

Despite the fact that the performance of our implementation was acceptable in
all examined cases, various aspects are amenable to further improvements. These
regard ambiguities in depth estimation, excessive execution times and particle filter
resampling.

Depth ambiguity remains a limiting factor in gesture recognition accuracy,
although it has been addressed in the design and implementation of the system. It

79

can lead to complete tracking and recognition failure, since the behavior of particles
is unpredictable and it is not guaranteed that there will always exist hypotheses
which satisfy the real case.

Furthermore, training and execution times are still excessively long. The current
implementation requires considerable off-line work (preparatory stages for the video
input) and, moreover, the on-line processing of a single frame is prohibitive for a
real-time usage of the recognizer. This problem is of major importance since it limits
the potential of the proposed approach due to practical reasons.

Finally, by far the most important problem is the direct dependency between
system’s effectiveness and resampling deviation. As already described, corrupted
video sequences or poor image quality can lead to severe pose discontinuities. In
that case, the chosen deviation (resampling deviation in the kinematic tracking)
should be able to cover the produced “gap”. However, deviation is also application
dependent. For example, in some cases, deviation values, which worked well for the
task of “pointing” gesture recognition, did not provide a good result for the task of
“hello” gesture recognition.

7.1 Future Work

Notwithstanding the limitations of the proposed approach and the corresponding
implementation, the obtained gesture recognition accuracy is satisfactory for most
of the examined cases. Still, there is much room for improvements and
enhancements to our system. Apart from coping with the previously discussed
problems, new techniques could be used, in combination with the proposed
recognizer, in order to increase its effectiveness and expand its capabilities.

At first, use of high-quality video, together with code optimization, might confront
with the depth ambiguity problem and/or drastically reduce execution and training
times. Still, a significant step would be the ability of automatic deviation adjustment,
according to the observed scene and the foreseen gesture. A fine-tuned deviation
could possibly guarantee the elimination of parameter discontinuities, which would
consequently lead to more accurate recognition results.

The full potential, though, of the gesture recognizer could be revealed when used
in combination with other forms of human-computer interaction. Speech and face
expression recognition, for example, could boost the communication capabilities
provided by the proposed recognizer, since recognition of sequential or more
complex gestures would be feasible. In the same context, one can envisage its
operation while personalizing a person’s habits. In other words, distinct (personal)

80

ways of performing gestures may be recorded and exploited during recognition,
while other modalities (e.g. face recognition) are employed to identify the actor.

It is anticipated that systems based on the above mentioned technologies will
gradually come into play in experimental interaction setups. Still, the advent of
robust and seamless gesture recognizers in every day applications will be
commensurate on advances in technological factors, as the limiting ones mentioned
above.

81

82

Bibliography

10.

11.

12.

13.

14.

15.

16.

Ahmad, S., A usable real-time 3D hand tracker. Signals, Systems and
Computers, 1994. 1994 Conference Record of the Twenty-Eighth Asilomar
Conference on. 2.

Bolic, M. Assistant Professor, School of Information Technology and
Engineering, University of Ottawa. Available from:
http://www.site.uottawa.ca/~mbolic/.

Bouguet, J.-Y., Complete Camera Calibration Toolbox for Matlab®.

Craig, J., Introduction to robotics: Addison Wesley.

Darken, C., J. Chang, and J. Moody. Learning rate schedules for faster
stochastic gradient search.

Elert, G. The Physics Factbook™. Encuclopedia of Scientific Essays]. Available
from: http://hypertextbook.com/facts/.

Siganos, C.S.a.D. Neural Networks. Available from:
http://www.doc.ic.ac.uk/~nd/surprise 96/journal/vol4/cs11/report.html.
Denavit, J. and R. Hartenberg, A kinematic notation for lower-pair
mechanisms based on matrices. Journal of Applied Mechanics, 1955. 22(2): p.
2157221.

Thieffry, S., Hand Gestures. The Hand, 1981: p. 488-492.

Titterington, D., Recursive Parameter Estimation Using Incomplete Data.
1982.

Korein, J., A geometric investigation of reach. 1985: MIT Press Cambridge,
MA, USA.

Kendon, A., Current issues in the study of gesture. The Biological Foundations
of Gestures: Motor and Semiotic Aspects, 1986: p. 23-47.

Rumelhart, D., G. Hinton, and R. Williams, Learning internal representations
by error propagation, Parallel distributed processing: explorations in the
microstructure of cognition, vol. 1: foundations. 1986, MIT Press, Cambridge,
MA.

Zimmerman, T., et al., A hand gesture interface device. ACM SIGCHI Bulletin,
1986. 17: p. 189-192.

