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Chapter 1

Introduction

1.1 Neuromorphic Computing

Computers have long ago surpassed humans in computation capabilites in
terms of speed and precision. Until recently, however, they were not able to
solve problems, at which humans excel, for instance distinguishing between
pictures depicting cats and dogs. The last 20 years this situation has changed
due to the employment of brain inspired algorithms, such as deep neural
networks. Nonetheless, computers need great amount of energy and, in some
cases, time compared to their biological counterparts. For example, a state of
the art natural language processing model consumes 1,000kWh when trained
on a supercomputer, while the same amount of energy is enough for a human
brain to function for 6 years [1].

The brain is fundamentally different from a computer. It consists of
highly interconnected neurons which communicate with each other through
adaptive synapses, by exchanging digital signals (spikes), while they perform
analogue computation of the received signals at their cell somas. Further-
more, neurons work in parallel, without using a perfectly synchronous clock
and they produce spikes only when the input signals force them to, resulting
in low energy dissipation. Finally, in biological neural networks, the memory
and the processing units, which correspond to synapses and neurons respec-
tively, are not separated. Computers on the other hand, spend time and
energy in order to move data from the memory to the processors and vice
versa, the so called “von Neumann bottleneck”. For this reason, standard
computers and supercomputers waste an important part of their resources



when a neural network is involved. This affects both the operation of arti-
ficial neural networks during the phases of training and inference, and the
study of biological neural networks through simulations.

Platform: Human brain BrainScaleS SpiNNaker
# neurons: 100 B 4 M 460 M
# synapses: 10" I B 460 B
power: 20W 10 kW 50 kW
Energy /connection: 10 f] 100 pJ 10nJ
Speed versus 1% 10 000 1 x
biology:
Interconnect: 3D direct Hierarchical 2D mesh-multicast
signalling

Figure 1.1: Comparison between the brain and two famous neuromorphic systems
based on CMOS technology. Adapted from [2].

The science of neuromorphic computing aims to tackle these problems by
employing brain inspired architecture and hardware. It has been supported,
however, that the transition to more spiking friendly hardware demands the
use of new devices in the fundamental level because it is impossible to achieve
the interconnectedness and the energy efficiency of the brain with the tech-
nology of the superconductors. A typical neuron made from complementary
metal-oxide-semiconductor (CMOS) transistors has many components and
suffers from energy dissipation. Moreover, the circuitry is confined in two
dimensions reducing the number of connections a neuron can have [1]. Fig-
ure 1.1 shows that two of the most complex neuromorphic systems based
on CMOS technology existing today, use much more power while containing
orders of magnitudes less neurons and synapses than a single brain [2]. A
great variety of different physical systems and materials has been proposed
which are able to simulate biological neurons at some level, due to their in-
trinsic properties [1]. Some of them are depicted in Fig. 1.2, along with their
advantages and disadvantages.

Neuromorphic computing is divided in two approaches. The first one,
tries to replace the standard hardware, such as graphical processing units
(GPUs) or tensor processing units (TPUs) with more efficient ones, for the
needs of the artificial intelligence (AI). On the other hand, the second ap-
proach, which is the one that this thesis follows, aims to bring closer the
hardware to the biological brain, from the lower level, that is, the neuron,
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Figure 1.2: Comparison between different neuromorphic systems. Adapted from

[1].

to the higher. In this way it integrates neuroscience-inspired concepts which
are not taken into account by classical Al algorithms, intending to enhance
our knowledge for the learning process of both machines and humans.

1.2 Superconducting neuromorphic devices

Devices consisting of superconducting materials are praised for their quick
and competitive energy performances even with the required cryogenic con-
ditions taken into account. The neuromorphic neurons in this field are based
on two different materials: Josephson junctions and shunting nanowires [3,
4]. The former case has been studied more though the latter seems very
promising. In principle, it has been demonstrated that neurons based on
these materials are able to communicate with each other, even though their
operation is based on different mechanisms, while the shunting nanowire
neuron integrates easily with existing CMOS circuitry [5].

This thesis is concerned with neurons made of Josephson junctions (JJ
neuron), and more specifically with those that mimic a spike with a single-
flux-quantum-pulse (SFQ pulse). The research in this field, following the
second approach to neuromorphic computing, has demonstrated that a JJ
neuron exhibits fundamental neurocomputational properties such as refrac-
tory period, firing thresholds and classes 1 and 2 of excitability [6]. Further-
more, a neural network of 2 coupled JJ neurons has been manufactured in
order to determine the role of the synaptic strength and delay in the synchro-
nization. This neuromorphic experiment needs around 7000 less time that it



would if only digital approaches are used, suggesting that superconducting
neurons can become a feasible tool in neuroscience [7].

1.3 Thesis goal

The realistic emulation of biological neurons using Josepshon junctions is
an ambitious project due to the fact that both systems are complex and
they are described by different laws. The language of dynamical systems
can act as a bridge between these two diverse fields. The goal of this thesis
is to elucidate the dynamics of the JJ neuron and compare them with the
neuronal ones, continuing previous works [6]. This way, we will be able to
identify which neurocomputational properties are exhibited by the JJ neuron
and which are not. In addition, some cases will be demonstrated, where the
JJ neuron exhibits behaviour beyond the realistic neuronal one. This is an
important step before more research is conducted in the collective behaviour
of JJ neurons.

The thesis is organized as follows:

Chapter 2 — Biological Background. In this chapter, we explain the
generation of a spike in biological neurons. We also introduce the Hodgkin-
Huxley model, the first neuronal dynamical model.

Chapter 3 — Dynamical Background. This chapter introduces the
basic dynamical notation. Furthermore, we explain the analytical and com-
putational tools which will be used. Finally, we present some fundamental
neurocomputational properties and their dynamical equivalent.

Chapter 4 — Josephson Junction Neurons. The JJ neuron is intro-
duced and the equations describing the systems are derived.

Chapter 5 — Mathematical analysis. In this chapter we present the
results of our work. The equations are analyzed with analytical and compu-
tational tools. Moreover, we state which neurocomputational properties can
be exhibited by a JJ neuron.

Chapter 6 — Conclusion and outlook. The results are summarized
and possible future work is discussed.



Chapter 2

Biological Background

2.1 Biological neurons

Neurons are the elementary processing unit of the nervous system. A typical
simplified neuron consists of 3 different parts with distinct computational
properties. Signals from other neurons are received in branched processes
called dendrites. Then, they are transmitted to the cell soma which acts as
a processing unit, where a new signal (or spike) can be generated depending
on the input. Lastly, the axon is responsible for transmitting the new signal
to other neurons [8].

Dendrites

Figure 2.1: Simplified schematic of neuron.

Each neuron is highly interconnected with up to 10* other cells. Signals
are transmitted through synapses which are found at the dendrites and at
the end of the axon.

Due to the fact that the decision to fire or not and the generation of the
spike happens at the soma, our analysis concerns only this part of the neuron,

8



although circuits simulating the axon and the synapses have been proposed
too [6].

2.2 Action Potentials

Neuronal signals consist of spikes of the potential of the cellular membrane
which are generated by inward and outward movement of ions through ionic
channels [9]. These spikes are also called Action Potentials (AP). An AP is
generated from the interplay of at least 2 ionic currents with Na™ and K+

being the major ones.
T I, TIK TC\'/
%’gl\'a k —C
™

;

Figure 2.2: Equivalent circuit. C denotes the capacitance of the membrane, F;,,
and g;on, denotes Nernst potential and the nonlinear resistance for each ion respec-
tively. Taken from [9].
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Each ion tries to balance electrical and chemical forces due to its charge
and uneven concentration across the membrane. The equilibrium potential
for a given ion is provided by the Nernst equation.

