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Abstract

Users of very large information bases are generally concerned with a small portion of the
information stored. Different users need to view the same information differently according to
their needs. Designers, on the other hand, need to structure information in accordance to the
user group it is addressed. It is therefore important for information bases to provide their users
and designers with tools that allow them to isolate desired portions of information and manage
them in their own ways, e.g., by naming information objects using familiar names, grouping
objects together according to their own perception, and so on. In other words it is important
for information systems to provide an abstraction mechanism that reflects the intuitive notion
of context.

The aim of this thesis is to introduce a notion of context in information modeling providing
a structuring mechanism for large information bases, and to establish a formal notion of context
along with a general framework for maintaining and querying contexts.

Specifically, we define a set of operations for manipulating contexts. These operations
support context creation, update, copy, union, intersection, and difference. In particular, our
operations of context union, intersection, and difference are different from these of set theory
as they keep track of the context involved. However, they also satisfy the important properties
of commutativity, associativity, and distributivity.

Then, we show how a particular semantic data model (the Telos data model) can be incor-
porated into the proposed contextualized framework. Thus, we enhance our notion of context
by structuring its contents through the traditional abstraction mechanisms, i.e., classification,
generalization, and attribution, and we study the interactions between contextualization and
these mechanisms as well as the constraints that govern such interactions.

Finally, we present a query language for contextualized information bases. The query
language can be used for navigating through contexts, as well as for retrieving information of
interest.

We demonstrate the applicability of our mechanism to several areas requiring features
which rely on partitioning such as views, workspaces, versions, thesauri fields and facets.
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Chapter 1

Introduction

The notion of context is of fundamental importance in cognitive psychology, linguistics, and
computer science. In computer science, a number of formal or informal definitions of some
notion of context have appeared in several areas, such as artificial intelligence [51, 73, 46],
software development [92, 45, 99, 106, 108, 56, 63], databases [7, 44, 49, 2, 27, 55, 86], machine
learning [76, 130, 71], and knowledge representation [84, 122, 126, 121, 135, 31, 116, 26, 18]. See
also [80] for a general survey on the subject.

However, all these notions of context are very diverse and serve different purposes. In
software development the notion of context appears in the form of views [7, 44, 49, 98, 2],
aspects [92], and roles [45, 99], for dealing with data from different perspectives, or even in the
form of workspaces which are used to support cooperative work [56]. In machine learning,
context is treated as environmental information for concept classification [76, 130, 71]. In the
so called multiple databases, context appears as a collection of meta-attributes for capturing
class semantics [55]. In artificial intelligence, the notion of context appears as a means of
partitioning knowledge into manageable sets [51], or as a logical construct that facilitates
reasoning activities [73, 46]. In particular, in the area of knowledge representation, the notion
of context appears as an abstraction mechanism for partitioning an information base into
possibly overlapping parts (e.g. [84, 121, 126, 135, 31, 116, 26, 18]).

This thesis focuses on the area of knowledge representation, where most research assumes
an information base that describes a particular application based on an information model. In
order to deal with the complexity of the data stored in an information base, abstraction mech-
anisms, such as classification, generalization and attribution, are used for their organization.
An abstraction mechanism that is by far less well understood and studied is contextualization.

Contextualization can be seen as an abstraction mechanism which allows partitioning and
packaging of information being added to an information base [82]. Its importance is stemming
from the fact that in any modeling task there are often differences of opinion or perception
among those gathering, providing, or using information. But even within the same group of
people, there is a need to give descriptions of objects with respect to particular viewpoints or
situations. Moreover, in very large information bases users are generally concerned with a
small portion of the information stored. Different users need to view the same information
differently according to their own needs. It is therefore important for information bases to
provide their users and designers with tools that allow them to isolate desired portions of
information and manage them in their own ways, e.g., by naming information objects using
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familiar names, grouping objects together according to their own perception, and so on. In
other words, it is important for information systems to provide an abstraction mechanism that
reflects the intuitive notion of context. Such a mechanism should therefore allow to

� view information from different viewpoints and/or in different level of details,

� isolate a portion of the information base,

� restructure its contents,

� name the contents using familiar names,

� eventually link the contents to other portions of interest,

� handling inconsistent information.

An important feature of context is that the same information object can have different meanings
in different contexts. For example, a computer can be part of two different contexts, one
providing information about the hardware components and the other about the software
components. In these two contexts the term “computer” has two different meanings: in the
hardware context a computer is thought of as an assembly of hardware components, whereas
in the software context it is thought of as an assembly of software components. In addition, an
information object may be meaningful in one context and meaningless in another. For example,
it is meaningful to talk of an airplane in the context of 20th century but meaningless in the
context of 16th century. More generally, the information contained in a context is dependent on that
context.

The aim of this thesis is introduce a notion of context in information modeling providing a
structuring mechanism for large information bases, and to establish a formal notion of context
along with a general framework for maintaining and querying contexts. The proposed context
model is intended to form a unifying generic framework in order to support the development
and effective use of large information bases in various application areas, and especially, the
development of applications which rely on partitionings of an information base, such as views,
workspaces, versions, fields and facets of thesauri management systems.

A context is seen as a set of information objects, each object carrying a set of names and a
reference to some other context [122, 123]. Contexts can share objects (i.e., an object can belong
to more than one context) but names and references of objects are context-dependent. Our
notion of context supports synonyms, homonyms, and anonyms.

Moreover, we define a set of operations for manipulating contexts [125, 121, 120]. These
operations support context creation, update, copy, union, intersection, and difference. In
particular, our operations of context union, intersection, and difference are different from these
of set theory as they keep track of the context involved. However, they also satisfy the important
properties of commutativity, associativity, and distributivity. Our model contributes to the
efficient handling of information, especially in large information systems, and in distributed,
cooperative environments, as it enables (i) representing (possibly overlapping) partitions of an
information base; (ii) partial representations of objects, (iii) flexible naming (e.g. relative names,
synonyms and homonyms), (iv) focusing attention, (v) handling inconsistent information, and
(vi) combining and comparing different partial representations.

Then, we show how a particular semantic data model (the Telos data model) can be incor-
porated into the proposed contextualized framework [122, 123]. Thus, we enhance our notion
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of context by structuring its contents through the traditional abstraction mechanisms, i.e., clas-
sification, generalization, and attribution. We show that, depending on the application, our
notion of context can be used either as an alternative way of modeling or as a complement of
the traditional abstraction mechanisms. It is important that we study the interactions between
contextualization and the traditional abstraction mechanisms as well as the constraints that
govern such interactions.

Finally, we present a query language for contextualized information bases. The query
language can be used for navigating through contexts, as well as for retrieving information of
interest [124].

We demonstrate the applicability of our mechanism to several areas requiring features
which rely on partitioning such as views, workspaces, versions, thesauri fields and facets.

We begin this chapter by outlining issues that govern information bases and by presenting
conventional abstraction mechanisms. We then present some problems appearing in a variety
of information bases, and as we go along, we outline a solution to these problems introducing
the contextualization abstraction mechanism. The proposed mechanism is presented in details
and further justified in the following chapters.

1.1 Information modeling

Information modeling is concerned with the construction of computer-based symbol structures
which capture the meaning of information and organize it in ways to make it understandable
and useful to people [82]. Such symbol structures are referred to as information base (this term
is a generalization of the terms database and knowledge base). From now on we shall refer to
computer-based symbol structures, as descriptions. The part of the real world being modeled
by an information base is referred to as application.

An information model is defined as a collection of description types, whose instances are
used to describe an application, a collection of operations which can be applied to any valid
description, and a collection of general integrity rules which defines the set of consistent
description states, or changes of states. For example, regarding the relational model for databases,
its basic description types include table, tuple, and domain, its associated operations include
add, remove, update operations for tuples, and/or union, intersection, join operations for
tables. The relational model includes a single integrity rule: No two tuples within a table can
have the same key [82].

The information models proposed and used over the years have been classified into the
following three different categories [82]:

1. Physical Information Models: Such models employ conventional data structures and other
programming constructs to model an application in terms of records, strings, arrays, lists,
variable names, B-trees, and the like.

2. Logical Information Models: Such models offer abstract mathematical symbol structures
(e.g. sets, arrays, relations) for modeling purposes, hiding the implementation details
from the user. Examples of these models are the relational and network models for
databases.
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3. Conceptual Information Models: Such models offer highly sophisticated and more expres-
sive facilities for modeling applications and structuring information bases. These models
use semantic terms for modeling an application, such as Entity, Activity, Agent, Goal.
Moreover, they offer means for organizing information in terms of abstraction mechanisms,
such as classification, generalization, and aggregation. Such models are supposed to
model an application more directly and naturally [47, 90]. From now on, we call these
models simply as conceptual models.

In the sequel, we focus the discussion on conceptual models, since they constitute the
state-of-the-art on the field for more than two decades.

1.1.1 Information base framework

We assume that the real world consists of real world objects (concrete objects or concepts). We
also assume that an information base consists of model objects (entities, relationships, attributes,
activities, or whatever). Each real-world object is represented in the information base by a
model object. In this thesis, whenever we use the term object we mean model object.

Objects can be concrete (e.g. Marry, 1998, Greece), which are also called tokens, or abstract
(e.g. Person, Year, Country), which are also called higher-level or generic objects. Moreover,
objects can be individuals or links. Individuals are intended to represent entities (concrete ones
such as Marry, or abstracted ones such as Person), while links represent binary relationships
between entities. Three common kinds of links are instance-of, ISA, and attribute links.

Abstract objects are objects modeled using the abstraction mechanisms offered by concep-
tual models. Three of the most useful and common abstraction mechanisms are: classification,
generalization, and aggregation, which are described in the following subsection.

1.1.2 Abstraction mechanisms

The key concept to master the complexity in information handling is what is usually called the
abstraction principle [135]. In order to deal with the complexity of the data stored in an infor-
mation base we use abstraction mechanisms for their organization. By definition, abstraction
involves suppression of (irrelevant) detail, and retention of the essential information [135, 82].
In other words, an abstraction is a simplified description, or specification, of a system that
emphasizes some of the system’s details or properties while suppressing others [105]. As a
result, the higher-level concept may be more easily understood and used.

The most common abstraction mechanisms used in information modeling are the follow-
ing [52, 114, 109, 82]:

1. Classification: an object (entity, relationship, attribute, activity or whatever) within an
information base is classified under one or more generic objects (classes).

2. Generalization: generic objects are organized in terms of a partial order relation determined
by their generality/specificity.

3. Aggregation: objects are viewed as aggregates of their components or parts (also called
partOf).
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1.2 Some problems in information modeling

1.2.1 Relative semantics

For each information modeling system only a part of all possible facts, stated about reality, is
of interest. Users could judge if a certain fact is relevant or not (according to their interests).
Thus, human perception is applied to the real world to extract a slice of the reality. The problem
is that in any modeling task there are often differences of perception or opinion among those
gathering, providing, or using information.

Thus, the same real world object or real world slice can be seen, described, or interpreted
differently by different people or user groups. For example, in a painting exhibition, a painting
may be described differently from an expert (e.g. a painter, who knows details about painting
techniques), than a non-expert (e.g. a curator, who may know only the style of the painting
and its painter). But even the same person can give different descriptions of the same real
world object, depending on the reason or the person to whom the description is addressed.
For example, a painting would be described in simple terms if the description is addressed to
a primary school, and in technical terms, if the description is addressed to painting experts.

Moreover, it is often the case that in different contexts, the same object have different seman-
tics. For example, in the context of discussing different paintings, the expression “fake Monet”
may convey information about the artist being somebody other than Monet, i.e., not Monet;
whereas in the context of discussing details of various painting techniques, the expression
“fake Monet” may convey information about the technique used, and state that the technique is
similar, but not exactly like the technique used by Monet [53].

Summarizing, in conceptual modeling, objects are needed to be described and interpreted
differently, if they are viewed from different viewpoints, i.e., descriptions of objects are needed
to be context-dependent. Most of the existing information models lack this ability, and a new
abstraction mechanism should be developed to support different viewpoints.

1.2.2 Handling inconsistent information

Inconsistency in an information base, when viewed purely logically, seems undesirable. Indeed
the traditional approach to dealing with inconsistency in data is to employ means to restore
consistency immediately. However, it is important to study the larger environment containing
such information bases, and the circumstances surrounding the inconsistency. In [38], it is
argued that within the larger environment, an inconsistency can be desirable and useful,
if we know appropriate actions to handle it. In some cases we may wish to remove the
inconsistency, and in other cases we may wish to keep it. In the last case, we must be capable
of representing this information in the information base. We believe that inconsistent or
contradictory information can be represented in the same information base as long as it is
treated in different contexts.

Unfortunately, most of the systems support global descriptions and thus information about
objects must be consistent, while inconsistent is meaningless. For example, it is meaningless for
a person to be classified under both the class of “Tall People” and the class of “Short People”.
On the other hand, it is meaningful to say that a person is tall in the context of his/her family,
and short in the context of his/her basketball team.
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Summarizing, most of the existing information models do not handle inconsistent informa-
tion. Treatment of inconsistent information is useful as in reality, different people often have
different perspectives or opinions.

1.2.3 Focused information access

Another serious problem, especially in large information bases, is that of unfocused information
access. In the majority of existing systems, queries are posed globally to the information base.
This results in (i) retrieving useless or irrelevant information, (ii) worsening the performance
of query time.

On the other hand, it would be useful to focus attention in delimited parts of the information
base and perform any action (e.g. queries, updates) within these parts.

1.2.4 Naming problems

The most common naming scheme employed by a variety of conceptual models is the following:
An object is associated with a logical name which supports logical reference to the object and
identifies it externally1. The logical name of an individual is unique over the entire information
base, whereas the logical name of a link is unique over the links emanating from the same object.

Naming schemes like the one above are not “natural” enough and several problems often
arise: logical names can be ambiguous (e.g. homonymous objects), excessively long (especially
in large information bases), unrelated to or unable to follow the changes of the environment of
the named object [127, 126]. In natural language, similar problems are resolved by the context
within which words are used.

1.3 Contextualization: a solution

A solution to these problems is offered by contextualization, which allows partitioning and
packaging of information being added to an information base.

Adding contextualization to an information base has many advantages, including the fol-
lowing:

� Modular representation: A context suppresses details by allowing grouping or packaging
of the descriptions added in an information base, as well as it allows access to the hidden
detail.

� Context-dependent semantics: A given object may be represented and interpreted differently
in different context delimited parts of the information base.

� Focused information access: A context delimits the parts of an information base that are
accessible in a given way. Thus contexts can act as a focusing mechanism when searching
for information.

1Internally, an object is associated with a system-generated, globally unique identifier, completely independent of
any physical location (a surrogate[24]), which distinguishes it internally from all other objects.
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� Ability to handle inconsistent information: Contradictory information can be represented in
the same information base as long as it is treated in different contexts.

As a consequence, contextualization can resolve many of the problems described in the
previous section. The expressive power of that mechanism makes it capable of supporting the
development and effective use of large information bases in various applications. Examples
of applications include thesaurus management systems, scientific catalogues, encyclopedias,
multilingual applications, web-based applications, cooperative work, distributed and feder-
ated databases.

In conceptual modeling, a context is seen as a higher-level conceptual entity that groups or
packages together other conceptual entities from a particular standpoint. Contexts allow us
to focus on the objects of interest, as well as to name each of these objects using one or more
convenient names [85, 121].

It is important to note that the same object can belong to different contexts and may have
different names in each context. Thus, to the extent that names convey meaning, this is one
way of providing context-dependent interpretation of objects. As we shall see, there are more
ways in which the notion of context supports relative interpretation.

A context can be created on the basis of one or more criteria, such as:

� temporal, e.g. the map of Greece through the centuries, where each century constitutes a
different context;

� spatial, e.g. the economy of different regions of Greece, where each region constitutes a
different context;

� functional, e.g. the usage of a knife in different human activities, where each activity
constitutes a different context;

� structural, e.g. the organization of a computer from a hardware or from a software point
of view, where each point of view constitutes a different context; and so on.

The aim of this thesis is to establish a formal notion of context along with a general frame-
work for maintaining and querying contexts.

In the following subsections, we first present two previous approaches to contextualization
and their limitations. We then present two new approaches. The first approach extends the pre-
vious approaches by presenting a more general framework. However, this extended approach
shares with the previous approaches the assumption that contexts are objects themselves. The
shortcomings of this assumption are then explained, and a novel approach is presented, where
contexts and objects are of different sorts. In addition, in this approach objects within a context
are structured using the usual abstraction mechanisms.

1.3.1 Conventional approaches

In the area of knowledge representation, Mylopoulos and Motschnig-Pitrik [84] proposed
a general mechanism for partitioning information bases using the concept of context. They
introduced a generic framework for contexts and discussed naming conventions, operations on
contexts, authorization, and transaction execution. However, they impose a strict constraint on
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naming, whereby objects (called information units) are assigned unique names w.r.t. a context.
Because of this constraint, several naming conflicts appear in operations among contexts, which
the authors resolve in rather arbitrary ways. In addition, operations among contexts, such as
union (called addition) and intersection (called product), are deprived of such useful properties
as commutativity, associativity, and distributivity, and thus also can yield unexpected results.
In [84], the major problem of the context union and context intersection operations is that
it is possible for an object in the output context to have no name, even though it originally
had one or more names. This can happen if an object of one input context has a name in
common with an object of the other input context. For example, consider two contexts c and
c0 which correspond to two companies, the contents of c and c 0 being the employees of these
two companies, respectively. Assume now that an employee in the first company has the same
name with another employee in the second company. Then, the union of the contexts c and c 0

contains these two employees, but one of them will have no name. Such results might seriously
hinder the applicability of this otherwise appealing framework.

In [126, 127], Theodorakis and Constantopoulos proposed a naming mechanism based on
the concept of context, in order to resolve several naming problems that arise in information
bases, such as object names being ambiguous, excessively long, or unable to follow the changes
of the environment of the object. However, that approach imposes a hierarchical structure on
contexts, i.e., a context may be contained in only one other context, which is rather restrictive.

1.3.2 Combining and extending conventional contextualization approaches

In this thesis, we try to combine the advantages of these previous two approaches and overcome
their limitations by introducing a more general and more complete framework for context [125,
121, 120].

In particular, like in [84], a context is treated as a special object which is associated to a
set of objects and a lexicon, i.e., a binding of names to these objects. However, in our model,
an object is allowed to have more than one names, even in the same context, as shown in the
following diagram:

..

.
context

objectonames of o

For example, in the context of a research group, the object o can be a researcher with his
social name (e.g. “John”) and his nickname within the group (e.g. “The Hacker”) as two of its
names.

This offers more flexibility and expressiveness and can handle the naming of real world
entities in a more “natural” way, as it is possible for two objects to have the same name, even in
the same frame of reference. This common name assignment may occur either accidentally, or
by virtue of a common characteristic of the two objects (expressed through the common name).

In our model, naming conflicts that may appear during operations on contexts are resolved
through a sophisticated, yet intuitive naming mechanism. Specifically, the following situations
can be handled: (i) Synonyms: different names that have been assigned to the same object w.r.t.
the same or different contexts; (ii) Homonyms: different objects that have the same name w.r.t.
the same or different contexts; and (iii) Anonyms: objects with no name w.r.t. a context. An
object is externally identified w.r.t. a context by using (simple) object names w.r.t. that context,
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or composite names that are formed by taking into account the nesting of contexts. Object
names and composite names w.r.t. a context form name paths w.r.t. that context. We distinguish
an important class of contexts, called well-defined. Every object contained in a well-defined
context possesses a unique name path w.r.t. that context.

The present model offers a set of operations for manipulating contexts. These operations
provide support for creating, updating, combining, and comparing contexts. The most in-
volved of the operations are those for combining and comparing contexts, namely context
union, context intersection, and context difference. We prove that the class of well-defined
contexts enjoys a closure property: the union, intersection, or difference of two well-defined
contexts yields a well-defined context. Name ambiguities are resolved by adding to the re-
sulting context, views of the objects as seen from the input contexts. Besides being used for
name disambiguation, these views carry useful information about the input context. Finally, it
should be mentioned that our context union and context intersection operations are commuta-
tive, associative, and distributive, with the benefits that these properties usually carry.

1.3.3 Contextualization as an independent abstraction mechanism for conceptual
modeling: A novel approach to contextualization

Having extended conventional approaches, we have increased the expressive power and flex-
ibility of contextualization, but there are still some useful capabilities that are lacking:

1. One-to-one correspondence between real world objects and (model) objects.

Contexts have been defined to be objects themselves. This implies that two different
contexts (i.e., objects) are needed in order to represent two different perceptions of the
same real world object. For example, suppose that a person A wants to describe the
environment of a university as a context containing information about the university, as
viewed from his/her point of view (call this context c). Suppose, now, that another person
B wants to describe the same university as a context also containing information about
the university, but viewed from a different point of view (call this context c0). Certainly,
context c contains different information than context c0, i.e., they are two different contexts,
and thus objects, although they refer to the same real world object (the same university).
So, it is not at all clear whether two different contexts refer to the same real-world object
or not. In other words, there is not an one-to-one mapping from real-world objects to model
objects, whereas there is an one-to-one mapping from different perceptions of real-world objects to
model objects. This can be confusing, and the user needs to keep the mapping between the
real world object and its descriptions in the model, explicitly.

2. Structuring the contents of a context.

The definition of context allows for a simple representation of objects, i.e., an object can
have an associated set of names. However, the objects of a context can be related in
more complex ways using the usual abstraction mechanisms of classification, generaliza-
tion, and attribution. In the case that the context model supports the usual abstraction
mechanisms, is there any relation between contextualization and those mechanisms?

To offer these capabilities, we enhance the notion of context in two ways [122, 123]:

1. We introduce references from objects to contexts.
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The contents of a context is a set of objects, each of which is associated with a set of
names (as before), with the following new feature: We allow each object of a context to be
associated with another context that we call its reference. Thus, each object of a context is
now associated with a set of names on one hand and (possibly) with a reference on the
other, as in the following diagram:

reference of o

..

.
context

objectonames of o

Roughly speaking, the reference of the object points to information available about the
object. In this extended model, real-world objects are represented by model objects in an
one-to-one correspondence. A context is a collection of objects that supports encapsula-
tion, and can be seen as a special kind of objects. Multiple representations of the same
real world object are supported through the object reference. Thus, the university of the
previous example would be represented as a model object o, whereas the reference of o
in context of person A would be the context c. On the other hand, the reference of object
o in the context of person B would be the context c 0.

2. We allow the objects of a context to be structured through the traditional abstraction
mechanisms of classification, generalization and attribution2. We study how these three
abstraction mechanisms interact with contextualization, in particular how instance-of,
ISA, and attribute links between objects affect the definition of their references.

So, a context is a structured set of objects, in which each object is associated with a set of names and
(possibly) a reference.

1.3.4 Querying contextualized information bases

Contextualized information bases need a special treatment in order to answer queries. Thus,
we propose a general framework for querying information bases which supports contextual-
ization [124]. In particular, we focus on the following issues: (i) accessing information in a
context structure using paths of names or paths of references, (ii) retrieval of contextualized in-
formation by defining useful fundamental query operations on contexts such as select, project,
generate (which allows the reorganization of contexts structure), and path select.

In addition to the fundamental operations there are several other derived operations, such as
context union, context intersection, and context difference. We extend the functionality of querying
by allowing traversal of the context hierarchy using complex path expressions. Finally, we
illustrate the usefulness of our contextualization mechanism by presenting higher level query
operations that enable users to explore a contextualized information base. These higher level
operations include focusing on a context of interest, searching the context structure for specific
information, and making cross references of a concept from one context to another in order to
obtain alternative representations of that object.

2By “attribution” we mean the assignment of an intrinsic attribute to an object as well as the declaration of its
(binary) relationships to other objects. The abstraction mechanism of aggregation is a limited form of attribution [52].
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1.4 Outline of the dissertation

The rest of the dissertation is organized as follows:

In Chapter 2, we motivate the use of contextualization as an abstraction mechanism
for supporting the development and effective use of large information bases in various
applications.

In Chapter 3, we briefly review the notion of context in several areas including, cognitive
psychology, linguistics, and computer science.

In Chapter 4, we combine and extend conventional approaches on contextualization fo-
cusing on issues such as naming, operations on contexts, and properties of the operations
on contexts.

In Chapter 5, we discuss in detail an example of using context in a cooperative environ-
ment.

In Chapter 6, we present a novel notion of context by (i) separating contexts from objects
and introducing the reference of an object, and (ii) allowing the contents of a context to be
structures with the traditional abstraction mechanisms, and studying the ways in which
these mechanisms interact with the contextualization.

In Chapter 7, we present a theory for contextualized information bases.

In Chapter 8, we present a query language for contextualized information bases. The
query language can be used for navigating through contexts, as well as for retrieving
information of interest.

In Chapter 9, we demonstrate how our model addresses and provides uniform support of
several features of applications of contextualization, such as views, workspaces, versions,
thesauri fields and facets.

Finally, in Chapter 10, we make some suggestions for further research and concluding
remarks.

Comparison of our work with related works is given in the chapters which present the main
lines of our mechanism; these are Chapters 4, 6, and 8.
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Chapter 2

Motivation

“Once upon a time, there was a little village, lost in the desert. All its inhabitants
were blind. A great king passed by, followed by his army. He was riding an enormous
elephant. The blind people herald of it. They had heard a great deal about elephants and
were moved by a great desire to touch this fabulous animal, to get an idea of what it was.
About ten of them, let’s say the notables, set out. They begged the king for permission
to touch the elephant. —“I give you permission, touch it!” said the king. One of them
touched its trunk, another its foot, another its flanks, one was raised up so that to feel its
ears, another seated on its back and given a ride. The blind men went back enchanted
to their village. All the other blind people crowded round them, asking them greedily
what sort of thing this fantastic beast, the elephant, was. The first said: “It is a big pipe
that raises itself mightily, curls, and woe to you if it catches you!” Another said: “It
is a hairy pillar.” Another: “It is a wall, like a fortress, and it, too, is hairy.” Another,
the one who had felt the ear: “It’s not a wall at all; it’s a carpet of thick wool coarsely
worked, which moves when you touch it.” And the last cried: “What’s that nonsense
you ’re telling? It’s an enormous walking mountain.” ” [58]

Nikos Kazantzakis

One thing in which people differ is beliefs about concepts. A characteristic example is given in
the above piece of text written by Nikos Kazantzakis [58]. In the above story, five people were
asked to define the concept of an “elephant”. Each of them has observed an elephant from a
different point of view, and, based on his/her experience, he/she has given a description of
the elephant. All five descriptions are subsequently different. Observing these descriptions
we can make several remarks: People agree on some (e.g. “it is hairy”), but not all aspects of
knowledge about the elephant. There are cases where knowledge is complementary (e.g. “It
is a wall, like a fortress, and it, too, is hairy”), and others contradictory (e.g. “It’s not a wall at all”).
There are also cases where the description of one person does not make any sense to the others
(e.g. “What’s that nonsense you ’re telling?”). That is, some descriptions are meaningful only in
the context of the individual observer but possibly not meaningful at all to the rest.

All these five descriptions have been given under the assumption that the observers were
blind and they had never seen, heard, or met an elephant before. In the context of a non-blind
person who has seen an elephant either in TV, or in a zoo, or even in the jungle, all these
five definitions does not make any sense. Eleven such persons have been asked to define
the concept of an “elephant”, and the answers are shown in Table 2.1. These definition are
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PERSON DEFINITION OF THE CONCEPT ELEPHANT
PERSON 1 - Elephant is a mammal animal.

- It’s one of the largest living animals on the earth.
- Most elephants can be found in Africa and Southeast Asia.
- Hunting elephants is prohibited in world.
- Physical characteristics of this animal is different than any other.

PERSON 2 - Largest living land animal; with four legs, gray skin, large floppy ears and trunk;
highly intelligent and docile; herbivore; lives in Africa or Asia.

PERSON 3 - A large mammal, weighs several tons.
- Land-dwelling, 4-legged, nearly hairless.
- Characterized by long snout + large ears.
- Lives in herds, long childhood.
- Eats plants, likes.
- Lives in tropical areas, native to Africa & Asia (some parts).
- Often found in zoos + circuses.
- Strong, may be trained to help man.
- Sensitive to sun (likes to cover itself in mud).

PERSON 4 - has big ears
- huge body
- four legs
- long nose
- gray color
- pick up food with nose
- spray water or sand by nose
- small eyes compare with his body
- has two long teeth that is bound to front
- eats grasses ?

PERSON 5 - Life developed created from elephant DNA.
PERSON 6 A mammal that is located in either Africa or Asia,

a large beast that roans through the jungle on the Savahana.
They are vegetarians. The elephant usually has a tusk + a long snout
that is used to grab thing to place in mouth.
Usually they travel in herbs.
They are use as work animals in Asia.
The bull is for the mail that protect the herd.

PERSON 7 - large land-based mammal found primarily in the Southern Hemisphere
- has a long, trunk as a nose which acts as a fifth hand
- migratory living habits
- stands 10-15 ft. tall
- weighs from 2-4 tons.
- pulls up the big tent at the circus !
- eats peanuts
- great memory
- big feet

PERSON 8 Large mammal which can be found in Africa + Asia
Size Weight Color Origin Class
Large heavy gray or brown Asia, Africa mammal

PERSON 9 An elephant is an animal belongs to the group of mammals.
It is quite large. There are 2 types of elephants - Asian and African.
Elephants have enlongated nose (trunk) which is used both for bathing and feeding itself.

PERSON 10 - Mammal
- 4 legs
- Very large size
- gray in color
- long nose (trunk)
- Indigenous to Africa
- Ivory tusks
- Large ears
- Intelligent (trainable)

PERSON 11 A large mammal, with 4 legs, tusks, a trunk, thick skin,
generally gray in color, found in Africa and Asia, and some circus’.
Eats grass and leaves. Travel in packs.

Table 2.1: Eleven different descriptions of the concept of “elephant”, written by eleven adults
(taken by [53]).
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totally different from the five above. I could say that no comparison make sense, since the
underlying assumptions are totally different (some observers are blind and some others are
not). However, comparing the last eleven definitions we can make similar remarks as those
for the first five definitions, i.e., knowledge is overlapping, complementary, contradictory, and
sometimes nonsense w.r.t. a new observer. Thus, we can say that each of these definitions are
meaningful only within the context of the individual who has given the definition.

In general, it is often the case that different persons have different opinions or perceptions
of the reality. This is because different people have different background, experiences, way of
thinking, and interests. This is a part of our life.

Turning now from reality to knowledge representation, we see a close relationship between
describing things in reality (e.g. the descriptions of an elephant given above), and describing
things in an information base. In any modeling process, there are often differences of perception
or opinion among those gathering, providing, or using information. If we want to keep track
of agreements or disagreements of opinions, information models should be expressive and
flexible enough to support situations like this. Unfortunately, most of the existing information
models lack of this capability.

One way to provide this capability is through context mechanisms, i.e., mechanisms for
partitioning or grouping the knowledge into parts (which can also constitute reference envi-
ronments), and give descriptions with respect to those parts, or so called contexts.

In this chapter we study the notion of context and examine its importance in information
modeling. The first question we try to answer is “What is actually a context?”. Then, we examine
the importance of context in information modeling by its uses. We conclude this chapter by
listing the advantages of using the notion of context in information modeling.

2.1 What is a context?

Currently, there is no unique definition about what is a context. Different approaches use their
own assumptions to define a context and use it for different purposes. Some examples of
context definitions follow:

� According to english dictionaries, the term context has two primary meanings:

– the parts of a discourse that surround a language unit and help to determine its
interpretation (can throw light on its meaning), and

– the interrelated conditions in which something exists or occurs.

� In conceptual modeling:

– “: : : it often appears useful to represent the situations themselves within the model.
This is the case if several entities are to be viewed from the same situation. The
latter then can be interpreted as a higher-order conceptual entity, namely a frame
(space) enclosing the conceptual entities viewed. In accordance with [97], we refer
to the denotation of a situation in a model as a context and represent it as a special
symbolic structure. : : : A context typically is a meaningful slice of the model or, in a
special case, represent the global context” [80].
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– “Many practical, real-life applications of concept learning are impossible to address
without taking into consideration the background of the concept, its frame of ref-
erence, and the practical situation and circumstances of its occurrence, shortly its
context” [71].

� In logic, “The context of a set of logical sentences (a theory) is defined as being: those as-
sumptions of the environment, typically not feasibly axiomatisable and hence formalized
as an abstract object, relative to which the language and the sentences in that language
are stated for the theory” [103].

For the purposes of this thesis, in the context of information modeling, a context is viewed
as a reference environment relatively to which descriptions of real world objects are given.
The notion of context may be used to represent real world partitions, divisions, or in general,
groups of information, such as situations, viewpoints, workspaces, or versions. The difference
between a real world situation and a context is the following. A situation records the state of
the world as it is, independently of how it is represented in the mind of an agent. A situation is
complete as it records all the state of the world. Whereas, contexts are partial as they represent
situations and hence capture different perspectives or record different levels of detail of a
particular situation.

However, despite the lack of a uniform treatment of context in the literature, we can examine
its importance by its uses. We therefore begin by listing some of the different kinds of uses of
context and continue by arguing on the benefits of using context in information modeling.

2.2 Use of context

To get a feeling of what kind of features a context mechanism should have, consider some uses
of it:

1. Modularity.

The notion of context has been used for suppression of (irrelevant) details by allowing
grouping or packaging of descriptions added in an information base. This grouping has
also been used for emphasizing the essential information while hiding some inessential
details.

The notion of modularity has been used to represent real-world situations or partitions.
Each such representation constitutes a different context. These representations are never
complete (as we stated in the previous subsection); they are partial along some dimensions
(such as time and space), which are dependent on the use of them. Different kinds of
partitions that are used in modeling are described below (they are not meant to be
mutually exclusive; indeed, some of them are specializations of others).

(a) Temporal.
Partitions can be partial along the temporal dimension (retaining temporal infor-
mation). For example, the map of Greece through the centuries, the employees of
a company the year 1997, or the painter lived in the period of Baroque, where each
century, the year 1997, and the period of Baroque constitute a different context.
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(b) Spatial.
Partitions can be partially represented along the spatial dimension. For example,
the economy of different regions of Greece, where each region constitutes a different
context.

(c) Functional.
People or concepts may play different roles in different contexts. For example,
someone may be professor of a university or a general manager of a company, where
each role (professor, manager) constitutes a different context. Another example is
the usage of a knife in different human activities, where each activity constitutes a
different context.

(d) Physical.
Often we need to view a real world object as a physical object, e.g. consisting of
physical parts, having an appearance. Each of these types of physical characteristics
constitutes a context. Such context may be the structure, appearance, or texture of a
physical object.

(e) Personal Beliefs.
People often agree in some things and disagree in others. Personal spaces or envi-
ronments that locate individual beliefs constitute different contexts.

(f) Theory.
Contexts can be used for representing a theory or a topic of a theory, such as a theory
of mathematics, a theory of weather in winter, an architecture, or a style [46].

(g) Tailored representations.
Representation of situations tailored for specific applications or uses. For exam-
ple, different demonstrations of a painting collection addressed to different user
groups, such as elementary school students, or painting experts, where each type of
presentation constitutes a context.

(h) Viewpoints.
How things are may depend on one’s perspective on them. In software engineer-
ing [63, 28, 36], the construction of a complex model involves many agents. These
agents have different views of the system they are trying to describe. These views
are partial or incomplete descriptions which arise because of different responsibili-
ties or roles assigned to the agents. The combination of an agent and its view that
the agent holds form a viewpoint [33], where each viewpoint constitutes a context.

(i) View schemas.
A view schema in an object-oriented database [98, 2, 81], or in a relational database [44,
7] constitutes a context, whereas the view itself constitutes the contents of the context.

(j) Multiversion objects.
A multiversion object refers to a set of versions of a generic object [20, 56]. Therefore,
a multiversion object can be seen as a context containing these versions.

(k) Configurations.
A configuration is the binding between a version of a composite object and the
particular versions of its components [56]. Therefore, a configuration of a composite
object can be seen as a context containing the particular versions of its components.
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(l) Workspaces.
A workspace refers to a virtual space in which objects are designed and manipulated
under the responsibility of an individual designer, or a group of designers [56]. A
workspace constitutes a context that contains the designing objects.

(m) Information bases in multidatabases.
In a multidatabase environment, each information base constitutes a context.

(n) Explicating environment.
The knowledge sharing community has recognized the need for explicating context
when transferring information from one agent to another [100]. The problem is to
find the necessary environment within which a piece of information preserves its
own meaning when exchanging it among different agents. The environment for
exchanging meaningful information constitutes a context.

2. Relative semantics/Multiple representations.

A real-world object can be described differently with respect to different point of views.
For example, a particular person might be represented differently as a student of a
University, as an employee of a company, as a member of a diver’s club, or as a physical
entity consisting of physical parts.