Solla, S., E. Levin, and M. Fleisher, Accelerated learning in layered neural
networks. Complex Systems, 1988. 2(6): p. 625-639.

Craig, J., Introduction to Robotics: Mechanics and Control. 1989: Addison-
Wesley Longman Publishing Co., Inc. Boston, MA, USA.

83

http://www.site.uottawa.ca/~mbolic/�
http://hypertextbook.com/facts/�
http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html�

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
27.

28.
29.

30.

31.

32.

33.

34.

35.

36.

Le Cun, Y., Generalization and network design strategies. Connectionism in
Perspective, 1989: p. 143-155.

Sturman, D.J., D. Zeltzer, and S. Pieper, Hands-on interaction with virtual
environments, in Proceedings of the 2nd annual ACM SIGGRAPH symposium
on User interface software and technology. 1989, ACM: Williamsburg,
Virginia, United States.

Eglowstein, H., Reach Out and Touch Your Data. Byte, July, 1990. 15: p. 283-
290.

Guo, H. and S. Gelfand, Analysis of gradient descent learning algorithms for
multilayerfeedforward neural networks. Circuits and Systems, IEEE
Transactions on, 1991. 38(8): p. 883-894.

Lowe, D., Fitting parameterized three-dimensional models to images. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 1991. 13(5): p. 441-
450.

Murakami, K. and H. Taguchi, Gesture recognition using recurrent neural
networks. Proceedings of the SIGCHI conference on Human factors in
computing systems: Reaching through technology, 1991: p. 237-242.

Turk, M. and A. Pentland, Eigenfaces for Recognition. Journal of Cognitive
Neuroscience, 1991. 3(1): p. 71-86.

Hauptmann, A. and P. McAvinney, Gestures with speech for graphic
manipulation. International Journal of Man-Machine Studies, 1993. 38(2): p.
231-249.

Lee, J. and T. Kunii, Constraint-based hand animation. Models and
Techniques in Computer Animation, 1993: p. 110-127.

Rehg, J. and T. Kanade, DigitEyes: Vision-Based Human Hand Tracking. 1993.
Segen, J., Controlling Computers with Gloveless Gestures. Proceedings of
Virtual Reality Systems, 1993.

Watson, R., A Survey of Gesture Recognition Techniques. 1993.

Annema, A., K. Hoen, and H. Wallinga, Learning behavior and temporary
minima of two-layer neural networks. Neural Networks, 1994. 7(9): p. 1387-
1404.

Cho, K. and S. Dunn, Learning shape classes. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 1994. 16(9): p. 882-888.

Davis, J. and M. Shah, Gesture recognition. Proc. European Conf. Comp. Vis,
1994: p. 331-340.

Quek, F., Toward a Vision-Based Hand Gesture Interface. Virtual Reality
Software & Technology: Proceedings of the VRST'94 Conference, 23-26
August 1994, Singapore, 1994.

Rehg, J. and T. Kanade, Visual tracking of high DOF articulated structures: an
application to human hand tracking. Proc. European Conference on
Computer Vision, 1994. 2: p. 35-46.

Brockl-Fox, U., Realtime 3-D Interaction with up to 16 Degrees of Freedom
from Monocular Video Image Flows. Proc. of Int. Workshop on Automatic
Face and Gesture Recognition, 1995: p. 172-178.

Cui, Y. and J. Weng, Learning-based hand sign recognition. Proc. of the Intl.
Workshop on Automatic Face-and Gesture-Recognition, 1995.

Freeman, W. and C. Weissman. Television control by hand gestures. 1995.

84

37.

38.

39.

40.

41.

42.

43.

44.

45,

46.

47.

48.

49.

50.

51.

52.

53.

54.

Huang, T. and V. Pavlovic, Hand gesture modeling, analysis, and synthesis.
Proc. 1995 IEEE International Workshop on Automatic Face and Gesture
Recognition, 1995: p. 73-79.

Kadous, W., GRASP: Recognition of Australian sign language using
Instrumented gloves. Unpublished manuscript, University of New South
Wales, Sydney, Australia. Retrieved October, 1995. 1: p. 2002.

Lee, J. and T. Kunii, Model-based analysis of hand posture. Computer
Graphics and Applications, IEEE, 1995. 15(5): p. 77-86.

Moghaddam, B. and A. Pentland, Maximum Likelihood Detection of Faces and
Hands. International Workshop on Automatic Face-and Gesture-Recognition,
1995: p. 122-128.

Quek, F., Eyes in the interface. Image and Vision Computing, 1995. 13(6): p.
511-525.