RT Oion,out

Eipn = —log

2.1
Fz Cion,in ’ ( )

where R is the ideal gas constant, T is the absolute temperature, F is the
Faraday constant, z is the electrical charge and C the concentration of an
ion. When the membrane potential is equal to the Nernst potential of an
ion, then no current of this ion can flow through the membrane. For a



different potential V, ionic current flows across the membrane according to
the equation:

Iion - gion(v - Eion>7 (22>

where g¢;o, denotes conductance. Na™ and Kt have opposite equilibrium
potentials Fy,+ ~ 60 and Ex+ ~ —90 which is crucial for the generation of
spikes. The physical meaning of conductance is how many ionic channels are
in the open state. The electrical properties of membranes can be represented
by an equivalent circuit, as shown in Fig. 2.2.

According to Kirchhoff’s laws when an external current I passes through
the equivalent circuit, the potential across the capacitance reads:

dV
C% :]_gNa+(V_ENa+>_gK"’(V_EK"")' (23>

APs are generated because gnq+, g+ are non linear functions of volt-
age. Biologically this results from ionic channels being controlled by gating
particles which can be more than one and have different responses to the
membrane potential, as shown in Fig. 2.3.

Extracellular Na

voltage selectivity
sensor /fiter

)
AY

\\
activation
gate

inactivation
I
Intracellular o Closed Open Closed
(not activated) (activated) (inactivated)
Figure 2.3: Different states of a Na™ channel with one activation and one inacti-

vation channel. Taken from [9].

Figure 2.4 visualises the different phases in the generation of a typical AP.
In this context, the membrane potential is initially at rest (step 1). At some
point, an electrode injects positive current in the soma which results in an
increase (or depolarization) of the potential (step 2). If the potential exceeds

10
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Figure 2.4: Generation of the Action Potential in steps. Taken from [10].

a threshold, then an AP will be formed, because voltage gated channels are
coming into play (step 3), relatively independent of stimuli. Na™ gates re-
spond quicker than K* thus, Na' current enters the cell depolarizing further
the membrane (step 4). The peak of the spike is reached as Nat channels
close after a certain potential while more and more potassium channels open
(step 5). The membrane is now more permeable to potassium current push-
ing the voltage closer to KT resting potential (step 6) which is lower than
the membranes equilibrium (hyperpolarization). Finally, slower potassium
channels also close and the voltage reaches the equilibrium (step 8 and 9).

At this point we need to provide some clarifications: first of all, the
threshold is a confusing concept because almost in all occasions it is not a
single value of the potential which acts as a threshold but a set of potential
and conductance values, while in other cases a threshold is undefined [9)].
Secondly, channels open and close in a way which ensures that during the
time between steps 3-7, called absolute refractory period, it is impossible
for the neuron to generate a second AP. On the other hand, in the time
interval between steps 7-8, called relative refractory period, the generation
of a second AP is possible, but relative stronger stimulus is needed.

11



2.3 Hodgkin - Huxley model

In the 1952 Hodgkin and Huxley created a model to explain the generation
of APs on the squid giant axon. The HH model consists of a system of four
first order, ordinary differential equations [9]. The first equation relates the
potential of the membrane with 3 ionic currents: In.+, [x+ and an Ohmic
leak current I;. The former 2 currents are nonlinearly voltage dependent
through gating variables n for I+ and m, h for Iy.+:

CV =1—ggn*(V — Ex) — gnam®h(V — Eng) — go(V — Ep)
n=a,(V)(1—n) = B,(V)n
m = a,(V)(1 —m)— B,n(V)m
h=an(V)(1=h) = Bu(V)h,

(2.4)

where C is the membrane’s capacitance, gx and gy, is the maximal conduc-
tance for each ion and the nonlinear functions a,f are:

10-V -
e 10
25-V -
e 10
=V 1
an(V) = 0.07e= (V) = v
e 10 Tl
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Chapter 3

Dynamical Background

3.1 Dynamical Systems

A dynamical system consists of a set of variables that describe its state and a
law that describes the evolution of these variables with time [9]. Mathemati-
cally, these systems are determined by differential or by difference equations
(iterated maps). In this thesis, however, we are interested with the former
case which can always be rewritten as a system of first order differential
equations:

dx
d_tl = fl(.fﬂl, ...,.CEN)
(3.1)
dx
d_tN = fN(.Tl, ...,ycN).

For example a pendulum with mass m, damping coefficient b, length L
and torque 7 which obeys the relation:

d*0 d
mLzﬁ + b% +mgLsm9 =T,

can be rewritten as:

13



do

ar Y
dw b g . 0+ T (3:2)
at ~ mr2? T L T e

A system is called nonlinear when it contains nonlinear terms of the
variables (in this case sinf). Generally, it is impossible to solve nonlinear
systems analytically, however important qualitative information, for example
the existence of oscillatory or resting solutions, can be extracted from the
system through geometric methods [11].

A wuseful tool in this approach is an abstract space whose coordinates
are the variables of the system (f,w) called phase space. As phase space of
system (3.2) is composed of two variables, it is 2-dimensional. This system
can be solved numerically, provided initial conditions §(¢t = 0) and w(t = 0)
are given, hence we can calculate the timeseries 6(¢) and w(t). Solution
(0(t),w(t)) represents a curve on the phase plane and is called a trajectory.
Note that for “normal” systems two trajectories can never intersect because
there would exist two different solutions with the same initial conditions,
which is forbidden from the Existence and Uniqueness Theorem [11].

System (3.1) can be written in a more compact form:

daz -
= @), (33)

where fl—f represents the vector field which can be sketched on the phase plane
as in Fig. 3.1. A trajectory is always tangent to the vector field.

3.2 Linear Systems

We now present briefly the theory of linear systems as it will be used with
some alterations in the nonlinear case. The most general form of a linear
system is:

dr

where A is the matrix of coefficients with N dimensions. We search for

solutions of the form: .
d—: = My, (3.5)

14
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Figure 3.1: Vector field for the pendulum. Blue curves are oscillatory trajectories

while the red dot is the equilibrium. Parameters: b=0, m =1, L =1, g = 9.8,
T=0.

because they are generalizations of the 1-dimensional case. Combining (3.4),
(3.5) gives:
M = Av, (3.6)

which is known as the eigenvalue problem. Supposing A is non degenerate,
we can find \;, 0; where i = 1,2,.. N. Then, the complete solution of (3.4) is:

f(t) = cle)‘ltﬁl + ...+ CNB)\NtUN. (37)

The coefficients ¢; are calculated from the initial conditions. The eigen-
vectors show the “important” directions of the system while the eigenval-
ues explain its behaviour. To gain more insight we now solve a general
2-dimensional problem described by the following matrix:

A:{Z Z}

The system has one fixed point (% = 0) which is the origin. A has trace

15



T = a + d, determinant A = ad — bc and eigenvalues:

L _TVTIA
1,2 = .

2= 5 (3.8)

From (3.7) and (3.8) we derive the behaviour of the system depending on
the eigenvalues:

For real, negative eigenvalues the fixed point is called stable node be-
cause all trajectories will converge to it exponentially.

For real, positive eigenvalues the fixed point is called unstable node
because all trajectories will diverge exponentially from it.

For real eigenvalues with opposite sign the fixed point is called saddle
node. Most trajectories will approach the saddle node but eventually
all of them will diverge exponentially from it.

For complex eigenvalues with negative real part the fixed point is called
stable focus because all trajectories will converge in an oscillatory man-
ner.

For complex eigenvalues with positive real part the fixed point is called
unstable focus because all trajectories will diverge in an oscillatory
manner.

For imaginary eigenvalues (zero real part) the fixed point is called neu-
trally stable equilibrium or center. All trajectories are periodic, forming
a continuum of infinitesimally closed orbits.

Note that all possible behaviours are simple. The fixed point (also equi-
libriun) can be stable with all trajectories being attracted by it, unstable
with all trajectories being repelled from it and neutrally stable. Convention-
ally, we represent the first case with a solid black dot and the second case
with an open circle.

