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[TooMovos

To @orvéuevo twv ekkpodv omd aoTplkd avtikeipevo - dotpo kol yorodieg -
elvon yevikd.  GOe xooukd ovtikeipevo yxbver pélo pe popen avépov kon poli
W ovtdv otpogopury. To kovtivotepo mopdderyno eivon BéRoro o MAtog.  Eivor
YVOOTE TOL GOLVOUEVO TOL OQEIAOVTOL O GOUOTION OV €pyovtonl omd Tov HAL0
oV otuéceapo TG YMG (TOAMKO GEANC, TPOPANUOTO GTLS EMKOWV®VIES KOTA TNV
dudpkelor TV NAokdv Kortonyidwv). To dootnuéniolo OdVGGENS - TO TPMTO TOL
to&ideye €Em omd To eminedo NG exKAEMTIKNG - Hog €de1&e 6Tt 0 nAMokdg Givepog
HeTAPAAETOL OPKETE KAUOMDG KIVOOUKOTE OO TOV LONUEPIVS TPOg TOVg TOAovS. To
dtaotnuikd tnAeckdomo Hubble éyel mopotnpricel mA100¢g exkpodv od oxeddv dAo
ToL €101 OLGTPIKMV OVTIKEUEVMV (TPWTOUCTEPES, OPOOTIPLOL KEVTPO YOAOELDY K.A.T.).
Ot o TOAAEG amd QTG €0V TNV LOPPN THOUKO TAGCUOTOC, EGTIOGUEVNC EKKPOTIC
TOVL EKTEIVETOL GE AMOGTAGELS YIMAOWYV OOTPOVOULKMYV LOVAd®MV omd TO KEVIPLKO
oo, TO jets.

IMopd TNV TANODPO VTAV TV EKKPODV, TOAAG EPMTHULATO TOV GUVOEOVTUL LE

TOV GYMNUOTIGUS TOLG, TOVE UNYOVICULOVS EMTAYVVOTNG TNG VANG HéCOL GE VT, TNG
eotioomng Ko NG UETOPOPAS eVEPYELOC, dev €xouv TANPmG orrovTtnOel. Mo amd Tig
dvokoAieg etvar 6TL BepnTIKE CLLTA M LOPPT] VANG - TO TAGCLLOL. - TEPLYPAPETON OO TO
-0KOUOL KOl GE TPATN TEEN - TOAVTAOKO GHOTNUA TV EE16HGEMY TNE LOLyVI I TOVIPO-
duvopiknig. Onmg etvor Yvootd, etvor un YPoUUKS cOOTNUO SLoPOPLK®V eELOMCEDY
LE UEPLKES TTAPOY YOG, O1 AVGELS TOVL OTOTOV OMONTEITHL VO TEPVOVV OO SLEPOPES
Kkpioweg emodbvelec.  Alyeg KAGooelg oEIGLUUETPIKAY, OTAGYL®OV AVGEWV €YOUVV
Bpebel, voBEToVTOG KATOLO0 YWPIOUS UETAPANTAOV OTIS CUAVTIKOTEPEG QLYVMOTES
GLUVOPTHCELS. ALTH N UEOOOOC - OMOKUAEITE OLTOOUOLOTNTO - UOG EMLTPENEL VO
00N YNGOVUE TO CVOTNUO O SLAPOPLKEG EELODOELS [LE OALKEC TOPOYHDYOLS, Ol OTOLES
elvo duvaTtév vo oV TILETOTLIGTOVV VITOAOYIGTIKA. H emAoy x®plopol petafAntdv
emAéyeton Le BEOT TO GLYKEKPIUEVO OGTPOPLGLKO TPOPANLLeL. Méxpt Twpo, GAEG Ol
AOoelg Tov €xovv Bpedel oviikovv Ge dVO KAGGGELS CLLTOOUOLOTNTOC: TNV LeECTUPBPLVT
(Parker 1958, Tsinganos & Trussoni 1991, Sauty & Tsinganos 1994) kou TNV OKTWVIKH
(Blandford & Payne 1982, Contopoulos & Lovelace 1994). Me cuoetnuo-
Tk Tpémo, ' ovt ™ TPy Ppédnkav GAeg ot AVGELS QLTWV TOV KAAGCEWDV
KoOwg ko wor Tpitn KAGGo™M, ot TG YeEVIKNG ovtoopoldtntos. Emiong €yet
oVOAVOEL 0 TOPAPETPLKOG Y DPOG GE KATOLEG OO QLLTEG TIG AVGELG Ko €xel LedetnOel
1N AGLUTTAOTIKY] TOVG GLUTEPLPOPAL.

To cuumepEoUOTO KO 1 EUTELPia TOL oMok T ON KE, fonO& 6TNV KOAHTEPT KOTOVO-
NoM NS PLOIKNG TOL oY VEL GTO TEPLPAAAOV GUUTOY MV BOPLTIKOV COUATOV.




Abstract

A widespread phenomenon in astrophysics is the outflow of plasma from the environ-
ment of stellar or galactic objects. This plasma outflows range from nonuniform winds
to highly collimated jets which are common to many stages of stellar evolution. For
example, collimated outflows are found around young stars (e.g., as in HH 30), older mass
losing stars (as in n-Carinae), symbiotic stars (e.g. in R Aqr), planetary nebulae nuclei
(as in the hourglass nebula), black hole X-ray transients (as in GRS 1915+105 and GRO
J1655-40), low- and high-mass X-ray binaries and recently also in cataclysmic variables
(e.g. T Pyxidis). Similarly, they are also found emerging from the nuclei of many radio
galaxies and quasars.

Nevertheless, despite their abundance the questions of the formation, acceleration and
propagation of nonuniform winds and jets have not been fully resolved. One of the main
difficulties in dealing with the theoretical problem posed by cosmical outflows is that
their dynamics needs to be described - even to lowest order - by the highly intractable set
of the MHD equations. As is well known, this is a nonlinear system of partial differential
equations with several critical points, and only very few classes of solutions are available
for axisymmetric systems obtained by assuming a separation of variables in several key
functions. This hypothesis allows an analysis in a 2-D geometry of the full MHD equations
which reduce then to a system of ordinary differential equations.

By a systematic method we construct general classes of exact and self-consistent
axisymmetric MHD solutions.

The unifying scheme contains three large groups of exact MHD outflow models, (I)
meridionally self-similar ones with spherical critical surfaces, (II) radially self-similar
models with conical critical surfaces and (III) generalized self-similar models with
arbitrary shape critical surfaces. This classification includes known polytropic models,
such as the classical Parker description of a stellar wind and the Blandford and Payne
(1982) model of a disk-wind; it also contains nonpolytropic models, such as those of
winds/jets in Sauty and Tsinganos (1994), Lima et al (1996) and Trussoni et al (1997).
Besides the unification of all known cases under a common scheme, several new classes
emerge and some are briefly analyzed; they could be explored for a further understanding
of the physical properties of MHD outflows from various magnetized astrophysical
rotators.

We also propose anew class of exact and self-consistent MHD solutions which describe
steady and axisymmetric hydromagnetic outflows from the magnetized atmosphere of a
rotating gravitating central object with possibly an orbiting accretion disk. The plasma is
driven by a thermal pressure gradient, as well as by magnetic rotator and radiative forces.
At the Alfvénic and fast critical points the appropriate criticality conditions are applied.
The outflows start almost radially but after the Alfvén transition and before the fast critical



surface is encountered the magnetic pinching force bends the poloidal streamlines into a
cylindrical jet-type shape. The terminal speed, Alfvén number, cross-sectional area of the
jet, as well as its final pressure and density obtain uniform values at large distances from
the source. The goal of the study is to give an analytical discussion of the two-dimensional
interplay of the thermal pressure gradient, gravitational, Lorentz and inertial forces in
accelerating and collimating an MHD flow. A parametric study of the model is given,
as well as a brief sketch of its applicability to a self-consistent modeling of collimated
outflows from various astrophysical objects. For example, the obtained characteristics of
the collimated outflow in agreement with those in jets associated with YSO’s.

General theoretical arguments and various analytic self-similar solutions have recently
shown that magnetized and rotating astrophysical outflows may become asymptotically
cylindrical, in agreement with observations of cosmical jets. A notable common feature
in all such self-consistent, self-similar MHD solutions is that before final cylindrical
collimation is achieved, the jet passes from a stage of oscillations in its radius, Mach
number and other physical parameters. It is shown that under rather general assumptions
this oscillatory behaviour of collimated outflows is not restricted to the few specific
models examined so far, but instead it seems to be a rather general physical property
of an MHD outflow which starts noncylindrically before it reaches collimation. It is
concluded thence that astrophysical jets are topologically stable to small amplitude, time-
independent perturbations in their asymptotically cylindrical shape. Also, similarly to the
familiar fluid instabilities these oscillations may give rise to brightness enhancements
along jets.
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Chapter 1

Introduction

In this Chapter we briefly review the available observations for the various
classes of cosmic jets. Then, we discuss the numerical and analytical related
studies with emphasis on the models which have been proposed so far for their
theoretical description.

1.1 Observed classes of cosmic jets

Outflows from astrophysical objects have been known since the beginning of
this century. The first highly collimated outflow (or jet) associated with an
astrophysical object, was observed on 1917. It was ”a line of matter connected
to the elliptical galaxy M87” [Curl8].
Much later, it was discovered that the nearest star, our sun, possesses an ex-
tended atmosphere, visible only during eclipses, the solar corona. The first
question about the solar corona was how far away it extends from the sun. The
idea of a hydrostatic extension of the solar atmosphere [Cha57], gives a pres-
sure at infinity that is much larger than the expected pressure of the interstellar
medium (ISM). Parker [Par58], was the first to answer this question correctly:
the solar corona undergoes a magnetohydrodynamic expansion, the so called
solar wind. This idea of the solar wind, is supported by the fact that comet
tails are oriented radially away from the sun. Furthermore, the solar wind was
confirmed in the early 1960s, by ”in situ” measurements of the plasma and
magnetic properties of the interplanetary medium, obtained from instruments
onboard spacecrafts. Thus, Parker was the first to show how cosmic outflows
can be described correctly by using magnetohydrodynamics (MHD).
To this day, the high resolution of the modern instruments, has enabled as-
tronomers to observe in the sky many similar outflows. Most of them are visible
due to the emission of lines of various common elements, such as hydrogen,
oxygen and sulfur.

The problem of how astrophysical jets are formed, has exercised the minds
of astrophysicists for nearly two decades [LB96]. The most acceptable theory
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today to describe the closest and better studied jets associated with young stellar
objects, is the following:

The outflow has two components, one from the disc of gas which surrounds
the stellar (or galactic) object (disc jet) and the other from the central object
(stellar jet). For the first, there is a magnetic field which has a strong poloidal
component pointing away from the disc plane. The field is tied to the disc
owing to the high conductivity of the inner disc material. Thus, the base of the
field is approximately in Keplerian rotation around the star (or galaxy). The
magnetized fluid is then magnetocentrifugally driven along the field lines, as a
bead on a wire [BP82]. The initial outflow speed is low and the plasma moves
along the magnetic field lines. In doing so, the fluid gains angular momentum
effectively until it reaches the Alfvén surface, where its kinetic energy exceeds
the magnetic energy. Then, near the rotation axis, the inertia of the rotating
wind enhances the toroidal component of the field to a point where it is capable
of collimating the outflow into a jet. Away from the rotation axis, the wind
expands freely outward, removing angular momentum from the disc. Of course
thermal phenomena are important, at least near the disc [OL98]. The pressure
gradient force, helps the gas to escape from the equatorial plane. Mass loss rates
1075 to 1078 My yr~?! are typical for this component of the outflow [PL95].

For the second component of the outflow, which has its origin at the stellar
surface, the explanation is similar. This component is believed to have higher
velocities (of order of the escape speed from the surface of the star) and lower
mass loss rates than the previous, the one from the disc.

In the last few years, an increasing number of YSO jets has been found where
the optical jet structures are associated with Herbig-Haro objects (HH). Almost
fifty years ago, George Herbig and Guillermo Haro independently discovered
a number of compact nebulae (shock-excited nebulae). By the early 1980s,
several HH objects were shown to be of partially ionized plasma moving away
from the energy source at speeds of 100 to over 1000 km/s [BMR]. They are
formed in molecular clouds containing young low-mass stars, and are considered
as important signposts of very resent star formation [RBG186]. Most often the
energy source, if found, is deeply embedded in the molecular cloud (only in a
few cases, an optically visible star has been identified as the driving source).
Millimeter wavelength observations of carbon monoxide (CO) revealed many
molecular outflows, of velocities 3 to 100 km/s. Astrophysicists now believe that
HH objects and CO outflows are different manifestations of the mass and angular
momentum loss phenomenon during star formation. Observations indicate that
jets ejected by young stars are the energy source for HH objects. When such jets
interact with CO molecular outflow, they accelerate the later. In some cases,
shock surfaces are formed by the interaction of faster jet fluid elements moving
into the slower molecular fluid elements. These may be the so called molecular
”bullets” [BMR].

Jets have ejection velocities of order of several hundred kilometers per second
for low mass stars, and in excess of 10% km/s for high luminosity sources. Jet
densities vary from 10% to over 10° em™3.

In the last few years, Hubble Space Telescope (HST) has been used to observe
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Figure 1.1: Jets from AGN, quasars.

several jets in the sky (in particular inside our galaxy). Up to now, highly
collimated jets have been observed from a wide variety of astrophysical objects:

active galactic nuclei (AGN)} & quasars, e.g., M87, 3C273, NGC 4261, etc.
young stellar objects (YSOs), e.g., HH30, HH34, HH111, etc.

planetary nebulae nuclei (PNN), e.g., the Egg Nebula, etc

high- mass X ray binaries (HMXBs), e.g., SS433, etc.

low- mass X ray binaries (LMXBs), e.g., GRO J1655-40, GRO J0422+32,
etc.

symbiotic stars, e.g., R Aquarii, CH Cygni, etc.
black hole X-ray transients or microquasars, e.g., GRS 19154105, etc.
cataclysmic variables (CVs), e.g., T Pyxidis, etc.

super soft X-ray sources (SSSs), e.g., CAL 83, 87, etc.

Next we briefly describe jets from these objects.

1.1.1 Jets from AGN

One of the most interesting objects in the universe is the active galactic
nucleus, which is generally believed to consist of a supermassive black hole
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(M210°Mg) and an accretion disk which surrounds it [LB69]. Then the huge
amounts of energy released will build up a pressure so great that it forces away
matter residing close to the black hole. The matter is forced away in the di-
rections offering less resistance, i.e. the directions normal to the accretion disk.
The out-thrown matter forms usually two streams. Some AGN have jets which
extend to a few megaparsec scales beyond the host galaxies. Their velocities
cover a wide range, from a few hundred kilometers per second to nearly the
speed of light [BBR84]. AGN jets are effectively adiabatic [Ray98]. They
shine via synchrotron emission from the most energetic electrons, which have
Lorentz factors 72103 [Bir96]. A typical example of an AGN jet is NGC 4261
and a jet associated with a QSO is 3C273, (Fig. 1.1).

1.1.2 Jets from YSOs

Stellar jets in the HST era can be used as ”"laboratories” to verify our models
of the MHD evolution of jets by direct comparison with observations. Stellar
jets are sufficiently near, so that we can measure proper motions, radial veloci-
ties and the location of components on the plane of the sky with high angular
resolution.

Jets from YSOs (e.g., from T Tauri stars) are highly supersonic, with Mach
numbers 2 20, and are very well collimated, at least several hundred AU from
their source. Their total length varies from a few hundred AU to several tenths
of a parsec. The jet is initially poorly focused before being asymptotically col-
limated into a ”column” with diameter of order a few tens of AU. The initial
opening angle is very large (260° for the HH 30 jet) [RMD™'96]. Observations
show that most jets from YSOs are associated with accretion disks. The radius
of the disk is about 100 AU, the disk magnetic field s 0.1 G and the mass loss
rate from the disk is ~ 107" Mg yr~! [KT88]. Jet velocities are usually in the
range 200-1000 km/s. Typical examples of such jets are HH30, HH34, HH47,
HH111 (Figs. 1.2-1.5).

1.1.3 Jets associated with PNN

Almost 95 % of all stars that we see in our own galaxy, including the sun, will
become one day ”planetary nebulae”. The other 5 % (those with masses larger
than 8 Mg) will end their lives as supernovae.

The name ”planetary nebulae” is a misnomer; it arose when over a century ago
astronomers saw these objects as compact, green-coloured objects that reminded
them the view of Uranus. These objects are not made of planets. They are the
gaseous and dusty material expelled by a geriatric star just before death.

The commonly accepted model for the formation of planetary nebulae is the
interacting stellar winds model. A solar mass star, while on the asymptotic
giant branch, losses mass steadily through a ”superwind” with a velocity of 10
km/sec and mass loss rate 10™* to 1075 Mg yr~!. Toward the end of the asymp-
totic giant branch stage the star switches to loosing mass in the form of a fast
wind with a velocity rising up to 2000 km /sec, albeit with a lower mass-loss rate
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Figure 1.5: HH30: The newly forming star is hidden behind the densest parts of
the disk. This protostar is 450 light-years away in the constellation of Taurus.
HH34: This protostar is 1500 light-years away in the vicinity of the Orion
Nebulae. HH47: The HH 47 system is 1500 light-years away, and lies at the
edge of the Gum Nebulae, possibly an ancient supernova remnant which can be
seen from Earth’s southern hemisphere.

The scale on the bottom left corner of each picture represents 1000 AU. All
images were taken with the Wide Field Planetary Camera 2 (WFPC2) in visible
light.
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1078 to 10~®Myyr~1. The fast wind catches up with the slow wind and drives
a shocked shell through it. A contact discontinuity is formed at the interface
between the shocked slow and fast winds. The slow wind shell is identified with
the visible boundary of the planetary nebulae. The outer edge of the shell is
the outward moving shock, whereas the contact discontinuity separates the shell
from the shocked fast wind material.

Deviations from sphericity are normally attributed to a nonuniformity in the
slow ”superwind”, which leads to an asymmetry in the shape of the shell
[VCB96, Che88]. See also [BK95]. Typical examples are the Egg Nebula,
the Siamese Squid Nebula, etc (Fig. 1.6).

1.1.4 Jets from X-ray binaries

X-ray binaries ' are binary stellar systems which are extremely bright at X-

ray wavelengths. They consist of an ordinary star circling around a collapsed,
relativistic object: a neutron star or a black hole [KK96]. A typical mass for
this object is one solar mass and a typical radius about 15 km. The gravity at
the surface of this object is enormous, so if any matter falls onto the surface, it
produces an enormous amount of energy, which we see as X-rays.

The companion star (a supergiant of approximately ten solar masses) is very
close to the compact object: typically its period is only a few hours. This
massive primary star usually possesses a strong stellar wind. The gravitational
pull of the compact object will lead to the capture of some fraction of this stellar
wind. This means that some matter spills off the surface, forms an accretion
disk and falls into the compact object, producing X-rays.

In some cases, the surface of the primary star, is near the Roche lobe of the
compact object. Then, the wind-supplied accretion will be augmented by a tidal
stream.

In every case when an accretion disk exists, a jet is usually observed. The
prototype of jets from such X-ray binaries is the famous SS433 wherein the
velocity of the ejected material is about 0.26 c.

1.1.5 Jets from symbiotic binaries

Symbiotic binaries are composed of two stars that orbit each other with a period
of one year or more. One star is a red giant with mass approximately one solar
mass but of course much bigger radius than the sun. The other star is a white
dwarf (a very compact and hot star). Our Sun will eventually become a red
giant, and later on a white dwarf, so symbiotic binaries tell us about the future
of our own star. The red giant is loosing material via a stellar wind, and this is it
up by the nearby white dwarf. The system creates both the nebula and the jet.
A typical example of this kind of binary system, is R Aquarii. The jet from this
binary has been examined by many authors [KHM83, DBL 195, Kaf96]. Optical
images show two knots of emission (Cy,C3) which consist of several discrete

IHigh- or Low- mass X-ray binaries; it depends on the mass of the ordinary star [UKG98].
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Figure 1.6: A montage of images of planetary nebulae made with the HST.
These illustrate the various ways in which dying stars eject their outer layers as
highly structured nebulae. In the left panel, the

M2-9 ”Siamese Squid Nebula” or " Twinjet Nebula” while the other nine from
left to right and from top to bottom are

NGC 6826 ”Blinking Eye Nebula”

MyCn 18 ”Hourglass Nebula”

NGC 3918

CRL 2688 ”Egg Nebula”

NGC 6543 ”Cat’s Eye Nebula”

”Hubble’s Double Bubble” (from the dying star Eta Carinae)

NGC 7009 ”Saturn Nebula”

”"Red Rectangle”

NGC 7662 ”Blue Snowball Nebula”.
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features, which are part of a continuous, well collimated stream of material. It
is now thought that these discrete features are condensations associated with the
expanding ”inner” nebula which have been shock excited by a highly collimated,
supersonic wind (with velocity 400-600 km/s) from the binary system [Sol92].

1.1.6 Jets from black hole X-ray transients

The well known example of this category, is GRS 19154105, a superluminal
source. It is the first source where the proper motions of both the approaching
and receding condensations can be detected and measured 2. It is commonly
believed that in these accretion-powered X-ray sources, the acceleration and
the collimation of the ejection material is magnetohydrodynamic. Observations
suggest that this superluminal motion corresponds to actual bulk motions of
massive plasma clouds rather than the propagation of shocks [MR96]. In the
later case, one would expect more erratic fluctuations in the proper motions
than the observed ones. The velocity of the ejected material is highly relativistic
V =~ 0.92c¢.

1.1.7 Jets from cataclysmic variables

Cataclysmic variables are characterized by their eruptive behaviour, induced
by mass transfer between two stars. The secondary star is typically a Main
Sequence star that is less massive than its compact companion, which is filling
its Roche Lobe and transferring mass to the primary. These systems have small
orbits, with orbital periods typically ten hours. The first observed collimated
jet associated with a CV isin the nova T Pyxidis [SLSC97]. Typically, outflows
from CVs are observed to have velocities in the range 3000-5000 km /s (measured
by the Doppler shifted emission lines); these are of the order of the escape
velocity from the central object.

1.1.8 Jets from SSSs

They consist of a white dwarf which accretes mass from an evolved companion
at high rates (21077 Mgyr~1), that hydrogen burns steadily on the white dwarf
surface [vdHBNR92]. This is the energy source which is always needed in order
to have collimated outflows [Liv97]. From the blue- and red- shifted emission
lines the jet velocities are of the order of 103 km/sec.

1.2 The MHD theoretical description

Among the main goals of research on jets associated with YSOs is to probe the
nature of the physical processes that operate within several Astronomical Units

?In the case of quasars, only the proper motions of the approaching condensation have
been measured.
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(AUs) of a young star, to learn about the potential existence of physical condi-
tions that might lead to the formation of planets, and to understand how stars
and planetary systems form. The interplay between models and observations
may help us in estimating quantities for the star itself, or in understanding the
energy transfer mechanisms which is a yet unresolved problem in astrophysics.
Analogously, the research on jets from compact objects and AGN is alming
at understanding the extreme physical conditions prevailing around stellar or
galactic black holes. In all cases, jets can be regarded as probes for understand-
ing what 1s happening in exotic and enigmatic environments directly inaccessible
to present day observations.

In the various mechanisms which are currently being investigated for acceler-
ating and collimating astrophysical outflows in galactic and extragalactic scales,
magnetic rotator forces seem to play a rather dominant and crucial role [LB96].
First, thermal gas pressure driven models are based on the de Laval nozzle anal-
ogy of the solar wind [Par63, LS97]. This requires temperatures of order 10°
K to drive the observed several 100 km s~! flows in YSO jets. However, if the
temperature in the source region of YSO jets is also 10* K as observed along
the jets, these temperatures are two orders of magnitude lower than required.
Of course this limitation does not apply to the X-ray emitting coronae around
stars and AGN. Second, magnetic pressure driven models are based on the un-
coiling spring analogy and have been examined by Draine [Dra83] and Uchida
& Shibata [US85] (see also Contopoulos [Con95]). There, it is assumed that
a toroidal magnetic field By is created and highly amplified by the winding-
up of its field lines by a radially collapsing and non-Keplerian rotating disk.
Plasma is then accelerated from the disk in the poloidal direction by the ac-
tion of the resulting torsional Alfvén waves. A critique usually attributed to
these models of transient bipolar outflows has to do with the Parker instability
of the accumulated strong azimuthal magnetic field [Par66, MHSH88]. Third,
magnetocentrifugally driven outflow models are based on the classical bead on
a rotaling rigid wire analogy [BP82, PP92, CL94]. There, the magnetized fluid
is flung out from the surface of the accretion disk, provided that the poloidal
field lines are inclined by less than 60° from the disk midplane, although in
a relativistic treatment outflows very close to a sufficiently fast rotating Kerr
black hole will be launched even when the initial angle is close to 90° [Ca097].
An idealized situation would have the poloidal field lines perpendicular to a
thin disk. For distances further away and for not a very rapid rotation, the
less than 60° angle requirement would not be satisfied, as noted by Blandford
& Payne [BP82], not to mention other inherent difficulties of these self similar
models, such as the pinching off in the jet radius at finite vertical heights and
the singular electric current density at the symmetry axis.

In another type of model, the interaction of magnetosphere with its sur-
rounding accretion disk, results in the opening of some of the magnetospheric
field lines. Thus the disk-magnetosphere boundary creates a stellar wind, the
so called "X-wind” [SLRN88, SNOT94, NS94].

Heyvaerts and Norman [HN89] have been shown that polytropic outflows
either become cylindrical at large distances from the source or parabolic, de-
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pending on whether they carry an electric current to infinity or not.

Definitely, magnetic fields play an important role in the described outflows.
The part of physics which describes this kind of matter is magnetohydrody-
namics. As we may see in the next Chapters, it consists of a system of partial
differential equations (PDE). Up to now, researchers follow two different ap-
proaches to solve the MHD equations:

1. Solve the time-dependent problem. To find a steady state is a difficult task.
Instead they follow the evolution in time of some initial configurations.
They choose an initial state and numerically find a steady state (if exists).
For example Bogovalov [Bog96, BT99] studies what happens if plasma
is outflowing in a rotating monopole-like field. Some researchers have
developed the PPM numerical code [Bod98, CW84]. However, some of
these studies have problems in satisfying Maxwell’s equation V-B = 0. For
time dependent numerical simulations see also [SU90, WS93, GWB97].

2. Solve the time-independent problem. The steady state equations, which
we try to solve in the following Chapters of this thesis, are rather difficult
to be solved due to the fact that the equation for the poloidal magnetic
field is a mixed elliptic-hyperbolic partial differential equation (PDE). Also
there are various singular points, the position of which is not known a-
priori, but can be determined only simultaneously with the solution. These
steady state equations have not be solved yet numerically.

Here, we shall solve them quasi-analytically, i.e. after a judicious separa-
tion of the variables we solve numerically the resulting ordinary differential
equations (ODE).

We concentrate on the dynamics of the flow and not on the energetics,
since the later is not known yet (even for the sun, we don’t know how the
solar corona is heated to high temperatures).

1.2.1 The hypothesis of self similarity

The investigation of plasma equilibria is one of the most important problems
in magnetohydrodynamics (MHD), and arise in a variety of fields, such as ther-
monuclear fusion, astrophysics and solar physics, to mention just a few.

At present, difficulties associated with describing fully three-dimensional (3-
D) equilibrium configurations are far from being resolved. For that reason,
considering configurations with additional symmetries is imperative from the
mathematical point of view. Fortunately, these configurations are the most
interesting and important ones from the physical viewpoint as well. In many
astrophysical situations (solar wind, outflows from YSOs, AGN, etc.) and in
thermonuclear fusion (tokamaks) axial symmetry is appropriate, in solar physics
(evolution of solar arcades) translational symmetry is a dominant one, etc.

As with any fully MHD approach and despite of the simplifications of steadi-
ness and the axisymmetric geometry, several approximations are still unavoid-
able in order to obtain exact solutions useful for an understanding of the MHD
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mechanism for the initial acceleration and final collimation of astrophysical out-
flows. Thus, one simple analytical way out is the use of self similarity. This
hypothesis allows an analysis in a 2-D geometry of the full MHD equations which
reduce then to a system of ordinary differential equations. The basis of the self
similarity treatment is the assumption of a scaling law of one of the variables as
function of one of the coordinates. The choice of the scaling variable depends
on the specific astrophysical problem.

Several models self similar in the radial direction have been investigated
to analyze the structure of winds from accretion disks [BP82, CL94, LCB92,
Li95, Li96, Fer97, Ost97]. In these models that cannot account however for the
flow along the polar axis, the driving force and the collimation derive from a
combination of the magnetic and centrifugal forces. The absence of an exact
crossing of all the existing critical points in the solutions presented in these
papers prevents from considering their conclusions as definitive.

In a series of studies, solutions of the MHD equations that are self similar
in the meridional direction have been also analyzed [TT90, TT91, TS92, TS92,
TT93, ST94, TTS97]. Such a treatment allows to study the physical properties
of the outflow close its rotational axis. As in this region the contribution to
acceleration of the magnetocentrifugal forces is small, the effect of a thermal
driving force is essential. This implies also that the structure of the gas pressure
in the flow is essential.

Two main classes of these self similar solutions exist depending on whether
the components of the pressure gradient along the radial and meridional di-
rections are or not related. In this second case the shape of the streamlines
and fieldlines is prescribed ‘a priori’, and the main features of the dynamical
variables are deduced from the integration. In particular, it has been shown
that acceptable solutions for magnetized flows with asymptotic superAlfvénic
velocity exist only when rotation is included [TT91, TT93, TTS97]. As a conse-
quence of this study it seems that even pressure confined jets from slow magnetic
rotators need magnetic fields and rotation. In the other case, in which the two
components of the gas pressure are related, the structure of the streamlines is
deduced as a self consistent solution of the MHD equations.