3. Granularity and accuracy.

It is often the case that different descriptions of the same object make a different trade-off
between efficiency, simplicity, and accuracy. A large system typically comprise a large
number of theories that capture different perspectives, levels of detail, or are tailored to
particular tasks. Contexts allow to represent the same object or fact with different degree
of granularity and accuracy. For example, representations of paintings might be given
in different degree of granularity and accuracy, if they are addressed to different user
groups such as painting experts, curators, or kids.

4. Focus attention/Localizing reasoning.

Intelligent reasoning in the face of large amounts of information is based on establishing
an appropriate context for reasoning (and reason within the context scope rather than
the entire information base), and then being able to move between related contexts,
preserving as much information deduced in other context(s) as possible.

5. Find, combine, and compare different representations.

The user must be able to find different partial representations of an object or a situation,
as well as the contexts they are located. Partial representations of an entity/situation may
be either combined to obtain a wider view of the entity/situation, or compared to obtain
their commonalities and differences.

6. Exception Handling.

Exceptions usually appear and handled within special situations, i.e., specific contexts
(e.g. exception in SGML, exceptions in representing and manipulating SGML semi-
structured documents [22]).
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7. Handling Inconsistency.

Inconsistency in an information base, when viewed purely logically, seems undesirable.
Indeed the traditional approach to dealing with inconsistency in data is to employ means
to restore consistency immediately. However, it is important to study the larger en-
vironment containing such information bases, and the circumstances surrounding the
inconsistency. It is argued that within the larger environment, an inconsistency can be
desirable, and useful, if we know appropriate actions to handle it [38, 37, 32]. In some
cases we may wish to remove the inconsistency, and in other cases we may wish to keep
it. In the last case, inconsistent or contradictory information can be handled as long as it
is treated in different contexts.

8. Advanced naming/Resolving naming ambiguities.

Context contributes to naming by providing the necessary environment for resolving
naming ambiguities such as homonyms (the same name may represent different entities
in different contexts) and synonyms (different names may refer the same entity in different
contexts). For example, the name “Holms” refers to the detective Holmes in the context
of Sherlock Holmes stories; it refers to judge Holmes in the context of the US legal history;
and perhaps does not refer to anybody in the context of European paintings.

Finally, context mechanisms provide us with the ability to using finite and frugal vo-
cabularies throughout an information base (as naming is relative to contexts and thus
excessively long names are avoided). In addition, names are consistent with and follow
the changes of the environment of the named object [127, 126].

9. Multilinguality.

The language used for describing knowledge about objects is chosen to fit the intended
domain. For example, the word “fennel” do not make any sense in the context of greek
language, whereas the word “µαραθος” it does.

10. Background knowledge.

Contexts provide us with the ability to describe the set of assumptions underlying a
system of a specific task. Examples of background knowledge are: socioeconomic back-
ground, the goals of the conversants, the status of the people who provide or describe
information (e.g. they are blind), etc.

2.3 Benefits of using context

The notion of context is important since it can capture many of the interesting aspects of the
way we understand the world, such as relativity, locality, partiality, and context-dependence.
Introducing the notion of context in computer science in general, and in information modeling
in particular, contributes to the efficient handling of information. The advantages of the notion
of context in information modeling and knowledge-based systems are the following [107]:

� Economy of representation: Different contexts can limit the parts of the information base
that are accessible, effectively allowing the representation of multiple information bases
in a single structure.
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� Economy of reasoning: Contexts can act as a focusing mechanism when accessing informa-
tion in a information base. Focusing on the information of interest may permit efficient
reasoning since reasoning is limited in the scope of a context rather than the entire infor-
mation base.

� Allowing inconsistent information: contradictory information can be accommodated in the
same information base as long as it is viewed from different contexts.

� Flexible semantics: Contexts may dictate not only the accessible information base frag-
ments, but also their semantics. The same object may be described and interpreted
differently in different contexts. For example, the word “glass” may represent different
real world entities in the context of “eye sight” and in the context of “wine”. Contexts
may help to resolve lexical ambiguities (e.g. homonyms and synonyms) which appear in
several information bases.
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Chapter 3

Review of the Notion of Context

In this chapter, we review the notion of context as it appears in the literature of several
areas (e.g. cognitive psychology, linguistics, and computer science), progressively focusing on
aspects which are relevant to this dissertation.

In computer science, a number of formal or informal definitions of some notion of context
have appeared in several areas, such as artificial intelligence [51, 73, 46], software development
[92, 45, 99, 106, 108, 56, 63], databases [7, 44, 49, 2, 27, 55, 86], machine learning [76, 130, 71],
and knowledge representation [84, 122, 126, 121, 135, 31, 116, 26, 18].

However, all these notions of context are very diverse and serve different purposes. In
software development the notion of context appears in the form of views [7, 44, 49, 98, 2],
aspects [92], and roles [45, 99], for dealing with data from different perspectives, or even in the
form of workspaces which are used to support cooperative work [56]. In machine learning,
context is treated as environmental information for concept classification [76, 130, 71]. In the
so called multiple databases, context appears as a collection of meta-attributes for capturing
class semantics [55]. In artificial intelligence, the notion of context appears as a means of parti-
tioning knowledge into manageable sets [51], or as a logical construct that facilitates reasoning
activities [73, 46]. In particular, we focus on the area of knowledge representation, where the
notion of context appears as an abstraction mechanism for partitioning an information base
into possibly overlapping parts (e.g. [84, 121, 126, 135, 31, 116, 26, 18]).

3.1 Linguistics

The term ‘context’ is used in many different ways in the linguistic literature, referring for
example to the preceding discourse or text, to the physical environment, or to the domain of
discourse.

In the Webster Dictionary, the term ‘context’ is defined as:

1. The parts of a discourse that surround a word or passage and can throw light on its
meaning, and

2. The interrelated conditions in which something exists or occurs.

The first notion of context defined above deals with things such as syntactic construction
involved in a utterance, structure between multi-sentence segments of text and it is known
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in the literature as linguistic context. The second notion of context defined above deals with
things such as relevant knowledge, speakers’ (writers’) and hearers’ (readers’) beliefs, goals,
intentions, attitudes, common (shared) knowledge, and sensory information (vision, smell,
taste, touch). This notion of context is also known as non-linguistic context.

The notion of context plays an important role in language comprehension. People naturally
use contextual information in order to convey a specific meaning. Langacker claimed that all
linguistic units are context-dependent [66]. People frequently employ the same form to convey
more than one meanings in everyday speech. This is the case of homonyms, which are either
homographs (e.g. ‘bat’ the mammal or ‘bat’ the athletic implement) or polysemous words (e.g.
the word ‘line’ in ‘a line of code’, ‘a line on the blackboard’, or ‘a line in the bank’). On the other
hand, different forms are often used to convey the same meaning. This is the case of synonyms
(e.g. ‘cheap’ and ‘inexpensive’). These ambiguities are resolved by the context within which
words are used. For example, the same meaning can be expressed by different words in the
dialects of different cultural or professional groups [57]. Conversely, the same word can be
used by different groups to convey different meanings, or even within one group to convey
different meanings in different situations.

In artificial languages, the opposite of the previous assumption, that is, one meaning can
have only one linguistic representation, is also true. This clearly requires using absolute or
global “names”. An interesting question in artificial language design is how to extend a name
by suffixing or prefixing constructs in order to make it unique in a given context or, given a
name, how to restrict the context so that this name may convey a unique meaning.

What is common to the various uses of the term ‘context’ in the linguistic literature is
that they all refer to factors, relevant to the understanding of communicative behavior [14, 68, 69].
According to these factors, context is distinguished into five categories [14]:

1. Linguistic context: the surrounding linguistic material (textual or spoken). Closely related
to what is sometimes called dialogue history.

2. Semantic context: the underlying goals that the participant of a dialogue want to be
achieved (such as reaching a decision or setting up a meeting).

3. Physical context: the physical circumstances in which an interaction takes place (such as
place or time).

4. Social context: communicative rights, obligations and constraints of each participant. Ex-
amples of social context include the type of institutional setting in which a dialogue oc-
curs, or the type of communicative event that a dialogue represents (such as information-
seeking dialogue or doctor-patient interview).

5. Cognitive context: the participants’ beliefs, intentions, plans and other attitudes.

Moreover, for each of these ‘dimensions’ of context the author of [14] distinguishes between
global aspects, which are fixed at the beginning of a dialogue and remain constant throughout,
and local aspects, whose value develop and change through the dialogue. Global aspects are
also known as background knowledge.
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3.2 Software development

Within software development, context has appeared as viewpoints in software engineering
during the specifications of a system. Viewpoints are defined as the combination of an agent
and the view that the agent holds for the system and allow to collect system information from
multiple perspectives [63, 28, 36].

In software engineering and CAD applications the notion of context appears as versions (a
significant, semantically meaningful snapshot of an object at a point in time), workspaces (named
repositories for supporting the sharing of objects among multiple designers), and configurations
(compatible system components) [56].

In programming languages, the parts of the program which are visible to a particular pro-
gram segment are determined by the scopes and scope rules using scope resolution operators. Re-
cently, in an object-oriented framework, the high-level knowledge base programming language
K defines context as a “sub-knowledge base” by specifying an intentional association pattern
among classes [108]. In addition to this framework aspects [92], roles [45, 99, 136, 113, 5, 89]
and conceptual slices (views) [106] have been introduced to support multiple state and multiple
behavior of the same objects.

3.3 Machine learning

Many practical applications in concept learning necessitate the use of context in learning
and particularly in classification of concepts, and the performance task alike. The context of a
concept is referred to as the background of the concept, its frame of reference, and the particular
situation and circumstances of its occurrence [71].

Michalski [76, 77] was the first to call attention to context dependency and proposed the
method of two-tiered characterization of concepts: the base core description describes the basic
properties of the concept, whereas the inferential concept recognition scheme is suggested to cover
context-dependent aspects of the concept.

Other approaches [130] provide definition of contextual attitude and systematize various
strategies for utilizing the information about context in the process of learning. In their ex-
periments, they demonstrate that the use of context can result in substantially more accurate
classification of concepts.

3.4 Networks

Naming and addressing issues appear in networks, in the sense that the address space is
divided into domains, subdomains, and so on, and domains never overlap and subdomains
are always strictly nested within domains yielding a tree of domains and subdomains [48,
95, 129]. Domains and subdomains are considered as contexts which decompose the address
space into non-overlapping parts. Names are given with respect to a specific domain or
subdomain. Similar organizational hierarchies of contexts appear in UNIX file systems and
WWW addresses.
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3.5 Context in the Web

The World Wide Web is a large collection of heterogenous documents. Web pages are unlike
typical documents in traditional databases. Pages can be active (e.g., animations, Java), can be
automatically generated in real-time (e.g., current stock prices), and may contain multimedia
(e.g., video, sound). The authors of Web pages have very diverse backgrounds, knowledge,
cultures, and aims. Furthermore, the availability of metadata is inconsistent (for example,
some authors use the HTML heading tags to denote headings and subheadings in their text,
while others use different methods, such as the HTML font tags or images).

Web search engines generally treat search requests in isolation. The results for a given
query are identical, independent of the user, or the context in which the user made the request.
Next›generation search engines will make increasing use of context information, either by using
explicit or implicit context information from users, or by implementing additional functionality
within restricted contexts. Greater use of context in web may help increase competition and
diversity on the web [67, 42, 88].

There are search engines (e.g. Inquirus) that are said they support context information, but
what they actually do is to provide context information to the query by adding more keywords.

In [88], the notion of context is similar to that of Generic Concept. A Generic Concept is a form
of logical object (a kind of a contextualized abstract view over the contents of large semantically
related document collections) whose purpose is to cross-relate, collate, and summurize the
meta-data descriptions of semantically related network-accessible data.

3.6 Artificial intelligence

In artificial intelligence contexts have been introduced as means of partitioning knowledge
into manageable sets [51], or they have been considered as logical constructs that facilitate
reasoning activities [73, 46]. A precursory idea of context can be traced back to Peirce’s
existential graphs [93]. Existential Graphs use a logical form of context called a cut which
shows in a topological manner the scope of a negative context on a sheet of paper (the sheet of
assertion). Sowa [111, 112] introduced conceptual graphs as an extension of the existential graphs
and defined contexts as concepts whose referent contains one or more conceptual graphs (Sowa’s
situations). Hendrix [50, 51] expanded semantic networks (based on existential graphs) through
partitioning contexts. Unlike Peirce, Hendrix allowed overlapping contexts.

Partitions and partition inheritance are supported in SB-ONE knowledge representation
workbench [62]. Using SB-ONE, knowledge can be assigned to partitions. These partitions
may be completely independent each other, or they may be ordered in inheritance hierarchies.

Lately, contexts have been proposed as an important means for formalizing reasoning.
Contexts first appeared in declarative artificial intelligence as a possible solution to the problem
of generality [72]. Most of the architectures that have been proposed for symbolic artificial
intelligence systems assumes that there is a knowledge base consisting of a set of expressions
(sentences) which convey some truth about the domain. The contextual effects on an expression
are often so rich that they can not be captured completely in the logic. Thus, contexts have
been defined to be rich objects [75] in that a context can not be completely described and
can be thought of as the reification of context dependencies of the sentences associated with
the context. Contexts are treated as formal objects and have been made first class objects in
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first-order logic so that they can serve as a frame of reference for sentences (which are relative
to some context) and that it is possible to formulate rules which relate one context to another
[73, 46, 74]. The modality ist(c; p) (pronounced as “is true”) has been used to assert that the
proposition p is true in the context c.

Since then, contexts have found uses in various artificial intelligence applications, includ-
ing: managing large knowledge bases [46], translating knowledge [15], modeling knowledge
and belief [41], integrating heterogeneous databases [30], planning [16], common sense reason-
ing [74].

Coherently with the notion of context described above, Attardi [6] uses viewpoints to
represent the notion of relativized truth such as beliefs, situations and knowledge. Viewpoints
denote sets of sentences which represent the assumptions of a theory.

3.7 Semantic model clustering

In “real life” applications, it is often the case that semantic data models become large and
complex, and thus difficult to understand. Several techniques cope with this problem by
decomposing the global schema into smaller, more manageable partitions, called entity clusters
[31, 116, 26, 128, 18, 25, 39, 116, 135, 96, 133].

In [116], several kinds of clustering are defined, all of which are supported by the framework
proposed in this thesis (in particular see Chapter 4):

1. Dominance grouping: An object o is grouped together with its related objects into a cluster
that represents the same real world entity as o, but at a different level of abstraction. In
our framework, we support this kind of grouping by allowing the reference of an object
to contain the object itself.

2. Abstraction grouping: Objects participating in abstractions such as classification, gener-
alization, and attribution are grouped in a cluster. In our framework, we support this
kind of grouping by allowing objects related by instance-of, ISA, and attribute links to be
grouped together with these links in a context.

3. Relationship grouping: A relationship together with its participating entities are grouped
into a cluster. In our framework, we support this kind of grouping, as relationships are
represented by attributes and a context may contain any kind of object, i.e., individual or
attribute.

In all approaches in the literature, dominance grouping is based on the following name
convention: each cluster should have the same name as the object it represents. By contrast, in
our framework, dominance grouping is based on object ids, allowing objects to have different
names at different levels of abstraction.

In [26], an additional kind of clustering is defined, called relationship abstraction, which
abstracts a number of relationships into a higher-level relationship. In our framework, we
support this kind of clustering through the concept of reference.

Our framework differs substantially, from all of the above approaches in the following:

� A global schema is not a requirement for modeling the real world. Rather, it is possible
that information about an object can only be found scattered across contexts.
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� We support relative naming and relative semantics w.r.t. a context. Within different
contexts, information about the same object can even be conflicting. Thus, information is
meaningful only within a context, and its validity outside it cannot be directly assumed
(unless explicitly declared).

� We distinguish between objects and contexts.

� We support the interaction of our contextualization mechanism with the traditional ab-
straction mechanisms.

Although in semantic model clustering the schema is decomposed, instances of both low-
level objects and high-level objects (i.e., clusters) are globally defined. A solution to this problem
is given in [26] by providing an algorithm to extract an instance graph for a higher-level object,
i.e., to decompose the instances according to the cluster. In our framework, instance-of links
are context-dependent and the user can explicitly declare the instances of high-level objects.
In particular, in our framework, the instance graph of a high-level object corresponds to the
instance-of links directed towards the object, along with the references of these links, and the
instance-of links within these references, recursively. In [26], a higher-level object can be
defined as a view derived by a query expression over a semantic model. We think that view
support is an important issue and we intend to address it for our framework in future work.

3.8 Nested associations

Work in [65] deals with the problem of abstracting complex associations between objects of a
conceptual model in order to make large data schemas more comprehensive. Towards this goal,
the authors define an enclosing class as an abstraction which encapsulates a set of local classes.
Additionally, they define an enclosing association class as an abstraction which associates a source
enclosing class with a destination enclosing class, and encapsulates a set of local classes, as
well as local associations.

Intuitively, our concepts of object reference and attribute reference cover the concepts of
enclosing class and enclosing attribute class. However, in [65], the main emphasis is placed
on nested associations, and issues such as relative naming and relative semantics, as well as
the interaction between the proposed abstraction and the abstractions of classification and
generalization are not considered.

In [39], a leveled entity-relationship model is proposed, where higher-level entities encap-
sulate lower-level entities, similarly to our concept of object reference. However, the authors
do not support the notion of attribute reference. Moreover, naming, semantics, and instances
of objects are globally defined. In [39], the authors argue that a relationship to a subentity
from a higher-level entity breaks the encapsulation of the entity containing the subentity. To
solve this encapsulation problem, they propose the notion of aspect that works as a window
that makes a lower-level object to appear at a higher-level object. Though encapsulation is an
important issue, we do not examine it in this work. We consider this as an authorization issue
that can be handled on top of our general framework mechanism.
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3.9 Context in categorization

Categorization is one of the basic mental processes in cognition. We, as human beings, can
categorize various types of objects, events, and states of affairs, and our categorizations depend
on the circumstance and perspective (i.e., how things are depend on one’s point of view
on them). Barwise and Sligman [8] use natural regularities to study the role of context in
categorization. To be more specific consider the following example of regularity as it appears
in [102]: ‘swans are white’, which express an intuitive sense that all swans are white. Although
this is the general intuition about swans, there might be exceptions and we can find swans
which are black (this can happen in Australia). Therefore, this sentence can be evaluated only
in appropriate contexts, such as in Europe, outside zoos, and so forth. The appropriate context
wouldn’t be a problem if we could completely specify all contextual factors. However, in many
cases it is impossible to state all the relevant contextual factors. In [8], a notion of context is
captured through the notion of perspective. Different perspectives simply give rise to different
ways of classifying things. For example, distances can be classified using either inches from
Manos’ perspective or centimeters from Panos’ perspective.

3.10 Information bases and multidatabases

In multidatabase environments and heterogeneous information systems, database integration
has to deal with naming conflicts of two types, homonyms and synonyms, because the global
schema of the integrated database is usually generated by merging one or more user-oriented
schemas [11, 9]. Some significant alternatives for representing context are the following:

1. Semantic proximity proposal [55]. Context is defined as a collection of meta-attributes for
capturing the semantic similarity between objects.

2. Context building approach [86]. Context is defined as the knowledge that is needed to
reason about another system, for the purpose of answering a query, and

3. Context interchange approach [100, 43]. Many separately-developed systems must ensure
semantic interoperability to meaningfully exchange information. That is the individual
systems must agree in the meaning of their exchange data. The key to the context
interchange approach to achieving interoperability is the notion of context, which is used
to refer to the (implicit) assumptions underlying the interpretation of data. Context is
defined as the meaning, content, organization and properties of exchanging data and
individual agents (i.e., sources or receivers) keep locally contextual information for their
data. A shared ontology is used to map disparate local contexts to a set of common
concepts that might appear in an application. To achieve the meaningful data exchange
between a source and a receiver, a context mediator is used to convert (using the shared
ontology) the data from the source context into the receiver context.

In traditional databases, views present a consistent partition of the database [44, 7]. Such
mechanisms have been adopted in object-oriented databases [98, 2, 19, 94] (see [81] for a survey)
and semantic data models [26]. Moreover, contexts have been proposed as a partitioning
scheme of hypertext databases [27, 17, 40], and perspectives as a mechanism for organizing and
manipulating groups of nodes and links in a hypertext network [91].
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HAM [17] is a general purpose abstract machine that supports contexts. In HAM, a graph
usually contains all the information regarding a general topic and contexts are used to partition
the data within a graph. Therefore, a context may contain nodes, links, or other contexts.
Contexts are organized hierarchically, i.e., a context is contained in only one other context. By
contrast, in our model, a context may be contained in more than one contexts. Contexts in HAM
have been used to support configurations, private workspaces, and version history trees [27].
HAM provides a set of context editing, context inquiry, and context attribute operations. All
the context editing operations of HAM, namely createContext, destroyContext, compactContext,
and mergeContext, can be simulated in our model using its operations. On the other hand, HAM
does not support name relativism. Inquiries on and attributes of contexts can be supported by
our model (see chapter 8), however they are outside of the scope of this chapter.

In [110], the notion of context is used to support collaborative work in hypermedia design.
A context node contains links, terminal nodes, and other context nodes. Furthermore, con-
text nodes are specialized into annotations, public bases, hyperbases, private bases, and user
contexts. Using this notion of context, the authors define operations check-in and check-out for
hypermedia objects. However, there is no support for name relativism, neither are generic
operations on contexts provided.

The notion of context has also appeared in the area of heterogeneous databases [101, 86, 55].
There, the word “context” refers to the implicit assumptions underlying the manner in which
an agent represents or interprets data. To allow exchange between heterogeneous information
systems, information specific to them can be captured in specific contexts. Therefore, contexts
are used for interpreting data. At present our model cannot be compared with these works,
because it does not address heterogeneous databases, as we assume a single Information Base
(which guarantees that real world objects are represented by unique objects in the Information
Base).

Furthermore, a context is taken to define a view of the objects in a repository [10] and it is
typically used to define a set of objects that an engineer is manipulating for a particular task.
Recently, mechanisms for partitioning information bases with contexts have been proposed,
which introduce a generic framework for contexts and deal with naming conventions, autho-
rization, transaction execution and overlapping contexts [84, 85]. Other approaches employ
context as a way to face the complexity of information base update [23, 131], or to develop a
naming mechanism in information bases [126, 117, 119].

Specifically, in [84], Mylopoulos and Motschnig-Pitrik proposed a general mechanism for
partitioning information bases using the concept of context. They introduced a generic frame-
work for contexts and discussed naming conventions, operations on contexts, authorization,
and transaction execution. However, they impose a strict constraint on naming, whereby
objects (called information units) are assigned unique names w.r.t. a context. Because of this
constraint, several naming conflicts appear in operations among contexts, which the authors
resolve in rather arbitrary ways. In addition, operations among contexts, such as union (called
addition) and intersection (called product), are deprived of such useful properties as commuta-
tivity, associativity, and distributivity, and thus also can yield unexpected results. In [84], the
major problem of the context union and context intersection operations is that it is possible for
an object in the output context to have no name, even though it originally had one or more
names. This can happen if an object of one input context has a name in common with an object
of the other input context. For example, consider two contexts c and c 0 which correspond to two
companies, the contents of c and c0 being the employees of these two companies, respectively.
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Assume now that an employee in the first company has the same name with another employee
in the second company. Then, the union of the contexts c and c 0 contains these two employees,
but one of them will have no name. Such results might seriously hinder the applicability of
this otherwise appealing framework.

In [126, 127], Theodorakis and Constantopoulos proposed a naming mechanism based on
the concept of context, in order to resolve several naming problems that arise in information
bases, such as object names being ambiguous, excessively long, or unable to follow the changes
of the environment of the object. These naming problems also resolved in this dissertation.
The information base is assumed to be structured with the traditional abstraction mechanisms
of classification, generalization, and attribution. A context is identified by a node and a link
class, called pivot elements of the context. A link class could be either an attribute class, or the
instance-of relation, or the ISA relation. The contents of a context consist of objects and links
which are associated with the pivot elements of the context. This definition of context allows
the information base to be decomposed into partitions on the basis of one of the traditional
abstraction mechanisms. Finally, relative naming is supported, as well as nesting of non
contexts. However, that approach imposes a hierarchical structure on contexts, i.e., a context
may be contained in only one other context, which is rather restrictive. Context defined in the
dissertation is more general and can be easily embedded to any data model.

In this thesis, we try to combine the advantages of these previous two approaches and
alleviate their shortcomings by introducing a more general and more complete framework for
context. Our objective is to establish a formal notion of context to support the development and
effective use of large information bases in various application areas, especially in distributed,
cooperative environments.

The notion of context introduced in this work, supports nesting of contexts, context over-
lapping, and relative naming, yet it advances with respect to [84, 85, 126] mainly along the
following lines:

� We distinguish between objects and contexts. Objects represent real world concepts,
whereas contexts are collections of objects. Within each context, local names and seman-
tics are assigned to objects, as well as references (which are also contexts) for describing
objects in more detail. Thus, a real world concept (e.g. the geographical viewpoint of
Greece) is represented by an object which can have different detailed descriptions (i.e.,
references) within different contexts (e.g. the 15th century and the 20th century). This is
certainly a modeling capability not offered by the other approaches.

� Our formal notion of context is easy to understand and easy to embed in an existing
data model. We show how contextualization can be embeded in a data model which
supports the traditional abstraction mechanisms of classification, generalization, and
attribution and how contextualization interacts with these abstraction mechanims. Works
in [84, 85] lack this interaction. In [85], the notion of context is introduced in the Telos data
model, where each context is considered to be at the Token level, i.e., an atomic object,
and contexts do not participate in classification or generalization hierarchies, something
which is supported by our contextualization mechanism.

� Our operations of context union, intersection, and difference are different from these of
set theory as they take into account the notion of context, and keep track of the origin
of data in the result. However, context union and intersection also satisfy the important
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properties of commutativity, associativity, and distributivity, which offer flexibility in
the execution of these operations. Operations on contexts defined in [84, 85] lack these
abilities. Thus, information from the original contexts may get lost in the result of an
operation as conflicts appear and their conflict resolution strategy may cause units to be
inaccessible in the resulting context.
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Chapter 4

Combining and Extending
Conventional Contextualization
Approaches

In this chapter, we develop a model for context, which alleviates the shortcomings of the above
proposals. It also can serve as the basis for effectively employing context in large information
bases in various applications, especially in distributed, cooperative environments. An example
of such an application is given in Chapter 5. Subsequently, in Chapter 6, we introduce an
extension to the notion of context that leads to establishing context as an important conceptual
modeling mechanism. Work of this chapter published in [125, 121, 120].

Like in [84], we consider a context to be a special object which is associated with a set of
objects and a lexicon i.e., a binding of names to these objects. However, in our model, an object
is allowed to have more than one names, even in the same context, as shown in the following
diagram:

..

.
context

objectonames of o

For example, in the context of a research group, the object o can be a researcher with his
social name (e.g. “John”) and his nickname within the group (e.g. “The Hacker”) as two of its
names.

This offers more flexibility and expressiveness and can handle the naming of real world
entities in a more “natural” way, as it is possible for two objects to have the same name, even in
the same frame of reference. This common name assignment may occur either accidentally, or
by virtue of a common characteristic of the two objects (expressed through the common name).
In our model, naming conflicts that may appear during operations on contexts are resolved
through a sophisticated, yet intuitive naming mechanism. Specifically, the following situations
can be handled:

� Synonyms: different names that have been assigned to the same object in the same or
different contexts;
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� Homonyms: different objects that have the same name in the same or different contexts;
and

� Anonyms: objects with no name in a context.

An object is externally identified using name paths w.r.t. a context. These name paths are either
the object names w.r.t. that context, or composite names that are formed by taking into account
the nesting of contexts. We distinguish an important class of contexts, called well-defined. Every
object contained in a well-defined context possesses a unique name path in that context.

The present model offers a set of operations for manipulating contexts. These operations
provide support for creating, updating, combining, and comparing contexts. The most in-
volved of the operations are those for combining and comparing contexts, namely context
union, context intersection, and context difference. The above three operations are different
from these of set theory as they take into account the notion of context. We prove that the class
of well-defined contexts enjoys a closure property: the union, intersection, or difference of two
well-defined contexts yields a well-defined context. Name ambiguities are resolved by adding
to the resulting context views of the objects as seen from the input contexts. Besides being
used for name disambiguation, these views carry useful information, as we demonstrate in the
example of Chapter 5. Finally, the context union and context intersection operations defined
here are commutative, associative, and distributive, with the benefits that these properties
usually carry.

4.1 The notion of context

In information modeling, a context is a higher-level conceptual entity that describes a group of
conceptual entities from a particular standpoint [80]. The conceptual entities described can be
contexts themselves, thus allowing for nesting of contexts. Conceptual entities are named with
respect to a context as part of their description.

Examples of contexts are:

� Information bases: An information base describes a set of conceptual entities from the point
of view of its designer. Certainly, the designer’s viewpoint is influenced by the particular
needs of the targeted users.

� View schemas: A view schema in an object-oriented database [98, 2, 81], or in a relational
database [44, 7] describes the conceptual entities in the view according to the person that
defined that view.

� Multiversion objects: A multiversion object refers to a set of versions of a generic object [20,
56]. Therefore, a multiversion object can be seen as a context in which the particular
versions are contained.

� Configurations: A configuration is the binding between a version of a composite object and
the particular versions of its components [56]. Therefore, a configuration of a composite
object can be seen as a context containing a particular set of versions of its components.
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� Workspaces: A workspace refers to a virtual space in which objects are created and ma-
nipulated under the responsibility of an individual person, or a group of persons [56].
Therefore, a workspace can be seen as a context in which the objects are viewed according
to the responsibilities of the persons involved.

An information base can be considered as a repository of objects. Objects represent atomic
or collective real world entities, attributes, (binary) relationships, or primitive values. We
denote by O the set of all objects.

Contexts are taken as a special kind of objects that represent real world reference environ-
ments such as partitions, viewpoints, situations, or workspaces. We shall call all objects which
are not contexts, simple objects. Contexts allow us to focus on a set of objects of interest, as well
as to name each of these objects using one or more convenient names. Informally, we think of
a context as containing objects, each object being associated with a set of names.

Definition 4.1 Context.
Contexts are a special kind of objects which can be thought of as containing objects,
each object being associated with a set of names. Let CXT be the set of all contexts.
Then, CXT � O. �

Nicolas

Context 1

Context 2

Nicolas, Nick

George

John Yannis

O

O4

1

2O

O3

Figure 4.1: The notion of context.

For example, Figure 4.1 illustrates two contexts, Context 1 and Context 2, which represent
the environment of two companies. The employees of those companies are represented by
objects o1 to o4. Context 1 contains the objects o1, o2, and o3, and associates them with
names Nicolas, George, and John, respectively. Context 2 contains the objects o3 and o4,
and associates them with names Yannis, and Nicolas or Nick, respectively. The employee
represented by object o3 works for both companies and is called John in the first company,
whereas Yannis in the second.

In order to treat contexts more formally we need the concept of lexicon, i.e., a binding of
names to objects in which an object may have zero, one or more names.

Definition 4.2 Lexicon.
Let N be the set of all atomic names and P(N ) the power set of N . A lexicon is a
mapping l of the form:

lO : O �! P(N )

where O is a set of objects (O � O). A lexicon associates each object in O with a
set of names. The objects in O are called objects of the lexicon lO and denoted by
objs(lO). We denote by LEX the set of all lexicons. �
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Note that an object of a lexicon may be associated with an empty set of names.

We shall often think of a lexicon l as a set of pairs of the form o : l(o). In other words, if
objs(l) = fo1; : : : ; okg then we shall write l = fo1 : l(o1); : : : ; ok : l(ok)g.

The following is an example of a lexicon:

l1 = fo1 :Panos; o2 :head; o3 :Manos; o4 :Nicolas; Nickg

where objs(l1) = fo1; o2; o3; o4g. We depict a lexicon as follows:

l1 =

8>><
>>:

o1 : Panos
o2 : head
o3 : Manos
o4 : Nicolas; Nick

As already mentioned, we think of a context as containing objects, each object being as-
sociated with a set of names. Formally, this is expressed by associating each context c with a
lexicon The context c can be used to focus on the objects of the lexicon, as well as to assign
relative names to these objects.

Definition 4.3 Context lexicon.
A context lexicon is a total function of the form:

lex : CXT �! LEX

which associates a context with a lexicon, which we shall call the lexicon of c. For
each context c, objects of lex(c) are also called objects of c, and denoted by objs(c).
That is, objs(c) = objs(lex(c)). �

Let c be a context with lexicon fo1 :N1; : : : ; ok :Nkg. We shall use the following notation and
terminology:

� The objects o1; : : : ; ok are called the objects of c and their set is denoted by objs(c).

� We shall say that c contains o1; : : : ; ok.

� The names in Ni are called the names of oi in c, or the c-names of oi. The set Ni will also
be denoted by names(oi; c).

A similar notation and terminology is used for a lexicon as well.

c1

o1 : Dr Constantopoulos

o4 :
o5 : professor
c2 : InfSys
c3 : DSS

c2

o1 : Panos
o2 : head
o3 : Manos
o4 : Nicolas; Nick

c3

o6 : Panos
o2 : head
o1 : Constantopoulos

Figure 4.2: Example of contexts.

As an example, consider a context c1 which represents an institute (see Figure 4.2). Context
c1 contains five objects in its lexicon, o1, o4, o5, c2, and c3. Object o1 is a simple object whose
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c1-name is Dr Constantopoulos, and represents a specific person. Object o4 is a simple object
as well which represents an entity that is known to exist within the context c1 but we do not
know its name yet. Object o5 represents the notion of professor (and not a particular person
who happens to be a professor). Objects c2 and c3 are themselves contexts whose c1-names
are InfSys and DSS, respectively. Context c2 represents the environment of the Information
Systems Lab and describes the objects of that lab. Context c3 represents the environment of the
Decision Support Systems Lab and describes the objects of that lab. The objects contained in
contexts c2 and c3 are as shown in Figure 4.2. Note that object o1 has only one c2-name (Panos),
whereas object o4 has two c2-names (Nicolas and Nick). Also note that the same object can be
contained in more than one context under the same or different names. For instance, object o1
is contained in three contexts c1, c2, and c3. The c1-name of object o1 is Dr Constantopoulos,
its c2-name is Panos, whereas its c3-name is Constantopoulos. Note also that two different
objects, o1 and o6, have the same name in two different contexts (c2 and c3).

Recall that an object may represent real world attributes or binary relationships. We call
these objects link objects. Link objects have a source and a destination object. This information
is represented in our model by a triplet < ol; os; od >, where ol is a link object, and os and od
are its source and destination, respectively. As any object, link objects are also defined w.r.t.
a context. The link objects of a context c are determined by the function links(c), which is
defined as follows:

links(c) = f< ol; os; od > jol; os; od 2 objs(c)g:

Definition 4.4 Recursive Containment.
We say that a context c recursively contains object o if either c contains o, or there is a
context contained in c that recursively contains o. This is denoted by o 2? c. �

For instance, in Figure 4.2, context c1 recursively contains object o2, as c1 contains c2 and
c2 contains o2, i.e., o2 2? c1. We shall call nested subcontext of a context c, any context that is
recursively contained in c.

We can refer to every object of a context c either by using one of its c-names, or by using a
composite name, in case the object is contained in a nested subcontext of c. A composite name is
a sequence of dot-separated names which are composed by taking into account the nesting of
contexts, as shown in the following definition.

Definition 4.5 Name paths of an object in a context.
Let c be a context and let o be an object recursively contained in c. The set of all name
paths of o in c, denoted by npaths(o; c), is defined as follows:

npaths(o; c) = names(o; c) [ compositeNames(o; c)

compositeNames(o; c) = fr:n j 9c0 2? c ^ n 2 names(o; c0) ^ r 2 npaths(c0; c)g

The set of all name paths of all objects in all contexts is denoted by NP . �

For example (see Figure 4.2), we can refer to object o1 of context c1 either by using the name
Dr Constantopoulos, or by using the composite namesInfSys:Panos, orDSS:Constantopoulos.

Note that a name path r in a context c may be ambiguous, in the sense that it may refer to
more than one objects. That is, a name path r is ambiguous if there are two objects o, o 0 such
that r 2 npaths(o; c) \ npaths(o0; c). It is possible for all name paths of an object o recursively
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contained in a context c to be ambiguous, i.e.,

npaths(o; c) �
[

o02?c ^ o0 6=o

npaths(o0; c):

For example, in Figure 4.3, within context c1, the name paths of object o2, i.e. A, C, and D:F, are
all ambiguous, as A 2 names(o1; c1), C 2 names(o3; c1), and D:F 2 npaths(o4; c1).

c1

o1 : A; B
o2 : A; C
o3 : C
c2 : D

c2

o1 : B; F
o2 : F
o4 : F

Figure 4.3: Example of ambiguous name paths.