Figure 3.2 collects all these behaviours. The borderlines between different
areas, centers included, are exceptional cases which will not be discussed
more as they are not useful for nonlinear systems. For higher dimensional
systems we can not use Fig. 3.2 but we can still derive the behaviour of an
equilibrium from its eigenvalues and identify it accordingly. For example, in a
3-dimensional system a fixed point with two complex eigenvalues of negative
real part and one real positive eigenvalue is called saddle-focus.

16
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Figure 3.2: Summary of all important behaviours of a 2-dimensional linear system.
Grey area denotes the stable regime. Taken from [9].

3.3 Nonlinear systems

We now present briefly some new characteristics of nonlinear systems and
the tools which are used in order to analyze them.

3.3.1 Equilibria

Equilibria can be found in two consecutive steps. Firstly, we compute f;(x1,..,xy) =
0 from equation (3.3) which provides N curves, called nullclines. These curves

are very helpful for qualitative comprehension of the system as will be shown
below. After that, the equilibria are found at the intersections of the null-
clines. The stability of the fixed points is calculated by taking a linear ap-
proximation of the nonlinear system infinitesimally close to the fixed point

[11]. Practically, that means we need to compute the Jacobian at the fixed

point 7*:

oh 9f
oz T Oxzn
Jp= 1 - : (3.9)
fn 9fn
oz e ozr N T*

Then, we need to follow the procedure explained above for the linear

17
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Figure 3.3: Stable limit cycle vs center. Taken from [9)].

system. This algorithm will not produce reliable results for the borderline
cases of Fig. 3.2 because small nonlinear terms which are not taken into
account by the Jacobian are essential. Of all cases that have been mentioned
so far only centers are of that type.

3.3.2 Limit Cycles

A new behaviour which does not exist in linear systems is isolated periodic
trajectories called limit cycles (LC). In the case of a LC, trajectories in its
vicinity will converge to an oscillation (stable LC) or diverge from one (unsta-
ble LC). In contrast, oscillatory behaviours in linear systems are exceptional
cases (all eigenvalues must be imaginary) where all trajectories are eclipses
on the phase plane and are infinitesimally close to each other. Convention-
ally, unstable LCs are represented with a solid curve and unstable LCs by a
dashed curve.

3.3.3 Chaos

Chaotic behaviour can exist in nonlinear systems with more than two dimen-
sions. It is difficult to define chaos, though, the following three properties
should meet simultaneously [11].

e Aperiodic long term behaviour: There should be an open set of initial
conditions leading to aperiodic trajectories which do not settle down
to fixed points.

18



e Deterministic: The system’s behaviour arises from nonlinear terms, not
due to stochasticity.

e Sensitive dependence on initial conditions: Nearby trajectories separate
exponentially fast.

i

T

mmW-MWWWWMW N\' H[

Figure 3.4: Chaotic behaviour in Lorenz system. Variable y does not settle down
or converge to periodic movement.

The third property provides a tool to analyze chaos, namely the Lyapunov
exponents. Suppose we follow two trajectories which are initially very close,
separated by a very small vector dy in the phase plane. While they evolve we

keep track of their difference §(t) = Z1(t) — Zo(t). In a chaotic system §(t)
can be approximated for some finite time by:

10()| = |00|e™. (3.10)

The approximation can not hold forever because the trajectories are con-
fined in a finite volume of the phase plane, thus at some point o (t) will be
stabilized. From equation (3.10) we calculate the maximum Lyapunov ex-
ponent A. This concept can be generalized for N different exponents in an
N-dimensional system. We now follow an infinitesimal sphere of initial condi-
tions which distorts as the system evolves. Following the procedure explained
above for each axis of the sphere we calculate N exponents.

Lyapunov exponents provide useful information about a system [12]. First
of all, the time-average of the divergence of the system v f is equal to their

sum. Thus, we can understand whether the system is dissipative, when

19
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Figure 3.5: Calculation of maximum exponent in Lorenz system. Taken from [11].

the sign of their sum is negative, or conservative, when their sum is zero.
Furthermore, if a system rests, all Lyapunov exponents must be negative,
while in the case of a stable LC, the maximum exponent is zero. Finally,
chaos in dissipative systems corresponds to at least one positive exponent.

3.3.4 Bifurcations

A dynamical system’s behaviour can change dramatically as its parameters
are varied. A typical biological example is that neurons are producing APs
when receiving appropriate stimuli whereas, in any other case, they rest.
These transitions are called bifurcations. We now present the main bifurca-
tions in neuronal systems which can be split in two categories.

Bifurcations of fixed points

They are discovered analytically relatively easy. For each bifurcation, we
present a single example along with the necessary condition which we use to
discover it.

e Saddle-Node (SN) bifurcation. A stable and an unstable fixed point
are getting closer as the bifurcation parameters varies. At some point
they collide resulting in their disappearance. At bifurcation point one
eigenvalue for each fixed point is zero. All SN bifurcations can be
reduced to the 1-dimensional system:

dz
o =) =2 - (3.11)

20



e Saddle-Node on Invariant Circle (SNIC) bifurcation. This is a SN with
the additional condition that two trajectories connect the unstable with
the stable fixed point. Thus, when they disappear a LC appears. A
simple example in polar coordinates is:

% =r(l—1?
20 (3.12)
it sinf.
) N sNiC
SN
p<0 K>0 ) j
<l K>l

Figure 3.6: Bifurcations for simple systems (3.11) and (3.12). Taken from [11].

In both SN and SNIC bifurcations two fixed points (dis)appear as a pa-
rameter varies. On the contrary, during a Hopf bifurcation a focus changes
stability as it crosses the border A = 0 of Fig. 3.2 with the help of a LC.
At the bifurcation point the real part of the eigenvalues of a focus is zero.
There are two types of Hopf bifurcations:

e Superctitical Hopf bifurcation. In this case a stable focus is transformed
into an unstable one while a stable LC is born. A simple system with
this behaviour is:

dr N
P =ur—r
Y (3.13)
% =w+ri

e Subcritical Hopf bifurcation. In this case an unstable LC falls into a
stable focus transforming it into an unstable focus. A simple example
is:

%:ur+r3—r5
B (3.14)
dt '

21
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Figure 3.7: Bifurcations for simple systems (3.13) and (3.14) . Taken from [11].

In both (3.13) and (3.14) systems p is the bifurcation parameter and w
is the angular frequency.

Bifurcation of Limit Cycles

We have already seen bifurcations were a LC participates (Hopf, SNIC)
though, they can always be discovered from the conditions of their fixed
points. The bifurcations we are going to present now, in contrast, are more
difficult to examine analytically. We omit conditions and examples and
present the bifurcations in a more geometrical way.

e Fold Limit Cycle (FLC) bifurcation. It is the equivalent of SN for
cycles. An unstable cycle collides with a stable one resulting in their
disappearance.

arnit cycl
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Figure 3.8: Fold Limit Cycle bifurcation. Taken from [9].

e Supercritical (Subcritical) Homoclinic bifurcation. A saddle node is
near a stable (unstable) LC. While the bifurcation parameter is varied,
the LC gets closer to the SN until it touches it. At this point, the LC
becomes a homoclinic trajectory because it starts from and ends at the
saddle node (though it takes infinite time). Then, the LC disappears.
We can distinguish the subcritical from the supercritical case, with the

22



latter being more common in neuronal models, from the saddle quantity
o. It is defined as the sum of the smaller positive real part and the
larger negative real part of the eigenvalues [13]. If o < 0(> 0) at the
bifurcation point, the bifurcation is supercritical (subcritical).

linj
\(\o“\oc 2e,

a. supercritical saddle homaoclinic orbit bifurcation

clinj,
.(\0“‘0 Co

b. subcritical saddle homoclinic orbit bifurcation
Figure 3.9: Homoclinic bifurcation. Taken from [9].

Some times bifurcations are detected through characteristic relations be-
tween the amplitude and period of the involved stable LC and the bifurcation
parameter, called scaling laws. This is extremely helpful in the cases where
analytical computation is difficult.