The solutions which we examine in the rest of this thesis, are steady, ax-
isymmetric, nonrelativistic and can be used in order to describe jets from YSOs
and PNN. They may also be used in addition to understanding key-elements in
the physics of MHD outflows, as initial states for a perturbation analysis, or, to
test numerical codes.
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Chapter 2

MHD equations

In this Chapter we derive the basic equations which describe plasma outflows
from various astrophysical objects, as those discussed in the previous Chapter.
Matter is regarded to be fully ionized and nonrelativistic while quantum phe-
nomena are negligible. Examination of the outflows in terms of particle orbit
theory is useful in certain situations; however, it is adequate only when the
number density of particles is low enough for their interaction to be ignored.
On the other hand, when collisional effects are not negligible we use instead
the magnetohydrodynamic (MHD) approach which we shall invoke in all this
thesis. The MHD description of the plasma essentially describes how inertial,
electromagnetic, gravitational and pressure gradient forces interact in a fluid.
When we assume the fluid approximation we mean that a given particle remains
reasonably close to its neighbouring particles during time scales of interest, so
we may divide the plasma into small fluid elements and examine the motion of
these ”particles”.

In this approximation we get equations for the basic physical quantities of the
plasma (including the observable ones). One of the principal goals of this thesis
is then to find analytical solutions of these equations.

2.1 Deriving the equations

The sun and the other stars are hot enough to be almost completely ionized.
The interstellar gas and the various outflows in the ISM are also ionized, due

to the action of stellar radiation. This means that almost the whole universe

(about 99 % ) can be regarded to be in the plasma state. The plasma state is

usually called the fourth state of matter (the other three being the solid, liquid

and gaseous).

By a plasma state, we mean a partially or fully ionized gas which contains

enough free, charged particles for its dynamical behaviour to be dominated by

electromagnetic forces [BS69].

In Fig. 2.1 it is shown the area occupied by classical plasmas which is bounded
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Figure 2.1: Classification of plasmas in a density-temperature plane. The var-
lous plasmas in our universe occupy the area indicated by the corresponding
number.
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by some curves indicating the validity of the corresponding governing equations.
In this n — T plane we distinguish the following domains:

o kT < m.c? | i.e., the plasma is nonrelativistic.

e kT > I; , i.e., the plasma is almost completely ionized (from the Saha
equation the number density of the ions divided by the number density of
the hydrogen atoms is proportional to e~ /%7 where E; is the ionization
energy of the atom).

o kT > e® , i.e., the plasma is ideal. This means that the Coulomb in-
teraction potential ® is negligible compared to the thermal energy of the
particles. This also means that nl3,, the number of particles into the
Debye sphere is large, ni?, > 1.

e kT > Fp , where Er is the Fermi energy.
This means that quantum phenomena are negligible because the mean dis-
tance between the particles is much larger than the de-Broglie wavelength

h/me (2kT/m.)"?.

From Fig. 2.1 it follows that this region of classical plasmas contains almost
all non-relativistic gases in the atmospheres of stars and galaxies. In order to
derive the relations between the observable quantities (which are functions of
space and time), first we remark that matter exhibits a fluid behaviour (the
collisions are not negligible so the orbit theory is not valid here). This fluid
contains two species: electrons with number density n., and ions (protons) with
number density n;. Approximately this fluid is neutral, so n. ~ n; (only in
spheres with radius smaller than the Debye length {p, which is much less than
the length scale of the fluid, the electric potential ® is not zero).

The basic description of a classical plasma is given by the kinetic theory of gases
which uses statistical mechanics. For each of the species we define the distribu-
tion function f.; (¥, v,t) such that the quantity f. ;(7,¥,t)d7d¢ represents the
probability of finding particles (protons for the ”i” and electrons for the ”e”)
within the 6-dimensional volume element d7d¥, which contains the point (7, ¥)
in coordinate and velocity space (phase space) [BS69, Fre82, Tsi92].

The mean value of each quantity can be found if we know this distribution func-
tion. For example, the number density of particles in a 3-dimensional volume

element dr is
neyi (7?,15) = // fe,i (7?, 17,15) df;

where the integration is in all ¢ space, and the mean velocities for ions and

electrons are .
V() = /// #f.i (7,7,1)d7.
Ne g

The total derivative of this function f.; with respect to time is not zero due to
collisions :

dfei _ (0fei Ofci  (~ @\, o (Fi <\, _ (0f
W—( ot )Cvor, E) +(U v)fe,z‘i‘(mei vv) fe,z—( ot )C

)
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where ﬁe,z’ is the total force acting on electrons and ions (Lorentz force, gravi-
tational force, ratiative force e.t.c.). This equation is the kinetic equation in its
most general form.

If the collision term (the RHS of the previous equation) is given on the basis of
the two-body interaction [BS69] we obtain the Boltzmann equation. By taking
various velocity moments of this equation we obtain relations between functions
of space and time only (like the observable quantities). In particular, the zero-
order moment of the distribution function corresponds to the number density,
the first-order moment to the mean velocity, the second-order moment to the
pressure and temperature and the third-order moment to the heat flux. The

scalar pressure can be defined by P.; = % /// vzfeyi (7, ¥,t) d¥. It must be

noted that f.; in general may not be isotropic in velocity space, in which case
the concept of a scalar pressure may be inappropriate. In this case we must take
into account all the components of the pressure tensor [Tsi92, GR95]. But these
equations are not all very useful because there is a closure problem involving
moments of higher order: there is always one more variable than there are equa-
tions. An approximate solution to this problem is the ideal MHD description
we discuss in the following.

First we introduce single-fluid variables:

P = P, + P; , total pressure,

p=n.m.+ n;m; & n;m; , total mass density,

V= (nemev; + nlmlv;) [ (neme +nymy) & 172', (because m; > m, while as we
shall discuss later V; 17;), bulk flow speed (momentum of the fluid),

8§ = neqe + n;q; = (n; —ne) | €|, total charge density, and

J= neqev; + niqﬂz, current density.

Next, if we assume that the distribution function is close to a Maxwellian one,
(collisions, being a random process, tend to smooth out any anisotropies so that
within a few collision times the local distribution functions for both, ions and
electrons, approach Maxwellian distributions), we get to the lowest order the
equations (for Maxwellian distributions, P, = P; = P/2):

(% +V. ﬁ) p+ pﬁ V=0 (continuity equation),

a = = hd = = ]_ =g — = —

p (E +V. V) V==-VP+4+6E+—-Jx B—pVV+ Frqq (momentum equation)
c

where V is the gravitational potential and ﬁmd is the volumetric force due to

radiation (this equation is often called the Euler equation-Euler(1755)),

d - = P - =
— 4V -V )] ———+4 PV -V = ¢ (energy equation
p<6t+ )(F_l)er ¢ (energy eq )
with T' the ratio of the specific heats of the gas: T' = ¢,/¢,. The volumetric
heating rate ¢ is the sum of all heating sources. There are heating fluxes due
to particle conduction, due to the net radiation, to the nuclear reactions, to
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viscous and wave heating, ohmic dissipation etc.
Using the continuity equation, the last relation is equivalent with to first law of
thermodynamics

B pbd (P B d P 4P d (1
=1 1 ra ~la (T'—=1)p dt\p)]| "
Note that the comoving derivative d/dt = 9/0t + V.V for each function of
space and time, represents the temporal changes within an element moving with

velocity V.
These equations together with Maxwell’s equations and Ohm’s law

V-B=0 (no magnetic monopoles exist)

V.- FE=4n6 (Gauss law)

-~ - 47 - 10E

VXB:%J—I—E%—t (Ampere’s law)
-~ - 10B ,
VXE_—EE (Faraday’s law)

E=—--VxB (Ohm’s law for a perfect conductor)
form a closed system (for a known volumetric heating rate ¢). The fields E , B
are in inertial frame.

In these equations, because
ne & n; , 6 = 0 (quasi-neutrality
of plasma), the force associated
with the electric field in the mo-
mentum equation is negligible
(it is much smaller than the Lorentz
force).

Because the distribution func-
tions for ions and electrons are
almost equal to each other (both
are close to Maxwellian distri-
butions), the velocities Vx~V:

: this is the reason why we may

see the motion of a plasma as
the motion of a neutral gas with ~ Figure 2.2: Plasma outflow from a cosmic ob-

velocity V. Though these ve- Ject
locities are close to each other, they are not equal, and a nonzero current density
is produced.
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2.2 Integrals for steady flows with an ignorable
coordinate

In this section we present the Euler-Maxwell equations for the steady state case
(which means that all procedures are exactly the same in all times) and when
one coordinate of the system (x1, 22, #3) (say x3) is ignorable (which means that
all physical quantities depend on (z1 , #z) alone). For example, if the outflow is
steady and axisymmetric, then the coordinate ¢ is ignorable and all quantities
depend on (w, z) in cylindrical coordinates (z,w,¢), or on (r,#) in spherical
coordinates (r,6,¢).

With ﬁ = 0 the MHD equations are:

ot

- 15 o

E=—-VxB (2.1)
C

- [ -
J=-—VxB 2.2
VX (2.2)
f= 1. F (2.3)

T d4g '

V-B=0 (2.4)
v (pﬁ) =0 (2.5)
ﬁx(ﬁxé)zo (2.6)

X é) x B — pﬁV + ﬁmd (2.7)

(
Rl (e e

0 -
with B 0. From Eq. (2.4), there is a function A (z1,x3) such that B =
T3

VA x 61‘3 + 53 =V x (Aﬁxg) + 53. Similarly, from Eq. (2.5) there exist a

function ¥ (z1 , z3) such that 47Tp(7 = V¥ x §x3—|—47rp(73 . From Eq. (2.6) there
exist a function ®q such that

V x B= V&, (2.9)
. . . . - = 1= =
(this function is proportional to the electric potential since £ = —=V x B =
¢
- 0P
—V (®g/¢)). From the &3 component of Eq. (2.9) (if we assume that 6—0 =0
T3

or equivalently 3 = 0, ! such that there is no electric field in the ignorable
direction) we have ¥ = ¥ (A). If this is the case, the components of V' and B

ITn [Con94] the axisymmetric case with E3 # 0 is examined.
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on the plane (21, x3) (which are usually called the poloidal components, (_/;, , ép

respectively) are parallel to each other : I_/;,//EP. Next Eq. (2.9) together with
the Z3 component of Eq. (2.7) gives that

d®g

Py = P (A) From now on we put o1 Q(4), (2.10)
= > hIQU, — LTy

B3 = S ettt 2.11
3= Vs 1— 92 /4mp (2.11)

— -~  hIQ — LU2 /4
AR L bbb Vi (2.12)

1— Y2 /4mp

d¥ (A)

with L = L(A) , ¥, =
system associated with the x3- coordinate.
So from these integrations we have

and hg (21, #2) the line element of the coordinate

- o > - hIQU, - LU,
B=VAx Vg + Vg 34— 724 2.13
1— 92 /4mp (2.13)

O - > hiQ — LU? /4
7= TAG U o Gyt Vg 2t LT ATy (2.14)

d7p 1— Y2 /4mp

together with the &, &3 components of Eq. (2.7) and Eq. (2.8).

The vector Eq. (2.7) leads to two scalar equations in any two independent di-
rections (&1, #2) on the poloidal plane. We symbolize the #; component (which
contains the derivative 9P (x1,x3) /0x1) with M,, = 0 and the #; compo-
nent with M;, = 0. So the momentum equation can be written in the form
Mxlﬁl‘l + szﬁl‘z =0.

If we know the volumetric heating rate ¢ or the relation of ¢ with the functions
p, A, P and the integrals U4 , L 2 then the previous equations may in general
be solved to give p, A, P.

The integrals ¥, ; L, Q, in the axisymmetric case where the ignorable coordi-
nate is ¢ and ﬁqb = qg/w ,hs = w = rsind | have a special physical meaning :

e first A is the magnetic flux function, which means that the magnetic field-
lines in the poloidal plane (v, 6) or (w, z) are the lines where the function
A is constant

e near the stellar surface when the density is big enough, so ¥?% /4rp < 1
we have Vy = @, so Q is the angular velocity at the stellar base. If Q
depends on A then we have a differential rotation (each line A=constant
has different angular velocity @ = Q (A)). In general,

. . T, - .
V=—"B4(Q)x7=—"B+ Quwdo.
4mp (22 x 7 4mp +Qw¢

e Q is related with the electric field: E = —

|

. 1 -
VxB=—--QVA.
C
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e [ is the total angular momentum carried by the fluid and the electromag-
netic field, since L = w (Vy, — By /¥ 4).

e ¥, is the mass to magnetic flux ratio.

v
Note that V1/By = V3/By, = V,/B, = 4—A where V), , B, are the poloidal
™
components of ((7 , é) respectively.
The ratio ¥% /47p is the square of the Alfvén Much number M?, since M? =
V2V, = 9% /4mp with Vi, = B, /\/47p the poloidal Alfvén velocity.

2.2.1 Other forms

The MHD equations can be also derived

e from the covariant differentiation T;ﬁ = 0 of the energy-momentum tensor
TP = Tﬁgid + 7% where Tﬁgid = (e + P)u®u’ — Pg®" and T are the
stress tensors for the fluid and electromagnetic field respectively (in the
limit V/e < 1).

e is the proper internal energy density, P is the proper pressure, ¢®” is
the metric tensor and u® is the fluid 4-velocity [LL75, Cam86, LMMSS86,
BT99]

e as the minimizing Euler-Lagrange equations, from a single variational prin-
ciple [HO78, RP94, GL96].

2.3 Appendix 2.A: Alternative forms of reduced
MHD equations

2.3.1 General forms

Assume a generalized curvilinear orthogonal coordinate system (z1,zz,z3),
with line elements h; (z1,23) ,4 = 1,2,3, wherein the coordinate z3 is ignor-
able. We introduce the square of the Alfvén Mach number M? = ¥? /47p and
S = V%/24V — h3QB3/¥ 4. Then the density is p = ¥% /47 M? while the
components of velocity and magnetic field are

1 04 1 04 U, h30-1L q (2.15)

1_h2h361‘2’ 2= hlhgal‘l’ 3= h3 1—M2 an )
= Mg = Mg, g, o DRSO LA (2.16)
1_\IIA 1, 2_\IIA 25 3—h3 1_M2 .

Also we assume that the radiative force is negligible compared with the other
forces in the momentum equation.
The remaining equations are the #;— and &3— components of the momentum
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10P 10P
equation, M,, = 0, or 6—8 = __8_ and My, =0 or 6—8 = __3_ respec-
Oxq p Oz Oxa p Oxs
tively. These two equations can be manipulated in the form (using the Poisson
_0f10fy  0fL 0f2 ) )
brackets {fi, fo2} = =— - — === |[Tsi82], or the Jacobian of the two
81‘1 81‘2 8902 89@1

. Ji,f2\ _0fi0fa 0f1 0fs .
functions J (m) = 90, 005 Ot Ou1 [Tsi81])
J 5,4 :—lj P4 Orp:—iaP(A’S) , (2.17)
T, p T, as

0= — [ — -4 -
h1h2h3 69@1 h1h3 69@1 + 6902 h2h3 6902
Wi (0 hy WA 94 D %4 94N, 0P(A8)
h1h2h3 69@1 h1h3 47Tp 69@1 6902 h2h3 47Tp 6902 614

1 (a he 04 | 0 Iy aA)_

dL dQ
(- wi0) ({7 14y
— 14
dA ~ hI aa T 2 (1— M?)

= +

1 (L - h§9)2 AV 4mpl dL 18)

3 \ 1= -

Note that if we know the functional form which relates pressure and density
P ="P(p,A) (e.g. polytropic relation), Eq. (2.17) can be integrated to give

s+/d7P:E(A),

where the integration is performed keeping A constant (this is the generalized
Bernoulli integral).

In general there is an orthogonal system of coordinates (z1 = x, 22 = x1)
on the poloidal plane, such that M = M (yx). Also for compressible flows (if
density isn’t constant on each line, {p, A} £ 0 < p Z p(A)), we may regard as
the coordinate system on this plane the pair (y, A) (in general, a non-orthogonal
system).

After introducing

0A
Fi= 7%(’)“_) = —hih3By, F» =
X

aA (XaXJ.)

ov. = hyh3zBy,

we may transform from the pair (v, x 1) to the pair (v, A), using the elementary
relations valid for each function G:

6G(X,XL)_6G(X,A)+769(X,A) 8G(X,xl)_fﬁg(x,f1)
oy ox TtV aA T o, TP o aa

Then we find the equations

4rM? 0P 08 _ 0

—_—t — = 2.19
T4 Oy + ax ’ ( )
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1 6 hzfl 8 hzfl a hle
hihahs [& (hlhg) MRArY (hlhg) REEY (hzhg)] a

)\ 9 [hoM?*F d [haM2F d [hiM2F
Ya 1O (MR O (MR e 0 (MR
h1h2h3 8)( hlhg\IfA 614 hlhg\IfA 614 hzhg\IfA

oP U498 1 (L-h2Q\’ 4T
r—+ =+t 7 —
JA T M29A 203\ 1-M?) dA
dL dQ
2 _ h2 o p2tt
V4L dL ¥ (L= h5Q) (dA h3dA) o (2.20)
h2M? dA h2M?Z (1 — M?) - ‘
oP(A,S) P,S\ r.S A, 8\ Eq(219) 0P
beeawse 502 = 7 (5) = 7 (50) 07 (7)) 2 T
Vi 98 Note that in B (2.19),(2.20) th bol 8/9A deri
47TM2 6A . ote at 1n gs. . s 4. € SyI1mbo means deriva-

tive with respect to A keeping x constant while §/0x means derivative with
respect to y keeping A constant. For the line elements we have hy = 1/ | Vi |
and hy =1/ | Vx|, while h3 =1/ | Vg |.

2.3.2 Axisymmetric case
General axisymmetric case

If the ignorable equation is the rotational angle ¢, then 3 = ¢, ﬁqb = qg/w yhs =
@ = rsinf and from the momentum equation we have [HL89]

1—M?2 [0%?A siné 0 1 0A - 1 OM?(r,A)0A = N
— — |V L VA
47r? sin? 6 [37“2 + r2 08 (sin 6 06 )] 473 sin? @ or 06 x ¢+
L \? (2.21)
+M2V ﬂ + ﬁv—I—iﬁ(rsinﬁB ) — pV; ﬁ(rsinﬁ)—l—ﬁP—O
87r2sin? 0 P 47rsin @ ¢ rsin o

From this equation we have

e in spherical coordinates M, = 0, or

1—M? T0%A sing 0 (1 94N] 04 1 OM2(r,A) (04
4mr?sin? @ | Or? rZ 96 \sinf 00 Or  4mrtsin? @ or 06
) ()
_|_M2£ or rd0 6_V+B_§, &63¢_%+6_P_0

or 87r2sin? 0 or 4mr 4w Or r or
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and My =0, or
1— M2 82A+sin9£ 1 9AN| 04 1 8M2(T,A)8_A8_A+
4mr?sin? @ | Or? r2 060 \sinf 96 90 4rr?sin?6 or 00 Or
) (22
0 or r0f oy
M*— — 2.23
* a0 87r?sin? @ tr 06 + ( )
B;COSH &6B¢_pv¢zcosﬁ 6_P:0
dmwsing 4w 00 sin ¢ 00 '
2 2
e in cylindrical coordinates (using the relation l@_AM = lj M~ A =
r 06 or r r,0
1 z, @ M? A DA OM? (w, A)
;j<r,9)j<z,w)__6_z dw )
= =0, or

ﬂ[ 9 (18_A) 62A] 04 | 1 6M2(w,A)<6A)2+

ar? | 0w \wdw /) 0] 0w ' drw? 0w 9z
()"~ (2) ¢ 0,
and M, =0, or
1— M? g (104 9*A] 0A 1 OM?(w,A)dA DA
drw? [wa_w (Ea_w) 87] 9z  4rm? 0w 0z 0w
()~ ()

An alternative form of Eq. (2.21) is [Hey96]

VS +—+
P

U, [0 Wy A 0 W, 94 1 [(L-=20\"d¥?
1—-M2 ) dA

VP [1 (a 1 04 a1aA)_

dmpw 0w wdw = 0zw 0z

dmpw \ 0w drpw 0w | Oz dnpw Oz 8w pw?
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dL dQ
— 2 -
L db i <dA wdA) VA=0,2.26)
w?dA w? (1 — M?) T
QB
WhereS:Vz/Z—l—V—w i
¥y

Polytropic axisymmetric case

When the relation between P and p is of the form P = @ (A)p? then force
balance along poloidal fieldlines, or M 41 = 0, gives (after integration)

V2 v P w2
—_—t —— —— By, =FE(A). 2.27
Gt V- g Be = B () (2.27)

P
Note that if ¥ = 1 (isothermal case) the term Ll_ must be replaced with
T—=Lp
P
the term C2 (A)lnp. In this case — = Q(A) = C?(A) is the square of the
p

isothermal sound speed.
On the other hand, force balance across the poloidal fieldlines, or M 4 = 0, gives

A VA M? 1 (L-=*\* du?
— 2 . —_— Ju— —_— . —_— A_
(1= M%) v (wz) \IIA(WZ) [(QA)]—i—ZwZ(l—MZ) dA
drL dQ
_ 52 e S
ampLdl |, (L - =*0) (dA wdA)+4 dE o 7 dQ o0y
—_ T To— — aT - = .
w2 dA =2 (1 — M?) Paa ™ "5 "1d4

The last equation is the most known form of the transfield equation.
By differentiating Eq. (2.27) solving for Vp and substituting in Eq. (2.28), we
get the Grad-Shafranov equation (GSE) [Sak90, TSST96]

= - /= 2
1— M2 VA -V (VA Ve
2 ViA - _,( 2) VE_ V2 (2 pvz 22 = o,
w Z(VA) p_p(s+ A)+ sVAp

(2.29)

where Fy is a function of 4 VA and p while C? is the square of the sound speed
oP(p,A P
dp p
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Chapter 3

MHD Critical Surfaces

In this Chapter we ’ll examine some generic properties of the physical solu-
tions of the set of the MHD equations, for steady, axisymmetric flows, which
we outlined in the previous Chapter 2. In particular, we investigate the role
which the limiting characteristics play in selecting the appropriate solution of
the MHD equations. We examine these characteristics in relation to the appro-
priate boundary conditions for an integration of the MHD equations, we show
how they can be constructed and also give their geometrical representation. The
propagation of magnetosonic waves in the various domains in which the limit-
ing characteristics devide the solution space, is discussed in their relation to the
correct number of boundary conditions. For the particular case of self similar
solution, at these characteristics the component of the flow speed perpendicular
to the directions of the characteristics, which are the directions of self similarity,
equals to the fast/slow MHD wave speed in the same direction.

3.1 Polytropic MHD flows

In an axisymmetric system the coordinate ¢ is ignorable, so all physical quanti-
ties are functions of (x1, z3) alone, where #; and z3 are orthogonal coordinates
on the poloidal plane (for example #; = r, 23 = 6 when we use spherical co-
ordinates, or #1 = z,22 = @ when we use cylindrical coordinates). First we
see that in the expressions for V; and By we have a denominator ¥% /4mp — 1
,or M? —1. When this vanishes the numerator must vanishes too, in order to
have finite values for V4 and Bys. So at the Alfvén point, where the poloidal
speed is equal to the Alfvén poloidal speed (that is to say M = 1), we have
L= (hg)JZM:1 Qor L = w2Q , where w, (A4) is the distance from the symmetry
axis at the Alfvén point, for each line A —constant. We have seen in the pre-
vious Chapter that the full system of the MHD equations after the described
integrations in case of a steady state with one ignorable coordinate, reduces
to three equations: the two components of the momentum equation and the
energy equation. If in addition, a polytropic relation between the pressure and

37
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the density exists
P=Q (A) P (3‘1)

we need to solve only the two components of the momentum equation and
the energy equation gives the function ¢q. Equivalently, by assuming that ¢ =

ﬁ—ﬁ . ﬁp then the energy equation can be integrated to give the relation
betweerpl pressure and density P = @ (A) p7. In this case we define the square of
the sound speed as the derivative of the pressure with respect to density, with
constant A
o P P
dp p

This is an effective sound speed because only if ¥ = T' it is isentropic, i.e., only
then the entropy remains constant on each field-streamline.

If this is the case, then we may have as the two remaining equations the two
components of the momentum equation parallel (M4, = 0) and perpendicular
(M4 = 0) to the field-streamlines A =constant on the poloidal plane. The first
equation can be integrated at once (if the radiative force is negligible compared
with the other forces in the momentum equation) to give the Bernoulli equation

V2 v P w2
—+ ———+V-—B,=FE(4), 3.2
I R (4) (3.2)
while the other one is called the transfield equation.
P dP
Tt is worth to note that the term —— = = /—, often called the effective
- P

enthalpy, is equal with the enthalp; onlypfor v=T.

So the full set of the MHD equations reduces to two equations with two unknown
functions, the density p and the flux function A. Generally speaking one may
solve from the Bernoulli equation to yield p (this equation has only p and not
its derivatives but unfortunately it’s complex and can’t be solved analytically)
and then replace it in the transfield. So we’ll keep in mind that with the help of
numerical methods we find p from the Bernoulli while the derivatives of p can
be found after the differentiation of Eq. (3.2). The resulting equation called
the Grad-Shafranov equation (or GSE) is equivalent with the transfield. It is
a second order partial differential equation (PDE) for the flux function A, of
a mixed type (elliptic or hyperbolic). It can be written in the canonical form
[HO78, LMMS86, TSST96, TSST96] (it is equivalent to Eq. (2.29)).

2 2 2
a 0%A 26 0%A c 0%A )—i—e:O, (3.3)

1-M?) | — — d

where

a= [Vt =VE(CT+VE)+CIVE LI VE L /VE 1
b= V1V2Vp2 ;
e= (Vo' = VZ (C2HVE) + CIVE LI VE L IVE 5,
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while there are two lengthly expressions for d and e (note that in the nonrotating
case the expression for e vanishes '). The functions a,b,c,d, e have only first
order derivatives of A (the density p, from Eq. (3.2) is a function of A and its
first order derivatives).

If V,,V; are the roots of the equation

4 2 2 2 27,2
nys_nys (CS +VA>+CSVA7]}:0
and the cusp velocity is defined by

2172 21,2
Vi, Viovy

2 —

Ve = = )
CI+VE VE4V?

the expression
D=0 —ac= (V; -V2) (V2=V} (VZ=V2) (C2+V}) (3.4)

determines the type of the equation. In particular if V. <V, < Vi or V, > V;
the PDE Eq. (3.3) is hyperbolic while in the regimes where V, < V. or
Ve < Vp < Vy is elliptic. Assuming that near the stellar surface V, < V,
and as the plasma flows away from the star we have certain surfaces where
Vo = Ve,V = Vi, Vo = Vap,Vp, = Vp. Soif the flow begins from the stellar
surface with subcusp velocity, then Eq. (3.3) will be elliptic until the surface
Vp = V., then hyperbolic until the surface V, = V;, then again elliptic until
the surface V, = V; (this domain includes the Alfvén singular surface where
Vp = Va p), and finally hyperbolic. At last, the solution maybe connected to
the interstellar medium with a fast MHD shock.

3.1.1 Integration of the GSE and the characteristics sur-
faces

Now let’s examine how we may integrate the second order PDE (3.3) for A.
Let’s start from some curve x (w, z) = constant?, or, parametrically @w = (z, s)
and z = z (z,s) where ds? = dw? + dz?, where s is the arclength on the curve
x =constant. We may give on this curve the function A (s) and its normal deriva-
tive N (s) = ﬁ0~§A, where ng is the unit vector normal to the line # = const on
the poloidal plane, together with the integrals L ,Q, ¥ 4. These are generalized
Cauchy boundary conditions. Then we must calculate the derivatives of A and
start the numerical integration of our system.

The first derivatives of A are calculated from the equations

dz 0A dw 6_A

N =-gamt & o

Tthat’s why in the nonrotating case the Alfvén critical point disappear
2If we rotate this curve around the 2 axis, the characteristic surface is produced.
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polar axis

equator )

Figure 3.1: The characteristic curve z=constant. The unit vector perpendicular
to this surface is n, = —sin, @ + cos p,z, where siny, = dz/ds, cos p, =
dw/ds. Note that 7, should not be confused with 7. The later is normal to the
fieldline.

dA(s) dwdA dz0A
ds  ds 0w | ds 0z
The trouble comes with the second order partial derivatives of A, or equivalently
the first derivatives of the components of magnetic field. We have

4 (04Y _dm it d: o
ds \ 0w )  ds 0w? ds 0wdz
4 (0a\_dz 4 a0t
ds \ 0z ] ds 8w6z+ds 022"

together with the GSE, Eq. (3.3), in cylindrical coordinates where 21 = 2z, 25 =
w,hy = hy = 1. Altogether we have to solve the system

dw dz 1] 62_A | i i(@_A) 1
Is s 0 Jw? ds \ 0w
. dw dz G d (94
ds ds Ow0z ds (3_,2)
¢(1—M2) 2b(1-M?) a(l— M?) oA Ce—d(1- M)
- - L 622 1 L d

This system can be solved to give the second derivatives of A unless the deter-
minant of the matrix is zero. This happens when (after some manipulation)
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10.0
—— phase polar
group polar
50 i
00 - ]
Bp
_50 L 2
_100 . | . | . | .
-10.0 -5.0 0.0 5.0 10.0

Figure 3.2: Fast phase and group polars and the characteristics. (Vi =
5,Vap=49,C,=45).
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2.0
B phase
group
1.0 -
e
0.0 - A N
V., B
_1.0 L
—2.0
—6.0 —4.0 —2.0 O.0 2.0 4.0
Figure 3.3: Slow phase and group polars and the characteristics. (V4 =
5,Vap=49,C,=45).
[Con96, STPIG]

where the sound speed

C§:M:7£ and Vi, =V Va/|Vz |
dp p

is the component of the flow velocity perpendicular to the surface x = const.
In each point of the poloidal plane, the values of dw/dz (or the directions
of 7,) which make zero the previous determinant define the directions of the
characteristics. If the tangent on the surface of integration coincides with one
of the characteristics, we can’t integrate the system from this surface. If this is
the case, we need to impose some kind of regularity condition in order that the
integration proceeds through this surface. *

3.1.2 Construction of the characteristics

One may see in Appendix 3.A that fast and slow waves with wavevector k= kng
normal to the characteristic surface on the poloidal plane have phase velocities

3The determinant vanishes to, if 1 — M2 = 0,or Vim - lem = 0. This case correspond to
the propagation of Alfvén waves.

