
UNIVERSITY OF CRETE 

SCHOOL OF SCIENCES AND TECHNOLOGY 

DEPARTMENT OF COMPUTER SCIENCE 

  

 

 

 

 

PROBABILISTIC GESTURE RECOGNITION 

 

 

 

 

MARKOS SIGALAS 

 

M. Sc. THESIS 

 

 

 

HERAKLION, DECEMBER 2008 



 



i 
 

Table of Contents 

Table of Contents .................................................................................................... i 

Table of Figures .......................................................................................................v 

Acknowledgements ............................................................................................... vii 

Περίληψη ............................................................................................................... xi 

Abstract ............................................................................................................... xiii 

Chapter 1 Introduction .......................................................................................... 1 

1.1 Problem Statement ......................................................................................... 2 

1.2 Approaches Towards Gesture Recognition ..................................................... 3 
1.2.1 Glove-based techniques .............................................................................. 3 
1.2.2 Vision-based techniques .............................................................................. 4 

1.2.2.1 Model-based approaches ..................................................................... 4 
1.2.2.2 Appearance-based approaches ............................................................ 6 
1.2.2.3 Approaches based on low-level features ............................................. 7 

1.3 Applications of Hand Gesture Recognition...................................................... 7 
1.3.1 Sign language ............................................................................................... 7 
1.3.2 Virtual environments ................................................................................... 8 
1.3.3 3D modeling ................................................................................................. 8 
1.3.4 Human-robot manipulation and instruction ............................................... 8 
1.3.5 Multimodal interaction................................................................................ 8 
1.3.6 Television control ........................................................................................ 9 

1.4 Proposed Approach ......................................................................................... 9 

Chapter 2 Hand Gestures .................................................................................... 11 

2.1 Hand Gestures in HCI ..................................................................................... 12 
2.1.1 Spatial modeling of gestures ..................................................................... 13 
2.1.2 Temporal modeling of gestures................................................................. 13 

Chapter 3 Background Tools and Mathematics ................................................... 15 

3.1 Preliminary Phase -- Camera Calibration ...................................................... 16 

3.2 Skin-Color Detection and Tracking Tools ....................................................... 18 
3.2.1 Foreground-background subtraction ........................................................ 18 

3.2.1.1 Background model ............................................................................. 19 
3.2.1.2 Update equations ............................................................................... 20 



ii 
 

3.2.1.3 Examples ............................................................................................ 21 
3.2.2 Skin-color detection and tracking .............................................................. 22 

3.2.2.1 Off-line training .................................................................................. 22 
3.2.2.2 Skin-color detection ........................................................................... 23 
3.2.2.3 Skin-colored object tracking ............................................................... 24 

3.3 Hand Kinematics Tracking ............................................................................. 27 
3.3.1 Perspective projection ............................................................................... 27 
3.3.2 Particle filters ............................................................................................. 28 
3.3.3 Human arm kinematics .............................................................................. 31 

3.3.3.1 Forward kinematics ............................................................................ 31 
3.3.3.2 Arm modeling ..................................................................................... 33 
3.3.3.3 Inverse kinematics .............................................................................. 34 

3.4 Neural Network - Multi-Layer Perceptron ..................................................... 36 
3.4.1 Multi-layer perceptron .............................................................................. 38 
3.4.2 MLP training............................................................................................... 40 
3.4.3 Backpropagation ........................................................................................ 42 

3.4.3.1 Backpropagation with momentum .................................................... 44 
3.4.3.2 On-line backpropagation .................................................................... 44 

Chapter 4 Hand Parameters Extraction and Tracking ........................................... 47 

4.1 Head and Hands Positions ............................................................................. 48 

4.2 Shoulder Position Estimation......................................................................... 50 

4.3 Kinematics Tracking ...................................................................................... 52 
4.3.1 Hand tracking ............................................................................................. 52 

4.3.1.1 Initialization ........................................................................................ 52 
4.3.1.2 Hand particles weighting function ..................................................... 53 

4.3.2 Rotation tracking ....................................................................................... 54 
4.3.2.1 Resampling ......................................................................................... 55 

4.3.3 Hand particles resampling ......................................................................... 55 

4.4 Tracker’s Output - Clustering ........................................................................ 56 

Chapter 5 Gesture Recognition............................................................................ 59 

5.1 Gesture Recognition Scheme Overview ......................................................... 60 

5.2 Neural Network Architecture ........................................................................ 61 
5.2.1 Training datasets ....................................................................................... 62 
5.2.2 Network training ........................................................................................ 63 

5.3 Gesture Modeling and Network Choice ........................................................ 64 

5.4 Recognizing Gestures .................................................................................... 66 



iii 
 

Chapter 6 Results ................................................................................................ 67 

6.1 Hand Tracking Results ................................................................................... 68 
6.1.1 Calculation accuracy and prior scene knowledge ..................................... 68 
6.1.2 Initialization procedure ............................................................................. 68 
6.1.3 Robustness ................................................................................................. 69 
6.1.4 Time invariance ......................................................................................... 71 
6.1.5 Pose and depth ambiguities ...................................................................... 71 
6.1.6 Execution time ........................................................................................... 72 

6.2 Gesture Recognition Results .......................................................................... 72 
6.2.1 Neural network training ............................................................................ 72 
6.2.2 Gesture recognition ................................................................................... 73 

6.2.2.1 Pointing gesture recognition .............................................................. 74 
6.2.2.2 Hello and attention gestures .............................................................. 76 

Chapter 7 Discussion ........................................................................................... 79 

7.1 Future Work ................................................................................................... 80 

Bibliography ......................................................................................................... 83 

 

  



iv 
 

 

  



v 
 

 

Table of Figures 
 

Figure 1: Block diagram of vision-based gesture interpretation system. [48]   .............. 2

Figure 2: Skeleton-based model of the human hand.   ................................................... 5

Figure 3: Hand 3D model.   .............................................................................................. 5

Figure 4: Pose 3D model.   ............................................................................................. 10

Figure 5: Gestural Taxonomy [48]  ................................................................................ 11

Figure 6: Gesture Recognition System Overview   ........................................................ 16

Figure 7: (a) Chessboard pattern for camera calibration. (b) Extracted grid. (c) 

Camera intrinsics.   ................................................................................................. 17

Figure 8: Extrinsics of the stereo pair.   ......................................................................... 17

Figure 9: (a) Original Input, (b) Subtracted Foreground, (c) Foreground Mask   .......... 21

Figure 10: (a) The original image, (b) Marked image for tracker’s training. Non skin-

color regions are marked with green and skin-color ones with red. Some areas 

have not been marked in order to avoid ambiguities.   ......................................... 22

Figure 11: Cases of skin-colored blobs and object hypotheses.   .................................. 24

Figure 12: Particle Filter. Particles are drawn over the posterior distribution and 

propagated according to their weights.   ............................................................... 29

Figure 13: The particle filter algorithm.   ....................................................................... 30

Figure 14: Flow Diagram of the Particle Filter Algorithm.   ........................................... 30

Figure 15: Frame {i} is attached rigidly to link i.   .......................................................... 32

Figure 16: The model of the robotic arm (left) and its parameters (right).   ................ 33

Figure 17: Arm Model Parameters.   ............................................................................. 34

Figure 18: Elbow position based on swivel angle.   ....................................................... 36

Figure 19: Typical Neural Network Layout  ................................................................... 37

Figure 20: Minimal 2-2-1 MLP architecture.   ................................................................ 39

Figure 21: Example of MLP error surface.   ................................................................... 42

Figure 22: Kinematic Parameters derived from low-level features.  ............................ 47

Figure 23: (a) Initial deployment of particles. (b) Particles have converged to the 

head (blue particles).   ............................................................................................ 50



vi 
 

Figure 24: Arm length proportionally to height.  .......................................................... 51

Figure 25: (a) Original foreground mask. (b) Contracted foreground mask.   ............... 53

Figure 26: Kinematics Tracker Output.   ........................................................................ 56

Figure 27: Gesture Recognition Scheme.   ..................................................................... 61

Figure 28: Gesture Recognition Neural Network Architecture.   .................................. 62

Figure 29: Neural Network Training.   ........................................................................... 64

Figure 30: Final Gesture Recognition Scheme.   ............................................................ 65

Figure 31: Right Camera moved after calibration.  ....................................................... 68

Figure 32: Initialization using Inverse Kinematics.   ....................................................... 69

Figure 33: Missing frames do not affect the tracking process.   ................................... 70

Figure 34: Tracker failure due to unsuitable deviation value.   ..................................... 70

Figure 35: Correct tracker results after parameter fine-tuning.   ................................. 71

Figure 36: Despite the uncertainty, the network converges to the expected output.   73

Figure 37: Successful recognition of right pointing gesture.   ....................................... 74

Figure 38: Failure to recognize the performed gesture due to unsuitable resampling 

deviation.   .............................................................................................................. 75

Figure 39: Successful recognition after resampling deviation fine-tuning.   ................. 75

Figure 40: Gesture Preparation.   .................................................................................. 77

Figure 41: Uncertainty concerning the gesture performed by left arm.   ..................... 77

Figure 42: Attention Gesture successfully recognized.   ............................................... 78

  



vii 
 

Acknowledgements  
 

During these years of my graduate studies, several people have contributed -each 
with his/her own way- to the success of this work. I would like to dedicate some lines 
to express my graditude to each and everyone of them. 

First, I would like to thank Professor Panos Trahanias, my supervisor, for giving me 
the opportunity to work on such an interesting research topic. The interest 
stimulation combined with the freedom of choice offered by him, facilitated the 
transition to a, till few years ago, unknown for me research field. Additionally, I am 
thankful to him for his sincere and patient support during the last few years, which 
proved to be sine qua non for my work. 

I would also like to express my gratitude to the members of my thesis committee, 
for the perfect collaboration and their valuable help on various aspects concerning 
my research. 

Especially, I would like to thank Antonis Argyros, Associate Professor and member 
of my thesis committee, for the irreplaceable help he offered me and for the -mostly 
late- hours he spent with me, trying to solve some of my problems. Moreover, I want 
to express my gratitude to Antonis Argyros and Manolis Lourakis, Principal 
Researcher, for kindly allowing me to use their work on skin-color detection and 
tracking, essential part of my project. 

I want to express my sincere gratitude to Haris Baltzakis, Associated Researcher 
and member of my thesis committee, for the unending hours of brainstorming he 
spent with me, putting aside his own tasks. His assistance was crucial for the 
outcome of my work while his advices proved to be beneficial for my work. I also 
want to thank him for kindly offering me the source code he developed for the latest 
version of the skin-color tracker.   

Many thanks to the Department of Computer Science of the University of Crete 
for giving me the opportunity to expand my research knowledge. Furthermore, the 
scholarship offered from the Institute of Computer Science - FORTH together with 
the pleasant working environment and the perfect infrastructure and technical 
support offered by the Computational Vision and Robotics Laboratory - FORTH, were 
important "equipments" for my path. 

I would also want to thank all my colleagues at CVRL for the friendly atmosphere 
we formed and for the inspiring discussions we held. With no intension to neglect 
the rest, I want to say a special thank to Nikos Kyriazis, Iasonas Economides and 



viii 
 

Manolis Hourdakis for their selfless assistance and support and for the good time we 
had together. 

Angeliki's patience and true interest played an important role in my work. By 
never hesitating to support me with her advice and by never resenting to hear my 
problems, she gave me courage to continue. I feel deeply thankful to her. 

This work, however, would have never been reality without the love and constant 
support of my family, Marinos, Anastasia and Michael. I know that they were, are 
and will always be by my side. I will always be grateful to them for that and for the 
fact that they never stopped believing in me, encouraging me to continue even in 
harsh times.  

 

  



ix 
 

 
 

 

 

 

 

 

 

 

"Wise men speak because they have something to say; 
Fools because they have to say something." 

Plato (428-348 BC)  



x 
 

 
  



xi 
 

 Περίληψη 

Η επικοινωνία με τη χρήση χειρονομιών αποτελεί μία τόσο κοινή όσο και ζωτική 
μορφή αλληλεπίδρασης μεταξύ των μελών της ανθρώπινης κοινωνίας. Εκτός από 
την αλληλεπίδραση με άλλα άτομα ή αντικείμενα, οι χειρονομίες πολλές φορές 
αντικαθιστούν κάθε άλλη μορφή επικοινωνίας, όπως στην περίπτωση των κωφών. 
Από την άλλη, η χρήση ηλεκτρονικών υπολογιστών, αποτελεί ένα αναπόσπαστο 
κομμάτι της κοινωνίας μας, επηρεάζοντας ποικιλοτρόπως την καθημερινότητα των 
ανθρώπων. Η εξέλιξη στον τομέα της πληροφορικής, καθιστά πλέον δυνατή την 
ανάπτυξη και χρήση νέων μεθόδων αλληλεπίδρασης μεταξύ ανθρώπων και 
μηχανών οι οποίες εκμεταλλεύονται στο έπακρο τη δυναμική των χειρονομιών. 

Η παρούσα εργασία παρουσιάζει μια πιθανοκρατική προσέγγιση στην 
αναγνώριση χειρονομιών. Βασιζόμενη στην υπόθεση πως η μοντελοποίηση 
διαφόρων κοινών χειρονομιών δεν απαιτεί πληροφορία υψηλού επιπέδου, η 
προτεινόμενη προσέγγιση επιτυγχάνει να μειώσει την πολυπλοκότητα του 
εξεταζόμενου προβλήματος μειώνοντας τις διαστάσεις του χώρου παραμέτρων οι 
οποίες περιγράφουν τη θέση του κάθε χεριού. 

Η χρησιμοποιούμενη μεθοδολογία για την παρακολούθηση των παραμέτρων 
αυτών εξάγει μια εύρωστη αναπαράσταση της θέσης του χεριού, επιτυγχάνοντας 
έτσι την αποτελεσματική χωρoχρονική μοντελοποίηση των χειρονομιών. Αρχικά, 
περιοχές με χρώμα παρόμοιο με αυτό του δέρματος ανιχνεύονται στις εικόνες. 
Δεδομένου πως, συνήθως, το κεφάλι είναι η υψηλότερη ανιχνεύσιμη περιοχή, το 
ύψος μπορεί εύκολα να υπολογιστεί και, μέσω αυτού, να εκτιμηθούν τα μήκη των 
άκρων, με τη χρήση απλών ανθρωπομετρικών αναλογιών. Κατόπιν, οι εξισώσεις της 
αντίστροφης κινηματικής εξάγουν μια αρχική εκτίμηση των παραμέτρων του 
βραχίωνα, οι οποίες και παρακολουθούνται στο χρόνο μέσω particle filters. Η 
χρησιμοποίηση των particle filters σημαίνει πως παρακολουθούνται ταυτόχρονα 
πολλαπλές υποθέσεις, καθιστώντας δυνατή την ανάκαμψη από περιπτώσεις 
λανθασμένων εκτιμήσεων. Για να διασφαλιστεί η χρονική σταθερότητα και να 
προληφθούν ασυνέχειες, οι εξαγόμενες παράμετροι φιλτράρονται ανάλογα με τη 
σχετικότητά τους με τις προηγούμενες εξόδους, με αποτέλεσμα την εξαγωγή 



xii 
 

ομαλών ακολουθιών, οι οποίες και χρησιμοποιούνται για τη μοντελοποίηση της 
κάθε χειρονομίας. 

Το τελικό στάδιο της αναγνώρισης χειρονομιών αποτελείται από ένα σύνολο 
νευρωνικών δικτύων, υπεύθυνα, το κάθε ένα, για την αναγνώριση μίας μόνο 
χειρονομίας. Η χρησιμοποίηση πολλαπλών νευρωνικών δικτύων –αντί ενός γενικού- 
αποκλείει πιθανές αμφιβολίες, οι οποίες εγείρονται εξαιτίας των επικαλυπτόμενων 
μονοπατιών των χειρονομιών. Δεδομένου πως δεν υπάρχει κάποια πρότερη γνώση 
σχετικά με την εκδηλούμενη χειρονομία, οι ακολουθίες παραμέτρων 
τροφοδοτούνται ταυτόχρονα σε όλα τα νευρωνικά δίκτυα. Η κατάλληλη εκπαίδευση 
των δικτύων, εγγυάται πως μόνο ένα δίκτυο θα έχει υψηλή έξοδο σε κάθε χρονική 
στιγμή, καταλήγοντας στην αποτελεσματική αναγνώριση της εκτελούμενης 
χειρονομίας. 

 



xiii 
 

Abstract 

Communication with the use of gestures is a very crucial and common form of 
interaction in human societies. Gestures not only allow us to interact with other 
people and objects, but, in some cases, substitute every other form of 
communication –deaf people for example. On the other hand, computers have 
become an inseparable part of our society, influencing many aspects of our daily 
lives in terms of communication and interaction. Evolution in the field of informatics 
has seen tremendously high speeds, mostly in the last few decades, enabling new 
forms of /Human-Computer Interaction/ (HCI) which fully exploit the dynamics of 
hand gestures. 

In the current thesis, a probabilistic approach towards Hand Gesture Recognition 
is proposed. Based on the assumption that various common gestures can be 
modeled without the need of high-level information, the proposed approach 
achieves to reduce the complexity of the problem by decreasing the space 
dimensionality of the parameters, which describe the configuration of the arm. 

The methodology for tracking the mentioned parameters, manages to extract a 
robust representation of the arm's pose and to end up with an efficient spatio-
temporal gesture model. Initially, skin-colored blobs are being detected on the 
images. Since, usually, the highest detected skin-colored blob is the head, the height 
of the actor is easily calculated, which leads to an estimation of the size of the limbs, 
with the aid of simple anthropometric proportions. Once this is done, inverse 
kinematics equations serve for the extraction of an initial estimation of the arm's 
parameters, which are then tracked over time with the use of particle filters. The 
usage of particle filters implies that multiple hypotheses are being tracked 
simultaneously, enabling the recovery from cases where erroneous estimations 
occur. In order to assure time invariance and to prevent discontinuities, the 
extracted parameters are being filtered according to their relevancy to previous 
outputs, resulting with smooth parameter sequences, which are, therefore, used in 
order to model each hand gesture. 



xiv 
 

The final, gesture recognition, step consists of a set of neural networks, each of 
them responsible for the recognition of a single gesture. The usage of multiple 
neural networks –instead of using a global one- ensures the elimination of possible 
ambiguities due to overlapping gesture paths. Since there is no prior knowledge 
regarding the possible gesture being performed, the parameter sequences are being 
fed to all neural networks simultaneously. Appropriate supervised training of the 
networks, ensures that only one network at each time will produce high output, 
resulting in the successful recognition of the performed gesture. 