A bifurcation diagram summarizes the different behaviours of a system
near a bifurcation point. In it, we plot the bifurcation parameter with a
variable of the system. For equilibria the relation between variable and bi-
furcation parameter is 1-1 while for cycles we need to pick one value from
the limit cycle, for example the maximum.
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’ H Amplitude of LC ‘ Period of LC ‘

Supercritical Hopf O(V1) O(1)
SN of cycles O(1) O(1)
1
SNIC O(1) O<\/_,7)
Homoclinic O(1) O(In p)
Table 3.1: Table of important scaling laws. Taken from [11].
X
0.5 T
e ---- unstable
> 00 — stable
0.5
-1.0

0.0 0.2 0.4 u 0.6 0.8 1.0

Figure 3.10: One-dimensional bifurcation diagram of system (3.11).

Codimension-2 bifurcations

All bifurcations examined until now occur through tuning one parameter.
That is why they are called codimension-1 bifurcations. In this study we will
also come across a codimension-2 bifurcation, namely a Saddle-Node Loop
(or Saddle-Node Homoclinic Orbit bifurcation). In this scenario, a saddle
node is between a fixed point and a LC, for some parameter values (grey
part of Fig. 3.11). Moving across a direction in the parameter space brings
the stable equilibria closer to the saddle node until they annihilate through
a SN bifurcation. In the opposite direction, the LC gets closer to the saddle
node until it disappears via a Homoclinic bifurcation. These two bifurcations
occur more and more closer as we approach the codimension-2 bifurcation
point until they coalesce in order to form a SNIC bifurcation.

We can collect all different behaviours near the SNL bifurcation over the
parameter space in a stability diagram shown in Fig. 3.11. The curves in
this diagram correspond to bifurcation lines and, therefore, their intersection
marks the codimension-2 bifurcation point. There, all three bifurcation lines
“collide”.
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Figure 3.11: The general form of a SNL bifurcation. Taken from [9)].

3.4 Neurons as Dynamical Systems

The HH model (2.4) shows that neurocomputational concepts can be ana-
lyzed within the framework of dynamical systems. Neuronal behaviour, like
quiescence, correspond to a dynamical behaviour of the model, like a global
equilibrium, while a change in the behaviour corresponds to a bifurcation. In
the HH model for example, the current I is a bifurcation parameter. In this
section, we present some important properties of neurons along with their
equivalent dynamics, following [9].

Before starting, we can reduce the HH model to a 2-dimensional one,
making the presentation of new concepts easier. Assuming that the gating
variables for Na are much faster than the others, we obtain the persistent
sodium plus potassium model Iy, , + Ik which has two variables, V and n.

Hodgkin Classification

Historically, one possible categorization of neurons is done according to the
frequency of the APs in response to the applied current (F-I curve).
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Figure 3.12: Top: Neuron-like responses. Bottom: Phase planes. PSP stands for
postsynaptic potential. Taken from [9].

e (Class 1 neural excitability: Spikes can be generated with arbitrarily
low frequency. The transition “resting” — “spiking” occurs through a
SNIC bifurcation, because it is the only bifurcation of fixed points with
a continuous scaling law for the frequency (see Table 3.1).

e Class 2 neural excitability: Spikes cannot be generated with arbitrar-
ily low frequency, and there is a discontinuity in the F-I curve. This
transition can occur through a SN, a subcritical Hopf or a supercritical
Hopf bifurcation.

Bistability

Bistable neurons are able to rest or spike spike depending on their initial
conditions. Dynamically, coexistence of stable fixed points and a stable L.C
can occur before a SN or a subcritical Hopf bifurcation. Bistability coincides
with a hysteresis loop in the F-I diagram. Note that the transition “resting”
— “spiking” occurs via a different mechanism than the transition “spiking”
— ‘“resting”. We can define the Hodgkin classification of neural spiking,
similarly to the classification of neural excitability, where we take into account
the latter transition.
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Figure 3.13: Bistability before a SN bifurcation. Spiking stops via a homoclinic
bifurcation. Taken from [9].

Resonators vs Integrators

A neuron which exhibits subthreshold damped oscillations is called a res-
onator, while when it lacks this property it is called an integrator. In 2
dimensions, resonators correspond to systems near a Hopf bifurcation while
integrators undergo SNIC or SN bifurcations. Both categories are linked with
distinct neurocomputational properties, summarized in Table 3.2.

’ properties H integrators \ resonators ‘
Subthreshold oscillations no yes
Bifurcation SNIC or SN | sub/supercritical Hopf
Bistability possible possible
Frequency preference no yes
Spike latency large small
Threshold well defined | may not be defined
Post-inhibitory spike no yes
Inhibition induced spiking no possible

Table 3.2: Summary of neurocomputational properties for integrators and res-
onators in 2-dimensional models. Taken from [9)].

In more dimensions there could be alterations in the table, for exam-
ple a 3-dimensional system can undergo a SN bifurcation while exhibiting
subthreshold damped oscillations.

Some properties of Table 3.2 may be unfamiliar. We briefly explain them
now.
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e Spike latency refers to the ability of some neurons to generate a spike
with considerable delay, in response to a barely superthreshold stimu-
lus.

e Post-inhibitory spikes are APs generated from neurons, which have
been hyperpolarized by some negative current, when this current goes
off.

e Inhibition induced spiking are APs generated from neurons in response
to sustained hyperpolarization.
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Figure 3.14: (a) Post-inhibitory spikes. Brief hyperpolarization pushes the system
to follow a spiking trajectory in order to find its resting point. (b) Inhibition
induced spiking. Sustained hyperpolarization transforms a stable to an unstable
fixed point. As long as hyperpolarization stands, the neuron is spiking. Taken
from [9].
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Chapter 4

Josephson Junction Neurons

As mentioned in the introduction, one way to emulate neuronal behaviour
is by using Josephson junctions (JJ). In the following section the physics of
JJs is briefly presented.

4.1 Josephson Junctions

A Josephson junction is made up of two superconductors coupled by a weak
link, such as, a thin insulator [11]. The wave functions ;e and 1ye'®?
describe the ground state of the electrons in the two superconducting areas.
Solving the Schrodinger equation for the system, yields that both current and
voltage are functions of the phase difference ¢ = ¢; — ¢3. More specifically,
the Josephson current-phase relation is:

I =1, sin¢, (4.1)

where [, is called the critical current. Furthermore, the Josephson voltage-
phase relation reads:

_ hdo

= oo dr

The remarkable property of the junction is that, theoretically, smaller

currents than the critical one can pass through, without any voltage across
it, corresponding to a junction with zero resistance!

In reality, in addition to the supercurrent of Eq. (4.1), there are contri-

butions from displacement and ordinary currents, which can be modelled by

(4.2)
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a capacitor with capacitance C and a resistor with resistance R respectively.
In this way, the equivalent circuit of a JJ is obtained, which is shown in Fig.
4.1.

Figure 4.1: Equivalent JJ circuit. Taken from [11].

Using the second law of Kirchhoff we derive:

awv v .
C%—I—EqLIcrsmgb—]. (4.3)

Substituting (4.2) in (4.3) we obtain:

hC d?¢ h do
2e dt + 2eR dt
Remarkably, Eq. (4.4) is the electrical analog of a damped pendulum
driven by constant torque, which was introduced in Chapter 2.
The first step in order to solve the system is to normalize the time scale,
the current and the damping coefficient according to:

_ 2el,, R h
f=y ey =L = 4.
e T %l R2C’ (45)

which simplifies the Eq. (4.4) to the non-dimensional form:

2
% + Fajl—f +sin¢ = 1. (4.6)
When a constant current is running trough a JJ, two different behaviours
are possible, which can be pictured with the help of the mechanical analog.
Depending on the parameters (and the initial conditions in the case of bista-
bility), the body can either stay still, when the torque and the gravity are
balanced, or rotate, when the torque overcomes gravity.
The dynamics of the system are summarized in the stability diagram of
Fig. 4.2. Note that the system undergoes a SNL bifurcation because its

stability diagram is the same with Fig. 3.11, if we swap the axes.