4When M = 1 the determinant vanishes to, so when we reach the Alfvén surface we can’t
pass through it without imposing the Alfvén regularity condition (for all possible directions
of tangent on the surface of integration at this point).
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satisfying the equation
Vf4,sJ_x - sz,slx (Csz + Vj) + Cszvjlx =0.

So one surface is characteristic, if the component of the flow velocity perpendic-
ular to this, is equal with the phase velocity of a fast or slow magnetosonic wave
with wavevector perpendicular to it: V2 = szlx or V2, = V2 . This can be
seen geometrically with the help of the phase-polar diagram for the wave phase
speed (or the group-polar for the wave group velocity).

If we have waves in the frame of the axisymmetric equations (that is to say kis
on the poloidal plane and thus the wave quantities do not depend on the angle
¢) the phase and group polars are shown in Figs. 3.2,3.3. Let’s examine the
fast wave (for the slow wave we do the same). Suppose that we are in a point
A of the poloidal plane. If A0 = 17;,, then with the origin at O we plot the
phase polar diagram and we look in a direction OB such that the point B is on
the phase polar and OB L AB. Note that in this case, Ab//ép since I_/;,//EP.

Then the projection of (_/;, on the direction OB is equal with the phase speed in
this direction. But the direction OB is perpendicular to AB. Thus AB is the

characteristic direction (there is another characteristic AB , in a symmetrical
position with respect to the axis of ép).

Equivalently, if we plot the group polar (which is the envelope of lines AB
with OB L AB and B moves in all the phase polar -see Fig. 3.13, or Fig.2 in
[Con96]) then the characteristics at one point A are lines which are tangent to
the group polar. One can see from Figs. 3.2,3.3 that when V, > V; there are
two fast characteristics while when V. < V), < V, there are two slow character-
istics. When V, < V, < V}; or V, < V. there are no characteristics 5 This is
expected because only for V, > V; and V. < V,, <V, the PDE equation for A
is hyperbolic (otherways it is elliptic and no characteristics exist).

3.1.3 Another geometrical representation of the charac-
teristics

Let’s go back to Eq. (3.5). Because Vi ,/Va1, = M this can be written in the
form V7, (fo —-C?2-V2+ CSZ/MZ) = 0. The vanishing of the first term V72
gives us two slow characteristics which correspond to a non-propagating layer
(see the footnote).

On the other hand when the bracket vanishes, we have

Ve, =CE+VE-C2/M? (3.6)
(this is the solution of Eq. (3.5) equivalent to Vi, = Vi1, if V, > V; or
to Vie = Viie f V. < V, < V;). So another geometrical representation of

characteristics is the following (see also Fig. 3.4):
Suppose that we are in a point A and AO = V,. With center O we draw a

5In all cases there are two slow characteristics parallel to ép (corresponding to tangents
at points IV, NI) but these are degenerate since there is no slow wave traveling parallel to
the fieldline on the poloidal plane (the phase speed in that direction vanishes and the wave
correspond to a non-propagating layer in the moving frame) [Dra75].
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circle with radius /C2? + V2 — C2/M? (this radius depends on the fluid velocity
Vp). The tangents from point A to this circle are the characteristics (since the
component of V, tangent to them, is equal with the radius of the circle). Two
tangents exist when the point A is outside the circle (or sz > C24+ V2 —
C?/M?) and the radius of the circle is real (or C? + VI — C2/M? > 0). These
two conditions are equivalent with {(Vp2 - Vsz) (Vp2 - sz) > 0 and sz > V2}
respectively, or {V, > Vy or V, <V}, < V;} as we expect.

From Fig. 3.1 we have Vi, = V. cospy — Vesing, = Vpsin(p — @) since
V., = Vpsing, Ve = V, cos ¢. So Eq. (3.6) can be rewritten in the forms

2(1—1/M? :
(= o) = 4 YA LMD TV
P

(C2+VE (V2 -V2)
(V2 - V2) (sz _ sz)

tan (¢ — ¢.) = + (3.7)

P

If we choose a system of orthogonal coordinates (£,n) on the poloidal plane,
such that the lines of constant ¢ are the poloidal field-streamlines (£ = & (4))
and normal to these lines the unit vector is 2 = VA/ | VA |, then tan (p—pz) =
hpdn/hedé. So the two characteristics are

hodn _ | (C2+VE) (V? - V2) (3.8)
hedé (V2 —12) (sz _ sz)

Sakurai [Sak90] has this relation with h, = hs = 1 since he considers a local
Cartesian system (£, n).

If we move from the pair (£, n) to a pair
of orthogonal coordinates on the poloidal
plane (x1,22) then the characteristics are
hedao/h1dzy = tan @12 because di¥ = hyde1d1+

E hodza®s. Using ¢ — ¢, = 12 + 612 and
p B = By costy, By = —Bpsinfl; we get
h,dn
+ B
hadwy _ "' hede
Figure 3.4: The characteristics, hadzy By — By hndn
as tangents to a circle. hedé

or after some manipulation

hadzy b2 —ac c
hldl‘l_ a _b:F\/m

This is the well known definition for the characteristics of a second order PDE
equation like Eq. (3.3). © So there are two families of curves; the characteristics

(3.9)

Without imposing the integrals A, ¥ 4 , L ,Q , E we have a PDE system of seven unknowns

e

(‘7 ,B, p) and there are seven characteristics [Con96, STP96]. One of them is identical with
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Figure 3.5: The &-n system of coordinates

(solutions of Eq. (3.9)) uy (21, %2) = constant ,u_ (1, x3) = constant which
fill all the hyperbolic domain of the solution. Note that in the non-orthogonal
system of coordinates (u4 ,u_), Eq. (3.3) can be written as

%A

6u+8u_ - L:O

where Lo is a function containing first order derivatives of A.

3.1.4 Propagation of waves and boundary conditions

Now suppose that we know a solution of the MHD equations and look for the
characteristics. First let’s look about the fast ones which start from the surface
Vp = V; downstream. If at this surface these curves have dn < 0 as in Fig.
3.6 then for the ”-” sign we have df > 0 while for the "+” sign, d¢ < 0 (on
the surface V, = V;,dé = 0% from Eq. (3.8)). The sign of the slope dn/d¢ is
constant in each characteristic. So we can see from the geometry of the problem
that the ”4” characteristics which begin from the surface V, = V; can not fill
all the hyperbolic domain from this surface through infinity. The same for the
curves which begin from infinity and can not intersect the surface V, = V;. Thus
there is one (at least) separatrix surface (or limiting characteristic) which is the

the field-stream line on the poloidal plane (corresponding to the entropy wave). The associated
Riemman invariant is the flux function A. In our case five of them (one entropy, two slow and
two Alfvén characteristics) are identical and parallel to the flow in the poloidal plane. The
Riemman invariants associated with them are the integrals (constants as we move parallel
to the flow onto poloidal plane) while the other two are the slow or the fast characteristics
(depend on magnitude of V}).
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N

+ characteristics

- characteristics

Figure 3.6: Sketch of the elliptic-hyperbolic regimes. The fast characteristics
(with arrows) shows the envelope of the vectors V, ; () + V), for various ¥, The
slow characteristics shows only where the Riemman invariants remain constants.
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only closed characteristic in the regime V, > V; [Sak90, TSS196, TSST96].
From now on we ’ll call this surface fast magnetosonic separatrix surface, or
FMSS [LL75a, Bog94, Bog96, Bog97].

Now let’s think about the relation of characteristics with a signal traveling in
a moving fluid. As it is shown in Appendix 3.A the two fast characteristics
which pass through a point A, determine the part of the whole space where a
signal from point A travels (as the Mach ”"cone” in a supersonic hydrodynamic
flow). So looking at Fig. 3.6, if a signal is generated at a point in the regime
downstream from the FMSS, it cannot influence points in the regime upstream
from the FMSS. This is the causality principle: the flow must pass this FMSS
in order to be steady. Otherways a small disturbance at ”infinite” distance from
the origin of the outflow will change all the solution. But if the solution pass this
FMSS then any disturbance at infinity will affect the solution through a surface
where a fast-shock will connect the new solution with the previous steady one
in the regime downstream from the FMSS.

Now let’s see about the slow characteristics in the regime V., < V, < V. As
before, there is at least one slow magnetosonic separatrix surface (SMSS) or
limiting characteristic Fig. 3.6.

But a significant difference from the previous case is occurred when we examine
the propagation of waves in this regime. As it is shown in Appendix 3.A, if
we make a disturbance at one point A of this regime, the signal influences this
part of space which is determined from the cusp points of the slow group-polar
and not from the slow characteristics. So there is no necessity for passing the
solution through the SMSS (there in no relation with the causality principle on
this surface). In this regime the characteristics have the meaning that on these
lines the Riemman invariants remain constants.

Another important property of the characteristics is the following: Suppose
that you are in some point of space and imagine a surface passing through this
point. This surface separates space in two domains. Then assume that we want
to answer the following question: In which domain travel the two signals with
wavevectors perpendicular to the surface (for an observer without velocity with
respect to the star)? The answer depends on the phase velocity of the signal
(the signal moves with the group velocity but since the phase velocity depends
only on the angle between k and ép, the component of the group velocity

perpendicular to the surface is the phase velocity (_/;,h = Vphif)' So one can find
the answer by looking at the phase polar diagram, which is different for various
values of the poloidal speed of the flow, V},. For the slow wave:

o If V, < V. there is one signal traveling downstream and one upstream.
o If V, > V; there are two signals traveling downstream.

o If V. <V, <V, there are two characteristic surfaces such that: if our
surface is not in the domain which these two characteristics make and
include the fieldline, then there is only one signal moving downstream
(the other one is moving upstream) ; otherwise there are two. See Fig.
3.16 in Appendix 3.A.
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Similarly for the fast and the Alfvén waves (the entropy wave is always moving
with the fluid).

So in each point of the space (or for each value of V,) when V, > V; or
Ve < Vp < V; there are two directions such that if our surface is tangent to
one of them, we can’t answer the previous question. These surfaces are the
characteristics (lines on the poloidal plane).

3.1.5 Number of boundary conditions and characteristics

Now let’s consider the boundary conditions and the integration of the GSE (in
relation with the propagation of waves in the moving plasma [PD90, JT64,
GH62, Gud62].)

Suppose that we start the integration downstream from the stellar surface. The
number of the boundary conditions depend on the relation of V, with V., V;
and V;. In general, if we start the integration downstream from some surface,
the number of boundary conditions which we must give on this surface is equal
to the number of waves which can be emitted from this surface downstream.
(These waves which can propagate from a given surface are: one entropy, two
Alfvén, two slow and two fast magnetosonic waves). The remaining conditions
(until reach the number seven) are specified in order to pass through singular
surfaces. When we pass through these closed surfaces the number of outgoing
waves 1s changed. These surfaces are the SMSS, the Alfvén surface and the
FMSS.

For example, if we begin the integration from the stellar surface with the com-
ponent of the velocity perpendicular to this surface less than the corresponding
component of the slow speed, then we must give four boundary conditions (re-
lated to the entropy wave, to one Alfvén, one slow and one fast wave). The
other three are specified in order to pass the solution through the SMSS, the
Alfvén surface (AS) and the FMSS. Totally we have seven functions that define
the steady state: the integrals L @, ¥, ,@ , F and for the component of the
electric field wE, (the last integral is usually taken to be zero, but it must be
added for completeness [Con96]) together with the free functions (which define
the solution of the GSE) A and dA/9ng. We see that the number of the free
functions (8) is larger from the sum of the number of boundaries plus the num-
ber of regularity conditions (7). That’s why one of the free functions depend
on the history of the flow [Bog97]. In all this thesis we have chosen this free
function to be wky = 0.

If we begin the integration with the component of the velocity perpendicular to
the stellar surface less than the same component of the Alfvén speed but greater
than the same component of the slow speed, then we must give five boundary
conditions (related to the entropy wave, to one Alfvén, two slow and one fast
wave). We ’ll come back to this issue when we ’ll examine the Blanford & Payne
model (in Chapter 6).

Note that, in general, the surfaces where the PDE changes character from ellip-
tic to hyperbolic or vice-versa, (namely the surfaces where V, = V., V,  V;) are
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not singular. Experience shows that the solution passes through the surfaces
of this kind without any difficulty while the singularities appear when the solu-
tion crosses limiting characteristics [BP82, Sak85, TT91, LCB92, TS92, Con94,
ST94]. This happens if we solve the Bernoulli equation simultaneously with the
transfield equation (or GSE).

It is worth to note that another approach to solve the MHD equations is the
following:

One can pretend that the shape of the fieldlines on the poloidal plane is known,
such that at the moment we may ignore the transfield equation. Then the
flux function and its derivatives are known. Then we need to examine the
Bernoulli equation in order to find the density p or the Alfvén Mach number
M = \/¥? /47p as a function of the position (or function of G = w/w,) on
each line A=constant. This we discuss in the following.
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3.1.6 Study of the Bernoulli equation

Using variables G = w/w, , M = p/pa (where w, , p, are the values of @, p on
the Alfvén surface M = 1) Egs. (2.13),(2.14) can be written in the forms

- 1 o A 1—-G?
B = AXG— ¢pwa QU p—
=aG VA X0 omata mE T
N MZ N R R GZ_MZ
V= owag VA X et ome e my

The Bernoulli equation (3.2) is then B(A,G, M) = F(A) with

|€A |2 4 v —13r—2(y-

Yl ata L oy lpy2-1)

2w§\P?4G2 + ¥ — 1Qpa +
=202 [ (G2 - M?)"

2 |Gr(1-M2)*  1-M?

B(A,G,M)=

_|_

+V, (3.10)

where the terms | VA | and V are regarded as functions of G and A only.

If we want to find M at each (G and on a constant line A, we must find the
intersection of the function B (regarded as a function of M only) with £ (A) 7.
For each G # 1 we have:

(1-63)*  M?
G* o (1— M2

IB(A,G, M)  |VA?

— M2 _ ’y—lM—Z’y 292
3M2 wg‘I’sz PyQpa + woz

O°B(A,G, M) |VAJP (1-G2)* 2m? +1

+7 QP MO 4 5202

a(M2? @RGP G* o (1— M)t
We see that
IB(A M IB(A M
L’G;)>O,VM2and lim L’G;):+OO
J(M?) M2 J(M?)
A M
So the first derivative % monotonically increases from —oo (when

M?* — 0%) to oo (when M? — 17) and from —oo (when M? — 1T) to
oo (when M? — oo). Therefore, 3M? € (0,1), M} € (1,00) such that
<3B(A,G,M)) —o
oM? M2:M12,2

As we see in general there are four roots (see Fig. 3.7) which correspond to
super- or sub-Alfvénic, in- or out-flow. So, as we change ¢ the function B con-
sists of two grooves which connect with each other at G = 1 (the singularity
M =1 disappears when (G = 1) and then separate again (see Fig. 3.8). The
two local minima of these grooves move, and when B = F at this minimum

7A similar analysis is presented in [HN89, Hey96].
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o | G088

Bernoulli function

Figure 3.7: The function B for various values of G. The example is taken from an
exact polytropic, r- self similar solution, which is analyzed in detail in Chapter
6. See also Figs. 6.7,6.8.

we have a critical point because at this point: dB(A,G,M)/0M = 0 and
IB(A,G, M) /0G = 0 (since immediately after this point the minimum of the
function B decreases in order to be solvable the equation B = E). This point
corresponds to a saddle point of the Bernoulli surface (Fig. 3.8).
After some manipulation, we find that
LB G M) V-V (CE V) 4 CRVE
OM? VE— 1% »
B = E, (this minimum is a point of the solution), we have V, =V, or V, = V.
After finding the necessary conditions in order to pass the solution for M from
the two critical points V, = V; ,V} (otherwise as we see from the contours in
Fig. 3.8 the solution is unphysical), one must go back to the transfield equation
and examine if the known fieldlines and the function M which is found from
the Bernoulli equation (together with the integrals which are determined for the
passing through critical points), satisfy this equation. If not we must assume
another form of the lines and do the same first with the Bernoulli and secondly
with the transfield until this algorithm converts to the right solution [Sak90].

So when at this point

OB (A,G,M)

.. . . . . 8M2 . .
case, the only critical point is the sonic point (correspond to a saddle point of the Bernoulli
function, which consists of only one groove in this case.

8Note that without rotation, Q = 0, we have M?2 = Vp2 - Cf. Thus in this
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Figure 3.8: The three-dimensional diagram for the function B, and the isocon-
toures on the G, M plane. We see the critical solution (thick line) which pass
through the three critical points: the slow, where V,, = Vi, the Alfvén, where
Vp = Va p and the fast, where V, = V;. The example is taken from an exact
polytropic, r- self similar solution, which is analyzed in detail in Chapter 6 (see
Figs. 6.7,6.8). Note that only if we know one exact solution of the MHD equa-
tions, we can plot this Bernoulli function. Exceptions are the models where
the transfield equation is identically satisfied as in the Parker’s solution and the
Weber-Davis equatorial wind.



3.2 Self-similar approach 53

3.2 Self-similar approach

On the poloidal plane one may define a system of non-orthogonal coordinates
Ox1p such that all physical quantities are functions of y and . If we give the
1 dependence in all these quantities then PDE becomes an ordinary differential
equation (ODE) with respect to the coordinate x. This is practically done in
the self similar approach. The whole problem after this assumption is simplified
though it remains again very difficult due to the existence of singular surfaces
(now singular points since ¢ disappears from the equations) the position of
which is not known a priori but is found simultaneously with the solution. In
subsection 3.2.1 even if we have non-polytropic flows we prove that these singu-
lar surfaces are the Alfvén and the modified by the self similarity slow and fast
magnetosonic critical (or singular) surfaces, where

V= VZ(CP4+ Vi) +CoVE =0,

The last singular surfaces are the limiting characteristics (or separatrices). Ob-
viously all singular surfaces in all self similar cases correspond to xy =constant.
At this point we remark the difference on integration between the general so-
lution of the MHD equations and the self similar solution. When we integrate
the GSE, we must analyse with a different method the hyperbolic and elliptic
regimes [Shu92a]. In elliptic regimes we may use the relaxation method. In
hyperbolic regimes one way is the method of characteristics [LS96, Li96]. An-
other method is the integration using the (£, n) coordinates [BT99]. Generaly
speaking in a hyperbolic regime we begin the integration from a given surface,
and we move from this to another (close to the previous) surface. Theoreti-
cally speaking we can integrate with this way the elliptic regime too. But this
method is very unstable [Shu92a]. Thus, the right way for integration in an
elliptic regime is to give conditions in a closed boundary (because a disturbance
in one point of an elliptic regime can affect the whole elliptic regime) using the
method of relaxation. Of course the difficulty is that we don’t know « priori
the end of the elliptic regime.

But in a self similar solution we integrate all regimes like the hyperbolic ones
since the ODE have infinite acurracy. Thus we move from a surface y = yo to
another one y = xo + dx, with | dy |<| xo | When we pass the Alfvén surface
and slow or fast limiting characteristic we can’t continue the integration with-
out imposing some regularity condition (in the next Chapters we ’ll examine in
detail self similar solutions).
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3.2.1 Singular points in self similar flows

Using the pair (y, A) as the independent coordinates on the poloidal plane, the
full set of the MHD equations reduces to Egs. (2.19),(2.20).

Next regarding each function G (y, A) of x and A as a function of x , A and M?,
we have

0G(x A) _ 9 _ 96 (. A, M?) 96 (x, A, M) dr?

== = d

ox ox ox OM? dx an
9G (x,A) _ 06 _ 99 (x, A, M?)
A T 0A 0A '

0 . . . ..
Thus, when the operator ™ acts on a function which may depend implicitly
X

MZ
. The functions P, F;,Fs and

on M?, generates a term, proportional to

S (see their definitions in Chapter 2) may have a M?-dependence.
Assume that this is not the case for the line elements hy, hs and hs. This is
true in all the examined (until now) self similar models:

e in f- self similarity, y = r and y; = 6 so hy = 1,hy = r. We see that hs
doesn’t depend on M? (r) since it’s simply equal to r.

e in 7- self similarity y = @ and y; = —r so hy = r,hy = 1. But r is an
explicit function of o, G () and 0 as we’ll see in Eq. (5.55) (we remind
that the dimensionless radius G = w/w, depend only on # and not on
M? although its derivative may depend on M?).

2

Now collecting the terms with in Eqs. (2.19),(2.20) we end up (after some

manipulation) with

4rM?OP (x, A, M?)  0S (x, A, M?)| dM? 2 _
L5 OM? + M2 dx +Gi(x,A, M?) =0and
(3.11)
6}"1 X,A,MZ dMZ
(1—M2)%—71] I Gy (x, A, M) =0. (3.12)

So at each point where in the derivative of M2 the numerator and denominator
2

simultaneously vanish, —— = — we have
dx 0

47TM26P(X,A,M2) 6S(X,A,M2)
72 DM aM?

] =0 and (3.13)

(3.14)

afl(XaAaMz)_ fl -0
OM? 1—M2|
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A point where this happens is called singular or critical (in self similar solutions
it is an isocontour y =constant). We define the square of the sound speed as
the infinitesimal change of the pressure divided by the change of density, for a
disturbance in a given point of space (so from the three ”variables” x, 4 and
M?, only the third is changed)

oP (X,A,MZ)
= (a_P> o mROPLCAN ()
£ 3p (XyA)_ 8p<x,A,M2) - \II124 3M2 ’ )
OM?

Now, using Eqs. (2.15),(2.16),(3.14), we find that if at the critical point

6}"2 (X s A s MZ)
—— = 7| =0 3.16
CY
then Eq. (3.13) is equivalent with
VE-VvZ(Ci+Vi)+CVEi ] =0. (3.17)
Eq. (3.16) holds at every point in all known self similar models where y = r or
dA dw?
x = 0 (in all these cases Fy = a—aﬂ which is independent of M? since (G is
do 6XJ_

independent of M?).
Note that a combination of Eqs. (3.11)-(3.12), at each point (not only at the
critical ones) is

dM? 2 (1—M?)G1— M*B3G,y /W% Fy
dy — X VEI=VI(CEHVEHCEVE

(3.18)

where
OB (x, A, M?)
o2 — (8_P) 1M (83%/87) — 0?4 M2 8rdM?
9P/ (x .4) (x,4)

dp dp(x, A, M?)
OM?
.. . a~¢'2 (X ) A ) M2>
In all known self similar models ), = C, since By v R— =0 &

Bl(XaAaM2> oL s . "
— i - 0. From the Eq. (3.18) it is obvious that at each critical

0
point, Eq. (3.17) holds.



56 MHD Critical Surfaces

3.3 Appendix 3.A: MHD wave propagation in a
moving medium

3.3.1 Dispersion relations and polar diagrams

Suppose that we have a stationary axisymmetric solution of the MHD equations.
Consider small axisymmetric perturbations of this system. If we consider small
range disturbances, then we assume that the unperturbed solution is space
independent. So we may look for perturbations having a Fourier dependence
pi(wit=F-7)
with w; ,/; being real constants, k on the poloidal plane and 7; the position
vector in a frame moving with the fluid velocity. After linearizing the time-
dependent MHD equations and assuming polytropic relation between pressure

and density P o p¥ , we have the following types of dispersion relations (or
waves) [Wei83, Prig84, Shu92b]:

e entropy wave: w;/k = P. where P, =0

o Alfvén wave: w;/k = P4 where Py = V4 , | cos¥ | and ¢ is the angle
between Ep and k (if # =constant is the line perpendicular to /;, on the
poloidal plane, then V41, = Pa).

e slow wave: w;/k = P, where

C2+ VG =\ J(C2+ VD) —4C2VE  cos?
2

Ps =
(in this case Vi1, = P;).

o fast wave: w;/k = P; where

C2 4+ V3 /(€2 + V) —4C2VE  cos?v
2

P =
(in this case Vi1, = Py).
The last two phase velocities satisfy the equation
Vf4,sJ_x - sz,slx (Csz + Vj) + Cszvjlx =0.

In the plasma, the number of the waves with the wave vector perpendicular to a
surface z =constant, is equal to the number of the parameters defining the state
of the plasma. In the magnetized plasma these are the density, the pressure,
three components of V and two components of B (since V-B= 0). Totally
we have seven parameters. Correspondingly we have seven MHD waves: the
entropy wave, two Alfvén waves (with k= :I:ﬁx/ | Vz ), two slow and two fast
magnetosound waves.



3.3 Appendix 3.A: MHD wave propagation in a moving medium 57

AN I{]\
kx@ 12
N
k
, \6
BN Bp A
o g
D
N

Figure 3.9: Unit vectors.

In the inertial frame (the frame of the star), we must replace w; with the Doppler-
shifted frequency w = w; + 17 k. The phase velocity in the moving frame is
Vph P = kwl/k = kP. We see that this velocity depends only on the angle )
but not on the | k |_ k. So the group ve10c1ty in the moving frame is Vg i =
Vﬁ.ul =k P+kx q/) dP/dﬁ where & x q/) is the unit vector on the p0101dal
plane, perpendicular to k. In the frame of the star we have Vg = Vg i+ Vp and
‘_/;,h :/;'(77-1-/;“‘_/;,).

Let’s examine the direction of (_/;] 4. If 9, is the angle which (_/;] .+ makes with
the poloidal magnetic field ép, then

—

tan _Vg,i'(Bquj’) _Psinﬁ—l—?lcosﬁ
anvy = ‘Z;i'ép T Pcostd — P sind’

)

sinﬁg:f/gylw(Bp X qg) ,

where P’ = dP/d0.
In the frame of the star, the phase polar depend on the poloidal velocity of the
flow V We Il examine only the case where V, //B

Suppose we are in a surface r —constant (hne on the poloidal plane) and

we examine the two waves with & perpendicular to this surface. For one /;, DS
(=m/2,7/2) while for the other ¥ € (—7,—x/2)U (7/2, 7). (We remind that
¥ is the angle between Ep and /;) The phase velocity is Vpp, = w;/k + V}, cos 9.
So for the first /;, the (_/;,h is on the downstream regime (note that the wave
may propagate downstream or upstream, since the (_/;] shows the direction of

propagation; (_/;,h shows as only in which midplane the wave propagates). For
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Figure 3.10: The angle of the group velocity (Va =5,V4 , =4.9,C, = 4.5).

the other, | ¥ |> 7/2, and Vp, = wi/k + Vycosd =|cosd | (f = V2) (VT +V})
where f = (w;/kcos)?.  For the slow wave we see from Fig. 3.14 that:

o if V, <V, then foouw >V, V0, so Vo > 0 or Vi, // k.
o if V, >V, , Vou <0or Vo /K.

o if V. <V, < Vi, there is an angle ©; € (7/2, 7) such that in this direction
(and in the symmetric one ¥ = —904), V,5 = 0. For | ¥ |> ¥1,V,; > 0.
The lines ¢ = 44, are perpendicular to the characteristics.

Similarly for the fast wave, we see from Fig. 3.14 that:
o if V, <V; Vi >0

o if V, > V%, there is an angle ©; € (7/2, 7) such that in this direction (and
in the symmetric one § = —vy), Vpp = 0. For | ¥ |> U1, V,n < 0. The
lines ¥ = 44}, are perpendicular to the characteristics.

Fig. 3.18 shows the phase and group polars, for slow, Alfvén and fast waves (for
various values of V},).
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Figure 3.11: Fast wave group polar (V4 =5,V4 , = 4.9,C, = 4.5). Paramet-
rically, 17 Fx Ap = Pcosy — P sin¥ and th i (B X qg) = Psind + P cos?.
This diagram is the envelope of lines AB of fig. 3.2 as point B moves on the

phase polar and A moves on the axis of Bp, in a way such OB L AB. See fig.
3.13.
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—2.0
—6.0

Figure 3.12: Slow wave group polar (V4 =5,V4 , = 4.9,C; = 4.5). As in the
previous figure, it is the envelope of lines AB of fig. 3.3 as pomt B moves on
the phase polar and A moves on the axis of Bp in a way such OB L AB. See
fig. 3.13.