However, in practice, at least one unique name path of an object is required to be used for
external identification. Thus, we distinguish an important class of contexts that possess at least
one unique name path for every object and we call these contexts well-defined. An acyclicity
contraint is also imposed.

Definition 4.6 Well-defined lexicon.
A lexicon l is called well-defined iff it satisfies the following conditions:

1.Unique name path.
For every object recursively contained in l, there is a unique name path in l,
i.e., for all objects o; o0 of l:
o 6= o0 ) 9r 2 npaths(o; l) : 8r0 2 npaths(o0; l); r 6= r0.

2.Acyclicity.
For every nested subcontext c 0 of l, it holds: c0 62? c0. �

Definition 4.7 Well-defined context.
A context c is called well-defined iff its lexicon is well-defined and c 62? c. �

In the example of Figure 4.2, contexts c1, c2, and c3 are well-defined. Another example is
shown in Figure 4.3, where context c1 is not well-defined as there is at least an object recursively
contained in c1 with non unique name paths in c1, (e.g. the object o2 or the object o3 or the
object o4). Context c2 is not well-defined as well. On the other hand, if we add the context c3
in the contents of c1 (see Figure 4.4) then c1 becomes well-defined. Note that, in Figure 4.4, c1
is a well-defined context although its subcontexts c2 and c3 are not.

Acyclicity is an important property of a context c, as it ensures that the set of name paths
npaths(o; c) of any object o recursively contained in c can be computed in finite time.

Proposition 4.1 Finite length and set of name paths.
Let c be a well-defined context, and let o be an object recursively contained in c.
Then, the following hold:

1.Every name path of o in c has finite length, and

2.The set npaths(o; c) is finite. �

Proof: It follows easily from Definition 4.5 and the fact that all contexts contained in c satisfy
the acyclicity property.2
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c1

o1 : A; B
o2 : A; C
o3 : C
c2 : D
c3 : E

c2

o1 : B; F
o2 : F
o4 : F

c3

o1 : C
o2 : K
o3 : G
o4 : C; J

Context c1 is well-defined whereas contexts c2 and c3 are not.

Figure 4.4: Example of well-defined and non well-defined contexts.

We can assume a special context that recursively contains all objects of interest in a given
application. We refer to this context as the Information Base (IB). As mentioned, a user can
refer to an object using name paths. A name path to an object can be either absolute, i.e., in
context IB, or relative. As a convention, if the name path is prefixed by @ then it is an absolute
name path, otherwise it is a relative name path. Relative name paths are resolved with respect
to a context specified by the user, which we call the Current Context (CC). The user sets the CC
through the Set Current Context operation, introduced in the following section.

In order to guarantee that every object has a unique absolute name path, we require that
the IB is a well-defined context. Therefore, we introduce the following axiom:

Axiom 4.1 Well-defined Information Base.
The context IB is a well-defined context. �

Support for relative naming of objects is an important feature of our model. The following
situations can be handled:

� Synonyms: Two different name paths w.r.t a context are called synonymous, if they refer
to the same object. We view synonyms as alternative ways for externally identifying the
same object. This is an important feature of our model because people often refer to the
same concept using different names. For example, in Figure 4.2, the name paths Nick and
Nicolas (which are the english and the french name of a person) in context c2 are syn-
onyms, as they refer to the same object o4. Similarly, the name paths Dr Constantopoulos,
InfSys:Panos, and DSS:Constantopoulos in context c1 are synonyms, as they refer to the
same object o1.

� Homonyms: Two different objects are called homonymous in a given context if they have
a common name path in that context. If these two objects are recursively contained in a
well-defined context c, then there exists a unique name path to each of these objects in
c. Note that there always exists such a context, because IB recursively contains every
object and it is a well-defined context, by assumption.

� Anonyms: An object o is called anonymous in a context c, if o is associated with no name
in c, i.e., names(o; c) = ;. Intuitively, this is possible when an object is contained in a
context but we are not interested in naming it in that context, or we do not know its
name yet. However, there is no problem with the external identification of o, if there is a
well-defined context c0 such that npaths(o; c0) 6= ;, and IB is such a context. For example,
in Figure 4.2, the object o4 in context c1 is anonymous.
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4.2 Operations on Contexts

In this section we present six operations on contexts: lookup, browsing, update, copy, union,
intersection and difference. The presentation is informal, and uses illustrative examples.

Our definitions (both formal and informal) make use of two auxiliary concepts, namely,
source context and derived context. Every context created by a single, explicit call of the
operation createCxt is called a source context.

In order to simplify the presentation, we introduce an auxiliary function src(c) that returns
the source of context c: if src(c) = c0 then c is a derived context and c0 is its source, and if
src(c) = c then c is a source context.

With the above conventions in mind we now turn to the presentation of the operations.

IB
c1 : ManosView
c4 : AnastasiaView

c1

o1 : Dr Constantopoulos

o4 :
o5 : professor
c2 : InfSys
c3 : DSS

c4

o1 : Constantopoulos
o5 : professor
c2 : ISgroup
c5 : DSS

c2

o1 : Panos
o2 : head
o3 : Manos
o4 : Nicolas; Nick

c3

o6 : Panos
o2 : head
o1 : Constantopoulos

c5

o1 : Panos;
Constantopoulos

o7 : Anastasia

Figure 4.5: An Information Base context.

Consider the Information Base illustrated in Figure 4.5. Context IB contains two contexts
c1 and c4, namely ManosView and AnastasiaView, respectively. These contexts represent the
views of Manos and Anastasia regarding the Institute. Context c4 contains the already seen
objects o1, o5 and c2, as well as a new context c5 that represents the view of Anastasia regarding
the Decision Support Systems lab. The fact that both contexts c1 and c4 share context c2 indicates
that both Manos and Anastasia have the same view for the Information Systems lab.

4.2.1 Lookup operations

� lookup(r)

This operation takes as input a name path r and returns the set of objects o such that
r 2 npaths(o; c), where: c = IB if r is absolute, or c =CC, otherwise. �

� lookupOne(r)

This operation takes as input a name path r and returns an object o such that: r 2
npaths(o; c) and jnpaths(o; c) j= 1, where: c = IB, if r is absolute, or c =CC, otherwise. �

The computational algorithms of the lookup operations are shown in Figure 4.6.
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lookup(Input r : NP ; Output O : P(O)).
=� This operation takes as input a reference r and returns all objects with reference. �=

1. If r starts with @ then
O is the set of all objects o such that r 2 npaths(o; IB)

else O is the set of all objects o such that r 2 npaths(o;CC):

2. End.

lookupOne(Input r : NP; Output o : O).
=� This operation takes as input a reference r and returns the object referenced by r, if it is just
one. Otherwise, it returns ERROR. �=

1. O = lookup(r).

2. If the cardinality of the set O is one then
return the element o of O

else ERROR.

3. End.

Figure 4.6: The algorithms of the lookup operations.

4.2.2 Browsing operations

� Set current context: SCC(r)

This operation takes as input a name path r1 to a context (call it c), and sets the current
context to be the context c. �

Example: The operation SCC(@:ManosView:InfSys) sets the CC to c2, and the operation
SCC(@) sets the CC to IB.

The computational algorithm of this operation is shown in Figure 4.7.

SCC(Input r : NP).
=� This operation takes as input a reference r to a context and sets CC to be this context. �=

1. c = lookup(r).

2. CC = c; =� CC holds the current context of the user issuing the command �=

3. End.

Figure 4.7: The algorithm of the operation SCC.

1In all operations, if a name path is ambiguous, an error message is returned.
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4.2.3 Update operations

� Create context: createCxt(l)

This operation takes a lexicon las input, and returns a context (call it c) such that lex(c) = l.
Additionally, it sets src(c) = c. �

Example: The operation createCxt(fo1 :Panos; c1 :instituteg) results in the creation of a
new context (call it c10) with lexicon:

lex(c10) =

�
o1 : Panos
c1 : institute:

� Insert an object into a context: insert(o;N; r)

This operation takes as input an object o, a set of names N and a name path r to a context
(call this context c), and either inserts (o :N) into the lexicon of c if object o is not contained
in c or adds the names in N to the c-names of o. Additionally, it sets src(c) = c. This
is because, as a new object has been inserted into c, c is thought as a derivation of the
original source of c. �

Example: The operation insert(o20; fNicolas; Nickg;@:ManosView:DSS) results in the in-
sertion of o20 :Nicolas; Nick into the context c3:

c3

o6 : Panos
o2 : head
o1 : Constantopoulos
o20 : Nicolas; Nick

Note that synonyms or homonyms may occur as a result of an insert operation.

� Delete an object from a context: deleteObj(o; r)

This operation takes as input an object o and a name path r to a context, and deletes the
pair (o :N) from the lexicon of that context. �

� Delete an object name from a context: deleteName(o; n; r)

This operation takes as input an object o, a name n, and a name path r to a context (call
this context c), and deletes the name n from the c-names of o. �

Note that a deleteName operation may produce an anonym.

The computational algorithms of the update operations are shown in Figure 4.8.

4.2.4 Copy operations

� Copy context: copyCxt(r)

This operation takes as input a name path r to a context (call this context c) and returns
a new context (call it c0) such that lex(c0) = lex(c). In other words:
copyCxt(r) = createCxt(lex(c)). �
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createCxt(Input l : L; Output c : CXT ).
=� This operation takes a lexicon l as input, and returns a new context c with lexicon l. �=

1. Create a new context c such that lex(c) = l.

2. Set src(c) = c.

3. End.

insert(Input o : O; N : P(N ); r : NP).
=� This operation takes as input an object o, a set of names N , and a reference r to a context
(call this context c). Then, it either inserts o :N into the lexicon of c if object o is not contained
in c, or adds the names contained in N to the c-names of o. �=

1. c = lookupOne(r).

2. If o :N 0 2 lex(c) then
replace o :N 0 by o :N 0 [N in lex(c)

else add o :N into lex(c).

3. Set src(c) = c.

4. End.

deleteObj(Input o : O; r : NP).
=� This operation takes as input an object o and a reference r to a context, and deletes the pair
o :N from the lexicon of that context. �=

1. c = lookupOne(r).

2. Delete the pair o :N from lex(c).

3. End.

deleteName(Input o : O; n : N ; r : NP).
=� This operation takes as input an object o, a name n, and a reference r to a context (call this
context c), and deletes the name n from the c-names of o. �=

1. c = lookupOne(r).

2. If o :N 2 lex(c) then
replace o :N by o :N � fng in lex(c).

3. End.

Figure 4.8: The algorithms of the update operations.
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Example : The operation copyCxt(@:ManosView) returns a new context (call it c11) shown
as follows:

c11

o1 : Dr Constantopoulos

o4 :
o5 : professor
c2 : InfSys
c3 : DSS

� Deep copy context: deepCopyCxt(r)

This operation takes as input a name path r to a context (call this context c), and returns a
new context (call it c0) that contains the simple objects of c and deep copies of the contexts
contained in c, (i.e., copies of those contexts together with their recursive expansions). In
case a context c00 is contained in two or more contexts that are recursively contained in
c, then c00 is copied only once (i.e., c0 does not recursively contain multiple copies of the
same context). The computational algorithm of this operation is shown in Figure 4.9. �

Example 1: The operation deepCopyCxt(@:ManosView) returns a new context (call it c01)
which contains copies of contexts c2 and c3 (call them c02 and c03) as shown in the following
picture:

c01

o1 : Dr Constantopoulos

o4 :
o5 : professor
c02 : InfSys
c03 : DSS

c02

o1 : Panos
o2 : head
o3 : Manos
o4 : Nicolas; Nick

c03

o6 : Panos
o2 : head
o1 : Constantopoulos

Example 2: The operation deepCopyCxt(@) returns a new context (call it c12) which con-
tains deep copies of contexts c1 and c4 (call them c01 and c04). Context c01 contains copies
of contexts c2 and c3 (call them c02 and , c03) whereas context c04 contains copies of contexts
c2 and c5 (these are context c02 and c05). Note that although context c2 is contained in both
contexts c1 and c4 it is copied only once (context c02).

c12
c01 : ManosView
c04 : AnastasiaView

c01

o1 : Dr Constantopoulos

o4 :
o5 : professor
c02 : InfSys
c03 : DSS

c04

o1 : Constantopoulos
o5 : professor
c02 : ISgroup
c05 : DSS

c02

o1 : Panos
o2 : head
o3 : Manos
o4 : Nicolas; Nick

c03

o6 : Panos
o2 : head
o1 : Constantopoulos

c05

o1 : Panos;
Constantopoulos

o7 : Anastasia
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copyCxt(Input r : NP; Output c0 : CXT ).
=� This operation takes as input a reference r to a context (call this context c) and returns a new
context c0 such that lex(c0) = lex(c). The computational algorithm of this operation is shown
in Figure 4.9. �=

1. c = lookupOne(r).

2. c0 = createCxt(lex(c)).

3. End.

deepCopyCxt(Input r : NP; Output out c : CXT ).
=� This operation takes as input a reference r to a context (call this context c) and returns a
new context out c. Context out c contains the original simple objects of c, and deep copies of
the contexts contained in c. �=

1. c = lookupOne(r).

2. Let RecCxt be the contexts recursively contained in c.

3. OrigCxt = RecCxt [ fcg.

4. CopiedCxt = ;.

5. While OrigCxt 6= ; do

(a) Find context c0 2 OrigCxt which is not contained in any other context in OrigCxt.

(b) c00 = copyCxt(c0).

(c) If c = c0 then out c = c00.

(d) If c0 is contained in some contexts in CopiedCxt then
replace c0 with c00 in the lexicon of these contexts.

(e) OrigCxt = OrigCxt� fc0g.

(f) CopiedCxt = CopiedCxt [ fc00g.

6. End.

deepCopyCxt(Input r : NP; d : Integer; Output out c : CXT ).
=� This operation takes as input a reference r to a context (call this context c) and an integer
d, and returns a new context out c. Context out c contains the original simple objects of c, and
deep copies of the contexts contained in c up to depth d. �=
The same like deepCopyCxt except for Step 2:

2 Let RecCxt be the contexts recursively contained in c up to depth d.

Figure 4.9: The algorithms of the copy operations.
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� Deep copy context up to depth d: deepCopyCxt(r; d)

This operation takes as input a name path r to a context (call this context c) and an integer
d, and returns a new context (call it c0) such that: if d = 1 then c0 = copyCxt(r) otherwise
if d > 1 then c0 contains the simple objects of c and deep copies up to depth d � 1 of the
contexts contained in c. In case a context c00 is contained in two or more contexts that
are recursively contained in c, then c00 is copied only once at the shallowest level (i.e., c0

does not recursively contain multiple copies of the same context). The computational
algorithm of this operation is shown in Figure 4.9. �

Example: The operation deepCopyCxt(@; 2) returns a new context (call it c13) which
contains copies of contexts c1 and c4 (call them c01 and c04).

c13
c01 : ManosView
c04 : AnastasiaView

c01

o1 : Dr Constantopoulos

o4 :
o5 : professor
c2 : InfSys
c3 : DSS

c04

o1 : Constantopoulos
o5 : professor
c2 : ISgroup
c5 : DSS

4.2.5 Union operation

� Union: r1 ] r2

This operation takes as input two parameters r1 and r2 and returns a lexicon as a result.
We distinguish three cases:

1. If r1 and r2 are both lexicons, then the operation returns a lexicon l such that (let
O1 = objs(r1) and O2 = objs(r2)):

(a) objs(l) = O1 [O2.

(b) For each object o 2 objs(l) : l(o) =

8<
:
r1(o) [ r2(o); if o 2 O1 \O2

r1(o); if o 2 O1 and o 62 O2

r2(o); if o 2 O2 and o 62 O1

(c) Find all contexts of l with the same source (call this source c) and merge them
into a new context with source c.

2. If r1 is a lexicon and r2 is a name path to a context (call this context c2), then the
operation returns a lexicon l such that:

l = r1 ] (lex(c2) ] fc2 :fstr(r2)gg):

In other words, we add the context c2 to the lexicon of c2, and use the name str(r2)
as one of its names (where the function str(r) converts a name path r to a name by
replacing dots by underscores).

3. If r1 and r2 are both name paths to contexts (call these contexts c1 and c2), then the
operation returns a lexicon l such that:

l = (lex(c1) ] fc1 :fstr(r1)gg) ] (lex(c2) ] fc2 :fstr(r2)gg):
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lexUnion(Input O : P(O); l1; l2 : L; Output l : L).
=� This operation takes as input a set of object O and two lexicons l1 and l2, and returns a
lexicon l. Lexicon l contains objects of O that are also contained in l1 or l2. The names of each
object o of l is the union of the names of o w.r.t. l1 with the names of o w.r.t. l2. �=

1. Let l = ;.

2. For each o 2 O do
If o 2 objs(l1) \ objs(l2) then l = l [ fo :names(o; l1) [ names(o; l2)g
else if o 2 objs(l1) then l = l [ fo :names(o; l1)g
else l = l [ fo :names(o; l2)g

3. End.

merge(Input l : L; Output out l : L).
=� This operation takes as input a lexicon l and merges its subcontexts c1; : : : ; ck with the same
source context, i.e., src(c1) = : : : = src(ck). �=

1. c = createCxt(l).

2. Let RecCxt be the contexts recursively contained in c.

3. OrigCxt = RecCxt [ fcg.

4. While OrigCxt 6= ; do

(a) Find context c0 2 OrigCxt which is not contained in any other context in OrigCxt.

(b) Let M = fc1; : : : ; ckg � CXT ,
where 8i 2 f1; : : : ; kg : ci 2 objs(c0) ^ src(ci) = src(c1).

(c) If M 6= ; then

i. Nm = names(c1; c
0) [ : : : [ names(ck; c

0).
ii. If 9ci : ci = src(ci) then cm = ci

else cm = createCxt(lex(c1) ] : : : ] lex(ck)). =� Merges the lexicon of
contexts c1; : : : ; ck �=

iii. Set src(cm) = src(c1).
iv. For i 2 f1; : : : ; kg do

If ci 6= src(ci) then deleteObj(ci; c
0).

v. insert(cm; Nm; c
0).

vi. If cm 6= src(cm) then
OrigCxt = OrigCxt [ fcmg. =�merge will be called for cm as well �=

(d) OrigCxt = OrigCxt� fc0g.

5. out l = lex(c).

6. End.

Figure 4.10: The algorithms of the operations lexUnion and merge.
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1. Lexicon Union
] (Input l1; l2 : L; Output out l : L)

=� This operation takes as input two lexicons and returns their union. �=

1. out l = lexUnion(objs(l1) [ objs(l2); l1; l2).

2. out l = merge(out l). =� the operation merge is shown in Figure 4.10 �=

3. End.

2. Context-Lexicon Union
] (Input r1 : NP; l2 : L; Output out l : L)

=� This operation takes as input a reference r1 to a context and a lexicon and returns the union
between this context and this lexicon. �=

1. c1 = lookupOne(r1).

2. l1 = lex(c1) ] f c1 :fstr(r1)g g.

3. out l = l1 ] l2.

4. End.

3. Context Union
] (Input r1; r2 : NP; Output out l : L)

=� This operation takes as input two references r1 and r2 to two contexts and returns the union
of these contexts. �=

1. c1 = lookupOne(r1).

2. c2 = lookupOne(r2).

3. l1 = lex(c1) ] f c1 :fstr(r1)g g.

4. l2 = lex(c2) ] f c2 :fstr(r2)g g.

5. out l = l1 ] l2.

6. End.

Figure 4.11: The algorithms of the union operations.
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The computational algorithm of this operation is shown in Figures 4.10 and 4.11. �

Note that, in Case 1, if an object belongs to both lexicons then we can refer to it in the
output lexicon, using any of its names in the two input lexicons. In Case 2 (where the
second parameter is a context), context c2 is added to the output lexicon under the name
r2. Intuitively, this adds a view over the objects of the combined lexicons as seen from c2.
We name this view r2 to record the fact that this view has been referred to by the user as
r2

2. Similarly, in Case 3 (where both inputs are contexts), contexts c1 and c2 are added to
the output lexicon under the names r1 and r2, respectively.

It is important to note that of context union operation keeps track of the contexts the
results come from, since the original contexts involved the operation are contained in the
results as well (e.g., context c2 in Case 2).

Example 1: Assume that CC has been set to c1. Then, the operations lex(InfSys) ] lex(DSS)

and InfSys ] DSS return the lexicons l1 and l2, respectively, such that:

l1 =

8>>>>>><
>>>>>>:

o1 : Panos;
Constantopoulos

o2 : head
o3 : Manos
o4 : Nicolas; Nick
o6 : Panos

l2 =

8>>>>>>>>>><
>>>>>>>>>>:

o1 : Panos;
Constantopoulos

o2 : head
o3 : Manos
o4 : Nicolas; Nick
o6 : Panos
c2 : InfSys
c3 : DSS

Note that object o1 has two names: one originating from c2 and the other from c3. Note
also that InfSys and DSS are name paths (w.r.t. the CC) of contexts c2 and c3, respectively.
Intuitively, the union of InfSys and DSS contains the objects of l1, as well as two views
(contexts c2 and c3) over these objects, as seen from the Information Systems and DSS lab,
respectively.

Example 2: Assume that the current context is the context IB, i.e., CC = IB. The operation
ManosView ] AnastasiaView combines the views of Manos and Anastasia to get a wider
view of the Institute, and returns the following lexicon:

l3 =

8>>>>>>>>>><
>>>>>>>>>>:

o1 : Dr Constantopoulos; Constantopoulos
o4 :
o5 : professor
c2 : InfSys; ISgroup
c3 : DSS
c5 : DSS
c1 : ManosView
c4 : AnastasiaView

Note that there are two different contexts c3 and c5 with the same name. However, no
ambiguity is caused, as these contexts also belong to contexts c1 and c4, respectively.
Therefore, we can refer to c3 and c5 uniquely through the name paths ManosView:DSS and
AnastasiaView:DSS, respectively.

2Obviously, the user can change this name using the operations: deleteName and insert.
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4.2.6 Intersection operation

� Intersection plus: r1
]
d r2

To define the intersection operation we need first to introduce the function ComO. Let
l1, l2 be lexicons. We define ComO(l1; l2) = objs(l1) \ objs(l2). This operation takes as
input two parameters r1 and r2, and returns a lexicon as a result. It also takes as input an
integer d which is the depth of cleaning nested subcontexts from non-common objects.
We distinguish three cases:

1. If r1 and r2 are both lexicons, then the operation returns a lexicon l defined as follows
(let I = ComO(r1; r2)):

(a) If o2I then o2objs(l) and l(o) = r1(o) [ r2(o).
(b) If d > 1 then

If o 62 I and o is a context recursively containing up to depth d an object of I
then:

i. Make a deepcopy of o up to depth d (call it c), and set the source of its copy
context to be equal to the source of the original context.

ii. Remove from c and from every context recursively contained in c (i) any
simple object that is not in I , and (ii) any context that is not in I and does
not recursively contain objects in I .

iii. Add c to objs(l) and define: l(c) =

�
r1(o); if o 2 objs(r1)
r2(o); if o 2 objs(r2)

(c) Find all contexts of l with the same source (call this source c) and merge them
into a new context with source c.

2. If r1 is a lexicon and r2 is a name path to a context (call this context c2), then the
operation returns a lexicon l such that:

l = r1
]
d (lex(c2) ] fc02 :fstr(r2)gg);

where c02 is a new context such that lex(c02) = lex(c2).

3. If r1 and r2 are both name paths to contexts (call these contexts c1 and c2), then the
operation returns a lexicon l such that:

l = (lex(c1) ] fc
0
1 :fstr(r1)gg)

]
d (lex(c2) ] fc

0
2 :fstr(r2)gg)

where c01 and c02 are new contexts such that lex(c01) = lex(c1) and lex(c02) = lex(c2).

The computational algorithm of this operation is shown in Figures 4.12 and 4.13. �

Note that, if an object belongs to both lexicons, then we can refer to it in the output lexicon
using any of its names in the two input lexicons. In Case 2 (where the second parameter
is a context), we add to the output lexicon a new context c 02 with name r2. Intuitively,
this adds a view over the objects of the output lexicon as seen from c2. Context c02 results
from c2 after removing from it and its nested subcontexts all simple objects that are not
contained in ComO(r1; lex(c2)). The same holds in Case 3.

Parameter d determines how deep the nested subcontexts of the result will be cleaned
from non common objects (i.e., objects not contained in ComO(l1; l2)). In fact, parameter
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elimObj(Input O : P(O);C : P(CXT )).
=� This operation takes as input a set of objects O and set of contexts C, and works as follows: The
objects in O are eliminated from each context in C. If a context c 2 C is shared by another context c0 2 C,
then c is not eliminated from the objects of c0. �=

1. While C 6= ; do

(a) Find context c 2 C which does not contain any other context in C.

(b) For each o 2 objs(c) do
If o 62 O then deleteObj(o; c).

(c) If c 6= ; then O = O [ fcg.

(d) C = C � fc0g.

2. End.

BodyInterPlus(Input l1; l2 : L; c1; c2 : CXT ; d : Integer;Output out l : L).
=� This operation takes as input two lexicons and an integer d and returns their intersection up to depth
d. It also takes as input two contexts which are two views over the objects of the result (if an input
context is NIL it is not taken into account). �=

1. I = ComO(l1; l2).

2. out l = lexUnion(I; lex(l1); lex(l2)). =� the operation lexUnion is shown in Figure 4.10 �=

3. ComC = I \ CXT . =� ComC stands for Common Contexts �=

4. Let RecCxt be the contexts recursively contained in l1 or l2 up to depth d, i.e., in depth di < d.
=� contexts contained in l1 or l2 are in depth 1. �=

5. If c1 6= NIL then RecCxt = RecCxt [ fc1g.

6. If c2 6= NIL then RecCxt = RecCxt [ fc2g.

7. OrigCxt = RecCxt� ComC.

8. CopiedCxt = ;.

9. While OrigCxt 6= ; do

(a) Find context c 2 OrigCxt which is not contained in any other context in OrigCxt.
=� c is contained either in l1 or in l2 �=

(b) c0 = copyCxt(c).

(c) Set src(c0) = src(c).

(d) If c 2 objs(l1) then out l = out l ] fc0 :names(c; l1)g
else If c 2 objs(l2) then out l = out l ] fc0 :names(c; l2)g

(e) If c is contained in some contexts in CopiedCxt
then replace c with c0 in the lexicon of these contexts.

(f) OrigCxt = OrigCxt � fcg.

(g) CopiedCxt = CopiedCxt [ fc0g.

10. elimObj(I; CopiedCxt).

11. out l = merge(out l). =� the operation merge is shown in Figure 4.10 �=

12. End.

Figure 4.12: The algorithms of the operations elimObj and BodyInterP lus.
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1. Lexicon Intersection Plus
]
(Input l1; l2 : L; d : Integer; Output out l : L)

=� This operation takes as input two lexicons and an integer d, and returns the intersection up
to depth d of these two lexicon. �=

1. out l = BodyInterP lus(l1; l2;NIL;NIL; d).
=� this operation is shown in Figure 4.12 �=

2. End.

2. Context-Lexicon Intersection Plus
]
(Input r1 : NP; l2 : L; d : Integer; Output out l : L)

=� This operation takes a reference r1 to a context and a lexicon, and an integer d, and returns
the intersection up to depth d between this context and this lexicon. �=

1. c1 = lookupOne(r1).

2. c01 = copyCxt(c1).

3. l1 = lex(c1) ] fc01 :fstr(r1)gg.

4. out l = BodyInterP lus(l1; l2; c
0
1;NIL; d).

=� this operation is shown in Figure 4.12 �=

5. End.

3. Context Intersection Plus
]
(Input r1; r2 : NP; d : Integer; Output out l : L)

=� This operation takes as input two references r1 and r2 to two contexts and an integer d, and
returns the intersection up to depth d of these contexts. �=

1. c1 = lookupOne(r1).

2. c2 = lookupOne(r2).

3. c01 = createCxt(lex(c1)).

4. c02 = createCxt(lex(c2)).

5. l1 = lex(c1) ] f c01 :fstr(r1)g g.

6. l2 = lex(c2) ] f c02 :fstr(r2)g g.

7. out l = BodyInterP lus(l1; l2; c
0
1; c

0
2; d).

=� this operation is shown in Figure 4.12 �=

8. End.

Figure 4.13: The algorithm of the operation Intersection Plus.
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d is used in practice to face up with the complexity of recursion (cleaning of nested
subcontexts from non-common objects).

Parameter d increases the expressiveness of intersection in the following way: if d is equal
to 1 the result contains all common objects. This is the most common type of intersection.
However, if d is greater than 1, the result contains not only the common objects but also the
subcontexts that contain these common objects in any depth less than or equal to d. For
example, imagine two contexts: one containing the terminology used in Chemistry and
the other the terminology used in Biology. Both contexts contain subcontexts representing
departments of Chemistry and Biology, respectively, that contain the terminology used
in these departments. The intersection of these two contexts for d = 1 will result in the
common terminology of Chemistry and Biology, as well as in their common departments.
However, the same intersection for d � 1, say d = 5, will result not only in their common
terminology and departments, but also in a mass of departments and subdepartments in
depth 5 that use this common terminology. Note that departments and subdepartments
contain only the common terminology, while the rest of the information has been removed
from them.

In the rest of the thesis, whenever parameter d is not used it is assumed to be infinite.

Example 1: The operation lex(InfSys)
]
lex(DSS), returns the lexicon:

l4 =

8<
:
o1 : Panos;

Constantopoulos

o2 : head:

Note that I = fo1; o2g. Therefore, objects o1 and o2 are added to the output lexicon in
Step 1(a). Note that like in the Union operation, object o1 has two names.

Example 2: The operation InfSys
]
DSS, returns the following lexicon:

l5 =

8>><
>>:

o1 : Panos; Constantopoulos
o2 : head
c002 : InfSys
c003 : DSS

c002
o1 : Panos
o2 : head

c003
o2 : head
o1 : Constantopoulos

Note that I = fo1; o2g. Contexts c002 and c003 are derived from contexts c2 and c3 after
removing all simple objects not in I and thus, src(c002) = src(c2) = c2 and src(c003) =

src(c3) = c3 (Step 1(b)ii). Contexts c002 and c003 are added to the output lexicon in Step 3.

Example 3: The operation ManosView
]
AnastasiaView computes the commonalities of

the views of Manos and Anastasia, and returns the following lexicon:
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l6 =

8>>>>>>>>>><
>>>>>>>>>>:

o1 : Dr Constantopoulos;
Constantopoulos

o5 : professor
c2 : InfSys; ISgroup
c03 : DSS
c05 : DSS
c01 : ManosView
c04 : AnastasiaView

c03 o1 : Constantopoulos

c05 o1 : Panos; Constantopoulos

c01

o1 : Dr Constantopoulos

o5 : professor
c2 : InfSys
c03 : DSS

c04

o1 : Constantopoulos
o5 : professor
c2 : ISgroup
c05 : DSS

Note that the set I of the Intersection algorithm is fo1; o5; c2g. That is, objects o1, o5, and
c2 are the common objects of c1 and c4. These objects are added to the lexicon of the
intersection in Step 1(a) of the Intersection algorithm. Contexts c 03 and c05 are copies of
contexts c3 and c5 after removing all simple objects not in I . Contexts c03 and c05 are added
to the lexicon of the intersection in Step 1(b) of the Intersection algorithm. These contexts
represent views over the objects in I as seen from c3 and c5, respectively. Contexts c01
and c04 are copies of contexts c1 and c4 after removing all simple objects not in I , and all
contexts not in I which do not recursively contain objects in I . Contexts c 01 and c04 are
added to the lexicon of the intersection in Step 3 of the Intersection algorithm. Contexts
c01 and c04 represent views over the objects in I as seen from c1 and c4, respectively.

Example 4: The operation lex(ManosView)
]
1 lex(AnastasiaView) computes the com-

monalities of the the contents of views of Manos and Anastasia in depth 1, and returns
the following lexicon:

l7 =

8>><
>>:

o1 : Dr Constantopoulos;
Constantopoulos

o5 : professor
c2 : InfSys; ISgroup

Example 5: The operation ManosView
]
1 AnastasiaView computes the commonalities

of the views of Manos and Anastasia in depth 1, and returns the following lexicon:

l8 =

8>>>>>><
>>>>>>:

o1 : Dr Constantopoulos;
Constantopoulos

o5 : professor
c2 : InfSys; ISgroup
c01 : ManosView
c04 : AnastasiaView

c01

o1 : Dr Constantopoulos

o5 : professor
c2 : InfSys

c04

o1 : Constantopoulos
o5 : professor
c2 : ISgroup

� Intersection times: r1 \?
d
r2

It is defined like Intersection Plus except for the following Steps:

1(a). If o2I then o2objs(l) and l(o) = r1(o) \ r2(o).

2. l = r1 \?
d
(lex(c2) ] fc02 :fstr(r2)gg)

3. l = (lex(c1) ] fc01 :fstr(r1)gg) \?d
(lex(c2) ] fc02 :fstr(r2)gg)

The computational algorithm of this operation is shown in Figure 4.14. �
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lexIntersection(Input O : P(O); l1; l2 : L; Output l : L).
=� This operation takes as input a set of object O and two lexicons l1 and l2, and returns a
lexicon l. Lexicon l contains objects of O that are also contained in l1 and l2. The names of each
object o of l is the intersection the l1-names of o with the l2-names of o. �=

1. Let l = ;.

2. For each o 2 O do
If o 2 objs(l1) \ objs(l2) then l = l [ fo :names(o; l1) \ names(o; l2)g

3. End.

BodyInterTimes(Input l1; l2 : L; c1; c2 : CXT ; d : Integer;Output out l : L).
=� The same like operation BodyInterP lus, shown in Figure 4.12, except for Step 2: �=

2. out l = lexIntersection(I; lex(l1); lex(l2)).

Intersection Times( \? ).
1. Lexicon Intersection Times
\? (Input l1; l2 : L; d : Integer; Output out l : L)

1. out l = BodyInterT imes(l1; l2;NIL;NIL; d).

2. End.

2. Context-Lexicon Intersection Times
\? (Input r1 : NP ; l2 : L; d : Integer; Output out l : L)

1. c1 = lookupOne(r1).

2. c01 = copyCxt(c1).

3. l1 = lex(c1) ] fc01 :fstr(r1)gg.

4. out l = BodyInterT imes(l1; l2; c
0
1;NIL; d).

5. End.

3. Context Intersection Times
\? (Input r1; r2 : NP; d : Integer; Output out l : L)

1. c1 = lookupOne(r1).

2. c2 = lookupOne(r2).

3. c01 = createCxt(lex(c1)).

4. c02 = createCxt(lex(c2)).

5. l1 = lex(c1) ] f c01 :fstr(r1)g g.

6. l2 = lex(c2) ] f c02 :fstr(r2)g g.

7. out l = BodyInterT imes(l1; l2; c
0
1; c

0
2; d).

8. End.

Figure 4.14: The algorithm of the operation Intersection Times.
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Motivation and use of parameter d are similar to these in the Intersection Plus operation.

Example 1: The operation lex(InfSys) \? lex(DSS), returns the lexicon:

l04 =

�
o1 :
o2 : head:

Example 2: The operation InfSys \? DSS, returns the following lexicon:

l05 =

8>><
>>:

o1 :
o2 : head
c002 : InfSys
c003 : DSS

c002
o1 : Panos
o2 : head

c003
o2 : head
o1 : Constantopoulos

Example 3: The operation ManosView \? AnastasiaView computes the commonalities of
the views of Manos and Anastasia, and returns the following lexicon:

l06 =

8>>>>>>>><
>>>>>>>>:

o1 :
o5 : professor
c2 :
c03 : DSS
c05 : DSS
c01 : ManosView
c04 : AnastasiaView

c03 o1 : Constantopoulos

c05 o1 : Panos; Constantopoulos

c01

o1 : Dr Constantopoulos

o5 : professor
c2 : InfSys
c03 : DSS

c04

o1 : Constantopoulos
o5 : professor
c2 : ISgroup
c05 : DSS

Note that the common objects o1 and o2 of lexicon l06 are without any name. This means
that although these two objects are known to both Manos and Anastasia, they use different
set of names to describe them.

4.2.7 Difference operation

� Difference: r1 	d r2

This operation takes as input two parameters r1 and r2, and returns a lexicon as a result.
We distinguish four cases:

1. If r1 and r2 are both lexicons, then the operation returns a lexicon l such that (let
D = objs(r1)� objs(r2) and I = objs(r1) \ objs(r2)):

(a) If o 2 D then o 2 objs(l) and l(o) = r1(o).
(b) If d > 1 then

If o 2 I and o is a context recursively containing up to depth d an object of D
then:

i. Make a deepcopy of o up to depth d (call it c), and set the source of its newly
derived context (copy) to be equal to the source of the original context.
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ii. Remove from c and from every context recursively contained in c,any simple
object that is not in D.

iii. Add c to objs(l) and define: l(c) = r1(o).
(c) No other object is in objs(l).