+ I sing = 1. (4.4)
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Figure 4.2: Stability diagram. Adapted from [11].

4.2 JJ Neuron

Two JJs coupled together can model a biological neuron with each junction
emulating an ionic channel [6]. The neuromorphic circuit is presented in Fig.
4.3. The two JJs are called pulse (p) and control (c¢) and, in this thesis, they
are always considered as identical. The current [, emulates the stimulus
provided from another neuron (or a neuroscientist). The current I, provides
the necessary amount of energy to the JJs for spikes to be generated and it
is assumed constant.

Figure 4.3: Circuit which acts like a neuron. Adapted from [6].

Using Kirchhoft’s laws, we derive the equations which describe the system.
W [P

Currents are denoted by I, where subscripts “p”, “c” and “s” specifie the
electrical element through which the respective current is flowing. The same
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applies for the voltage differences.
Kirchhoff’s current law for nodes A and B yields:

I.+1,=1
Th=d = [,=1I, — I, + 1 (4.7)
Iin:Ic+Is

Kirchoft’s voltage law for the circuit is:

Ve —=Ve =V, + Vi = Vip=Ve = Vi
P
Ve—Voe=-Vie+Vs = V=V + Vs

— VLp =—Vyje+Vg— VJJp. (48)

We now substitute the voltage difference across a junction using Eq. (4.2)
and across an inductor with V' = L%:

dl, __hds, hdo.  dl.
Pt 2edt  2edt  Cdt
Integrating over time in the interval [0, ¢] yields:

(4.9)

h (4.7) h
= _%(Qsp + ¢c) + LI, = LpIp = _%(stp + ¢c) + Ls<]z'n - Ip + Ib)-

(4.10)

Lyl

Now Eq. (4.10) needs to be normalized.
Currents 1., I,, I;, I, are normalized with respect to the critical current
of the junctions I, becoming i., iy, %, & respectively.
We also normalize inductances by:
Ly L,

s=— A, = : 4.11
Li+L, " Li+1L, (4.11)

Then, the coupling coefficient is:

h
A= . 4.12
2e(Ls + L)1, ( )

Solving for 4,, we find:
ip = =A@ + ) + Asiin + (1 — Ay )i, (4.13)
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Figure 4.4: Comparison between a JJ neuron (a) and a HH (b) neuron when
both are forced to spike repetitively. Solid black lines depict the magnetic flux
and membrane potential, respectively. Red dashed lines depict the voltage ((ﬁp)
across the pulse junction and the Na™ current. Blue dot-dashed lines depict the
absolute value voltage (—qﬁc) across the control junction and the absolute value of
K current. Taken from [6].

The current conservation law yields:

i = =M@y + @) + Agiin — Apip. (4.14)
Combining Eqgs. (4.13), (4.14) and (4.6) we finally have:

Op + Ty +sin g, = =A@y + @c) + Agiin + (1 — Ay)is,

be + T + 50 P = —A(¢p + Be) + Agiin — Ayiy,
where the dot refers to the derivative with respect to the dimensionless time
t of relation (4.5).

The magnetic flux A\(¢, + ¢.) of the circuit is the equivalent of the mem-
brane potential. In the appendix A, we visualise the generation of the APs
with the help of the mechanical analog. Here we just highlight that voltages
across the pulse and the control junction act like the Na' and K™ currents,
respectively. More specifically, during the early stages of the generation of
an AP, gﬁp forces the flux to grow rapidly, until a certain point, where qép
becomes negligible. On the contrary, ¢, which becomes important at a later
point, reduces the flux resulting in the downstroke of the spike. At this stage,
the generation of a new spike is extremely difficult resulting in a refractory
period-like behaviour.

(4.15)
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Chapter 5

Mathematical Analysis

5.1 Linear stability analysis

The initial system is governed by the following equations:

bp + Ty 4 8in ¢y = —A(de + 0p) + Agisn + (1 — A)iy (5.1)
Q.Sc + Féc + sin ¢c = _)‘(Qsc + pr) + Asiin - Apib' (52)

We define gz.Sp = wp, and $e = we. Then, the system becomes:

92.517 =Wp (53)
Wy = —Tw —sin g, — AMpe + ¢p) + Agiin + (1 — Ap)iyp (5.4)
be = we (5.5)
(,;)C = —ch — sin ¢c - A(Qsc + pr) + Asiin - Apiba (56>
with nullclines given by:
w, =0 (5.7)
sin ¢ Nt + (1 —A))d
pe=——2 —p+ ( p)lo (5.8)
A A
we.=20 (59)
sin ¢, Aty — Api
bp = — ;b et e, (5.10)

In Fig. 5.1 we plot the nullclines (5.8) and (5.10) in the subspace (¢,, 0, ¢, 0)
of the phase space. In this way, many aspects of the model are qualitatively
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understood. In principle, the two nullclines consist of an oscillatory part
and a linear part, which has slope —1 and some intercept. The directions
of the oscillations are perpendicular. Furthermore, the parameters modulate
different behaviour of the nullclines. More specifically:

15 \/
(a} 10 :__—'-:D
5
g 0
-5
0l T wp nulicline
—_ nuIIcIlne

—-15 . . . . . -15 .
-15 -10 -5 0 5 10 15 —15 -10
P %

—— wp nulicline

—— w¢ nullcline

Figure 5.1: Nullclines «j, = 0 and &, = 0 in the plane (¢p, ¢.). The intersections
of the nullclines correspond to fixed points. (a) For i;, = 0, the nullclines intersect
periodically. (b) For i;, = 0.4, there are no equilibria. The other parameters:
Ay, =0.5, A; = 0.5, A =0.1 and 4 = 1.909 are kept fixed.

e A,: It corresponds to the portion of 7;, which passes through both JJs
“c” and “p”. In this thesis, we choose A, = 0.5.

e A,: This parameter is responsible for splitting ¢, in two portions A,
and 1 — A, which flow through junctions “c” and “p” respectively. We
remind that A, € (0,1) and A, + Ay = 1. Thus, Ap = 0.5 too.

e \: Defines the amplitude of the oscillatory part and, furthermore, it is
a scaling factor for the intercept of the linear part of the nullclines. In
this thesis A = 0.1.

e 7;,: This current is essential in the generation of the spike, because it
modulates the intercept of the linear part for each nullcline. Note that,
the nullclines correspond to functions with different domains, namely,
the domain for nullcline given by Eq. (5.8) is ¢,, while the domain
for nullcline given by Eq. (5.10) is ¢, and that (1 — A,)i, and —Ayi,
have opposite sign. Subsequently, increasing ¢, moves the w, nullcline
upward and the w, nullcline leftward on the phase planes of Fig. 5.1.
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Large absolute values of 4, result in the absence of equilibria because
the nullclines never intersect, independently of the stimulus. The limit
is calculated by subtracting Eqgs. (5.8) and (5.10), yielding the relation:
sin ¢, — sin ¢, = . Thus, for |i,| > 2 there are no equilibria. In the
opposite case where i, = 0, the nullclines are too intertwined and the
system will never exhibit spikes, independently of the stimulus. In our
case, there is a need of equilibria which disappear depending on the
stimulus ;,. Therefore, i, = 1.909 is used.

e i;,: As mentioned before, this current emulates the stimulus. Mathe-
matically, the term Agi;, exists in both Eqs. (5.8) and (5.10). Increas-
ing the current i;, moves the w, nullcline upward and the w, nullcline
rightward. Figure 5.1 shows that this movement forces the nullclines
to drift apart. Note that if 7;, increases even more, the two nullclines
will intersect again. In a JJ neuron, %;, constantly changes. Therefore,
we need to study how these changes affect the neuronal behaviour.

e [': It does not affect the existence of the equilibria because it is not
contained in the expressions of the nullclines. Nonetheless, I' becomes
important in the stability of the fixed points and in the birth and shape
of the LCs. For this reason, this parameter is also studied.