Slow |
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Figure 3.13: The group polars, as the envelope of lines which intersect the phase
polars perpendicularly. (V4 =5,Va , =4.9,C, = 4.5).
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Figure 3.16: Slow wave phase polar (V4 = 5,V4 , = 4.9,C, = 4.5). In this
diagram V, = 4 (V. < V, < V;). The lines ¥ = +v; are shown (they are
perpendicular to the characteristics).
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Figure 3.17: Fast wave phase polar (V4 =5,V4 , = 4.9,C; = 4.5). Left panel:
Vp = 3.4 < V;. Right panel V, =6 > V;. The lines ¢ = +¢; are shown.
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T
Vp=0
Vp=38
Vp=5.2
Vp=b

Ooxx +

Figure 3.18: Phase (left panels) and group (right panels) polars, for the slow
(top diagrams), Alfvén (diagrams in the middle) and fast (bottom diagrams)
waves. In this example we choose V4 = 5,V4, = 4.9,C; = 45, 50 V. =
3.278,V, = 4.19,V; = 5.26. We plot the polar diagrams in the cases where

Veo=0<V,,V,=38¢(V.,V,),V,=562€(V,, V), V, =6>V;.
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3.3.2 The area to which a signal may propagate

Imagine that at point A and ¢ = 0 there is a small axisymmetric disturbance.
This disturbance travels with velocity equal to the group velocity (_/;] i, with
respect to the moving frame while in the frame of the star moves with velocity
V Vg i+ V So the components of the signal velocity in the (£, n) system of

coordinates (where = Bp L f) are

. d L.
hem =V, -n and hnd—?:w,ierv

By eliminating the time in these two equations (divide them)

hede  V,;-n  Psind+P cosd (3.19)
hndn_%i.é+%_Vp—l—Pcosﬁ—P'sinﬂ' )

The envelope of the family of the previous curves for various values of ¥, is given
from the system of Eq. (3.19) together with

_i Psind + P cos ¥
d9 \V, +Pcosd —P'sind |

After some manipulation this last equation yields
(7?” + 7?) (P +V,cosd) = 0. (3.20)

e For the fast wave:

One can prove that 77}’ + P; # 0,V 9 while the vanishing of the second
parenthesis Py 4+ V, cos¥ = 0 gives us two solutions, the ¥ = v (see
the previous subsection), which are the characteristics. For V, < V;, the
envelope doesn’t exist, since in this case the signal moves everywhere.
Thus in the case of the fast wave, the situation is similar with the sound
waves in hydrodynamics, where the characteristics shows the regime where
the signal travel in a supersonicaly moving medium [LL75b]. Fig. 3.19
shows the propagation of a fast wave.

e For the slow wave:
In this case, the vanishing of the second parenthesis in Eq. (3.20) gives
the slow characteristics. But as we see in Figs. 3.20,3.21 the area where
the wave is propagating, is determined from the vanishing of the second
parenthesis in Eq. (3.20). When this happens, we have as the envelope the

hed¢ [ Pysind + P, cos ¥

hndn Vp + Pscosd — P.sind _
0. The solution of the last equation are the cﬁsp points of the slow group
polar, ¥ = +9;,9 = m + ¥, (see Figs. 3.10,3.12).

lines

, where (77;’ —+ 775) =

=9,
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V,=3.4<V, V=65V,
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Figure 3.19: The gray area shows where the fast wave propagates. We ’ ve plot
the position of the center of the wavepacket (which travels with velocity Vg i —|—V
at times ¢t =1,2,3,4,5. (Va=5,V4 p, =4.9,C, =4.5).
V=2<v, V=65V,
100 . ; ; ; 100 ; ; : : :
8.0 | 1 80
6.0 | 1 6.0 |
4.0 40 F
2.0 A 2.0 /
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Figure 3.20: The gray area shows where the slow wave propagates. We ’ve
plot the position of the center of the wavepacket (which travels with velocity
Vgl—l—V at times ¢t =1,2,3,4,5. (Va =5,V , =4.9,C, =4.5).
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V<V, =4V, V<V, =4.191<V,
100 100
8.0 80
6.0 6.0 |
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20 20
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Figure 3.21: The same as the previous figure, but in the case when V., <V, < 'V,
(left panel) and V; < V, < V;. (right panel).

dPs
Vse = | Pscosd — Lt} sin ¥ ; see Fig. 3.12.
dv S= s
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3.3.3 Propagation of a wave packet
Let’s illustrate the meaning of the group velocity of a slow or fast MHD wave
with an example. Suppose that at time ¢ = 0 we have on the poloidal plane

O0xy, with (i‘ =B /By ) a source which produces the quantity

G(7,t=0)= e T 207 —y /209 cos (k f}), where /;0 = koo Bt+koyy [GRID].

It represents a wave packet with a Gaussian envelope.

We can re-express G (7 ,t = 0) in terms of its Fourier transform:

oooy [ [ ik (k —k )2—0—5(/@ — koy)?
G (7 t=0)= y// pm el T TR g

— 00 —0Q

with k = ko & + ky 3.

If the quantity G (7; ,1) represents a wave quantity, it must satisfy the wave
0? . . . .

equation ﬁv G = 813 So at each time ¢, in order to get the time evolution,

we replace k- 7; with k- 7 —w (/;) t. The frequency w depends on k (dispersion

relation for each wave). In the case of the fast and slow MHD waves, w = kP ()

where tand = ky /k,.

So we have at each time ¢:

G(ri,t)=

7e0y _foo J?o i [i i — w (/;) t] - %ﬁ (ke — kox)® — %Z(ky - koy)z dk, dk, .(3'21)

— 00 —0Q

For a given set of 0, , 0y , kos , koy and ¢, we calculate numerically the quantity G.

Figs. 3.22,3.23,3.24 for slow, and Fig. 3.22,3.25,3.26 for fast show this result.
If kooou+koyoy > 1 (there exist many oscillations inside the initial wavepacket),
we may expand the wavefrequency and keep only the first two terms

o () oo (R) + (= R) - (%)

Substituting in Eq. (3.21) we get

G(7;,t) = Re |e

(3.22)
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W_//

(I

fast, slow, t=0

Figure 3.22: For various values of the angle between ko , ép and time t = 0
we’ve plot the quantity G in the midspace G > 0 as a function of the co-
ordinates (z,y) of the poloidal plane. In this example, V4 = 4,V4, =
25,0 =3,0, =0y = 0.1 ,kop = kocos?  koy = kosind, with &, = 50 and
¥ =0°,15°,30°,45° ,60°,75° and 90~°. In the middle of the bottom diagrams,
all packets together (the same in the right bottom, but only the values G > 0.4).
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slow, t=10

Figure 3.23: The same as in the previous figure, but only for the slow and time
t = 10. Altogether the wave packets bring to light the half triangle-shape group
polar of the slow wave.
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2.

slow, t=20

Figure 3.24: The same as in the previous figure, but for time ¢ = 20. The group
polar is seen very clear.
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fast, t=1

Figure 3.25: The same as in the previous figure, but for the fast and time ¢ = 1.
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fast, t=10

Figure 3.26: The same as in the previous figure, but for time ¢ = 10.
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Now the factor beginning with U;ﬂ is exactly G (FZ — (ﬁk‘w) L. t,O). In
T k=k

other words, the original packet moves with velocity I_/’gyi (/;0) = (ﬁk‘w) .

which is called group velocity [Shu92c].

Figs. 3.22-3.26 verify this result (we see the triangle-shape slow group polar and
the ellipse-shape fast group polar. The factor on the first line is an overall space-
independent time oscillation corresponding to the fact that the wave fronts are

—

wlky) |
propagating at the phase velocity, k—ko, while the wave-packet moves at
the group velocity, (8w/8k)

0
: @ (k)
P=k, ko

slow and fast MHD waves where the component of the group velocity in the
direction of the vector /;0 is equal with the phase speed, this factor is simply
unity. So in this case, the wave-packets simply moves in space, without changing
their shape. Of course if k,, 0, + koy 0y is not much larger than unity, this result
is only an approximation.

/%0. But in the case of

not equal to

-
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Chapter 4

Asymptotic analysis of
MHD outflows

General theoretical arguments and various analytic self-similar solutions have
recently shown that magnetized and rotating astrophysical outflows may become
asymptotically cylindrical, in agreement with observations of cosmical jets. A
notable common feature in all such self-consistent, self-similar MHD solutions is
that before final cylindrical collimation is achieved, the jet passes from a stage
of oscillations in its radius, Mach number and other physical parameters. In
this Chapter it is shown that under rather general assumptions this oscillatory
behaviour of collimated outflows is not restricted to the few specific models
examined so far, but instead it seems to be a rather general physical property
of an MHD outflow which starts noncylindrically before it reaches collimation.
It is concluded thence that astrophysical jets are topologically stable to small
amplitude, time-independent perturbations in their asymptotically cylindrical
shape. Also, similarly to the familiar fluid instabilities these oscillations may
give rise to brightness enhancements along jets.

4.1 Introduction

Astrophysical jets are by now widely observed in several cosmical environments,
from the rich variety of stellar objects to AGN and Quasars (e.g., see reviews
[Bir96, FMBR96, Ray96]). Three key aspects of the theoretical problem posed
by the observations of jets are (i), the construction of self-consistent dynamical
equilibria describing the initial acceleration and final collimation of the outflow;
(ii) examination of the stability properties of the beam and the detailed en-
ergetics of the outflow together with the in situ acceleration of particles and
subsequent emission of radiation; and (iii) the modeling of the time-dependent
problem.

Since magnetic fields seem to play a pivotal role in the acceleration, colli-
mation and emission of radiation in jets, one may try to answer these questions

77
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by considering to lowest approximation the magnetohydrodynamic (MHD) de-
scription. For example, in meridionally self-similar models [ST94, TST96] the
outflow is accelerated by a combination of gas pressure gradients and mag-
netocentrifugal forces; after the outflow crosses the modified by self-similarity
slow /fast magnetoacoustic surfaces [TSST96], the jet is confined either mag-
netically, or, by the thermal gas pressure. Similar is the situation in radi-
ally self-similar [BP82, FH96], or translationally self-similar MHD models
[CH80, BC92, DZC96].

Regarding the question of classical stability of collimated outflows, it is well
known that low Mach number, laboratory fluid beams maintain their direction-
ality for relatively short distances, typically 10 times their diameter.The basic
reason for beam disruption is the familiar Kelvin-Helmholtz (KH) instability
due to the motion of the fluid of the beam relatively to the surrounding medium
[FTZ78, FTZ81, FMBR96]. Linear KH stability analysis [FTZ78, FTZ81] pre-
dicts that the most unstable modes are of the order of the circumference of the
beam times its Mach number, Ay, ~ 27 R; M; while typical times of the fastest
growing modes are of the order of the ratio of the circumference of the beam to
the sound or Alfvén speed times its Mach number, 7.y ~ 27(R; /c;)M;. Never-
theless, astrophysical jets firstly observed in association with extragalactic radio
sources and secondly in assoclation with young stellar objects, often extend over
distances which are a much larger multiple of their width. Apart the occasional
wiggles and knots of enhanced surface brightness along their length, these astro-
physical jets appear to survive much longer periods than the time scales of the
linear analysis of the KH instability predict that they should break up. In order
to investigate possible saturation effects of the linear phase of the instability, the
nonlinear evolution of the KH hydrodynamic instability has also been followed
[BMFT94, BMR*95]. In this case, it is found that the persistence of the jet
depends principally on the density contrast with the ambient medium and the
Mach number.

In addition to the KH instabilities, magnetized jets are also subject to cur-
rent driven instabilities which are well known to create great difficulties in the
confinement of laboratory plasmas. In superfast magnetosonic jets with speeds
exceeding the fast MHD speed, the kinetic energy dominates the sum of the
magnetic and thermal energies and therefore the KH instability growth rates
are an order of magnitude or so, higher than the growth rates of the kink in-
stabilities [AC92, App96]. Instead, in transfast magnetosonic jets, the current
and fluid instabilities have comparable effects.

Probably related to the stability of jets, a notable aspect of available self-
consistent MHD equilibrium solutions is that the beam width and other pa-
rameters undergo small amplitude oscillations which often decay with distance
from the source [CH80, BC92, CL94]. These exact and quasi-analytic solutions
have been obtained under specific assumptions such as the corresponding self-
similarity ansatz. The subject of this Chapter is to further investigate the ques-
tion which naturally arises then whether the particular feature of oscillations
in the jet’s width can be obtained from the general set of the MHD equations,
regardless of specific models. Hence, we shall examine the topological stabil-
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ity of an MHD outflow which is asymptotically collimated and together with
its ambient medium consists of a compressible plasma of infinite conductivity.
Classical stability theory addresses the question whether a given equilibrium
configuration evolves away from (unstable) or back toward (stable) the initial
state when perturbed. In the present context, topological stability refers to the
question whether a given equilibrium state preserves its topological properties
when subjected to a perturbation. We should keep in mind that topologically
stable configurations may well be unstable from the classical point of view.
However, since for sufficiently slow time variations, the outflow can be modeled
by a sequence of quasi-static (equilibrium) states, the topological stability of a
configuration may provide evidence on its classical stability.

4.2 Perturbations of collimated outflows

Counsider the steady (8/0t = 0) hydromagnetic equations,

(ﬁxé)xé

— VP - pV 4.1
47 PNV ( )

o (7-9)7 =
vV.B=o0, ﬁ(pﬁ):o, ﬁx(ﬁxé):o, (4.2)

where é, 17, —VV are the magnetic, velocity and external gravity fields, respec-
tively while p and P denote the gas density and pressure. With axisymmetry
(0/8¢ = 0), we may introduce the magnetic flux function A, such that three
free integrals ¥(A), Q(A4), L(A) exist (see Chapter 2). In terms of these integrals
and the square of the poloidal Alfvén number,

_ AV ey

B2 d7p
the magnetic field and bulk flow speed are given in cylindrical coordinates
(w, ¢, z) by the forms,

M2

(4.3)

VAx ¢ LU,—o?QTy, -

w w(l— M?) ’
\If_AﬁquAS_i_wZQ—LMZA
drp @ w(l—M2) "’
while force balance in the poloidal plane is expressed by the transfield Eq. (2.21),
or
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If P is related to p and A, for example, via a polytropic relationship with con-
stant or variable polytropic index =, this last vector equation leads to two scalar
equations in any two independent directions on the poloidal plane for the un-
knowns A and M? (or, equivalently A and p). Quasi-analytical solutions of
Eq. (4.5) have been found only by additionally assuming a self-similar ansatz
for the dependence of the physical variables on the spherical (r,#), or cylindri-
cal coordinates (w, z) of the poloidal plane. Thus, we have available solutions
which are self-similar in (i) the cylindrical radius = [CH80, BC92, DZC96],
(ii) the spherical radius r [BP82, CL94, FH96] and (iii) the meridional angle ¢
[TT91, ST94].

In the following we shall consider an infinitely long jet where in a direction
perpendicular to the flow axis, the outwards directed centrifugal force is bal-
anced by the inwards tension of the toroidal magnetic field and gradient of the
magnetic pressure, enhanced (reduced) by the gradient of the gas pressure,

pVy 4 (B B}
e - S (Z4p)y—2 4.6
(87T+ T (4.6)

w  dw

where  is the cylindrical distance in spherical coordinates (v, 0, ¢), @ = rsinf.
In such a case of an asymptotically (r — o0) collimated outflow (jet) [HN89],
the magnetic flux function A, Alfvén number M., and gas pressure P, all
become functions of the cylindrical distance w at large radial distances r (in
comparison to the Alfvén radius ry) from the source of the outflow where we
may neglect the gravitational field,

Ave = Aco (@) , M2 = M2 (@) , P (wm) = /}"odw, (4.7)

where the pressure gradient F¢ is given in Appendix 4.A. For example, in the
cases of cylindrical collimation of [ST94] and [CL94], M, () = const. while
Ao (w) x @2, or, Ao, (@) x w”, for a constant z, in [ST94] and [CL94],
respectively.

In the following we shall investigate the topological or structural stability of
such collimated solutions. Namely, we are interested to check whether there
exist small amplitude steady and axisymmetric perturbations in the streamline
shape, Alfvén number and pressure, which satisfy Eq. (4.5). We are interested
to derive the dependence of these perturbations on the radial distance from
the central object. Consider then a solution which is topologically close to one
describing a collimated outflow, Eq. (4.7),

A=A (@) (1+¢), M?=M2(w)(l+e1),
P =Py (w)+ 6P, (4.8)

where all functions | € |,| 1 | and | P/Ps | 1. Substituting Egs. (4.8) into
Eq. (4.5) and by assuming that the derivatives of ¢,¢; are also very small (so
that we may ignore squares and products of the perturbation quantities), we
obtain from the % and & components of the momentum Eq. (5.1) two equations
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which the perturbations ¢, €1 and 6 P satisfy,

5P = Fre 4 Facy + Fy oo (4.9)
Ow
Q6P 1 , Oe deq 8e 8e
S = (P +6100) e+ (F2+G260) 1+ Ga— + Gat + Gs 35— + Gog(.10)

or (because of Eq. (4.9)), !

9% 9% 24" 1 Oe M2 oA deq
el = (7 - ;) 7= (mz) g 91 T G1e = KD

The perturbations ¢, ¢; and 6P satisfy the above equations containing the
lengthy general expressions [Fi(w), Fz(w), Fa(w)] and [Go(w), G1(w@), Ga(w),
G3(w), Ga(w), Gs(w)] which are all given in Appendix 4.A.

The previous analysis is independent of a specific polytropic relationship be-
tween pressure and density, some particular dependence of the perturbations ¢,
€1 and 8 P on their variables, as well as of any special choice of the free integrals
T4(A), L(A) and Q(A). In order to get some insight into the behaviour of the
perturbations, one should analyze the above general nonlinear equation. This
is however a formidable mathematical task and instead it occurred to us that
some physical understanding of the physical trends of the perturbations can be
gained by examining separately, (a) the case where the perturbations in stream-
line shape and Alfvén number are related, (b) the case where the perturbations
in streamline shape and Alfvén number are unrelated, and (c) the case where a
constant index polytropic relation between pressure and density is assumed. In
each of the above cases (a), (b) or (¢), we shall further examine separately the
various cases where a separation of the variables in the perturbations ¢ and 7 1s
possible. Finally, in each such subcase, we shall apply the results of our analysis
to the few examples where special sets of the free integrals ¥ 4(A4), L(A4) and
Q(A) have provided known quasi-analytical solutions.

4.3 Linearly related perturbations, ¢, = A\ (w) ¢

In order to make further progress, we shall first examine the case where the
perturbations ¢ and £ are linearly related,

€1 = Ao (W)E (412)

No specific polytropic relationship between pressure and density is imposed at
this stage where the pressure perturbation is given by Eq. (4.9) while ¢ and

LIf we write the differential equation for the perturbation Asoe then the A, disappear
(consistent with the initial equations where only derivatives of A appears).
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Ao(w) satisfy Eq. (4.11) which now becomes,

e 9% | A o Mol Ll o
0z2  Ow? A 1— M? w Ow
. oM?2 A
A — Ay ——— =0. 4.13
g1+ X0G2 — Ag Tz Al ¢ (4.13)

The above equation obtained by substituting Eq. (4.12) into Eq. (4.11), relate
the two unknown functions ¢ and Ag and their derivatives. However, it is still
complicated for a general analysis; in the following, we shall analyze Eq. (4.13)
in some special cases where the variables of the perturbations can be separated
in various coordinates of the poloidal plane.

4.3.1 Perturbations separable in @ ,r

Assume that the variables of the cylindrical and radial distances, (w,r) are
separable in ¢,

e=f(=)g(r), lgl<1. (4.14)
Then Eq. (4.13) gives,

., g/ f/ AI AOMZ f”
g+r{2wf+wA (2_1—M2 T T
f AoM2 A
L AoGa — 2V _qas
7 +G1+ A6 Y 14.15)

A ) Ao M? 1
A 1— M? oo}

Therefore (Appendix 4.B), there are constants (s, k) such that:

i

J +2sL 1 kg =0, (4.16)
r
or,
d?y dy 1\?
2 2 _
Pttty v=0
xr =kr, y= ga:s_% : (4.17)

The last differential equation is the familiar Bessel differential equation with the

solution
y= D1Js_%(x)—|—D2Ys_%(x). (4.18)

In the limit # — oo, Bessel’s functions become,

1
() R cos (l‘ T z),

Nz 2 4
@ 1
Y, () R i (x - % - %) (4.19)
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and therefore the solution of (4.16) is

g = rgssin (kr + ¢o) . (4.20)

Finally, Eq. (4.15) gives two conditions relating the functions of w:

{2@%:+4ﬂ€?<2__52%52)} = 25 (4.21)

i

and
oA Ao M? 1| f AgM? A o,
{f + 2 2_1—M2 - fg1+/\og2—1_M2A =k”.(4.22)

Note that for ¥ = 0, ¢ o< #'7%° while for k%2 < 0, ¢ e‘lklr/rs , cases which
apply to non-oscillating solutions.

In the following we shall test our analysis by comparing it with available exact
solutions of analytical models of outflows which exhibit an oscillatory behaviour.

Example 1

We may start with the simplest case wherein M., Ao, f, G1 and G are
constants and A, (@) oc w?. Indeed this case has been studied in [ST94] (see

also [TST96]). They considered the following expressions of the free integrals,

) 4
A= T*T*O[(R,H), \IIA(Oz): ﬂ-giv*\/l—l—(soz,
__= R=— (4.23)
“Trec® TR '
A 1
L{a) = Ay Ve ——em Qa) = 2= (4.24)

V1+6a’ e V146’
where G(R) is the radius of the jet in units of the Alfvén radius and A, § and
G (R — o0) = G are constants, while the starred quantities refer to values at
the Alfvén radius r,. Writing down the expressions of the perturbations for this
case we have,
G2, MZ%(r)
e(r) = G2—(7~) -5 ei(r) = M2

—1. (4.25)

It follows from Eqs. (4.21-4.22) that f(w) = 1 while A is a constant which
furthermore can be calculated at r = ry,

M2 -1

Yo = ol = S oy

(4.26)

This is the same result with that in the study of [ST94] although the surface
r = ry is not always in the asymptotic regime where gravity is negligible. The
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functions Gy and Gs given in Appendix 4.A are constants in this model and from
Eqgs. (4.21-4.22) the corresponding expressions for s and k are,

Ao M2
=24 2o 4.27
s +M§o—1 ( )
472 222 2M2 —1)GE — M2
K=l = . 2—/\0< 5= 1) G = (4.28)
A2, r2(1-M2) MZ (1 — MZ)

The wavelength of the oscillations grows quadratically with the Alfvén number,
Agse/r o< M2, while the amplitude of the oscillations drops with distance as
r= (2=l a5 found in  [ST94] (their Figs. 2, 8, 10). For example, as the mag-
nitude of the asymptotic Alfvén number M., increases by a factor of about 10
when the energetic parameter ¢ in the [ST94] notation decreases from ¢ = 10 to
€ = 1, Ay increases accordingly by a factor of about 100. Similarly, the ampli-
tude of the oscillations A,;. in the width of the jet and the Alfvén number drops
with radial distance as r~°, where 1 < s < 2 with its exact value s = 2 — [A¢|
depending on M, and G, according to Eq. (4.27).

Example 2

Another more general class of solutions can be generated by the following
set of free integrals [VT98],

’B 4
A= r*—*oz(R, 0), Tp(a) = M\/l + b + pboat,

2 By

2 e—1
a:%, L) = r Vi %,
r2G (R) 1+ b+ pboc
e—1
Qo) = VxS paT (4.29)
e \| 14 b+ pépat

where pu, €, 60,6 are constants, in addition to the ones introduced in the previous
example. If M., , Ao and f are constants then,

,_2(-1(GL-ML) (-0

k R 4.30
M (- MY ML (4:30)

because M2 > 1,

1— M2
o= [(e+1) M2 —(e—1)GL] GMZ 1) Gh ML (4.31)
and
Ao M2

s=24+—-m~c+3. (4.32)

MZ —1
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Figure 4.1: Dimensionless radial velocity V. on the rotation/magnetic axis vs.
dimensionless radial distance R. The solid curve indicates the super-fast exact
solution of the model of example 2 for the following set of parameters: ¢ = 0.1,
6§ =10.35, 60 =001, ¢ =5, u =001, 26M/r, V2 = 10. From the integration
of the MHD Eq. (5) we find that M2 = 490.24, G% = 0.0769. The dotted
line indicates the corresponding solution which emerges from the perturbation
analysis with Dp = 2.79 x 107, ¢¢ = 0.46).

Substituting in Eq. (4.8) the above expressions for k and s we find the perturbed
form of the streamfunction,

Byw? Dy . [V26(1—¢)

A comparison of the oscillatory behaviour of a solution obtained by this pertur-
bative analysis with the corresponding ezact solution obtained by an integration
of the MHD equations and selecting a super-fast solution crossing the modified
by self-similarity fast critical point is shown in Figs. 4.1,4.2. In Fig. 4.1 the di-
mensionless radial speed oscillates with the dimensionless radial distance while
in Fig. 4.2 the shape of the streamlines in the poloidal plane shows a similar be-
haviour. Since by assumption the present perturbation analysis applies to large
distances where gravity is negligible and the jet starts approaching its cylindri-
cal shape, such a comparison is meaningful far away from the Alfvén surface,
7 > ry. Then, the purpose of Figs. 4.1,4.2 is to show by a specific example that
in such distances the perturbation analysis gives results which compare rather
well with the corresponding exact solution. And with the perturbation analysis
being independent of any specific model, this comparison shows that the effect
of the oscillations is rather model-independent, as discussed in the last section.

For the specific example shown in Figs. 4.1,4.2, the amplitude of the oscilla-
tions in the strength of the radial speed is rather low, at the 3% level. However,
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Figure 4.2: Shape of the streamline on the poloidal plane for the model of
example 2, as emerges from the perturbation analysis (Do = 2.79 x 107, ¢¢ =
0.46). With dotted line an exact solution is shown for the model of example 2
where gravity is included.

the same oscillatory behaviour has also been found for other parameters yielding
larger amplitudes of the oscillations close to the 10 % level [VT98], similarly
to the [ST94] solution (see Chapter 7). However, a peculiarity of the present
model Eq. (4.29) is that the crossing of the critical point becomes numerically
rather difficult for parameters giving larger amplitude oscillations. And such a
crossing of the critical point is the main difficulty for obtaining exact solutions
[TSST96]. Hence, in the illustration shown in Figs. 4.1,4.2 we have been re-
stricted to a case with an unambiguous crossing of the critical point. In other
words, numerical difficulties prohibit the construction of exact solutions with
larger amplitudes of oscillations, unlike the case of [ST94]. Nevertheless and
as it is discussed in the last session, the physics of the oscillations remains the
same.

4.3.2 Perturbations separable in @, 0

Assume next that the variables of the cylindrical distance and meridional angle
(o, 0), are separable in ¢,

c=f@)g(0),  lgl<l. (4.34)

Then Eq. (4.13) gives,

H 1 A AMZ
0 =sin?fg +sinf cosfyg {2%4_@_(2_ 0 )_1} +
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Figure 4.3: Sketch of an oscillating streamline on the poloidal plane in this case.

-
We see that the wavelength increases logarithmicaly such that il

Vi,
2 1
g{w; +

Therefore (Appendix 4.B), there are constants y, v such that:

2

A 11— M? f

sin? Hg” + (2v+1)sinf cos Hgl + (1/2 — /12) g=0,
or,
2

I
1— 22

d*y dy
(1—1‘2)W—2x%+ viv+1)— y=20,

where
x = cosf, y = gsin” 6.

A Ao M?2 '
“ (2 0 ) — 1] ﬂ + @2 G1 + Aow? Gy —

—=constant

w/\szz
1— M2

(4.36)

(4.37)

(4.38)

The last differential equation is the associated Legendre equation and the solu-

tion is given in terms of the associated Legendre functions P/ (z) and Q#(x)

y = DiP(x) + D2Qy(2) .

(4.39)

For y? < 0 as # — 0 the solutions of the associated Legendre equation are §%#,
orsin (| p|In@) ,cos(] p|lnf) [AS72] and therefore the solution of Eq. (4.35)

1S

g=D0""cos(|p|Inb+ Do) < g=D(w/z)"" cos (|u|1n§—|—Do) :

We see an oscillatory behaviour in the angle #(«) similar to the Bessel functions

of the previous section (with the wavelength logarithmically increased - see Fig.

oA
A

}.35)
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4.3).
Furthermore, Eq. (4.35) gives two conditions for the functions of w,
f A Ao M?
and
oA Ao M?2 17 AgM2? A v?— 2
— —(2- - —| = A - — = 4.41
{f-l- I T - f+g1+ 0G2 Y >—(4.41)

It is worth to note that the Eqs. (4.40-4.41) are identical to the corresponding
Egs. (4.21-4.22) except the factor w? in the denominator of Egs. (4.41). The
wavelength of the oscillations was found constant in section (4.3.1) while now
it varies with distance (it grows logarithmically).

4.3.3 Perturbations separable in @,z

Assume finally that the variables of the cylindrical and axial distances, (w, z)
are separable in ¢,
e=f(@)g(2), lgl<1. (4.42)

Then Eq. (4.13) gives,
" oA Ao M2 1 AgM?2 A

L= (2- - MGy — 02 U 443
g -I-g{ 7 YT - f+g1+ 0G2 1 A (4.43)

f
Proceeding as before (Appendix 4.B), it follows that there is constant k such
that:

i

f/

g” + k%9 =0 g= Dsin(kz + ¢o) , (4.44)

and the oscillations are undamped in this case. This result should be expected
because now the radial distance r with its associated scale r = r, does not enter
directly into the analysis while with the neglect of gravity the distance z along
the jet does not have any associated scale.

4.4 Unrelated perturbations

Nonoscillating jet-type solutions have been also found recently (Trussoni et al
1996) and they also emerge from this topological stability analysis by considering
the case where the perturbations in the streamline shape and Alfvén number
are uncoupled. Assume for simplicity that ¢ = ¢(r) and 1 = ¢1(r). For
Aco = Aaw@?, A = constant and Mgol =0, Eq. (4.11) takes the form:

i

y 2M2 g,
g +4g?—71_]\°j2g71+91g+9291:0~ (4.45)
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Then (Appendix 4.B), there are constants ¢1, ¢z such that,

i

" q 2M2 gll _
g +4?—ﬁ7+clg+6291—0~ (4'46)

Comparing this with Eq. (4.45) it follows that,
(Gi—c1)g+(Ga—c2)g1=0. (4.47)

From this last equation two possibilities emerge. The first, where g and ¢; are
proportional to each other, has been already studied in Sec. (4.3.1) and it was
found to give an oscillatory behaviour. The second one corresponds to setting
G1 = ¢ and Gz = c3. By solving these equations we find then the following
general expressions,

2M2 —1
LU, 2 oM2 —1 2Tz (1-Mm2)°
(—A) —eotm Mo =1 Al ” We) (4.48)
A )T NME T X ’ '
22M§o -1 ,
M2 — M2 (1— M2
(QT4)2, = coAeo Moo =1 Mz (12 Me) [et M2 — 2¢20% (1 — M2)(4.49)

2M2 — 1

where ¢o is a constant. In other words, if the functions of A L¥4/A and QT 4
are given by Eqs. (4.48 — 4.49) the corresponding solutions may not exhibit an
oscillatory behaviour. In other words, the above conditions are the necessary
(but not sufficient) conditions for the appearance of oscillations in the asymp-
totic regime of collimated outflows, if ¢ and ¢; are functions only of r.