2. If r1 is a lexicon and r2 is a name path to a context (call this context c2), then the
operation returns a lexicon l such that:

l = r1 	d lex(c2):

3. If r1 is a name path to a context (call this context c1) and r2 is a lexicon, then the
operation returns a lexicon l such that:

l = (lex(c1) ] fc
0
1 :fstr(r1)gg) 	d r2;

where lex(c01) = lex(c1).

4. If r1 and r2 are both name paths to contexts (call these contexts c1 and c2), then the
operation returns a lexicon l such that:

l = (lex(c1) ] fc
0
1 :fstr(r1)gg) 	d (lex(c2) ] fc2 :fstr(r2)gg);

where lex(c01) = lex(c1).

The computational algorithm of this operation is shown in Figures 4.15 and 4.16. �

Note that, in cases 3 and 4, if the operands are name paths to contexts then the Difference
operation operates on their respective lexicons.

Motivation and use of parameter d in the Difference operation are similar to these in the
intersection operation.

Example 1: The operation lex(InfSys) 	 lex(DSS), returns the lexicon:

l9 =

�
o3 : Manos
o4 : Nicolas; Nick:

Note that objects o3 and o4 are objects contained in c2 but not in c3. That is, D = fo3; o4g.
These objects are added to the output lexicon in Step 1(a). Also, note that I = fo1; o2g.
As I does not contain any context, Step 1(b) is not executed.

Example 2: The operation ManosView 	 AnastasiaView computes the differences be-
tween the views of Manos and Anastasia, and returns the lexicon:

l10 =

8>><
>>:

o4 :
c0002 : InfSys
c3 : DSS
c0001 : ManosView

c0002 o4 : Nicolas; Nick

c0001

o4 :
c0002 : InfSys
c3 : DSS

Note that o4 and c3 are objects contained in c1 but not in c4. Note also that the Dif-
ference operation is not recursively applied to the nested subcontexts of ManosView and
AnastasiaView. Therefore, if the user wants to go into more depth, he has to call explicitly
the operation ManosView:InfSys 	 AnastasiaView:InfSys.
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BodyDi� (Input l1; l2 : L; c1 : CXT ; d : Integer;Output out l : L).

1. Let DifO = objs(c1)� objs(c2).

2. out l = lexUnion(DifO; l1; ;).
=� the operation lexUnion is shown in Figure 4.10 �=

3. Let DifC = DifO \ CXT .

4. Let RecCxt be the contexts recursively contained in l1 up to depth d, i.e., in depth di < d.
=� contexts contained in l1 are in depth 1. �=

5. If c1 6= NIL then RecCxt = RecCxt [ fc1g.

6. OrigCxt = RecCxt�DifC .

7. CopiedCxt = ;.

8. While OrigCxt 6= ; do

(a) Find context c 2 OrigCxt which is not contained in any other context in OrigCxt.
=� c is contained in both l1 and l2 �=

(b) c0 = copyCxt(c).

(c) Set src(c0) = src(c).

(d) out l = out l ] fc0 :names(c; l1)g.

(e) If c is contained in some contexts in CopiedCxt then
replace c with c0 in the lexicon of these contexts.

(f) OrigCxt = OrigCxt� fcg.

(g) CopiedCxt = CopiedCxt [ fc0g.

9. elimObj(DifO;CopiedCxt).
=� the operation elimObj is shown in Figure 4.12 �=

10. out l = merge(out l).
=� the operation merge is shown in Figure 4.10 �=

11. End.

Figure 4.15: The algorithm of the operation BodyDi� .
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1. Lexicon Difference
	 (Input l1; l2 : L; d : Integer; Output out l : L)

=� This operation takes as input two lexicons and an integer d, and returns the difference up
to depth d of these two lexicon. �=

1. out l = BodyDiff(l1; l2;NIL; d).
=� the operation BodyDiff is shown in Figure 4.15 �=

2. End.

2. Context-Lexicon Difference
	 (Input r1 : NP; l2 : L; d : Integer; Output out l : L)

=� This operation takes a reference r1 to a context and a lexicon, and an integer d, and returns
the difference up to depth d between this context and this lexicon. �=

1. c1 = lookupOne(r1).

2. c01 = copyCxt(c1).

3. l1 = lex(c1) ] fc01 :fstr(r1)gg.

4. out l = BodyDiff(l1; l2; c
0
1; d).

=� the operation BodyDiff is shown in Figure 4.15 �=

5. End.

3. Context Difference
	 (Input r1; r2 : NP; d : Integer; Output outl : L)

=� This operation takes as input two references r1 and r2 to two contexts and an integer d, and
returns the difference up to depth d of these contexts. �=

1. c1 = lookupOne(r1).

2. c2 = lookupOne(r2).

3. c01 = copyCxt(c1).

4. c02 = copyCxt(c2).

5. l1 = lex(c1) ] f c01 :fstr(r1)g g.

6. l2 = lex(c2) ] f c2 :fstr(r2)g g.

7. out l = BodyDiff(l1; l2; c
0
1; d).

=� the operation BodyDiff is shown in Figure 4.15 �=

8. End.

Figure 4.16: The algorithm of the Difference operation.
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4.3 Properties of the operations

In the course of execution of the Union, Intersection, and Difference operations, nested sub-
contexts are copied and merged into new contexts. This implies that even the same operation,
if executed twice, will result into two different lexicons. However, these two lexicons will bear
the equivalence relation defined below.

Definition 4.8 Equivalence relation �.
We define the equivalence relation � between contexts or lexicons, as follows:

1.Let c and c0 be contexts. Then

c � c0 , (c = c0) _ (lex(c) � lex(c0) ^ src(c) = src(c0))

2.Let l and l0 be lexicons. Then

l � l0 , (8o 2 S : o :N 2 l, o :N 2 l0) ^
(8c 2 CXT :

(c :N 2 l) 9c0 : c0 :N 2 l0 ^ c � c0) ^
(c :N 2 l0 ) 9c0 : c0 :N 2 l ^ c � c0))

where S denotes the set of simple objects. �

It can be easily seen that the relation � is reflexive, symmetric, and transitive, i.e., an equiva-
lence relation.

It turns out that the operations of Union and Intersection have the properties of commuta-
tivity, associativity, and distributivity over lexicons and contexts, just like ordinary set union
and intersection. These properties are important as they offer flexibility in the execution of
operations. Specifically, commutativity allows one to ignore the order between two operands.
Associativity allows to omit an indication of precedence, in expressions with more than one
instance of the operator. Finally, distributivity allows to factor out or to distribute an operand,
so as to optimize further processing.

Proposition 4.2 .
LetA, B, and C be references to contexts or lexicons. The following properties hold:

�Commutativity:
(1) A ] B � B ] A
(2) A \? B � B \? A
(3) A

]
B � B

]
A

�Associativity:
(4) (A ] B) ] C � A ] (B ] C)
(5) (A \? B) \? C � A \? (B \? C)

(6) (A
]
B)

]
C � A

]
(B

]
C)

�Distributivity:
(7) (A \? B) ] C � (A ] C) \? (B ] C)

(8) (A ] B) \? C � (A \? C) ] (B \? C) �
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Proof:

(1), (2), (3) Commutativity.

The reader can easily verify this property by looking at the code of the Union and Intersection
operations.

(4) Union Associativity.

Let l1 = (A ] B) ] C , and l2 = A ] (B ] C).
We shall prove that: l1 � l2, that is:

8o 2 O; N 2 P(N ) : o :N 2 l1 , o :N 2 l2 _ ( 9o0 : o0 :N 2 l2 ^ o � o0):

We will first prove the forward derivation. The backwards derivation is proved similarly.
Let A, B, C be lexicons. We distinguish the following cases:

1. o is a simple object.

2. o is a context.

(a) o is a context such that src(o) = o.

i. No merging takes place between o and other cleaned3 contexts during the com-
putation of l1.

ii. o is produced by merging o with one or more cleaned contexts.

(b) o is a cleaned context (i.e., src(o) 6= o).

i. There is only one context o0 with src(o0) = src(o) contained in the lexicons A, B,
or C .

ii. There exist more than one objects oi with src(oi) = src(o) in the lexicons A, B,
or C .

Cases 1 and 2.(a).i

1. If o 2 objs(C) and o 62 objs(A ] B) then we have o 62 objs(A) and o 62 objs(B), and
N = C(o).
Hence, o :N 2 B ] C and o :N 2 l2.

2. If o 2 objs(A ] B) and o 62 objs(C) then we have that either o 2 objs(A), or o 2
objs(B), or both.

(a) If o 2 objs(A) and o 62 objs(B) then N = A(o).
Hence, o 62 objs(B ] C) and because o :N 2 A we have o :N 2 l2.

(b) If o 2 objs(B) and o 62 objs(A) then similarly to the previous case we can prove
that N = B(o) and o :N 2 l2.

(c) If o 2 objs(A) and o 2 objs(B) then N = A(o) [B(o).
On the other hand, o :B(o) 2 B ] C and o :A(o) [B(o) 2 A ] (B ] C).
Hence, o :N 2 l2.

3. If o 2 objs(A ] B) and o 2 objs(C) then similarly to the previous case we can prove
that N = A(o) [B(o) [ C(o) and o :N 2 l2.

3A context c is cleaned if src(c) 6= c.
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Case 2.(a).ii

Without loss of generality, assume that there is context o1 2 objs(A)with src(o1) = src(o),
o 2 objs(B), and there is no context o3 2 objs(C) with src(o3) = src(o) (the rest of the
cases are proved similarly).
Then, during the computationA ] B, themerge operation (called at Step 2 of the Lexicon
Union algorithm given in Figure 4.11) merges o1 with o.
The result of this merging is again the context o, but now o has names A(o1) [B(o).
Note that as there is no context o3 2 objs(C) with src(o3) = src(o) no other merging will
take place and thus, l1 will contain o with names N = A(o1) [B(o).

On the other hand, B ] C contains o with names B(o).
Then, the merge operation (called at Step 2 of the Lexicon Union algorithm computing
l2) merges o1 with o resulting again in the context o, but now with names A(o1) [B(o).
Hence, o :N 2 l2.

Case 2.(b).i

Without loss of generality, assume that o0 is contained in only one of A, B, or C (call this
lexicon D) and o = o0.
Similarly to the previous cases we can prove that N = D(o) and o :N 2 l2.

Case 2.(b).ii

Without loss of generality, assume that there are contexts o1 2 objs(A) and o2 2 objs(B)
such that src(o1) = src(o2) = src(o), and there is no context o3 2 objs(C) with src(o3) =
src(o).
Then, o 2 objs(A ] B) and o is produced by merging o1, o2 through the merge operation
(called at Step 2 of the Lexicon Union algorithm computing A ] B).
Hence, N = A(o1) [B(o2).

On the other hand, note that o2 :B(o2) 2 B ] C .
Therefore, there is a context o0 such that o0 :N 2 l2, which is produced by merging o1, o2
through the merge operation (called during the computation of l2).
Obviously, o � o0.

Let A, B be lexicons, and C be a reference to a context (call this context c).
Then, l1 = (A ] B) ] C = (A ] B) ] (lex(c) ] fc :str(C)g),
and l2 = A ] (B ] C) = A ] (B ] (lex(c) ] fc :str(C)g)).
As lex(c) ] fc : str(C)g is a lexicon and associativity holds among lexicons, it follows that
associativity holds among A, B, C as well.

Similarly, we can prove the associativity property in the case that any of A, B, or C is a context.

(5), (6) Intersection Associativity.

In the following, we will prove the property (6). We can prove the property (5) similarly.

Let l1 = (A
]
B)

]
C , and l2 = A

]
(B

]
C).

We shall prove that: l1 � l2, that is:

8o 2 O; N 2 P(N ) : o :N 2 l1 , o :N 2 l2 _ ( 9o0 : o0 :N 2 l2 ^ o � o0):

We will first prove the forward derivation. The backwards derivation is proved similarly.
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Let A, B, C be lexicons. We distinguish the following cases:

1. o is a simple object.

2. o is a context.

(a) o is a context such that src(o) = o.

i. No merging takes place between o and other cleaned contexts during the com-
putation of l1.

(b) o is a cleaned context (i.e., src(o) 6= o).

i. There is only one context c contained in A, B, or C that recursively contains
objects in ComO(A

]
B;C) and src(c) = src(o).

ii. There exist more than one contexts ci that recursively contain objects contained
in ComO(A

]
B;C) and src(c) = src(o).

Cases 1 and 2.(a).i

As o is not a cleaned subcontext, o 2 ComO(A
]
B;C) and N = (A

]
B)(o) [ C(o).

Therefore, o 2 objs(A
]
B) and o 2 objs(C).

From this it follows that o 2 ComO(A;B) and (A
]
B)(o) = A(o) [B(o).

Thus, o 2 objs(A) and o 2 objs(B).
It now easily follows that o :B(o) [ C(o) 2 B

]
C and thus o :A(o) [ (B(o) [C(o)) 2 l2.

Hence, o :N 2 l2.

Case 2.(b).i

Without loss of generality, assume that there is context c 2 objs(A) and c 62 objs(B) [
objs(C).
Then, during the operation A \? B, a new cleaned context c0 is produced in the Step 9b of
Lexicon Intersection Algorithm by copying context c.
Then, the objects of c0 which are not in I or which do not recursively contain objects in I
are eliminated from c0 through the operation elimObj(ComO(A;B); fc0; : : :g).
Thus, c0 :A(c) 2 objs(A

]
B).

Similarly, during the operation (A ]
B)

]
C , the cleaned context o is produced by copying

c0.
Context o is cleaned through the operation elimObj(ComO(A

]
B;C); fo; : : :g).

Note also that N = A(c).

Similarly, on the other hand, during the operation A
]
(B

]
C) a new cleaned context c00

is produced by copying c such that c00 :A(c) 2 l2.
Context c00 is cleaned through the operation elimObj(ComO(A;B

]
C); fo; : : :g).

It can be easily proved ComO(A
]
B;C) = ComO(A;B

]
C).

Hence, c00 :N 2 l2 and o � c00.

Case 2.(b).ii

Without loss of generality, assume that there exist contexts c1 2 objs(A) and c2 2 objs(B)
such that src(c1) = src(c2) = src(o), and there is no context c3 2 objs(C) which recur-
sively contain objects in ComO(A

]
B;C) and src(c3) = src(o).

Then, during the operation A
]
B, two new cleaned contexts, c01 and c02, are produced by
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copying contexts c1 and c2, respectively.
Then, contexts c01 and c02 are cleaned through the operation:

elimObj(ComO(A;B); fc01; c
0
2; : : :g):

It also holds that src(c01) = src(c1) and src(c02) = src(c2).
As src(c1) = src(c2) then src(c01) = src(c02) and contexts c01 and c02 are merged through
the merge operation, and a new context c0 is produced with names A(c1) [B(c2).
Then, during the operation (A

]
B)

]
C , the cleaned context o is produced by copying

c0.
Context c0 is cleaned through the operation elimObj(ComO(A

]
B;C); fo; : : :g).

Also, N = A(c1) [B(c2).

On the other hand, during the operation B
]
C , a new cleaned context c002 is produced by

copying c2 and having name B(c2).
Context c002 is cleaned through the operation elimObj(ComO(B;C); fc002 ; : : :g).
Then, during the operation A

]
(B

]
C), two new cleaned contexts, c001 and c0002 , are pro-

duced by copying contexts c1 and c002 , and A(c1) and B(c2), respectively.
Then, contexts c001 and c0002 are cleaned through the operation

elimObj(ComO(A;B
]
C); fc001 ; c

000
2 ; : : :g):

As src(c001) = src(c0002 ), contexts c01 and c0002 are merged through the merge operation and a
new context c00 is produced with names A(c1) [B(c2).
As ComO(A

]
B;C) = ComO(A;B

]
C), it follows that c00 :N 2 l2 and o � c00.

Let A, B be lexicons, and C be a reference to a context (call this context c).
Then, there are contexts c0, c00 such that

l1 = (A
]
B)

]
C = (A

]
B)

]
(lex(c) ] fc0 :str(C)g)

and

l2 = A
]
(B

]
C) = A

]
(B

]
(lex(c) ] fc00 :str(C)g)):

As lex(c) ] fc0 : str(C)g and lex(c) ] fc00 : str(C)g are lexicons and associativity holds among
lexicons, it follows that associativity holds among A, B, C as well.

Similarly, we can prove the associativity property in the case that any of A, B, or C is a context.

(7) Distributivity.

Let l1 = (A \? B) ] C , and l2 = (A ] C) \? (B ] C).
We shall prove that: l1 � l2, that is:

8o 2 O; N 2 P(N ) : o :N 2 l1 , o :N 2 l2 _ ( 9o0 : o0 :N 2 l2 ^ o � o0):

We will first prove the forward derivation. The backwards derivation is proved similarly.

Let A, B, C be lexicons. We distinguish the following cases:

1. o is a simple object.
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2. o is a context.

(a) o is a context such that src(o) = o.

i. No merging takes place between o and other cleaned contexts during the com-
putation of l1.

ii. o is produced by merging o with one or more cleaned contexts.

(b) o is a cleaned context (i.e., src(o) 6= o).

Cases 1 and 2.(a).i

Then, o is contained in either A \? B, or C , or both.
Without loss of generality, assume that o is contained in A \? B, but not in C .
Then, o 2 ComO(A;B) and N = A(o) \B(o).
Therefore, o 2 objs(A) and o 2 objs(B).
Thus, o :A(o) 2 A ] C and o :B(o) 2 B ] C .
From this it follows that o 2 ComO(A ] C;B ] C) and o : (A ] C)(o) \ (B ] C)(o) 2 l2.
Hence o :A(o) [B(o) 2 l2.

Case 2.(a).ii

Without loss of generality, assume that o is contained in A \? B, and there is a cleaned
context c contained in C such that src(c) = o.

Then, on one hand, o 2 ComO(A;B) and (A \? B)(o) = A(o) \B(o).
Therefore, o 2 objs(A) and o 2 objs(B).
Themerge operation (called during the computation of l1) merges owith c resulting again
in the context o, but now with names (A \? B)(o) [ C(c).
Hence, N = (A(o) \B(o)) [ C(c).

On the other hand, themerge operation (called during the computation ofA ] C) merges
o with c, resulting again in the context o, but now with names A(o) [ C(c).
Similarly, the merge operation (called during the computation of B ] C) merges o with
c, resulting again in the context o, but now with names B(o) [ C(c).
Therefore, o 2 ComO(A ] C;B ] C) and o : (A ] C)(o) \ (B ] C)(o) 2 l2.
That is o : (A(o) [ C(c)) \ (B(o) [ C(c)) 2 l2.
Hence, since distributivity of set union and set intersection is hold, o :N 2 l2.

Case 2.(b)

Without loss of generality, assume that there is a context c contained in A \? B such that
src(c) = src(o), and there is a context c0 contained in C such that src(c0) = src(o).

As o is contained in A \? B, assume that there are contexts c1, c2 contained in A, B,
respectively, which both recursively contain objects in I = ComO(A;B) and src(c1) =
src(c2) = src(o).
Then, during the operation A \? B, two new cleaned contexts, c01 and c02 are produced in
the Step 9b of Lexicon Intersection Algorithm by copying contexts c1 and c2, respectively.
Then, the objects of c01 and c02 that are not in I or do not recursively contain objects in I
are eliminated from these contexts through the operation elimObj(I; fc 01; c

0
2; : : :g).

As src(c01) = src(c02) = src(o), contexts c01 and c02 are merged through themerge operation,
and the new context c is produced with names A(c1) \B(c2).

63



Then, during the operation (A \? B) ] C , contexts c, c0 are merged through the merge

operation and the context o is produced with names N = (A(c1) \B(c2)) [ C(c
0).

On the other hand, during the operation A ] C , contexts c1 and c0 are merged through
the merge operation, and a new context c001 is produced with names A(c1) [ C(c0).
Similarly, during the operation B ] C , contexts c2 and c0 are merged through the merge
operation, and a new context c002 is produced with names B(c2) [ C(c0).
Note that contexts c001 and c002 recursively contain objects in I and thus they also recursively
contain objects in I 0 = ComO(A ] C;B ] C).
Then, during the operation (A ] C) \? (B ] C), contexts c001 and c002 are first cleaned through
the operations elimObj(I 0; fc001 ; c

00
2 ; : : :g), and then merged through the merge operation.

This will produce a new context c00 with names (A(c1) [ C(c0)) \ (B(c2) [ C(c0)).
Hence, c00 :N 2 l2 and, since I 0 contain contexts equivalent to the contexts contained in
I [ objs(C), o � c00.

Let A, B be lexicons, and C be a reference to a context (call this context c).
Then, l1 = (A \? B) ] C = (A \? B) ] (lex(c) ] fc :str(C)g),
and l2 = A \? (B \? C) = (A \? (lex(c) ] fc :str(C)g) \? (B \? (lex(c) ] fc :str(C)g).
As lex(c) ] fc : str(C)g is a lexicon, and associativity holds among lexicons, it follows that
associativity holds among A, B, C as well.

Similarly, we can prove the associativity property in the case that any of A, B, or C is a context.
2

For example (see Figure 4.5), assume the current context to be the context IB. The operation

(ManosView:InfSys \? AnastasiaView:DSS) ] ManosView (4.1)

computes the commonalities between the Information Systems lab as seen from Manos and
the DSS lab as seen from Anastasia and then combines these commonalities with the view of
Manos for the Institute to get a wider view of it. Let l1 be the intermediate lexicon returned by
the operation

ManosView:InfSys \? AnastasiaView:DSS

and let l2 be the lexicon returned by the Operation 4.1. Then we have:

l1 =

8<
:
o1 : Panos
c02 : ManosView InfSys

c05 : AnastasiaView DSS

c02 o1 : Panos

c05 o1 : Panos; Constantopoulos

l2 =

8>>>>>>>><
>>>>>>>>:

o1 : Panos; Dr Constantopoulos

o4 :
o5 : professor
c2 : ManosView InfSys; InfSys
c3 : DSS
c05 : AnastasiaView DSS

c1 : ManosView

Note that during the computation of the operation l1 ] ManosView context c2 is merged
with context c02 into context c2 as src(c02) = src(c2) = c2 (see Step 1(c) of the Union algorithm on
page 44 and the detailed algorithms of the operations of merge and union shown in Figures 4.10
and 4.11), respectively.

On the other hand, the operation

(ManosView:InfSys ] ManosView) \? (AnastasiaView:DSS ] ManosView) (4.2)
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yields two wider views of the Institute as seen from Manos by (i) combining ManosView, context
c1, with the Information Systems lab as seen from Manos, context c2, (call the returned lexicon
l3) and (ii) combining ManosView with the DSS lab as seen from Anastasia, context c5, (call the
returned lexicon l4), and then computes the commonalities of these two wider views. Let l5 be
the lexicon returned by the Operation 4.2. Then we have:

l3 =

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

o1 : Panos;
Dr Constantopoulos

o2 : head
o3 : Manos
o4 : Nikos; Nick
o5 : professor
c2 : ManosView InfSys;

InfSys

c3 : DSS
c1 : ManosView

l4 =

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

o1 : Panos;
Constantopoulos;
Dr Constantopoulos

o4 :
o5 : professor
o7 : Anastasia
c2 : InfSys
c3 : DSS
c5 : AnastasiaView DSS

c1 : ManosView

l5 =

8>>>>>>>>>>>><
>>>>>>>>>>>>:

o1 : Panos;
Dr Constantopoulos

o4 :
o5 : professor
c2 : ManosView InfSys;

InfSys

c3 : DSS
c005 : AnastasiaView DSS

c1 : ManosView

c005
o1 : Panos;

Constantopoulos

According to property (6), lexicons l2 and l5 are equivalent.

We now define an important class of lexicons, called operational lexicons, which is closed
over the operations Union, Intersection, and Difference. This closure property is expressed in
Lemma 4.1 and Theorem 4.1. In the following, we shall call root context any context contained
in a lexicon l (resp. context c) which is not recursively contained in any other context contained
in l (resp. c).

Definition 4.9 Operational lexicon.
A lexicon l is called operational iff

1.it is a well-defined lexicon,
2.if c is a root context of l then src(c) is well-defined, and
3.any object of l which is not a root context is recursively contained in a root

context of l. �

Lemma 4.1 Closure of the operationality property: two lexicons.
Let l1, l2 be two operational lexicons. Assume that every root context c of l1 (resp.
l2) has a name n in l1 (resp. l2) such that there is no name n in l2 (resp. l1). Then the
operation l1 � l2, where � 2 f ] ; \? ;	g, results in an operational lexicon. �

Proof:

Let l = l1 � l2. We shall prove that l is an operational lexicon, that is:

1. We will first prove that l is a well-defined context.

We will prove that for each object o of l there is a unique reference of o w.r.t. l.
Let first o be a context, which comes from a root context c of l1 or l2 (“comes from” means
that either (i) o is the context c, or (ii) o is the result of cleaning the context c, or (iii) o is
the result of merging a context of l1 with a context of l2, one of which is c).
Assume that c is a context of l1 (proceed similarly if c is a context of l2).
From the definition of the Union, Intersection, and Difference operations, we have

names(c; l1) � names(o; l) (4.3)
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As c is a root context of l1, there is a name n 2 names(c; l1) such that there is no name n
w.r.t. l2.
Equation (4.3) implies that n 2 names(o; l).
We will prove that n is a unique reference of o w.r.t. l.
Assume that there is another object o0 such that n 2 npaths(o0; l). Then, there is an object
o00 contained in l1 or l2 such that o0 comes from o00 6= o.
Then, n 2 names(o00; l1) or n 2 names(o00; l2).
However, this is impossible because n is a unique name w.r.t. l1 and there is no name n
w.r.t. l2.

Any other object o of l comes from objects that are not root contexts, but they are recur-
sively contained in a root context (call this context c).
Since o is contained in l, there must be a context c0 of l coming from c (this is because of
the definition of the Union, Intersection and Difference operations).
Since c is well-defined, c0 is well-defined as well.
Thus, there is a unique reference r of o w.r.t c0.
As c is a root context, we proved above that there is n such that n is a unique name of c 0

w.r.t. l.
Thus, n:r is a unique reference of o w.r.t. l.

We shall now prove that every nested subcontext of l satisfies the acyclicity property.
As every nested subcontext of l1, l2 satisfies the acyclicity property, it can be easily seen
that every nested subcontext of l satisfies the acyclicity property as well.

2. We will now prove that if c is a root contexts of l then src(c) is well-defined.

Let c be a root context of l. Then, c either (i) is a root context of l1 or l2, or (ii) is the result
of cleaning a root context c0 of l1 or l2, or (iii) is the result of merging a context c0 of l1 with
a context c00 of l2.
For case (i), as l1 and l2 are operational contexts, src(c) is a well-defined context.
Similarly for case (ii), src(c) = src(c0), and hence src(c) is a well-defined context.
For case (iii), c0 or c00 should be root context.
Thus, src(c0) or src(c00) is a well-defined context.
Therefore, src(c) = src(c0) = src(c00) is a well-defined context as well.

3. We will now prove that any object of l which is not a root context is recursively contained
in a root context of l.

Let o be an object of l which is not a root context.
Then, o comes from an object o0 of l1 or l2, which either (i) is a root context of l1 or l2, or
(ii) is recursively contained in a root context of l1 or l2.
Consider first case (i), and without loss of generality, assume that o 0 is a root context of l1.
As o is not a root context of l, o0 is recursively contained in a root context c0 of l2.
Let c be the context of l which comes from c0.
Obviously, c is a root context of l and o is recursively contained in c.
Consider now case (ii), and without loss of generality, assume that o is recursively con-
tained in a root context c0 of l1.
Let c be the context of l which comes from c0.
Obviously, c is a root context of l and o is recursively contained in c. 2

66



Theorem 4.1 Closure of the operationality property: arbitrary number of lexicons.
Let l1; : : : lk be operational lexicons. If every root context c of li has a name n in li
such that there is no name n in any of l1; : : : ; li�1; li+1; : : : ; lk, then the sequence of
operations l1�1 : : :�k�1 lk, where the operations�i 2 f ] ; \? ;

]
;	g are executed

in any order, results in an operational lexicon. �

Proof: From Lemma 4.1, the operation li �i li+1 results in an operational context.
Therefore, we can compute the sequence of operations l1 �1 : : : �k�1 lk through a sequence of
computations of the form l� l0, where l and l0 are operational lexicons and satisfy the condition
of Lemma 4.1.
Thus, the sequence of operations l1 �1 : : :�k�1 lk will result in an operational lexicon. 2

The following theorem expresses that the Union, Intersection, and Difference operations
preserve the well-definedness property of contexts.

Theorem 4.2 Closure of the well-definedness of contexts.
Let r1; : : : ; rk be name paths of the well-defined contexts c1; : : : ; ck. If str(ri) is not a
name of an object in any of c1 ; : : : ; ck , then the sequence of operationsr1�1: : :�k�1rk,
where the operations �i 2 f ] ; \? ;

]
;	g are executed in any order, results in a

well-defined lexicon. �

Proof: Note that for any i � k

ci �i ci+1 = (lex(ci) ] fc0i :str(ri)g) �i (lex(ci+1) ] fc0i+1 :str(ri+1)g)

where c0i and c0i+1 are determined according to the particular operation �i (see the definitions
of the Union, Intersection, and Difference operations).
Note also that as ci is a well-defined lexicon, li = lex(ci) ] fc0i :str(ri)g results in an operational
lexicon with root context c0i.
As str(ri) is not a name of an object w.r.t. each lexicon l1; : : : ; li�1; li+1; : : : ; lk, all conditions of
Theorem 4.1 are met and hence r1 �1 : : :�k�1 rk results in a well-defined lexicon. 2

The closure of well-definedness of context under the operations of context union, inter-
section, and difference ensures that unique external identification of objects and acyclicity are
preserved, after applying the above operation on contexts. Thus, no naming conficts and no cy-
cles will appear in the resulting contexts. Operations on contexts defined in other works [84, 85]
lack this ability. Thus, in these works, information from the original contexts may get lost in the
result of an operation, since conflicts appear and their conflict resolution strategy may cause
units to be inaccessible in the resulting context. Operations in these works do not satisfy the
properties of commutativity, associativity, and distributivity.

4.4 Discussion

As mentioned in the introduction, the notion of context has appeared in several areas and
has been treated in various ways depending on the purposes of the particular application.
However, the semantics given to the notion of context in those areas are not always the same
and the various semantics are not always comparable. In this section, we compare our approach
with other approaches that treat the notion of context in a comparable way.
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Our model has been mainly inspired by the work of Mylopoulos and Motschnig-Pitrik [84],
and incorporates previous work by Theodorakis and Constantopoulos [126]. Specifically,
in [84], Mylopoulos and Motschnig-Pitrik proposed a general mechanism for partitioning in-
formation bases using the concept of context. They introduced a generic framework for contexts
and discussed naming conventions, operations on contexts, authorization, and transaction exe-
cution. However, they impose a strict constraint on naming, whereby objects (called information
units) are assigned unique names w.r.t. a context. Because of this constraint, several naming
conflicts appear in operations among contexts, which the authors resolve in rather arbitrary
ways. In addition, operations among contexts, such as union (called addition) and intersection
(called product), are deprived of such useful properties as commutativity, associativity, and
distributivity, and thus also can yield unexpected results. In [84], the major problem of the
context union and context intersection operations is that it is possible for an object in the output
context to have no name, even though it originally had one or more names. This can happen
if an object of one input context has a name in common with an object of the other input
context. For example, consider two contexts c and c 0 which correspond to two companies, the
contents of c and c0 being the employees of these two companies, respectively. Assume now
that an employee in the first company has the same name with another employee in the second
company. Then, the union of the contexts c and c 0 contains these two employees, but one of
them will have no name. Such results might seriously hinder the applicability of this otherwise
appealing framework.

In [126, 127], Theodorakis and Constantopoulos proposed a naming mechanism based on
the concept of context, in order to resolve several naming problems that arise in information
bases, such as object names being ambiguous, excessively long, or unable to follow the changes
of the environment of the object. These naming problems also resolved by contextualization
mechanism defined in this chapter. The information base is assumed to be structured with the
traditional abstraction mechanisms of classification, generalization, and attribution. A context
is identified by a node and a link class, called pivot elements of the context. A link class could
be either an attribute class, or the instance-of relation, or the ISA relation. The contents of a
context consist of objects and links which are associated with the pivot elements of the context.
This definition of context allows the information base to be decomposed into partitions on the
basis of one of the traditional abstraction mechanisms. Finally, relative naming is supported,
as well as nesting of non contexts. However, that approach imposes a hierarchical structure on
contexts, i.e., a context may be contained in only one other context, which is rather restrictive.
Context defined in the dissertation is more general and can be easily embedded to any data
model.

HAM [17] is a general purpose abstract machine that supports contexts. In HAM, a graph
usually contains all the information regarding a general topic and contexts are used to partition
the data within a graph. Therefore, a context may contain nodes, links, or other contexts.
Contexts are organized hierarchically, i.e., a context is contained in only one other context. By
contrast, in our model, a context may be contained in more than one contexts. Contexts in HAM
have been used to support configurations, private workspaces, and version history trees [27].
HAM provides a set of context editing, context inquiry, and context attribute operations. All
the context editing operations of HAM, namely createContext, destroyContext, compactContext,
and mergeContext, can be simulated in our model using its operations. On the other hand, HAM
does not support name relativism. Inquiries on and attributes of contexts can be supported by
our model (see chapter 8), however they are outside of the scope of this chapter.
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In [110], the notion of context is used to support collaborative work in hypermedia design.
A context node contains links, terminal nodes, and other context nodes. Furthermore, con-
text nodes are specialized into annotations, public bases, hyperbases, private bases, and user
contexts. Using this notion of context, the authors define operations check-in and check-out for
hypermedia objects. However, there is no support for name relativism, neither are generic
operations on contexts provided.

The notion of context has also appeared in the area of heterogeneous databases [101, 86, 55].
There, the word “context” refers to the implicit assumptions underlying the manner in which
an agent represents or interprets data. To allow exchange between heterogeneous information
systems, information specific to them can be captured in specific contexts. Therefore, contexts
are used for interpreting data. At present our model cannot be compared with these works,
because it does not address heterogeneous databases, as we assume a single Information Base
(which guarantees that real world objects are represented by unique objects in the Information
Base).

4.5 Summary

In this chapter, we developed a model for representing contexts in information bases along
with a set of operations for creating, updating, combining, and comparing contexts. A context
is treated as a special object which is associated to a set of objects and a lexicon, i.e., a binding of
names to these objects. Contexts may overlap, in the sense that an object may be contained in
more than one contexts simultaneously. Contexts may also be nested, in the sense that a context
may contain other contexts. Also, a context may be contained in more than one contexts.

The main contributions of this work are:

� It allows an object to have zero, one, or more names, not necessarily unique, w.r.t. a
context. Therefore, we can handle synonymous, homonymous, and anonymous objects.
Possible name ambiguities are resolved by assuming that objects contained in well-
defined contexts have at least one unique external identification (i.e., absolute name).

� The operations of context union, intersection satisfy the important properties commu-
tativity, associativity, and distributivity, which offer flexibility in the execution of these
operations.

� The operations of context union, intersection, and difference preserve the well-definedness
of contexts. This ensures that unique external identification of objects is preserved, after
applying the above operations on contexts.
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Chapter 5

Applying Context in a Cooperation
Environment

The potential usefulness of context in supporting such constructs as versions, configurations
ans workspaces has already been indecated in [84]. In this chapter we present a comprehensive
example that illustrates the use of context, as defined in Chapter 4, in a cooperation environ-
ment, where workspaces, versions and configurations all are important ingredients. In the
course of the example we show how application-specific high-level comments can be built
employing the context construct.

5.1 Cooperation environment

A cooperation environment is usually organized into named repositories, called workspaces, to
allow workers to share information concerning the work done on an object, in a secure and
orderly manner [56, 21]. In a cooperation environment, there are three kinds of workspaces:
public, group, and private.

The public workspace contains fully verified (i.e., released) and finished object versions,
which have reached absolute stability and cannot be updated or deleted. However, any worker
can read this workspace, and can add new object versions to it.

The group workspace contains object versions that have reached reasonable stability, and
therefore can be shared by two or more workers. Thus, the combination of work-in progress
between different workers is achieved. This process is necessary before a version is finalized
and migrates to the public workspace. Object versions of the group workspace cannot be
updated but they can be deleted.

The private workspace consists of a number of user workspaces. Each user workspace
is owned and can be accessed only by a specific user. User workspaces contain temporary
object versions which are expected to undergo a significant amount of update before reaching a
reasonably stable state (and moved to the group or to the public workspace). Therefore, object
versions of a user workspace can be updated or deleted by its user.

Object versions can be moved into and out of the public workspace through the check-in and
check-out operations, and into and out of the group workspace through the import and export
operations. A user checks a version out of the public workspace into his private workspace,
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where he can make changes. The new version is possibly exported to the group workspace for
integration testing with other objects. To correct errors, the version has to be imported to the
private workspace. Finally, a new verified version is checked in the public workspace and is
linked (through a version history link) to the original public version from which it was derived.
At this point, the version history of the object has been updated.