  



1 
 

Chapter 1  
 
Introduction 

Communication with the use of gestures is a very crucial and common form of 
interaction in human societies. Gestures not only allow us to interact with other 
people and objects, but, in some cases, substitute every other form of 
communication –deaf people for example. On the other hand, computers have 
become an inseparable part of our society, influencing many aspects of our daily 
lives in the meaning of communication and interaction.  

Evolution in the field of informatics has seen tremendously high speeds, mostly in 
the last few decades, enabling new forms of Human-Computer Interaction (HCI) and 
giving birth to new technologies such as Virtual Environments (VEs) and Intelligent 
Machines. Despite the great advance, current ways of interaction –keyboard, mouse- 
limit the potential, together with the effectiveness and naturalness of HCI. Recent 
studies have shown that it is very natural to point at an object with our index finger 
or manipulate objects with our hand [37]. Moreover it is easier to understand other 
people while seeing them manipulating objects [24, 48].  These make clear the fact 
that new technologies should be emerged in order to achieve naturalness in 
interaction with computers, which, consequently, will increase the effectiveness of 
such systems. 

The first step has been made towards interaction using speech [48]. The idea was 
to make computers understand our language, so that they could complete tasks, 
help in education (e-Learning), interact or just communicate with humans, with the 
use of audio analysis and speech synthesis. Combined with Human Face Analysis and 
Recognition, a more sophisticated –or semantic- way of interaction has been 
achieved, by exploiting the variety of emotional states a human face can express, 
which also means a “better” communication with computers [48, 58, 70]. However, 
interaction using speech and facial expressions covers just a part of human-to-
human interaction. In the last several years there has been an effort so that other 



2 
 

means of communication are introduced in HCI. “These new means include a class of 
devices based on the spatial movement of the human arm: hand gestures” [72]. 

Hand gesture recognition first implementations were launched in the late 70’s, 
when gloves, equipped with sensors and processors, were recognizing movements of 
the hand and its fingers. However, glove-based gesture recognition systems, 
although accurate, impose limitations because of the equipment needed, which 
leads to a reduction of naturalness, the basic requirement for HCI. Therefore, 
research turned to vision-based gesture recognition systems [51], which is also the 
subject of the current thesis.   

1.1 Problem Statement 

The recognition of hand gestures using visual input is not a trivial task. It involves 
several steps which need to be carefully designed. The first step is the modeling of 
gestures. Usually this means a mathematical representation of hands, pose and 
gesture trajectories which will be used in order to interpret a gesture. Interpretation 
of each gesture contains a large amount of ambiguity, as gestures are directly 
dependent on the context. Thus, it is clear that the success of a gesture recognition 
system relies on the gesture model to be chosen. 

 

Figure 1: Block diagram of vision-based gesture interpretation system. [48] 
 

Once the gesture model has been determined, the main task takes place. The 
input stream –video(s) or image(s) - is processed and some features are extracted. 



3 
 

The extracted set of features –which is consequently used in order to recognize a 
gesture- is another important factor in the gesture recognition process. They are 
context dependent and the effectiveness of the system is based on them.  

These image features are being analyzed and in combination with a Grammar, 
they lead to a gesture description –interpretation. The Grammar contains the syntax 
of each gesture (for example a pointing gesture should consist of a specific sequence 
of movements) together with possible interaction with other communication modes 
like speech and facial expressions. In order to demonstrate the phases of gesture 
recognition process, Pavlovic in [48] presents the following global vision-based 
gesture interpretation system (Figure 1).   

1.2 Approaches Towards Gesture Recognition 

As mentioned earlier, gesture modeling and analysis is the most important part of 
Gesture Recognition. Huang and Pavlovic discriminate hand gesture recognition 
techniques according to the feature extraction method, and therefore to the gesture 
analysis approach, that each of them uses. Therefore we end up with two categories 
[37]: 

• Glove-Based Techniques 

• Vision-Based Techniques 

Further –or different- classification is also possible. However, this categorization 
highlights the two basic approaches towards hand gesture recognition. Glove-based 
systems use a cloth-made glove equipped with sensors in order to capture hand and 
finger movements. As mentioned earlier, these techniques, although robust, 
constraint the user, as he has to be equipped, apart from the glove, with sensors and 
wires. On the other hand, vision-based techniques process video sequences of the 
user, and try to detect hand movements –and consequently hand gestures- using 
features detected on the images. This section presents major works based on these 
techniques. 

1.2.1 Glove-based techniques 

A Glove-Based Gesture Recognition system consists of cloth made glove, sensors, 
electronics for data processing and power supply. While worn by a user, the glove 
extracts features concerning the configuration of his/her hand together with its 
movement (trajectories) [80].  By analyzing and, thereafter, interpreting these 
features, one can extract information about the ongoing gesture. 



4 
 

The first glove-based system was introduced by Rich Sayre in 1977. By using 
flexible tubes and photocells, it could sense finger bending/movement. Gary Grimes, 
in 1983 designed the Digital Data Entry Glove, which could recognize up to 80 
characters of the Single Hand Manual Alphabet for Deaf. These gloves were hard 
wired and served a very specific number of applications; moreover they were never 
commercialized [28, 80]. 

The VPL DataGlove, developed by Zimmerman [14], was, on the other hand, the 
most successful glove and the one that made glove-based systems popular. Similarly 
to Sayre’s glove, the DataGlove could recognize finger bending and hand movement 
using sensors both for the fingers and the hand itself. After that, many more glove-
based gesture recognition systems were implemented for both research and 
commercial purposes. Indicatively some of them are cited. The PowerGlove 
introduced by Mattel in 1989 was used for Nintendo game consoles [19]. CyberGlove 
(1992) and Humanglove (1997) are considered two of the most accurate gloves 
currently available whilst DigjiGlove and StrinGlove are the most recent ones [80]. All 
of the mentioned glove-based systems sense the bending of fingers and track hand 
movements. 

1.2.2 Vision-based techniques 

Vision-based techniques use visual input(s) in order to extract the features to be 
used in the gesture analysis phase. Based on the nature of these features, vision-
based techniques can be further broken into three categories [72]: 

• Model-Based Approaches 

• Appearance-Based Approaches 

• Low-Level Features Approaches 

1.2.2.1 Model-based approaches 

Features used in this first category are derived from kinematics models. The aim is 
to compute the pose of the arm and/or hand together with the joint angles. 
Kinematics parameters are being extracted from the 2D projections of a 3D hand 
model. Most models are based on the simplified skeletons of the human hand/arm 
[48] as shown in Figure 2, or more complicated models designed with the help of 
CAD systems (Figure 3). 



5 
 

 

Figure 2: Skeleton-based model of the human hand. 
 

 

 

Figure 3: Hand 3D model. 
 

Based on the model tracking work of Lowe [21], Rehg and Kanade, in 1994, [33] 
proposed one of the very first approaches towards hand tracking. By fitting a 3D 
hand model into the image, the goal is to extract a total of 27 parameters, 21 for 
joint angles and 6 for the hand pose.  At each image, this method generates several 



6 
 

hypotheses for the parameters, selecting the one with the less miscorrespondence. 
The number and the range of parameters to be estimated, impose a great 
disadvantage to this method. Apart from the fact that the initial parameter 
estimation has to be close to the real values, this approach is vulnerable to image 
noise and hand self-occlusions. Similar approaches with equal or lesser DoFs  have 
been used by other authors [1, 26, 39]. 

Recent works on model-based hand gesture recognition use probabilistic methods 
in order to estimate hand parameters. Wu et al. [65], use a Bayesian framework for 
the optimal estimation of the parameters. Kalman filter can also be used to 
“estimate, interpolate and predict the motion parameters” [63], although the 
assumptions of linear systems and Gaussian noise do not always stand. Due to high-
dimensionality of the parameter space, probabilistic techniques usually turn to be 
very expensive (in computational terms), and, thus, far from real time 
implementations.  

The Condensation algorithm and its extensions are also used in some other works, 
for hand tracking and model fitting. Black and Jepson in [52] and Rittscher and Blake 
in [61] estimate motion parameters and trajectories using extensions (and mixtures) 
of the Condensation algorithm. 

1.2.2.2 Appearance-based approaches 

Appearance or view based approaches model the hand as a collection of 2D 
intensity images [72] (can be thought of as a template) and relate the appearance of 
the hand (in the image) with it. Consequently each gesture is modeled as a sequence 
of views. In order to relate each pose to a template image, a similarity factor has to 
be used.  

Towards this direction, eigenspace seems to be an efficient approach as it can 
represent a high-dimensional space with a small set of vectors. One of the first tasks 
that was addressed using eigenspace formulation was face recognition. Turk and 
Pentland in 1991 [23], instead of trying to estimate 3D geometry parameters of the 
face, attempt to describe it with a set of 2D characteristics and, thus, transform the 
face recognition problem to a 2D one. The features used for recognition are called 
“eigenfaces”, as they are eigenvectors of the set of faces. 

Face recognition using eigenspace methods has been quite successful and, 
therefore, the same framework has been applied for hand gesture recognition. Black 
and Jepson [53] proposed such an approach. Their work introduces major 
improvements to the original eigenspace approach [72] being able to cope with 
occlusions, background and transformation invariance. The method developed 



7 
 

works adequately for a small set of gestures –the authors track four gestures- while 
its efficiency is reduced for larger ones.  

Contours is another approach used for hand gesture recognition. Usually, a 
contour is formed from the edge of the hand [27, 30] or from the polar coordinates 
[34] –termed as “signature”. The idea in these approaches is to match the contour of 
the hand with the template model. Moreover contours can be used as the basis for 
further eigenspace analysis [35, 40, 48].  

Finally, another technique is the use of fingertips positions as features for the 
gesture analysis, based on the assumption that the palm is rigid and that finger DoF 
number is limited [25, 39, 48]. Most of these approaches use the 2D locations of 
fingertips and palms in order to match the image with the template gesture.  The 
works of Davis and Shah [31] and Quek et al. [42] are examples of fingertips 
approach. 

1.2.2.3 Approaches based on low-level features  

Because of the fact that previous approaches are vulnerable to image noise, many 
researchers turned to methods that use low-level image characteristics. This idea is 
based on the assumption that in hand gesture recognition application, “all that is 
required is a mapping between input video and gesture” [72], and therefore, the full 
reconstruction of the hand is not needed. The centroid of the palm , ellipsoid 
descriptors [56] and optical flow of the hand [54, 67] are examples of low-level 
image features used for hand gesture recognition. Although accurate and noise 
invariant, low-level features seem inefficient in arbitrary scenes. 

1.3 Applications of Hand Gesture Recognition 

As gesture recognition techniques turn to be more and more accurate, they offer 
efficient solution to various applications. Some of them are Sign Language, Virtual 
Environments (VEs), 3D Modeling, Human-Robot Instruction, Multimodal interaction, 
Gesture-to-Speech, Presentations, Television Control and other [60]. In this section 
we present several works done on some of these fields. 

1.3.1 Sign language 

An important area where gesture recognition techniques apply is that of sign 
language. Since sign languages consist of gestures, it came naturally for gesture 
recognition research to help towards this direction. Starner [50] and Kadous [38] 
managed to recognize forty words of the American Sign language and 95 words of 



8 
 

the Australian sign language, respectively. Murakami and Taguchi [22] recognized 
both finger and sign words of the Japanese sign language, while Imagawa et al. [55] 
implemented a bi-directional sign language translator. 

1.3.2 Virtual environments 

Virtual environments is a relatively new field in HCI. Virtual conferencing or 
chatting (like the new lively from Google [81]) or virtual reality games (as Second life 
[69]) are some applications where users can interact with other people and objects, 
while navigating through the virtual world. The need for more naturalness in such 
applications gave birth to the idea of using gesture recognition together with the 
VEs. Battle-View of Pavlovic and Berry [51] is an example of a virtual battlefield, 
where hand gestures are used in order both to navigate the VE and manipulate 
objects in it. Other works as well [18, 31, 43, 44] use hand gestures in order to 
interact with and manipulate objects in VEs. 

1.3.3 3D modeling 

3D modeling applications can gain easiness by using hand gestures. Users can 
design, create and manipulate 3D objects faster and in a more natural way since they 
don’t have to use a keyboard and/or mouse; devices which limit the potentials of a 
3D designer. Zeleznik’s SKETCH [74] or VLEGO of Kiyokawa et al. [45] are examples of 
applications where hand gestures help to the creation of 3D models. 

1.3.4 Human-robot manipulation and instruction 

Hand gestures can also facilitate the manipulation and “teaching” of robots and 
therefore boost the effectiveness of human-robot interaction. GripSee of Becker et 
al. [59] and Rogalla et al. [66] present platforms for manipulating and instructing 
robots, while Lee and Xu developed  a system which allows robots to interactively 
“learn” new hand gestures. 

1.3.5 Multimodal interaction 

The field of multimodal interaction applications can also be thought of as an 
extension to the previous section or, moreover, as a subpart of Virtual Environment 
applications. The combination of speech and hand gestures offers more naturalness 
to the human-machine interaction together with the raise of its effectiveness, as 
speech recognition mistakes can be corrected –or minimized- by hand gesture 
recognition and vice-versa [46]. Brewster et al. [68] propose a method for 
multimodal interaction using both audio and gestural input. 



9 
 

1.3.6 Television control 

Towards the idea of the “Intelligent House”, where the user can automatically 
adjust the lightning, humidity, or answer phone calls, it came naturally for the hand 
gestures to play an important role. An aspect of Intelligent House, in which hand 
gesture recognition techniques apply, is the control of a television. Freeman’s and 
Weissman’s system [36] is a paradigm of such an application, where users can adjust 
the volume, change channels or turn on and off a television by the use of their 
hands.  

1.4 Proposed Approach 

In this work, a probabilistic approach towards hand gesture recognition is 
proposed. The modeling of the hand has been made using kinematics equations for 
the hands [4, 76, 78], the features extracted from images are skin color and 
centroids of face and hands, and, finally, the tracking of the hands and the 
recognition of the pose is being done using Particle Filtering [73]. Neural networks 
are being used in order to recognize the ongoing gesture. 

 The proposed approach relies on the assumption that human perception of basic 
gestures is mainly based on the arm and not on the end effector (palm and fingers). 
One does not need to know the exact position and pose of fingers and the values of 
joint angles or the orientation of the palm in order to recognize a pointing or a 
“STOP” gesture. This allows us to reduce the number of DoFs for each hand to a 
minimum of four –three for the shoulder and one for the elbow [78]. For both hands 
and by taking into account the rotation of the body (around the y-axis) we end up 
with a total of nine DoFs.   

First, face and hands are being determined by detecting skin color areas in the 
image [71]. The 2D projections of face and hands are being used in order to estimate 
their position in the world. Once the 3D coordinates have been calculated, the image 
is being represented by the kinematics model. As mentioned earlier, the points of 
interest are solely the face and the joints of shoulders and elbows, as shown in 
Figure 4. In order to have an initial estimation for the model parameters (joint 
angles) –which will serve as seed for hand tracking- as close as possible to the real 
values, we use the Inverse Kinematics method proposed in [76].  

 



10 
 

 

Figure 4: Pose 3D model. 
 

This initial estimation is the seed for new hypotheses generation from the 
parameters tracking mechanism implemented with particle filters. Our weighting 
factor consists of simple Euclidean distance of the 2D projections of the estimated 
pose and the actual hand. Foreground-background subtraction is also used in order 
to ensure that joints that cannot be tracked (the elbow) will match the model.  

The tracked parameters serve as input to the Neural Networks for the 
determination of the current gesture. In this phase, we face three problems: 
complexity, scalability and time/duration dependency of gestures. The first two 
problems have been approached with the use of a separate neural network for each 
gesture. The aim of this decision was to keep neural networks as simple as possible 
and to overcome any limitations on the number of gestures to be recognized in the 
future. The third problem concerns the training phase of the neural networks (will 
refer to it in Section 5). We want to ensure that a gesture will be recognized even if 
the ongoing gesture differs in duration from the one used in the training data. 
Therefore, input is given to neural networks whenever there is a significant change 
of the parameters values. 

 

  



11 
 

Chapter 2  
 
Hand Gestures 

Finding a suitable definition for hand gestures is not an easy task. There have 
been many psycholinguistic studies, trying to describe and analyze human hand 
gestures. Thieffry in [9] states that “every gesture is the physical expression of mental 
concept”. Webster dictionary definition for gestures is: “… the use of motion of the 
limbs or body as a means of expression; a movement usually of the body or limbs 
that expresses or emphasizes an idea, sentiment, or attitude” [48]. In general, 
gestures can be conceived as a non-verbal form of communication and expressions 
of emotions and information.    

 

Figure 5: Gestural Taxonomy [48] 
 

Hand gestures have a wide variety, depending on the context. Thus, several 
categorizations can arise such as conversational, controlling, manipulating and 
communicative gestures [64]. One can assume that conversational and controlling 
gestures consist subsets of communicative gestures. Sign languages for deaf or a 



12 
 

navigation gesture –“go there”- are examples of communicative and controlling 
gestures, respectively. Communicative and controlling gestures are the classes of 
gestures that research is mainly turned to, as vision-based recognition systems can 
efficiently help. The next figure, borrowed from Pavlovic [48], shows the various 
aspects of hand gestures. 

2.1 Hand Gestures in HCI 

Hand gestures, in the context of HCI, have a somewhat different meaning, while 
equally difficult to define. Apart from the natural use of the hand as a manipulator, 
in HCI, one should emphasize on its use for interacting with a computer –the 
“practical gestures” [12]. This implies that gestures could –or even should- be 
represented differently in the scope of HCI than in real life, in order to exploit to the 
maximum current technologies. In many cases, simple models or representations of 
hand gestures turn to be very efficient.  

A high-level classification of hand gestures is into static and dynamic [77]. Static 
gestures assume a certain pose of the body and hand, while dynamic ones present 
temporal and spatial variation. It is obvious that for static gestures, the points of 
interest are solely the pose and the position in space of the hands and/or arms, 
while, for the dynamic, the movement(s) of the hand/arm is also needed to describe 
the gesture. Although static gestures do not need any information on the trajectories 
of hands/arms, they can be thought of as being dynamic gestures without changes 
through time. By gathering these together, we end up with the following general 
definition [48]: 

Definition 1: Let ()   be a vector that describes the pose of the hands and/or 

arms and their spatial position within an environmental at time  in the parameter 

space .  is application dependent and should be defined accordingly. A hand 

gesture is represented by a trajectory in the parameter space  over a suitably 

defined interval .  

Generally speaking, the gesture modeling phase defines the corresponding 
gesture. As obvious, from the above definition, a spatiotemporal model is suggested. 
In the next sections, we describe the spatial and temporal model of hand gestures 
used in the current work. 