Examples

For the case which has been studied by Trussoni et al (1996) the free integrals
are given be Eqgs. (4.23) with A4 = B,/2G? . Their non-oscillating solutions
there correspond in the notation of the previous section to,

(M2 —1) 6L, — M

Co = 0, Cy = —ZAZ 3
rEME (1 - MZ)

bl

2 32
1= A"B, 5 (4.50)
3G (1— M)
Another general class of solutions can be generated by the set of the free
integrals given by Eqs. (4.29). Non-oscillating solutions also exist within this
model for the following values of the constants,

A2 JA? B2

o — ey =001 = , 4.51
0 rz(mg)ﬁ—l : PTG (1- M2 (+51)
*\ 2
1 1)?
Mfo:i, G;:L. (4.52)
€+3 (e—=1)(e+3)
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4.5 Polytropic models

Assume now that there exists a polytropic relation between density and pressure
P oxp?, or, PM* =Q(4), (4.53)

for some constant index . For a small perturbation this relation becomes,

(Poo +0P) M2 (1+61)" = Qoo +6Q, (4.54)
with
Qoo (w) = P M2, (4.55)
and )
_[dQ O
6Q) = (dA)oo Acoe = A €. (4.56)
ubstituting the pressure perturbation from Eqs. (4.54—4.56) in . (4.9) gives
Substituting the p perturbation from Egs. ( )in Eq. (4.9) gives,
A P M? de
P = |— ] — Fz3—. 4.57
(F2+7vPs) &1 1 (fo-l-’y e ) 71] 3 fs@w (4.57)
We shall distinguish two cases:
(a) Fo+ 7P =0,
de A PoM?
fga—w = T (fo + e ) — 71] €, (4.58)
and
Oe
(b) fz—|—"}/Poo 750, €1 IIC1€—|—IC26—W. (459)

In case (a), we may solve Eq. (4.58) and get for each of the particular depen-
dence of ¢, the three following cases:

(i) for e = f(w) g (),

|
e = (tan6) w_Aev/ Fs (4.61)
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(iii) for € = f (w) g (2),

¢ () ]
X dw

e=g(2) e/ I3 : (4.62)

where g¢ is an arbitrary function of z. In all cases Eq. (4.11) gives ;.

Case (b) with F3 + vPs # 0 on the other hand, turns out to be and the most
interesting and will be analyzed in more detail in the following. Then Eq. (4.11)
takes the form :

d%e  O%

¢)
H1€+H2—€ + Hy— +

9w g2 T2 =0 (4.63)

4.5.1 Perturbations separable in @ ,r

Assume first that the variables of the cylindrical and axial distances, (w, z) are
separable in ¢, ¢ = f(w) g (r),| g |< 1. Then Eq. (4.63) gives,

i i

" 2 (Hs— 1 2 (Hs— 1
g [1+L§)] SEI VIS VAT S VO Al G B
r r f r
f/ f// B
49| Hi+He—=+Hz— ] =0. (4.64)
f f
Therefore (Appendix 4.B), there are constants (s, k, s1, sz) such that:
) 4 L (e 32 42 =
p (1+r2)+r(25—|—r2)+kg_0. (4.65)

The asymptotic solution of the previous equation is the solution of the section
(4.3.1), although the relations between the functions of w are different.

4.5.2 Perturbations separable in @, 0

Assume next that the variables of the cylindrical distance and meridional angle
(w,0), are separable in ¢, ¢ = f(w) ¢ (0),] g |< 1. Then Eq. (4.63) gives,

sin? g + sin? 6 cos? By (Hs— 1)+

sin d cos Hglw (Hz + 2%7‘(3) — 2sin® 6 cos Hgl X

(Hg — 1) + ng (Hl + H2f7 + Hg%) =0 (4.66)
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Therefore (Appendix 4.B), there are constants sy, sz, s3 such that:

sin? Hg” (1 + 51 — 51 sin? 9) + sinf cos Hgl (53 — 251 sin? 9) + 529 =0 (4.67)

For s; = —1 the solution goes asymptotically as g = (tan@)_sz/ss, while for the
most interesting case of s; # —1 we may introduce the new constants p, v with
p>0and 2v+1=s3/(s1 + 1), v2—p? = s3/(s1 + 1), such that the differential
equation for g becomes:

sin? Hg” (1 %L n? 9) + sin 6 cos Hgl X
s1 + 1

53

@y+1+ smw)+(ﬂ—ﬂ%g:0. (4.68)

51+1

The asymptotic solution of the previous equation is similar to the solution of
Eq. (4.36), i.e., it is given by Eq. (4.39), with of course different relations
between the functions of . Oscillations like those predicted by the analysis of
this section have been indeed found in the model of Contopoulos & Lovelace
[CL94] where:

w e 1_%
A0(<—G(9)) , Ty ox A ,

Lo A%, Qo A2, Qo A2 F (4.69)

and where (Moo, f) are constants.

4.5.3 Perturbations separable in @,z

Finally, assume that the variables of the cylindrical and axial distances, (=, z)
are separable in ¢, ¢ = f(w) g(z),| g |[< 1. Then Eq. (4.63) gives,

g” +g (Hl + H2f7 + Hg%) =0 (4.70)

Therefore (Appendix 4.B), there is a constant k such that:

g” + k%9 =0 g= Dsin(kz + ¢o) , (4.71)

and the oscillations do not decay due to the lack of scale in the direction z,
similarly to the case of Sec. (4.3.3). Examples of models with such oscillations
have been analyzed by Chan & Henriksen [CHS80], Bacciotti & Chiuderi [BC92]
and Del Zanna & Chiuderi [DZC96].
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Figure 4.4: Sketch of an oscillating streamline on the poloidal plane (w, z) of
an MHD outflow from a central object. The inwards magnetic pinching force
Fp equals the outward inertial centrifugal force Fo at position 0. At position 1
Fp is greater than F¢ while at position 2 Fig is greater than Fe.

4.6 Discussion

Previous studies have shown that under fairly general conditions magnetized
outflows may become asymptotically cylindrical [HN89]. And, this tendency
for asymptotic collimation has been also demonstrated via quasi-analytic self-
similar solutions [ST94, CL94, TST96, VT98]. A common feature in all such
self-similar solutions is that before the final cylindrical collimation is achieved,
the jet passes through a stage of oscillations in its radius, Alfvén number and
other physical parameters. In the previous sections we have shown under rather
general assumptions that this oscillatory behaviour of collimated outflows is not
restricted to the few specific models studied so far, but instead it is a rather
generic physical property of the MHD outflow as it reaches collimation.

A simple way to demonstrate physically this effect can be provided by the
simplified construction shown in Fig. 4.4. A single streamline A(w, z) = const.
of an initially radial magnetized and rotating outflow becomes asymptotically
cylindrical (dotted line). Assume for simplicity that the jet carries an electric
current I, oc w? with a uniform surface density J, = const. In its asymptotic
regime the jet is confined by the interplay of the magnetic pinching force, the
gas pressure gradient and the centrifugal force of rotation [ST94, TST96]. As-
sume for simplicity that the gas pressure gradient and the magnetic pressure
gradient associated with the poloidal magnetic field are negligible such that at
equilibrium the magnetic pinching force exactly balances the centrifugal force.
In the superAlfvénic regime, most of the conserved specific angular momentum
is carried by the fluid, such that L ~ @wV,,. The magnetic pinching force Fp
which results from such a current 7, and the centrifugal force Fi for the assumed
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angular momentum conservation are then,

B 9 B: pVE L?
Fp= % — ¥ Fro=1% ~
B= frw 0w er © = =

(4.72)

under uniform density conditions. If now at some equilibrium location 0, say
at the cylindrical distance w = wg on the dotted line in Fig. 4.4, we have
Fp(wo) = Fe(wo), then at larger distances @y > wp (location 1 in Fig. 4.4) we
have according to Eq. (4.72) that Fp(w1) > Fo(wy). Conversely, at the smaller
cylindrical distances wy < wo (location 2 in Fig. 4.4) we have again according
to Eq. (4.72) Fe(wz) > Fp(ws). The net result is that as the parcel of gas
moves along the poloidal streamline from the central object to infinity, it feels
an inward force at location 1 which brings it towards the rotation axis. On the
other hand, due to inertia and its poloidal speed, it overpasses the equilibrium
position 0 and arrives at location 2 where now feels an outward force bringing
it again away from the rotation axis towards location 0, etc. The final result
is the oscillatory shape of the streamline shown in Fig. 4.4 and derived in the
previous sections. The oscillations start at the collimation distance R, where
the streamlines start to deviate significantly from radiality and by means of the
magnetic pinching forces are brought to the cylindrical geometry. Obviously,
at large distances from the collimation radius R, the cause of the oscillations
disappears and accordingly their amplitude decays to zero, i.e., the uniform
cylindrical shape is finally reached.

At the asymptotic and collimated regime of the outflow, we expect that
gravity should be negligible. For this reason and in order to simplify the math-
ematics, in the analysis presented in this Chapter gravity was not included.
Indeed, this assumption is verified by the plot of Figs. 4.1,4.2 where with dot-
ted line is given a full solution of the problem by including gravity while by
solid line is the approximate solution which is calculated by neglecting gravity.
These two curves almost coincide with some deviation starting as we approach
the source of the flow where gravity becomes rather important.

In the example shown for illustrative purposes in Figs. 4.1,4.2, the oscilla-
tions in the magnitudes of the flow speed, temperature, density and pressure of
the beam are rather weak at the few percent level. However, this is only due
to the fact that the availability of exact super-fast solutions for model 2 is con-
strained by numerical problems associated with the crossing of the fast critical
point. See for details the analysis of this model in Chapter 7 and in [VT98] (for
sub-Alfvénic at infinity solutions the oscillations are strong enough). In [ST94]
stronger oscillations of similar origin at the 10% level have been presented which
also emerge from the present perturbation analysis. Then, such large amplitude
oscillations in the beam may have notable effects, for example via enhanced
radiation emission either in local compressions of the flow pattern or in shock
transitions. For example, observed brightness enhancements (knots) along the
jet of M87 in Virgo have been attributed to shocks [Bir96] with a similar sit-
uation for stellar jets [Ray96]. Such shocks may be caused by an oscillatory
flow channel in which case the hydrodynamic equations allow multiple transonic
solutions connected by shocks [FMBRI6]. In the present study we have shown
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that oscillations in the cross-section of the jet may be due, in addition to the
familiar Kelvin-Helmholz instabilities, to the interplay of the magnetic and in-
ertial forces in the acceleration region of the outflow. Although an examination
of the detailed solution topologies of the present MHD case is far more compli-
cated than the corresponding hydrodynamic solution topologies, it is naturally
expected that similar shocks connecting various transonic solutions may exist
in the present MHD case as well. However, a demonstration of their existence
in self-similar MHD solutions is beyond the scope of this thesis and remains a
challenge for future studies. It will also be interesting to check if fully numerical
studies of collimated MHD outflows show an oscillatory behaviour in the shape
of the streamlines. In the only available so far such study of a paraboloidally
collimated disk wind [Sak87] such oscillations are not evident.

4.7 Appendix 4.A: functions of @

1 AI "
A (__A)_
w

2 (L — 200 ,)

Fo(w) = —

4rwo?

2(1— M2)?
o (LW, — 2200 ,)°
(1— M2y’
(202 = 1) (2200,0)° = (L0)" M (73)
wM? (1 — M2)? . '
]. H ' 7
= [(1=M)A[A - ) + M2A"
F(=) 4rwo? l< ) ( w) +
C o 2 (LU, — 2Ty
M an g a2 L¥a == _ 1) (4.74)
2(1— M?) N
1 , (LU 4 — 2Q0,4)°
= - M2A? + M? 4.75
Fa (@)=~ ( + Ay (4.75)
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Fs(@) =~ (M AA )Oo (4.76)
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M2 (0¥ 4)" — ot L (QF )
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M2 A

4.8 Appendix 4.B: theorem

Theorem: If F(x), fi(x), ¢:(y), ¢ = 1,2,--- n are arbitrary functions of the
independent variables x and y and

Fz)=Hh (@) g () + @) g+ -+ @) (), (4.88)
then, there exist constants cy,ca,...,c, such that,
F@)=afi(x)+cfe(x)+ - +enfu(). (4.89)

Proof. We ’ll use the method of mathematical induction:

(i) Forn=1, F(z) = fi(z) g1 (y).
If f1(#)=0then F'(2)=0=cif1 ().
If f1 (#) # 0 then,

e =a

= F(z)=c1fi(2), (4.90)

i.e. for n =1 Eq. (2) holds.
(ii) Assume that for n = k Eq. (2) holds, i.e., for given
Fe)=fi(@)gi(y) + f2(x) g2 () + -+ fi () g5 () (4.91)
= Je1,ca,- -, ¢ such that, F(z) = e1fr () + cafa () + -+ cnfi (2)

for every F, fi, 9;,1 = 1,2, k.

(iii) Then, for n = k+ 1, let F(2) = f1r (@) g1 (v) + -+ i1 () gp41 (y). If
fr41 (x) = 0 then from the previous hypothesis:

F@)=ah@)+. .. +exfox)=cifi(z)+ ..
+epp1fotr (2), (4.92)

i.e., Eq. (2) holds. If on the other hand, fi4+1 (2) # 0 then,

Flz) _ fi(2)
fi @ fia @) W)+
+ Ji (@) g () + ge41(y) = (4.93)

fov1 (@)
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d F(x) d £ (2)
dr (fk+1(l‘)) T dr (ka (l,)) g1(y)+ -
d ( fi(z)
i (fk+1 (x)) 9i ().
So from the hypothesis that for n=k there are ¢; such that,
i( F (x) ):ci< fi(x) )+
de \ fes1 () tdx Jeg1 ()

v gy (ff+(())) —

F(z) —. f1(z) ot Ir (2)
foi @ T T @

= Fx)=cafi(@)+ -+ crt1fosr (2),

+ Ckt1

and therefore Eq. (2) holds for every n.

(4.94)

(4.95)

(4.96)
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Chapter 5

Systematic Construction of

Exact MHD models

By a systematic method we construct general classes of exact and selfconsis-
tent axisymmetric MHD solutions describing flows which originate at the near
environment of a central gravitating astrophysical object. The unifying scheme
contains three large groups of exact MHD outflow models, (I) meridionally self-
similar ones with spherical critical surfaces, (II) radially self-similar models with
conical critical surfaces and (III) generalized self-similar models with arbitrary
shape critical surfaces. This classification includes known polytropic models,
such as the classical Parker description of a stellar wind and the Blandford and
Payne (1982) model of a disk-wind; it also contains nonpolytropic models, such
as those of winds/jets in Sauty and Tsinganos (1994), Lima et al (1996) and
Trussoni et al (1997). Besides the unification of all known cases under a common
scheme, several new classes emerge and some are briefly analyzed; they could be
explored for a further understanding of the physical properties of MHD outflows
from various magnetized and rotating astrophysical objects in stellar or galactic
systems.

5.1 Introduction

A widespread phenomenon in astrophysics is the outflow of plasma from the
environment of stellar or galactic objects, either in the form of a noncollimated
wind [Par58, FPBH96], or, in the form of collimated jets [BR74, Bir96]. These
outflows not only occur around typical stars and the nuclei of many radio galax-
ies and quasars, but they are also associated with young stars, older mass losing
stars and planetary nebulae nuclei, symbiotic stars, black hole X-ray transients,
low- and high-mass X-ray binaries and cataclysmic variables (for recent reviews
see e.g., respectively, [FMBRI6, Ray96, Kaf96, MR96, Liv97]. Even for the
two spectacular rings seen with the HST in SN1987A, it has been proposed that
they may be inscribed by two processing jets from an object similar to SS433

101
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on a hourglass-shaped cavity which is created by nonuniform winds of the pro-
genitor star [BK95, Bea95]. Also recently, in the well known long jet of the
distant radio galaxy NGC 6251 an about 103 light-year-wide warped dust disk
perpendicular to the main jet’s axis has been observed by HST to surround and
reflect UV light from the bright core of the galaxy which probably hosts a black
hole [CV97].

Nevertheless, despite their abundance the questions of the formation, ac-
celeration and propagation of nonuniform winds and jets have not been fully
resolved. Onmne of the main difficulties in dealing with the theoretical problem
posed by cosmical outflows is that their dynamics needs to be described - even
to lowest order - by the highly intractable set of the MHD equations. As is well
known, this is a nonlinear system of partial differential equations with several
critical points, etc, and only very few classes of solutions are available for ax-
isymmetric systems obtained by assuming a separation of variables in several
key functions. This hypothesis allows an analysis in a 2-D geometry of the full
MHD equations which reduce then to a system of ordinary differential equa-
tions. The basis of such self-similarity treatment is the prescription of a scaling
law in the variables as a function of one of the coordinates. The choice of the
scaling variable depends on the specific astrophysical problem.

In spherical coordinates (r,8,¢), a first broad class for describing outflows
are the so-called meridionally self-similar MHD models. Parker’s classical mod-
eling of the spherically symmetric polytropic solar wind [Par58] is the simplest
member of this class. A new class of such type of models for describing mag-
netized and rotating MHD outflows from a central gravitating object has also
been examined [ST94, LTP96, TTS97]. For example, an energetic criterion for
the transition of an asymptotically conical outflow originating at an inefficient
magnetic rotator to an asymptotically cylindrical outflow from an efficient mag-
netic rotator was derived. In the present Chapter, it will be shown that this
special class of meridionally self-similar solutions is one of the simplest possible
meridionally self-similar models. Furthermore, a new interesting member of this
class of radially self-similar MHD models will be briefly sketched.

A second broad class of solutions contains the radially self-similar MHD
models. Bardeen & Berger [BB78] presented the first such models in the
context of hydrodynamic and polytropic galactic winds. Nevertheless, their
generalization to a cold magnetized plasma by Blandford & Payne [BP82],
remains widely known because of their success in showing for the first time
that astrophysical jets can be accelerated magnetocentrifugally from a Keple-
rian accretion disk, if the poloidal fieldlines are inclined by an angle of 607,
or less, to the disk midplane (when the flow on the equatorial plane is cold
and exactly Keplerian); see also, Cao [Ca097]. A further extension has been
presented by Contopoulos & Lovelace [CL94] for a hot plasma with a more
general parametrization of the magnetic flux on the disc, while these models
form the basis of several investigations of accretion-ejection flows from stars
and AGN [Kon89, FP95, Fer97, Li95, Li96]. In this Chapter it will be shown
that this special class of radially self-similar solutions is one of the simplest
possible such models. Furthermore, a new interesting member of the radially
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self-similar MHD models will be sketched.

The Chapter is organized as follows. After a brief introduction of the basic
MHD quantities, in subsection 5.2 we use a theorem in order to construct several
classes of meridionally self-similar solutions and the resulting cases are then
summarized in Tables 5.1 and 5.2. The general method is applied in subsection
5.2.2 to a step by step construction of a new model for collimated outflows which
is also briefly sketched there. In section 5.3 the other remaining possibility in
spherical coordinates, i.e., radial self similarity is taken up. The resulting cases
are summarized in Table 5.3 while a new model is also briefly sketched which
gives asymptotically cylindrical, paraboloidal and conical streamlines. In section
5.4 we present a new class of self similar solutions where the shape of the critical
surfaces comes out from the solution. The results are summarized in Sec. 5.5.
Finally, in Sec. 5.6 some other solutions are briefly presented.

5.2 Meridionally self-similar MHD outflows

Consider the steady (8/0t = 0) hydromagnetic equations. They consist of a set
of eight coupled, nonlinear, partial differential equations expressing momentum,
magnetic and mass flux conservation, together with Faraday’s law of induction
in the ideal MHD limit,

p(v.ﬁ)vz(ﬁxﬁ)“‘t’j_ﬁp_pw (5.1)
V-B=0, ﬁ(pﬁ):o, ﬁx(ﬁxé):o. (5.2)

é, V, —VV=-V (=G M /r) denote the magnetic, velocity and external gravity
fields, respectively, while p and P the gas density and pressure.

With axisymmetry (9/0¢ = 0), we may introduce the magnetic flux function
A, such that three free integrals exist for the total specific angular momentum
carried by the flow and the magnetic field, L(A4), the corotation angular velocity
of each streamline at the base of the flow, Q(A4) and the ratio of the mass and
magnetic fluxes, ¥ 4(A) (Chapter 2). In terms of these integrals and the square
of the poloidal Alfvén Mach number (or simply Alfvén number),

YRl )
B2 dmp’

(5.3)

the magnetic field and bulk flow speed are given in spherical coordinates (r, 8, ¢)

by,

= = Ar 9)(/; LU, — r?sin? 0Q¥ 4 -
B = - 5.4
VX rsind rsin (1 — M?) ’ (5:4)

L Uy A(r,0)¢  r?sin?0Q— LM? .
V=—1V : 5.5
d7p X s + rsin (1 — M?) ¢ (55)

To construct classes of exact solutions, we shall make two crucial assumptions:
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1. that the Alfvén number M is some function of the dimensionless radial
distance R = r/r,,

M= M(R)|, (5.6)

and

2. that the poloidal velocity and magnetic fields have a dipolar angular de-
pendence,
ZB 2
A:r*?*fl(a), a:%sinzﬁ, (5.7)

with [G=G(R)]. (5.8)

By choosing G (R = 1) =1 at the
Alfvén transition R = 1, G(R) evi-
dently measures the cylindrical dis-
tance w to the polar axis of each field-
i line labeled by «, normalized to its
o e cylindrical distance w, at the Alfvén

: point, G (R) = w/w,. For a smooth

= . crossing of the Alfvén sphere R =1
032/ / \\ [r = re, 0 = 04()], the free integrals

0
02

polar axis

L and Q are related by

\‘\R=const
o _ | % \ L 2 2 -2 2
™ Ez ' ﬁ—wa(A):r*sm Oo() = riex.
,,,,,,,,,,,,,,,,,,,,,, e (5.9)
equator Therefore, the second assumption is

equivalent with the statement that at
Figure 5.1: An illustration of the con- the Alfvén surface the cylindrical dis-

struction of the streamlines o = const. tance @y of eth ‘magnetic ﬂUX‘ sur-
on the poloidal plane in meridionally face o = const is simply proportional

selfsimilar outflows. to \/a.
Note also that the gravitational po-

tential V = —GM/r can be expressed in terms of the escape speed V., at the
Alfvén radius ry,

VA2  Vese o= M

V="%r YT Y

Instead of using the three free functions of «, (A, ¥4, Q), we found it more
convenient to work instead with the three dimensionless functions of «, (g1, g2,

gS)a

1 7“2 \:[12
g1 (o) = /.,4 2do, ga (a) = B—*/QZ\I!ida, g3 (o) = ﬁ. (5.10)
*

2
*
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Also, we shall indicate by II the total pressure in units of the magnetic pressure
at the Alfvén surface on the polar axis, B2 /87 = p, V.2/2,

8 B?
n="1(p+2),
B? 87

2

B / / /
pP= ﬁ (H + fi91 + foagy + fgagz) : (5.11)

The functions f;(R), i = 1,2,3 are given in Appendix 5.A while all starred
quantities refer to their respective values at the polar Alfvén point (R=1,a =
0). Hence,

such that,

A(@=0)=1, T, (a=0)=/47p,

or,
g (a=0)=1, g3(ex=0)=1. (5.12)

With assumptions (i)-(ii) and in this notation, the #— and —components
of the momentum equation become,

% = ngll —+ <f7 + %fz;) Ozg; —+ (fs + %fs) ag; + fogs,  (5.13)
OIL(R, 0 , ,
% = 2cotd (f4ag1 + f5ag2) . (5.14)

Next, by using « instead of # as an independent variable, we may transform
from the pair of the independent variables (R, ) to the pair of the indepen-
dent variables (R,«). With the following elementary relations valid for any
differentiable function G,

0G (R,0) _ 0G(R.a) | F 3G (R,0)

= 5.15
OR OR R da (5.15)
9G (R,0) _ 9G (R, )
50 = 2acotf S (5.16)
we may transform Egs. (5.13), (5.14) into the following two equations:
81_[ «, R 1 7

% = fag1 + f592, (5.17)

61_1 O[,R ' 1 1
Ml R) _ fegr + fragy + fsags + fogs . (5.18)

OR

By integrating Eq. (5.17) we get II = f4g1 + f592 + fo where fo is an arbitrary
function of R. From Eq. (6.12) the pressure is

2

-
&

(f4g1+f5g2+fo+f1g11+f204911+f304912) ; (5.19)
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Table 5.1: Meridionally Self-similar Models
constraints

Case  g1(a) ga(a) gs(a) on constants
(1) a o Ao 1+ 6
(Z)b Ea+ pafe 14 6a+ udga® eZ£ 0,1, u#0
(3) fa+ palna 14+ 6a+ pboalna uw#0
(4) age 0 Ae %o 1+6aeq+u(eﬁ —1)
() Lot (2-1) & L6 2 =1 4| & =1 —6—p 20,1
(6) —ozgln|of’—0—1| Eln|%—1| 1+6ln|;—0—1|+um;’_—auj
(7) ﬁ wln a;’ef + fa 14 6(a— apep)+ pboln a;’ef uw#0
® s (a) Motk rzaTh s (af —aty) 402 (00T —aiT))  c£ 01

c(1-oes re

Yref o o Az o 1L _ 1
(9 rreloin e Mingeo 4+ 22 gt (2 - )

¢[TT91, ST94]

bsee Chapter 7, or [VT98]

or,

BZ
P=—xYPT,
&

where P and Y are the (1 x 7) matrices,

P=[fofs L o [s f50],

and

Y=[V, Y, Y3 Yy Ys Yo Yo]=|1g1 g1 agy g2 gy g3

Substituting for II in Eq. (5.18) it follows,

—fogs — fsags + fsg2 — fragy — fegr + fagr1 + fo =0,

an expression of the form

(5.20)

(5.21)

(5.22)

X7 (R)Y7(a)+ X6 (R)Ys(a)+ -+ X1 (R) Y1 (a) =0, or, YX! = 0,(5.23)

with X the (1 x 7) matrix:

X=[X1 Xo X3 Xa Xs Xe Xel=|fofs —Ffo —Fr f5 —Fs — fo|(5.24)

5.2.1

self-similar MHD outflows

Systematic construction of classes of meridionally

It is straightforward to prove the following useful theorem (see Appendix 4.B.

or [VT97]):
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Theorem: If F(«), Yi(e), X;(R), i = 1,2, -+, n are arbitrary functions of the
independent variables o and R and

Fole)=Y1 () X1 (R)+ -+ Y, (o) X (R), (5.25)
then, there exist constants cy,ca,...,c, such that,
Folao)=aVi(e)+eaYa(a)+ - +en¥n (o). (5.26)

Consider then a relation of the form,
Xo(R)Yn(@)+ -+ X1 (R) Y1 () =0. (5.27)

Regarding the first term of the sum there are evidently only two possibilities.
Either,

1. X, (R) = 0 for every R, in which case (indicated by the digit ”0”) we have
Xp1 (R)Yo_1(a)+ -+ X1 (R) Y1 () =0,
or,
2. X, (R) #0, in which case (indicated by the digit ”1”) we have

X (R) R R 00 B

Yn(a):_Xn(R) 1(0[)— Xn(R)

Then, according to the theorem stated in the beginning of this sec-
tion, there are constants pgn),i =1,2,---,n—1 such that ¥, (a) =
Z?:_ll /Jgn)Yi (). This gives a condition between the functions of «.
Substituting this condition in the initial sum we find:

X (R) + 21X (B)] Yoo () +
[ X2 (R) + 2, X0 (R)] Yoz () + - (5.28)
+ X0 (R + VX (R)] Vi (a) = 0.

Hence, in both cases (i)-(ii) we find a sum with n — 1 terms. Following this algo-
rithm at the end we ’ll have only one term. Since for each product we have the
above two possibilities, totally we obtain 2” cases. Each of them corresponds
to a set "xx---xx” with # = 1,0(n digits). The number of ”1” digits is the
number of conditions between functions of o while the number of ”0” digits is
the number of conditions between functions of R.

Following this method from Eq. (5.22) we get 27 solutions. Each of them
corresponds to a set "xxxxxxx” with z either 1, or, 0. Of those numbers:
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1. The first digit is always 71”7 (because X7 # 0).
2. The last digit is always 707 (because Y7 # 0).

3. Since A’ # 0, it follows that g7 # 0 and thus g; cannot be a constant.
Hence, the function Y3 = ¢y cannot be proportional to Y; and therefore
all numbers always have ”00” at the end.

4. We have totally six unknown functions: the three functions of R, (G, M, fo)
and the three functions of «, (g1, ¢2,¢3). On the other hand, the num-
ber of conditions between the functions of R (their number is equal to
the number of digits 70”) and the functions of « (their number equals to
the number of digits ”1”) in each one of the sets "xxxxxxx” is seven. It
follows that the system of (G, M, fo) and (g1, g2, g3) is overdetermined.
Note however that since the forms of the functions X;(R) are more com-
plicated than the forms of the functions Y;(«), we choose sets ”xxxxxxx”
with at most three ”70’s” because in the case of 4 or more ”0’s” we have
correspondingly 4 or more relations between the 3 functions of R, which in
general overdetermines the system of (G, M, fo). In this way we shift the
difficulty of overdetermination of the problem to the set of the 3 functions
of «, (91, g2, ¢3) which need to satisfy 4 relations. In this system however,
it is possible to choose the constants uy)

for the functions of « can be finally constructed.

such that a consistent solution

Altogether, then and with these considerations in mind, from the 27 = 128
possible cases we end up with only five: 1011100, 1101100, 1110100, 1111000,
1111100. For each of one of those sets we can solve the system for g1, g2, g3, as
it is shown in the example of the next section.
From a different perspective, g1(«), g2(e), gs(«) are vectors in a 3D a-space
with basis vectors [uy(«), uz(e), us(e)]. This space contains all vectors g;(«),
i = 1,2, 3 subject to the f-self-similarity constraint manifested by Eq. (5.22),
i.e., that for a given such set g¢;(«), i = 1,2,3, the vectors 1,agll(a),ozg12(oz)
and gll(oz) also belong to the same space. Each of the resulting functions g;(«),
i =1,2,3 are then a linear combination of the basis vectors uj (), ug(«), us(«).
In the following, we choose w1 = 1, uz = g1(a). All such sets of basis vectors
give all possible meridionally self-similar solutions. Therefore, collecting all
possibilities, we end up with the classes of solutions shown in Table 5.1.
Note that in the last three cases A’ (o = 0) # 1, but one can say that the starred
quantities refer to values at the point R=1,a = ayep < 1. !