An object is, in general, composed of other objects that are either atomic or composite. In
our model, a version of an atomic object can be thought of as a simple object. Recall that a
simple object is an object of the Information Base that is not a context. A configuration is a
version of a composite object, composed of particular versions of its components. Therefore, a
configuration can be thought of as a context that contains versions of its components. We refer
to contexts that represent configurations as configuration contexts.

A version history of an object can be thought of as a context that contains (a) versions of
the object, and (b) links from one version to another that indicate version derivation. We call
such contexts, history contexts. The context types described above, are ISA-related as shown in
Figure 5.1, thus forming a hierarchy of contexts.

Context

Configuration HistoryAtomic Workspace

Private Group Public User

Figure 5.1: Context types of the cooperation environment.

A cooperation environment can be thought of as an Information Base (IB), containing six
contexts: ATOMIC, CONFIG, HISTORY, PUBLIC, PRIVATE, and GROUP (see Figure 5.2). The
context ATOMIC contains all versions of atomic objects. The context CONFIG contains all
configuration contexts, and the context HISTORY contains all history contexts. The context
PUBLIC contains all objects in the public workspace, which we assume to be history contexts,
and the context PRIVATE contains all the user contexts. A user context may contain history
contexts, configuration contexts, and atomic objects. A user context may also contain results
of operations on contexts. The context GROUP essentially contains results of operations on
contexts.

IB

PUBLIC : Public
PRIV ATE : Private

GROUP : Group
HISTORY : History
CONFIG : Config
ATOMIC : Atomic

PRIV ATE
1 : Manos
2 : Anastasia
3 : Nicolas

PUBLIC
100 : A
200 : I
300 : M

HISTORY
100 : A
200 : I
300 : M

GROUP

CONFIG
10 : A1
11 : A2

ATOMIC
20 : I1
21 : I2
30 : M1

Figure 5.2: Initial lexicons of IB and the six contexts of the cooperation scenario.
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5.2 Cooperation scenario

We consider a cooperation scenario in which three authors cooperate on the revision of an
article, composed of an introduction and a main section. The initial state of our cooperation
scenario is shown in Figures 5.2 and 5.3. In Figure 5.3, we use the following conventions: A
symbol of the form o : n1; n2; : : :denotes object owith namesn1; n2; : : :, e.g. 100 : Adenotes object
100 with a single name A. Solid line rectangles represent workspaces, dashed line rectangles
represent history contexts, rounded solid line boxes represent configuration contexts, and thick
dots represent atomic objects.

1: Manos 2: Anastasia

30: M1��
��
��
��
300: M

20: I1��
��
��
��

21: I2��
��
��
��

200: I
20: I1���

���
���
���

30: M1����

10: A1 11: A2
21: I2������

���
���
���
���

100: A

30: M1

PRIVATE: Private

GROUP: Group

3: Nicolas

PUBLIC: Public

Figure 5.3: Initial state of the cooperation scenario.

Specifically, the initial state of the Information Base is as follows (see Figures 5.2 and 5.3):

� The context PUBLIC contains a history context for the article, and a history context for
each component of the article. The history context for the article is context 100 with name
A, the history context for the introduction is context 200 with name I, and the history
context for the main section is the context 300 with name M, as shown in Figures 5.2
and 5.3. The names A, I and M stand for “Article”, “Introduction” and “Main section”,
respectively1. Here, versions of the introduction and the main section are simple objects,
as any piece of (unstructured) text is considered to be an atomic object. Context 100
contains two contexts (these are 10 and 11) representing two different versions of the
article, as well as a link object from context 10 to context 11. Similarly, contexts 200 and
300 contain versions of the introduction and the main section, respectively, as well as link
objects.

� The context PRIVATE contains three user contexts, one for each author. The first author
is assigned the user context 1 with name Manos, the second author is assigned the user
context 2 with name Anastasia, and the third author is assigned the user context 3 with
name Nicolas.

� The context GROUP is initially empty.

We refer to a user workspace as the home workspace of the corresponding user. We as-
sume that each user has his own variable current context (CC) whose initial value is his home
workspace. For each user, the value of the variable Username is his login name. Also, the

1In practice one would use meaningful names instead of A, I and M, e.g. Article on Contexts instead of A.
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name of his home workspace in the context PRIVATE, is his login name. Finally, the value of
the variable Home is the global name path of the home workspace of the user. For example,
for user Manos, CC = 1, Username = Manos, and Home = @:Private:Manos. In the following,
whenever we refer to the variables CC, Home, and Username we use their values. Variables
are written in a special character font to be distinguished from strings.

5.3 Cooperation commands

For the revision of the article, each author has four commands at his disposal, as described
below. These commands are high level operations, implemented using the context operations
of the model. The full code of the operations is given in Appendix A. An example of their use
is given in the following section.

� check-out(r; n)

This operation takes as input a name path r in the public workspace and a name n, and
does the following:

1. Copies the history context of the version referred to by r, from the public workspace
into the home workspace of the user, under the same name.

2. Copies the version referred to by r (call this version v), from the public workspace
into the CC (call this copy v0).

3. Adds v0 into the copy of the history context, under the name n.

4. Updates the copy of the history context by adding a link from v to v 0. �

� check-in(r; h; n)

This operation takes as input a name path r w.r.t. CC, a name path h w.r.t. the public
workspace, and a name n. Then, it copies the version referred to by r from the CC into
the history context of the public workspace referred to by h, under the name n. �

� export(exportedListOfContexts; exportedCxtName)

This operation takes as input a set of name paths exportedListOfContexts w.r.t. the CC,
and a name exportedCxtName. Then, it does the following:

1. Creates a context (call it c), which contains a copy of the context referenced by each
name path contained in the input set.

2. Inserts the context c into the group workspace, under the name exportedCxtName. �

� import(r; n)

This operation takes as input a name path r w.r.t. the group workspace, and a name n.
Then, it copies the context referenced by r from the group workspace into the CC, under
the name n. �

74



5.4 A cooperation session

In this section, we present and discuss the commands issued by each author during a cooper-
ation session. These commands are shown in Figure 5.4.

Commands by Manos

User Manos checks-out version A2 of the article, and copies it as version A3 to his home
workspace (see Figure 5.5). This is done through the command check-out(A:A2; A3). As the
user wants to revise version A3, he focuses on context A3. This is done through the command
SCC(A3). As he wants to revise the main section, he checks-out object M1 to his home workspace
(replacing the object M1 contained in context A3 by a new version of the main section, named
M2, as shown in Figure 5.5). This is done through the operation check-out(M:M1; M2). The local
editing of M2 is indicated by three dots in Figure 5.4.

After revision is completed, Manos needs to exchange information with the other authors
for further revision. To this end, he needs to create the necessary environment which works as a
coordinating unit for comparing the versions prepared by the different authors, before the final
version is checked in the public workspace. This comparison requires knowledge about which
authors have edited a particular version, and what changes have been made to it. Specifically,
he uses the command export(fA; Mg; Manos changes) to create a context named Manos changes

that contains copies of the history contexts of the edited objects, i.e., copies of the contexts
101 and 301 that represent the history of the article and its main section, respectively (see
Figure 5.6). These contexts contain the original versions of the article and its main section, as
well as their new versions created by user Manos.

Commands by Anastasia

Concurrently, user Anastasia also checks-out version A2 of the article, and copies it as
version A3 in her home workspace2 (see Figure 5.7). As she wants to revise version A3, she
focuses on context A3. She then checks-out I2 and M1, and copies them as I3 and M2 in her home
workspace (see Figure 5.7). Anastasia can now start editing I3 and M1. Once editing is finished,
she exports her modifications to the group workspace for further revision (see Figure 5.8). This
is done through the command export(fA; I; Mg; Anastasia changes)

Commands by Nicolas

Finally, user Nicolas imports contexts Manos changes and Anastasia changes, which con-
tain modifications made by Manos and Anastasia, to his home workspace under the names
Manos and Anastasia, respectively (commands 3.(a) and 3.(b) in Figure 5.4). As Nicolas wants
to unify these modifications, he issues the commands 3.(c) to 3.(i), shown in Figure 5.4, and
he creates the context 603 (assigned the variable histCxt) with name Histories in his home
workspace (see Figure 5.9).

Context 603 contains three history contexts: (i) context 600 (assigned the variablehistory A)
with name A, which contains the whole history of the article after the modifications made on
it by Manos and Anastasia; it also contains information about who made each modification
(contexts 102 and 104); (ii) context 601 (assigned the variable history I) with name I, which

2Note that she uses the same name A3 as Manos did for naming a different version of the article. However, there
is no ambiguity as the two A3’s are contained in different contexts.
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1. Commands by user Manos.
=� CC = 1, Home = @:Private:Manos, Username = Manos �=

(a) check-out(A:A2; A3)
(b) SCC(A3)
(c) check-out(M:M2; M3)
(d) � � �
(e) SCC(Home)
(f) export(fA; Mg; Manos changes)

2. Commands by user Anastasia.
=� CC = 2, Home = @:Private:Anastasia, Username = Anastasia. �=

(a) check-out(A:A2; A3)
(b) SCC(A3)
(c) check-out(I:I2; I3)
(d) check-out(M:M1; M2)

� � �

(e) SCC(Home)
(f) export(fA; I; Mg; Anastasia changes)

3. Commands by user Nicolas.
=� CC = 3;Home = @:Private:Nicolas; Username = Nicolas �=

(a) import(Manos changes; Manos)

(b) import(Anastasia changes; Anastasia)

(c) history A = createCxt(Manos:A ] Anastasia:A))

(d) history I = createCxt(f g ] Anastasia:I))

(e) history M = createCxt(Manos:M ] Anastasia:M))

(f) histCxt = createCxt(fg)

(g) insert(history A; fAg; histCxt)

(h) insert(history M; fMg; histCxt)

(i) insert(histCxt; fHistoriesg; Home)
(j) changesLex =lex(Manos:A) ] lex(Anastasia:A) ]

lex(Manos:M) ] lex(Anastasia:M) ] lex(Anastasia:I) ]

flookupOne(Manos) :Manos; lookupOne(Anastasia) :Anastasiag 	

lex(@:Public:A) 	 lex(@:Public:I) 	 lex(@:Public:M)

(k) insert(createCxt(changesLex); Changes;Home)
(l) final A = createCxt(flookupOne(Changes:I3) :I3;

lookupOne(Changes:Manos:M:M2 ) :M2g)

(m) insert(final A; A3;Home)

(n) check-in(A3:I3; I; I3)
(o) check-in(A3:M2; M; M2)
(p) check-in(A3; A; A3)

Figure 5.4: User commands during a cooperation session.

76



2check-out(M.M  ,M  )1

2: Anastasia

20: I1���
���
���
���

21: I���
���
���
���

2

200: I
20: I1���

���
���
���

1����

10: A

30: M

11: A2
21: I2����

��
��
��
��

30: M1

3: Nikos

1

��
��
��
��

30: M1���
���
���
���

���
���
���
���

31: M2
������21: I

30: M

������31: M2

12: A310: A1 211: A 12: A3

101: A

1

2

2 3check-out(A.A  ,A  )PRIVATE: Private
1: Manos

PUBLIC: Public
100: A

301: M

300: M
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contains the history of the introduction after the modifications made on it by Anastasia (Manos
did not modify the introduction); and (iii) context 602 (assigned the variable history M) with
name M, which contains the history of the main section after the modifications made on it by
Manos and Anastasia; it also contains information about who made each modification (con-
texts 302 and 304). Then, he can see that versions 12 and 13 (with name A3) of the article are
two parallel versions of version 11 and that version 12 was created by Manos (Manos A:A3) and
version 13 by Anastasia (Anastasia A:A3).

Nicolas then wants to isolate the changes made by Manos and Anastasia and get rid of the
whole history of the article and its parts contained in the public workspace. Thus, he creates the
context 604 with name Changes, by issuing the commands 3.(j) and 3.(k) shown in Figure 5.4.
This context contains the modifications made by Manos and Anastasia (objects 14; 15; 22; 31
and 32), as well as where these modifications appear within the structure of imported contexts
501 and 502; thus two new views of the structures of contexts 501 and 502 are created, which
are contexts 605 and 606, respectively (see Figure 5.9).

Then, Nicolas studies modifications and creates the final version of article (command 3.(l)
in Figure 5.4) composed by the version 22 (Changes:I3) of the introduction made by Anastasia
and the version 31 (Changes:Manos:M:M2) of the main section made by Manos. This final version
is checked in the public workspace through the commands 3.(n) to 3.(p) (see Figure 5.10).

We would like to stress that the purpose of the example presented here was to illustrate the
use of context in a simple cooperation environment. The commands check-in, check-out, import
and export, are examples of simple communication commands that can be implemented using
the context operations of our model.

In a more complex environment, however, the users will most likely need information on
various aspects of the cooperation. For example, in a software engineering project, where
several groups are developing software in parallel, a coordinating unit may need to compare
modules coming from various groups, before merging them into a single module. Such
information can be obtained through more sophisticated higher level commands that can
also be implemented using the context operations of the model.

The Information Base can be organized in a number of different ways. Choosing the
appropriate organization is a design problem that depends on the application. However, this
problem lies outside the scope of this thesis.
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Chapter 6

Contextualization as an Independent
Abstraction Mechanism for Conceptual
Modeling

In Chapter 4 we presented an extension of previous models of context, along with a formal-
ization, which increased the expressive power and flexibility and solved certain operational
problems of those models. This model of context was demonstrated at work in Chapter 5. We
now identify certain additional properties which, if possessed by the context construct, this
could stand as an abstraction mechanism for conceptual modeling in its own right. We then
extend the definition of context, we demonstrate its use in modeling and discuss its interaction
with other abstraction mechanisms. Work of this chapter published in [122, 123].

With the context construct in its current form (i) the model of the world generated contains
objects that are not homographic to those in the real world modeled; and (ii) structuring of the
contents of a context is not directly supported.

1. One-to-one correspondence between real world objects and (model) objects.

Contexts have been defined to be objects themselves. This implies that two different
contexts (i.e., objects) are needed in order to represent two different perceptions of the
same real world object. For example, suppose that a person A wants to describe the
environment of a university as a context containing information about the university, as
viewed from his/her point of view (call this context c). Suppose, now, that another person
B wants to describe the same university as a context also containing information about
the university, but viewed from a different point of view (call this context c0). Certainly,
context c contains different information than context c0, i.e., they are two different contexts,
and thus objects, although they refer to the same real world object (the same university).
There is not an one-to-one mapping from real-world objects to model objects, whereas there is an
one-to-one mapping from different perceptions of real-world objects to model objects. So, there
could be confusion as to whether two different contexts refer to the same real-world object
or not. We feel that it would be preferable to maintain an one-to-one mapping between
real world objects and their representations in the model, as well as between different
perceptions of the real world objects and contexts.
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2. Structuring the contents of a context.

The definition of context allows for a simple representation of objects, i.e., an object can
have an associated set of names. However, the objects of a context could be related in
more complex ways using the usual abstraction mechanisms of classification, general-
ization, and attribution. Then the question arises: How does contextualization interact
with classification, generalization, and attribution when all four are supported by the
conceptual model? In other words, are there any constraints that govern their joint use?

In this chapter, we enhance the notion of context in two ways:

1. We introduce references from objects to contexts.

The contents of a context is a set of objects, each of which is associated with a set of
names (as before), with the following new feature: We allow each object of a context to be
associated with another context that we call its reference. Thus, each object of a context is
now associated with a set of names on one hand and (possibly) with a reference on the
other, as in the following diagram:

reference of o

..

.
context

objectonames of o

Roughly speaking, the reference of the object points to information available about the
object.

In this extended model, real world objects are represented by model objects in an one-
to-one correspondence. A context is a collection of objects that supports encapsulation.
Multiple representations of the same real world object are supported through the object
reference. Thus, the university of the previous example would be represented as a model
object o, whereas the reference of o in the context of person A would be the context c. On
the other hand, the reference of object o in the context of person B would be the context c 0.

2. We allow the objects of a context to be structured through the traditional abstraction
mechanisms of classification, generalization and attribution1. We study how these three
abstraction mechanisms interact with contextualization, in particular how instance-of,
ISA, and attribute links between objects affect the definition of their references.

So, a context is a structured set of objects, in which each object is associated with a set of names and
(possibly) a reference.

It is important to note that this notion of context allows to group together such things as class
instances, classes, metaclasses, subclasses, superclasses, attributes, ISA links, and instance-of
links.

The extended notion of context introduced here enriches the modeling capabilities of the
traditional abstraction mechanisms in two significant ways:

1. Expressive power: By supporting relative semantics, i.e., relative naming and relative
descriptions, and by interacting with the traditional abstraction mechanisms, context
provides new modeling capabilities.

1By “attribution” we mean the assignment of an intrinsic attribute to an object as well as the declaration of its
(binary) relationships to other objects. The abstraction mechanism of aggregation is a limited form of attribution [52].
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2. Modularity: By retaining the essential information and hiding inessential details, context
helps to increase comprehensibility and communicability in complex applications such as
information retrieval over the web, cooperative work in distributed environments, large
engineering databases, scientific catalogs, etc.

In this chapter, we present the mechanism of context and the ways in which contexts interact
with each other and with the traditional abstraction mechanisms of conceptual modeling.

We first define the notion of context without structuring of its objects, and we discuss some
of its modeling capabilities. Then we introduce structure through the traditional abstraction
mechanisms. We discuss the ways in which contexts interact with each other and with the
traditional abstraction mechanisms.

6.1 The notion of context revisited

Suppose we want to talk about Greek islands by simply using their names without further
description. Let us consider the island of Crete. We can represent this island by an object
identifier, say o1, and by associating this identifier with the name Crete. We write names(o1) =
fCreteg and we denote this as follows2:

Crete : o1

Next, let us consider the island of Santorini. Following a similar approach, we represent
this island by an object identifier o2 and by associating it with the name Santorini. However,
the island of Santorini is also known under the name Thera. So this time, we associate o2 with
the set of names fSantorini; Therag, i.e., this time we write names(o2) = fSantorini; Therag
and we denote this as follows:

Santorini; Thera : o2

Finally, let us consider one of those tiny, uninhabited islands of Greece that happen to be
nameless. We represent such an island by an object identifier o3 and by associating it with no
name, i.e., we write names(o3) = fg and we denote this as follows:

: o3

Continuing in the same way, we can represent every Greek island in a similar manner. The
set of all such representations is what we call a context and we represent it by a context identifier,
say c1, as shown in Figure 6.1.

Suppose next we want to talk about the Greek mainland by simply using the names of each
region of Greece without further description. Proceeding in a similar way as in the case of
Greek islands, we can create a second context, say c2, as shown in Figure 6.1.

Suppose now that we want to talk about geography of Greece seen as a division of Greece
into islands and mainland. First, let us consider the islands. We can represent the islands by an
object identifier, say o, and by associating it with the name Islands, i.e., names(o) = fIslandsg.
However, the object o is a higher level object that collectively represents all Greek islands, i.e.,
the object o collectively represents the contents of context c1. In other words, if we want to see
what o means at a finer level of detail, then we have to “look into” the contents of c1. Thus we
call context c1 the reference of object o, and we write ref (o) = c1. Summarizing our discussion
on islands, we write names(o) = fIslandsg and ref (o) = c1, and we denote this as follows:

2In this chapter, the terms object and object identifier will be used interchangeably.
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c 1Islands : o

Following a similar reasoning, we can represent the mainland by an object identifier, say o0,
and by associating it with the name Mainland and the reference c2. We can now group together
the islands and the mainland to form a context c, as shown in Figure 6.1. Then, geography
of Greece can be represented by an object identifier o00 and by associating it with context c
(Figure 6.1).
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.

c
Geography_of_Greece: o’’

Islands: o
Mainland: o’

Macedonia: o

Crete: o

Thrace: o
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Figure 6.1: An example of context structure: geography of Greece

The previous examples suggest the following informal definition of context (in its simplest
form): a context is a set of objects of interest, each object having zero, one or more names, and zero
or one references. For the purposes of this chapter we shall give an informal statement of the
definition of context. A formal theory is presented in Chapter 7.

Definition 6.1 Context.
A context c is defined as a set of objects, denoted by objs(c), such that each object o

1.is associated with a set of names, called the names of o in c, denoted by
names(o; c);

2.is associated with zero or one context, called the reference of o in c, denoted by
ref (o; c).

3.is either an individual or a link (attribute, instance-of, or ISA);
4.can be related to other objects through attribute, instance-of or ISA links. �

The terms object, individual and attribute are used in the sense of Telos [83, 64]. We will not
be concerned with this interpretation until Section 6.4.

The reason why we use the symbols names(o; c) and ref (o; c), instead of names(o) and
ref (o) used in the previous examples, is that an object can belong to different contexts and
may have different names and/or reference in each context. That is, names and references are
context-dependent.

In our previous examples, while explaining the construction of a context, we followed a
bottom-up approach. That is, we started from simple objects and built up contexts which were
later on referenced by higher level objects (“moving” from right to left in Figure 6.1). Clearly,
we could have followed the opposite construction, i.e., a top-down approach (“moving” from
left right in Figure 6.1). Or, we could follow a mixed approach.

This flexibility is important in conceptual modeling and give (among other things) the
possibility of modular design, i.e., retaining at each level of abstraction the essential information
and hiding inessential details (by “encapsulating” them in the form of a context).
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Let us see a top-down definition of a context. Suppose we are defining a context containing
guides to Greece and wish to model a tourist guide as one of its objects. Within this context we
represent the guide as follows:

c34Tourist_Guide: o

The next stage is to define the context c3 that contains the information concerning the tourist
guide. The context c3 is shown in Figure 6.2.
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Figure 6.2: An example of context structure: tourist guide and geography of Greece

We then define the contexts c4, c5, and so on. Context c4 is shown in Figure 6.2, whereas the
remaining contexts are not. Context c4 contains tourist information concerning Crete such as
hotels, dining, a map of Crete, transportation, etc. Looking now at the definition of context c 4,
we see that we have to define contexts c6, c7, c8, and so on (their definition is not shown in the
figure). Context c6 will list the hotels in Crete and provide access to further information such as
addresses and telephone numbers. Context c7 will provide access to information about dining
in Crete, e.g. a list of restaurants, local dishes, and so on, and context c8 will give transportation
information.

Note that object o1 is shared by context c3 and context c1, and in context c3 it has a reference
(context c4), whereas in context c1 it does not (see Figure 6.2).

The notion of context supports a simple and straightforward way of referencing objects at
any level of detail. Consider, for example, the tourist guide of Greece in Figure 6.2. Suppose
that, currently, we are in the context containing the tourist guide, and we want to look at
Cretan hotels. To do so we can “go” from object o4 (Tourist Guide) to object o1 (Crete) and
then to object o7 (Hotels). We indicate this as follows: o4:o1:o7, i.e., by forming a path of object
identifiers. If the last object in the path has a reference, this points to a context that contains
the information of interest.
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Figure 6.3: An example of context structure: Two views of the same institute.

Let us now consider another example, shown in Figure 6.3, which represents the views of
two persons regarding an institute. This is actually the running example used in Chapter 4
to present the notion of context as seen in that chapter (see Figure 4.5). Figure 6.3 illustrates
the example shown in Figure 4.5 of Chapter 4 but being modeled using the extended notion
of context described in this chapter. Indeed, in Figure 6.3, context IB contains two objects, o10
and o11, namely ManosView and AnastasiaView, respectively. These objects represent the views
of Manos and Anastasia regarding an institute. Object o10 is associated with the reference c1
and object o11 is associated with the reference c4. Contexts c1 and c4 contain the information
concerning the views of Manos and Anastasia for the institute, respectively.

Let us now focus on context c1 which contains five objects, namely o1, o4, o5, o8 and o9.
Objects o8 and o9 represent the Information Systems Lab and the Decision Support Systems
Lab, and are associated with the names InfSys and DSS, respectively. Further information is
available for object o8, which is modeled by associating it with the reference c2. Context c2
contains information about the Information Systems Lab as seen from Manos’ point of view.
Further information is also available for object o9 (it is associated with the reference c3) and
context c3 contains information about the Decision Support Systems Lab as seen from Manos’
point of view. Note that context c4 contains objects o8 and o9 as well. The object o8 is associated
with the reference c2 as well, but the object o9 is associated with another reference, i.e., context
c5. Intuitively, this expresses that Manos and Anastasia have the same view for the Information
Systems Lab (context c2), whereas they have different views for the Decision Support Systems
Lab.

In Figure 4.5, context c1 contains five objects, two of which are contexts, namely c2 and
c3, which represent Manos’ view for the Information Systems Lab and the Decision Support
Systems Lab, respectively. Moreover, context c4 contains the contexts c2 and c5, which represent
Anastasia’s view for the Information Systems Lab and the Decision Support Systems Lab,
respectively. However, the problem in this representation is that there is no way to express that
contexts c3 and c5 are descriptions of the same real world object, namely the Decision Support
Systems Lab. Whereas, in Figure 6.3, the same information is expressed by representing the
Decision Support Systems Lab with the object o8 and then associating it with the reference c2
in context c1 and the reference c5 in context c4.
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Figure 6.4: An example of context structure evolution.

The extended notion of context introduced here increases the scalability of the model as,
during the information base evolution, new information can be easily added to the information
base by (i) inserting new objects in a context, (ii) inserting new names in the names of an object
in a context, and (iii) associating an object with a reference. The later is important since it
makes the difference between the notion of context described in this chapter from the previous
approaches described in Chapter 4.

For example, assume that further information about the object o1 is available both in context
c2, concerning the office number and the telephone number of that person in the Information
System Lab, and in context c3 concerning the office number and the responsibilities in the
Decision Support Systems Lab. To add this information we associate object o1 with the reference
c6 in context c2 and with the reference c7 in context c3 as shown in Figure 6.4. On the other
hand, it is not easy to add this information in traditional approaches of context (see Chapter 4).
To do this we should replace object o1 in contexts c2 and c3 with contexts c6 and c7, respectively.
This is not a desirable result because we lose that context c6 and c7 contain information about
the same person, represented by the object o1.

Summarizing, we say that the extended notion of context introduced here increases the
expressive power, flexibility and scalability of the model.

6.2 Features of context

Let us summarize the features of context supported by context definition introduced in this
chapter. Some of these features (see Items 1-5 in the following list) are also supported by the
definition of context introduced in Chapter 4.

1. Object sharing or overlapping contexts.
An object can belong to one or more different contexts. When contexts share objects we
say that contexts overlap. This feature is useful when we want to view an object under
different perspectives.

2. Context-dependent object names.
The same object can have different names in different contexts (in which it belongs).
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This is very convenient, because a name which has a clearly understood meaning in one
context may not do so in another.

3. Synonyms.
The same object can have different names in the same context. That is, alternative ways
for naming the same object are supported. This is the case of synonymous objects.

4. Homonyms.
Two different objects can have the same name within a context. This is the case of
homonymous objects.

5. Anonyms.
An object may have no name within a context. This is the case of anonymous objects.

6. Context-dependent references.
The same object can have different references within different contexts. In other words,
references are context-dependent.

7. Two different objects, whether or not they belong to the same or different contexts, can
have the same reference. This is convenient, as a given context can be reachable through
different object paths.

8. From within a given context, we can “reach” any object that belongs to the reference of
an object within that context (and, recursively, any object that lies on a path).

6.3 Contextualization as an abstraction mechanism

Contextualization constitutes an abstraction mechanism in the sense that a context c “encap-
sulates” its contents and thus any object referencing c can be seen as the abstraction of the
contents of c. For example, in context c3 of Figure 6.2, the object o1 (Crete) is the abstraction of
the contents of c4.

Contextualization can be used in either an alternative or a complementary capacity with
regard to the other modeling mechanisms, depending on the application. For example, re-
ferring to Figure 6.1, the object o (Islands) can also be modeled as a class with a set-valued
attribute names, and the objects o1, o2, o3, can be modeled as instances of o. However, referring
to Figure 6.2, it is less obvious how to model the object o4 (Tourist Guide) by means of the
traditional abstraction mechanisms. Indeed, the objects o1, o6, o11 can hardly be considered as
instances of o4, or, the objects o7, o8, o9, o10 as instances of o1. Thus, the use of contexts for
describing the tourist guide of Greece seems to be more appropriate.

Roughly speaking, the modeling power of contexts stems from the fact that one can group
together quite dissimilar things as the contents of a context, regardless of any structural rela-
tionships they may have. In fact, no such relationships are required to hold the contents of the
context together.

In summary, modeling with contexts offers several capabilities, including the following:

1. Modeling an object under different perspectives,by associating it with different references
in different contexts.
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2. Modular representation, by providing at each level of abstraction an overview of the
available information in the form of items that each provide access to relevant detail.

3. Top-down, bottom-up, or mixed modeling.

Moreover, as we shall shortly see, the combination of contextualization with the traditional
abstraction mechanisms provides further modeling capabilities.

6.4 Structuring the contents of a context

We now turn to the structuring possibilities presented by definition 6.1.

For the purposes of this thesis, we shall assume that the objects of a context can be structured
as in a Telos information base [83, 64].

A Telos information base consists of structured objects built from two kinds of primitive
units: individuals and attributes. An important and distinctive feature of Telos is that individuals
and attributes are treated uniformly, and are referred to as “objects” (in [83] objects are referred to
as “propositions”). Individuals represent entities (atomic ones, such as John, or collective ones,
such as Person), while attributes represent directed binary relationships between or intrinsic
characteristics of entities. Every attribute consists of a source, a label, and a destination.

Objects (individuals or attributes) are organized along three dimensions, referred to as the
classification, generalization, and attribution dimensions [52, 114, 83, 64].

The classification dimension calls for each object to be an instance-of one or more classes.
Classes are themselves objects, therefore they can be instances of other, more abstract classes.
Generally, objects are classified into:

tokens, i.e., objects having no instances and intended to represent atomic entities in the
domain of discourse;

simple classes, i.e., objects having only tokens as instances;

metaclasses, i.e., objects having only simple classes as instances;

metametaclasses, and so on.

This classification defines an unbounded hierarchy of levels of ever more abstract objects. All
tokens are classified under the class L0 Class, all simple classes under the class L1 Class, all
metaclasses under the class L2 Class, and so on, and L0, L1, L2, etc. are called instantiation levels.
Classification is treated as a form of weak typing mechanism: the classes which a structured
object is an instance of determine the kinds of attributes it can have and the properties it must
satisfy.

Classes at the same instantiation level can be specialized along generalization or ISA hi-
erarchies. For example, the class Person may have subclasses such as Employee, Professor,
and Student. As a class may be a subclass of more than one classes, the ISA hierarchy is not
necessarily a tree. Attributes of a class which are not tokens can be inherited by subclasses,
this inheritance being strict rather than default [83].

Finally, in the attribution dimension an object is seen as the aggregate of its attributes.
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Instance-of and ISA relations, as well as attributes, are also referred to as instance-of, ISA
and attribute links, respectively. They all have source and destination objects, while attributes
in addition have objects identifiers and optional labels. In our model, for reasons of uniformity,
instance-of and ISA links are treated as objects too.

Every object of a context is assumed to belong to one and only one level of the instantiation
hierarchy, i.e., it is assumed to be one and only one of the following: a token, a class, a metaclass,
and so on. To this effect, it is assumed that every context supports a number of system classes,
named L0 Class, L1 Class, L2 Class, and so on, and that every object is an instance of one and
only one of these classes.

Each context is assumed to be equipped with

� A predicate for defining the objects that are attributes links. This is the predicate

attr(att obj ; from ; to)

declaring that object att obj is an attribute link with source object from and destination
object to.

� A predicate for defining the objects that are instance-of links. This is the predicate

in(in obj ; from ; to)

declaring that object in obj is an instance-of link in which the object from is an instance
of the object to.

� A predicate for defining the objects that are ISA links. This is the predicate

isa(isa obj ; from ; to)

declaring that object isa obj is an ISA link in which the class from is a subclass of class to.

Note that, as attribute, instance-of, and ISA links are objects, a link can have zero, one or
more names. Each of these names corresponds to a Telos label.

Consider, for example, modeling employees using a class whose instances have three
attributes: name, salary and address. Using our definition of context, this modeling can
be done as shown in Figure 6.5(a), where o is the employee class, and the three attribute
declarations define the objects o1, o2 and o6 as attribute classes from class o to classes o4, o5 and
o3, respectively. Figure 6.5(b) shows a more convenient representation of context c, where the
attributes o1, o2 and o6 are represented by arrows. For example, attr(o1; o; o4) is represented by
the arrow from o to o4. This declares that an instance of the class Employee can have an attribute,
instance of class Name, that connects it to an instance of class String. Note that attribute o6
has the same name as object o3, something allowed by our definition of context. However, if
referencing of objects is done through names, this may lead to ambiguities. We address this
problem in [121, 120]3.

In the previous example, the employee information is modeled as the contents of a single
context, i.e., a context containing the employee class and its attributes. An alternative way of

3A simple way to avoid this problem is to put the name of object o6 in a verb form, e.g. has address.
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Figure 6.5: Modeling an employee using attributes

modeling an employee is the following: the employee class references a context containing the
attribute information. This is shown in Figure 6.6(a), where the ISA declarations in context
c define that Name is a subclass of String and Salary is a subclass of Integer. Figure 6.6(b)
shows a more convenient representation of context c, where ISA links are represented by thick
arrows. In fact, from now on, we shall use arrows to represent all relationships, with different
kinds of arrows for the different relationship types.
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Figure 6.6: Modeling an employee using contexts

At first glance, the modeling of Figure 6.6 may look simpler than that of Figure 6.5. However,
depending on the application, the one or the other could be preferred. The important point
here is that the contextualization mechanism offers new alternative modeling solutions.

In the rest of the chapter, in order to simplify the pictorial presentation of contexts, the
object identifiers of instance-of, ISA, and attribute links will be omitted from the pictures.

Figure 6.7 shows another example of context with structured contents, this time using
all three abstraction mechanisms, i.e., classification, generalization, and aggregation. It is
important to note that contextualization is orthogonal to the other abstraction mechanisms.

In this example, company CompanyA is represented by object o1. We can find more informa-
tion about the company in context c1, which contain information about employees, managers
and services provided by the company. In particular, objects Employee and Manager represent
the class of employees and managers, respectively. The salary paid by the company is repre-
sented by object o5 and is an Integer. The fact that employees has a salary is represented by the
object o11. Similarly, object o10 represents the fact that managers manages employees. Individu-
als employees are represented by objects Pol, Pit, and John, where John manages Pol and Pit.
Thus, Pol and Pit are instances of Employee, whereas John is instance of Manager. Attributes
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Figure 6.7: Modeling the employees of a company

o12 and o13 are instances of attribute class manages and represent that John manages Pol and
Pit, respectively. Object o6 represents collectively the services available by the company (more
information is available in context c2).

Figure 6.8 shows another example of context with structured contents representing recom-
mendations for dining in a touristic place.
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Figure 6.8: Structured contents of a context

It must be stressed that all items in a context, including the predicate declarations, are defined
relative to that context. In other words, the scope of the definition of the contents of a context is
the context itself.

For example, an object that belongs to two different contexts can have different attributes
in each context. Similarly, an object o which is an instance of a class o0 in a given context might
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not be an instance of o0 in a different context (assuming that o, o0 belong to both contexts).
And so on. This is illustrated in Figure 6.9. Contexts c2 and c4 contain information concerning
geographic data about Crete during the 15th and 20th century, respectively. The object o6
represents a place in Crete which is classified under Village in the 15th century, whereas the
same place is classified under City in the 20th century. Note that object o5 was called Chandax
in the 15th century, whereas the same object is called Heraklion in the 20th century. Moreover,
the 15th century description includes information on the fortification of the city, while that of
the 20th century includes information on the airport.
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Figure 6.9: Context-dependent description

6.5 The interaction between abstraction mechanisms

In an information base, the interaction between different abstraction mechanisms provides
useful information to the designers of the information base, but also implies certain constraints
that must be satisfied to guarantee consistency of the stored information.

For example, if object o is instance of class o0, and o0 is subclass of o00, then o is instance of o00.
This is useful information as it implies that o0 inherits all attributes of o00. On the other hand,
if class o1 is subclass of class o2 and o2 is instance of metaclass o3, then o1 cannot be declared
as subclass of o3, and this is a constraint that must be satisfied to guarantee consistency of the
stored information.

The interaction between the traditional abstraction mechanisms of conceptual modeling
has been extensively studied in the literature (see [52, 114] for a survey). In this section, we
study the interaction between the traditional abstraction mechanisms and the mechanism of
contextualization.

6.5.1 Attribution and contextualization

In our enhanced definition of context, each object can be either an individual or a link (in this
subsection the link is an attribute link), and has a set of names and zero or one reference. Now,
if the object is an individual, then its reference can be any context. An attribute, however, cannot
exist without a source and a destination, and this information must be part of its reference.