13 
 

2.1.1 Spatial modeling of gestures 

Determination of the parameter space of a hand gesture is strictly dependent on 
the context of each application. For some applications the parameter space consists 
only of the positions of the palm or fingertips while for other the values of all joints 
of the arm and fingers are needed to form the parameter space. For the purpose of 

this work (as stated in 1.4), the parameter space  consists of the angles of shoulder 

and elbow joints. Although 3D-space information is needed to describe position and 
movements of hand/arm, we prefer using the angles since, by using the forward and 
inverse kinematics equations (we will refer in a following section), we can easily map 
one parameter space to the other –angles and 3D parameter space. 

 

Definition 2: Parameter space  : 

 = { :  = angles of shoulder and elbow joints} 

  The above definition allows us to minimize the size of parameter space and thus 
the complexity of the model. An assumption made is that, since deformations of 
human skin do not provide any additional information [48], a human arm can be 
represented as an articulated object as shown in Figure 4. 

2.1.2 Temporal modeling of gestures 

What remains is the determination of a suitable time interval . Kendon [12] 

analyzes dynamic gestures into three phases: preparation, stroke and retraction. 
Preparation and retraction phases consist of movement from and towards resting 
position, before and after the gesture, respectively. As stroke contains most –if not 
all- of the information –“definite for and enhanced dynamic qualities” [12]- of the 
gesture, it can be clearly distinguished [47]. Moreover, gesture phases can also be 
distinguished by the speed of changes. Preparation and retraction show rapid 
position changes, while stroke in general presents slower hand motion [48]. 

In the current research, in order to define the gesture temporal model, we 
adopted a set of rules proposed by Quek [32, 41] and Pavlovic [48]: 

 Definition 3: Temporal segmentation of gestures: 

1. Gesture interval consists of three phases: preparation, stroke and retraction. 
2. Hand configuration during the stroke follows a classifiable path in the 

parameter space. 
3. Gestures are confined to a specified spatial volume (workspace). 



14 
 

4. Repetitive hand movements are gestures. 

While this set of rules is sufficient for most of gestures, it fails to describe gestures 
related to the speech (also known as “beats”). Since, however, this is not the subject 
of this work, we won’t expand further.  

  



15 
 

Chapter 3  
 
Background Tools and Mathematics 

The method used in the proposed gesture recognition approach can be broken 
down into four phases: preliminary, head and palms location, hand kinematics 
tracking and gesture recognition. 

• In the preliminary phase, cameras are calibrated in order to extract the intrinsic 
and extrinsic parameters of the stereo system. These parameters –although not 
needed to be very accurate- are vital for the system, since all following 
calculations are based on them. 

• After having calibrated the cameras, the 3D position of the head and palms is 
extracted during the second phase. Firstly, a skin-color tracker is responsible for 
locating skin-color blobs on the images. In order to cope with depth ambiguities, 
particle filters are applied, resulting with an estimation about the location in 
space of the detected skin-colored blobs. 

• Each arm is then represented by a set of four angles which can fully describe its 
pose. These parameters are called kinematics and are being extracted and tracked 
during the third phase. The calculated 3D position of skin-colored blobs is used for 
the initial estimation of kinematics, while particle filters are responsible for 
tracking these parameters over time. 

• Neural networks, are finally responsible for processing the extracted kinematic 
parameters and recognize a possible ongoing gesture. 

As it may be obvious from the above, this work covers several research fields. 
Image processing techniques are combined with probabilistic tracking methods, 
kinematics equations and neural networks so that an efficient gesture recognition 
system is composed as depicted thoroughly in Figure 6. This section is intended to 
describe the Mathematics borrowed from each research field and/or the tools used 
for their implementation. 

 



16 
 

 

Figure 6: Gesture Recognition System Overview 
 

3.1 Preliminary Phase -- Camera Calibration 

During the preliminary phase, parameters which describe the camera model(s) 
are being extracted. This process is called Camera Calibration, and is essential for the 
system’s operation, as the extracted parameters determine –up to a scale- the way 
that the input will be translated. The accuracy of the Calibration parameters affects 
the accuracy of all future calculations. Therefore, minimization of the estimation 
error is one of the main goals. 

In order to preserve depth information, a stereo pair is used to capture the input 
video. This fact implies that cameras should be calibrated before processing the 
input. From the camera calibration process, intrinsic and extrinsic parameters (or 



17 
 

simply intrinsics and extrinsics, respectively) are derived for the stereo pair. Intrinsics 
concern the internal parameters of each camera, such as focal length(s), aspect ratio, 
principal points, and distortion coefficients, together with the corresponding 
uncertainty. Extrinsics refer to the relative position of the two cameras in space. 
Both intrinsics and extrinsics are necessary and a good calibration of cameras is 
crucial for the accurate operation of the system. 

 

Figure 7: (a) Chessboard pattern for camera calibration. (b) Extracted grid. (c) Camera intrinsics. 

 

Figure 8: Extrinsics of the stereo pair. 
 



18 
 

For the purposes of camera calibration, the Matlab® toolbox of Jean-Yves 

Bouguet [3] has been used. The user marks the four external corners of a calibration 
pattern, as the one shown in Figure 7a, and defines the number of bounded squares 
and their dimensions. Once this is done, the corners on the grid are detected (Figure 
7b). Since the distance between two corners is known and, thus, their relative (not 
absolute) position in space, the projection matrix can be calculated1

Figure 7
.  The intrinsic 

parameters can now be derived from the estimated projection matrix ( c).  

For the estimation of the extrinsics, the process is more or less the same. Note 
that the images used for the calculation of the intrinsics of each camera should be 
snapshots of the same scene (from the corresponding point of view). This implies 
that the correspondence problem is solved, and therefore, the Fundamental as well 
as the Essential Matrices can be estimated, from which, the extrinsic parameters are 
extracted (Figure 8). 

3.2 Skin-Color Detection and Tracking Tools 

The Skin-color Detection and Tracking Phase provides the necessary information 
for the kinematics tracking phase. Skin-colored object, namely head and hand palms, 
are extracted and tracked over time. Argyros and Lourakis [71] proposed a method 
for detecting and tracking skin-colored objects over time. An improved version of the 
tracker, as the one used in [79], implements foreground-background subtraction 
prior to skin-color detection. By subtracting the foreground from the background 
(namely the dynamic from the static area of the image), the image area to be 
processed is minimized, while ambiguities due to color similarities of the background 
are practically eliminated. 

3.2.1 Foreground-background subtraction 

Stauffer and Grimson [62] proposed a recursive algorithm for the problem of 
foreground-background subtraction, by imposing a Gaussian Mixture Model (GMM) 
on each pixel of the image. The parameters of the model are updated for each input 
sample (image frame) and by simultaneously selecting the appropriate number of its 
(model’s) components, foreground and background areas are determined. 

In general, by denoting the value of a pixel at time t in RGB by �⃗�𝑥(𝑡𝑡), a pixel will 
probably belong to the background when 

                                                             
1 Projection is discussed thoroughly in section 1.7.1. 



19 
 

𝑝𝑝(𝐵𝐵𝐵𝐵|𝑥𝑥 (𝑡𝑡))
𝑝𝑝(𝐹𝐹𝐵𝐵|𝑥𝑥 (𝑡𝑡))

= 𝑝𝑝�𝑥𝑥 (𝑡𝑡)�𝐵𝐵𝐵𝐵�𝑝𝑝(𝐵𝐵𝐵𝐵)
𝑝𝑝�𝑥𝑥 (𝑡𝑡)�𝐹𝐹𝐵𝐵�𝑝𝑝(𝐹𝐹𝐵𝐵)

,                                                                                    (1) 

is larger than 1 and vice versa. In the general case, however, it is more likely that no 
information about the place, time and frequency of appearance of a foreground 
object is a priori known. Moreover, changes to the scene due to illumination changes 
and shadows, or even the addition (or equally the subtraction) of an object, should 

be adapted by the algorithm [75]. Therefore, a background model 𝑝𝑝(�⃗�𝑥(𝑡𝑡)|𝐵𝐵𝐵𝐵), which 
takes into account the history of each pixel and is updated through time, should be 
formed. 

3.2.1.1 Background model 

By assuming a uniform distribution for the appearance of the foreground objects 

𝑝𝑝(�⃗�𝑥(𝑡𝑡)|𝐹𝐹𝐵𝐵), a pixel belongs to the background if 

𝑝𝑝(�⃗�𝑥(𝑡𝑡)|𝐵𝐵𝐵𝐵) >  𝑐𝑐𝑡𝑡ℎ𝑟𝑟 (= 𝑝𝑝(�⃗�𝑥(𝑡𝑡)|𝐹𝐹𝐵𝐵)𝑝𝑝(𝐹𝐹𝐵𝐵)/𝑝𝑝(𝐵𝐵𝐵𝐵)),                                                         (2) 

where 𝑐𝑐𝑡𝑡ℎ𝑟𝑟 is an appropriate threshold value. The background model is estimated 

from a training set  and is denoted by �̂�𝑝(�⃗�𝑥(𝑡𝑡)|,𝐵𝐵𝐵𝐵). In order to cope with the 

scene changes, the training set should be updated for each new sample so that old 
ones are discarded and the model’s density is re-estimated [75]. 

At time t, the training set consists of 𝑇𝑇 = {𝑥𝑥(𝑡𝑡), … , 𝑥𝑥(𝑡𝑡−𝑇𝑇)} where T is a 

reasonable adaptation period and 𝑥𝑥(𝑡𝑡) denotes the corresponding sample. 
Whenever a new sample arrives, the training set is updated and the density is re-
estimated. As it is probable that foreground objects will be contained in the new 

sample, the model is now denoted as �̂�𝑝(�⃗�𝑥(𝑡𝑡)|𝑇𝑇 ,𝐵𝐵𝐵𝐵 + 𝐹𝐹𝐵𝐵). The model is described 
by a GMM with M components:  

 �̂�𝑝(�⃗�𝑥|𝑇𝑇 ,𝐵𝐵𝐵𝐵 + 𝐹𝐹𝐵𝐵) =  ∑ ˆmπ
𝑀𝑀
𝑚𝑚=1 𝒩𝒩(�⃗�𝑥; ˆ

mµ


,𝜎𝜎�𝑚𝑚2 𝐼𝐼),                                                            (3) 

where 1
ˆ ˆ, ,µ µΜ
 

 are the estimates of the means, 2 2
1ˆ ˆ, , Mσ σ  the estimates of the 

variances of the Gaussian components and ˆmπ are the estimated mixing weights.  

The number of the GMM’s components basically denotes the states of the pixel 
and is self-determined. Assume for example that the scene consists of tree leafs 
which are moved by the wind. Therefore a certain pixel’s value might change 
continuously from green (leaf) to blue (sky). In this case M=2 and whenever this pixel 
gets a value close to the means of either of two components, the pixel should be 
labeled as belonging to the background. However if the value of the pixel turns to 
white, a new component will be created. The update functions together with the 



20 
 

decision of whether the pixel belongs to the foreground are described in the next 
section. 

3.2.1.2 Update equations 

When a new data sample �⃗�𝑥(𝑡𝑡) arrives, the model parameters are recursively 
updated as follows [10]: 

( )ˆ ˆ ˆ( )t
m m m mπ π α ο π← + − ,           (4) 

( )ˆ ˆ ˆ( / )t
m m m m mµ µ ο α π δ← +



 

,           (5) 

2 2 ( ) 2ˆ ˆ ˆ ˆ( / )( )t T
m m m m m m mσ σ ο α π δ δ σ← + −

 

,          (6) 

where ( ) ˆt
m mxδ µ= −


 

. α defines an exponential decaying envelope so that old samples 

influence is decreased and is equal to 1/T so that the components of the GMM add 

up to 1. ( )t
mο is the ownership factor and is equal to 1 for the “close” component with 

the largest weight and 0 for the rest. A component is “close” to the sample when the 
Mahalanobis2

1ˆMπ α+ =

 distance is less than a predefined value. If there is no “close” 

component, a new component is generated with , ( )
1

ˆ txµΜ+ =
 

 and 1 0σ̂ σΜ+ =  

where 0σ an appropriate initial variance.  

A method for determining whether a component refers to a foreground object –if 
any- is finally needed. During the GMM update, the algorithm simultaneously 
clusters the components. Usually, foreground objects will be represented by clusters 
with relatively small weights. So, the background model can be approximated by the 
first B largest clusters [75]: 

2

1

ˆˆ ˆ ˆ( | , ) ( ; , )
B

T m m m
m

p x BG x Iπ µ σ
=

Χ Ν∑  

 .                         (7) 

By sorting the components according to their weight in descending order we can 
easily define B as: 

1

ˆarg min( (1 )
b

m fb m
B cπ

=

= > −∑ ,          (8) 

where cf denotes the temporal portion of the data that can belong to foreground 
objects. For example, let cf=0.3. This means that an intruding object is determined as 

                                                             
2 The Mahalanobis distance general form is 1( ) ( ) ( )mD x x xµ µΤ −= − Σ − . 

   Here the squared distance from the mth component is calculated as 
2 2ˆ/T
m m m mD δ δ σ=

 

. 



21 
 

foreground for time up to 0.3T. If that object remains for more than 0.3T, it will form 
a new cluster and, thus, will be considered as background. 

3.2.1.3 Examples 

The results of the foreground-background subtraction algorithm are demonstrated 
in the following figure. In Figure 9(a) the original input is shown. Figure 9(b) shows 
the result of the application of the algorithm on the original image, where the 
foreground object is indeed distinguished. Finally, in Figure 9(c) the foreground mask 
is demonstrated. Pixel values represent the probability of the corresponding pixel to 
belong to the foreground. This is the reason why in some parts of the mask image, 
pixels are not white (increased certainty) but grey. Shadow or illumination changes, 
impose changes to the background which, however, are not strong.  

 

  

Figure 9: (a) Original Input, (b) Subtracted Foreground, (c) Foreground Mask 



22 
 

3.2.2 Skin-color detection and tracking 

For the purposes of this thesis, a method that can detect and track over time 
multiple skin-colored objects, namely the features of interest, should be 
implemented. Argyros’s and Lourakis’s method [71] suitably satisfies our system’s 
need, as it offers the possibility of real-time (low-cost) detection and tracking of 
multiple skin-color objects. Moreover, this method copes with the problem of 
illumination changes, as it self-adapts skin-color probabilities over time.   

The skin-color tracker can be broken down into three phases: off-line training, 
skin-color detection and hypothesis tracking. During the training phase, the user 
manually marks skin-color areas so that prior probabilities are calculated. On 
detection phase these probabilities are being used to detect skin-color blobs and are 
updated simultaneously. The detected blobs give birth to object hypotheses, which 
are then tracked over time on the last phase. 

3.2.2.1 Off-line training 

For training, a small set of YUV 4:2:2 input images is used, on which, the user 
manually marks skin-colored regions (ground-truth), as shown in Figure 10. As the Y-
Component of this color representation corresponds to image illumination it can be 
easily omitted in order achieve two goals:  

• Robustness to illumination changes and 

• Increase of tracker’s efficiency as problem’s dimensionality is reduced. 
 

 

Figure 10: (a) The original image, (b) Marked image for tracker’s training. Non skin-color regions are marked 
with green and skin-color ones with red. Some areas have not been marked in order to avoid ambiguities. 

 



23 
 

Let c(x,y) be the color of image point I(x,y). The marked input set is used to 
compute the prior probability P(s) of skin color in the image, P(c) of the occurrence 
of each color in the image and P(c|s) of a color being skin color.  

3.2.2.2 Skin-color detection 

After the calculation of prior probabilities, the wanted probability P(s|c) –namely 
the probability of each color being skin-color- can be easily derived from the Bayes 
rule as follows: 

( | ) ( )( | )
( )

P c s P sP s c
P c

= .           (9) 

In order to decide if a color is skin-color, max( | )P s c T>  should stand, where maxT  is a 

suitable selected threshold (based mostly on the scene). Points which satisfy the 

above condition are the seeds of potential blobs. Adjacent points with max( | )P s c T>  

belong to the same blob. For the neighboring points of the seed ones, hysteresis 
thresholding is imposed to determine whether or not they should be treated as skin-
color. Therefore, adjacent to skin-color point with min( | )P s c T> , where min maxT T< , 

are recursively added to the corresponding blob. A connected components algorithm 
is then responsible to assign labels to image points of each blob. Finally, in order to 
eliminate small blobs, formed due to noise, size filtering is applied.  

Because of the fact that the input set is relatively small, wrong results may occur –
false positives or negatives. In this case, the user can manually correct this error by 
providing the ground-truth to the tracker. Moreover, the results of the tracker can 
be used as a self-adaptation method by continuously updating the prior 
probabilities. 

Despite the fact that the chosen color representation provides illumination 
invariance up to a scale, poor results may occur due to illumination changes. In order 
to cope with this problem, the tracker maintains two sets of prior probabilities. Off-
line training ones (P(s), P(c) and P(c|s) ) and Pw(s), Pw(c),  Pw(c|s)  which correspond 
to the updated on-line probabilities for the detections in the w most recent frames. 
As illumination variations are context-dependent, the second set represents better 
the actual probabilities and can adapt to illumination conditions. Skin-color detection 
is then performed based on: 

( | ) ( | ) (1 ) ( | )wP s c P s c P s cγ γ= + − ,                              (10) 

where P(s|c) and Pw(s|c) can be computed by Eq.9 using, however, the updated 
prior probabilities produced from both the training set and the detections during the 



24 
 

last w frames. γ is a sensitivity parameter which defines the influence of the training 
set in the detection process.  

3.2.2.3 Skin-colored object tracking 

The detected blobs are associated with object hypotheses, which are tracked over 
time. The relation here is not necessarily 1-1 which means that a blob can be 
supported by more than one hypothesis and vice versa. An example of such a case is 
two crossing hands which in reality are two different skin-colored objects but are 
detected as one blob.  

As the features needed for this work are the head(s) and the hand palms, the 
assumption that the spatial distribution of skin-colored objects can be approximated 
by an ellipse seems both valid and suitable. Let N be the number of skin-colored 
objects in the scene at time t and ,1io i N≤ ≤ , the set of skin-colored pixels of the ith 

object. The ellipse model is denoted as ( , , , , )
i ii i x y i i ih h c c α β θ= , where ( , )

i ix yc c is the 

ellipse centroid, iα  and iβ  the length of its major and minor axis, respectively and 

iθ its orientation on the image plane. 
1

M

j
j

B b
=

=


denotes the union of skin-colored 

pixels (detected blobs), 
1

N

i
i

O o
=

=


 the union of object pixels and 
1

N

i
i

H h
=

=


the union 

of the hypotheses3

 

.  

During tracking phase hypotheses are generated, removed and tracked. The 
proposed data association algorithm is analyzed in the following sections. For 
exemplifying each task, we borrow the next Figure from Argyros’s and Lourakis’s 
work [71], with three skin-colored blobs (b1, b2 and b3) and four object hypotheses 
(h1, h2, h3 and h4) produced from the previous frame. 

Figure 11: Cases of skin-colored blobs and object hypotheses. 
 