We can quantitatively prove the aforementioned observations for ;, and
1p. Firstly, we need to calculate the positions of the equilibria by substituting
Eq. (5.8) in Eq. (5.10). In this way, we get a relation which provides the ¢%
coordinate of the fixed points:

sin ¢; B ¢* n Aszzn + (1 — Ap)2b>
A P A

Then, the ¢* coordinate is calculated using Eq. (5.8).

By scanning the parameter space (i;,,4,) while counting the number of
unique fixed points, we generate Fig. 5.2. In it, there are symmetries with
respect to 4;, = 0 and i, = 0. There is also a clear periodicity when 7, is
varied, as expected. Note that this can become problematic as greater values
of stimulus can result in quiescence in contrast to what is normally expected
of a biological neuron.

The existence of fixed points does not imply a system that rests. In order
to have that, there should be stable equilibria, therefore, we need to perform
a stability analysis.

sin ¢ — sin (— = 1p. (5.11)
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Figure 5.2: Number of fixed points provided by Eq. 5.11 for i;, € [—2,2] and
ip € (—2,2). Other parameter values as in Fig. 5.1. Independent of T".
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Firstly, the Jacobian is calculated:

0 1 0 0

_|=cosg,— A T —-A 0
J = 0 0 0 e (5.12)

—A 0 —cos¢p.— A —TI'

from which the determinant and the trace are found:
Det(J) = cos ¢, cos ¢, + A(cos ¢. + cos ¢,) (5.13)
Tr(J)= —2I. (5.14)

The characteristic equation is then given by :

e 4 2€°T + e*[cos ¢, + cos ¢, + 2\ + 2] + el[cos ¢, + cos ¢, + 2] (5.15)

+(cos ¢, + cos ¢..) + cos ¢, cos ¢,

from which, the eigenvalues are found:
e = %(—\/ﬂ -1 (5.16)
ey = %wm -1 (5.17)
e3 = %(—\/m -1 (5.18)
e = %(m —-T), (5.19)

where

A= 2\/(COS ¢p — cos P )2 + 4N > 0, (5.20)
B = —2(cos ¢, + cos ¢, + 2\) + I'%. (5.21)

The eigenvalues confirm that Det(J) = [[e; and Tr(J) = > e;. An
equilibrium is stable when the real parts of its eigenvalues are negative. In
any other case, the fixed point is unstable. Note that Egs. (5.16)-(5.19) do
not contain 7;,. The stimulus just moves the nullclines, it does not explicitly
affect the stability of the equilibria.

Next, we want to see how the parameters 7;, and I' affect the transition
between resting and spiking states. Thus, we need to analyze the bifurcations
of the system.

38



—— wp nulicline

— ) nullcline

Unstable Stable

s 0
-1
-2
_3 i : i i i : :
—3 -2 -1 0 1 2 3
Pp

Figure 5.3: Stability of the fixed points for ¢;, = 0 and independent of I' > 0.
There are three unstable and one stable equilibria. The latter is denoted by a
black dot. Other parameter values as in Fig. 5.1.

5.2 Bifurcations

Firstly, the bifurcations of fixed points are examined beginning with the
Hopf. During this bifurcation the stability of a focus changes, meaning that
a conjugate pair of its eigenvalues crosses the imaginary axes. From Egs.
(5.16) - (5.19) it is evident that either /—A + B or v/ A + B will be imaginary
near the bifurcation. Therefore, I' is the quantity that must change its sign,
which is impossible as it represents a positive damping coefficient. This could
restrict the simulating capabilities of the model, due to the fact that the Hopf
bifurcation is linked with resonator neurons. Nonetheless, we will see that
subthreshold oscillations are not impossible in a JJ neuron, although they
are weak.

On the other hand, SN and SNIC bifurcations are very common. This is to
be expected due to the fact that Fig. 5.2 contains only even numbers of fixed
points which appear and disappear in couples. Nonetheless, a more strict
proof will be provided. We remind that at both SN and SNIC bifurcation
points a pair of equilibria collide (see Fig. 3.10) while exactly one eigenvalue
of each fixed point must have zero real part. Figure 5.4 depicts the bifurcation
diagram which is independent of I" because it was generated from Eq. (5.11).

We need to highlight that I does affect the kind of equilibrium, for ex-
ample if it is a node or a focus, through the eigenvalues, however, it can not
change the fact that for 4, = i;, sy ~ 0.1850 a stable fixed point will collide
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as in Fig. 5.1. Independent of T'.

with an unstable one. Figures 5.5 and 5.6 depict the eigenvalues of the pair
of the equilibria which take part in the bifurcation for different values of I'.
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Figure 5.5: Eigenvalues near the bifurcation for I' = 1.5. Other parameters as in
Fig. 5.1. (a) Real part, (b) imaginary part.

Up to this point we have not distinguished whether the aforementioned
bifurcations are SN or SNIC. In order to do that, the scaling laws of Table
3.1 are used. The analysis reveals that:

e For I' > 1.0 the equilibria disappear through a SNIC bifurcation be-

cause right after the bifurcation point a stable LC appears, whose fre-
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Figure 5.6: Eigenvalues near the bifurcation for I' = 0.9. Other parameters as in
Fig. 5.1. (a) Real part, (b) imaginary part.

quency follows f ~ O(\/iin — tinsn). Consequently, this neuron ex-
hibits class 1 excitability. Figure 5.7 shows the scaling law for I' = 1.5.
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Figure 5.7: Signature of class 1 excitability. I' = 1.5 and the other parameters as
in Fig. 5.1. (a) F-I curve. (b) Linear fit right after the bifurcation. The slope
approximates 0.5, verifying the scaling law.

e For I' < 1.0 the equilibria disappear through a SN bifurcation, because
right after the bifurcation point trajectories jump to an existing LC
whose frequency follows f ~ O(1). For 0.882 < I" < 1.0 there is also
a homoclinic bifurcation at %, royr whose value is smaller than 4, sy,
through which the aforementioned stable LC is born. Near the homo-
clinic bifurcation the period of the LC obeys T' ~ O(In [i;, — 4in, moM])-
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Figure 5.8: Class 2 excitability and bistability for I' = 0.9, other parameters as
in Fig. 5.1. (a) Homoclinic and SN bifurcation on the F-I curve. (b) Scaling law
near the homoclinic bifurcation.

Thus, for i;, € (lin.monm. tin,sn) & LC coexists with a stable equilibrium.
In this region, the neuron exhibits both class 1 spiking and class 2 ex-
citability, which was demonstrated in Fig. 3.13. Figure 5.8 summarizes
this behaviour.

It is not accidental that, for some values of I' a homoclinic bifurcation
and a SN occur nearby, nor that for greater values of I', a SNIC bifurcation
replaces the SN one. These are the key characteristics of a SNL bifurcation
which has been described in more detail in Section 3.3.4. Indeed, the stability
diagram on the parameter space (i;,, ') of Fig. 5.9 is almost identical to that
of Fig. 3.11.

Remember that a single JJ exhibits the same behaviour, which is shown
in Fig. 4.2. The main difference is that in a single JJ, the homoclinic curve
is tangent to the line I = 4I'/w as I' — 0 [9], while in a JJ neuron the curve
tends to become parallel to the axis i;, for I' — 0.881.

The bistable regime is interesting because small perturbations of the stim-
ulus can switch spike trains on and off resulting in a bursting-like behaviour
[14]. In a circuit, this can be modelled with a stimulus: 4;,+&(t), where £(t) is
a white Gaussian noise with zero mean and variance 0. The autocorrelation
function for this stochastic variable follows (£(t)&(7)) = o2d(t — 7).
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Figure 5.10: Noise-induced bursting behaviour for I' = 0.95. Stimulus: 0.182 +
&(t), where £(t) is a Gaussian noise with standard deviation: o = 0.06. Other
parameters as in Fig. 5.1.
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5.3 Additional neurocomputational properties

So far, in terms of neuronal properties, it has been verified that a JJ neuron is
able to exhibit both class 1 and class 2 excitability, with the latter occurring in
a bistable regime. Generally, there is a great number of neurocomputational
properties corresponding to different dynamics. Some of them are shown in
Table 3.2. In this section, we analyze which of them can be exhibited by the
system and we explain the reason why the rest of them can not.