Quek, F., T. Mysliwiec, and M. Zhao, FingerMouse: A Freehand Computer
Pointing Interface. Proc. of Int'l Conf. on Automatic Face and Gesture
Recognition, 1995: p. 372-377.

Boulic, R., S. Rezzonico, and D. Thalmann. Multi-Finger Manipulation of
Virtual Objects. 1996.

Bryson, S., Virtual reality in scientific visualization. Communications of the
ACM, 1996. 39(5): p. 62-71.

Kiyokawa, K., et al. VLEGO: A Simple Two-handed Modeling Environment
Based on Toy Blocks. 1996.

Oviatt, S. and R. VanGent. Error resolution during multimodal human-
computer interaction. 1996.

Quek, F., Unencumbered gestural interaction. Multimedia, IEEE, 1996. 3(4): p.
36-47.

Pavlovic, V., R. Sharma, and T. Huang, Visual interpretation of hand gestures
for human-computerinteraction: a review. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 1997. 19(7): p. 677-695.

Shepherd, A., Second-Order Methods for Neural Networks. 1997: Springer-
Verlag New York, Inc. Secaucus, NJ, USA.

Starner, T. and A. Pentland, Real-Time American Sign Language Recognition
from Video Using Hidden Markov Models. Computational Imaging and Vision,
1997.9: p. 227-244.

Berry, G., V. Pavlovic, and T. Huang. BattleView: A multimodal HCI research
application. 1998.

Black, M. and A. Jepson, Recognizing temporal trajectories using the
condensation algorithm. Automatic Face and Gesture Recognition, 1998.
Proceedings. Third IEEE International Conference on, 1998: p. 16-21.

Black, M. and A. Jepson, EigenTracking: Robust Matching and Tracking of
Articulated Objects Using a View-Based Representation. International Journal
of Computer Vision, 1998. 26(1): p. 63-84.

Cutler, R. and M. Turk, View-based interpretation of real-time optical flow for
gesturerecognition. Automatic Face and Gesture Recognition, 1998.
Proceedings. Third IEEE International Conference on, 1998: p. 416-421.

85

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.
70.

71.

72.

73.

74.

Imagawa, K., S. Lu, and S. Igi, Color-Based Hands Tracking System for Sign
Language Recognition. Proceedings of the 3rd. International Conference on
Face & Gesture Recognition, 1998: p. 462.

Starner, T., J. Weaver, and A. Pentland, Real-Time American Sign Language
Recognition Using Desk and Wearable Computer Based Video. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 1998: p. 1371-
1375.

Trucco, E. and A. Verri, Introductory Techniques for 3-D Computer Vision.
1998: Prentice Hall PTR Upper Saddle River, NJ, USA.

Akamatsu, S., Computer recognition of human face - A survey. Systems and
Computers in Japan, 1999. 30(10): p. 76-89.

Becker, M., et al., GripSee: A Gesture-Controlled Robot for Object Perception
and Manipulation. Autonomous Robots, 1999. 6(2): p. 203-221.

LaViola Jr, J., A Survey of Hand Posture and Gesture Recognition Techniques
and Technology. 1999.

Rittscher, J. and A. Blake, Classification of human body motion. Proc. Int.
Conf. Computer Vision, 1999: p. 634—-639.

Stauffer, C. and W. Grimson. Adaptive background mixture models for real-
time tracking. 1999.

Wu, Y. and T. Huang, Vision-Based Gesture Recognition: A Review. Urbana,
1999.

Wu, Y. and T. Huang, Human hand modeling, analysis and animation in the
context of HCI. Image Processing, 1999. ICIP 99. Proceedings. 1999
International Conference on, 1999. 3.

Wu, Y., J. Lin, and T. Huang, Capturing natural hand articulation. International
Conference on Computer Vision, 2001: p. 426-432.

Rogalla, O., et al. Using Gesture and Speech Control for Command a Robot
Assistant. 2002.

Yang, M., N. Ahuja, and M. Tabb, Extraction of 2D Motion Trajectories and Its
Application to Hand Gesture Recognition. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2002: p. 1061-1074.

Brewster, S., et al., Multimodal 'eyes-free' interaction techniques for wearable
devices, in Proceedings of the SIGCHI conference on Human factors in
computing systems. 2003, ACM: Ft. Lauderdale, Florida, USA.

Residents. Second Life. 2003; Available from: http://secondlife.com/.

Zhao, W., et al.,, Face recognition: A literature survey. ACM Computing
Surveys (CSUR), 2003. 35(4): p. 399-458.