 
                                                             
3 For compatibility purposes, we use the notations and examples used by the authors. 



25 
 

Object hypothesis generation 

In order to generate a new object hypothesis, there should be at least one skin-
colored object which is not supported by any of the existing hypotheses. This means 
that none of that blob’s pixels lie into any of the ellipses of the object hypotheses, 
namely the intersection of the blob with all existing ellipses is empty. Such a case is 
blob b1 in Figure 11. 

A safe metric for deciding whether or not a blob lies into an ellipse is the distance 
of each blob’s pixels from the ellipses. The distance ( , )D p h  of a point ( , )p p x y=  

from an ellipse ( , , , , )x yh c c α β θ  is defined as follows: 

( , )D p h u u= ⋅
 

,                     (11) 

where 

cos( ) sin( )
,

sin( ) cos( )
yx y cx cu

θ θ
θ θ α β

−−    −
=   
   



. 

A value, of ( , )D p h , equal or smaller than 1.0 means that a point lies on or inside the 

ellipse respectively, while ( , ) 1.0D p h > means that the point is outside the ellipse. 

Therefore, generation of a new object hypothesis for a blob b is triggered whenever: 

,min{ ( , )} 1.0
h H

p b D p h
∈

∀ ∈ > .                    (12)  

 The parameters of the new object hypothesis’s ellipse can be derived directly 
from the statistics of the distribution of blob’s points. The centroid of the blob 
becomes the center of the ellipse while the rest of the parameters can be computed 
from the covariance matrix of the distribution of blob’s points on the image plane. 

Let xx xy

xy yy

σ σ
σ σ
 

Σ =  
 

be the covariance matrix of blob’s points distribution. Then, 

ellipse’s parameters are defined as: 

1α λ= , 2β λ= , 1

1

tan ( )xy

yy

σ
θ

λ σ
− −

=
−

,                  (13) 

where 1 2
xx yyσ σ

λ
+ +Λ

= , 2 2
xx yyσ σ

λ
+ −Λ

=  and 2 2( ) 4xx yy xyσ σ σΛ = − − . 

False hypothesis removal 

An object hypothesis has to be removed when it is not supported by any skin-
colored blob. This can occur when the object moves out of the camera’s view or 
when the object is occluded entirely by a non skin-colored object. Hypothesis h1 in 



26 
 

Figure 11 demonstrates such a case. A hypothesis is allowed to exist for a certain 
amount of time before being removed, in order to cope with situations of poor skin-
color detection or temporal occlusion of the skin-colored object due to movement. 

Object hypothesis tracking 

After finishing with hypotheses generation and removal, all of the remaining 
blobs should support the existence of past object hypotheses. This data association 
problem’s solution is based on two rules: 

• If a skin-colored pixel of a blob lies inside the ellipse of some object hypothesis, 
then this pixel is considered to belong to this hypothesis. 

• If a skin-colored pixel of a blob lies outside all ellipses, then it is associated with its 
closest object hypothesis, using the distance metric of Eq.11. 

These two rules manage to cope with two problems that can arise during the data 
association process. Apart from the simple case, where a skin-colored blob is easily 
associated with an ellipse, cases, where a) a blob is located within two or more 
hypotheses (blob b2 in Figure 11) or b) a hypothesis covers two or more blobs 
(hypothesis h4 in Figure 11), can occur.  

In a situation where two or more object hypotheses are “competing” for a single 
skin-colored blob, the pixels of the blob which lie inside an ellipse are assigned to the 
corresponding object hypothesis. If there are pixels which lie inside more than one 
ellipse, then they will be assigned to all corresponding hypotheses. Finally, pixels 
outside all ellipses are associated with their closest hypothesis, by using the distance 
metric of Eq.11. It is not safe to make any assumption and remove any of the existing 
hypotheses because there’s no knowledge of whether the blob is actually one skin-
colored object or multiple occluded ones. 

In the case where the ellipse of a hypothesis covers more than one blobs, similar 
strategy is followed. If the hypothesis was assigned to one of the blobs at a previous 
frame, then it is assigned to that blob. If none of the blobs is predicted by that 
hypothesis, then the hypothesis is assigned to the blob with which shares the largest 
number of skin-colored pixels. 

Prediction 

The process of hypothesis tracking involves prediction of the hypothesis next 
position. This is easily achieved with a linear way and by using the location of 
hypotheses in the previous frames. Therefore the estimated hypothesis model 

becomes ˆ ˆ ˆ( , , , , )
i ii i x y i i ih h c c α β θ=

 
where ˆ ( ) ( 1) ( )i i iC t C t C t= − + ∆ . ( )iC t  denotes

( ( ), ( ))
i ix yc t c t and ( ) ( 1) ( 2)i i iC t C t C t∆ = − − − . Although the above equations assume 



27 
 

that the direction remains unchanged, experimental results have proved that this 
prediction mechanism performs efficiently. 

3.3 Hand Kinematics Tracking 

3D position of the detected skin-color objects can be easily estimated by 
triangulation4

3.3.1 Perspective projection 

. Unfortunately, this method can lead to very poor results as it is 
sensitive to noise and strictly dependent to the calibration process –which by its own 
bears estimation errors. Therefore, instead of calculating 3D coordinates by 
triangulation, the “inverse” way is chosen. Particles are deployed in space and, by 
projecting them to the image planes of the cameras, head(s) and palms positions are 
estimated. Using the resulting 3D positions, an initial estimation for the kinematics 
parameters of the hands is derived by the use of Inverse Kinematics Equations. 
Finally the kinematics parameters are being tracked over time with the use of 
Particle Filters and Forward Kinematics.  

The intrinsic and extrinsic parameters derived from the camera calibration (3.1), 
are essential for the projection of a 3D point P=(X, Y, Z) onto the image plane of a 
camera (px, py). The interesting point here is that a point’s location in space is 
expressed in the world frame, whereas its projection onto the plane is expressed 
according to the image reference frame (pixels). Therefore, a transformation 
between the world and the image reference frame is needed.   

Let fx and fy
5

int

0
0
0 0 1

fx cx
M fy cy

− 
 = − 
  

 be the focal lengths of the camera and cx and cy its principal points 
(or image center); namely the intrinsics of the camera. The matrix which describes 
the intrinsics is therefore denoted as: 

                          (14) 

and performs the transform between the camera frame and the image reference 
frame [57]. 

As stated in 3.1, the extrinsics of a camera represent its relative position 
according to the principal point of the world. A rotation matrix R and a translation 

                                                             
4 The process for estimating the 3D position of a point using a stereo pair of cameras. 
5 fx=f/sx and fy=f/sy, where sx and sy are the effective pixel sizes in the horizontal and vertical direction 
respectively. 



28 
 

vector T describe this transformation from O=(0, 0, 0) to the position of the camera. 
We define Mext, the matrix which describe the extrinsics, as follows: 

11 12 13 1

21 22 23 2

31 32 33 3

T

T
ext

T

r r r R T
M r r r R T

r r r R T

 −
 = − 
 − 

,                   (15) 

where 11r … 33r  are the elements of the rotation matrix 
11 12 13

21 22 23

31 32 33

r r r
R r r r

r r r

 
 =  
  

, T is the 

translation vector T=[Tx, Ty, Tz] and Ri, i=1..3, denotes the ith row of the rotation 
matrix. Mext performs the transformation between the world and the camera 
reference frame [57]. The product of Mint and Mext expresses the transformation 
between the world and the image plane reference frame. 

By expressing the point in 3D space in homogeneous coordinates as Pw=[Xw, Yw, 
Zw, 1]T and by forming the product Mint Mext Pw we end up with “a linear matrix 
equation describing perspective projections” [57]: 

1

2 int

3 1

w

w
ext

w

X
x

Y
x M M

Z
x

 
   
   =   
    

 

.                    (16) 

Finally, the pixel coordinates of the projection on the image plane are derived by 
normalizing the resulting vector by its 3rd element: 

1 3/imx x x= , 

2 3/imy x x= .                      (17) 

3.3.2 Particle filters 

The particle filter is a nonparametric Bayes implementation which can model 
nonlinear transformations of random variables [73]. The key idea is to represent the 
target distribution by a set of random weighted samples drawn by this distribution 
and to compute estimates based on these samples and on these weights. The next 
figure (borrowed from Miodrag Bolic [2]) illustrates the general idea of Particle 
Filters on a nonlinear distribution. Random samples (measures), which approximate 
the distribution of the unknowns, are recursively generated. The posterior to be 
approximated is denoted by blue and the samples with yellow. As new observations 
arrive, the samples and weights are propagated by exploiting Bayes theorem. 

 



29 
 

 

Figure 12: Particle Filter. Particles are drawn over the posterior distribution and propagated according to their 
weights. 

 

The samples of the posterior distribution are called particles and are denoted as 
[73]: 

1 2: , ,..., M
t t t tx x xΧ = ,                      (18)  

where M is the number of particles in the particle set tΧ . Each particle represents a 

hypothesis on the current state at time t and its likelihood is (ideally) proportional to 
its Bayes posterior 

0 1( | , ,..., )m
t t tx p x y y y                     (19) 

where 1 m M≤ ≤ and yi with 0 i t≤ ≤ the observations up to time t. The above figure 
also illustrates that the true state is more likely to be approximated by particles 
sampled from a dense area of the sample space. 

The general idea of the particle filtering algorithm can be described as follows: 



30 
 

 

Figure 13: The particle filter algorithm. 

In order to simplify the particle filter algorithm, the next flow diagram [2] is cited: 

 

Figure 14: Flow Diagram of the Particle Filter Algorithm. 

 



31 
 

The efficiency of the particle filter lies basically on the resampling (or importance 
sampling) step which transforms the temporary set of M particles into another set of 
particles of equal size which will finally be propagated and will constitute the seed 
for the next resampling. M particles are being drawn with replacement from the 

temporary set tΧ . The importance weight of each particle defines its probability to 

be drawn. Therefore the metric of the importance factor should be carefully chosen 
according to the context of the implementation.    

3.3.3 Human arm kinematics 

“Kinematics is the science of motion that treats motion without regard to the forces 
which cause it” [16]. 

The human arm consists of limbs (links) and joints which are described by their 
angles. Since the length of each limb is known and constant, if the angles of the 
joints and the location of the shoulder are also known, then the position of the 
elbow and the palm –namely the end effector- can be estimated. The process, during 
which the location of the end effector is calculated by using the joint angles, is called 
forward kinematics. The inverse process, that is estimating joint angles by knowing 
the location of the end effector, is called inverse kinematics. 

3.3.3.1 Forward kinematics 

In some simple cases, the calculation of the location of the end effector is 
straightforward. However, in most cases –such as that of the human hand- more 
effort is required. The next figure[16] illustrates the parameters which will be used 
for estimating the forward kinematics equations. 



32 
 

 

Figure 15: Frame {i} is attached rigidly to link i.  
 

Figure 15 shows two effectors with different coordinate systems. Therefore, a 
transformation which will lead from one system to the other, and thus depicting the 
locations according to the reference system (either of two or even the base) is 
required. The important parameters derived from the manipulator illustrated above 
are [16]: 

• ai: the distance of the two rotation axes ( ˆ
iZ and 1

ˆ
iZ + ) measured along ˆ

iX . 

• αi: the angle between the two axes measured about ˆ
iX . 

• di: the distance between 1
ˆ

iX − and ˆ
iX measured along ˆ

iZ . 

• θi: the angle between 1
ˆ

iX − and ˆ
iX measured about ˆ

iZ . 

The parameters described above will be used for the derivation of the kinematics 
equations. 

Consider now, a manipulator with N effectors, with any one of them having a 
separate frame. As stated before, the required transformation should transform the 
parameters from one’s reference frame to the others, and, finally, to the reference 
frame of the end effector. A very efficient way of representing these transformations 
is the one proposed by Denavit  and Hartenberg in [8]. The transformation which 

transforms the i-1th to the ith frame is denoted as 1i
iT

− : 



33 
 

1

1 1 1 11

1 1 1 1

cos( ) sin( ) 0
sin( ) cos( ) cos( ) cos( ) sin( ) sin( )
sin( )sin( ) cos( )sin( ) cos( ) cos( )

0 0 0 1

i i i

i i i i i i ii
i

i i i i i i i

a
d

T
d

θ θ
θ α θ α α α
θ α θ α α α

−

− − − −−

− − − −

− 
 − − =
 
 
 

.              (20) 

Finally the product of all matrices leads to the parameters of the end effector: 

0 0 1 1
1 2

N
N NT T T T−=  .                     (21) 

In order to switch over two coordinate systems, a rotation matrix R and a translation 

vector T is needed. 1i
iT

− is nothing more than a representation of R and T, where R is 

the upper left 3x3 matrix and T is the leftmost 1x3 vector such as: 

1

0 1
i

i

R T
T−  
=  
 

.                     (22) 

3.3.3.2 Arm modeling 

The model of the arm chosen for the purposes or this work is the one proposed 
by Tsetserukou et al. in [78]. Although the work refers to a robotic arm, it can 
efficiently represent a human one as it supports the same degrees of freedom. In 
Figure 16 the chosen model is illustrated, together with its kinematics parameters 
expressed to both the global reference frame and the reference frame of each joint.  

 

Figure 16: The model of the robotic arm (left) and its parameters (right). 
 



34 
 

J1, J2 and J3 represent the three degrees of freedom of the human shoulder while J4 
represents the human elbow. L1 is the distance between the shoulder and the elbow 
and L2 is the forearm’s length. Finally the angles of joints J1, J2, J3 and J4 are denoted 
as θ1, θ2, θ3 and θ4 respectively. The parameters which describe this arm model are 
given by the authors as follows: 

 

i αι-1[deg] ai-1[m] di[m] θi[deg] 
1 90 0 0 θ1-90 
2 -90 0 0 θ2+90 
3 90 0 L1 θ3+90 
4 -90 0 0 θ4-90 
5 0 L2 0 0 

Figure 17: Arm Model Parameters. 
 

By using the Denavit – Hartenberg representation, as described in Eq.20 and Eq.21, 
the location in space of both the elbow and the palm can be easily extracted from 
0
3T and 0

5T  respectively. 

3.3.3.3 Inverse kinematics 

Although the calculation of forward kinematics equations is more or less 
straightforward, calculation of inverse kinematics equations is a more complex 
process, strictly dependent to the context of the application. In many cases there is 
not a single solution for the parameters’ values, whereas in some others, finding a 

solution is almost impossible (cases where 1i
iT

− cannot be inverted for example). 

Fortunately, this is not the case for the human arm model inverse kinematics, which 
can be solved analytically as described in [76]. 

Let  

11 12 13 11

21 22 23 120
5

31 32 33 13

0 0 0 1

r r r t
r r r t

T
r r r t

 
 
 =
 
 
 

                    (23) 

be the matrix which leads us from the shoulder to the palm (or wrist). Then, the 

vector 11 12 13[ , , ]Tp t t t= depicts the location of the wrist, measured in the base 

reference frame (in our case the shoulder’s coordinate system). Since the length of 
links is known, θ4 can be calculated from the cosine rule as: 



35 
 

22 2
1 2

4
1 2

arccos
2

L L p
L L

θ π
 + −

= ±  
 
 

.                   (24) 

Clearly, only one solution is physically acceptable due to limitations imposed by the 
elbow joint. 

The interesting part though is the estimation of elbow’s position. As Korein [11] 
notes, even if wrist’s and shoulder’s position is fixed, the elbow is still free to rotate 
about the shoulder-wrist axis. Figure 18 illustrates this case, where the elbow is free 
to move on a circle lying on a plane whose normal is parallel to the shoulder-wrist 
axis. Shoulder’s, elbow’s and wrist’s positions are denoted by s, w and e respectively.  

Elbow’s position can therefore be expressed as a function of the circle’s center 
and the rotation angle φ as follows: 

ˆ ˆ[cos( ) sin( ) ]r ϕ ϕ= + +e u v c ,                    (25) 

where û and v̂ are the unit vectors that form the elbow’s local coordinate system, c 
is the center of the circle and φ is the rotation angle. û and v̂  can be expressed as a 

function of the normal vector of the circle’s plane n̂ and the z axis of the system: 

ˆ ˆ( )ˆ
ˆ ˆ( )

− + ⋅
=

− + ⋅
z z n nu
z z n n

,                     (26) 

ˆˆ ˆ= ×v n u ,                      (27) 

where 

ˆ −
=

−
w sn
w s

.                      (28) 

Finally, the circle’s center c and its radius r can be calculated by simple 
trigonometric functions: 

1 ˆcos( )Lα= +c s n , 

1 sin( )L α=r                       (29) 

with 

22 2
2 1

1

cos( )
2

L L
L

α
− − −

=
− −

w s
w s

, 2 sin( )sin( ) L ψα =
−w s

, 

4ψ π θ= − .                      (30) 



36 
 

 

Figure 18: Elbow position based on swivel angle. 
 

By assuming that the value of φ is known, and therefore the elbow’s position, the 
inverse kinematics problem can be solved analytically for the rest of the joint angles. 
Note that the elbow’s position is a function of the first three joints: 

0 0 1 2
3 1 2 3

1

x

y

z

e
e

T T T T
e

 
 
 = = =
 
 
 

e .                    (31) 

Therefore, by solving Eq.31 we get the values of the rest joint angles θ1, θ2 and θ3. 

3.4 Neural Network - Multi-Layer Perceptron 

 “A network of simple processing elements (neurons), which can exhibit complex 
global behavior, determined by the connections between the processing elements 
and element parameters.” [82] 



37 
 

Neural Networks are the result of an effort to describe how human mind works 
and, although the idea behind them was first started in late 1800s, they are currently 
used for performing several complex tasks as clustering, function estimation, robot 
navigation etc.  The term “Neural Network” stands for two distinct cases: The 
Biological Neural Network which consists of real biological neurons in the human 
brain and the Artificial Neural Network (ANN), or simply Neural Network (NN), which 
is a mathematical or computational model based on biological neural networks [7, 
82].  

A neural network consists of sets of interconnected neurons. Each neuron can 
perform a simple 2-class classification, assuming that the classes are linearly 
separable. By adding neurons, additional classifications are feasible. The number of 
neurons to be added depends on the task to be performed, together with the input 
and output dataset provided to the network.  

A typical neural network is consisted of three layers of neurons, as depicted in 
Figure 19; input, output and hidden layer. The neurons of each layer are connected 
to all neurons of the next layer. However, there is no interconnection between 
neurons of the same layer. The hidden layer is task specific and is constructed during 
the training phase, depending on the given input dataset and the corresponding 
output, and is responsible for the modeling of the function that translates the input 
to the output.  

 

Figure 19: Typical Neural Network Layout 
 

The number of neurons of each layer depends on the task. Therefore there are as 
many input and output neurons as the input and output data respectively. The 
number of neurons in the hidden layer affects directly the effectiveness of the 



38 
 

network. Too few and the network will produce poor results (unable to learn the 
problem), too many and the network will be over-determined. 