In all nine cases of Table 5.1, from Eqgs. (5.10) we may easily find the forms
of the free integrals from the relations,

L'We have assumed that at point r = 74, = 0 we have p = px. So we have excluded
solutions with zero density on the axis. But we may easily extent the models of Table 5.1:
Generally, if the starred quantities By, Vi, px refer to values of By, V,,p at the point r =
T, = Qpey, then we may substitute g1 — constant X g1 and g3 — constant + g3 in a way

suchatoz:ozref,gi(l—oz)ZIandgg:1.
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o
B, r? ;
= ;*/\/glda,‘I’AI\/élﬁp*gs,

1 529

while by substituting g1, g2, g3 in Egs. (5.19), (5.22), the corresponding ordinary
differential equations for the jet radius G/(R), Alfven number M (R) and pressure
component fo(R) are found from the R-relations, as it is illustrated in the
following section.

From the perspective of the a-space, in each one of the cases of Table 5.1 there
exists a 3 x 7 matrix K such that

Y =[u uy us K, (5.30)
so that from Eq. (7.14),
[uy uz us ] KX =o.
If u; are linearly independent then
KX'=0.

These three equations are the ordinary differential equations for the functions
of R in each model while the pressure is,

B2 B2
PI—*[Ul Ug Ug]KPTI—*(Po—FPlgl—FPng),
& &
where
KP' =[Py P, P,]".

The first two cases of Table 5.1 are of some interest. The first, is a degenerate
one with uz = 0 and the following form of the free integrals:

B, ri
a )
2

VA
Ty \/1—|—60é.

This is a special case of the more general following case (2) for p = 0 (and
¢ =A%) and has been studied in detail in [ST94] and [TTS97]. It is the single
case where we have only two conditions between the functions of R, so that
the third relation between the unknown functions G, M, fo is freely chosen.
In [TTS97] this corresponds to an a priori specification of the shape of the
poloidal streamlines, while in ST94 in an a priori imposed relationship between
the spherically and nonspherically symmetric components of the pressure. This

A=

L dmp, (14 6a), Q (5.31)
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Table 5.2: Meridionally Self-similar Radial Models

Case  g¢1(«) g2(a) gs(a)

M ?* —mIml1-a] 0 1

(Z)b uflcieadoz—ln|1—oz| )\2% 14 6a®

(3) u11n|1—oz|+u2fir‘_‘;doz Mn o 1+ 62lna
1) m(#Fmh|l-a|+up 0 59, (1= a)+ X
(5) pln|1—al g2(a) # (g, prIna 4 po, a2 4 pug) 6

“Parker’s solution [Par63]
P[LTPY6]

last case leads to a generalized polytropic-type relation between pressure and
density of the form,

P(a, R) ) pla, R)
2~ funetion of .
PO, R) R (0, R)

(5.32)

As a result, a Bernoulli-type constant exists and, among others, this constant
gives a quantitative criterion for the transition of an asymptotically conical wind
from an inefficient magnetic rotator to an asymptotically cylindrical jet from an
efficient magnetic rotator.

The second case with € # 0,1, 4 # 0 has uz = «, ug = of. The corresponding
form of the free integrals is :

B,r? Vi poc=t ¢
A= X, Uy =+/4 146 bo€) , Q= =4/ ————— (5.33
o = A (U e i 0= 2 [ gy

This is a new case which emerged from the present systematic construction.
The corresponding differential equations are derived in detail in the example of
the next section where the solution is briefly analysed.

In the special configuration with G = R < a = sin?#, the field and stream
lines on the poloidal plane are radial. The functions f; ;2 =1,...9 are given in
Appendix 5.A. Egs. (5.19),(5.22) are simplified to

B? : :
P == (fgzt fo+ figy (1= ) + faags) | (5.34)

—f9g3—f80églz+fé,92—f6(1—0é)gl1+f(;=0~ (5.35)

If this is the case, following the algorithm of the previous sections, we find the
five cases shown in Table 5.2.

The first case is a degenerate one, wherein there is only one condition be-
tween the unknown functions M(R), fo(R). Thus, a second relation between
M(R) — fo(R) can be imposed a priori, for example, a polytropic relation be-
tween pressure and density. This last possibility leads precisely to Parker’s
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[Par63] classical solar wind solution with a radial and nonrotating outflow (see
Chapter 6). All other cases (2)-(5) are non-degenerate, i.e., there are two rela-
tions between M (R) — fo(R).

The second case has been analyzed in detail in Lima et al [LTP96] and cor-
responds to a radial but heliolatitudinally depended outflow. If in addition
p# = —1, e = 1 this case coincides with (1) in Table 5.1 for radial poloidal stream-
lines. Note that a common feature of all rotating cases with radial stream lines
on the poloidal plane is that they cannot be extended in all the poloidal plane,
for sufficiently fast magnetic rotators. For example, in the model of Lima et al.
(1996) the pressure becomes negative at some colatitude f,,,, for large values
of rotation. This is basically due to the fact that with the poloidal magnetic
field dropping like 1/R? and the azimuthal field dropping like 1/ R, the magnetic
pressure drops like 1/R* and by itself alone cannot balance the magnetic ten-
sion which drops like 1/R3; a strong pressure gradient is then needed from the
pole towards the equator to balance the magnetic pinching. In fast magnetic
rotators this pressure gradient is so strong that it leads to negative values of
the pressure at angles 8 > 6,,4,. A collimated outflow with uniform asymptotic
conditions is the only way left for an everywhere valid outflow from an efficient
magnetic rotator [HN89, ST94].

5.2.2 Example of a new model for a meridionally self-
similar MHD outflow

Let us illustrate the previous construction with the example 1101100 obtained
from the present case with n = 7. This number means the following:

Since the first digit is 1, there are six constants u§7),i =1,2,---,6 such that
the following relation holds between the functions Y;(«), i=1,2, ..7,

6
Yr = Z ﬂy)Yi , (a-relation-1). (5.36)
i=1

Substituting this expression of Y7 in the initial relation Eq. (7.14) between the
functions (X;, v;), i=1,..7, we obtain

(X + 87 x0) Yot (X5 + 70 Vo o4 (X1 4 10X ) vi = 0. (5.37)
()

Now the second digit is again 1 and thus there are five constants p, ',¢ =

1,2,---,5 such that
5
Ye = Z ﬂEG)Yi , (a-relation-2), (5.38)
i=1

while substituting this relation in Eq. (5.37) we obtain,

[(Xf’ + ﬂ§7)X7) + (X6 + ugm)] Vet oo
(5.39)

+ [(Xl +/¢§,7)X7) + u” (XG + u(67)X7)] =
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The third digit is 0 and hence

(Xs + /ifr,7)X7) + s (XG + ué7)X7) =0
(5.40)
(R-relation-1)
a relation between the functions of R. With the help of Eq. (5.40), Eq. (5.39)
now reduces to,
[(Xi + u§7)X7) + (X6 n ug))@)] Y, =0. (5.41)

=1

The fourth digit is 1 and thus there are three constants /124), ¢t = 1,2,3 such that
3
Yy = Z ﬂ§4)Yz’ , (a-relation-3) . (5.42)
i=1

Substituting this relation in Eq. (5.41) we obtain

i [(Xz + ﬂ§7)X7) + NEG) (XG + ﬂ(67)X7)] +

(5.43)
i (KXo + 7 x7) + 6 (X6 + 7 x7) | fvi =0
The fifth digit is 1 and there are two constants uES), ¢t = 1,2 such that
Ys = /1(13)Y1 + /1(23)Y2 , (a-relation-4) . (5.44)

Substituting this in Eq. (5.43) we find a relation involving ¥7 and Y. Finally,
we must put equal to zero the multipliers of Y7, Y3 in this relation because the
two remaining digits are 0. So we have:

[(Xi + ﬂ§7)X7) + (X6 + u(67)X7)] +
p? [(X4 + ﬂfp)@) + g (X6 + u(67)X7)] +
p ([ 4 m0x0) + 48 (36 4087 x7)| 4 (5.45)

s (s + 07 x7) + 6 (Ko + 7 x7) ) =0,

fori=1,2 (R-relations-2,3).

These last two equations together with Eq. (5.40) are the three equations for
the functions of R. On the other hand, Eq. (5.36), Eq. (5.38), Eq. (5.42) and
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Eq. (5.44) are four relations among the three functions of «. These relations
of the functions of « [Eqgs. (5.44), (5.42), (5.38), (5.36)] are equivalent to the
system:

Y3 =11 + Y, gll /: €1+ €291

Y4 = Cng —|— C4Y2 o Ozgl = C3 —|— Ca41

Yo = c5Y1 + ceYa + Y5 agy = ¢s + cog1 + crga
Y7 = csY1 + coYs + c10Y5 g3 = ¢ + cog1 + c1092

Note that we have renamed the constants and also used Eq. (7.11). From the
first, if ¢2 # 0 it follows that g1 = —eq/ca + ce®2®. Then, from the second ¢ = 0
and hence g1 = —c¢q/e¢y. But gy cannot be a constant. Thus, ¢y = 0 while the
first two equations combined with Eq. (5.12) give g1 = a + ¢11 while the third
has the solutions:

. .
e+t c13a°7, if ¢7 #£0,1
g2 = cealna+cig + g, if 7 =1

ceax + crglna 4+ cy7, if ez =0.

For the first possibility, we have finally the second case of Table 5.1 :

g1 =«
gz =Ea+pafe, e#0,1
g3 = 1+ ba + pboa®

where we have absorbed the constants c¢q1,cy2 in the unknown function fo,
cirfs + ci2fs + fo — fo. Egs. (5.19), (5.22).

After substituting these values of g1, ¢2,¢3 in Eqgs. (5.19) - (5.22), we find
that

o= fo = fol & [fa+ €5 — fr — Efs = 8fo] a st [ fo/e = Js — bofo| o = 0(5.46)

and

BZ
P = 8—*(P0—|—P10z—|—P20z6)
™

i (5.47)

— %
&

[fo+f1+(f4+€f5+fz+€f3)a+u(%Jrfg) ae] .

By setting equal to zero the three expressions in the square brackets of Eq.
(5.46) (since £ # 0 and 1, v, € are linearly independent vectors in the a-space
for € # 0,1 ) we find the three R-relations for the functions G(R), M(R),
fo(R) (which are the same with Eqs. (5.40),(5.45)). Using the functions fy, '
and the definitions of Py and P; we obtain five, first order, ordinary differential
equations for G(R), F(R), M(R) and the two pressure components P;(R) and
Po(R),

aem _ G2, (5.48)
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dF  F dM? F(F-2) F?—4 2G2RP,
dR  1—M? dR 2R 2R(1—M?) 11— M?

2R 2 4 4 2 2
o (M DE M2 (1)) (5.49)

dM? M?(1-M?) {—esor?
= —€00

G2 (1- M)
dR ~ 2MI_1)Gi-M* +

RZ

(5.50)
F—2

T[(e+1)M2—(e—1)G4]}

F?—4 (1-G2)°

B +2¢
2R2G? G2(1— M2)3

dpPy dM?
dR

dR

MPF dF & MP(F?*—4)(F—4) (5.51)
2R2G*dR  R:M? 4R3G?
(F—2)[(2M? —1) G* — M*]

¢ RG?M? (1 — M?)*

dPy 2 dM? v? 2M?(F —2) (5.52)
dR ~  G* dR  R2M? RG* '

Note that the third pressure component P;(R) is given explicitly in terms
of M and G (fs and f5). An integration of the above set of equations will
give the complete solution. However, this exercise is rather complicated since
any physically accepted solution should pass through the various MHD critical
points [TSST96]. This undertaking, together with a discussion of the solution
and application to collimated outflows is the subject of Chapter 7.

It is worth mentioning at this point that our analysis of model (2) of Table
5.1 shows that mainly cylindrically collimated solutions are obtained. The set
of Figures 5.2,5.3 illustrates such a typical solution for a representative set of
the constants describing the particular model. This solution crosses the Alfvén
surface for appropriate values of the slope of the square of the Alfvén number
Px = (dMZ/dR)*, the expansion function F, and Py, which satisfy the Alfvén
regularity condition [HN89, ST94] which is easily obtained from Eq. (5.83) of
Appendix 5. A at (R=G = M = 1), L.e.,

Fipy = 2fus - (5.53)

The nonspherically symmetric part of the pressure Py, is obtained from its defi-
nition while the functions fs, , f5« are calculated for R = 1 using the L’Hospital
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5.2: Poloidal field and streamlines close to the stellar base (left panel)
3.5, 6ot = 0.1, £ = —10, pn = 20, p,

and in an enlarged scale to show the asymptotical collimation reached after the

oscillations have decayed (right panel) for the f-self similar model of case (2)

0.315r,

Figure
10, 612

rslar

from Table 5.1, for the following set of parameters: ¢ = 0.5, v? = 2G.M /r,
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3.0

*

velocities in units of V

0.0 10.0 20.0 30.0 40.0
rlr.

Figure 5.3: Outflow velocities in units of V,, the radial speed at the Alfvén point
(o = 0, R = 1), for the parameters given in the caption of Fig. 5.2 of model (2)
of Table 5.1.

rule. Figs. 5.2,5.3 correspond to the set F, = 1.1 and p, = 1.6. Note that af-
ter the Alfvén star-type critical point is crossed, the modified by self-similarity
X-type fast critical point [TSST96] may be crossed by further adjusting ap-
propriately the triplet of the variables (Fi,p,, Pi). It suffices to note that
solutions crossing only the Alfvén surface do not differ qualitatively from those
which in addition cross the modified by the present meridional self-similarity
fast critical surface.

The left panel fig. 5.2 shows the shape of the streamlines on the poloidal
plane and close to the Alfvén surface. The cylindrical asymptotical shape of the
poloidal streamlines may be better seen in the enlarged scale of the right panel
of the same figure. Note also the constant wavelength but the decaying with
distance amplitude of the oscillations, in full agreement with the analysis in
[VT97].At the last shown fieldline «,,¢ = 4, the toroidal fields vanish, B, = 0,
Ve = 0. For o > arpus , Q% becomes negative, so there is no solution there. The
same oscillatory behaviour can be seen in the fieldlines which are not rooted on
the star but they are perpendicular to a thin disk around it (dotted curves in
Figs. 5.2,5.3.) The oscillatory structure of all flow speeds before the flow reaches
full cylindrical collimation is also shown in Fig. 5.3 where we have plotted the
characteristic velocities in units of the Alfvén speed at the polar axis and Alfvén
sphere (¢« =0, R =1), V,.

The poloidal speed along the polar axis V}, p.; increases to a uniform super-
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Alfvénic value and is higher than the same speed along the limiting streamline
Vptim (1.e., the last fieldline rooted on the stellar base 7,44, taken to be at
0.3157,). Both reach asymptotically uniform values after V, 1, intersects the
curve of the poloidal Alfvén speed Vipum at R = 1. Note that corotation
may be seen up to the Alfvén distance R = 1: the azimuthal speed Vy ;5 at
the ’limiting fieldline’ increases until the Alfvén surface is reached and drops
from angular momentum conservation as the outflow expands almost conically.
Further away however, this speed too levels off to a constant value when full
collimation is achieved, as expected. Finally, the fact that the jet has a large
component of toroidal field is reflected by the large values of the Alfvén speed as-
sociated with the toroidal magnetic field, V44 1im, as compared to the rotational
speed Vi 1im-
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5.3 Systematic construction of classes of radi-
ally self-similar MHD outflows

To construct general classes of radially self-similar solutions, we make the fol-
lowing two key assumptions:
(i) the Alfvén Mach number M is solely a function of 6,

=) (.54
with M (6,) =1 and

(ii) that the poloidal velocity and magnetic fields have a dipolar angular depen-
dence,

Bowg RrR? . 9 r .
A_T.A(oz) , @ = =sin g, R_w—o, with (5.55)
G=G)]. (5.56)

By choosing G () = 1 at the Alfvén
transition 0, G(0) evidently measures
the cylindrical distance w to the po-
LS lar axis of each fieldline labeled by

«, normalized to its cylindrical dis-

tance @, at the Alfvén point, G (6) =

w/w,. For a smooth crossing of the

Alfvén cone 6 = O, [r = ro (o) ,0 =
oy 6,], the free integrals L and § are re-
oy lated by

0

polar axis

L
a= w2 (A) =72 (a)sin® 0, = wla.
o . = (5.57)
equator Therefore, the second assumption is

) ) ) equivalent with the statement that at
Figure 5.4: An illustration of the con-  the Alfvén conical surface, the cylin-

struction of the streamlines o = const.  drical distance @, of each magnetic
on the poloidal plane in radial selfsimi-  fux surface o = const is simply pro-
lar outflows. portional to 1/«, exactly as in the pre-

vious meridionally self-similar case.
Instead of using the three functions of «, (A, ¥4, Q) we found it more conve-
nient to work with the three dimensionless functions of «, (¢1, 42, ¢3),

2 2 2
01 (@) :/%da,qg (o) = %/Qzﬁzda,qg (o) = gM \II? do. (5.58)

Blw, as
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Table 5.3: Radially Self-similar Models

Case  ¢1(«@) g2(a) gs(o) constants
(1) “ a:E_lz a2 gilz a® 2 zc—lz at? Ei,2-24£0
" Eilna Dilna Cilna Ei #0
(3) Eia®™! 4 Bya™2 Dia®™ 4 Dya®2 Cra®l 4+ Cra®2 E? 4 D24 C? Ey,z1,00,51 —x2 £0
(4) Eilna+ Eya® Dilna 4 Dya® Cilna + Cyra”® E12+Dl2+Cf,x;éO,i:1,2
(5) E, (lnoz)2+E21noz D, (lnoz)2+D21noz C1 (lnoz)2+Czlnoz E12+Df+012;£0
(6) Eia®Ina 4 Eza” Dio®Ina + Dya® Cia®Ina + Caa® E24 D24 C240
¢[CL94, BP&2]

b[CL94] for = = 2

Following the same algorithm as in the previous case, we shall use (o, 6) as the
independent variables and transform the derivatives with respect to r and € to
derivatives with respect to o and ¢ in the 7~ and é—components of the momentum
equation. Integrating the resulting #—component of the momentum equation we
get

B? / ,
P = 2= (hag, + haagy + hags + haga + hsqy +ho) . (5.59)
or
BZ
pP==2YP!
81
with
P = [ho hs hy hs ha hs 0], (5.60)
and
Y=[V1VoYVaVaYVsYeYr]=|1¢a 04(111 q2 04(112 q3 04‘1:; ; (5.61)

and after substituting the pressure in the other component of the momentum
equation we obtain

Fhaaqs + hyqs + ha (F — 2) agy + hagat

(11107 o)

(1- M?) + hsqi 4+ ho =0,

where a prime in the functions of ¢;(«), i=1,2,3 and h; indicates a derivative
with respect to their variables « and Insin @, respectively, while the functions
h; (0),5=1,2,3,4,5and F are given in Appendix 5.B.

This expression is again of the form

X7 (0) Yr (0) + X6 (0) Yo (a) + -+ X1 (6) Vi (a) = 0,01, YX =0 (5.63)
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with X the (1 x 7) matrix
X = [ X1 X2 X3 Xa X5 X6 X7 ] =

i

() , (5.64)
o5 TR hg hs (F —2) hy Fhy

As in the previous case of meridionally self-similar solutions, we classify the
various possibilities by the sets ”xxxxxxx”. And, these sets always have 7007 at
the end, their first digit is 717, they have at most three ”0’s”, while from the 27
possibilities we end up again with the cases 1011100, 1101100, 1110100, 1111000,
1111100. Now the vectors ¢1(a), ¢2(«), q3(«) belong to a 3D a-space with basis
vectors [e1(«), ez(r), es(a)]. This space contains all vectors ¢;(«), i = 1,2,3
subject to the r-self-similarity constraint manifested by Eq. (5.62), i.e., that for
a given such set ¢;(«), i = 1,2, 3, the vectors 1, aq;(a) , 7 =1,2,3 also belong
to the same space. Each of the functions ¢;(«), ¢ = 1,2,3 which satisfy this
constraint are then a linear combination of the basis vectors ej(«), ez(«), es(«).
In the following, we choose €1 = 1, €3 = q1(«). All such sets of basis vectors give
all possible radially self-similar solutions. Therefore, collecting all possibilities,
we end up with the 6 classes of solutions shown in Table 5.3.

In all of the cases of Table 5.3, from Eqgs. (5.58) we find the form of the
functions of «,

sz & Bzw s 7
A:#‘/ \Jog do, U2 = 2 %n3q,,
2 o 41 A gM qs

02 = %q—?a_% , I? =¢Mw, 207 . (5.65)
Wo 43 q3
Finally, by substituting ¢1,¢2,¢3 in Egs. (5.59), (5.62), we find the ordinary
differential equations which the functions G(6), M (0), ho(0) obey.
In a-space, for each of the cases of Table 5.3 there exists a (3 x 7) matrix K
such that
Y:[61 €9 63] K, (566)

and from Eq. (5.63)
[61 €9 63] I()(Jr =0.

If the basis vectors e; are linearly independent, then,
KX'=0.

These three equations are the ordinary differential equations for the functions
of # in each model of Table 5.3, while for the pressure,

B2 B?
P:—O[el €9 63]KPTI—*(P0—|—P1(]1—|—P263) s
8w 8w
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where
KP' =[P, P, ).

As with the previous meridionally self-similar solutions, the first three classes
are of particular interest. The first corresponds to the following form of the free
integrals:

BOWZ\/El z C’lewo 3
A= 222oV s g = e T (0-3/2) 2 = a” 7. 5.67
r A GM wgcl ( )
This is a degenerate case, i.e., e3 = 0 and we have only two conditions

between the functions of 4. It follows that we are free to impose a third re-
lation between the unknown functions [G(8), M (), ho(#)]. One possibility is
that such a third imposed relation is of the polytropic type, P o« p¥ (in this
case hg = 0). In such a polytropic case which has been analyzed in detail in
Contopoulos & Lovelace [CL94], the magnetic flux is of the form A = f;(6)R"
with f7(f) o [sin@/G(6)]* (for notation see also [TSST96]). The magnetic field
at the equatorial plane § = 90° is B o« R~ 2, the density p o R**~3, while
the sound, Alfvén and rotational speeds scale as their Keplerian counterparts,
i.e., as R™1/2. Note that if [D1G (7/2)/C4] [(G2 — M?)/G (1 — MZ)]Z:% =1,
the rotational velocity at the equatorial plane is exactly Keplerian. The classi-
cal and simplest subcase analyzed in [BP82] corresponds to the subclass with
x = 3/4, wherein B o« R=%/*. The two relations among the functions of ¢ are
the two resulting first order differential equations for the Alfvén number M (#)
and dimensionless radius G(6) (m(x) = M?(0) and &(x) = G(0)/G(%) in the
notation of [BP82]).

The second case 1s also degenerate since e3 = 0 with again only two conditions
between the functions of #. As before, we are free to impose a third relation
between the unknown functions [G(6), M (0), ho(6)], for example, a polytropic
relationship. Then one can prove that this case is a subcase of the first one (if
it is polytropic), for « = 2.

All other cases shown in Table 5.3 are nondegenerate. The third class, is char-
acterized first by a set of parameters describing the particular model and the
dependence of the free integrals on the magnetic flux function 4 («),

(1,22, F1,Ey,C1,Cy, D1, Dy), second by the Alfvén angle 0, and third, by
the set of the critical point parameters p, = (sz/dH)* and ¢, which denote
the slope of the Alfvén number and the expansion angle, respectively, at the
Alfvén angle 8., together with the pressure component Py, through hs,. This
triplet of ’"dynamical’ parameters fixes the physical solution and they are related
through the Alfvén regularity condition which is now obtained from Eq. (5.98)
of Appendix 5.B at the Alfvén angle 8, where M = G =1 and hy = hs,, le., .

hs* = —sin2 9* tan(ﬁ* + 30*)]7* . (5'68)

As with the previous case of meridional self-similarity, this condition relates the
slope of the square of the Alfvén number p, = (sz/dH)* and the expansion
angle ¢, with the pressure component Py, through %s,. Finally, the requirement
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Figure 5.5: Left panel: Field and streamlines for the cylindrical r-self similar
model of case (3) from Table 5.3 and the following set of parameters: 23 = —0.6,
xy = —0.5, By = —0.03, By = 0.03, C; = —1.5, Cy = —0.6, D; = —25,
Dy = =10, 8, = 62, ¢, = 55%, p, = —3. At the disk level, V; o R~1Y/2 while
on the poloidal field/streamline «o,; = 6.191736, B, = V, = 0. Right panel:
The characteristic velocities in units of the z-component of the flow speed at
the point (o« = 1,0 = 7/2), V.
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that the solution crosses the two slow and fast X-type critical points (modified
by the radial self-similarity assumption, [TSST96] determines all these three
"dynamical’ parameters [¢y , px , Pix]-

It is interesting to note that contrary to classes (1)-(2) in Table 5.3, this
model (3) may be characterized by a scale, for example the radial distance on
the plane of the disk where the magnitudes of the poloidal speed and magnetic
field or the toroidal speed and magnetic field become zero. Hence, it occurred to
us that this is an interesting generalization of the [BP82] model and therefore
worthy of further investigation.

Fig. 5.5 are a typical illustration of model (3) for describing collimated jet-
type outflows with an oscillatory behaviour. In the left panel the poloidal field
and streamlines reach a cylindrical shape after undergoing oscillations in their
radius. As we move downstream, the amplitude of these oscillations decays
while their wavelength increases. In fact, the exact behaviour of the oscilla-
tions is analytically described in [VT97] (see also Chapter 4) where it is shown
that they can be regarded as perturbations on an asymptotically cylindrical
shape which can be expressed in terms of the Legendre functions PF(cosf)
and Q#(cos@). According to this analysis, when p? < 0, the asymptotically
cylindrical shape is finally obtained through those oscillations. Then the per-
turbation (for # — 0) is proportional to 6F#=7  or since u? < 0, proportional to
(%)_V cos (| | InZ + D,). In the example shown in Fig. 5.5 the amplitude
of the oscillations is rather weak. Note however, that cases also exist with an
extremely strong oscillation amplitude and such examples will be analyzed in
another Chapter. On the other hand, when u? > 0 the asymptotically cylin-
drical shape is reached without such oscillations. Exactly this last possibility is
shown in the following case of Figs. 5.6.

To further illustrate the various possibilities for the asymptotic behaviour
of outflows starting from a Keplerian disk, we examine briefly the group of
three models in Figs. 5.6,5.8,5.8 where depending on the values of the model
constants, we get one with cylindrical, parabolical, or conical terminal geometry:

(1) In Fig. 5.6 a cylindrically collimated outflow gir%(Mz ,G*) = constants,

is obtained for a set of the model parameters: (z;, E;, Cyi, D;),1=1,2. The Alfvén
conical surface is taken at 6, = 60° where the slope of the square of the Alfvén
number is fixed as p, = —1.1 while the expansion angle ¢, =~ 75° (the angle
of the poloidal streamline with the cylindrical radius). The characteristic scale
of the model is taken to indicate approximately the radius of the jet, or more
precisely, the distance along the disk where for oy = 2 we have B, =V, = 0.
In the right panel of Fig. 5.6 the velocities on the reference line o« = 1 are plotted
in units of V,, the z-component of the flow speed at the point (e = 1,0 = 7/2).

(2) In Fig. 5.7 an r-self similar model belonging to case (3) in Table 5.3 with
parabolic asymptotical geometry gir%(Mz ,Gz) = 00, is examined for another

set of parameters (z;, Fy, Ci, D;), i=1,2. The Alfvén conical surface is taken
now at @, = 45° where the slope of the square of the Alfvén number is chosen
as p, = —1.7 and the expansion angle ¢, & 75°.
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Figure 5.6: Left panel: Field and streamlines for the cylindrical r-self similar
model of case (3) from Table 5.3 and the following set of parameters: 23 = —0.9,
xes = —0.6, 1 = —2.1421466, Fy = 2.60994552, ('] = —3.2132198, U3 = Dy =
0, D1 = —160.66099, 0, = 60°, p, = T4.704656°, p, = —1.1. At the disk level,
Ve o R~1/2 while on the poloidal field/streamline ooy = 2, B, = V, = 0.
Right panel: The characteristic velocities in units of the z-component of the
flow speed at the point (a« = 1,0 = x/2),V,.
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Figure 5.7: Left panel: Poloidal field and streamlines for the parabolic r-self
similar model of case (3), Table 5.3 and the following set of parameters: zy =

—0.9, 3 = —0.6, F; = —0.8252542, F; = 1.00547, ('}, = —1.23788, (3 =
Dy = 0, Dy = —12.378813, 0, = 45°, ¢, = 75.465545° p, = —1.7. In this
case Vg o R~Y2 on the equatorial plane while on the streamline ooy = 2,

B, = V, = 0. Right panel: The characteristic velocities in units of the z-
component of the flow speed at the point (a« = 1,0 = x/2),V,.
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Figure 5.8: Left panel: Field and streamlines for the conical r-self similar model

of case (3), Table 5.3 and the following set of parameters: 1 = —0.1, 23 = 0.01
and By = —78.601635, Fy = —728.31337, € = —4.3231, Co = Dy = 0, Dy =
—43.231, 0, = 65°, p, = 75.784234°, p, = —0.5. In this case V; o« R~!/? on the
equatorial plane while on the poloidal field/streamline «,yy = 2, B, =V, = 0.
For large distances from the disk all lines with a > 0 go asymptotically to
the line 8 = #,,;,. Right panel: The characteristic velocities in units of the
z-component of the flow speed at the point (o« = 1,6 = 7/2),V,.
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(3) Finally, in Fig. 5.8 the r-self similar model of case (3) in Table 5.3 gives a
conical asymptotical geometry for a third set of the parameters (z;, E;, C;, D;),
1=1,2 and 8, = 65°, ¢, = 75°, p, = —0.5. Note that now the solution exists
only for 6 > #,,;, where 0,,;, &~ 17.5°. When this value of # is approached,

lim (M?,G?) = .