Therefore, if the object is an attribute, then its reference must contain at least a description
of the source and the destination reference4. This can be done as shown in Figure 6.10. Let
o be an attribute from object o1 to object o2 with references c1 and c2, respectively. Then, its

4We refer to the reference of the source (resp. destination) of an attribute as the source (resp. destination) reference.
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reference c should contain two special objects: an object of named from with reference c1 and
an object ot named to with reference c2.

So from now on, we assume that the reference of every attribute is as shown in Figure 6.10.
That is, it contains information about the source and the destination of the attribute. We also
assume that an instance-of or ISA link may have a reference, and that this reference (if any)
is of the same kind as the attribute link, i.e., a reference that contains information about the
source and the destination of the link.

..

.

o

c

c
from : o c

to : o c
o

c

o

c

1

1 2

1

2

2 f

t

Figure 6.10: The reference of an attribute

Of course, apart from the minimal necessary information shown in Figure 6.10, the reference
of an attribute may also contain other information. The question here is whether there are
constraints that this “other information” should satisfy.

Let us call traversal path any path from an object in the source reference of the attribute
to an object in the destination reference, such that every member of the path is an attribute,
instance-of, or ISA link. We call attribute path any traversal path every member of which is
an attribute. Intuitively, an attribute path defines an attribute from an object in the source
reference to an object in the destination reference.

Now, the constraint that we propose for the reference of an attribute can be stated informally
as follows: the attribute must collectively represent all traversal paths from objects in its source
reference to objects in its destination reference. Clearly, in order for this requirement to be
satisfied, all traversal paths must be attribute paths. Hence the following constraint on the
information that the reference of an attribute can contain:

Constraint 6.1 Attribute Reference Constraint.
Every traversal path in the reference of an attribute is an attribute path. �

Figure 6.11 illustrates the interaction between attribution and contextualization in a top-
down modeling of demographic data. The reference of attribute o4 (Related To) is context c4.
This reference contains two traversal paths that are both attribute paths. The first of these paths
goes from object o5 in context c2 to object o8 in context c3, and consists of a single attribute:
o11 (born in). Within context c4, this is defined as attr(o11; of :o5; ot:o8) because objects of and
ot refer to the source and destination references of attribute o4, respectively. The second path
goes from object o7 in context c2 to object o8 in context c3 and consists of two attributes: o12
(works for), from o7 to o13, and o14 (located in), from o13 to o8. Note that in Figure 6.11(a),
context c4 is given in a pictorial way, where the special objects of and ot are omitted and
predicates are depicted through arrows. Its actual definition is given in Figure 6.11(b).

6.5.2 Classification and contextualization

The interaction between classification and contextualization is similar to that between attri-
bution and contextualization. Thus the reference of an instance-of link l should contain only
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Figure 6.11: Interaction between attribution and contextualization

instance-of links from objects in the source reference of l to objects in the destination reference
of l.

Constraint 6.2 Instance-of Reference Constraint.
Every traversal path in the reference of an instance-of link consists of a single
instance-of link. �

If an object o is an instance of object o0 then the reference of the instance-of link may classify
objects in the reference of o into object classes in the reference of o 0. Intuitively, we can say that
the objects in the reference of o follow the “schema” defined in the reference of o 0.

Probably the most relevant example of this interaction is the one relating a database schema
with its instances. In Figure 6.12, object o1 (Instance) is instance-of object o01 (Schema). Note
that the reference cin of the instance-of link contains only instance-of links from objects of c to
objects of c0.

inc

c1

c’1 . . .

. . . . . . .. .Instance_1: o 1

2Schema_2: o’

Instance_2: o 2

Schema_1: o’1

0c

Figure 6.12: The reference of an instance-of link
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Intuitively, within cin, objects of c1 are instances of objects of c01. For example, if c1 contains
a set of relational tuples and c01 contains a relational database schema then the instance-of links
relate tuples in c1 with tables in c01. That is, the contents of cin can be seen as a sort of metadata
describing the association of instances to schemas.

Note that the separation between instance and schema allows for several sets of objects to
share the same schema, and the same set of objects to be classified under different schemas.
For example, in Figure 6.12, schemas o01 (Schema 1) and o02 (Schema 2) share the same instance
set, represented by object o1 (Instance 1). On the other hand, instance sets o1 and o2 share
the same schema o02 (Schema 2). A more realistic example for the second case is given in
Figure 6.13, where object o1 (Company) refers to the concept of Company, and objects o2 (CompA)
and o3 (CompB) refer to two specific companies. Intuitively, the reference of o1 corresponds to
the schema of a company, and the references of o2 and o3 correspond to information about the
particular companies. As objects o2 and o3 are instances of o1, objects within the references of
o2 and o3 are classified into classes in the reference of o1. This classification takes place within
the references c4 and c5 of the instance-of links from o2 and o3 to o1, respectively. Of course, at
a more abstract level, schemas may be considered as instance objects and thus, be classified to
metaschemas.
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CompA: o c22

CompB: o c33
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Figure 6.13: Interaction between classification and contextualization

Continuing with the example of Figure 6.13, consider the instance-of link from object o2
(CompA) to object o1 (Company). To satisfy the Instance-of Reference Constraint, the reference c4
of this link may only contain instance-of links from objects in its source reference (context c2)
to objects in its destination reference (context c1). In other words, within context c4, objects of
company CompA may only be classified to the classes in the schema of Company. Indeed, within
context c4, there is an instance-of link from object o6 (Nicolas) to object o4 (Employee). The
reference c7 of object o6 contains information about the employee Nicolas, and the reference
c6 of object o4 contains schema information about the class Employee. To satisfy the Instance-of
Reference Constraint, the reference c8 of the instance-of link may only classify information
about the employee Nicolas to the classes in the schema of Employee. Therefore, recursive
application of the Instance-of Reference Constraint implies classification of objects according
to their entire recursive structure.
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6.5.3 Generalization and contextualization

Generalization establishes a subclass-superclass relation between classes and is used to empha-
size the similarities among classes with common superclasses and to hide their differences. The
interaction between generalization and attribution is expressed by the well known mechanism
of attribute inheritance. In our framework, in addition to attribute inheritance, we support a
new mechanism that we call reference inheritance. Roughly speaking, according to reference
inheritance, the reference of the subclass inherits the contents of the reference of the superclass.

Formally, reference inheritance is defined through a partial order over contexts that we call
context refinement.

Definition 6.2 Context refinement.
We say that context c refines context c0, or that context c is a refinement of c0, iff

1.every object of c0 is also an object of c,

2.the names of every object in c0 are included in the names of the object in c,

3.every predicate of c0 is also a predicate of c, and

4.the reference of every object of c refines the reference of the object in c 0. �

Note that the above definition of context refinement is recursive and that every context is a
refinement of itself. We show in Chapter 7 that refinement is a partial pre-ordering, i.e., reflexive
and transitive. Moreover, we show that context refinement is a partial ordering up to context
equivalence, where context equivalence is defined as follows: two contexts are equivalent if
they have (i) the same objects, (ii) the same names for each object, (iii) the same predicates,
and (iv) the references of each object in the two contexts either both do not exist, or both exist
and they are equivalent. Roughly speaking, two contexts are equivalent if they have the same
contents, up to equivalence of the object references.5.

The following constraint expresses the application of reference inheritance on ISA links.

Constraint 6.3 Reference Inheritance Constraint.
The source reference of an ISA link refines the destination reference of the link. �

For example, in Figure 6.14, object o2 (Hospital) is a subclass of object o1 (Organization).
The source reference of this ISA link (context c2) is a refinement of the destination of the link
(context c1), as c2 contains all the contents of c1. Therefore, the reference inheritance constraint
is satisfied. Intuitively, we can say that the contents of c1 have been inherited by c2.

To keep the contexts concise, we could eliminate duplications in the contents of the source
reference of the ISA link. In this case, the complete contexts are obtained after the application of
reference inheritance on the ISA links. A mechanism for eliminating duplications is proposed
in Subsection 6.6.

Context refinement can be achieved in stages through the repetitive application of the
following operations on the contents of a context:

1. the addition of a new object (possibly an attribute),

2. the specialization, generalization, or classification of an object (possibly an attribute),

5Notice the similarity between context equivalence and deep object equality in object oriented databases [4].
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Figure 6.14: Interaction between generalization and contextualization

3. the addition of a name to an object,

4. the addition of a reference to an object, and

5. the application of the previous operations to the contents of a reference.

The resulting context is certainly a refinement of the original context, as it merely extends
the information contained in that context (and no cancellation takes place). In this sense,
refinement inheritance is a form of strict inheritance.

We now give a more involved example (see Figure 6.15). Let c2 be a context describing
medical services. Within c2, the class o4 (Hospital) and the class o5 (PrivateUnit) are sub-
classes of the class o3 (Health Care). In accordance to the Reference Inheritance Constraint, the
reference c4 of Hospital and the reference c5 of PrivateUnit are refinements of the reference c3
of Health Care. Specifically, contexts c4 and c5 inherit all the information contained in context
c3, including the object o8 (Agents) that represents the concept of agent. Within context c3, the
reference c8 of o8 describes the Agents hierarchy in the general health care environment. Within
context c4, the reference c9 of o8 describes the Agents hierarchy in the hospital environment.
Within context c5, the reference c10 of o8 describes the Agents hierarchy in the private unit
environment. Note that although contexts c9 and c10 refine context c8, they describe different
hierarchies. For example, c9 indicates that the director of a hospital should be a doctor, whereas
c10 indicates that the director of a private unit should be owner of the unit.

6.5.4 Classification, generalization and contextualization

The interaction between classification and generalization is usually expressed through the
following constraint: If an object o is instance of a class o0, and o0 is subclass of o00, then o is
instance of o00. In our framework this inference rule imposes a constraint on the references
of the instance-of links. Let c1 and c2 be the references of the instance-of links from o to o0

and from o to o00, respectively, as shown in Figure 6.16. The question is whether there is any
relationship between the contents of c1 and c2. Indeed, we show that c1 refines c2.

Let c, c0 and c00 be the references of the objects o, o0 and o00, respectively. As c0 refines c00

(see the Reference Inheritance Constraint, Constraint 6.3), it should hold that if an object w in
c is classified in a class w00 in c00 then, w should also be classified in the inherited class w 0 in c0.
That is, the instance-of links contained in c2 should be inherited by c1, and the reference of an
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Figure 6.16: The interaction between classification, generalization, and contextualization

inherited link in c1 should refine the reference of this link in c2. This implies that c1 should
refine c2. We refer to this constraint as Instance-of Inheritance Constraint.

Constraint 6.4 Instance-of Inheritance Constraint.
The reference of an instance-of link from an object o to a class o0 refines the reference
of any instance-of link from o to a superclass of o0. �

Duplications of instance-of links in context c1 can be avoided through an inheritance mech-
anism similar to that applied in the interaction between generalization and contextualization,
described in the previous subsection. One such mechanism is proposed in Section 6.6.

6.6 Keeping contexts concise

If a context c refines a context c0 then the c "inherits" the contents of c 0. This produces duplication
of information contained in contexts c and c0. In this section we present two alternative
techniques which avoid duplication of information between contexts related with context
refinement. If we avoid such duplication of information we say that we keep contexts concise.

As we have already mentioned ISA links are treated as objects and thus they may have a
reference within a context. This feature can be used to keep contexts concise in the following
manner: Assume that the object o is ISA related with the object o 0 and that the reference of
the lower-level object o is the context c whereas the reference of the higher-level object o 0 is
the context c0. To keep contexts concise we eliminate duplications in the contents of context
c, i.e., context c does not contain the information inherited from c 0. However, context c may
now contain relationships that connect objects of c with objects of c0 (this is a consequence of
refinement). In order for c to be consistent with the definition of context these relationships are
also eliminated from the contents of c and are placed into the contents of the reference of ISA
link. This is the minimum information that must be eliminated from context c in order to keep
contexts concise. It is a modeling issue to decide whether more information is to be eliminated
from context c and be placed into the contents of the ISA link reference.

Conversely, when we say that the contents of the reference of the higher-level object as
well as the contents of the reference of ISA links are inherited by the reference of the lower-level
object, we mean that we can think of the reference of the lower-level object as a “virtual” context
containing the contents of c, the contents of c0, and the contents of the reference of the ISA link.

For example, Figure 6.17 illustrates the concise version of contexts shown in Figure 6.14.
Another example is shown in Figure 6.18.

In order to maintain a concise model for context, we should be able to compute a complete
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context from a concise one. In other words, given a concise context c we should be able to
compute the complete one, i.e., a context that contains all the information inherited by c from
all contexts refined by c. Then, all axioms of our context model hold for the complete contexts.
Complete contexts are computed always w.r.t. a wider context. This is because, a context c can
be refered by different objects within different contexts and the contexts that c refines depends
on the superclasses of the objects that refer to c.

c11: o

2: o c2
0c

4: oc4

3: o

0c’

Figure 6.19: The computation of a complete context is dependend on a wider one

For example, in Figure 6.19, context c1 refines context c2 if we consider that the wider
context is the context c0. This is because, within context c0, object o1, which refers to context
c1, is a subclass of object o2, which refers to context c2. On ther other hand, context c1 refines
context c4 if consider that the wider context is the context c 00. This is because, within context
c00, object o3, which refers to context c1, is a subclass of object o4, which refers to context c4. The
operation that computes the complete context of a context c w.r.t. a wider context c0, is denoted
by completec0(c), and is defined in the sequel.

� completec0(c)

This operation takes as input two contexts c0 and c, and returns a context (call this context
cout) as a result. The computational algorithm of this operation is shown in Figure 6.20.
This operation does the following:

1. cnts(cout) = cnts(c).

2. Find all objects o which refer to context c within context c0.

3. Find all immediate superclasses o0 of o and the corresponding ISA link objects oisa.

4. For each superclass o0 and the corresponding ISA link object oisa do

(a) If c0 = ref(c0)(o
0) then

Merge the contents of complete c0(c
0) with the contents of cout.

(b) If cisa = ref(c0)(oisa) then
Merge the contents of cisa with the contents of cout, after having removed
objects of and ot from objects of cisa as well as any reference of of and ot
that appear in the predicates of cisa.

� Merging the contents of two contexts
This operation merges the contents of a context c with the contents of cout is done as
follows:

1. objs(cout) = objs(cout) [ objs(c).

2. attr pred(cout) = attr pred(cout) [ attr pred(c).

3. in pred(cout) = in pred(cout) [ in pred(c).
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completec0(c), where c0; c 2 CXT .
=� This operation takes as input a context c and returns a new context c 0, which contains the
contents of c as well as all information inherited by c from the contexts that c refines. �=

1. cout = createCxt().

2. cnts(cout) = cnts(c).

3. LetAbsO be the set of all objects o of c0 each of which refers to context c, i.e., AbsO = fo 2
objs(c0) j ref (o; c0) = cg.

4. For each object o 2 AbsO do
=� Collect all superclasses of o and the corresponding ISA links. �=

(a) Let SuperCls an empty set of objects.
=� SuperCls will contain the immidiate superclasses of o �=

(b) Let ISAlinks be an empty set of objects.
=� ISAlinks will contain all ISA link object with source the object o �=

(c) For each object o0 2 objs(c0) and object oisa 2 objs(c0) such that isa(oisa; o; o0) 2
isa pred(c0) do

i. SuperCls = SuperCls [ fo0g.
ii. ISAlinks = ISAlinks [ foisag.

5. For each object o0 2 SuperCls do

cout = mergeCxts(cout; completec0(ref (o
0; c0))).

6. For each object oisa 2 ISAlinks do

cout = mergeCxts(cout; strip(ref (oisa; c0))).

7. End.

mergeCxts(Input c1; c2 : CXT ; Output cout : CXT ).

1. cout = createCxt().

2. objs(cout) = objs(c1) [ objs(c2).

3. attr pred(cout) = attr pred(c1) [ attr pred(c2).

4. in pred(cout) = in pred(c1) [ in pred(c2).

5. isa pred(cout) = isa pred(c1) [ isa pred(c2).

6. For each object o 2 objs(cout) do

(a) names(o; cout) = names(o; c1) [ names(o; c2).

(b) ref (o; cout) =mergeCxts(ref (o; c1); ref (o; c2)).

7. End.

Figure 6.20: The algorithms of the operations complete and mergeCxts.
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4. isa pred(cout) = isa pred(cout) [ isa pred(c).

5. For each object o 2 objs(c) we have

(a) names(o; cout) = names(o; cout) [ names(o; c).

(b) ref (o; cout) =

8>>>><
>>>>:

ref (o; c); if ref (o; c) is defined and
ref (o; cout) is undefined

merge(ref (o; cout); ref (o; c));
if ref (o; c) is defined and
ref (o; cout) is defined

6.7 Context-based information bases

Any information base that supports contextualization, typically in addition to the traditional
abstraction mechanisms, we shall call a context-based information base.

Adding contextualization to an information base carries several benefits, including the
following:

� Modular representation: At each level of abstraction, an overview of available information
can be presented, with access to the hidden detail.

� Focused information access: A context delimits the parts of an information base that are
accessible in a given way. Thus contexts can act as a focusing mechanism when searching
for information.

� Context-dependent semantics: A given object may be represented and interpreted differently
in different context-delimited parts of the information base.

� Ability to handle inconsistent information: Contradictory information can be represented in
the same information base as long as it is treated in different contexts.

However, in order to support contextualization within an information base the necessary
environment for context creation should be specified. This environment, that we shall call the
information base environment, must include three mutually disjoint sets: a set of names, a set of
object identifiers and a set of context identifiers.

In fact, one can think of an information base as consisting of two parts (see Figure 6.21(a)):
(i) the information base environment, and (ii) a special context, which contains the contents of
the information base.

When several information bases can co-exist in the same system (e.g. in a multi-base),
we can group together all information bases into a single context as shown in Figure 6.21(b).
Indeed, each information base can be seen as an object oi having a name, say IBi, and a
reference, say IBi-context, whose contents are the contents of the information base IBi. In the
resulting context, (MB-context in Figure 6.21(b)), we can even structure the set of information
bases as explained in the previous section, e.g. each information base can be related to other
information bases through instance-of, ISA or attribute links.

104



Contents of the
Information Base

(a) (b)

..

.

Information Base Multi Base

IB-context

MB environment

IB  : o

IB  : o

IB  -context

MB-context

1

2

IB  : o

1 IB  -context

IB  -context
1

2

33

2

3

IB environment

Figure 6.21: Context-based information bases

6.8 Summary

In this chapter, we extended the definition of context by introducing the notion of reference
and structure: The reference of the object is another context which “hides” detailed infor-
mation about the object. Within a context objects can be structured through the traditional
abstraction mechanisms of classification, generalization and attribution. We also study how
the contextualization mechanism interact with the traditional abstraction mechanisms.

Adding contextualization to an information base provides several modeling capabilities,
including the following: (i) modular representation (at each level of abstraction, an overview
of available information can be presented, with access to the hidden detail), (ii) focused infor-
mation access (a context delimits the parts of an information base that are accessible in a given
way), (iii) context-dependent semantics (a given object may be represented and interpreted
differently in different context delimited parts of the information base), (iv) ability to handle
inconsistent information (contradictory information can be represented in the same informa-
tion base as long as it is treated in different contexts). (v) top-down, bottom-up, or mixed
modeling.
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Chapter 7

A Theory for Contextualized
Information Bases

7.1 Information base contents

We now present a formal foundation of the contextualization abstraction mechanism.

We assume an information base consisting of the following three basic components:

� A set of object identifiers, or simply objects, denoted by O.

� A set of context identifiers, or simply contexts, denoted by CXT .

� A set of atomic names, denoted by N .

Recall that contexts allow us to group, or package, information and that each context c is
associated with a (possibly structured) set of objects, denoted by objs(c). The contents of a
context c consist of:

1. A set of objects, called the objects of c, denoted by objs(c).

2. A mapping associating each object o of c with a set of names.
This mapping is called the lexicon of c, and is denoted by lex(c). The names bound to
object o within context c are called the names of o in c: lex(c)(o) = names(o; c).

3. A partial function associating an object o of c with a context.
This function is called the reference association of c, and denoted by rf(c). If c0 = rf(c)(o)
then we say that c0 is the reference of o in context c: rf(c)(o) = ref (o; c).

4. A set of instance-of, ISA, or attribute links.
These links relate two objects, which can be either both objects of c, or each one can
be reached through a path starting from an object of c. Thus, in general, the source
or destination of a link is a path starting from and object of c. Paths of length one are
considered identical to the object consisting the path.

107



We have already mentioned that attribute links are first-class objects. For uniform treatment
with attribute links, in the formal model, instance-of and ISA links are also considered to be
first-class objects.

Accessing information in an information base often involves navigating from one object to
another by following links [59]. Navigation relies on the notion of path. We distinguish two
kinds of paths:

1. reference paths which support navigation through the reference of an object within a
context, and

2. structural paths which support navigation through attribute, instance-of, and ISA links.

In order to formally define the contents of a context we first need to define the notion of
reference path.

7.2 The notion of reference path

As the reference of an object within a context is also a context, references provide a means to
traverse from an object o of one context c to the objects of another context via the reference
of o in c. Dot notation (.) is used to specify this traversal. The sequence of traversed objects
constitutes a kind of path, which we call reference path.

Definition 7.1 Reference Path.
A reference path o1:o2: � � � :on�1:on w.r.t. a context c0 is a sequence of objects where
each object oi+1 is contained in the reference of the previous object oi. The reference
of o1 is taken in c0 (call this reference c1), the reference of o2 is taken in c1, and so
on. The set of all reference paths in the context c0, denoted by RP c0 , is defined as
follows:

RPc0 = fo1:o2: � � � :on�1:on j n 2 IN0 ^ (81 � i � n; oi 2 O) ^

(81 � i < n; 9ci; ci�1 2 CXT : oi 2 objs(ci�1) ^ ci = ref (oi; ci�1))g: �

In fact, a reference path o1:o2: � � � :on�1:on in c0 is used to reach object on in context cn�1

starting from object o1 in c0.

We denote by RP , the set of all possible reference paths, that is: RP =
S
c2CXT RPc:

We introduce two primitive operations on paths1:

1. �rst(p): it returns the first element of path p.

2. rest(p): it returns the path resulting from path p after removing its first element.

Based on these primitive operations, a number of useful operations on paths can be defined:

1These are the well-known operations car and cdr used in LISP.
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1. length(p): it returns the length of path p.

2. elem(i; p): it returns the ith element of path p (assuming 1 � i � length(p)).

3. second (p): it returns the second element of path p (second (p) = elem(2; p)).

4. last(p): it returns the last element of path p (last(p) = elem(length(p); p)).

7.3 Contents of a context

Let:

� L be the set of all lexicons. A lexicon is a relation of the form: O � P(N ) that associates
objects with sets of names.

� REF be the set of all reference associations. A reference association is a relation of the form:
O � CXT [ fNILg that associates objects with contexts or with the special symbol NIL.

� IN be the set of all triplets that define instance-of links. That is:

IN = fho; pf ; pti j o 2 O; pf ; pt 2 RPg

� ISA be the set of all triplets that define ISA links. That is:

ISA = fho; pf ; pti j o 2 O; pf ; pt 2 RPg

� AT T R be the set of all triplets that define attribute links. That is:

AT T R = fho; pf ; pti j o 2 O; pf ; pt 2 RPg

We can now define the contents of a context:

Definition 7.2 Contents of a context.
We define the contents of a context c, denoted by cnts(c), as the tuple

h objs(c); lex(c); rf(c); attr(c); in(c); isa(c) i

where

1.objs(c) 2 P(O) is a set of objects.

2.lex(c) : objs(c) �! P(N ) is a function which associates each object of c with a
set of names (lex(c) � L). We call this function the lexicon of c.

3.rf(c) : objs(c) �! CXT [ fNILg is a function which associates an object of c
with a context, called the reference of that object (rf(c) � REF ). We call this
partial function the reference association of c.

4.in(c) = fho; pf ; pti 2 IN j o 2 objs(c) ^ pf ; pt 2 RPcg is a set of triplets of
the form ho; pf ; pti, expressing that o is an instance-of link in context c from
reference path pf to reference path pt.
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5.isa(c) = fho; pf ; pti 2 ISA j o 2 objs(c) ^ pf ; pt 2 RPcg is a set of triplets of
the form ho; pf ; pti, expressing that o is an ISA link in context c from reference
path pf to reference path pt.

6.attr(c) = fho; pf ; pti 2 AT T R j o 2 objs(c); pf ; pt 2 RPcg is a set of triplets
of the form ho; pf ; pti, expressing that o is an attribute link in context c from
reference path pf to reference path pt. �

The fact that the source and the destination of a link are reference paths implies that (i) the
related objects (i.e., last objects in the paths) are contextualized, i.e., they are viewed from the
last accessed context navigating through the path, and (ii) it is taken into account the navigation
to reach the last object in the path (i.e., two different paths reaching the same object defines
two different links). For example, in Figure 6.11, o11 is an attribute link in c4 from of :o5 to
ot:o8. As contexts c2 and c3 are the last accessed contexts navigating through the paths of :o5
to ot:o8, respectively, the objects related by the attribute link o11 (i.e., objects o5 and o8) are
contextualized within contexts c2 and c3, respectively.

Definition 7.3 Contextualized information base.
A contextualized information base is a tuple of the form:

h O; CXT ;N ;L;IN ;ISA;AT T R;REF ; cnts i

where cnts is a total function that associates a context with its contents. �

A special kind of context is the link context, i.e., a context which is the reference of a link
(attribute, instance-of, or ISA). Recall that the reference of an object contains information about
this object (from a particular standpoint). As a link expresses an association between its source
and destination objects, the reference of the link may contain some information about the
source and destination reference of the link2. To store this information in the contents of a
context, we add two special objects of and ot, with names from and to, respectively. These
two objects must be contained in every link context. As we have seen in subsection 6.5.1, if
a link has as reference a link context c then the source and destination reference of the link
should refine the references of objects of and ot in c, respectively. In other words, information
in the references of objects of and ot in c should also be contained in the source and destination
reference of the corresponding link. We denote the set of link contexts by LCXT . Clearly, it
holds: LCXT � CXT .

Definition 7.4 Contents of a link context.
The objects of a link context must contain the special objects, of and ot, with names
from and to, respectively. That is:

8c 2 LCXT : of ; ot 2 objs(c) ^ from 2 names(of ; c) ^ to 2 names(ot; c): �

Definition 7.5 The empty context (Cempty ).
In every information base, there is a special context Cempty , called empty context,
which contains all built-in information3 (objects, lexicon, and links) shared by all
contexts. �

2We refer to the reference of the source (resp. destination) of a link as the source (resp. destination) reference of
that link (see also subsection 6.5.1).

3Built-in information is not needed to be created explicitly by the users.

110



For example, in an object-oriented database, the empty context will contain all built-in
classes and their relationships.

7.4 Predicates and functions

In this section, we define a number of predicates and functions which will be used to express
the axioms of our theory.

7.4.1 Predicates

We define the following predicates:

1. The predicate Inc(o; pf ; pt) expresses that o is an instance-of link in context c from pf to
pt, and is defined as follows:

8c 2 CXT ; o 2 O; pf ; pt 2 RPc :

Inc(o; pf ; pt), ho; pf ; pti 2 in(c):

2. The predicate Isa c(o; pf ; pt) expresses that o is an ISA link in context c from pf to pt, and
is defined as follows:

8c 2 CXT ; o 2 O; pf ; pt 2 RPc :

Isac(o; pf ; pt), ho; pf ; pti 2 isa(c):

3. The predicate Attr c(o; pf ; pt) expresses that o is an attribute link in context of c from pf to
pt, and is defined as follows:

8c 2 CXT ; o 2 O; pf ; pt 2 RPc :

Attrc(o; pf ; pt), ho; pf ; pti 2 attr(c):

4. The predicate IsLinkc(o) expresses that object o is a link in context c, and is defined as
follows:

8c 2 CXT ; o 2 O :

IsLinkc(o), 9pf ; pt 2 RPc : Attr c(o; pf ; pt) _ Inc(o; pf ; pt) _ Isac(o; pf ; pt)

5. The predicate4 c - c0 expresses that context c refines context c0.5

4Note that c - c0 is the infix notation of- (c; c0):
5The notion of context refinement was introduced in subsection 6.5.3.
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7.4.2 Functions

We define the following functions:

1. Fromc : O �! RPc.

This function is defined w.r.t. a context c, takes as input a link o, and returns the source
of o in c. That is:

8c 2 CXT ; o 2 O; p 2 RPc :

Fromc(o) = p, 9p0 2 RPc : Attrc(o; p; p
0) _ Inc(o; p; p

0) _ Isac(o; p; p
0):

We call this function the source object of o in context c.

For example, in Figure 6.11, Fromc4(o11) = of :o5.

2. Toc : O �! RPc.

This function is defined w.r.t. a context c, takes as input a link o, and returns the destination
of o in c. That is:

8c 2 CXT ; o 2 O; p 2 RPc :

Toc(o) = p, 9p0 2 RPc : Attr c(o; p
0; p) _ Inc(o; p

0; p) _ Isac(o; p
0; p):

We call this function the destination object of o in context c.

For example, in Figure 6.11, Toc4(o11) = ot:o8.

3. Ref c : RPc �! CXT .

This function is defined w.r.t. a context c, takes as input a reference path p in c and returns
the reference of the last object in p w.r.t. the last accessed context navigating through p.
That is:

8c 2 CXT ; p 2 RPc : Ref c(p) =

(
ref (p; c); if length(p) = 1

Ref ref (�rst(p);c)(rest(p)); if length(p) > 1

Note that the above definition is recursive and terminates when length(p) = 1. We call
this function the reference of path p in context c.

For example, in Figure 6.9, Refc(o1) = c1, Refc(o1:o) = c2 and Refc(o2:o) = c4.

4. Namesc : RPc �! P(N ).

This function is defined w.r.t. a context c, takes as input a reference path p in c and returns
the names of the last object in p w.r.t. the last accessed context navigating through p. That
is:

8c 2 CXT ; p 2 RPc : Namesc(p) =

�
names(p; c); if length(p) = 1

Namesref (�rst(p);c)(rest(p)); if length(p) > 1

Note that the above definition is recursive and terminates when length(p) = 1. We call
this function the names of path p in context c.

For example, in Figure 6.11, Names c1(of ) = fFromg and Namesc1(ot) = fTog.
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7.5 The notion of link path

In this section, we define the notion of link path and traversal path. As the source and the
destination of a link (attribute, instance-of, and ISA) are objects (reached through reference
paths), links provide a means to traverse from one object to another. For each such traversal,
there is a corresponding sequence of traversed links. This sequence of traversed links (recall
that links are objects themselves) constitutes a kind of path which we shall call link path. Link
paths, similar to reference paths, are given in a context c.

Definition 7.6 Link path.
The set of link paths in a context c, denoted by LP c, is defined as follows:

LPc = fo1:o2: � � � :on�1:on j n 2 IN0 ^ 81 � i < n :

IsLinkc(oi) ^ IsLinkc(oi+1) ^ (Fromc(oi+1) = Toc(oi)) _ Fromc(oi+1) = oi)g: �

Intuitively, a link path in c is a sequence of links of c, where the source object of each link
in the sequence coincides with the destination object of the previous link, or the previous link
itself. A link path in c whose all members are either attributes, or instance-of, or ISA links in c
will be called attribute, instance-of, or ISA path in c, respectively.

For example, in Figure 6.11, there are three link paths in context c4: p1 = o12:o14, p2 = o12:o16,
and p3 = o11.

If c is a link context then we have mentioned that c will contain the special objects of and ot,
whose reference is refined by the source and destination reference of the corresponding link,
respectively. We shall call traversal path in c, any link path in c that traverses from an object
reached through a reference path starting from of , to an object reached through a reference
path starting from ot. Specifically, the traversal path should satisfy the following: (i) the source
of its first link is a reference path starting from of , and (ii) the destination of its last link is a
reference path starting from ot. Intuitively, a traversal path in a link context traverses from
an object in the source reference, to an object in the destination reference of the corresponding
link.

Definition 7.7 Traversal Path.
The set of all traversal paths in a link context c, denoted by T P c, is defined as
follows:

T Pc = fp 2 LPc j �rst(Fromc(�rst(p))) = of ^ �rst(Toc(last(p))) = otg: �

For example, in Figure 6.11, there are two traversal paths within context c4: p1 = o12:o14
and p3 = o11.

The set of all attribute paths in c which are also traversal paths is denoted as AT P c. The
set of all instance-of paths in c which are also traversal paths is denoted as INT P c, and the
set of instance-of traversal paths in c of length one is denoted by INT P 1

c , i.e., INT P1
c = fp 2

INT Pc j length(p) = 1g.

7.6 Core axioms

In this section, we present the core axioms of our theory that should be satisfied by any
contextualized information base. Additional axioms may be added to this core set of axioms
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in order to support extra modeling features.

Axiom 7.1 Contextualized ISA reflexivity and transitivity.
1.ISA reflexivity.

Let c be a context. For every reference path p in c, there is an ISA link in c from
p to p.

8c 2 CXT ; p 2 RPc; 9o 2 O : Isac(o; p; p): �

2.ISA transitivity.
Let c be a context and p1; p2; p3 be reference paths in c. If there are two ISA
links in c from p1 to p2, and from p2 to p3, respectively, then there is an ISA link
in c from p1 to p3.

8o1; o2 2 O; c 2 CXT ; p1; p2; p3 2 RP ; 9o3 2 O :

Isac(o1; p1; p2) ^ Isac(o2; p2; p3) ) Isac(o3; p1; p3): �

The above axioms are contextualized versions of the ISA reflexivity and ISA transitivity
properties of conventional object-oriented systems.

Axiom 7.2 Context Refinement.
If context c refines context c0 then (i) every object of c0 is also an object of c, (ii) the
names of every object in c0 are included in the names of the object in c, (iii) every
instance-of, ISA, or attribute link in c0 is also an instance-of, ISA, or attribute link in
c, and (iv) the reference of every object of c0 refines the reference of the object in c.

1.8o 2 O; c; c0 2 CXT :

c - c0 ^ o 2 objs(c0) ) o 2 objs(c) ^ Namesc0(o) � Namesc(o):

2.8c; c0 2 CXT : c - c0 ) in(c0) � in(c):

3.8c; c0 2 CXT : c - c0 ) isa(c0) � isa(c):

4.8c; c0 2 CXT : c - c0 ) attr(c0) � attr(c):

5.8o 2 O; c; c0; c01 2 CXT ; 9c1 2 CXT :

c - c0 ^ Ref c0(o) = c01 ) Ref c(o) = c1 ^ c1 - c01: �

This axiom is justified and exemplified in subsection 6.5.3.

Axiom 7.3 Refinement is reflexive and transitive.
The refinement relation between contexts is reflexive and transitive.

1.Reflexivity.

8c 2 CXT : c - c:

2.Transitivity.

8c1; c2; c3 2 CXT : c1 - c2 ^ c2 - c3 ) c1 - c3: �

Axiom 7.4 Contextualized instance upward inheritance.
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Let c be a context and p1; p2; p3 be reference paths in c. If there is an instance-of link
in c from p1 to p2, and an ISA link in c from p2 to p3, then there is an instance-of link
in c from p1 to p3.

8o1; o2 2 O; c 2 CXT ; p1; p2; p3 2 RP ; 9o3 2 O :

Inc(o1; p1; p2) ^ Isac(o2; p2; p3) ) Inc(o3; p1; p3): �

In conventional object-oriented systems, instances of classes are also instances of their
superclasses. The above axiom is the contextualized version of this property.

Axiom 7.5 Interaction between attribution and contextualization.
Let c be a context and pf ; pt be reference paths in c. If o is an attribute link in a
context c from pf to pt, and ca is the reference of o in c, then the references of pf and
pt in c refine the references of the special objects of and ot in ca. Additionally, every
traversal path in c is an attribute path in c.
8o 2 O; c; cf ; ct 2 CXT ; pf ; pt 2 RP ; ca 2 LCXT :

Attr c(o; pf ; pt) ^ ca = Ref c(o) ^ cf = Ref ca(of ) ^ ct = Ref ca(ot) )

Ref c(pf ) - cf ^ Ref c(pt) - ct ^ T Pc = AT Pc: �

This axiom is justified and exemplified in subsection 6.5.1.

Axiom 7.6 Interaction between classification and contextualization.
Let c be a context and pf ; pt be reference paths in c. If o is an instance-of link in
c from pf to pt, and cin is the reference of o in c, then the references of pf and pt
in c refine the references of the special objects of and ot in cin. Additionally, every
traversal path in c is an instance-of link in c.

8o 2 O; c; cf ; ct 2 CXT ; pf ; pt 2 RP ; 9cin 2 LCXT :

Inc(o; pf ; pt) ^ cin = Ref c(o) ^ cf = Ref cin(of ) ^ ct = Ref cin(ot) )

Ref c(pf ) - cf ^ Ref c(pt) - ct ^ T Pc = INT Pc = INT P1

c : �

This axiom is justified and exemplified in subsection 6.5.2.