Argyros, A. and M. Lourakis, Real-Time Tracking of Multiple Skin-Colored
Objects with a Possibly Moving Camera. Lecture Notes in Computer Science,
2004: p. 368-379.

Derpanis, K., A Review of Vision-Based Hand Gestures. Unpublished. Feb,
2004.

Thrun, S., W. Burgard, and D. Fox, Probabilistic Robotics (Intelligent Robotics
and Autonomous Agents). 2005: MIT press, Cambridge, Massachusetts, USA.
Zeleznik, R., K. Herndon, and J. Hughes. SKETCH: an interface for sketching 3D
scenes. 2006: ACM New York, NY, USA.

86

http://secondlife.com/�

75.

76.

77.

78.

79.

80.

81.
82.

Zivkovic, Z. and F. van der Heijden, Efficient adaptive density estimation per
image pixel for the task of background subtraction. Pattern Recognition
Letters, 2006. 27(7): p. 773-780.

Badler, N. and D. Tolani, Real-Time Inverse Kinematics of the Human Arm.
2007.

Mitra, S. and T. Acharya, Gesture Recognition: A Survey. Systems, Man and
Cybernetics, Part C: Applications and Reviews, |IEEE Transactions on, 2007.
37(3): p. 311-324.

Tsetserukou, D., et al., Development of a Whole-Sensitive Teleoperated Robot
Arm using Torque Sensing Technique. Proceedings of the Second Joint
EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual
Environment and Teleoperator Systems, 2007: p. 476-481.

Baltzakis, H., et al., Tracking of Human Hands and Faces through Probabilistic
Fusion of Multiple Visual Cues. Lecture Notes in Computer Science, 2008.
5008: p. 33.

Dipietro, L., A. Sabatini, and P. Dario, A Survey of Glove-Based Systems and
Their Applications. Systems, Man, and Cybernetics, Part C: Applications and
Reviews, IEEE Transactions on, 2008. 38(4): p. 461-482.

Google. Google Lively. 2008; Available from: http://www.lively.com/.
Wikipedia_contributors. Artificial neural network. Wikipedia, The Free
Encyclopedia. December 6, 2008; Available from:
http://en.wikipedia.org/w/index.php?title=Artificial neural network&oldid=

256189959.

87

http://www.lively.com/�
http://en.wikipedia.org/w/index.php?title=Artificial_neural_network&oldid=256189959�
http://en.wikipedia.org/w/index.php?title=Artificial_neural_network&oldid=256189959�

	εξωφυλλο
	master final FINAL
	Table of Contents
	Table of Figures
	Acknowledgements
	Περίληψη
	Abstract
	Introduction
	Problem Statement
	Approaches Towards Gesture Recognition
	Glove-based techniques
	Vision-based techniques
	Model-based approaches
	Appearance-based approaches
	Approaches based on low-level features

	Applications of Hand Gesture Recognition
	Sign language
	Virtual environments
	3D modeling
	Human-robot manipulation and instruction
	Multimodal interaction
	Television control

	Proposed Approach

	Hand Gestures
	Hand Gestures in HCI
	Spatial modeling of gestures
	Temporal modeling of gestures

	Background Tools and Mathematics
	Preliminary Phase -- Camera Calibration
	Skin-Color Detection and Tracking Tools
	Foreground-background subtraction
	Background model
	Update equations
	Examples

	Skin-color detection and tracking
	Off-line training
	Skin-color detection
	Skin-colored object tracking

	Hand Kinematics Tracking
	Perspective projection
	Particle filters
	Human arm kinematics
	Forward kinematics
	Arm modeling
	Inverse kinematics

	Neural Network - Multi-Layer Perceptron
	Multi-layer perceptron
	MLP training
	Backpropagation
	Backpropagation with momentum
	On-line backpropagation

	Hand Parameters Extraction and Tracking
	Head and Hands Positions
	Shoulder Position Estimation
	Kinematics Tracking
	Hand tracking
	Initialization
	Hand particles weighting function

	Rotation tracking
	Resampling

	Hand particles resampling

	Tracker’s Output - Clustering

	Gesture Recognition
	Gesture Recognition Scheme Overview
	Neural Network Architecture
	Training datasets
	Network training

	Gesture Modeling and Network Choice
	Recognizing Gestures

	Results
	Hand Tracking Results
	Calculation accuracy and prior scene knowledge
	Initialization procedure
	Robustness
	Time invariance
	Pose and depth ambiguities
	Execution time

	Gesture Recognition Results
	Neural network training
	Gesture recognition
	Pointing gesture recognition
	Hello and attention gestures

	Discussion
	Future Work

	Bibliography