In all these four possibilities and along a given field/streamline, the outflow
starts from the equator where V o R~1/2 with a low subAlfvénic poloidal speed.
This poloidal speed V), crosses the Alfvén conical surface at ¢, in all cases. In
the cylindrical case of Fig. 5.6, V}, increases rapidly to a uniform value when
collimation is achieved. The azimuthal speed V; on the other hand, drops with
height in all cases, as rotational energy is transformed to poloidal kinetic energy.
Finally, the azimuthal Alfvén speed is the strongest in the cylindrical case where
the toroidal magnetic field is responsible for the ensuing final collimation.
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Figure 5.9: An illustration of the construction of the streamlines oo = const. on
the poloidal plane in general selfsimilarity.

5.4 Construction of general self similar models

5.4.1 General equations

In this section we ’ll examine general self similar solutions of the MHD equations.
In general, M? is a function of some variable y (with x a function of r and 0,
which in some cases is not known a-priori).

Thus, M? = M?%(y) & % = M?(x), where p, is the density at the Alfvén
pla,x
surface.

First let’s define the function « as the ratio between the free integrals L, Q:

o= —20 where w, is some reference scale (for adimensionalization). We are
w
o
interested for transAlfvénic flows, where I = Qw
2

radius at the Alfvén surface. Thus o = w—g Without loss of generality, we
w

2

2, and w, is the cylindrical

o
define the adimensional cylindrical distance from the polar axis

Gl = Zl0 =)

W, (@) W/

At the Alfvén point M (x = xx) = 1 it’s obvious that G (o, x = x») = 1, for
2

each line o« =constant. So o = p—yerh As in the previous self similar solutions,
w

0
our first assumption is that G is a function of y only:

G =G(y), or . (5.69)

This is then a general ”definition” of self similarity: G and M are functions of
the same variable, or in other words M 1is a function of (G and vice-versa. Self
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similarity means that if we know one fieldline then we can find all the others as

[ w
follows: Moving along a single line M =constant (or y =constant), L=
a3 w2
(because at this curve (G =constant).

The second crucial assumption is

[r==f (9@ (5.70)

Note that this assumption is made because in the momentum equation we have
the gravitational force which is a function of r.

So we may transform from the familiar spherical coordinates (v, ) to the new
coordinates (x ,«) via the relations

G () Ve
FO)g(a)

We can use these two relations in order to move from the (r,8) to the (y, «)
coordinates on the poloidal plane.

Note that, the assumption Eq. (5.70), for ¢ = 1 takes the form r = w, f (x), or
X = x (7). Thus Egs. (5.69)-(5.70) are equivalent to M = M (r),G = G(r).

On the other hand, for ¢ = /o, using w = w,G+/«, it takes the form sin§ =
G(x)/f(x), or x = x(6). Thus Eqgs. (5.69)-(5.70) are equivalent to M =
M(x),G =G (x)

Introduce the functions

sinf = and r = wof (x) g (o) . (5.71)

dln | g| dln | f] 1 dln|f|
Y = = — =
(@)= e Z0="TnéT T F2dm |’
dlnG?
if the expansion factor is defined by F' = 2 — niG
dln | x |
Then,
dlnG? 2y —1 dlnG* 27 q
Olnr Y+ 2 61n|sin9|_Y—|—Zan
Olna 27 +1 Olno 27

Olnr Y+ 2 81n|sin9|:Y—|—Z

At this point we note the following two inportand facts:

o If we were to choose the coordinates y and « to be orthogonal, then we
would have Vo - VG = 0, or after solving the resulting differential equation
it follows that: G = r/w,, g =constant, f/G =constant and o = sin? 6.
Thus the only case is the radial 8- self similar model.

e We can take the previous r- or - self similar solutions as special cases.
1
First, by choosing ¥ = 2 in which case x = x (#); if in addition y
1 1
sinfd, 7 = T F o Second, by choosing Y = 0, in which case y =
1

; if in additi 7 =——.
x (r); if in addition y o 7, 3
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Figure 5.10: Expansion factor and angle.

In the general self similar case we have

Bowg R? . 9
A= 5 A(a), a:GZ(g)Sm 6, :—O,
2.2 B} 2
Q\IIA:w—%gz(oz), L=wiaQ,
Zcosf dA (Z +1)sin0 dA 1 1-G?
By = By r——rn—— Bo = =By it —— By = —B, ST
GV +Z)da’? G +2) do"? YT
M? M? Bov/ag, 1 G? — M?
‘/7‘:_237" w:_ZBea V¢: agz_ :
72 2 v, G 1- M2

If we substitute y and « instead of  and 6 in the momentum equation we get

for the component in the direction of VA: Mgy =0or

0 (87‘1’ ) 1+47 Oz.AI.A” 272 ;oo 2 7?2 1o
— | =55 + + AA — ———YV A+
da \ B2 26212 (Z +Y) ¢ GHZ+Y) GYZ+Y)

9 dM? ) dz ) )
+2ZM _1_d1nG2Y.,42+21—M2 d1n G2 Y242 1 1447 aAd?_,
G4 (Z+Y)2 a G4 (Z+Y)3 a 2f2G2 (Z+Y)3 g2
4 1 (1-62\" ., (2M?-1)G*—M*+2M?(1-G?) |
+-— Gl ag; + 3 g2t

M2*f  G*\1-M G2M? (1 — M?)
dz dM?
2 7 2 7
_|_<1_M)d1nG2 1447 A_Z_dlnG2+1+4ZM 1 Y A2
2G2f2 (Z + Y)S g2 2G2f2 (Z + Y)2 g2

M? ) dM? o dZ
1437 - ———7ZM +(22+1)m—4(1— >d1nG2A_2:0

2G2f2(Z +Y)* 9

_|_

(5.72)
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and for the component of the momentum equation in the direction of 6)(: M, =
0, or

M2 O (8 )\ 9 [ 2GM
oy \BZ' ) " ox \Brm, iy ) T

MYZ% o M*(1+47)

Lo | o t e e A [1-c 1 ar- 62\ 2ag)
dx (Z+Y) T2 1-M?2  2G%2\ 1-M? v

, d dA d2.A ,dgy 26M LY
here Y = — = — =— and g3 = — = . Note that
where A = Ta A Ta? 13= - = Blm, ga ote tha

this last equatlon can be written in the form

1P 9 (v_2 wB¢Q)_0

which gives the familiar Bernoulli integral if we have a polytropic relation P =
Q (A)p?, or in general if P = Py (A)Ps(p).

It is worth to mention that if P = Py (A)P3 (x) then we can again integrate
this equation as in the 0- self similar model [ST94] where Py (A) = 1+ 8o and
P2 (x) = T (R).

5.4.2 Solutions with constant Y

In order to find solutions of Eqs. (5.72)-(5.73) the simplest way to proceed is to
assume that

Y = (a) constant, or equivalently g = (a)a .
If this is the case, Eq. (5.72) is a sum of products between functions of « and
functions of y, so we may proceed as in the previous self similar cases.

For that goal we introduce the functions of o, ¢1,¢2,¢3,91,92 and g3, such
that

A% @ L, 2YGM T
fh_ZYT, 42 = B_EQ L Q3:may+1’
L LA & a . 2GMTY
N= Sy W= g5 92502083, = 3B = = BlaY (5.74)

where primes indicate derivative with respect to «.
Then, Eq. (5.72) can be integrated at once with respect to o to yield

BZ
P= P (So + 8191 + Szag1 + S50 g1 + Saq1 + Ssq2 + Saaqz + S7q3) ;
(5.75)
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where So = Sp () is the constant of the integration, while the functions §; (x) ,¢ =
1,...,7 are given in Appendix 5.C.
If we substitute this form of the pressure in Eq. (5.73) we find

(F-2)7

W93,0+317Q3+S:1Q1 =0,
(5.76)

where the functions Q; (x) ,¢ = 1,2, 3 are given in Appendix 5.C. Primes in the

functions of y indicate derivatives with respect to y.

This case where Y =constant, includes the cases of r- and - self similarities as

special cases:

So+8191+O1ag;+ 0202 gy +Ssgs+ Osagy+

in 6
e For Y = % we have x = x (0). If we choose x  sinf, say, y = %,

sin 0,
then Eqs. (5.74) give Eqgs. (5.58), while Eq. (5.75) and Eq. (5.76) are
equivalent to Eq. (5.59) and Eq. (5.62) respectively.

e For Y = 0 we have vy = x(v). If we choose x o r, say, y = " with
w

W, = ry, then Eq. (5.74) gives Egs. (5.10), while Eq. (5.75) and Eq.
(5.76) are equivalent with Eq. (5.19) and Eq. (5.22) respectively.

Now we may proceed looking for solutions with ¥ # 0| %
Eq. (5.76) can be written in the form

9
SX (1) Vi(a) = 00r YX! =0,

i=1

with X ,Y the (1 x 9) matrices

Y = [1 g1 ag; 0¥ @1 g2 agy g3 aq'g]
(F—2)7 (5.77)

X = [SO S Q192 8, 8 938, W] .
As in the previous self similar cases (previous sections of this Chapter) the so-
lutions correspond to sets "xx - - - xax” where x = 0, 1.

—_—
9digits

We have four unknown functions of x: Sp, M?, f,Z and three unknown func-
tions of a: g1, g2, ¢3 (we remind that the functions g3, ¢1, ¢2 depend on g1 , g2, ¢3;
see Eq. (5.74)). So following the method of the previous sections (choosing
numbers with at most four ”0’s”, which corresponds to at most four relations
between functions of y and examining the overdetermination of the system for
the functions of «), from the 2° cases we end up with only seven:
111110100,111010100,110110100,101110100,011110100,111101000 and 111110000.
Only the first set corresponds to degenerate cases, because in this set we have
only three relations between the four functions of y.
One can solve in each set the system for the functions g; , g2 , gz and M? ,G? | f, So
in order to construct new models.
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Examination of the degenerate set 111110100

If we solve the system for ¢y , g2, ¢3 in the frame of this set we end up with three

cases:

1.

g1 = E1a” gy = DiaP + Dya® "1 g3 = Craf + Cha?Y 117
where 3 # 0,1 — 2Y. In this case we have for the functions of y
S, =0

(F=-2)7

E7S, + E18Q1 + D18y + D103 + Ci8my C18; =0
, F-2)7 )
F1BQa+ DS+ Doy (2Y — 14 8) Q3+C2 (2Y — 1+ 3) (J‘XTZ)Y—FCZSTF
OVEL
2Y—1+6&_0

BZ
We may close the system by choosing a form for the pressure P = 8—°Q ()8 (x)-
T

Under this assumption we have one more unknown (the function S (x))
and the following relations

So=0

Q = /\1(1@ + AzOzZY_l-I—ﬁ

E181 4+ E1882 + DiSs + D186 + C187 = M S

2Y F
F18Ss + ﬁ&l  DySs+ Dy (2Y — 14 ) Se+ CaSr = M8

g1 =Eia'™Y g =Dia" 4+ Dylne, g3 = Cia" + Cylne.

In this case we have for the functions of y

, F—2)7
SO+E1(1—2Y)Q2+D2Q3+CZ(fXT2)Y:0
AES+E(1—ﬂﬂQ—H)S+D(1—%@Q—H7ﬂ—2m££:9£
107 1 1 195 1 3 1 fozY

18, =0
(Dst + )87 +2Y (1 — ZY) E184) =0
BZ
We may close the system by choosing a form for the pressure P = —=Q («) S (x)-
T
Under this assumption we have one more unknown (the function S (x))
and the following relations
Q=X+ da'™?
DsS5 + C87 +2Y (1 — ZY) Fi184=0
So+ F1(1—=2Y) 83+ D386 = A1 S
E1S81+FEy (1 — ZY) Sy + D185 + Dy (1 — ZY) Se + C187 = X3S

.gi=FEilna,go=Dilna+ Dy ' g3=Cilna+ Cea?Y 1.

In this case we have for the functions of y
Sot F101+ Dy Qs+ =D Z
0 1< 13 1 MY

(E1814+ D185+ C187) =0
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(F-2)Z
fxM?2y

2YEy

S, =

2y —1°*
BZ

We may close the system by choosing a form for the pressure P = 8—°Q (o)

E1Qo+DySy+Dy (2 — 1) Q34C2 (2Y — 1) +C385+

0

Under this assumption we have one more unknown (the function S (x))
and the following relations

Q=X+ At

So+ E182 + D1Ss = M8

FiS1+ D185+ C1Sr=0

2Y F
183+ >y _11 Sa+ D285 + Dy (2Y — 1) Sg + C287 = XS

5.4.3 Solutions with constant 7
Another way to separate the variables (y,«) in Eq. (5.76) is to assume

Z = constant, or f = G~

If this is the case, from Eq. (5.71), a is a function of r=??. Equivalently, the
equation of the lines is

So if we find solutions of Eq. (5.76) they will correspond to cases with prescribed
fieldlines.

If 7 = —% we have radial fieldlines on the poloidal plane while for other values
of Z fig. 5.11 shows the shape of the lines.

5.5 Summary

In this Chapter we have examined a systematic way for constructing exact MHD
solutions for plasma flows. The first assumption was to consider the ideal plas-
mas MHD equations for time-independent conditions, Eq. (5.1)-(5.2), without
imposing the extra constraint of the frequently used polytropic assumption. Sec-
ond, we confined our attention to axisymmetric situations, without an electric
field in the ignorable direction [Con94], in which case the poloidal magnetic
and velocity fields can be expressed in terms of the magnetic flux function A
while several integrals exist, Eq. (5.4)-(5.5). In that case, besides A, a second
natural variable is the Alfvén Mach number M, Eq. (5.3). We denoted by G
the cylindrical distance w of a poloidal streamline from the system’s symmetry
axis, in units of the cylindrical distance of the Alfvén surface from the same axis,
wWe. Third, we further confined our attention to transAlfvénic outflows in which
case the regularization of the azimuthal components in Eq. (5.4-5.5) requires
that the ratio of the two integrals of the total specific angular momentum in

S (x)-
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Figure 5.11: Lines on the poloidal plane when Z =constant
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the flow L(A) and corotation frequency €(A4) is some function a(A) [as in Eq.
(5.9)]. By introducing some reference scale w, this function « is dimensionless,
[as in Eq. (5.7) where w, = ry]. Apparently (M, «) is a rather convenient set
of dimensionless variables for describing all physical quantities in the poloidal
plane. For any set of orthogonal curvilinear coordinates suitable for describ-
ing axisymmetric problems, we may then convert their poloidal coordinates
to (M, «). Examples are spherical coordinates [r(M,«), 8(M, o), ¢], cylindri-
cal coordinates [z(M, o), w(M, «), ¢], toroidal coordinates [u(M, o), v(M, &), ¢],
oblate/prolate spheroidal coordinates [£(M, &), n(M, o), ¢], paraboloidal coordi-
nates, etc. Then, the distance from the symmetry axis of the outflow in units
of the corresponding Alfvén distance, is G(M, «). In the present first study we
made the simplifying fourth assumption that G is independent of o, G = G(M)
only. Finally, to re-establish the connection with the geometry of the problem
and the particular set of the coordinates used, we made our fifth and final as-
sumption that M = M (x) (and G = G(x)), where x = r, or, x = 8, or generally,
r = wof (x) g (e). This leads then to the three broad classes of meridionally
(with spherical critical surfaces, M = M(R)), radially (with conical critical
surfaces, M = M(#)), and generalized self-similar outflows (with y =constant
critical surfaces, M = M(x)). Needless to say that additional symmetries may
in principle be considered, something which may be taken up in another con-
nection (equilibria in tokamak geometries, etc).

After these five assumptions are well posed and with the help of a simple
theorem, it is possible to (i) unify all existing exact solutions for astrophysical
outflows (Tables 5.1, 5.2 and 5.3) and (ii), to qualitatively sketch a few of
them. With this method, the system of the coupled MHD equations for r- or
f- self similar outflows, reduces to a set of five ordinary differential equations
for the dimensionless jet radius (G), the flow’s expansion factor or angle (F,
or ¢), the Alfvén Mach number (M) and the two pressure components (Pp
and Py). The requirement that the solutions pass through the Alfvén critical
point gives a condition relating the values of the expansion function or angle,
Alfvén number slope and pressure component at this critical point. The Alfvén
regularity conditions, Egs. (5.68), (5.53) are similar to that discussed in [HN89,
ST94].

As a byproduct of this construction, two representative models for radially
and meridionally self-similar outflows, [BP82] and [ST94], respectively, have
been generalized. In the former case of [BP82], it is well known that the cold
plasma solution is terminated at a finite height above the disk while the general
case (3) in Table 5.3 extends all the way to infinity. Also, it is shown that the
expressions of the MHD integrals which correspond to the [ST94] model are
only a special case of case (2) in Table 5.1.

Having in mind the ubiquitously observed collimated outflows from astro-
physical objects, we paid more attention to the selfconsistently derived asymp-
totical shape of the streamlines. Of the various such asymptotic geometries
derived, a prominent member seem to be the cylindrically collimated jet-type
solutions, in accordance also with the conclusions of observations [Liv97], gen-
eral theoretical arguments (Heyvaerts & Norman [HN89]) and recent numerical
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simulations [GWBI7]. Another feature that appeared in the solutions is that
cylindrical collimation may or may not be achieved with oscillations in the width
of the jet [VT97]. Although in the examples analyzed here the amplitude of the
oscillations is rather weak and the flow collimates rather smoothly, preliminary
results show that cases also exist where it can become rather large and the final
radius of the jet can be much smaller than the initial large cylindrical radius
and corresponding opening angle. Finally, we should note that the pressure P
denotes the total pressure (including gas pressure, Alfvén waves pressure, radia-
tive forces, etc). For example, the same formalism may be used also in radiation
driven winds.

5.6 Some other solutions

In the previous sections, we have described a method to construct axisymmetric
MHD models. However, this is a general method and can be applied in other
similar situations. Next we apply it in two such cases.

5.6.1 Translational symmetry in uniform gravity

Suppose that we want to study flows near the surface of a star or galaxy (for
example solar arcades). Then we assume uniform gravitational field V = gz,
with ¢ =constant. Z is the direction normal to the surface. We choose a system
of coordinates (#,y) on this surface, such that the y is ignorable. We search
polytropic flows, P = Q(A)p”, (for v = 1 isothermal flows), with V;, = 0 and
By = 0. Assume now that the flow is self similar in a way such that

1. for the Alfvén Mach number, M = M(x),x = ©/z, and z, some reference
length

2. for the flux function A = B,z,A(a), a0 = eG(X) = 2/%0 and B, is a con-

d
stant. Choosing G/(y = 0) = 0 and (ad—A) =1, B, is the &- compo-
o a=1

nent of the magnetic field at « = z = 0.

Then in the cartesian coordinate system Oxixsxs, with 1 =z, 22 = v, 23 =y
and the Egs. (2.15)-(2.18) with @ = 0,1 = 0 we get finally that the only
possible case in order to be separable the coordinates z | z, is the following

A=a, ¥ =drp, M*(x = 0)a’, Q@ = Q0?07 1),

Vi24+V oInL =FE,+(2Q, —gz,)lna , if y=1
p=l VRV Qg = Bt (2Q0 =gz lna it 5 (5.78)
V/2+V+m7:Eo—gzolna, if v#1

The case ¥ = 1, E, = 0 have been analyzed in [TSP93] (in this paper, 1/z, =
€/2H ) Qo/g = )
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5.6.2 HD 0- self similar axisymmetric flows

In general, in steady axisymmetric hydrodynamical (HD) case, we have

T 47Tprzsin9£6_9’ ¢ _47Tprsin9£8r T rsing’

1 d¥ Ja 1 dv 6_@ v L(w)

where o = R?sin®0/G?*, R =r/r,.

We search for self similar solutions with
1. G=G(R), and
2. p = pogs(a)/N?, with N = N(R).

Then, after introducing the functions

B 1 /1 dqud _1/L2g3d
gt = 4m2piriV2 | g3 \ do @ 2= r212 oz

instead of ¥(«), L(«), we find that in order to separate the variables o, R the
set of the functions ¢1, g2, g3 must be one of the nine cases of Table 5.1.

5.7 Appendix 5.A: Functions of R in meridional
self similarity

G* _ dlna(R,06)

F(R)=2— R}y =~ (5.79)
fi(R) = —% , (5.80)
fa(R) = _ZT_};’ (5.81)
fs(R) = —% (%)2 : (5.82)
Then,
e LD Oy
fs (R) = % (5.85)
fo(R) = —f1 % (g—;) = —%MZ' 2= Aész =D (5.46)
J(R) = RzszMz, (- Mz)z(;;;zz) (FF+4) %f% (5.87)
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r—2

fs(R)=——5—Fs, (5.88)
fo(R) = —ﬁ : (5.89)

In the special case of meridional self similarity with G = R we have:

1
GIR,F:O, flz_ﬁa fZI_fla
1 [1-R2\? RY— M?
f3:__< ) af4:0a f5

R? \1— M2 T RAM2(1- M?)’
2 . 4 2 v?
=——M* - —(1-M? = ==z - v
fo =15 75 ( ). fr=fo. = 5fs fo=—pm

5.8 Appendix 5.B: Functions of # in radial self

similarity
G?  dlna(R,0)
FO) =2= 77 = Fhsmo (5:90)
sin fsin (¢ + 6) cos ¢
r=-2—=2-2— 5.91
cos B cos (¢ + 0) cosfcos(p+6)’ (5.91)

where the expansion angle ¢ (#) is the angle between the line and the equatorial
plane.

dz  d(w,\/aG/ tan )

Note that, for constant «, e 1 (=o/aC) = tan .
2 2
67 2GTcosyp (5.92)
de sin 6l cos (¢ + 6)
(sin2 0 + cos? HFTz) sin2 0
hy(0) = — — = e (1) (5.93)
1 [1-G2\?
hy () = —— | ——— 5.94
0= (1) - (5,99
G* — M?
ha () = spcra— ) (5.95)
sin ¢
ha(0) = =32 (5.96)
cos? 0 !

(F—2)(1—M?) (F—tan®0)} , (5.97)
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or,

h(g)_1—M2 sin@  dp  sin’@sin (p + 0) dM?

VT g cos? (¢ 4 0) do Glcos(p+0) df
1 — M?%sinfcossin(p + 0)

— o (o 1 ) (5.98)
Then,
de _ sin(p+0)cos(p+90) dM? N sin (¢ + 0) cos N
de 1— M? de sin @
costlpt0) G, (5.99)

sin? @ 1— M?

5.9 Appendix 5.C: Functions of y in generalized
self similarity

dlnG?

F(x)=2- TRETR (5.100)

Note that y and F' are intermediate variables. If we change y, F' changes too

but the derivative X i remains the same:
(£ —2)dx
xdy dg .
F—2)dx =TT for any function G (y) . (5.101)
1— M?
81 (X) P Te—— 1 X
2G2f2 (7 +Y)
1 4y —1 d7 dM?
XY - oy e~ -2 - Y a5 dmae | @102
47 +1
S2(x) = -, (5.103)
4G22 (7 4+7Y)
ZZ
Ss(y)= —— 2 5.104
3 (X) G (7 + Y)2 ( )
1—M? dM? Y dz
= |Z+ 7 — 5.105
W=y U T o ane - Zrvamer) o 0%
Gt — M?
S5 (x) (5.106)

T GMI(1- M2’
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1 (1-G2\?
Se(V) =~ (71_M2) : (5.107)

1

St(x) = ~g (5.108)

01(x) = S+ M?*  d (4Z—|—1) M?  dZ4Z+1
P L 2 ey )R \ G 2(Z+Y) dx f*G?
1 dM?47Z +1

, (5.109

2(Z—|—Y)2 dy [2G? ( )

0)(x) = St M? i(z_z) 2M?7* az | 27*  dM?

P TS VPG T iz y )P d Gl (Z+Y)E dx

(5.110)
;L21-GPd (1-G? F—2 (G- M?\*

- il = . (5111

% (x) 86+G21—M2dx<1—M2) XG2M2<1—M2) (5.111)
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Chapter 6

Some known self similar
models

In this Chapter we briefly review several exact MHD models for cosmic outflows
which belong in our net of the meridionally and radially self similar models. For
completeness of the review of all existing models we also discuss the classical
Weber-Davis model for a magnetized equatorial wind. At the end we also briefly
present a novel and unique polytropic radially self similar model in which the
solution passes from all critical points.

6.1 Parker’s classical solution

We shall begin our analytical examination of meridionally self similar models
with the first case of Table 5.2. In this case we have g1 = —In|1—«a |,g2 =0
and g3 = 1, with o = sin® 4, so from Eq. (5.29) we have

2 0
A:B*r (1—(:059)_23*7“ sin? = Uy =+/4np, ,Q=0and L =0.

Thus, we have a non-rotating, radial outflow. The magnetic field is from Eq.
B,
(5.4) B= 72 — 7, i.e., a monopole-like field. The density is spherically symmetric,

YA _ P Brow Eq. (5.5) we have 7 = Vool f (equivalent]
oz = a2 From Eq. (5.5) we have V = T (equivalently
47r?pV =constant) where V, is the velocity at the Alfvén point r = r, & R =
r/ry = 1. At this point B?/87 = p, V.2 /2.

Substituting the functions g, ¢z and g3 in Eqgs. (5.34) and (5.35) we get (we
remind that in all radial models, we have G = R and F = 0),

since p =

B? B? 1
P = ﬁ(fo =+ fl) = ﬁ (fO — ﬁ) and (61)
’ 1/2 1 1-— M2
fO_fG_f9: R2M2+EM2 +4 R +f0_0 (62)
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Eliminating fy from the two previous equations we have

d [(8nP v? M2 2 o
aw\ ) s ettt —mM (6:3)

This equation has two unknowns P, M? (or the pressure and density). Thus
this case is degenerate. If we assume a polytropic relation between P and p of

P
the form P = —;va then we have only one unknown, say M?:
Px

M2(v+1) 2M2(7—1)
R dMm? 4 Rt Y R or fd_p_g/\/l/r—ZV2

M? dR 2M2(7+1)_2 P, pdr  VZ—yP/p "’
Rt PVp*V*z

(6.4)

where r?pV =constant= r2p, V, and P/p? =constant= P,/p].
This is exactly Parker’s solution for the solar wind [Par63]. Defining the sound
speed Cs; = \/vP/p we have after some manipulation,

rdV 203*1/41_1762(7_1) — GMV Y~ Lp2y=3 rdV _ 2yP/p—GM/r

—=— = or ——— =
V dr Vatlp2(v-1) _ Csz*vg—lri(v—l) V dr VZ—~P/p
(6.5)
This equation after integration gives the Bernoulli integral
V2 P
> +V+ Py’yj; = F = constant. (6.6)

Note that for the isothermal case v = 1 the term 7771% must be replaced with

the term C2, Inp.
The solution has a critical point when the numerator and denominator of Eq.
(6.5) simultaneously vanish. This happens at the point r; where (for v # 5/3)

20 -1 o+l
re _ (L) 3(3/3-7) (ﬂ) 35/3-7) .4
e \Csx GM
_4B/2-7) 20 =1
Vo _ (&) 3(5/3-17) (27%03*) 3(5/3-17)
Vi \Cx gM '
2
For v = 5/3 we have a critical line V2 = GM if C3V, = (gZM .
Ty Tx

At this point V, = Cj;, so the fluid velocity is equal with the local sound speed
3_,5/3 —
(sonic point). For F = E, = §Vx2 / 17

we have the only acceptable solution,

the critical solution.
Eq. (6.6) with e =r/r, ,y=V/V,,C = (E — E,)/V? is equivalent with

2
_y-1 1 R QU TCU § eV s
C= 5 2(9@ 1)—1—7_1(1‘ Y 1), (6.7)
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Figure 6.1: Topologies of Parker’s solution for various values of 7.
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which is the integral of the differential equation (equivalent with Eq. (6.5))

fﬁ _ 1— l,Z'y—Sy'y—l
ydr 20Dyl 17

Fig. 6.1 shows various solutions in the plane # — y (isocontoures of Eq. (6.6)
for various values of (). We see that for ¥ > 3/2 we get unphysical solutions,
in the sense that hm y = oo. For v < 3/2 the solution begins with subsonic

velocity near the stellar surface and becomes supersonic at larger distances.
Note however, that since the density decreases monotonically, in this case we
must have heat reservoir, extending all the way to infinity, since the heating

rep-. = r—~P d
function is always positive: ¢ = PIy‘—l;V Vp = I‘——Ply;V <_d_i) .
Nevertheless, the thermal speed is finite and the total Bernoulli energy is £ =

V2/2.
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6.2 The Weber-Davis equatorial model

In this section we sketch briefly the model of Weber and Davis [WD67], for
an equatorial wind. A monopole like field is assumed near the equator, A =
Byrt(1—cosf) , or, B, = B,/R?, with R = r/ry, and the starred quantities
referring to their values at the point » = r, on the equatorial plane. In this
case, on the equator A =constant. If we want to solve the MHD equations only
near the equator, we regard A and all free functions L,Q, ¥4 as constants,
with L = r?Q for transAlfvénic solutions. The transfield equation is ignored
since the poloidal fieldlines are prescribed !, and only the Bernoulli equation

is examined. This last equation, for polytropic flows, P = Qp7, and after
introducing the constants
.82 2v0Q) 9 26 M 2F
W= -, 6 = 9 v = 9 €= 372
Vi (v = 1) pV Vi &

gives By (R , MZ) =€, with

M* 3 V2 (R? = M2)* 1 R?
2\ — 2
Bo (R, M*) = 57 + 150 — |+ RE(1— M2)F | 1—M?

Obviously, the parameter w measures rotation %, such that for w >> 1 a star is
characterized as a fast rotator, while for w < 1, a slow rotator. The parameter
£ measures pressure gradient and v? gravity.

The various isocontours of the Bernoulli equation, give the solutions

M?* = M*(R;w,B,v% v,¢) on the equatorial plane.