Axiom 7.7 Interaction between generalization and contextualization.
Let c be a context and pf ; pt be reference paths in c. If there is an ISA link in c from
p1 to p2 then the reference of p1 in c refines the reference of p2 in c.

8o 2 O; c; c1; c2 2 CXT ; p1; p2 2 RP :

Isac(o; p1; p2) ^ c1 = Ref c(p1) ^ c2 = Ref c(p2) ) c1 - c2: �

This axiom is justified and exemplified in subsection 6.5.3.

Axiom 7.8 Interaction between classification, generalization and contextualization.
Let c be a context and p; p0; p00 be reference paths in c. If o1 is an instance-of link in c
from p to p0, o is an ISA link in c from p0 to p00, and o2 is an instance-of link in c from
p to p00, then the reference of o1 in c refines the reference of o2 in c.

8o; o1; o2 2 O; c; c1; c2 2 CXT ; p; p
0; p00 2 RP :

Inc(o1; p; p
0) ^ Isac(o; p

0; p00) ^ Inc(o2; p; p
00) ^ Ref c(o1) = c1 ^ Ref c(o2) = c2 )

c1 - c2: �

This axiom is justified and exemplified in subsection 6.5.4.
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Axiom 7.9 Inheritance of built-in information.
Every context refines the empty context.

8c 2 CXT : c - Cempty : �

This axiom expresses that the contents of the empty context should be present in every
context.

7.7 The equivalence and refinement relations

In this section, we give the formal definitions of the equivalence and refinement relations,
described informally in subsection 6.5.3, and we prove some of their properties.

In order to define formally the equivalence relation we need to show how a context structure
is represented as a labeled directed graph. Since contexts can be seen as labeled directed graphs
and graph theory is a well-studied field, we can use graph theoretical problems to classify the
problems concerning context relations (e.g. context equivalence).

7.7.1 Context structure as labeled directed graphs

In this subsection, we define the notion of ‘labeled directed graph’ as appears in graph theory
and how two such graphs are isomorphic. The notion of isomorphic graphs is used in the
following subsection to define context equivalence. We also show how a context structure is
represented as a labeled directed graph.

Definition 7.8 Labeled directed graph.
A labeled directed graph is a triplet G = hV;E;Li where V is a finite set of vertices,
E � V � V is the set of edges (which connect certain pair of vertices) and L is a
function which assigns each vertex and each edge a label.

Definition 7.9 Labeled directed graph isomorphism.
Two labeled directed graphs,G1 = hV1; E1; L1i andG2 = hV2; E2; L2i are isomorphic
iff there is a bijective function (isomorphism) � : V1 ! V2 such that

1.hv1; v2i 2 E1 iff h�(v1); �(v2)i 2 E2,

2.L1(v) = L2(�(v)) for all v 2 V1, and

3.L1(hv1; v2i) = L2(h�(v1); �(v2)i) for all hv1; v2i 2 E1.

Let Iso(G1; G2) denote the set of all isomorphisms between G1 and G2. �

Lemma 7.1 Graph isomorphism transitivity.
If graphsG1, G2 are isomorphic and graphsG2, G3 are also isomorphic, then graphs
G1, G3 are isomorphic too. �

Proof: If � 2 Iso(G1; G2) and � 2 Iso(G2; G3), it is easy to prove that � � � is an isomorphism
between graphs G1 and G3. 2

By context structure we mean a structure of contexts and their nested subcontexts. In the
structure we don’t take into account links predicates (instance-of, ISA and attribute predicates)
as well as the names of the objects, but we do take into account the objects of the contexts,
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which are represented as labels of the graph eadges. Thus, a context structure can be seen as a
labeled directed graph as follows:

� the contexts are represented as vertices of the graph,

� the subcontext c0 of a context c is represented by the edge hc; c 0i,

� the navigation from a context c to its subcontext c0 through the reference of an object o
in c, i.e. ref (o; c) = c0, is represented by o 2 L(hc; c0i), i.e. the label of edge hc; c0i is
a set containing the object o. If there is another object o0 such that ref (o0; c) = c0 then
o0 2 L(hc; c0i) as well. In other words, the label of an edge hc; c0i is the set of all objects of
c with reference c0,

� L(v) = fg, for all v 2 V , as contexts are assigned no name.

Figure 7.1 shows how a context structure is represented as a labeled directed graph.

(a) (b)

2o c1 c2
4o3

c
o

c

2o

5o c

o

,

1

3

4

2B: o

4

A: o

2A,C: o

5D: o

3c

3E: o 6o
0

c0

c

1

c1 c2

4F: o

6G: o

NIL

Figure 7.1: (a) A contexts structure, (b) its representation as a labeled directed graph.

Note that since each object within a context has either a NIL reference or a reference to
another context and the objects of a context are represented as labels of edges originating from
that context, it is easy to see that: if c is a context then

objs(c) =
[

hc;c0i2E

Lhc; c0i)

Each context is connected with a context structure which contains the context itself and its
nested subcontexts. The labeled directed graph induced by the context structure of a context
is denoted by GR(c) and is defined formally as follows:

Definition 7.10 Labeled directed graph induced by a context c, GR(c).
The labeled directed graph induced by the context c is defined as follows:

8c 2 CXT : GR(c) = hV;E;Li

where
V = fcg [ fc0 2 CXT j c0 = Ref c(p); p 2 RPcg

E = fhc1; c2i j c1; c2 2 V ^ 9o 2 objs(c1) : ref (o; c1) = c2g

8hc1; c2i 2 E : L(hc1; c2i) =
[

ref (o;c1)=c2

fog

Now, we are ready to define the equivalence relation between contexts.
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7.7.2 Context equivalence

Definition 7.11 Context equivalence (�).
Let c, c0 be two contexts and GR(c) = hV;E;Li, GR(c0) the graphs induced by c and
c0, respectively. Context equivalence is a relation between c and c0, denoted by c � c0,
is defined as follows:
c � c0 , (c = c0 = NIL)

_
( 9� 2 Iso(GR(c); GR(c0)) : �(c) = c0 ^

8v 2 V :

attr(v) = attr(�(v)) ^
in(v) = in(�(v)) ^
isa(v) = isa(�(v)) ^
(8o 2 objs(v) : names(o; v) = names(o; �(v)))) �

Two contexts are equivalent (c � c0) if c and c0 are identical (possibly NIL) or they have
an isomorphic context structure and the contents (except references) of each context coincide.
Intuitively, this means that two contexts are equivalent if they are identical or their contents
(except references) coincide, and the references of their common objects are equivalent.

Graph Isomorphism Problem: The complexity of an algorithm which decides whether two
given contexts are equivalent is the same to the complexity of an algorithm which decides
whether the context graphs of the given contexts are isomorphic. This is the well-known
graph isomorphism problem [61, 78, 35, 60]. It is easy to see, based on result by Miller [78],
that the graph isomorhism problems for (non-labeled, undirected) graphs and labeled directed
graphs are many-one equivalent and therefore we do not distinguish between them. The graph
isomorhism problem is clearly in the class of NP, and it is not known whether it is in P. It is
also unknown whether the problem is NP-complete, but this seems to be unlikely since it
would imply that the polynomial hierarchy collapses to its second level [12]. In fact, evidence
that graph isomorphism is not NP-complete was given already by Mathon [70] who showed
that the decision problem for graph isomorphism and its counting version (i.e., the problem
to compute the number of isomorphisms of two given graphs) are polynomial-time Turing
equivalent. This is a remarkable situation since for the known NP-complete problems the
corresponding counting version seems to be much harder than the decision version.

An important property of the relation � is that it is equivalence. Thus, in case context
identifiers are not important, equivalent contexts can be used interchangeably for modeling
information.

Proposition 7.1 Relation � is an equivalence relation.
The relation � on the set of contexts CXT is an equivalence relation, i.e., reflexive,
transitive, and symmetric. �

Proof: From the Definition 7.11 it follows immediately that � is reflexive and symmetric.
We will now prove that � is also transitive, that is:

8c1; c2; c3 2 CXT : (c1 � c2) ^ (c2 � c3)) c1 � c3

We distinguish the following cases:

1. c1 = c2 = c3 = NIL.
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Then, from the Definition 7.11, it easily follows that c1 � c3.

2. c1 6= NIL and c2 6= NIL and c3 6= NIL.

(a) c1 = c2 = c3 or c1 = c2 6= c3 or c1 6= c2 = c3 or c1 = c3 6= c2.
Then, from the Definition 7.11, it easily follows that c1 � c3.

(b) c1 6= c2, c2 6= c3, and c1 6= c3.
From the Definition 7.11 we have

c1 � c2 )

8>>>>>><
>>>>>>:

9� 2 Iso(GR(c1); GR(c2)) : �(c1) = c2 ^
8v1 2 V1 :

attr(v1) = attr(�(v1)) ^
in(v1) = in(�(v1)) ^
isa(v1) = isa(�(v1)) ^

8o 2 objs(v1) : names(o; v1) = names(o; �(v1))

(7.1)

c2 � c3 )

8>>>>>><
>>>>>>:

9� 2 Iso(GR(c2); GR(c3)) : �(c2) = c3 ^
8v2 2 V2 :

attr(v2) = attr(�(v2)) ^
in(v2) = in(�(v2)) ^
isa(v2) = isa(�(v2)) ^

8o 2 objs(v2) : names(o; v2) = names(o; �(v2))

(7.2)

Eq. (7:1)
Eq. (7:2)

Lemma 7:1
)

8>>>>>><
>>>>>>:

9� = � � � 2 Iso(GR(c1); GR(c3)) : �(c1) = c3 ^
8v1 2 V1 :

attr(v1) = attr(�(v1)) ^
in(v1) = in(�(v1)) ^
isa(v1) = isa(�(v1)) ^

8o 2 objs(v1) : names(o; v1) = names(o; �(v1))

(7.3)

From the Definition 7.11 and Equation (7.3) we have: c1 � c3. 2

7.7.3 The refinement relation

We now define the refinement relation between two contexts.

Definition 7.12 Refinement.
The refinement relation between two contexts, denoted by -, is recursively defined
as follows:
c - c0 , (c0 = NIL)

_
(objs(c0) � objs(c) ^
attr(c0) � attr(c) ^
in(c0) � in(c) ^
isa(c0) � isa(c) ^
(8o 2 objs(c0) : names(o; c0) � names(o; c) ^

ref (o; c) - ref (o; c0))): �
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The recursion in the definition of c - c0 stops when c0 is NIL, or c - c0 is called again.
Intuitively, a context c refines a context c0 (c - c0), if the contents of c0 except references are
subset of the contents of c, and the reference of an object o in c 0 is either undefined or refined
by the reference of o in c. For example, in Figure 7.2 contexts c9 and c10 refine context c8, and
contexts c4, c5 refine context c3.

If both refinements c - c0 and c0 - c hold, then the contents of c and c0 are intuitively the
same. Indeed the following theorem shows that the refinement relation is partial order up to
the equivalence relation.

Theorem 7.1 .
The refinement relation on the set of contexts CXT is a partial order up to the
equivalence relation �, i.e., it is reflexive, transitive, and antisymmetric. �

Proof: From the Definition 7.12 it follows immediately that - is reflexive and transitive.

We will prove that - is antisymmetric, that is:

8c; c0 2 CXT : (c - c0) ^ (c0 - c)) c � c0)

Assume, on the contrary, that: c 6� c0.

According to the Definition 7.11 of relation � we have:

c 6� c0 , (c 6= NIL _ c0 6= NIL)

^
(8� 2 Iso(GR(c); GR(c0)) : �(c) 6= c0 _

9v 2 V :
attr(v) 6= attr(�(v)) _
in(v) 6= in(�(v)) _
isa(v) 6= isa(�(v)) _
( 9o 2 objs(v) : names(o; v) 6= names(o; �(v)))) �

We distinguishe the following cases:

1. (c0 6= NIL) and (c = NIL)

Then, from our assumptions, we have:
NIL 6= c - c0 = NIL, which is true according to the Definition 7.12, and
NIL = c0 - c 6= NIL, which is false according to the Definition 7.12.

2. (c 6= NIL) and (c0 = NIL)

It is proved similar to the previous case.

3.
(c 6= NIL ^ c0 6= NIL)

^
( =9� 2 Iso(GR(c); GR(c0)) : �(c) = c0 ^

8v 2 V :

attr(v) = attr(�(v)) ^
in(v) = in(�(v)) ^
isa(v) = isa(�(v)) ^
(8o 2 objs(v) : names(o; v) = names(o; �(v))))
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Figure 7.2: An example of refinement relation: contexts c9 and c10 refine context c8, and contexts
c4, c5 refine context c3.
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We will show that there exists an isomorphism like this. From our assumption we have:

c - c0 )

8>>>>>>>><
>>>>>>>>:

objs(c0) � objs(c) ^
attr(c0) � attr(c) ^
in(c0) � in(c) ^
isa(c0) � isa(c) ^

(8o 2 objs(c0) :

names(o; c0) � names(o; c) ^
ref (o; c) - ref (o; c0))

(7.4)

c0 - c)

8>>>>>>>><
>>>>>>>>:

objs(c) � objs(c0) ^
attr(c) � attr(c0) ^
in(c) � in(c0) ^
isa(c) � isa(c0) ^

(8o 2 objs(c) :

names(o; c) � names(o; c0) ^
ref (o; c0) - ref (o; c))

(7.5)

Eq. (7:4)
Eq. (7:5)

)

8>>>>>>>>>><
>>>>>>>>>>:

objs(c) = objs(c0) ^
attr(c) = attr(c0) ^
in(c) = in(c0) ^
isa(c) = isa(c0) ^

(8o 2 objs(c) :

names(o; c) = names(o; c0) ^
ref (o; c) - ref (o; c0) ^
ref (o; c0) - ref (o; c))

(7.6)

This applied recursively to all subcontexts of c and c0. LetGR(c) = hV;E;Li andGR(c0) =
hV;E;Li. The function � : V ! V 0 which is defined as follows:

�(c) = c0

�(ref (o; v)) = ref (o; v0); 8v 2 V; v0 2 V 0 : �(v) = v0 ^ o 2 objs(v)

is a bijection, and from Equation 7.6 it is easy to see that:

8v 2 V :
objs(v) = objs(�(v)) ^
attr(v) = attr(�(v)) ^
in(v) = in(�(v)) ^
isa(v) = isa(�(v)) ^

(8o 2 objs(v) :

names(o; v) = names(o; �(v)))

Thus, our original assumption is false. 2
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A contextualized information base is an incomplete model of the real world. This implies
that the conditions of Definition 7.12 may hold in the information base but not in the real
world, and conversely, they may hold in the real world but not in the information base. Thus,
we cannot use Definition 7.12 directly to derive that c - c0, for contexts c and c0. Indeed, the
refinement relation is derived through the Core Axioms. The following theorem shows that
the Core Axioms provide a sound and complete set of inference rules for the determination of
all the refinement relations that are valid according to Definition 7.12.

Theorem 7.2 Soundness and completeness of refinement.
Core Axioms are sound and complete for the derivation of the refinement relation
- as defined in Definition 7.12. �

Proof: The soundness of the rules can be easily verified. With regard to the completeness, we
show that every refinement relationship that is not derivable from the axioms of a contextual-
ized information base by means of the above rules is falsified by some model of the rules.
Let T be a contextualized information base and c � c0 be a refinement relationship of T that is
not derivable.
We now show a model I of T that falsifies the above relationship.
I contains a single object o, and for each derivable formula of the form c � d such that d � c0 is
not derivable, assigns o to d.
Clearly, o belongs to c and o does not belong to c0.
In order to verify that all the axioms of T are satisfied by I , consider the generic axiom w � w 0.
If o does not belong to w then the axiom is clearly satisfied.
If o belongs to w, then there is a refinement c � w that is derivable such that w � c 0 is not
derivable.
Therefore, by the Contextualized ISA Transitivity Axiom (Axiom 7.1), it holds that c � w 0.
The refinement w0 � c0 cannot be derived, as otherwise by the Contextualized ISA Transitivity
Axiom c � c0 is derived.
Therefore o belongs also to w 0.
It now follows from the Definition of refinement (Definition 7.12) that w � w0 holds. 2

7.8 Contextualization in Telos

As we mentioned in Section 6.7, our contextualization mechanism is generic and can be applied
to any semantic data model that supports the traditional abstraction mechanisms of classifi-
cation, generalization, and attribution. In this section, we show a specific data model can
accommodate our contextualization mechanism. In particular, we choose for this purpose the
Telos data model.

Telos [83, 64] is a knowledge representation language originally designed for information
system development applications. Its data model is an object-oriented semantic network,where
nodes and links are uniformly treated, and multiple instantiation, multiple specialization, and
virtually unlimited instantiation levels are supported. Its assertional component includes
facilities for declaring constraints and deductive rules (we do not deal with this component
here).

In original Telos, an object is an individual or an attribute that belongs to a unique instan-
tiation level. Though, in our theory, these characterizations of an object do not hold globally,
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they do hold within a context. In other words, these characterizations are context-dependent.
We will see below how the Telos features are incorporated into our contextualized framework.
For our discussion, we consider a variant of Telos, where instance-of and ISA links are also
objects.6

To support Telos, the special context Cempty contains all built-in objects of Telos and their
relationships. Specifically, the contents of Cempty include7 (see Figure 7.3)

� Objects oInd , oAttr , named Individual and Attribute, respectively. These objects repre-
sent the classes of individuals and attribute objects, respectively.

� Objects oL0
, oL1

, oL2
, and so on, named Token; S Class; M1 Class, and so on, respectively.

These objects represent the instantiation levels of Tokens, Simple Classes, Metaclasses, and
so on, respectively.

� Objects oObj and oClass, named Object and Class, respectively. These objects represent
the class of objects, and class of classes, respectively.

� Instance-of links and ISA links that represent relationships between the objects of Cempty .

By definition the contents of the empty context are shared by any context. Therefore, the
objects of Cempty are also objects of any context c. We say that an object o is individual in context
c, iff there is an instance-of link in c from o to oInd . Similarly, an object o is attribute in context c,
iff there is an instance-of link in c from o to oAttr . A reference path p may be associated with
a instantiation level i in a context c, iff there is an instance-of link in c from p to object oLi . The
function Levelc(p) returns the instantiation level of a reference path p in context c.

8c 2 CXT ; p 2 RPc : Level c(p) = i , 9o 2 O Inc(o; p; oLi)

6O-Telos is such a variant of Telos, used in the deductive object base ConceptBase [54].
7In the figure, it is not shown that objects oInd , oAttr , oObj , and oClass are instances of the object oClass.
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7.9 Telos-dependent axioms

We now give a number of axioms, called Telos-dependent axioms, which together with the core
axioms should be satisfied by any Telos contextualized information base. Indeed the following
axioms support embedding of Telos into our contextualized framework, and are contextualized
versions of basic axioms of Telos [54].

Axiom 7.10 Membership to the Attribute built-in object.
If a is an attribute link in c from a reference path pf to a reference path pt, then there
is an instance-of link in c from a to oAttr .

8c 2 CXT ; a 2 O; pf ; pt 2 RP :

Attr c(a; pf ; pt) ) 9o 2 O Inc(o; a; oAttr ): �

Axiom 7.11 Object kind uniqueness constraint.
An object cannot be both individual and attribute within a context.

8c 2 CXT o1; o2; o
0
1; o

0
2 2 O :

Inc(o
0
1; o1; oInd ) ^ Inc(o

0
2; o2; oAttr ) ) o1 6= o2: �

Note that, it is possible for an object to be individual in one context and attribute in another.

Axiom 7.12 Level uniqueness constraint.
A reference path cannot have more than one instantiation levels within a context,
that is, it can be classified within a context under only one of the classes Li, i � 0.

8c 2 CXT ; p 2 RP i1; i2 2 IN :

Level c(p) = i1 ^ Levelc(p) = i2 ) i1 = i2: �

Axiom 7.13 Source and destination uniqueness constraints.
1.The source of a link in a context c is unique.

8c 2 CXT ; o 2 O; p1; p2 2 RP :

Fromc(o) = p1 ^ Fromc(o) = p2 ) p1 = p2:

2.The destination of a link in a context c is unique.

8c 2 CXT ; o 2 O; p1; p2 2 RP :

Toc(o) = p1 ^ Toc(o) = p2 ) p1 = p2: �

Axiom 7.14 Instance-of constraints.
1.Attribute instantiation constraint.

Let a and a0 be two attribute links in c from pf to pt, and p0f to p0t, respectively.
If there is an instance-of link in c from a to a0, then there is an instance-of link
in c from pf to pt, and an instance-of link in c from p0f to p0t.

8c 2 CXT ; o; a; a0 2 O; pf ; pt; p
0
f ; p

0
t 2 RP ; 9o0; o00 2 O :

Inc(o; a; a
0) ^ Attr c(a; pf ; pt) ^ Attr c(a

0; p0f ; p
0
t) )

Inc(o
0; pf ; p

0
f ) ^ Inc(o

00; pt; p
0
t)
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2.Instance-of level constraint.
If there is an instance-of link in c from pf to pt, then the instantiation level of pt
in c equals the instantiation level of pf in c plus one.

8c 2 CXT ; o;2 O; pf ; pt 2 RP :

Inc(o; pf ; pt) ) Levelc(pt) = Level c(pf ) + 1: �

Axiom 7.15 ISA constraints.
1.Attribute generalization constraint.

Let a and a0 be two attribute links in c from pf to pt, and p0f to p0t, respectively.
If there is an ISA link in c from a to a0, then there is an ISA link in c from pf to
pt, and an ISA link in c from p0f to p0t.

8c 2 CXT ; o; a; a0 2 O; pf ; pt; p
0
f ; p

0
t 2 RP ; 9o0; o00 2 O :

Isac(o; a; a
0) ^ Attr c(a; pf ; pt) ^ Attr c(a

0; p0f ; p
0
t) )

Isac(o
0; pf ; p

0
f ) ^ Isac(o

00; pt; p
0
t)

2.ISA level constraint.
If there is an ISA link in c from pf to pt, then the level of pt in c equals the level
of pf in c.

8c 2 CXT ; o;2 O; pf ; pt 2 RP :

Isac(o; pf ; pt) ) Level c(pt) = Levelc(pf ): �
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Chapter 8

Querying Contextualized Information
Bases

A query system has to deal with two tasks, the maintenance of an information base and
the answering of queries. In this chapter, we focus on the second task, and we propose a
general framework for querying information bases which supports contextualization. There is
a number of desiderata for querying information bases. A list of them (not complete) follows:

� Expressive power

One can write down an informal list of the kind of operations that a query language
should express.

� Semantics:

Without this one cannot start to discuss query transformation or optimization. An inter-
esting issue is what, if anything, the semantics adds to (or loses from) the syntax in which
data is expressed.

� Compositionality:

This requirement states that the output of a query can be used as the input of another
query and is essential, among others, for constructing views. The requirement has both
semantic and syntactic consequences. Semantically, if states that our queries must stay
within the same data model. Syntactically, it requires that our language is referentially
transparent.

A prominent feature of our contextualization mechanism is that it allows users to focus on
a specific context at a time (call it current context), thus delimiting a portion of interest in the
information base. As a consequence, the scope of user queries is localized to that portion, i.e.,
to the set of objects and contexts that are accessible from the current context. In turn, query
evaluation is performed with respect to that portion of interest — and not with respect to the
whole information base. As a result, users can find speedily the needed information.

In this chapter, we address issues of (i) accessing information in the context structure
using paths of names, or paths of references, and (ii) retrieving contextualized information.
To this end we define basic query operations on contexts such as select, project, path select,
and construct. We illustrate the usefulness of our contextualization mechanism by presenting
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higher level query operations, including the use of wild cards, that enable users to explore a
contextualized information base. These higher level operations include focusing on a context
of interest, searching the context structure for specific information, and making cross references
of an object from one context to another in order to obtain alternative representations of that
object. Work of this chapter published in [124].

8.1 Accessing information through paths

Accessing information in an information base often involves navigating from one object to
another. Navigation is based on the notion of path. We distinguish two kinds of paths:

1. object path, which is a sequence of dot-separated objects,
2. name path, which is a sequence of dot-separated names.

In a contextualized information base, navigation is based on the notion of reference path.
Indeed, as the reference of an object within a context is also a context, references provide a
means to traverse from an object o of a context c to the objects of another context via the
reference of o in c.

Definition 8.1 Reference path.
An object path o1:o2: : : : :ok is a reference path in a context c0 if the following conditions
hold:

1. o1; : : : ; ok are objects;
2. Object o1 is contained in context c0;
3. Let ci be the reference of object oi w.r.t. ci�1, for i = 1; : : : ; k � 1. Then, object

oi+1 is contained in context ci. �
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Figure 8.1: Accessing information through paths.

Reference paths form the basis for reaching objects in a context navigating through the
references of objects. For example, in Figure 8.1, o:o1 is a reference path that provides one way
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to reach object o1 starting from context c, namely, through the context c1. Moreover, o00:o:o1 and
o4:o1 are reference paths leading to object o1, through different contexts.

To make the specification of a reference path user-friently, we can use a name path, i.e.,
a sequence of object names. We denote such a sequence using dots to separate names, e.g.
Geography of Greece:Islands:Crete. Clearly, not every name path necessarily matches a ref-
erence path, e.g. Geography of Greece:Crete does not match any reference path (as the object
designated by Geography of Greece in the context c0 does not have as reference the context to
which belongs an object designated by Crete). Hence, the following definition:

Definition 8.2 Matching.
Let N = n1:n2: : : : :nk be a name path, and P = o1:o2: : : : :ok be a reference path,
in a context c0. We say that N matches P (or that P matches N ) in context c0 if the
following conditions hold:

1. n1 is a name for o1 in c0, and
2. If ci is the reference of oi w.r.t. context ci�1, then ni+1 is a name for oi+1 in ci,

for i = 1; : : : ; k.
The boolean operation match(c; P;N) returns true is P matches N in context c, and
false otherwise. �

For example, in Figure 8.1, the name path Islands:Crete matches the reference path o:o1,
and vice versa, in context c.

Clearly, in general, a name path may match several reference paths, and conversely. For
example, in Figure 8.1, the name path Crete:LocalInfo matches the reference paths o1:o7
and o1:o8, while the reference path o1:o7 matches the name paths Crete:LocalInfo and
Crete:Hotels, in context c3.

We use two primitive operations on paths, �rst(P ) and rest(P ), where P is a path of any
kind (i.e., reference path or name path). The operation �rst returns the first element of P and
the operation rest returns the path resulting from P after removing its first element1.

Based on these primitive operations, we can define other useful operations. In this paper
we shall make use of the operations length(P ) and elem(i; P ), that return the length of P
and the ith element of P , respectively (assuming 1 � i � length(P )). We shall also use the
operation last(P ) that returns the last element of P , assuming that P is not empty (note that
last(P ) = elem(length(P ); P )).

In the rest of the chapter, whenever we refer to a name path (starting in a context c), we
will mean a name path that matches a reference path (starting in c). Reference paths and name
paths form the basis for our query language. A more powerful form of name paths based on
wildcards and regular expressions is described in Section 8.2.

8.2 Generalized path expressions

In this section, we extend the notion of name path to a more powerful syntax for name paths,
called generalized name paths. Generalized name paths allow both regular expressions and
wildcards to be used in name paths, which provide a powerful mechanism for finding objects
in the information base.

1These are the well-known operations car and cdr used in LISP.
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8.2.1 Path composition

Let p; be the symbol for the empty path (i.e., objects path or name path). Let p1, p2 be two paths
of the same kind, and S1, S2 be two sets of paths of the same kind. The composition of paths,
denoted by the symbol �, is defined as follows:

p1 � p2 =

8<
:

p1; if p2 = p;,
p2; if p1 = p;,
p1:p2; otherwise.

(8.1)

p1 � S1 =

�
;; if S1 = ;,
fp1:p j 8p 2 S1g; otherwise.

(8.2)

S1 � S2 =

�
;; if S1 = ; or S2 = ;,
fp1:p2 j 8p1 2 S1; p2 2 S2g; otherwise.

(8.3)

Note that if S = fp;g then S 6= ;.

8.2.2 Generalized name paths

A user may not be aware of the structure of the information base but may simply know a few
keywords concerning the objects of interest. Therefore, a user may not be expected to give a
complete name path to those objects, but only an incomplete path made up of the keywords he
knows plus special symbols indicating how the path may be completed. Moreover, one often
does not know the whole name of an object precisely, but only knows a part of it. It is therefore
useful to have a concept of “wildcards”. The first wild card is “%”, which matches zero or
more characters in a name. Hence, we introduce the concept of generalized name path (g.n.p. for
short) which is similar to the generalized path expressions of [3, 1].

Definition 8.3 Generalized name paths.
1. If � is a name, then :� is a generalized name path.
2. If � and  are strings (possibly empty), then :�% is a generalized name path.
3. If g and g0 are generalized name paths, then the following are also generalized

name paths:
gg0, gjg0, g&g0, (g), (g)?, (g)+, (g)�, :g

The symbol % means any arbitrary number of letters, j is used for disjunction, &
is used for conjunction, : is used for negation, ? means zero or one occurrences, +
means one or more, and � means zero or more. �

Examples of generalized name paths are:

:Employees:M%

(:Employeesj:Students):address(:zipcode)?

:Employees(:nearby:address) � :cityname

The first expression specifies the name paths starting from Employees following a name be-
ginning with letter “M”. The second expression specifies the name paths starting either from
Employees or from Students, following the name address with an optional zipcode at the
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end. The last expression specifies all name paths starting from Employees, following by and
arbitrary number of nearby:address and ending with name cityname.

The only difficulty with our use of regular expressions here is that because of the Kleene
closure (�), a g.n.p. may match an infinite number of reference or name paths if there is a
cycle. This is resolved if we impose the contraint of well-definedness on context, introduced
in [121, 125], but this is beyond the scope of this paper.

8.2.3 Retrieving reference and name paths from generalized name paths

The set of name paths and the set of reference paths that start in context c and “match” a g.n.p.
g are denoted by npaths c(g) and rpaths c(g), respectively, and are defined as follows:

Definition 8.4 Retrieve reference paths: rpathsc(g).
This operation takes as input a g.n.p g and a context c and returns the set of reference
paths that start in context c and “match” g.

rpaths c(g) = fp j 9n 2 npaths c(g) : match(c; p; n)g

Definition 8.5 Retrieve name paths: npathsc(g).
This operation takes as input a g.n.p. g and a context c and returns the set of name
paths that start in c and “match” g. Let � be a name, � and  be strings, and g 0 be a
g.n.p., then
npathsc(:�) = f�g \

S
o2objs(c) names(o; c)

npathsc(:�%) = fn 2
S

o2objs(c) names(o; c) : n begin with � and end with g

npathsc(gg
0) = npaths c(g) �

S
8n2npathsc(g) ^ 8p: match(c;p;n) npathsRef c(p)(g

0)

npathsc(gjg
0) = npaths c(g) [ npaths c(g

0)

npathsc(g&g
0) = fr; r0 j r 2 npathsc(g) ^ r0 2 npathsc(g

0) ^ 9o 2 O : r; r0 2 npaths c(o)g
npathsc((g)?) = p; [ npaths c(g)

npathsc((g)+) =

�
;; if npathsc(g) = ;;
npathsc(g(g)+); otherwise:

npathsc((g)�) = p; [ npaths c((g)+)
npathsc(:(g)) = npaths c((:%)�) � npaths c(g) �

Function Ref c(p), which appears in the evaluation of npaths c(gg0), is formally defined in
Section 7.4.2 (see Item 3). We recall that this function accesses the last context that appears
when navigating through reference path p starting in context c.

8.3 Basic operations on contexts

An information system has to deal with two tasks, the maintenance of an information base and
the answering of queries. In this paper, we focus on the second task, and we define the main
operations for querying information bases that support contextualization.

To simplify the presentation we do not take into account the structuring of contexts. To this
end, we view the contents of a context c as a set of triplets of the form ho;names(o; c); ref (o; c)i,
where o is an object of c. Thus, given a context c, we have:

cnts(c) = fho;names(o; c); ref (o; c)i j o 2 objs(c)g:
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For referring to context c4 of Figure 8.1, we have:

cnts(c) = f ho7; fLocalInfo; Hotelsg; c6i; ho8; fLocalInfo; Dinningg; c7i;
ho10; fMapOfCreteg; NILi; ho9; fTransportationg; c8i g.

In this section, we introduce three kinds of operations for querying a contextualized infor-
mation base:

primitive operations on contexts and paths;

operations for querying a single context; and

traversal operations for obtaining paths to desired objects.

Then, in the following section, we demonstrate the expressive power of these operations
by defining higher level operations based on them.

The fundamental operations in our query language are select, project, construct, and path-
select. A brief description of these operations follows:

1. The select operation selects from the contents of a context these triplets that satisfy a given
predicate. The output of this operation is a new context which contains the selected
triplets. Intuitively, this operation selects from a given context the information of interest.

2. The project operation isolates certain elements of a context’s contents, such as the objects
from the context, the set of names bound to the objects, or the references of the objects.

3. The construct operation takes as input one or more contexts and returns as output a new
context which is constructed by combining information of the input context(s). This
operation allows restructuring of the information base customizing it to individual’s
needs.

4. The path-select operation selects paths originating from a given context. Paths can be of
any kind, i.e., object paths, or name paths. This operation guides the navigation of the
user in the database in order to reach objects of interest.

Both the select and construct operations return a new context as output. However, the
select operation preserves the initial triplets, i.e., names and references of objects, whereas the
construct operation creates new triplets. The output contexts of these query operations may be
further queried or inserted in the information base.

8.3.1 Primitive operations

We refer to the functions that are used to define query predicates, as primitive operations. We
distinguish two kinds of primitive operations, namely context primitives and path primitives.

1. Context primitives are the functions used in the definition of a context. These are:
names(o; c), ref (o; c), objs(c), and cnts(c).

2. Path primitives are the functions used to extract parts of a path, to derive information
about a path, or to match a reference path and a name path. These functions are: first(p),
rest(p), match(c; p; n).
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8.3.2 Querying a single context: select, project

8.3.2.1 The select operation (� )

Often, given a context c, we want to select those triplets in the context’s contents that satisfy a
given predicate. We can do this through the select operation � , which takes as input a context
c and a predicate pred and returns a context denoted by � (c; pred ). The contents of the output
context consist of all triples in the contents of c that satisfy the predicate.

Definition 8.6 Select.
Let Q = � (c; pred ). Then:

cnts(Q) = fho;names(o; c); ref (o; c)i 2 cnts(c) j pred (o; c)g

where c is the input context,Q is the output context, and pred is the query predicate. �

Roughly, the equation Q = � (c; pred ) in the above definition should be seen as a query
definition and cnts(Q) as its answer.
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Figure 8.2: An information structure for students and employees

For example, assume that context cemp in Figure 8.2 contains employees. Then the operation

Q1 = � (cemp; �oe Nicolas 2 names(oe; cemp))

selects all employees of context cemp with the name Nicolas. In the query predicate, the symbol
�oe denotes that oe is a free variable. According to the definition of the select operation, this
free variable ranges over the objects of the context cemp, namely, o1; o2; o3; o4. The answer to
this query is the context Q1, shown in the following figure:

2 2

4

1 Nicolas, Nick: o c
Nicolas: o

Q

The predicate pred is a first-order predicate whose terms are constants, variables (repre-
senting objects, contexts, names, and paths) and primitive operations. In general, we allow
comparisons using boolean operators, such as =, 6=, <, �, >, �, �, �, 2. Furthermore, several
formulas may be combined into a larger formula using the boolean connectives and ( ^ ), or
( _ ) and not (:). Predicate variables other than o are quantified by for all (8) and there exists ( 9)
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quantifiers.

As another example, the operation

Q2 = � (cemp; �oe 9ce : ce = ref (oe; cemp) ^
9pe : match(ce; pe; address:city) ^

match(ce; pe; address:Heraklion))

selects all employees who live in the city of Heraklion. Note that ce and pe are bound variables
that take values in the set of contexts and reference paths, respectively. Function ref (oe; cemp)
returns the reference of free variable oe w.r.t. context cemp, i.e., it returns one of the contexts
c1, c2, c3 (call this reference ce). Context ce contains more information about the particular
employee represented by the object oe (such as his/her address, the company he/she works
for). Operation match now returns true if there is a reference path pe within context ce that
matches the name paths address:Heraklion and address:city, i.e. if ce contains an object
named address and the reference of that object contains an object with both names city and
Heraklion. This can be also expressed using generalized name paths as:

npaths ce(:address(:city&:Heraklion)) 6= ;

The answer of this query is the context Q2 shown in the following figure:

1 1

3 3

2 Manos: o c
Anastasia: o c

Q

Assume now that context cstud shown in Figure 8.2 contains students. Then the operation

Q3 = � (cemp; �oe 9pe : match(ref (oe; cemp); pe; address:Heraklion) ^ oe 2 objs(cstud))

selects all employees that live in Heraklion and they are students. The first condition is
checked through the formula 9pe : match(ref (o; cemp); pe; address:Heraklion), and the sec-
ond through the formula oe 2 objs(cstud). So, context Q3 contains the triplet hfManosg; o1; c1i.