For each task to be performed, the neural network has to be trained first. Training 
phase is crucial for the efficiency of the network and, thus, needs to be designed 
carefully. During training, the structure of the network changes so that it adapts to 
the needs of the information provided and the desired output. In general, training 
can be thought of as the estimation of a function f that solves optimally a specific 

task by using a set of observations (inputs) together with the minimization of the 
error of that function. 

Three are the dominant training techniques: 

• Supervised Training where both input and the corresponding desired output are 
provided to the neural network and the network estimates the function

:f X Y→ , where X andY stand for the set of inputs and outputs, respectively. 

• Unsupervised Training where there is no correspondence between the input and 
the output, and the network tries to relate them –and thus estimate the 
proportional function f - by detecting patterns in the data set. 

• Reinforcement Training where there is neither given input nor output dataset, 
but are generated from the interaction between the network and the 
environment. 
 
In this work, Multi-Layer Perceptron Neural Networks are being used for the task 

of gesture recognition, having as input the kinematic parameters which describe the 
arm. This section intends to present the Multi-Layer Perceptron Networks and 
describe the rules that govern its training phase. 

 

3.4.1 Multi-layer perceptron 

Multi-Layer Perceptron (MLP) is the most widely used class of neural network, 
mostly due to its success on many information processing tasks, such as pattern 
classification, function estimation and time series prediction. Moreover, MLPs have 
been used in many practical fields, such as speech recognition, medical diagnosis, 
autonomous vehicle control and financial prediction [49]. 

MLP’s architecture follows the classical neural network layout, with input, output 
and hidden layers6

                                                             
6 Note that a hidden layer may consist of several layers. 

. Nodes (neurons) of different layers are connected with real 
valued weights, whereas there is no connection between nodes of the same layer. 



39 
 

Figure 20 illustrates a minimal 2-2-1 MLP –that is two nodes for the input and hidden 
layer and one output node. 

 

Figure 20: Minimal 2-2-1 MLP architecture. 

 

The notation of Shepherd [49] is used here as well. Therefore: 

• The network consists of L layers, with 0l = denoting the input layer and l L=
denoting the output layer. 

• Each node is denoted as l
in , with (1 )li N≤ ≤ where lN is the number of nodes in 

layer l . 

• The strength of a node’s output –namely the activation- depends on the strength 
of the input to that node with respect to a threshold value. In order for the 
thresholds to be treated uniformly, an extra node with fixed output of 1.0 –called 

the bias unit and denoted as 0
ln for l L≠ - is added to all but the output layer. 

• Each node l
in has a set of source nodes l

iS and a set of target nodes l
iT . Let m

jn and

l
in two connected nodes. If m l< , node m

jn is a source node of l
in (i.e. m l

j in S∈ ) and

l
in is a target node of m

jn (i.e. l m
i jn T∈ ). It is obvious that all input nodes and bias 

units have no source nodes and all output nodes have no target nodes. 

• Network weights are denoted with respect to the nodes they connect. Therefore
lm
ijw connects m

jn and l
in with m l< .  

 
Despite the fact that MLPs support networks of arbitrary connectivity, it is more 

convenient to consider architectures of restricted form, namely MLPs with fully 
connected adjacent layers but with no connections between nodes of non-adjacent 



40 
 

layers. This architecture is denoted as “standard” MLP architecture. The MLP of 
Figure 20 is an example of a “standard” architecture. 

The number of input and output nodes depends on the pattern and target size, 

respectively. An MLP is supervised trained, using a fixed training set of P training 
pairs, with each training pair consisting of two real-valued vectors – a pattern qp with

1 q P≤ ≤ and the corresponding desired output qt . Individual pattern and output 

elements are denoted as ,i qp ( 01 i N≤ ≤ ) and ,j qt (1 Lj N≤ ≤ ), respectively. The 

output ,
l
i qy of node l

in is a function of its activation ,
l
i qa : 

 

, ,
m l
j i

l lm m
i q ij j q

n S

a w y
∈

= ∑ ,    0l > , m l<                    (32) 

, ,( )l l
i q i qy f a= ,   0l > .                     (33) 

 

It is obvious that the output of an input node 0
in is ,i qp for pattern q . The squashing or 

activation function ( )f x is both monotonic and continuously differentiable. The most 

frequently used function is the sigmoid function: 
 

1( )
1 xf x

e−=
+

.                     (34) 

3.4.2 MLP training 

MLP training is a supervised iterative process. At each iteration (or at each epoch) 
the network output for each pattern in the training set is calculated and the weights 
are being progressively adjusted according to the difference between the actual and 
the desired output, so that the output of the network is acceptably close to the 
desired output. How much “acceptably close” is the actual to the desired output is 
measured by an error (or energy) function for each epoch. Therefore, the main 
target of the training phase of an MLP is to minimize this error. 

Before training starts, the weights are initialized to small random values, in order 
to prevent saturation (where nodes are highly active or inactive for all patterns, and 
therefore insensitive to the training process) and symmetry. The choice of the 
initialization range of weights affects directly the performance of the MLP training. 
Weight initialization should ensure that the initial standard deviations of the network 
activations are in the same range for each node and lie within the normal operation 
region of the squashing function. A widely used weight initialization which satisfies 
all previously mentioned prerequisites is [17]: 



41 
 

2.4( )
1

lm
ij mr w

N
=

+
,                     (35) 

which sets each weight randomly with a distribution in the range of [ , ]r r− + . 

The error function E for each epoch is the sum of all partial errors pE produced 

from each pattern p : 

1

P

p
p

E E
=

=∑ .                      (36) 

Two are the most popular functions for the error of each pattern: the sum-of-
squares error function (SSE) 

2
, ,

1 1

1 ( )
2

LP N
L

i p i p
p i

E t y
= =

= −∑∑                     (37) 

 and mean-squared-error (MSE) which is a normalized version of sum-of-squares 

2
, ,

1 1

1 ( )
2

LP N
L

i p i pL
p i

E t y
PN = =

= −∑∑ .                    (38) 

The advantage of the MSE over the SSE is that it is insensitive to both the number of 
patterns in the training set and the number of output nodes in the network. 

However, both MSE and SSE proved to be sensitive in cases where the error 
function presents local-minima and multi-dimensional “plateaus”. In such cases, the 
network result is suboptimal, since the minimum number of misclassifications has 
been achieved. Therefore, other functions which improve network’s ability to escape 
from such regions are adopted. An example of such a function is the cross-entropy 
error function [15]: 

, ,1
, ,

1 1
ln[( ) (1 ) ]

L

i p i p
P N

t tL L
i p i p

p i
E y y −

= =

= − −∑∑ .                   (39) 

The above error function gives the ability to the network to progress in (and escape 
from) flat regions in weight space, since error gradients for poorly classified patterns 
are higher than MSE or SSE. 

The success of MLP training depends on how “acceptably small” E becomes. 
Once more, “how small” is task specific and needs not to be as small as possible –i.e. 

finding the minimum achievable E -, since, in such a case, the network will become 
over-trained, and therefore, MLP ability to generalize will decrease. The 
characteristics of the surface of the error function, indicates the strategy which most 



42 
 

probably lead to a reliable training. Most MLP error surfaces share a number of 
broad characteristics, such as [49]: 

• a high degree of smoothness, 

• extensive “plateaus”, 

• “narrow valleys” or “ravines”, 

• many weak minima, some of which local ones, 

• a degree of symmetry around the origin of the coordinate system used to plot the 
error surface. 

An example of an error surface with some of these characteristics is illustrated in the 
next figure. 

 

Figure 21: Example of MLP error surface. 
 

The role of the hidden nodes is crucial for the MLP training dynamics. A hidden 
node which duplicates the function of another hidden node and, therefore, is not 
needed for the training phase, is called redundant. Annema et al. [29] in their 
analysis of the MLP training dynamics, depict the importance of redundancy for the 

training phase.  Let l
iw be the weight vector consisting of all weights lm

ijw , connecting 

node l
in to its source nodes. The weight vector of a neuron corresponds to a 

hyperplane dividing the input space into two classes. During training, the weight 
vectors tend to converge towards specific attractor in the weight space [20]. 

3.4.3 Backpropagation 

Error-backpropagation, or simply backpropagation, is a reliable method for 
updating the MLP weights during the training phase. The backpropagation algorithm 



43 
 

for an MLP, implements the steepest (or gradient) descent method. The traditional 
backpropagation algorithm is known as batch or offline backpropagation and works 
as follows [13]: at each epoch k , the gradient kg is calculated and the weights of the 

network are updated according to  

1k k kw w w+ = + ∆  

k kw gη∆ = − ,       0η >                     (40) 

whereη is a constant heuristically chosen scalar, usually in range (0,1). The above 

equation is known as the generalized delta rule andη as the training rate. It can be 

also thought of as the backpropagation algorithm sets the search direction to kg− and 

moves towards this direction by a step length ofη  for every iteration k . This rule 

ensures the reduction of total network errorΕ as long as kg is greater than zero, but, 

however, it does not guarantee that the network will escape from a local minimum. 

The calculation of the gradient kg is being done in two phases: a forward and a 

backward pass. The forward pass generates the output ,
l
i py (see Eq.33) for the 

pattern layer 1l = to l L= . The backward pass calculates the partial error pΕ for 

pattern p and the corresponding partial gradient pg with elements p
lm
ijw

∂Ε

∂
such as: 

1
, ,

p l l
i p j plm

ij

y
w

δ −∂Ε
= −

∂
,                     (41) 

where the error termδ is given by 

, , , ,( ) ( )L L L
i p i p i p i pt y f aδ ′= −  

, , ,( )
l m
i j

m m l lm
j p j p i p ij

n T

f a wδ δ
∈

′= ∑ ,    m L< .                   (42) 

If the activation function is the sigmoid, f ′ is simply 

( ) (1 )f a y y′ = − .                      (43) 

Although efficient for many training tasks, batch backpropagation has several 
important drawbacks: 

• Whenever flat regions or narrow valleys appear, it often takes long to converge to 
a satisfactory error level. 

• Training effectiveness depends directly on the training rate. If training rate is too 
small, the network error will not be reduced sufficiently, whereas if it is too large, 
network error may stuck to a high level. 



44 
 

• It tends to get trapped in local minima. 

Due to these vulnerabilities, many variations of the original backpropagation 
algorithm have been proposed, in order to cope with problems such as local minima 
and flat regions. We present two of them, not necessarily the most efficient ones, 
but very helpful for this work. 

3.4.3.1 Backpropagation with momentum 

Rumelhart et al. [13] proposed a simple variation of the batch backpropagation 
algorithm, in order to speed up the training phase, by adding a momentum term in 
the generalized delta rule of Eq.40: 

1k k kw g wη α −∆ = − + ∆ .                     (44) 

The parameterα is user defined and is set in the range 0 1α≤ ≤ .Althoughα is task 
specific, it is typically set to 0.9. This approach actually made the algorithm to cope 
more efficiently with problematic regions –i.e. plateaus and narrow valleys- and 
therefore speed up the whole training process. However, there might have to be a 
reduction inη , in order to maintain network stability –i.e. constraint excessive 

weight changes.   

3.4.3.2  On-line backpropagation 

The most important variation of the original batch backpropagation algorithm is 
known as on-line backpropagation. The main difference between batch and on-line 
backpropagation, is that instead of updating the weights once per P backward passes 
(once per epoch), they are updated at each backward pass (i.e. P times per epoch). 
The weight update rule for the on-line backpropagation becomes as follows: 

, 1 , ,

, , , 0
k p k p k p

k p k p

w w w
w gη η

+ = + ∆

∆ = − >
.                     (45) 

An important issue aroused here is the choice of a suitable η  for each iteration k . 

Darken et al. [5] proposed the search then converge (STC) schedule, given by: 

0
0 2 2

0

1 ( / )( / )
1 ( / )( / ) ( )k

c k
c k k

η τη η
η τ τ τ
+

=
+ + +

,                   (46) 

where kη is the training rate at iteration k , parameter c is set greater than a 

threshold min1/ 2λ , with minλ being the smallest eigenvalue of the Hessian matrix of E . 

Parameterτ is related to the number of training epochs. The above guarantees an 
asymptotic rate of convergence for the on-line backpropagation. However, 



45 
 

convergence is highly dependent on parameters 0η andτ  which are estimated either 

heuristically or by prior knowledge about the task. 

Theoretically, on-line backpropagation has certain disadvantages compared with 
batch backpropagation. Although requiring more computational effort per epoch, 
on-line backpropagation does not ensure the reduction of total network error and 
does not provide highly accurate solutions. On the other hand, on-line 
backpropagation characteristics make it preferable in many cases. Due to its 
stochastic nature, on-line backpropagation prevents MLP to get trapped in local 
minima. Additionally, in cases where training set contains redundant information –as 
it usually does- since weights are updated more often, on-line propagation 
converges faster. Finally, on-line training is essential in cases where not all training 
patterns are known at the start of the training [49]. 

             

  



46 
 

 

  



47 
 

Chapter 4  
 
Hand Parameters Extraction and Tracking 

The extraction and tracking over time of the kinematics parameters, which 
express the position and pose of the human arm, constitutes the core of this work. 
The tracked parameters, namely the angles of arm’s joints, will be, eventually, the 
input of the neural network during the last phase of gesture recognition.  

 

 

Figure 22: Kinematic Parameters derived from low-level features. 



48 
 

The choice of the model has been based on three factors: simplicity, flexibility and 
efficiency. The key idea is to extract high-level information by using primitive 
features of the image, while, at the same time, keeping the processing cost at low 
levels. In other words, pixel values, provided by the input videos, are transformed 
into kinematic parameters which fully describe the pose of body and arms. 

The skin color tracker –presented in 3.2.2- detects skin-colored objects in the two 
images. By defining one blob as the head, the height of the user can be easily 
calculated, according to the extrinsics of the cameras, which finally is used to 
estimate the lengths of the upper limbs, based on anthropometric measures and 
proportions. 

Having estimated the position and the size of the upper body of the performer, 
inverse kinematics provide an initial estimation for the kinematic parameters (angles 
of shoulder and elbow as described in 3.3.3) of the arm. Finally, particle filters track 
the extracted parameters, and feed them to the gesture recognition module.  

Figure 22 illustrates the above described procedure. The input of the algorithm is 
solely the values of the images pixels. No previous knowledge about the scene or the 
user (e.g. height) is required. The only information about the setup provided is the 
intrinsics and extrinsics –extracted from cameras calibration- together with the 
height where the reference camera (arbitrary choice) has been placed.  

4.1 Head and Hands Positions 

Triangulation can provide the location of skin-colored objects (detected from skin-
color tracker as described in 3.2.2). However, in many cases, the estimation of 3D 
position with the use of triangulation is subject to considerable error, since it is 
sensitive to image noise and strictly dependent on the accuracy of the camera 
calibration process. 

Instead, particle filters are being used for estimating the position in space of the 
hypotheses by back projection of themselves. The first step is the determination of 
the hypothesis that stands for the head. This issue can be solved by assuming that a 
user will enter the scene in its normal pose; that is with the body straight (not bent) 
and with the hands hanging free at the height of thighs. This ensures that head will 
be the highest skin-colored object and, surely, in the upper part of the image.  

Let p=[X, Y, Z] be the position of a particle in space. The above assumption limits 
the Y-dimension. Z-dimension, namely the depth, is also by definition limited from 
the room’s size, which can be directly defined by the user or even calculated from a 
laser sensor. In either case, particle filter converges to a satisfactory estimation of 



49 
 

the depth. Note the reference to“estimation” and not to an accurate calculation. As 
will be described later in this section, accuracy of calculations is not a necessary goal, 
since the algorithm can sufficiently work with relative positions and proportions. 

As soon as at least two hypotheses have been tracked over a time period th, 
particles are deployed uniformly in space as shown in Figure 23(a). th is imposed in 
order to ensure that the hypotheses to be tracked are not accidental. Each particle is 
projected on each camera as explained in 3.3.1 and the distance of its projection 
from the corresponding centroid of the hypothesis will determine its weight as 
follows: 

( , )max ,0
m

m W

W

T d x cw
T

 −
=  

 
,                    (47) 

with 1 m M≤ ≤ where M is the predefined number of the particles. ( , )md x c denotes 

the Euclidean distance of the particle from the hypothesis’s centroid c. Finally WT
denotes the window, in pixels, –or equivalently the maximum distance- around the 
centroid where a particle can lie in order to take part in the resampling step. 
Although, this way may seem brutal, it works fine since the dimensionality and the 
nature of the space does not allow ambiguities. 

 The weights are then normalized so that particles will be resampled accordingly 
in the next step. Two weight thresholds are imposed: minW and maxW with min maxW W< . 

Particles with min
mw W< are excluded from the resampling step and new ones are 

generated from the remaining particles (note that sampling is done with 

replacement). As soon as there are particles with max
mw W≥ the filter is considered to 

have converged and the centroid of these particles becomes the centroid of the 
head. Usually three frames are enough for the algorithm to converge.  Finally, in 
order to lower the processing cost, whenever convergence happens, the number of 
remaining particles is decreased below the half of the original. 

 



50 
 

 

Figure 23: (a) Initial deployment of particles. (b) Particles have converged to the head (blue particles). 
 

Once the position of the head is estimated, separate particles for each hand are 
deployed. The process is the same as the one described before and is repeated until 
both hands are detected. The discrimination between left and right hand is of no use 
and, thus, isn’t performed. Finally, no motion model is used, since the framerate of 
the video ensures that possible movements will have small, or even negligible, 
effect. 

4.2 Shoulder Position Estimation 

The next step before the extraction of kinematics parameters is the estimation of 
the positions of the shoulders. As already stated, there is no need for accurate 
calculation of the depth, which is the factor that defines the relevant size of the user 
on the image. Therefore, arms and body size should be estimated according to the 
depth and height detected so far, since absolute values cannot be calculated. 

Art seemed to be very helpful in this issue. Leonardo Da Vinci was the first who 
studied the ideal proportions of the human body, as depicted in his drawing 
“Vitruvian Man”. What is equally interesting is that the length of each part of the 
human body can be approximated proportionally to the height of that human. More 
specifically, in “The Physics HypertextTM” [6], an essay on human body proportions 
analyzes the length of the upper limbs with respect to the height. The results of this 
essay proved to be very helpful for our work since the height can be easily estimated 
from the previous step of head detection. The table below presents the results of 
this essay. All arm parts can be estimated proportionally to the wingspan length, 
with ratios 0.15 and 0.11 for the forearm and the hand, respectively. Considering 
that the length of the wingspan is equal to the height of the human, and assuming 



51 
 

that the upper arm is approximately equal to the forearm, both shoulders position 
and arm length can be estimated. 

 

Figure 24: Arm length proportionally to height. 
 