First of all, is should be stated again that the incapacity of the system
to undergo a Hopf bifurcation does not strictly imply that a JJ neuron is an
integrator, i.e, it is unable to exhibit subthreshold oscillations. This is true
only for 2-dimensional systems. Indeed, Fig. 5.6 demonstrates that near the
SN bifurcation, both fixed points have a pair of complex conjugate eigenval-
ues. For I' > 0.95 though, the damping coefficient is too high. Consequently,
when subthreshold oscillations do exist, they are negligible, as shown in Fig.
5.11a. For smaller values of I', more pronounced subthreshold oscillations
are expected, although in this study we do not consider the case I' < 0.95
for reasons explained in Section 5.4.
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Figure 5.11: Response to different stimuli for I' = 0.95 and other parameters as
in Fig. 5.1.(a) Flux response to a subthreshold current pulse of 0.15 amplitude
and width of 5. (b) Normalized maximum response to two subthreshold pulses of
varied inter-pulse period At. The pulses are identical to that of (a). Near At = 12
the inset shows that the response slightly increases because the pulses resonate
with the period T' = 12.03 of the subthreshold oscillations.

As a result, the neurons we have seen so far do not display significant

frequency preference. The tool which is used in order to detect this property
is the normalized maximum value of ¢, 4+ ¢, in response to two pulses of
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current with some varied delay. In the case of an integrator, the response
decreases as the delay increases, while for a resonator the response increases
for delays equal to multiple integers of the period. Note that effectively, the
response of Fig. 5.11b is that of an integrator.

In terms of spike latency, JJ neurons of both classes 1 and 2 of excitability
can exhibit it, as demonstrated in Fig. 5.12. This is expected in systems
right after and very close to a SN or a SNIC bifurcation because the vector
field is close to zero in the area of the annihilated fixed points. For this
reason, the trajectory needs a lot of time to escape this neighborhood. Note
that although both SN and SNIC bifurcations exhibit this behaviour, the
frequency of the generated spikes are fundamentally different, because they
belong to different classes of excitability.

*1(a) 51 (b)
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B + ¢c
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0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
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Figure 5.12: Spike latency for i;, = 0.1853 and other parameters as in Fig. 5.1.
(a) T' = 1.5 corresponding to class 1 excitability , (b)I" = 0.95 corresponding to
class 2 excitability.

Neither post-inhibitory spikes nor inhibition induced spikes are exhibited
by a JJ neuron. These properties are based on the geometry of the nullclines
shown in Fig. 3.14a and 3.14b which is fundamentally different than that
of a JJ neuron. For A, = 0.5 the quantity ¢, + ¢. is an odd function of
1;n, meaning that negative stimuli produces negative responses, that is spikes
facing downwards.

5.4 Lyapunov exponents

Up to this point, the guide in the analysis was the behaviour of the equilibria.
The only discovery concerning the behaviour of LCs was the homoclinic bifur-
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cation, which was detected through the SNL bifurcation. Nonetheless, more
complex dynamics are expected from a 4-dimensional system, like chaos, bi-
furcations of LCs and more, which can not be detected through examination
of the fixed points. Thus, more sophisticated tools are needed for deeper
investigation. In this thesis, the Lyapunov exponents were used.

As mentioned in section 3.3.3 the Lyapunov spectrum provides useful
information about the system. In the case of a 4-dimensional dissipative
system, there are 4 Lyapunov exponents: Lq, Lo, Lz, L4, which follows:

> Li=Vf=-or (5.22)

Sorting them from the maximum to the minimum, implies that at least Ly is
negative because the sum in Eq. (5.22) is negative too. The signs of the other
Lyapunov exponents we encounter, along with the corresponding dynamical
behaviour are depicted in Table 5.1.

] Attractor H Ly \ Ly \ Ls ‘
Fixed point (FP)

Limit Cycle (LC) 0 — —
Quasiperiodic (QP) 0 0 —
Chaotic (C) + 0 _

Table 5.1: Stable attractors according to the signs of the three larger Lyapunov
exponents.

The calculation of the Lyapunov spectrum is very difficult numerically.
That is why a method developed by Benettin et al. was used [15]. The
core idea of the algorithm, is that we follow only one trajectory along with
its tangent space which is defined by the linearized equations of the system.
The evolution of the system distorts a sphere defined on the tangent space
into an ellipsoid whose principal axes provide the Lyapunov exponents. The
repeated use of the Gram-Schmidt reorthonormalisation prevents the axes of
the ellipsoid from diverging. Unfortunately, calculating the Lyapunov spec-
trum is time consuming. Figure 5.13 took about 10 hours to generate, hence
the low resolution. Depending on the initial conditions xg, a trajectory can
end up in a different attractor of the Table 5.1. We have already encountered
this dependence in the bistable regime of Fig. 5.8, however, Fig. 5.13 shows
that this is just the tip of the iceberg.

More specifically, Fig. 5.13b reveals an unexpectedly rich behaviour for
tin < tin,gn and I' < 1, where chaotic or quasiperiodic attractors or LCs
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Figure 5.13: Attractors extracted from the Lyapunov spectrum. Abbreviations
according to Table 5.1. The spectrum of the cross section shown by the black
dashed line is depicted in Fig. 5.15. Parameters as in Fig. 5.1. (a) Using as
initial conditions, either the stable fixed point: zy = ((;5;, 0, ¢%,0), when it exists,
or the last stable fixed point before its disappearance when it does not. (b) Using
2o = (0,20,0,0).

coexist with stable fixed points. The region which was expected is the tran-
sition from fixed points to LCs through the homoclinic bifurcation, whose
curve starts around (i;,, [') = (0.11,0.88) and ends near (0.185,1.0). On the
contrary, the left part of the borderline between LCs and fixed points, that
is for i, < 0.11, corresponds either to another new bifurcation, or to the
movement of the basin of attraction of the LC away from the initial condi-
tions we have chosen. Furthermore for I' below the left part of the borderline
and generally when I' < 0.88, there is a new area of bistability which has not
been investigated before. Another important discovery, is that not all LCs
in this region have a spike-like form, as shown in Fig. 5.14a. Combining the
aforementioned remarks, we conclude that this parameter subspace is more
complicated than it seems, especially for I' < 0.95. A more detailed analysis,
which is not in the scope of this thesis, should be performed regarding the
bifurcations, the basins of attraction, and the form of the trajectories..

In terms of non periodic trajectories, a sickle-like formation appears in
the parameter space, formed by both chaotic and quasiperiodic regions. We
should highlight, that it is difficult to distinguish these 2 behaviours due
to the fact that, in the chaotic regions L; is close to the precision of the
algorithm used for the extraction of the Lyapunov spectrum. In fact, the
maximum Lypaunov exponent which was calculated for the generation of
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Figure 5.14: Timeseries for I' = 0.8 and different i;,. Other parameters as in Fig.
5.1. (a) Non spike-like LC for i;, = 0 and initial conditions 2y = (0,5,0,0). (b)
Chaotic spiking for i;, = 0.2 and initial conditions zy = (0,0,0,0).

Fig. 5.13, was max(L;) = 0.053, while the precision of the algorithm was
set to e = 0.005. That means, that a Lyapunov exponent L; is assumed zero
when |L;] < e. Typical chaotic spiking of a JJ neuron is depicted in Fig.
5.14b. The route from order to chaos for I' = 0.8 is depicted in Fig. 5.15
with the help of the Lyapunov spectrum and the bifurcation diagram. In
this bifurcation diagram we depict the local maxima of the ¢, + ¢, variable
over the bifurcation parameter. Observe that almost every branch of the
Fig. 5.15a is continually splitting in two, until the LCs, which contain finite
number of local maxima, are replaced by a chaotic attractor with infinite
number of local maxima. This transition is known as the “period doubling
route to chaos”.