As a final example, the operation

Q4 = � (cemp; �oe 9pe : match(ref (oe; cemp); pe; address:Heraklion) ^
oe 2 objs(� (cstud; �os

9ps : match(ref (os; cstud); ps; institution:universityOfCrete))))

selects all employees that live in Heraklion and are students at the university of Crete. So,
context Q4 contains the triplet hfManosg; o1; c1i.

Let us see an example demostrating the use of generalized name paths in the select opera-
tion. If we wanted to find all employees whose names start either with letter “M” or with letter
“N” and work for a company (we assume that the name of a company starts with the substring
“company”) we would issue the operation:

Q5 = � ( cemp; �oe ( 9rp1 2 rpaths cemp
((:M%)j(:N%)) : oe = last(rp1)) ^

( 9rp2 2 rpaths cemp
(:%:company%) : oe = �rst(rp1)))

The answer of this query is the context Q5 shown in the following figure:
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1 15

2 2

Manos: o cQ
Nicolas,Nick: o c

Note that the select operation can be expressed in a more user-friendly manner, using an
SQL-like syntax as follows:

Q = select (<name path>|<g.n.p.>) [<triplet variable>]
[ within context of <context id> | <context variable> | <name path>]
[ range of <triplet variable> in <name path> | <context variable>]
[ range of <context variable> is <name path>]
[ where <condition>]

where the select clause determines the triplets, which are selected from the context defined in
the within context of clause and which satisfy the condition described in the where clause. In
order to give more flexibility to the user we allow the use of variables. There are two kinds of
variables which can be declared and used within a select operation (all variables are prefixed
by the symbol “@”):

1. triplet variables, declared in the select clause, or in the range of - in clause, and

2. context variables, delcared in the range of - is clause. For example, range of @S is
Student, define the context variable S over the reference of objects with name Students.

In this syntax, users work with the names of name paths to determine the objects or the
contexts of interest. Names and name paths used in select operation are resolved w.r.t. the
context defined in within context of clause. The context in that clause can be determined either
by a context identifier, or by a context variable, or by a name path w.r.t. the current focuced
context.

Using this syntax, our previous examples can be expressed as follows (we assume that the
current focused context is the context IB):

Q1 = select Nicolas
within context of Employees

Q1 = select Employees:Nicolas

Q2 = select @X
within context of Employees
where @X:address:city and @X:address:Heraklion

The declaration “within context of Employees” express that we focus the query on the
context cemp, because this is the reference of the object oemp which is named Employees in the
current context (i.e., the context IB). Note that the name path is ommited in select clause and
in this case variable @X is defined over the triplets of context cemp. If a triplet variable is used
as the beginning of a name path the name path is resolved w.r.t. the reference of the triplet.

Q3 = select @X
within context of Employees
range of @S is Student
where @X:address:Heraklion and @X in objs(@S)
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Q4 = select @X
within context of Employees
where @X:address:Heraklion and

Student:@X:institution:universityOfCrete

Q5 = select (:M%)j(:N%) @X
within context of Employees
where :@X:company%

8.3.2.2 The project operation (�)

Sometimes we want to isolate certain elements of a context’s contents, such as the objects of
the context, the set of names bound to the objects, or the references of the objects. We can do
this through the project operations �O, �N , �R, that take as input a context c and return the set
of objects, the set of names, and the set of references of c, respectively.

Definition 8.7 Project.
Let c be a context, then

� �O(c) = objs(c)

� �N (c) =
[

o2objs(c)

names(o; c)

� �R(c) = fc0 2 CXT j 9o 2 objs(c) : c0 = ref (o; c)g

11

21

31

citcit Heraklion: o
Rethymno: o

Chania: o

ccitiesOfCrete: o

Figure 8.3: Cities located in the island of Crete

For example, assume that context ccit in Figure 8.3 contains cities located in the island of
Crete. We represent three of the cities, namely, Heraklion, Rethymno and Chania, by the objects
o11, o21, o31, respectively. Then, the operation

Q6 = � (cemp; �oe 9nc : nc 2 �N (ccit) ^
9pe : match(ref (oe; cemp); pe; address:nc))

selects the employees that live in a city on the island of Crete.
Note that the operation �N (ccit) returns a set which contains the names of all cities located in
Crete, i.e. �N (ccit) = fHeraklion;Rethymno;Chaniag. Additionally, note that the name path
address:nc contains the name variable nc. The answer of this query is the context Q6 shown in
the following figure:

1 1

3 3

6
Manos: o c

Anastasia: o c
Q

The project operation can be expressed in SQL-like syntax as follows:

projectO <context>
projectN <context>
projectR <context>
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8.3.2.3 Combining Contexts (� )

The construct operation combines a set of contexts to create a new context. It allows the user
to "customize" information by selecting portions of information from different contexts and
putting them together into a new context.

The construct operation takes as input one or more contexts and a predicate, and returns as
output a new context, denoted by� (c1; : : : ; cn; pred ), whose contents satisfy the input predicate.
In fact, the contents of the output context consist of new triplets which are constructed by
combining the contents of the input context(s).

Definition 8.8 Construct.
Let Q = � (c1; : : : ; cn; pred ). Then

cnts(Q) = fho;N; ri j pred (o;N; r; c1; : : : ; cn)g

where ci are the input contexts, Q is the output context, pred is the query predicate,
and o, N , r are free variables ranging over the set of objects, the power set of names,
and the set of contexts, respectively. �

For example, referring to Figure 8.2, the operation

Q7 = � (c1; �oa �Na �re
oa = o4 ^ Na = fAddresses of Employeesg ^
re = � (cemp; �oe �Ne �ra

oe : oe 2 �O(cemp) ^ 9ce : ce = ref (oe; cemp) ^
9o0a 2 �O(� (ce; �ox address 2 names(ox; ce))) ^
Ne = names(oe; cemp) ^ ra = ref (o0a; ce)))

creates a context which contains the addresses of the employees, each labeled by the names
of the corresponding employee. In particular, the following hold for the nested construct
operation:

1. the operation takes as input the context cemp which contains employees;

2. oe is a bound variable which ranges in the objects of context cemp; this is expressed by

9oe : oe 2 �O(cemp):

3. ce is the reference of object oe in context cemp, which contains more information about the
employee represented by oe;

4. free variable ox ranges over the objects of context ce with name address. This is expressed
by:

o0a 2 �O(� (ce; �ox address 2 names(ox; ce)));

5. free variable Ne is the set of names bound to object oe in context cemp. This is expressed
by:

Ne = names(oe; cemp);
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6. free variable ra is the reference of bound variable o0a in context ce, which contains more
information about the address of the employee oe;

7. the nested construct operation creates a new context c40 which contains triplets of the
form hoa; Ne; rai.

Finally, this query operation creates the context Q7, which contains the object o4 under the
nam Addresses of Employees and refers to context c40, i.e., the context created by the nested
construct operation. The result is shown in the following figure:

2

1 5

7

7

3 9

404
Q

c

c
Nicolas, Nick: o

Anastasia: o

c

c

Addresses_of_Employees: o Manos: o

We often need to restructure the contents of contexts either by eliminating useless informa-
tion or by adding new information. The construct operation can be used for this purpose. For
example, assume that the information we want to view for each employee is his/her address
and from the address only the city he/she lives in. To select the desired information and
eliminate the rest we perform the following query:

Q8 = � (cemp; �oe �Ne �r
oe 2 �O(cemp) ^
Ne = names(oe; cemp) ^ 9ce : ce = ref (oe; cemp) ^
r = � (ce; �oa �Na �ra

oa 2 �O(� (ce; �ox address 2 names(ox; ce))) ^
Na = names(oa; ce) ^ 9ca : ca = ref (oa; ce) ^
ra = � (ca; �oy ; city 2 names(oy; ca)))

This operation creates a new context (context Q8) for employees by selecting from the informa-
tion available for each employee that regarding his/her city of resedence and by eliminating all
other information. The selected information is placed into a new context structure, as shown
in Figure 8.4. Note that contexts c31, c32, c33, c35, c37, and c39 are new.

8

32
37

11

13
3

4
11

4

35

39

4

1

33

2

31

c

c

city, Heraklion: o

city, Athens: o

Nicolas, Spyratos: o
city, Heraklion: oManos, Theodorakis: o

Anastasia, Analyti: o

address: o

c

address: o

c c

address: o

c

Q

Figure 8.4: A new information structure for employees

This feature could be useful for web-based information bases, where there is a tremendous
amount of available information. It provides a means for selecting and organizing information
of interest.

We must stress that the construct operation allows users to reorganize the context structure
of an information base. This reorganization may involve the creation of new contexts by (i)
eliminating useless information from existing contexts, and (ii) combining information found
in different contexts. Thus, users can customize the information base according to their needs.
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Note that the construct operation can be expressed in a more user-friendly manner, using
an SQL-like syntax as follows:

Q = construct <object variable, set of names variable, reference variable>
[ range of <triplet variable> in <name path> | <context variable>]
[ range of <context variable> is <name path>]
[ where <condition>]

Using this syntax, query Q7 of our previous example can be expressed as follows (we
assume that the current focused context is the context IB):

Q7 = construct <@O,names(@O;@Ce),ref (@O;@Ce)>
range of @Cemp is Employees @Cemp

where
@O in projectO @Cemp

and
(@O in projectO

( select address
within context of @Cemp)

and
@Ce = ref (@O;@Cemp)

8.3.3 Traversal operations: path select

We often are interested not only in selecting objects satisfying some criteria but also in being
aware of the path we can follow to reach those objects. This is useful in order to (i) choose
the desired path to reach an object of interest, (ii) see in which paths the desired information is
embedded, and (iii) find different representations of the same object.

For example, if we want to reach an object o starting from a context c, we can select all
reference paths that start in c and whose last element is object o.

In order to perform selections of paths that satisfy a query predicate, we introduce two
path select operations: the reference path select, denoted by RP� , which returns a set of reference
paths, and the name path select, denoted byNP� , which returns a set of name paths. Intuitively,
we want this operation to take as input a context c and a predicate, and to return those reference
paths or name paths in c that satisfy the input predicate.

Definition 8.9 Path select.
Let c be a context and pred a predicate. We define the following path select opera-
tions:

1.Reference path select: RP� (c; pred ) = frp j pred(c; rp)gwhere rp is a reference
path starting in c.

2.Name path select: NP� (c; pred ) = fnp j pred(c;np)g; where np is a name
path starting in c. �

For example, refering to Figure 6.1, the operation

RP� (c0; �p last(p) = o1)
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selects all reference paths starting in c0 that leading to object o1. The answer to this query is the
following set of reference paths: f o4:o1; o00:o:o1 g. So, if we want to choose the shortest path
to reach object o1, we must choose the first of these paths. Apart from the shortest path, this
query shows us how many different representations exist for the same object and where they
are located in the context hierarchy. In our example, following the path o4:o1 we find object
o1 contained in context c3, with name Crete and with a reference c4 (this is a representation
of object o1 w.r.t. context c4). On the other hand, following the path o00:o:o1, we find object o1
contained in context c1, with the same name Crete, but without any reference (this is another
representation of object o1, in this case w.r.t. context c1).

Similarly, the operation

NP� (c0; �n last(n) = Crete)

selects all name paths in c0 which end with the name Crete, i.e. the set:
f Tourist Guide:Crete; Geography Of Greece:Islands:Crete g.

8.4 Additional operations on contexts: copy, deepcopy

The copy operation takes as input a context c, and returns as output a new context which
contains all objects of c with the same names and the same reference.

Definition 8.10 Copy.
Copy(c) = � (c; true)

The deep copy operation takes as input a context c, and returns as output a new context
which contains all objects of c with the same names and deep copies of their reference. The
output context is equivalent to c.

Definition 8.11 Deep copy.

DeepCopy(c) =

8>>>>><
>>>>>:

NIL; if c = NIL

� (c; �o �N �r

o 2 �O(c) ^

N = names(o; c) ^

r = DeepCopy(ref (o; c))); otherwise

(8.4)

As the deep copy of a context is based on deep copies of object references, the deep copy
operation is recursive. The recursion stops when the reference of an object is NIL.

These operations correspond to the copy and deep copy operations defined in Subsec-
tion 4.2.4.

8.5 High-level operations

In this section, we give examples of high-level operations which are defined using the basic
operations seen so far.

In our examples, we assume that the user interacts with the information base by (i) focusing
on a context (called the current context and denoted by CC), and (ii) searching for information
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starting from that context. During this interaction the user specifies objects of interest through
name paths, and indicates the appropriate actions to be performed on these objects. Here we
introduce two high-level operations: lookup and cross-reference.

Open(]N):

The user can focus on a context of interest using the operation Open(]N), where N is a name
path (starting in the current context and reaching an object of interest), and ]N denotes the
reference of that object w.r.t. the last accessed context in the matched reference path. For
example, in Figure 6.1, assume that the current context is context c 0. Then the operation
Open(]Tourist Guide:Crete) focuses on context c4. In visual user interfaces, the operation
Open(]N) can be implemented by clicking on a visual representation of N .

It is possible that N matches more than one reference paths, so ]N is ambiguous. In this
case the system returns the set of name paths that match each of these reference paths. Based
on these name paths, the user can select the desired reference path which determines the value
of ]N .

Lookup:

The lookup operation takes as input a name n and returns the set of name paths starting in the
current context and whose last name is n.

Definition 8.12 Lookup.
Let np be a name. Then

lookup(n) = NP� (CC; �Ni last(Ni) = n)

This operation is especially useful in environments such as the Web, where users seeking
information follow a three step approach: (i) they focus on a context c, i.e., a search engine, (ii)
they give a name n, i.e., a keyword they know, and (iii) they use lookup(n) to decide on which
context to focus next. Roughly speaking, the name n is a keyword that the user has in mind
and that describes the information he is looking for, and the result of the operation is the set of
all name paths reaching that information. Each of these name paths describes a different way
to reach the desired information.

For an example, refer to Figure 8.5. The information base context (context IB ) contains four
objects o5, o9, o13 and o1, representing cooking, botany, diseases and languages, respectively.
The references of these objects, i.e., the contexts c5, c9, c13 and c1, give furter information about
these topics.

Assume now that we have focused on the context IB (i.e., on the whole information base)
and we want to find information about the word Fennel, but we don’t know exactly where to
look. A solution is to issue the operation lookup(Fennel). The result is a set of four name paths
starting from the current context and whose last element is Fennel. This set consists of four
name paths (as shown below), partitioned into two blocks according to the object they reach:
the first three paths reach the same object o, thus constitute the first block, while the fourth
name path reaches the object o17 and constitutes (alone) the second block.

) Cooking:Recipes:Fish in oven:Ingredients:Fennel

Botany:Herbs:Fennel

Languages:English:Fennel
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5Cooking: o
7Fish_in_oven: o

5c

9c

Diseases: o
13c

10c

15Therapy: o
14c

8Ingredients: o

c7

12Parts: o
11c

Herbs: o 10

15c

8c

16c

17
Fennel: o

16
Leaves: o

17
Root: o

12c

1Lanuages: o c1

English: o2

French: o3

Greek: o 4

c2

3c

c4

...Fennel: o

...

...Fennel: o

Dyspepsia,

...

14Dijestion: o

Recipes:  o

10

9Botany: o

IB 6c

6

Herbs: o Fennel: o

Fennel: o

...

...

...

...

...

...

...

...

...

Φοινοκιο,
Μαραθος: ο

13

Figure 8.5: Example of high-level operations

) Diseases:Dyspepsia:Therapy:Herbs:Fennel

Diseases:Digestion:Therapy:Herbs:Fennel

Note that the above name paths can be used in further explorations concerning the word
Fennel. This can be done by “feeding” any of the above paths into the Open operation, seen
earlier. For example, if we wanted to find more information about Fennel as a plant, then we
would use the path starting from Botany, i.e., we would feed the path Botany:Herbs:Fennel
into Open, issuing the operation Open(]Botany:Herbs:Fennel). As a result we would focus on
the context c11 would then become the current context. Using this new current context we could
then explore first its contents (using select or project operations) and then those of c12 (using
again lookup, for example). In general, Open and lookup provide a powerful combination for
exploring a contextualized information base.

Cross Reference:

Suppose that an object o is reachable from the current context through a name path N . For
example, in Figure 8.5, the object o is reachable from the context c9 through the name path
Herb:Fennel. Suppose now that we would like to know the name paths through which that
same object o is reachable from another given context c. For example, in Figure 8.5, the object o is
reachable from context c5, through the name path Fish in oven:Ingredients. The operation
that helps us to do this is the cross-reference operation, that takes as input an object o and a
context c and returns the name paths starting in c and reaching o. In fact, the definition that
we give below is more general in that:

� the object o is specified as the last object of a reference path that matches a given name
path N ;

� the context c is specified as the last reference of a reference path that matches a given
name path Ncr.

As a result, N may specify more than one object and Ncr more than one context.
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Definition 8.13 Cross Reference.
Let n, ncr be two name paths. We define the following cross reference operation:

CrossRef (N; ]Ncr) = NP� (]Ncr; �Nx 9px : match(]Ncr; px; Nx) ^
9py : match(CC; py; N) ^ last(px) = last(py))

An application of cross-reference is for translating from one language to another. For
example, refer to Figure 8.5 and suppose that c1 is the current context. Consider now the
English word Fennel and suppose that we would like its translation in French. This can be
expressed as CrossRef (English:Fennel; ]French) which returns the name Fenouil. Similarly,
suppose that we would like to find the translation of Fennel into all languages contained in
Languages. This would be expressed as CrossRef (English:Fennel; CC) which returns

English:Fennel,

French:Fenouil,

Greek:ÌÜñáèïò,

Greek:Öïéíüêéï.

Note that there are two words in Greek for the english word Fennel, therefore the operation

CrossRef (Greek:ÌÜñáèïò, Greek)

would return ÌÜñáèïò and Öïéíüêéï.

Continuing our example, assume that we would like to know how the real world entity
expressed by the english world Fennel (i.e., object o) is being used in Cooking or Botany. To do
this, we issue the operations

CrossRef (English:Fennel; ]:: Cooking)

CrossRef (English:Fennel; ]:: Botany):

The symbol "::" is a scope resolution operator, and it means that the name path it follows is
resolved w.r.t. the information base context (context IB). The first operation would return

Recipes:Fish in oven:Ingredients:Fennel

and the second

Herbs:Fennel

Note that context c8 sees Fennel as an ingredient of a specific recipe, whereas, context c10 sees
Fennel as a herb from the Botany point of view.

Recall that the operation lookup(Fennel) found two different objects with name Fennel,
where the second can be reached by the name pathDiseases:Dyspepsia:Therapy:Herbs:Fennel.
To find out more about the meaning of that second object, we may try to find alternative paths
leading to that object in the information base. To do this, we focus on the information base
context IB and then, we issue the operation:

CrossRef (Diseases:Dyspepsia:Therapy:Herbs:Fennel; CC)
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which returns the input path:

Diseases:Dyspepsia:Therapy:Herbs:Fennel

and the paths:

Diseases:Dijestion:Therapy:Herbs:Fennel

Botany:Herbs:Fennel:Parts:Root:

The latter gives the information that the root of fennel is used in the therapy of dyspepsia.

In summary, the high-level operations that we have seen can be used for exploring con-
textualized information bases by providing support for (i) focusing on a context of interest
and navigating along refererce paths, (ii) searching in a context, and (iii) switching to different
contexts based on cross reference information. Similarly to these, other high-level operations
can be defined, providing the basis for effective information searching and correlation.

8.6 Summary

In this chapter, we discuss how to access information in a contextualized information base.
This is done through reference and name paths. These paths provide a means to traverse from
an object to another through object references. Then, we presented the basis for querying such
information bases by defining four fundamental query operations on contexts: select, project,
construct and path select. Finally, we present three high-level operations which allow the user
to (i) focus on the context of interest, (ii) search in a context using keywords, and (iii) switching
to different contexts based on cross reference information.
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Chapter 9

Applications

This chapter discusses how the contextualization mechanism presented in this thesis can sup-
port applications which rely on partitionings of an information base. Such well-known parti-
tions are database views, software engineering workspaces, versions, configurations, thesauri
fields and guided terms.

9.1 Views

Relational views. A view in the relational data model is defined as the (virtual) relation
derived from a query. Similarly to base relations, views consist of tuples. However, all
information contained in a view is derived from base relations or other views.

In our contextualization mechanism, the notion of view is fully supported by the notion of
context as follows: A view context is defined as the (virtual) context derived from a query. A
view context, like base contexts, consists of triplets (the contents of the context) that are derived
from base contexts or other view contexts. Recall that query operations (except for project and
path select) take as input one or more contexts and return as output a new context. Examples of
view contexts are given in subsection 8.3.2.

Object-oriented views. Object-oriented views [98, 2, 19, 94] (see [81] for a survey) are sup-
posed to be “upward compatible” with relational views, i.e., object-oriented views extend the
functionality of the relational views. The additional functionality of object-oriented views is
induced by the higher expressive power of the object-oriented approach.

Our contextualization mechanism supports object-oriented views1 as

1. It offers object-oriented structuring capabilities, i.e., classification, generalization, and
attribution abstraction mechanisms;

2. The object preservation property holds for the querying operations, i.e., objects contained
in the result of a query already exist in the input contexts, and no new objects are created.

Thus, the proposed framework can deal with issues such as
1We support only the structural part of the object-oriented views, whereas the functional part (methods) is not

supported yet.
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� Updates on base objects through context views (note that as the object preservation
property holds, we do not have to cope with the view update problem [44]).

� Integration of heterogeneous databases by interpreting them as contexts.

� Different interpretations of the same object, or in other words, multiple interfaces to the
same object. This is because an object may be viewed differently in various contexts.

� Reorganization of the class hierarchy.

Note that the view organization model presented in [98] can also be applied in our frame-
work.

As our framework proposes a new abstraction mechanism (in addition to traditional ones),
it can support more powerful and expressive view definitions. However, restructuring of
objects and contexts, as well as schema reorganization becomes more complex. View support
in our framework is still an open issue under consideration.

9.2 System decomposition

The decomposition of a system [134] is a process that results in a set of subsystems, where
every element in the system is included in at least one of the subsystems.

This definition of system decomposition carries a notion of context as (i) subsystems are
meaningful partitions of the system, and (ii) different sets of subsystems may result from
decompositions taken under different perspectives.

A system decomposition leads naturally into the notion of a level structure over a system.
A level structure formalizes the idea that sets of subsystems are “nested” within particular
systems which in turn are nested within other systems (this is similar to nesting of contexts).

Thus, the structure of system decomposition could be represented through the context
mechanism as follows:

1. A system is represented by an object (called system object);

2. Different decomposition perspectives are described by different contexts (called decom-
position contexts).

3. Subsystems are described in the reference of the system object with respect to a decom-
position context.

The decomposition of a system under a particular perspective can be represented by the
context-subcontext structure. However, the decomposition hierarchy conveys some additional
semantics. This is because all the information contained in the subsystem must be part of the
system as well. The system-subsystem relation is actually a special kind of context-subcontext
relation.

For example, the system of Figure 9.1(a) has been decomposed into two subsystems: an
inventory management subsystem, and a revenue and receivables subsystem. Figure 9.1(b)
shows the level structure for the system decomposition shown in Figure 9.1(a). The decompo-
sition comprises three (sub)systems: the accounting system itself, the inventory management,
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and the revenue and receivables subsystems. The level structure comprises two partitions:
one, Level 1, contains the accounting system itself; and the other, Level 2, contains the two
subsystems. Each system in the second partition is a subsystem of some system in the higher-
level partition. Figure 9.2 illustrates how the decomposition of Figure 9.1 is supported by our
context model.

Inventory_Item Replenishment

Order

Customer_Account Repayment

Revenue_and_Receivables

Inventory_Management

(a): Decomposition of a system

Level 1

Level 2

ReplenishmentInventory_Item Customer_AccountOrder Repayment

Accounting_System

Inventory_Management Revenue_and_Receivables

(b): Level structure for decomposition
Figure 9.1: System Decomposition
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Order : o6

c

100System: o 101Subsystem: o
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c1

2Inventory_Management: o

c

System: o100

3Revenue_and_Receivables: o 3 Order : oc

2

8

Inventory_Management: o

9

1Accounting: o

Revenue_and_Receivables: o3

2
Repayment : o

Figure 9.2: Decomposition of a system using contexts

9.2.1 Communication-based applications

This category includes applications that need a kind of communication to exchange informa-
tion. Examples of this kind of applications are workspaces, multi-databases, and modules.
Components of these applications exchange information by (i) establishing a communication
channel among them, and (ii) importing from or exporting to the communication channel the
desired information.
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In order to support such applications using our framework, we define the following high
level operations:

1. ccomm = SetUpCommunicationChannel c(o1; o2): sets up a communication channel among
the input objects o1 and o2 of a context c. This is done as shown in Figure 9.3. Specifically,
this operation establishes a link in c from o1 to o2, as well as a reference, ccomm, of that link
in c. The reference ccomm constitutes the context through which information is exchanged
between o1 and o2, and is returned by the operation.

2. Export c(o; ccomm): object o of a context c exports information from the reference of o in c
to the communication channel ccomm.

3. Import c(o; ccomm): object o of a context c imports information from the communication
channel to the reference of o in c.

An example of establishing communication channels between objects is shown in Figure 9.3.
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1 2
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5

2

c

c

Nikos: o

Anastasia: o

revision_A: o
revision_A: o

revision_B: o c
c

Manos: o

c

Figure 9.3: Communication channel

9.2.2 Thesauri management systems

In thesaurus management systems, two general approaches can be adopted to the organization
of the thesaurus terms [34, 115]:

1. organization into fields or disciplines;

2. organization by facets.

In practice these techniques are frequently combined: that is, a thesaurus may be organized
primarily into fields, and facets may then be introduced as the basis for organizing concepts
within a given field.

Fields Categories of concepts are initially grouped to reflect the various fields of interests of
its users. Terms which are usually associated with a given field, such as “art”, are brought
together, and are also effectively separated from those belonging to different areas of interest,
such as “economics” or “physics”.
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It is clear that the notion of field in thesaurus management systems can be modelled using
contexts as follows: (i) fields are represented by objects whose references contain detailed
information about them, and (ii) subfields are contained in the reference of the fields. For
example, consider a thesaurus devoted to “medicine”, which is organized into subfields such
as “injuries”, “diseases”, and “treatments”, but also includes a number of terms from other
disciplines, such as “management”, “law”, and “data processing”. This thesaurus can be
described using contextualization, as shown in Figure 9.4.
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cMedicine: o 66

c

c10

1

Figure 9.4: Representation of thesauri fields with contexts

Note that object o6 represents the part of the law disciplines used for medicine, and thus it
is shared by the fields “medicine” and “laws”.

Apart from modeling fields, the context mechanism can solve ambiguities that appear when
the same term is used in different fields to convey different meanings (homonyms).

Facets The notion of facet is more abstract than the concept of a field. When applying this
technique, terms are organized into classes or sets according to the basic kind of concept they
represent, with no initial regard for the field or fields with which a given concept is usually
associated. For example, the facet “concrete things” might be divided into “natural occurring
things” and “artificial things”. The facet “artificial things” might further distinguished into
“product” and “tools”, and the facet “tools” might further be distinguished into “hammer”,
“screwdriver”, etc.

In our model, a facet organization can be represented through a context hierarchy as follows:
(i) an abstract term is represented by a class, whose reference contains its divisions, and (ii)
concrete terms are classified into abstract terms through instance-of links. For example, “con-
crete things” is an object whose reference contains the divisions “natural occurring things” and
“artificial things”; the reference of “artificial things” contains divisions “product” and “tools”;
whereas objects “hammer” and “screwdriver” are instances-of the class “tools”. Moreover, the
facet classification carries ISA semantics, e.g. “tools” is a subclass of “artificial things”.

Node labels Node labels (also called guide terms) shows the point of view according to which
an abstract term in the facet hierarchy is divided into less abstract terms. For example, the
term “aircrafts” is divided into “freight aircrafts” and “passenger aircrafts”, according to the
“payload” point of view, whereas the same term is divided into “civil aircrafts” and “military
aircrafts”, according to the “user” point of view.

Node labels can be represented through a context hierarchy as follows: (i) the abstract term
is an object whose reference contains the node labels according to which it is divided, and (ii)
each node label has a reference that contains the divisions of the abstract term.
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9.2.3 Workspaces, versions, multiversion objects, configurations

A version can be thought of as an object whose reference contains more information about
the version. A multiversion object can be thought of as an object whose reference contains all
versions of the object, as well as a version history, i.e., derivation links (attribute links that are
instances of the attribute class derived from) from one version to another that indicate version
derivation. A configuration can be thought of as an object whose reference contains versions of
its components.

A workspace can be thought of as an object whose reference contains information about the
workspace. For example, the public workspace might contain multiversion objects, whose
reference with respect to the public workspace may contain all objects that represent fully
verified object versions, as well as its version history.

A detailed example about workspaces, versions, multiversion objects, and configurations
is presented in Chapter 5.
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Chapter 10

Conclusions and Future Work

In this thesis we deal with contextualization, an abstraction mechanism for information model-
ing, which allows partitioning and packaging of information added in an information base. In
particular, we define a notion of context and we address issues such as

1. contextualized naming,

2. operations on contexts,

3. properties of the operations on contexts,

4. interaction between contextualization and traditional abstraction mechanisms,

5. establishing a formal model for contextualization in information bases,

6. querying contextualized information bases,

7. applying context in areas requiring partitionings such as views, workspaces, versions,
thesauri fields and facets.

The aim of this thesis is to establish a formal notion of context in order to support the
development of applications which rely on partitionings of an information base, such as views,
workspaces, versions, fields and facets of thesauri management systems.

The modeling capabilities provided by contextualization abstraction mechanism are the
following:

1. Naming capabilities.

(a) An object can have zero, one, or more names within a context. If an object has no
name within a context is called anonymous. This feature is useful in the case that
we are not interested in naming the anonymous object or in the case that we don’t
know its name yet. If an object has more than one names within a context then these
names are synonymous for that object. We view synonyms as an alternative way to
externally identifying the same object.

(b) Two different objects can have the same name within a context. In other words, our
mechanism support homonymous objects. Ambiguities that may occur in referencing
homonyms are resolved by more names (unique in the context of reference), that is
by synonyms.
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(c) The same object can have different names in different contexts (in which it belongs).
In other words, names are context-dependent. This is very convenient, because a
name which has a clearly understood meaning in one context may not do so in
another.

2. Structuring capabilities.

(a) An object can be related to other objects through attribute, instance-of, or ISA links
within a context, i.e., attribution, classification, and generalization hierarchies are
context-dependent.

(b) Nesting of contexts. An object of a context can be associated with another context,
that we call its reference. The reference of an object within a given context can be
seen as a nested subcontext within that context.

3. Sharing capabilities.

(a) An object can belong to one or more different contexts, i.e., contexts may overlap.
This feature is useful when we want to view an object under different perspectives.

(b) The same object can have different references within different contexts. In other
words, references are context-dependent.

(c) Two different objects, whether or not they belong to the same context, or to different
contexts, can have the same reference. This is convenient, as a given context can be
reachable through different object paths. In application that needs communication,
this the context which is referenced by two or more different objects can be seen as
the shared space used for object communication and interoperability.

Our proposed mechanism offers several operations for maintaining contextualized infor-
mation bases such as operations for updating, copying, combining, and comparing contexts.
Moreover, our mechanism offers a general framework for querying contextualized information
bases by

1. accessing information in the context structure using name path expressions or paths of
objects (paths are formed by following the references of objects),

2. defining useful fundamental query operations on contexts such as select, project, generate
(which allows the reorganization of the context structure), and path select.

Adding contextualization to an information base provides several advantages, including
the following:

1. Reduction of modeling complexity: providing modularity we make the contents of an
information base more understood.

2. Expressiveness: providing context-dependent semantics, advanced naming capabilities
(e.g. homonyms, synonyms, anonyms, frugal names) handling of inconsistent informa-
tion, and interaction between contextualization and the traditional abstraction mecha-
nisms of classification, generalization, and attribution.
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3. Reusability: reducing development time, by affecting several reusability aspects: (i)
specification: partitioning of information makes information of each part to be more
understandable, and then makes it more likely to be reused; (ii) composition: allowing
restructuring of information; (iii) extensibility: a context or a copy of it can be easily
extended. Moreover, reusability is supported by abstract objects and refinement relation
between contexts we provide.

4. Focused information access: a context delimits the parts of an information base that are
accessible in a given way.

5. Flexibility: providing top-down, bottom-up, or mixed modeling techniques,

Further work on context mechanism includes dealing with

1. The incorporation of context mechanism, as prescribed by our model, in specific data
models, such as relational data model.

2. The application of context mechanism in heterogeneous information bases, where each
information base can be seen as a context. Research on this topic can use ideas of presented
in subsection 9.2.1, for support communication-based applications.

3. Restructuring of objects and contexts, as well as schema reorganization. Contextualiza-
tion contextualized information bases is more complex in restructuring of information
than this in conventional object-oriented frameworks.

4. Supporting types of partitioning the domain of discourse. Intuitively, these types corre-
spond to different criteria for decomposing (or partitioning) the domain of discourse. For
example, temporal criteria can be used to partition the domain of discourse into centuries,
each century into decades, each decade into year and so on.

5. Making the reference of an object as first class object (similar to attribute link) and allowing
an object to have more than one reference in a context. This offers more modeling
expressiveness and flexibility as it allows objects to have more than one reference in a
context being classified under different classes of references. Roughly speaking, these
reference classes can be seen as the criteria for partitioning the domain of discourse.

6. Investigation of additional high level query operations.

7. Investigation of additional properties of context operations.
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Appendix A

Operations on Versioning

In this Appendix, we give the detailed algorithms of the operations presented in Chapter 5.

Operation A.1 Check-out.
check-out(Input r : NP ; n : N ).

=� With this operation, a designer checks-out a new version of the version o (referred to as r)
from the public workspace into his/her private workspace. The new version is a copy of o and
is given the name n w.r.t. the private workspace. This operation also copies the history context
that contains o from the public to the private workspace. �=

1. CurrentWorkingContext= CC.

2. SCC(@:Public).

3. o = lookupOne(r).

4. o copy = copy(o).

5. hc = whereContainedIn(o;HISTORY ).

6. hc copy = copy(hc).

7. insert(hc copy;names(hc;HISTORY );Home).

8. insert(o copy; fng; hc copy).

9. updateHistory(o copy; hc copy).

10. If o 2 objs(CurrentWorkingContext) then deleteObj(o;CurrentWorkingContext).

11. insert(o copy; fng;CurrentWorkingContext).

12. CC = CurrentWorkingContext.

13. End.
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Operation A.2 Check-in.
check-in(Input r; h : NP ; n : N ).

=� With this operation, a designer checks-in his own new version (referred to as r) into the
public workspace with a name n. This operation also inserts the new version into the history
context referred to as h and will update the version history hierarchy. �=

1. o = lookup(r).

2. hc = lookup(h).

3. v = copy(o).

4. insert(v; fng; hc).

5. updateHistory(ver o; hc).

6. End.

Operation A.3 Export to group.
export(Input exportedListOfContexts : P(NP); exportedCxtName : N ).

=� With this operation, the designer creates a context c which contains a copy of the context
referenced by each name path ri contained in the input set exportedListOfContexts. Then, it
inserts the context c into the group workspace, under the name exportedCxtName. �=

1. toBeExportedCxt = createCxt(fg).

2. For each ri 2 exportedListOfContexts do

3. insert(lookupOne(ri); fstr(ri)g; toBeExportedCxt).

4. insert(toBeExportedCxt; fexportedCxtNameg; GROUP ).

5. End.

Operation A.4 Import from group.
import(Input r : NP ; n : N ).

=� With this operation, a designer imports the context referred to by r from the group workspace
into his/her private workspace. �=

1. SCC(Group).

2. c = lookupOne(r).

3. insert(c; fng;Home).

4. End.
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Operation A.5 Update history.
updateHistory(Input v : O; c : CXT ).

=� This operation creates a link object (named “derived-from”) from the version namedCurrent
w.r.t. context c to the version v. Then moves the name Current from the version currently
named Current to version v. �=

1. ccxt old = CC.

2. SCC(c).

3. curr = lookupOne(Current).

4. Create a link object l from object curr to object v.

5. Insert the pair l :fderived-fromg in lex(c).

6. deleteName(curr; Current; c).

7. addName(v; Current; c).

8. SCC(ccxt old).

9. End.

The operation copy(Input o : O; Output o0 : O) calls copyCxt(o; o0) in the case that o is a
context, or copies the simple object o to a new one o 0.
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