One more issue still persists. There is no knowledge of whether the user looks 
straight to the camera or there is some angle to its pose; namely the rotation of the 
body about the Y-axis (vertical). This leads to the existence of several rotation angles 
which can correspond to the user’s pose seen by the camera. For example assume 
that the original rotation is around 90, that is when the camera sees the profile of 
the user. Based on the available information, such a case is exactly the same with a 
rotation angle of around 180. It is at least risky, if not pointless, to make any 
assumption here and exclude some of the cases. Therefore, for now, every rotation 
is considered –and will be treated- as valid until the dominant ones are decided. The 
number of rotations is predefined. Testing showed that an amount of 15-20 
rotations is adequate. 

 



52 
 

4.3 Kinematics Tracking 

Each of the candidate rotations represents a pair of shoulders, which will 
eventually be the “starting point” for the arms. This means that the arms are 
somehow coupled together, since they should “belong” to the same rotation. With 
respect to that, one would treat rotations and arms as one. Unfortunately, this 
would raise the complexity of the algorithm, since the dimensionality of the 
parameters space increases dramatically. Therefore, instead of treating the rotations 
and arms as one, we tried to decouple them, without neglecting the natural 
limitations imposed.  

4.3.1 Hand tracking 

Two sets of particles are deployed for every rotation; one for each arm.  Each arm 
is tracked separately to the other, but with respect to the corresponding rotation. 
Thinking of this abstractly (with no correspondence to particle filters), it would be 
acceptable to say that every rotation particle “proposes” two arms. The proposed 
arms determine the weight of each rotation particle. Finally, the dominant rotation is 
determined by the resulting weights. 

Each arm particle keeps track of the kinematic parameters of the correspondent 
arm; the four angles as discussed in 3.3.3.2. By solving the forward equations, its 
location in space can be estimated. The projection of particle on the camera will 
determine its weight. Still, no motion model is necessary. 

4.3.1.1 Initialization 

Although the dimension of the parameter space is small enough, the number of 
particles required to cover all cases is prohibitive. Therefore, in order to use only a 
small number of particles, a good initial estimation of the kinematic parameters is 
crucial. This can be done by solving the inverse kinematics equations presented in 
3.3.3.3, since the positions of both the base (shoulder) and the end effector, 
together with the length of the links, are known.  

The kinematic parameters are estimated for both hands, for every rotation. 
Moreover, since the rotation angle of the elbow around the shoulder-palm axis is 
still unknown, particles for every possible pose of the elbow (that is every possible 
elbow for every hand for every rotation) will be created. Certainly, there will be 
cases where the kinematic equations give no solution. This is desirable since not 
every rotation fits to the real one.  



53 
 

4.3.1.2 Hand particles weighting function 

The weighting function is similar to the one used for the position estimation in 
4.1. Once the kinematic parameters have been estimated –either from inverse 
kinematics or from previous iterations- the locations of the elbows and the palms 
can be estimated, by solving the forward kinematics equations. The distance 
between the projection of these locations and the centroid of the correspondent 
object hypothesis will determine the weighting factor of each particle.  

 However, there is still a factor which can lead to poor results: the angle of the 
elbow rotation φ. It is obvious that not every value of φ is acceptable since it can 
sometimes lead to unnatural results. In order to cope with that, not only the 
shoulders and palms are projected, but also the elbow. The projection of the elbow, 
in order to be “acceptable”, should lie inside the foreground area. 

The ideal foreground image, on which the elbow should be projected, would be a 
representation of the actor’s skeleton. In that case, every estimated elbow would be 
limited only to its real position. Unfortunately, this is not yet feasible because of two 
factors: 1) performing skeletonization on the input image would add an excessive 
computational cost and 2) the foreground image contains “unnecessary” parts, such 
as clothing or even the skin. 

However, the foreground mask could be very helpful in order to approximate the 
actor’s skeleton. Since accuracy in this task is not one of the main goals, this problem 
can be solved by simply contracting the foreground mask by some pixels. Therefore, 
the area of each arm is decreased, approximating the actor’s skeleton shape, as 
depicted in Figure 25(b). The resulting image consists of values equal to 1 for pixels 
lying in the contracted (thinned) foreground area, and 0 otherwise. 

 

Figure 25: (a) Original foreground mask. (b) Contracted foreground mask. 
 



54 
 

The elbow is, therefore, projected on the contracted foreground mask image. The 
corresponding value will determine the influence of the elbow on the particle’s 
weight. Finally the weighting function for the arm particles is given by: 

( , )max ,0
m

m W
F

W

T d x cw h eE
T

 −
= + 

 
,                   (48) 

where h and e denote the influence of each factor on the weighting function and add 

up to 1. FE denotes the value of the projection of the elbow on the enhanced 

foreground mask image. 

Two thresholds are introduced: minW ′ and maxW ′ . As in 4.1, particles with min
mw W ′<

will be replaced during the resampling step, whereas, particles with max
mw W ′> will 

determine the centroid of the candidate solution. Additionally, since resampling will 

take place from only particles with min
mw W ′> , the weights of these particles are 

normalized for the number of particles with min
mw W ′>  such as: 

1
/

M
m m j

j
w w w

=

= ∑                      (49)  

with min
mw W ′>  and min

jw W ′> . The normalized weight of each particle represents 

the probability of that particle to be drawn during resampling phase. 

Resampling of arms cannot be done at this moment because of the coupling 
between arms and rotations. This coupling enforces the resampling of hand particles 
to depend directly on the rotation particles weights which is discussed in the 
following section. However, due to this coupling, rotation weights depend on the 
hand weights as well.  

4.3.2 Rotation tracking 

The resulting rotations from section 4.2 constitute the initial estimation for the 
rotation particles. Note that the only parameter tracked by rotation particles is solely 
the rotation angle. Therefore, as discussed in the previous section, the weight of 
each rotation particle depends on the weights of the hand particles assigned to each 
rotation. The weighting function for the rotation particles can be then given by: 

1 1
0.5 / 0.5 /

M N
r m n

L R
m n

w w M w N
= =

   = +   
   
∑ ∑ ,  

min min,m n
L Rw W w W′ ′≥ ≥                      (50) 



55 
 

with 1 r R≤ ≤ and R the number of rotation particles and1 m M≤ ≤ ,1 n N≤ ≤ with

M and N the number of particles with minw W ′≥ for the left and right hand, 

respectively. Note that the above equation uses the mean value of the non-
normalized weights of the particles. Finally, the weight of the rotation particles is 

normalized. Once more, two thresholds are being used: min
RW and max

RW which 

determine the influence of the particles during resampling as described in 4.1. 

What is interesting here is that the weight of each rotation particle with min
r Rw W>

not only represents the probability of this sample to be drawn, but also determines 
the resampling for the hands. To make this clear consider the following example. Let 
L1 and L2 be two particles of the left hand with normalized weights of 0.2 and 0.4, 
respectively. Additionally there are two rotation particles, R1 and R2, with 
normalized weights equal to 0.4 and 0.1, respectively and 1000M = . This means that 
400 hand particles have to be drawn from the set of particles assigned to R1 and 100 
from those assigned to R2. Assume finally that L1 is assigned to R1, L2 is assigned to 
R2 and that there are other hand particles as well assigned to both rotations. Then, 
80 left hand particles will be drawn from L1 and 40 from L2. 

This is reasonable since, as stated earlier, each rotation particle “represents” a set 
of pairs of hands. By doing this, we manage to limit the participation of rotation 
particles which are not naturally –by means of human joints limitations- acceptable. 
On the other hand, multiple pose hypotheses are being tracked simultaneously. 

4.3.2.1  Resampling 

The resampling of the rotation particles is done according to the weight of each 
particle. The weight represents the probability of each particle to be drawn. The new 
samples are drawn from a Normal distribution with mean the value of the particle 
parameter –in this case the rotation angle- and deviation either a predefined value, 
or a function of the weight. Finally, in order to keep computational cost as low as 

possible, whenever there is at least a particle with max
r Rw W≥ , which means certainty 

about the real rotation, the number of rotation particles is reduced as well. 

4.3.3 Hand particles resampling 

The resampling of the hand parameters particle is based on both the weights of 
each hand particle and the weight of the correspondent rotation, as explained in the 
previous example. Each new sample’s parameters, namely the four joint angles, is 
drawn from a –separate for each parameter- normal distribution with mean value 
the corresponding parameter value of the seed particle and deviation equal to a 



56 
 

predefined value. Like before, whenever there is at least one hand particle with

max
mw W≥ , the number of the remaining particles is reduced. 

4.4 Tracker’s Output - Clustering 

The algorithm presented in the previous sections, manages adequately to export 
high-level information, such as kinematic parameters, with the use of a minimum 
amount of input. Moreover simplicity and efficiency is preserved, while 
computational cost is kept low. 

The result, however, of previous stages is a set of weighted particles and not a 
single pose. Note that although multiple poses are being tracked, they are similar to 
each other7

max
mw W ′>

. Therefore, they could be represented by a single pose. A very efficient 
way for representing the output pose is by clustering the hand particles with

of the most dominant rotation particle. The centroid of the bigger cluster 

(which contains most of the nodes) will constitute the output of the tracking 
algorithm.  Unfortunately, due to the number of deployed particles (several 
thousands) and the dimensionality of parameter’s space, clustering adds a large 
computational load to the system, and thus increases the time needed for the 
processing of each frame –at least 10 seconds per frame, depending on the number 
of particles.  

 

Figure 26: Kinematics Tracker Output. 

 The extracted kinematic parameters, will be the input for the last stage; the 
gesture recognition phase. Figure 26 illustrates the output produced by the 

                                                             
7 Their projections on the camera are more or less the same, despite the actual pose. 



57 
 

kinematics tracker, depicting the extracted kinematic parameters, joint locations in 
space and their projections on the cameras. It is obvious that the constructed model 
is accurate enough, although abstract. Therefore, the gesture recognition process 
becomes even easier, due to the stability of the output. 

 

 

 

 

 

 

 

 

  



58 
 

 

  



59 
 

Chapter 5  
 
Gesture Recognition 

In this final phase of the hand gesture recognition system, the extracted 
kinematic parameters of the hands are being translated into meaningful information 
about a possible ongoing gesture. This involves a mechanism capable of discovering 
and recognizing gesture patterns from the input data. Moreover, apart from 
efficiency, that mechanism should fulfill a crucial requirement: ability of 
generalization.  

Here, generalization has both spatial and temporal meaning. Both aspects can be 
easily understood by considering the variety of each gesture together with the way 
with which each human carries out a gesture. To clarify this, assume a pointing 
gesture (“go there”) carried out by a person with the left hand. First of all, depending 
on the desired direction, a pointing gesture can have various spatial representations. 
Additionally, even when the direction of the gesture is the same, there will always be 
slight differences in the exact pose of the hand. Finally, when executed by the same 
or different persons, the duration of each gesture may differ. 

A tool which fulfills the above criteria is Neural Networks. More precisely, MLPs 
(as described in 3.4) proved to be very efficient in pattern classification tasks, having, 
in the same time, great generalization capabilities. Moreover, supervised 
backpropagation training of MLPs, seems more likely to adapt to the needs of the 
gesture recognition nature, since it is most probable that, due to the complexity of 
the parameter space, error surface will present local minima and plateaus. Before 
proceeding to the presentation of the neural network used in this phase, we have to 
cope with two problems produced by the output of the pose tracker: output 
interruptions and discontinuities. 

Due to corrupted video input –i.e. lost frames- or poor tracking results, there is a 
possibility for some frames to produce no output. On the other hand, as multiple 
pose hypotheses are being tracked simultaneously and it is not –and should not be- 



60 
 

guaranteed that the same hypothesis will be the one producing the output over 
time, hands movement may not be smooth, jumping from a certain pose to a very 
distant one. Both problems can be solved by filtering the output passed to the neural 
network. Instead of producing an output at each frame, it will be produced either 
whenever there is a significant change of the hand pose or after a predefined period 
of inactivity (with no new output produced). 

In order to constrain output discontinuities though and, thus, preserve as much 
motion smoothness as possible, the change of the pose should not be too intense. In 
combination with the previous, this implies the use of two threshold values which 
determine if and when an output set should be produced. An output will be 
produced only when the observed pose change lies between the two threshold 
values. The use of these threshold values ensures time invariance of the output, 
since regardless of the speed with which a gesture is executed, it will be 
discriminated spatially and not temporally.  

5.1 Gesture Recognition Scheme Overview 

In the observed scene, the actor is supposed to perform gestures with both 
hands, possibly simultaneously. Therefore, the output of both hands has to be 
processed for possible ongoing gestures. Since there is no prior knowledge of 
whether a hand performs a gesture –and which hand is the performing one- the fact 
that both hands are being tracked implies that at each frame, nine parameters (4 
angles for each hand and the body rotation around the Y-axis) should be fed as input 
to the neural network. The complexity and the dimensionality of the parameter 
space, however, restrict any successful training of the neural network. 

To cope with this, a first step is to use a separate neural network for each hand. 
The space dimensionality is now reduced to 5 –the body rotation has to be kept for 
both hands- which enables an acceptable training of the network. Unfortunately, 
parameters are vaguely deployed in space resulting to possible ambiguities between 
different gestures. Despite the fact that the complexity of the dataset is decreased 
by processing each hand separately, trying to recognize different gestures with a 
single neural network, will most probably lead to very poor results. Moreover, if 
each neural network is responsible for the recognition of multiple gestures, the final 
“translation” of each network’s output will not be an easy task.  

Consequently, further division of neural networks is compulsory. A distinct neural 
network will be assigned to each gesture for each hand. This means that if there are 
N=3 gestures to be recognized, a total number of six neural networks will be 
employed. The independency of the neural networks guarantees the absence of 



61 
 

recognition ambiguities, since each network will be responsible for a linear 2-D 
classification; namely ‘0’ if the trained gestured is not being executed and ‘1’ 
otherwise. 

 

Figure 27: Gesture Recognition Scheme. 
 

However, a case where more than one neural networks claim that a gesture is 
being carried out is possible. In reality, the output of each network is set in the 
continuous range of [0, 1], depicting the certainty for the corresponding gesture. 
Therefore, all outputs can be set and combined together in order to end up with a 
final decision of the ongoing gestures. Plural is used since both hands might perform 
gestures simultaneously. Figure 27 illustrates the idea described above. The outputs 
of the neural networks are being “filtered” by a simple the-winner-takes-it-all gate, 
which is responsible for the final decision. 

5.2 Neural Network Architecture 

The architecture of each neural network, should adapt to the needs of the gesture 
modeling in order to provide accurate results. In this work, each gesture is a dynamic 
structure, which means that it is formed by a set of sequential arm poses. In other 
words, a single frame (i.e. a single arm pose) does not provide any information about 
a possible ongoing gesture. Therefore, each output, provided by the kinematics 
tracker, should be processed in combination with the preceding outputs. 



62 
 

By considering the way that each output is produced –as described at the 
beginning of this section- it is guaranteed that a small amount of preceding outputs 
can depict a significant pose change (or movement) of the arm. This fact implies that 
only a small number of input nodes is needed. The neural network architecture used 
is illustrated in Figure 28, where p(t) denotes the angle quadruplet (θ1, θ2, θ3 and θ4) 
at time t.  

 

Figure 28: Gesture Recognition Neural Network Architecture. 
 

In the above figure, the connections between nodes of different layers have been 
omitted for the sake of brevity, while each input node represents, in reality, four 
separate input nodes. The output produced lies in the range [0, 1], where values 
close to 0 and 1 depict that the trained gesture isn’t, or is, respectively, being 
performed. Here, the second layer is used for generalization reasons. With M>N the 
data are spread throughout the network, achieving better representation and 
relevance between them. 

Having determined the architecture of the neural network, we can proceed to the 
description of the training phase. At first, a closer look on the training datasets needs 
to be taken. 

5.2.1 Training datasets 

The datasets used during the training phase have to be both realistic and, if 
possible, accurate. Obviously, the output of the tracker will be the input dataset for 
the training phase, in order to maintain relevance between training and actual data. 
However, even in this case, a great obstacle occurs, imposed by one of the main 
advantages of the kinematics tracker: tracking of multiple hypotheses. As several 



63 
 

body (rotation around the Y-axis) and arm (kinematic parameters) hypotheses are 
being tracked simultaneously, and given that there is no apparent way to eliminate 
some of them, multiple possible outputs are extracted. Since hypotheses are 
irrelevant to each other, severe discontinuities of angle values might appear, making 
training impractical.  

Fortunately, kinematics tracker results for each body rotation seem to be stable. 
Here, ‘stable’ means that, given a fixed rotation value, the promoted arm hypothesis 
–chosen by clustering or by simply comparing the weights- represents the actual 
scene and preserves relevance from frame to frame. Therefore, it is convenient to 
use datasets produced with a fixed body rotation value, simplifying network training 
both in efficiency and time consuming terms. 

5.2.2 Network training 

Having a realistic representation of each gesture through the training datasets 
enables fast and efficient training of the neural network. It also gives the possibility 
of using simple training techniques and error functions, as the nature of the datasets 
overcomes most of their disadvantages. 

As described before, each gesture consists of a sequence of poses (outputs), 
which imposes that network weights should be updated for every new input. 
Therefore, the training technique that suits the most to the examined problem is 
that of online backpropagation (as discussed in 3.4.3.2). Additionally, in order to 
impose pattern continuity, the weight of each node is calculated based on the 
momentum weighting function described in 3.4.3.1 Eq. 44. 

For each new input, the current output is calculated based on the estimated node 
weights. The error which depicts the difference between the current and the 
expected output is calculated based on the Mean SSE function presented in Eq. 38. 
The reason of this choice is that input data present many similarities –different 
gestures may have similar or same subsequences-, which leads to the existence of 
sub-optimal solutions. Mean SSE copes efficiently with this type of problems. 

Since the desired output lies between 0 and 1 (gesture isn’t or is performed), a 
fine representation is the sigmoid function of Eq. 34. Figure 29 presents a snapshot 
captured during training phase, where current and desired (expected) output 
together with the average network error are shown.   

 



64 
 

 

Figure 29: Neural Network Training. 
 

Learning rate, momentum value and number of epochs should be adjusted 
according to the specific task. Although momentum value can be the same for all 
input datasets, the more complex the dataset is, the smaller learning rate and the 
larger number of epochs is needed in order to cope with discontinuities and 
suboptimal solutions. For example, in some cases where datasets presented 
similarities up to 1000 epochs were needed for the network to converge, while in 
cases where the datasets where simpler (classification of data was more “obvious”) 
the network converged in only 400-500 epochs. However, the values for these 
parameters should be chosen carefully in order to avoid over-training of the 
network, which will eventually prevent generalization. 