Figure 5.16 demonstrates the way the phase portrait changes as the sys-
tem moves towards the chaotic regime. Due to the fact that the system is
4-dimensional it is impossible to visualise all its dimensions. We choose to
depict variables ¢, +¢. and q5p+q50 because they correspond to the membrane
potential V' and its derivative, respectively.

For 1 < T" < 2 the Lyapunov spectrum did not provide us with more
information than we already have, that is, a stable fixed point that disappears
through a SNIC bifurcation as %;, increases.
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Figure 5.15: Transition between chaos and LCs for I' = 0.8, marked by the horizon-
tal dashed line of Fig. 5.13. Other parameters as in Fig. 5.1 and zp = (0, 20,0, 0).
The phase portraits at the vertical dashed lines are depicted in Fig. 5.16. (a)
Bifurcation diagram. (b) Lyapunov spectrum.
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Chapter 6

Conclusions and outlook

Josephson Junction (JJ) neurons are promising candidates as building blocks
for large scale neuromorphic computers due to their capacity to operate in
great speeds and with low energy dissipation. For this reason, their dynami-
cal behaviour must be fully understood and compared with that of biological
neurons. Previous works have already mentioned that the ability of the JJ
neuron to exhibit classes of excitability 1 and 2 is due to the fact that the sys-
tem undergoes saddle-node (SN) and saddle node on invariant circle (SNIC)
bifurcations respectively, depending on its parameters [6].

By performing a detailed bifurcation analysis, we confirm the aforemen-
tioned behaviour, which is summarized in a codimension-2 bifurcation called
Saddle Node Loop (SNL). The SNL bifurcation occurs near (i;,,I") = (0.185, 1.0)
with the other parameters kept fixed, as in the literature (A, Ay, A, i) =
(0.1,0.5,0.5,1.909). SNL bifurcations are found in neuronal models and are
linked with a variety of neurocomputational properties. More specifically, all
properties shown in Fig. 6.1, apart from chaotic spiking, were expected. In
addition to the SNL bifurcation, the system exhibits more complex behaviour
for I' < 1.0, in particular, chaotic spiking, which occurs through a series of
period doubling bifurcations as i;, increases, the so-called period doubling
route to chaos.

Besides the neuromorphic properties of the JJ neuron, we have found two
behaviours beyond biological relevance which should be further studied:

e Firstly, Fig. 5.2 shows that the number of the fixed points is a periodic
function of i;,. Thus, it is possible that a neuron will stop spiking
because its stimulus increases, an unusual neuronal behaviour to our
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knowledge. Possible future work could study the maximum input a
neuron can receive in experimental conditions.

e Secondly, great care should be taken for I' < 1.0. Figure 5.13 reveals
the existence of non expected limit cycles which do not have the cor-
rect spike-like form, as in Fig. 5.14a. Future work could investigate
them more and check if different values of the parameters (i, A,) could
eliminate them. In this way, we will be able to safely use JJ neurons
which exhibit class 2 excitability or chaotic spiking. Furthermore, for
smaller values of I' we expect neurons to exhibit frequency preference,
a very important neurocomputational property.

Finally, future investigation could concern the emulation of bursting, a
behaviour which was only briefly touched in this thesis. Bursting neurons
fire a burst of spikes periodically followed by a period of quiescence [9]. Dy-
namically, bursting requires at least one additional dimension, because a new
variable should switch on and off the spiking generated from the other vari-
ables of the system. Biologically, that occurs through slower currents while
a JJ neuron could burst either by adding more electrical components to the
circuit, or by coupling i, current with some variable of the system.
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Figure 6.1: Summary table of the neurocomputational properties exhibited by a

JJ neuron.
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Appendix A

Generation of a spike in a
Josepshon Junction neuron

In this part, we explain in detail the generation of the spikes in a JJ neuron.
We rewrite Egs. (5.1)-(5.2) but we now interpret them as 2 coupled, driven
and damped pendula:

bp + T, 4 sin @) = —A(de + 0p) + Agisn + (1 — A)iy = iy (A1)
g.ZSC + Fqgc + sin ¢c = _)‘(ch + ¢p> + Asiin - Apib = ic; (A2>

where I' is the damping coefficient, i, is the torque driving the “p” pendulum,
1. is the torque driving the “c” pendulum, A is the coupling coefficient and
13, simulates the external stimulus. The parameter values which are used in
this demonstration are: I' = 1.5, L, = 0.5, Ly = 0.5, A = 0.1, 7, = 1.909 and
)0, ift <30
0021, if ¢ > 30.

The different stages during the generation of a spike are visualised in Fig.
A.1. For i;, = 0 the bias torque i; forces both pendula to rest in some non zero
angles with opposite sign (¢t = 21.0). When i;, comes into play, both ¢, and
i. increase. Initially, this results in a slow increase of ¢,, while ¢, is almost
unaffected (see t = 45.0). At some point, the role of gravity in the movement

of pendulum “p” switch sides, from constraining to enhancing it (¢t = 85.0).
For this reason the pendulum whirls quickly (¢ = [85.0,95.0]). The abrupt
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ip =0.955 ic=-0.954 ip=1.011 ic=-0.898
t=21.0 t=45.0

ip =0.949 ic=-0.96 ip =0.787 ic=-1.122
t=285.0 t =90.0

ip =0.595 ic=-1.314 ip =0.764 ic=-1.145
t=95.0 t =98.0

ip =0.97 ic =-0.939 i»=0.982 i=-0.927
t =100.0 t =154.0

(1))

Figure A.1: Pendula “p” (left) and “c” (right) for different timesteps along with
the torque ¢, and 7. they experience, respectively.
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increase of ¢, makes the term —A(¢, + ¢.) important. Consequently, both
it and i, decrease rapidly. This change alongside with gravity, which has
switched sides again, slows down ¢, to an almost resting situation. At the
same time, pendulum “c” whirls over in the opposite direction then that of
“p” (t = [95.0,100.0]). When both pendula have whirled once, the —A(¢,+¢.)
term becomes negligible again. It takes a lot of time for pendulum “p” to
arrive at the whirling point (£ = [100.0, 154.0]) for a second time, where the
whole procedure will repeat. In Fig. A.2 we keep track of ¢,,¢. and ¢,+¢..

15

10 b

5 $p + ¢c

—10

_15 T T T T T
0 50 100 150 200

t (A.U.)
Figure A.2: Time evolution of the spike along with its components ¢, and ¢..
Other parameters: I' = 1.5, L, = 0.5, Ly = 0.5, A = 0.1, 4, = 1.9009.
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Appendix B

Numerical tools

For the needs of this thesis, code was developed in Python and Julia pro-
gramming languages. More specifically:

e Julia was used for time intensive tasks because it is much faster than
Python. Furthermore, its libraries “DifferentialEquations.jl” and “Dy-
namicalSystems.jl” contain useful functions, especially those that per-
form numerical integration and generate the Lyapunov spectrum [16,
17]. For these two functions the methods which were used were: “Tsi-
touras 5/4 Runge-Kutta” for the former [18], and a method developed
be Benettin and others for the latter [15]. Figures 5.9, 5.10, 5.13 and
5.15b were generated in Julia.

e The biggest portion of the code was developed in Python. The rest
of the figures which were not mentioned above were generated with
this programming language. For the numerical integration the “inte-
grate.solve_ivp” function from “scipy” library was used [19], which also
employs a Runge-Kutta method [20].

A great variety of original functions were generated in both program-
ming languages. Some of them are: a frequency calculator, a function which
matches the Lyapunov spectrum to its attractor and functions calculating
the analytical quantities of the system, such as the fixed points. For more
details, the code is available at the github page: https://github.com/
gerompampastrumf/JJ_neuron.git.
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