Finally, the convergence threshold (i.e. the acceptable average error value) is 
another parameter which should be carefully chosen: too high and the network 
won’t perform efficiently; too low and the network won’t be able to generalize. An 
acceptable value for the convergence parameter seemed to be approximately 0.05.  

5.3 Gesture Modeling and Network Choice 

The above issues concern the sequential nature of each gesture. However, this 
does not unambiguously distinguish gestures, since parts of their motion paths are 
similar –if not identical. While different gestures share the same –or similar- paths, it 
is possible that both training and recognition phase will fail. In order to cope with 
this problem, the first two rules of the Definition 3, expressed in 2.1.2, seem to be 
very helpful: 

 



65 
 

Rule 1: Gesture interval consists of three phases: preparation, stroke and retraction. 

Rule 2: Hand configuration during the stroke follows a classifiable path in the 
parameter space. 

Indeed, most of the hand gestures can be divided into three phases: preparation, 
stroke and retraction. Additionally, whereas preparation and retraction phases of 
each gesture are practically identical, the stroke phase is clearly distinguishable 
between gestures. This fact can be used to minimize possible ambiguities, since it 
enables a stricter and more robust gesture modeling.  

In order to employ these rules into our neural network scheme, each phase is 
assigned to a separate neural network. Assuming that preparation and retraction 
phases are the same for every gesture, the additional computational load is limited, 
since only two neural networks will be added. Moreover, the proposed gesture 
modeling clearly outlines the “borders” between different gestures and thus, 
facilitates the classification between both the gestures and the phases they are 
consisted of. The resulting gesture recognition scheme is illustrated in Figure 30.  

 

Figure 30: Final Gesture Recognition Scheme. 
 

The above scheme increases the accuracy of the gesture recognition system, since 
it makes different gestures clearly distinguishable. It eliminates most of the possible 
ambiguities, since gestures no more share common “paths”. Still, some factors have 
to be tuned in order to end up with a capable gesture recognizer. 



66 
 

5.4 Recognizing Gestures 

Although for training purposes it is feasible to have a fixed body rotation, this is 
not the case when trying to recognize a gesture performed by an actor, in an 
unknown scene without previous knowledge of its pose. Therefore, gesture 
recognition might become tricky, since we are not able to promote just one 
hypothesis. Moreover, kinematic parameter values of different body rotations are 
completely irrelevant to each other, having large difference, even if the actual pose 
is the same. 

A solution to that is given by clustering the candidate body rotation hypotheses 
and applying the gesture recognition scheme presented in Figure 27 for each of the 
clusters. This is derived from the fact that, no matter the explicit angle values, there 
is direct relevance between the angles of the training fixed rotation and the ones of 
each rotation extracted from the kinematic tracker.  

The decision for a possible ongoing gesture is therefore an easy task. Although 
there will be several network outputs (one for each cluster), only those 
corresponding to the cluster representing the actual pose will be valid. However, the 
number of clusters should be carefully chosen, since a large amount of clusters could 
increase execution times and might decrease recognition efficiency. 

The gesture recognition from the neural network follows more or less the 
procedure of the training phase. Each new input is propagated through the network 
(based on the nodes weights calculated during training) in order to have the final 
output. Output with value close to 0 depicts that no gesture is recognized, whereas 
output value close to 1 means that the trained gesture is being performed.  

  

 



67 
 

Chapter 6  
 
Results 

The main target of the current thesis was to develop a robust and efficient 
gesture recognition system. Moreover, this work focused on the extraction of high-
level information –like kinematic parameters-, which will finally facilitate the gesture 
recognition problem, with minimum a priori information.  

Indeed, the developed system performed more than adequately in the examined 
cases. Evidently, the novelty introduced by this work is the abstraction achieved in 
gesture modeling. The assumption that common gestures can be expressed, and 
therefore recognized, without detailed knowledge of the arm configuration proved 
to be valid. On the other hand though, gestures which contain high level of detail –
e.g. where the configuration of the fingers is needed- are excluded from recognition. 
Still, the number of gestures that can be recognized remains large, including mostly 
deictic, navigating and manipulative types of gestures (see Chapter 2). 

Since hands are being tracked independently, gestures can be recognized on one 
or both hands. Therefore, combinatorial gestures, where actions from both hands 
are needed, can be easily recognized. In our test cases, three types of gestures have 
been examined: pointing, hello and attention. A straight raised arm indicates a 
pointing gesture, while a bouncing forearm might imply a hello gesture. Whilst 
pointing and hello gestures are being carried out by a single hand (they can also be 
tracked for both hands), attention gesture is being performed by both hands. In fact, 
it is recognized whenever both hands perform a hello gesture simultaneously. 

Although our main goal is the recognition of hand gestures, the process of hand 
tracking, which extracts the parameters that are fed to the neural network, is crucial. 
Accurate hand tracking facilitates hand gesture recognition. Therefore, a closer look 
at the results of the kinematics tracker needs to be taken. 



68 
 

6.1 Hand Tracking Results 

As already discussed, the basic idea behind the hand tracker is the development 
of a simple and efficient system. This target has been more or less achieved, since 
with the use of simple mathematics and algebraic transformations, pixel values lead 
to the extraction of high-level information, which can adequately model the human 
arm. Hence, the performance of the hand tracker is accurate in most cases at hand. 

6.1.1 Calculation accuracy and prior scene knowledge 

One of the main advantages of the proposed methodology is that there is no need 
for highly accurate calculations. On the contrary, possible errors produced at each 
stage (skin-color tracking, particle filters, kinematics), do not have an immense effect 
on the final outcome.  A representative example of this is depicted in Figure 31. In 
this result, the right camera accidentally moved after the calibration process, which 
means that the extracted extrinsics did not anymore match the actual ones. 
Although this was noticed during the experiments, it did not have a significant 
impact on the produced results. 

 

Figure 31: Right Camera moved after calibration. 
 

What’s also worth mentioning is that there is no need for prior knowledge about 
the scene and/or the actor. The anthropometric proportions used ensure the 
adequate limb length estimation, regardless of the actual proportions of the actor. 
Therefore, the performance of the hand kinematics tracker is within acceptable 
limits without prior training with respect to the actor and/or environment.  

6.1.2 Initialization procedure  

The initial estimation of arms pose is a crucial part of the hand tracking process. 
Ideally, most of the deployed particles should reflect –or should be close to- the 



69 
 

actual pose. However, the dimensionality of the sampling space –i.e. four degrees of 
freedom for each hand- presents an obstacle to particle initialization. Interestingly, 
the use of inverse kinematics for initial pose estimation gave promising results, 
facilitating the rest of the process. 

 

 

Figure 32: Initialization using Inverse Kinematics. 
 

In Figure 32, two cases are presented, being appropriate to demonstrate the 
effect that inverse kinematics have on the initialization process. In Figure 32(a) 
initialization has been done randomly, while in Figure 32(b), inverse kinematics have 
been used for obtaining the initial estimation of the kinematic parameters. As a 
result, more particles reflect the actual arms pose for various body rotations. This 
fact has a beneficial impact to the tracking process, as convergence is largely 
facilitated. 

6.1.3 Robustness 

During our experiments, simple web cameras have been used as input devices. 
This led to poor video quality and/or corrupted videos with missing frames. Although 
this constitutes an additional problem, it was easily solved by fine-tuning two of the 
parameters used in kinematics particle filtering: window margin WT  and resampling 

deviation value. By increasing WT , the acceptable distance of the hand projection 

from the projection of the skin-colored blob increases proportionally. In cases where 
some frames are lost, particles, which in other cases would have been eliminated, 
continue to be part of the tracking process, increasing the odds for the tracker to 
converge. On the other hand, resampling deviation declares the margin inside which 
a particle can lie. Small deviation value does not allow particles to approach the 



70 
 

actual arm pose, in case of missing frames. Another factor that contributes toward 
this is the multiple hypotheses tracking. Despite the significantly small number of 
particles used, tracking multiple possible poses ensures, up to a scale, that, 
eventually, the tracker will converge to the actual actor pose. 

 

Figure 33: Missing frames do not affect the tracking process. 
 

Figure 33 illustrates an example where some frames are missing from the input 
video. Although the difference was immense (consider that the framerate of the 
input video is approximately 25 fps, which normally implies slight changes from 
frame to frame), the tracker managed to converge in only 4 frames. Additionally, due 
to the thresholds imposed (discussed in Chapter 5), tracker output remained stable, 
as transitional outputs might be unpredictable. 

Margin window and resampling deviation values, however, should be carefully 
chosen, in order to be both realistic to human capabilities and able to cope with 
discontinuities. Excessive increase of these values might lead to unwanted results, 
which will eventually lead to failure of the tracking process. The next figure depicts a 
case where the deviation chosen could not represent the actual pose of the actor. 
Consequently, the tracking process produced false results. 

 

Figure 34: Tracker failure due to unsuitable deviation value. 
 



71 
 

On the other hand, if window margin and resampling deviation are set so that 
they reflect the reality, hand tracking performs efficiently in most cases, even 
ambiguous ones as the one presented in Figure 35. For comparison reasons, the next 
figure is cited, illustrating a similar scene but with altered deviation value. The 
results, apart from obvious, are quite accurate.  

The resampling deviation can be abstractly thought of as being a measure of 
change priority of the kinematic angles. In general, resampling deviation of θ4 angle 
–namely the angle of the elbow- should be kept smaller than the ones for the rest 
angles. However, large differences of resampling deviations might end up with false 
outputs (like the one illustrated in Figure 34). An acceptable value for the deviations 
of θ1, θ2, θ3 seemed to be approximately 0.08 and 0.05 for the θ4 angle. 

 

Figure 35: Correct tracker results after parameter fine-tuning. 
 

6.1.4 Time invariance 

Due to the rate and the criteria, based on which the output is produced, 
invariance on the timing that each gesture is performed has been achieved. Having 
fixed gesture duration, or fixed gesture path, would limit the gesture recognition to 
the actor that trained the system. Instead, by imposing appropriate rules to the 
produced output, gesture recognition can be equally efficient for different actors, 
and consequently different gesture speeds and paths. This, along with the fact that 
no prior information exists regarding the actor and/or the scene (see section 6.1.1), 
makes the hand tracker completely independent on the actor and the scene. 

6.1.5 Pose and depth ambiguities 

Although accurate for the majority of the examined cases, uncertainties 
concerning the depth, and consequently the actual pose, may arise. This is caused 
mostly due to the absence of depth calculation (except for the initial estimation), 
which therefore implies that two completely different poses can have equal weights. 
Figure 34 can also be an example of failure due to depth ambiguity. In that case, it is 
possible that the tracker could never resume on the actual pose. 



72 
 

Hopefully, tracking of multiple hypotheses can cope with this problem, as the 
tracker will eventually converge to the actual pose if the corresponding hypothesis is 
being tracked. Moreover, since several gesture recognition modules are being 
executed simultaneously (discussed in 5.4) –one for each rotation hypothesis cluster- 
it is likely that depth ambiguities might not be an intractable obstacle.  

6.1.6 Execution time 

The main drawback of the proposed methodology is the long execution time 
needed. Despite the efforts to minimize the number of deployed particles, which are 
the most time consuming modules, this figure cannot be limited significantly, since 
there should be an adequate number of particles in order to cover several 
hypotheses. To make things worse, the already long execution time has also some 
important side-effects: it prevents the clustering of the hypotheses, which would 
lead to even more accurate (and stable) results.  

Without performing hypotheses pose clustering, in order to process each video 
frame, up to four or five seconds are needed. By performing clustering, this number 
becomes excessively large. In some cases, the time needed to process a single frame 
was more than 30 seconds, which is clearly prohibitive. 

6.2 Gesture Recognition Results 

Having an output as accurate as possible from the hand tracker facilitates both 
neural network training and gesture recognition processes. However, although 
gesture recognition performed efficiently in most cases, some small problems may 
occur. For example, gestures might have similar (or same) subparts, which will lead 
to a temporal false positive outcome. The term “temporal” is used since, eventually, 
the network will converge to the desired output, as input data are being fed 
sequentially. In order to have a better overview of the produced results, both 
network training and gesture recognition results will be presented.  

6.2.1 Neural network training 

Various configurations have been tested in order to find a balance between 
effectiveness and training time. Despite the fact that the chosen architecture itself –
the use of two hidden layers- imposes a significant processing load, it should not be 
altered due to the nature of the input data (similar gesture subparts as discussed 
earlier). On the other hand, the addition of a third hidden layer does not guarantee 
increase of effectiveness. 



73 
 

Neural Network training phase is directly dependent on the nature of the input 
datasets. Consequently, training parameters -such as learning rate, momentum, 
number of epochs and number of hidden nodes, should be adjusted so that they 
ensure increased efficiency and ability for generalization (or should constraint 
network’s over-training). After numerous trials, an acceptable number of nodes of 
the two hidden layers found to be N=25 and M=90, while, in order to keep 
reasonable training times, the number of epochs was limited to 100. 

 

Figure 36: Despite the uncertainty, the network converges to the expected output. 
 

Due to the sequential nature of the datasets, learning rate preferred to be kept in 
low-levels and approximately around 0.1. Finally, the momentum value was set to 
0.8, not deviating significantly from the proposed value in 3.4.3.1.  

In general, network training was successful with the use of the above 
configuration. The above figure, illustrates the case where the trained gesture 
presents similarities with another one, leading to false positive outputs. After the 
weight update, and within a few iterations, the network managed to converge to the 
desired output (depicted as Exp). Training, however, took long enough for each 
gesture (approximately two hours), which was the only drawback of the training 
phase.  

6.2.2 Gesture recognition 

It is obvious that the success of the gesture recognition does not rely solely on the 
effectiveness of the training phase. Without a representative gesture modeling, 
which implies the clear distinction between different parts of each gesture, many 
false positives might occur due to large overlapping areas. However, temporary 
ambiguities do not completely vanish, since gestures, naturally, continue to share 
similar subparts, no matter their modeling. Fortunately, these ambiguities are being 
eliminated fast enough.   



74 
 

As already mentioned, resampling deviation plays a crucial role to the recognition 
procedure. Additionally, if the chosen deviation isn’t capable of covering the real 
case, it can even enhance the depth ambiguity problem, leading to unsuccessful 
tracking results and, consequently, to gesture recognition failure.  

During the experiments, three different types of gestures have been tested: 
pointing, hello and attention gestures. While pointing and hello gestures need to be 
trained first, attention gesture does not require any further training since it is 
formed whenever both hands perform a hello gesture. Let’s have a closer look to the 
results produced for each of the examined gestures. 

6.2.2.1 Pointing gesture recognition 

Pointing gesture can be generally characterized as an “easy” gesture to be 
recognized. However, there are cases –like the one when the actor points directly to 
the camera- where depth ambiguities and wrong resampling deviation can prevent a 
successful recognition.  

In the simple case where the real pose can be straightforwardly derived –namely 
cases where there is no ambiguity concerning the depth- the gesture recognition 
met almost no obstacles. Figure 37 illustrates a successful recognition of the pointing 
gesture, with the actor pointing on his right side. 

 

Figure 37: Successful recognition of right pointing gesture. 

However, when the actor points directly to the camera, the recognition can 
sometimes fail; mostly because of the false parameters produced by the tracker. 



75 
 

Figure 38 depicts such a case, where, obviously, the parameters do not match the 
actual arm pose. Therefore, no matter how effective the network training has been, 
there is no gesture pattern which could match with the produced parameters. 

 

 

Figure 38: Failure to recognize the performed gesture due to unsuitable resampling deviation. 

 

 

Figure 39: Successful recognition after resampling deviation fine-tuning. 



76 
 

The above failure occurred because of the fact that the chosen resampling deviation 
led to wrong pose estimation. Fortunately, a careful choice for the deviation values –
as the ones mentioned in 6.1.3- was beneficial for the recognition procedure, having 
as result the successful recognition of the performed gesture, as illustrated in Figure 

39. 

6.2.2.2 Hello and attention gestures 

As already stated, the attention gesture is being performed whenever both hands 
perform the hello gesture. The following figures illustrate a representative example 
of an attention gesture recognition experiment. During this test case, although the 
preparation step has been successfully recognized, for a short time period after that, 
two networks were producing high outputs and were competing with each other for 
the final gesture decision. Although, this case is, unfortunately, inevitable, the 
appropriate gesture modeling and network training enable the fast recovery of the 
system. 

As the sequence starts, no gesture (or part of a gesture) is recognized. After a few 
frames of inactivity, the preparation phase is recognized for both hands, as depicted 
in Figure 40. This does not affect the rest of the neural networks, which keep 
producing outputs, since all kind of actions can follow. However, notice that the two 
main gesture networks (responsible for hello and pointing gesture) do produce an 
average output, around the value of 0.5. This occurs because during the training of 
the preparation phase, and in order to apply the meaning of “preparation” into the 
gesture and to preserve smooth state transitions, the main gesture networks were 
producing an output of 0.5.  

With the above fine-tuning in place, the transition from one phase to the other 
was indeed smooth. However, as depicted in Figure 41, the decision was not the 
correct immediately. As observed, although the actual gesture of both hands is the 
“hello” gesture, the recognition of the gesture performed by the left arm failed, due 
to both tracking misdetection and the fact that the state of the arm fits to both 
gestures. 

 



77 
 

 

Figure 40: Gesture Preparation. 
 

 

Figure 41: Uncertainty concerning the gesture performed by left arm. 
 

A few frames later, however, things seem to clear up, since the followed path 
differs completely from that of the pointing gesture (where the arm remains 
practically stable). Observe the difference of the outputs between these two frames 
(Figure 40 and Figure 41). The output of the network responsible for the hello 
gesture has been increased, while the output of the pointing network has been 



78 
 

decreased significantly, allowing the extraction of a safe decision about the ongoing 
gesture.  

 

 

Figure 42: Attention Gesture successfully recognized. 
 

 

  



79 
 

Chapter 7  
 
Discussion 

In the current thesis, a probabilistic approach for recognizing hand gestures has 
been proposed. The main goal was the extraction of high-level information with the 
minimum knowledge regarding the scene and/or the actor. The core of our work was 
based on the assumption that many common hand gestures do not require detailed 
information in order to be recognized. This facilitated the decrease of the space 
dimensionality and, hence, the complexity of the problem. By doing so, the tracking 
of arm parameters and, consequently, the task of gesture recognition became more 
tractable. 

One of the main achievements was that, for most of the subtasks involved, 
accurate calculations are not necessary. This manifests itself in the tasks of camera 
calibration and the calculation of the size of the limbs. In both cases, the extracted 
estimations contained a (possibly) large amount of error. Nevertheless, this did not 
prevent the successful recognition of the examined gestures. 

The proposed recognizer may be useful in various applications. Communication 
between humans and machines can be boosted, since gestures are a very common 
form of interaction, facilitating tasks such as navigation in virtual environments, 
object manipulation or control of devices. Moreover, it can serve as a method for 
interactively action/gesture robotic arm learning, since the kinematic parameters 
produced can be directly translated and incorporated by a robotic system. 

Despite the fact that the performance of our implementation was acceptable in 
all examined cases, various aspects are amenable to further improvements. These 
regard ambiguities in depth estimation, excessive execution times and particle filter 
resampling. 

Depth ambiguity remains a limiting factor in gesture recognition accuracy, 
although it has been addressed in the design and implementation of the system. It 



80 
 

can lead to complete tracking and recognition failure, since the behavior of particles 
is unpredictable and it is not guaranteed that there will always exist hypotheses 
which satisfy the real case. 

Furthermore, training and execution times are still excessively long. The current 
implementation requires considerable off-line work (preparatory stages for the video 
input) and, moreover, the on-line processing of a single frame is prohibitive for a 
real-time usage of the recognizer. This problem is of major importance since it limits 
the potential of the proposed approach due to practical reasons.  

Finally, by far the most important problem is the direct dependency between 
system’s effectiveness and resampling deviation. As already described, corrupted 
video sequences or poor image quality can lead to severe pose discontinuities. In 
that case, the chosen deviation (resampling deviation in the kinematic tracking) 
should be able to cover the produced “gap”. However, deviation is also application 
dependent. For example, in some cases, deviation values, which worked well for the 
task of “pointing” gesture recognition, did not provide a good result for the task of 
“hello” gesture recognition.   

7.1 Future Work 

Notwithstanding the limitations of the proposed approach and the corresponding 
implementation, the obtained gesture recognition accuracy is satisfactory for most 
of the examined cases. Still, there is much room for improvements and 
enhancements to our system. Apart from coping with the previously discussed 
problems, new techniques could be used, in combination with the proposed 
recognizer, in order to increase its effectiveness and expand its capabilities.  

At first, use of high-quality video, together with code optimization, might confront 
with the depth ambiguity problem and/or drastically reduce execution and training 
times. Still, a significant step would be the ability of automatic deviation adjustment, 
according to the observed scene and the foreseen gesture. A fine-tuned deviation 
could possibly guarantee the elimination of parameter discontinuities, which would 
consequently lead to more accurate recognition results.  

The full potential, though, of the gesture recognizer could be revealed when used 
in combination with other forms of human-computer interaction. Speech and face 
expression recognition, for example, could boost the communication capabilities 
provided by the proposed recognizer, since recognition of sequential or more 
complex gestures would be feasible. In the same context, one can envisage its 
operation while personalizing a person’s habits. In other words, distinct (personal) 



81 
 

ways of performing gestures may be recorded and exploited during recognition, 
while other modalities (e.g. face recognition) are employed to identify the actor. 

It is anticipated that systems based on the above mentioned technologies will 
gradually come into play in experimental interaction setups. Still, the advent of 
robust and seamless gesture recognizers in every day applications will be 
commensurate on advances in technological factors, as the limiting ones mentioned 
above. 

 

   

 

  



82 
 

 

  



83 
 

Bibliography 

1. Ahmad, S., A usable real-time 3D hand tracker. Signals, Systems and 
Computers, 1994. 1994 Conference Record of the Twenty-Eighth Asilomar 
Conference on. 2. 

2. Bolic, M. Assistant Professor, School of Information Technology and 
Engineering, University of Ottawa. Available from: 
http://www.site.uottawa.ca/~mbolic/. 

3. Bouguet, J.-Y., Complete Camera Calibration Toolbox for Matlab®. 
4. Craig, J., Introduction to robotics: Addison Wesley. 
5. Darken, C., J. Chang, and J. Moody. Learning rate schedules for faster 

stochastic gradient search. 
6. Elert, G. The Physics FactbookTM. Encuclopedia of Scientific Essays]. Available 

from: http://hypertextbook.com/facts/. 
7. Siganos, C.S.a.D. Neural Networks. Available from: 

http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html. 
8. Denavit, J. and R. Hartenberg, A kinematic notation for lower-pair 

mechanisms based on matrices. Journal of Applied Mechanics, 1955. 22(2): p. 
215?221. 

9. Thieffry, S., Hand Gestures. The Hand, 1981: p. 488-492. 
10. Titterington, D., Recursive Parameter Estimation Using Incomplete Data. 

1982. 
11. Korein, J., A geometric investigation of reach. 1985: MIT Press Cambridge, 

MA, USA. 
12. Kendon, A., Current issues in the study of gesture. The Biological Foundations 

of Gestures: Motor and Semiotic Aspects, 1986: p. 23-47. 
13. Rumelhart, D., G. Hinton, and R. Williams, Learning internal representations 

by error propagation, Parallel distributed processing: explorations in the 
microstructure of cognition, vol. 1: foundations. 1986, MIT Press, Cambridge, 
MA. 

14. Zimmerman, T., et al., A hand gesture interface device. ACM SIGCHI Bulletin, 
1986. 17: p. 189-192. 

15. Solla, S., E. Levin, and M. Fleisher, Accelerated learning in layered neural 
networks. Complex Systems, 1988. 2(6): p. 625-639. 

16. Craig, J., Introduction to Robotics: Mechanics and Control. 1989: Addison-
Wesley Longman Publishing Co., Inc. Boston, MA, USA. 

http://www.site.uottawa.ca/~mbolic/�
http://hypertextbook.com/facts/�
http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html�


84 
 

17. Le Cun, Y., Generalization and network design strategies. Connectionism in 
Perspective, 1989: p. 143-155. 

18. Sturman, D.J., D. Zeltzer, and S. Pieper, Hands-on interaction with virtual 
environments, in Proceedings of the 2nd annual ACM SIGGRAPH symposium 
on User interface software and technology. 1989, ACM: Williamsburg, 
Virginia, United States. 

19. Eglowstein, H., Reach Out and Touch Your Data. Byte, July, 1990. 15: p. 283-
290. 

20. Guo, H. and S. Gelfand, Analysis of gradient descent learning algorithms for 
multilayerfeedforward neural networks. Circuits and Systems, IEEE 
Transactions on, 1991. 38(8): p. 883-894. 

21. Lowe, D., Fitting parameterized three-dimensional models to images. Pattern 
Analysis and Machine Intelligence, IEEE Transactions on, 1991. 13(5): p. 441-
450. 

22. Murakami, K. and H. Taguchi, Gesture recognition using recurrent neural 
networks. Proceedings of the SIGCHI conference on Human factors in 
computing systems: Reaching through technology, 1991: p. 237-242. 

23. Turk, M. and A. Pentland, Eigenfaces for Recognition. Journal of Cognitive 
Neuroscience, 1991. 3(1): p. 71-86. 

24. Hauptmann, A. and P. McAvinney, Gestures with speech for graphic 
manipulation. International Journal of Man-Machine Studies, 1993. 38(2): p. 
231-249. 

25. Lee, J. and T. Kunii, Constraint-based hand animation. Models and 
Techniques in Computer Animation, 1993: p. 110–127. 

26. Rehg, J. and T. Kanade, DigitEyes: Vision-Based Human Hand Tracking. 1993. 
27. Segen, J., Controlling Computers with Gloveless Gestures. Proceedings of 

Virtual Reality Systems, 1993. 
28. Watson, R., A Survey of Gesture Recognition Techniques. 1993. 
29. Annema, A., K. Hoen, and H. Wallinga, Learning behavior and temporary 

minima of two-layer neural networks. Neural Networks, 1994. 7(9): p. 1387-
1404. 

30. Cho, K. and S. Dunn, Learning shape classes. Pattern Analysis and Machine 
Intelligence, IEEE Transactions on, 1994. 16(9): p. 882-888. 

31. Davis, J. and M. Shah, Gesture recognition. Proc. European Conf. Comp. Vis, 
1994: p. 331–340. 

32. Quek, F., Toward a Vision-Based Hand Gesture Interface. Virtual Reality 
Software & Technology: Proceedings of the VRST'94 Conference, 23-26 
August 1994, Singapore, 1994. 

33. Rehg, J. and T. Kanade, Visual tracking of high DOF articulated structures: an 
application to human hand tracking. Proc. European Conference on 
Computer Vision, 1994. 2: p. 35–46. 

34. Brockl-Fox, U., Realtime 3-D Interaction with up to 16 Degrees of Freedom 
from Monocular Video Image Flows. Proc. of Int. Workshop on Automatic 
Face and Gesture Recognition, 1995: p. 172–178. 

35. Cui, Y. and J. Weng, Learning-based hand sign recognition. Proc. of the Intl. 
Workshop on Automatic Face-and Gesture-Recognition, 1995. 

36. Freeman, W. and C. Weissman. Television control by hand gestures. 1995. 



85 
 

37. Huang, T. and V. Pavlovic, Hand gesture modeling, analysis, and synthesis. 
Proc. 1995 IEEE International Workshop on Automatic Face and Gesture 
Recognition, 1995: p. 73-79. 

38. Kadous, W., GRASP: Recognition of Australian sign language using 
Instrumented gloves. Unpublished manuscript, University of New South 
Wales, Sydney, Australia. Retrieved October, 1995. 1: p. 2002. 

39. Lee, J. and T. Kunii, Model-based analysis of hand posture. Computer 
Graphics and Applications, IEEE, 1995. 15(5): p. 77-86. 

40. Moghaddam, B. and A. Pentland, Maximum Likelihood Detection of Faces and 
Hands. International Workshop on Automatic Face-and Gesture-Recognition, 
1995: p. 122–128. 

41. Quek, F., Eyes in the interface. Image and Vision Computing, 1995. 13(6): p. 
511-525. 

42. Quek, F., T. Mysliwiec, and M. Zhao, FingerMouse: A Freehand Computer 
Pointing Interface. Proc. of Int'l Conf. on Automatic Face and Gesture 
Recognition, 1995: p. 372-377. 

43. Boulic, R., S. Rezzonico, and D. Thalmann. Multi-Finger Manipulation of 
Virtual Objects. 1996. 

44. Bryson, S., Virtual reality in scientific visualization. Communications of the 
ACM, 1996. 39(5): p. 62-71. 

45. Kiyokawa, K., et al. VLEGO: A Simple Two-handed Modeling Environment 
Based on Toy Blocks. 1996. 

46. Oviatt, S. and R. VanGent. Error resolution during multimodal human-
computer interaction. 1996. 

47. Quek, F., Unencumbered gestural interaction. Multimedia, IEEE, 1996. 3(4): p. 
36-47. 

48. Pavlovic, V., R. Sharma, and T. Huang, Visual interpretation of hand gestures 
for human-computerinteraction: a review. Pattern Analysis and Machine 
Intelligence, IEEE Transactions on, 1997. 19(7): p. 677-695. 

49. Shepherd, A., Second-Order Methods for Neural Networks. 1997: Springer-
Verlag New York, Inc. Secaucus, NJ, USA. 

50. Starner, T. and A. Pentland, Real-Time American Sign Language Recognition 
from Video Using Hidden Markov Models. Computational Imaging and Vision, 
1997. 9: p. 227-244. 

51. Berry, G., V. Pavlovic, and T. Huang. BattleView: A multimodal HCI research 
application. 1998. 

52. Black, M. and A. Jepson, Recognizing temporal trajectories using the 
condensation algorithm. Automatic Face and Gesture Recognition, 1998. 
Proceedings. Third IEEE International Conference on, 1998: p. 16-21. 

53. Black, M. and A. Jepson, EigenTracking: Robust Matching and Tracking of 
Articulated Objects Using a View-Based Representation. International Journal 
of Computer Vision, 1998. 26(1): p. 63-84. 

54. Cutler, R. and M. Turk, View-based interpretation of real-time optical flow for 
gesturerecognition. Automatic Face and Gesture Recognition, 1998. 
Proceedings. Third IEEE International Conference on, 1998: p. 416-421. 



86 
 

55. Imagawa, K., S. Lu, and S. Igi, Color-Based Hands Tracking System for Sign 
Language Recognition. Proceedings of the 3rd. International Conference on 
Face & Gesture Recognition, 1998: p. 462. 

56. Starner, T., J. Weaver, and A. Pentland, Real-Time American Sign Language 
Recognition Using Desk and Wearable Computer Based Video. IEEE 
Transactions on Pattern Analysis and Machine Intelligence, 1998: p. 1371-
1375. 

57. Trucco, E. and A. Verri, Introductory Techniques for 3-D Computer Vision. 
1998: Prentice Hall PTR Upper Saddle River, NJ, USA. 

58. Akamatsu, S., Computer recognition of human face - A survey. Systems and 
Computers in Japan, 1999. 30(10): p. 76-89. 

59. Becker, M., et al., GripSee: A Gesture-Controlled Robot for Object Perception 
and Manipulation. Autonomous Robots, 1999. 6(2): p. 203-221. 

60. LaViola Jr, J., A Survey of Hand Posture and Gesture Recognition Techniques 
and Technology. 1999. 

61. Rittscher, J. and A. Blake, Classification of human body motion. Proc. Int. 
Conf. Computer Vision, 1999: p. 634–639. 

62. Stauffer, C. and W. Grimson. Adaptive background mixture models for real-
time tracking. 1999. 

63. Wu, Y. and T. Huang, Vision-Based Gesture Recognition: A Review. Urbana, 
1999. 

64. Wu, Y. and T. Huang, Human hand modeling, analysis and animation in the 
context of HCI. Image Processing, 1999. ICIP 99. Proceedings. 1999 
International Conference on, 1999. 3. 

65. Wu, Y., J. Lin, and T. Huang, Capturing natural hand articulation. International 
Conference on Computer Vision, 2001: p. 426-432. 

66. Rogalla, O., et al. Using Gesture and Speech Control for Command a Robot 
Assistant. 2002. 

67. Yang, M., N. Ahuja, and M. Tabb, Extraction of 2D Motion Trajectories and Its 
Application to Hand Gesture Recognition. IEEE Transactions on Pattern 
Analysis and Machine Intelligence, 2002: p. 1061-1074. 

68. Brewster, S., et al., Multimodal 'eyes-free' interaction techniques for wearable 
devices, in Proceedings of the SIGCHI conference on Human factors in 
computing systems. 2003, ACM: Ft. Lauderdale, Florida, USA. 

69. Residents. Second Life.  2003; Available from: http://secondlife.com/. 
70. Zhao, W., et al., Face recognition: A literature survey. ACM Computing 

Surveys (CSUR), 2003. 35(4): p. 399-458. 
71. Argyros, A. and M. Lourakis, Real-Time Tracking of Multiple Skin-Colored 

Objects with a Possibly Moving Camera. Lecture Notes in Computer Science, 
2004: p. 368-379. 

72. Derpanis, K., A Review of Vision-Based Hand Gestures. Unpublished. Feb, 
2004. 

73. Thrun, S., W. Burgard, and D. Fox, Probabilistic Robotics (Intelligent Robotics 
and Autonomous Agents). 2005: MIT press, Cambridge, Massachusetts, USA. 

74. Zeleznik, R., K. Herndon, and J. Hughes. SKETCH: an interface for sketching 3D 
scenes. 2006: ACM New York, NY, USA. 

http://secondlife.com/�


87 
 

75. Zivkovic, Z. and F. van der Heijden, Efficient adaptive density estimation per 
image pixel for the task of background subtraction. Pattern Recognition 
Letters, 2006. 27(7): p. 773-780. 

76. Badler, N. and D. Tolani, Real-Time Inverse Kinematics of the Human Arm. 
2007. 

77. Mitra, S. and T. Acharya, Gesture Recognition: A Survey. Systems, Man and 
Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 2007. 
37(3): p. 311-324. 

78. Tsetserukou, D., et al., Development of a Whole-Sensitive Teleoperated Robot 
Arm using Torque Sensing Technique. Proceedings of the Second Joint 
EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual 
Environment and Teleoperator Systems, 2007: p. 476-481. 

79. Baltzakis, H., et al., Tracking of Human Hands and Faces through Probabilistic 
Fusion of Multiple Visual Cues. Lecture Notes in Computer Science, 2008. 
5008: p. 33. 

80. Dipietro, L., A. Sabatini, and P. Dario, A Survey of Glove-Based Systems and 
Their Applications. Systems, Man, and Cybernetics, Part C: Applications and 
Reviews, IEEE Transactions on, 2008. 38(4): p. 461-482. 

81. Google. Google Lively.  2008; Available from: http://www.lively.com/. 
82. Wikipedia_contributors. Artificial neural network. Wikipedia, The Free 

Encyclopedia.  December 6, 2008; Available from: 
http://en.wikipedia.org/w/index.php?title=Artificial_neural_network&oldid=
256189959. 

 
 

http://www.lively.com/�
http://en.wikipedia.org/w/index.php?title=Artificial_neural_network&oldid=256189959�
http://en.wikipedia.org/w/index.php?title=Artificial_neural_network&oldid=256189959�

	εξωφυλλο
	master final FINAL
	Table of Contents
	Table of Figures
	Acknowledgements
	Περίληψη
	Abstract
	Introduction
	Problem Statement
	Approaches Towards Gesture Recognition
	Glove-based techniques
	Vision-based techniques
	Model-based approaches
	Appearance-based approaches
	Approaches based on low-level features


	Applications of Hand Gesture Recognition
	Sign language
	Virtual environments
	3D modeling
	Human-robot manipulation and instruction
	Multimodal interaction
	Television control

	Proposed Approach

	Hand Gestures
	Hand Gestures in HCI
	Spatial modeling of gestures
	Temporal modeling of gestures


	Background Tools and Mathematics
	Preliminary Phase -- Camera Calibration
	Skin-Color Detection and Tracking Tools
	Foreground-background subtraction
	Background model
	Update equations
	Examples

	Skin-color detection and tracking
	Off-line training
	Skin-color detection
	Skin-colored object tracking


	Hand Kinematics Tracking
	Perspective projection
	Particle filters
	Human arm kinematics
	Forward kinematics
	Arm modeling
	Inverse kinematics


	Neural Network - Multi-Layer Perceptron
	Multi-layer perceptron
	MLP training
	Backpropagation
	Backpropagation with momentum
	On-line backpropagation



	Hand Parameters Extraction and Tracking
	Head and Hands Positions
	Shoulder Position Estimation
	Kinematics Tracking
	Hand tracking
	Initialization
	Hand particles weighting function

	Rotation tracking
	Resampling

	Hand particles resampling

	Tracker’s Output - Clustering

	Gesture Recognition
	Gesture Recognition Scheme Overview
	Neural Network Architecture
	Training datasets
	Network training

	Gesture Modeling and Network Choice
	Recognizing Gestures

	Results
	Hand Tracking Results
	Calculation accuracy and prior scene knowledge
	Initialization procedure
	Robustness
	Time invariance
	Pose and depth ambiguities
	Execution time

	Gesture Recognition Results
	Neural network training
	Gesture recognition
	Pointing gesture recognition
	Hello and attention gestures



	Discussion
	Future Work

	Bibliography