As we discuss in Chapter 3, this equation has two critical points. They ap-
pear when the poloidal velocity of the flow is equal to the phase speed of an
MHD wave. This can be seen in this case also, if we differentiate the Bernoulli
equation, to get

—sz——aﬁ/—aB0 with
dR ~  9R’oM?’
5o 2M? M? (1—R2\?
a2 — a2 . . —2y PR A —
(1-a7) =1 M)[R4 Bly—1)M ]—I—Zw =\ T
2
—gay Y — W (GO VA) + C2VE ), and
* Vp

N _ 5 Mt P , (2M? — 1) R* — M*
(1-a2) o _ (1 ar) (‘435 +R2) e
Note that the Alfvén point is not critical for the Bernoulli equation (all the
contours By = € pass through this star-type point). The slow point (R, , M;) and
the fast (R, M) are critical points. If we give the values R, , M, , Ry, M; then
from the equations (0Bo/0R)p, 5 = (3[)’0/6]\42)& M, = (0Bo/OR)g, ar, =

) B

IFor § = /2, the transfield equation is an identity if |:£ <P + 8—¢>:| =0
T

o=m/2

2For w = 0 we have the Parker’s solution
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Figure 6.2: A solution of the Weber-Davis model, for R, = 0.6 , M, = 0.5, R; =
1.46, M; = 1.62, when w = 1.034,v? = 1.96352, 3 = 8.2712 v = 1.13316 ,¢ =
9. We show the Bernoulli function on the R — M plane. The critical solution
pass through the two saddle critical points (slow, fast) and the Alfvén point.

= 0 we find a one to one correspondence with the constants

(0Bo/OM?) 4y,
w,B,v%,y. If in addition (Bo)g, M, = (BO)Rf M, 3 then we have a solution
which pass through all critical points. In Figs. 6.2,6.3,6.4,6.5, we show various
solutions of this equation.

Note that only for v < 3/2 we get physically acceptable solutions, in the
sence that 1}2{% V =0 [Hey96].

As R — oo the Bernoulli energy along the critical solution becomes

4 2 2
€= %—I—ZWZR—: (Vﬁ) —|—2w2£.
R4 M? Vi Voo
For ¢ = 3w*? we get the minimum energy solution [Mic69, Hey96, BM76],
when the fast ctitical point is at infinity, where Vo, = w?/3V,.

If at the base the Poynting energy dominates (neglecting at the base the
thermal and gravitational terms) we have ¢ = 2w?. In this case, the minimum
energy solution has w = (3/2)3/2. This characteristic solution has Vo, = 3V, /2
and it is called Michel’s solution. For all other w > (3/2)3/2 we have one su-

perfast and one subfast solutions at infinity. For w < (3/2)3/2 no superAlfvénic
solution exist at infinity.

3This is the regularity condition in order to pass the solution for both critical points; the
slow and the fast. The other one is simply the choice of ¢.
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Figure 6.3: Isocontours of the Bernoulli function for the Weber-Davis model.
The parameters are the same as in the previous figure.

Figure 6.4: Fast magnetic rotator with parameters R, = 0.6, M, = 0.44 , R; =
4,M; =54, when w = 2.37, 02 = 4.068, 3= 6.283,y = 1.178 ,¢ = 11.6.
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Figure 6.5: Slow magnetic rotator with parameters R, = 0.6, M, = 0.5, Ry =
1.015, M; = 1.02, when w = 0.195 1% = 1.186 , 3 = 32.9 v = 1.028 ¢ = 32.8.
We see that the fast point is close to the Alfvén, as in the solution presented by
[WD67] and appropriate for the solar wind.



6.3 The models [LTP96] and [TT91] 153

6.3 The models [LTP96] and [TT91]

In the second meridionally, radial self similar solution of Table 5.2 we have
gr=puf %da—hﬂ 1—al,g2 = Aa/cand g3 = 1+ éaf, with o = sin®4,

so that from Eq. (5.29) we have

9
A= B*ri/ sinf4/1 + psin® 0do, ¥, = \/47Tp* (1+6sin259) ,
0

. e—1 e+l
0 0
Qo s 8 s f
T% v/1 4 §sin%< 0 V1 4+ 6sin?€0

Substituting the functions g1, g2 and g3 in Eqgs. (5.34) and (5.35) we have

2
p=L [fo+ i+ (N fs/e+ pfi+ A f3) sin® 0]

Y

and

i

Jo— s = fo+ (Nfife = pfo = A2 fs — 6 f5) sin* 6 =0,
or, (since € # 0)

fo—fo—fo=0, and N2 fy/e — pfo — N2 fs —6fo = 0.

These last two equations are the ODE for this model. The first of these two is
exactly the same with that for Parker’s Eq. (6.2). But now the rotation term
sin?¢ @ does not allow us to impose polytropic relation between P | p. Instead, we
have a case with nonconstant v. This model has been examined in [LTP96] and
succeeded to fit the Ulysses observations for the solar wind out of the eclliptic
plane.

The subcase = —1,¢ = 1 has been examined in [TT91].

6.4 The solution of Sauty, Trussoni and Tsinganos

Let’s start the examination of meridionally self similar non-radial models with
the first case of Table 5.1. In this case we have

gi=o,¢y=MNaand g3 =1+6a L.

So substituting the functions ¢; , g2 and g3 in Eq. (5.29) we have

B 2
A= *r*oz,\IfA = V4rpy (1+6a),

2

oM L v
= — s f— T’ s
Ty V14 ba * *\/1—1—60[

4Note that the density on the polar axis cannot be taken equal to zero. But if we choose

g1 = I g2 =Xaandgs =1+ (oz - ozref) then for éo,c; = 1 we have zero density
— Qyef

on the axis (the ODE are almost the same; only the constants must be changed).
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BZ
while from Egs. (5.19) and (5.22) P = 8—* (Po + Pio) with
T

Po=fo+ fiand Py = fa+ fo + A2 (fs+ f5) and
o= Js—=fo=0, fi= o+ X (fs = fs) = 8o =0,

We have two ODE with three unknowns M?,G? and fy. So the system is
degenerate and we are free to impose a third relation. Up to now, this is done
in two different ways [LT86, TL89, HL89, TT91, TS92, TT93, ST94].

6.4.1 The prescribed field-streamline subcase

Trussoni and Tsinganos in [TT91] give explicitly the function G(R), or equiv-
2

alently their f(R) = % They choose f(R) o 1+ R?/R? in order to have an
asymptotically cylindrically collimated outflow.

Note that the denominator in the resulting differential equation for A/% contains
simply the derivative of the function f. A comparison of this equation with Eq.
(3.18) shows that the modified by the self similarity slow and fast singular points
may appear when the lines are radial, or equivalently when the expansion factor
= Rfl/f vanishes (note that in this case the modified singular points coin-
cides with the points V, = V; ; since at these points the poloidal velocity is
radial, normal to the surfaces of constant R). So if one chooses an appropriate
function f(R) such that its derivative have two zeros, he will found a solution
with three singular points (the Alfvén together with the modified by the self
similarity slow and fast magnetosonic points). This can be done, for example,
via a function

f(R) = 2R, +4R;—2R} R+ R*~2 (R, + 2R;) R+2R; (Ry + 2R,)In R+2R} R, /R

2
with By < 1,R; > 1. For this function, fI(R) = Z(R Ry) 2(R R;) so the
modified slow point is at R = R, while the fast is at & = RZ;. The fieldlines are

R»1
X

R>1 2
X w".

cylindrical at infinity, since Rh_»rrgo Rf7 =2 f(R) R*< A

There is a closed regime near the stellar surface which ends at R = R, (in this
regime F' < 0). Note that we can put the stellar surface in a desired position
in the domain 0 < R < R;. For example in the root of Rfl/f = —1 (which
corresponds to a dipole like magnetic field A o sin® §/R). Fig. 6.6 shows these
fieldlines for R, = 0.7 and Ry = 1.5.

6.4.2 The free field-streamline subcase

Sauty and Tsinganos in [ST94] imposed a third relation between Py, Py of the
2

B
form Py = II 3 and P, = «II. In this case, P = 8—*1'[ (R) (1 + ko), so the
T

5A more general form is Py = I1 + Py with constant Poo.
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polar axis

R Bl

Figure 6.6: The expansion factor and the poloidal streamlines for R; = 0.7 and
Ry =1.5.
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pressure is a product of function of R times a function of «. If this is the case,
there exist a Bernoulli-type integral. The function § = V2/2+V — wQ B, /T 4
is written as

— V_*ZSO (R)+81 (R)a

S 2 14 6a

, while —

AR~ 2

IP _ p VP (

Then, the general Bernoulli equation dS/I0R+ JP/pdR = 0 gives two equations
S; + M2PZ»I =0,i=1,2. Using Py =1II, P; = «II and eliminating II we get

Si - HS(I) =0, or 8§ — kSp =constant.

After the integration of the ODE, Sauty and Tsinganos found two types of
solutions: cylindrically collimated ones with oscillations (jet type solutions) and
wind-type solutions (with asymptotically radial lines). They succeed in passing
through the modified slow and Alfvén singular points.
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6.5 Polytropic radially self similar models

6.5.1 Derivation of the ODEs

In this section we examine the first two cases of Table 5.3. In the first one we
r—2 1 r—2 1 r—2

have ¢; = ! o ,q2 = « ,q3 = ——« . So the free integrals
-2 x—2 x—2
are
4= BOWEVElag T2 — C133770 a®—3/2
x 3 A GM 3
(6.8)
QZ _ Dlg./\/la_% ,L2 _ Dlg/\/lw()a% ’
wgCl Cl
2
where o = I (0) sin?@, R = r/w, and B,, @, are constants. As we discuss in

Chapter 5, the function G () measures the cylindrical distance @ to the polar
axis of each fieldline labeled by «, normalized to its cylindrical distance w, at
the Alfvén point, G (0) = w/w,.

\11124 C’lngo a®=3/2
4TrM? = 47GM  M?

The density is p = and M (6) is the poloidal Alfvén

Mach number.
In this case the form of the magnetic field is

= . 1 sin 0 /Dy 11-G* .
B=B,\/Ea*t{ ———— < inpz —_— 6.9
1 {Gzcos(ﬂ'—go—ﬁ)(COSSDW—FSIHSDZ)—F ElGl—M2¢} (6-9)

while for the velocity

- [ GM _y M? sin ¢ . . /D1 1 G?— M?
V=, 22 P e
Cim, “« {G2 cos(m— ¢ —1f) (cos @ +sinp?) + EiG 1 - M2

We remind that ¢ is the angle between the poloidal field-streamline and the
equatorial plane. From Eq. (5.62) (see also [VT98]) we have

hg:O,and

Ch

Ci1FPhy+
x—2

hy+Dihs (F — 2)+ .

(6.11)
where primes indicate derivatives with respect to In(sin ). So in this degenerate
case we have two equations for the three unknown functions G', M and hyg.
Choosing hg = 0 we impose the polytropic relationship, P oc p7 in each fieldline,
as the third relationship, or using Eq. (5.59)

2

B
P= 8—°D0E1M_27ax_2 with constant Dy and (6.12)
T

¢

}(.6.10)
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h5 = Do(l‘—Z)M_Z’Y —(l‘—Z)hl — %($—2)h2 — %hg— %h4 (613)
If we substitute Eq. (6.13) in Eqgs. (5.99,6.11) we have two differential equations
for the functions G and M. The functions F' and ¢ are related with the deriva-
tive of GG via Eqgs. (5.90),(5.91),(5.92) , so we have three first order differential
equations for the functions G, and M.

In this polytropic case, there exist the Bernoulli integral

1 v P Qrsind
il v R — By, = F(A
E1E
where V = — M and F(A) = Moﬁl/z , with constant Fy,
wOR woCl

or, solving for ¢

4
D
¢ = 7 — 0 F arctan {L[ZEO_(V—O_F

M*4sin? 0 vy —1) M20v-1)
(6.14)
1/2
2Cysin0 Dy [ (G —M?)° ,1-G" .
EG By G2(1—M2)2 1—M? ‘

The upper sign corresponds to the outflow case V, > 0.

The two remaining equations are
d 2 2
G __ 2G* cos ¢ ’ (6.15)
de sin 6l cos (¢ + 6)

dM? sin (¢ + 0) Cysind i3

=-2 — —Do(x=2)M*==7
de cos (¢ +0) G 0(@—2) +

%4(1—]\42) c‘osgosinﬁ —%4(1‘— ) sin? 6§ B

G4 sin(p+60) G* cos? (¢ + 0)

D1M4( 2 1-G2\* Dy M2G*— M?

A e -7 a7

Ey G? 1— M2 E, G2 1-M?

D cos ¢ (2M2—1)G4—M4 /

Fqsinfsin (¢ +0) G(1-M?)
Dy M? (1-G*\? _M*sin’0 1

Do(1=M*) M2 —2—— | ——— 2 1-—
{7 o ( ) Fy G2 (1—M2) + Gt MZcos? (p+0)

The denominator of the last equation equals to,

2M4sin29 V94 - V92 (Cs,z + Vj) + Cgvj,e
G4 ‘/94 .

(6.16)
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Thus we see that at the singular points Vo = V; ; 4 in agreement with the
analysis in Chapter 3.
If we introduce new constants:

_GY (%) a2 _ GMM(3) _ 8rP,M? (%)
El— ag_z ,Dl— a§_2,01— W’DO_ W,and
2
M? (%) = 471';02‘/0 , we have

17—03 2 T r—2—vy(x—-3/2
o (=YTIEME) ()T
o o, el 4 o, o s

T
a2t G (5) sin ¢
G cos(m—p—10)

(sin pZ 4 cos p) =

)%_1 ¢ (5) sin 6 [tan(w—gp—@)f—é],

o
a,

- @ _1/4G2(%) M? sin ¢

%_V()(_) G? M2 (%)cos(m—p—10)

o\ U4 2 (z) M2 o
= 0(—) el MZ(g)sm@[tan(w—gp—ﬁ)r—ﬁ],

a\F' 1-G? o\ M4 1 G*— M?
Be = —AF <a) G—ary A <a) M7 (%) G(1— M)
Then p,,P,,B,,V, are the values of p, P, B, ,V, respectively at the point
a=a,,0=7.
The footpoint of the line «, on the equator lies at distance w,G (%) Vo, from
the axis while the Alfvén point in the same line is at radius @,/a,. So if we
choose «, = 1, then w, is the radius of the jet at the Alfvén point on the line

(sin pZ 4 cos p) =

«,. If we choose a, = Gzi(”) then w, is the radius of the footpoint of the line
2

«, on the equator.

If the flow begins from the equator with zero poloidal velocity (as in [BP82]),

then V, =0, M (%) = 0 but the ratio between them is constant. Note that the

polytropic second case of Table 5.3 corresponds to the previous equations with

x =2.

6.5.2 Other ways of deriving the ODEs

Generally in this radially self similar case we have two relations for the functions

of 6:
1. the Bernoulli integral, f; (9 MG GI) =0 and

2. the GSE, f (a,M,G,G’,G”) — 0.

Note that, since the model is self similar, the flux function A does not appear
in these two equations.
In order to find the ordinary differential equations (ODEs), one way is to solve
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Table 6.1: The notation of [BP82].
| [BP82] | our notation
cold Do=0
Vo(2=0)=0 M (7/2) =
exactly Keplerian % =G (7/2)
3/4 x '
T, WOGG('ﬂ-éZ) N
A G(W/Z()zanﬁ:Z(a’g)/w(a’ﬂ-/z)
£ S = =00 /= (. a)2)
£ () tai .
\ 1 Dy
G2 (n/2) \| C1G (7/2)
; _ G(0) cos(p+0)
G (7/2) sinfsinp
m (x) M?(6)
Er G (x/2) M? sinfsing 174 @G (7]2)
Tt Vo cemean =V am
k U4 (A)
l L(A)
w Q(A)
e E(A)
ax/Z—l
Y MllclopEN )
K g%GS (7/2)
¢ (1]1 °G (n/2)
B7r, L
47 pGM Cl(éi((w//Zz))si‘nzz [[go ((% = 71'//22))]] - :
7/2)sin”[p (6 =7 1
a Do 2 (chS (z/2)sin [ (0 = 71'/2)])
U - 12
S(J?n(ﬂ'fZ) .
S G0 sin ¢
E1Ey
-3/2 3 G(n/2) - )
—E—AmjE GT_ M2
1 m G (7/2) G (1— M?)
m M?

1+ (By/By)*

1+

Dy e 0) (167’

Fyq sin? 0 1— M?
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Table 6.2: The notation of [CL94].
| [CL94] [ our notation
¥ A
F Wy
H — LWy
QH
I g
J 3 2
7 Q. H, G_6 1—M?
T F, I \1-¢2
0=m/2
a; w,G (7/2) V%
o
ry -
o,
B,w?
T, “o 0, G2 (7/2)
z
B, B,
( AV, G? — MZ)
Vo _—
M2G2 1 - ]2\42 0=m/2
- M
R )
G (1 -M ) f=m/2
r g
T T
A
H, S -
G (7/2)
1-M?
o ()
G2 B M2 0=m/2
G [ 1-M2\* 4
s, . (7(;2 _MZ) (BoG* — 22)
0=m/2
s _ M GM {M4G<1—M2)2| e G5<1—M2)2|
° 2 2 2 2 _ M2 N V) 2 _ pAf2
a; vy wovo \/a_o A G M 9=m/2 El A G M 0=m/2
1-9,
“Hox F, | . .
‘ P, [4nM2G? [ 1= M2 NPT DoGA(n/2) [47G? [ 1- M2 \?
B2 A2 G? — M? - 87 A2 G? — M?
2G : M2 0=m/2 0=m/2
M —
(2 =0 —_—
" ( ) |: A GZ_M2:|9:7T/2
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Table 6.3: The notation of [Ost97].

| [Ost97] | our notation |
cold Dog=0
V(2=0)=0 M (7/2) =0
exactly Keplerian, GM /QR3 =1 % =G (7/2)
P A1
6 47T/\IfA
J L
& EF—-LQ
3—¢
2 *
Ro/Ra G(n/2)
Ri/Ra G (0)
j = (3}3,4/1131)2 E/GZ (0)
e = 3 (Ro/Ra) Sl 6 o)
R/Ra = (6(0) /6 (0))7 G (0) = =/
R=(0(0) 2:1/2)7 Ry @
¢
2 — qT:} E tan @ F
R4 W
My M
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the Bernoulli integral for G’ and substituting this in the GSE to yield M'. Then
we have a system of two first order ODE. We have followed this method in the
previous analysis (see also [BP82, CL94]).

Another way is to use the Bernoulli integral in order to find at each point of the
solution the value of M (knowing ¢, G at this point), while substituting M on
the GSE we get a second order ODE for (. This method followed in [Ost97].

6.5.3 Alfvén singularity
At the Alfvén angle 6, using the L’Hospital’s rule,

(1—G2) 0/0 208 Py
*

1— M? - Py sin b, cos (py + 0,)

where p, is the slope of the square of the Alfvén number p, = (dMZ/dH)*. So
from Eq. (5.68), (or from Eq. (6.16) at # = 6,) we find the Alfvén regularity
condition

4D .
(x —2) (E—ll + pi sin? 9*) tan? (@, + 0,) +

. 8D (2 —2)
2 4D, 1
(pi sin” 0, + Frpx + “Eytanf,

) tan (¢x + 0x) + (6.17)

4D
(x —2) (Dopi + pi sin? 6, + ! ) ﬁ

+ 2ging, - 1 4 0
—_— sinf, — — — =
Fqtan? 6, Fq Px B P\ Px tan 6,

6.5.4 About the criterion ¢ (0 = 7/2) < 60°

The Bernoulli integral can be written as

Vi (Vy— o)’ P 1
2 2 vy—1p 2

or, after substituting all the quantities (when the flux function disappears)

ElEO_D1 _ E1M4sin2g D1M4 (1_G2)2 ~ DoEl Clsing_Dle

2G4c052(7r—g0—9)+ 2G?2 \1— M? v —12M20-1) G 2

Assume cold plasma (Do = 0) and V,, (§ = 7/2) = 0, or M (7/2) = 0. Then the
constant EyEg — Dy can be determined at 6 = 7/2:

Ci DG (n/2)
(7/2) 2 '

EiFEy— Dy = e
So at each # we have

f(H)ECl [g—m] +%[G2_G2(ﬂ-/2)] =
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EyM*sin? 0 DiM* [ 1-G2\?
2G4 cos? (m—p — ) + 2G2 (1 - MZ)

The RHS of this last equation is positive, for any # € (0,7/2). So the function

7 (8) must be positive too, f(8) > 0.

For values of # close to m/2 we have (using Eq. (6.15) we find the Taylor

expansion up to the first order) f(0) = f (7/2) (6 —x/2), with f (r/2) =

[C1— D1G3(7/2)] /G (7/2)tan[p (7/2)]. Since § — 7/2 < 0, this derivative

must be negative (if it is nonzero). Equivalently (V;/giw) / > 1. The
0=m/2

rotation (if it is not Keplerian) must be superKeplerian on the equatorial plane.
This happens if f' (w/2) #0.

If on the other hand the rotation is exactly Keplerian, when €1 = D1G? (7/2),
we must expand f(#) up to the second order. We have

, _ Cicosf cosp [DlGS — (C1sin 9] (o 3D1G?% (7 /2)

wd £ /) = e (o (/2]

Since f(f) =~ f (x/2)(6 — 71'/2)2 must be positive, f (r/2) > 0, or using
C1 = D1G3(7/2), ¢ (7/2) < 60°. ©

This criterion is valid only if the plasma is cold and begin with Keplerian ve-
locity from the equatorial plane. If the velocity is not Keplerian, then we found
that the only possible case for the acceleration of a cold plasma is to have su-
perKeplerian rotation.

Of course, if the pressure is not negligible, we can find a smallest value for the
pressure gradient in order to have acceleration in any case. However, thermal
effects are important near the disk surface *.

7 G G'sinf cos (¢ + 0)

6.5.5 [BP82]

Blandford and Payne in [BP82] examined the acceleration of a cold plasma,
" rotating on the equatorial plane with a Keplerian speed. Their equations
correspond to the previous analysis with @ = 3/4. As a consequence, there
exist only two singular points: the Alfvén and the modified fast point (for
Cs = 0, the slow point disappears while on the fast V;? = V2, since the roots
of V;{fy 0 — Vsz,f, P (C’s2 + Vj) —|—C’§ij€ =0, when (s = 0, are simply ny 0 =
0, sz, s = V2.

In this case the flow begins from the equatorial plane (i.e., the disk) with zero
poloidal velocity (while for the toroidal component V; = GM/r). Equivalently,
M (w/2) =0and lim p= .

0—m/2

They found two types of solutions:

8For relativistic flows there exist again an upper bound for the angle ¢, at each point of
the disk, i.e., ¢ < Ymaz (o) [Cao97].

"Blandford and Payne appreciated that their model of a "cold” wind does not properly
describe the flow in the neighborhood of the surface of the disk, where thermal effects must
become impotrtant. See also [OL98].
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1. Solutions which are elliptic everywhere and the conical surface V, = V; is
reached by the plasma at infinite heights above the disk (at § = 0).

2. Solutions which have the surface V, = V} at a finite angle. They analyzed
this case numerically. A limiting characteristic then exist at some angle
above the line V, = V%, (at a smaller angle), but they did not succeeded to
pass the solution through this. Note that if a solution passes through this
point, it must pass it again, because from the construction of the model
gl_I}(lj Va/Va = 0).

They found a turning point in these solutions (wich we will discuss later)
and stopped the solution before reaching it.

The procedure for constructing a solution is to solve the Bernoulli integral for
f (or equivalently for V,) and then substitute it in the GSE to yield dm/dy
(or dM?/df). Among their main results is to explicitly show that the real
singular points are not the points where the poloidal flow speed is equal with
the poloidal phase velocity of MHD waves but the points where the components
of the previous velocities normal to the direction of symmetries are equal. In
the 7- self similar models this means for the Alfvén that: Vy = V4 ¢ (which
however is the same with V, = V4 ,) and for the slow-fast that V5 =V, ; 4.

6.5.6 [CL94]

Contopoulos and Lovelace in [CL94] examined the generalization of the Bland-
ford and Payne model introducing the exponent x which is not always equal to
3/4 including the pressure in the solution. They found three kinds of solutions
(see Fig. 2 in [CL94]) 8

® z..; < x < 1: with parabolic asymptotical geometry
® r < X.ry : recollimated solutions

e r > 1: the magnetic tension is always inward (the jet carries a nonzero
axial current) and the flow recollimates. They found oscillating solutions
with cylindrical asymptotical geometry.

Nevertheless we found that if we continue the integration at larger heights (small
enough values of #), the solution always has one of the following problems:

1. reaches again the Alfvén point M =1, G =1

2. hits the modified fast singular point and it is needed to change the initial
conditions until it is passed

3. reach a point where V;, = 0 (a turning point). Note that the exact position
of this point depends on how we use the Bernoulli integral. If we solve
for V., the turning point occurs when V, = 0. Above this point we must

8See also [RP94]. In this paper, the parameter 3 is used instead of our exponent z.
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change sign in V, and continue the integration (see Eq. (6.14). If we solve
for V,, it occurs when V, = 0. One can overpass this technical problem
using the differential form of the Bernoulli equation, but the solution is
anyway unphysical.

6.5.7 Asymptotic analysis for the oscillating solution + > 1

Assume that we have a cylindrically collimated solution at infinity. Then

elirr(le = (oo, 8O gir%A = Aw (@) x (w/G)”. Before the solution reaches

this exactly cylindrical stage, we have
Ao (m/G(0)" = (w/Go)" (144(0))

where g = 2 (1 — G/G), with | ¢ |[< 1.
Following the analysis of Chapter 4 (see also [VT97]) we see that Eq. (4.73)
with f —constant holds. As explained there, the solution is of the form

g=D0""cos(|p|Inb+ Do) < g=D(w/z)"" cos (|u|1n§—|—D0)
(6.18)

After substituting this in Eq. (4.73), we find the relation of the free functions
A, T4, L, Q with the constants v, u. Long calculations find that

v=x—1. (6.19)

But in this case, # > 1 < v > 0, and the amplitude of the oscillations grows
as a power of 1/6. Then the function ¢ and consequently the functions G, M
together with their derivatives have no limit as § — 0. The analysis of [HN&9]
has no relation with these solutions, since the limits which are discussed there
do not appear here. We can see that as this function grows, the functions G', M
will reach the values G = 1, M = 1, thus the solution hits again an Alfvén
point. It is remarkable that this may happens at very small values of 8, so one
can argue that the solution is not self similar there, or it has already connected
to the interstellar medium (ISM). We remind however that without passing the
limiting characteristic it will be unstable to perturbations at infinity. Note that
numerical results verifies the previous analysis although (as we have prove) the
function g is not small at all.

6.5.8 [Ostr97]

Ostriker [Ost97] examined the cold case with « > 1, i.e., with cylindrical
asymptotics. The integration began upstream from infinity (¢ = 0) and found
non oscillating solutions which pass only from the Alfvén critical point and reach
the equator (the disk) with zero poloidal velocity and exactly Keplerian toroidal
velocity. (The Bernoulli integral was used in order to find the value of M and
then solve a second order ODE for ().

After the previous asymptotic analysis we can understand why these solutions
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were obtained. As we have said, when & > 1, the form of the perturbations is
given by Eq. (6.18). But then the function ¢ and its derivative has no limit at
f = 0 unless D = 0. Assuming that at § = 0 the function g has a real value as it
was assumed in order to begin the integration from infinity, it is equivalent with
choosing D = 0. So, the first deviation for the cylinder is of order sinf = 6,
or of the order of the gravitational potential (this is effectively what happens
when the integration starts from infinity, see the paragraph A2 in Appendix of
[0st97]).

6.5.9 A solution which pass from all singular points

The main difficulty in finding exact MHD solutions is the appearance of singular
points. Although we have assumed self similarity (so we have to solve ODEs)
the problem is still highly intractable. The right solution should pass through
the SMSS (if the outflow starts from the stellar surface or the disk with subslow
velocity), the AS and finally the FMSS (for details see Chapter 3). The last two
singular points are very important and the solution must pass through them
because

e at infinity we want the solution to carry small magnetic fields and has large
velocities (so My, > 1), while on the disk or stellar surface the opposite

holds (M (w/2) < 1). Thus at some 0 = 0, , M (6,) = 1.

e as we discuss in Chapter 3 in order to connect the solution to the ISM
with a fast shock (only then a small disturbance at infinity does not affect
the solution upstream from this shock), the solution must be superfast at
some distance beyond the Alfvén surface.

In the AS we know the regularity condition, Eq. (6.17). Also at the modified
by the self similarity slow and fast singular points we know that the numerator
of dM?/df vanishes (simultaneously with the denominator). But the position
of these singular points is not known a-priori. So we know only some relations
between functions at some points. That can not help us much. It remains the
shooting method. We start the integration from a point # = 6; and continue
until the solution hits a singular point (for example the modified fast, or FMSS).
That is to say, we see that the numerator (or denominator) in dM?/d0 vanishes,
but not the denominator (or numerator). We go back in # = #;, change one
parameter and integrate again. We use this algorithm until it converges, i.e.,
the numerator and the denominator simultaneously vanish. We do the same for
passing through the other singular points.

Until now all researchers who have tried to integrate the equations of this model,
start their integration from the equator [BP82, CL94], or, from infinity [Ost97],
and they have not succeed in passing through all singular points.

We propose that it is easier to start the integration from one of these critical
points. For example, let us start from the Alfvén surface (AS). This surface is the
cone § = 6,. We give the parameters 0, ;2 ,v,C1/E1,0x, D1/ E1, ps. As we see
later, we use the last two parameters for passing through the SMSS and FMSS
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singular surfaces (points in self similar models). From the Alfvén regularity
condition Eq. (6.17) we calculate the constant Dg (it must be positive). From
the Bernoulli integral Eq. (6.14) we calculate Eq (the ratio (1 — G?) /(1 — M?)
can be found using L’ Hospital’s rule). We start the integration upstream from
the Alfvén point. We encounter the SMSS but we can’t pass through it. For
example the numerator of dM?/d# vanishes but not the denominator. We go
back on the Alfvén point, change the parameter p, and integrate again, until
we find the opposite behaviour on the SMSS (the denominator vanishes but not
the numerator). With fine tuning in the value of p, we find the solution which
pass the SMSS.

Now we integrate downstream from the Alfvén point. We encounter the FMSS
but we can’t cross it. We go back at the AS, change the parameter Dq/E;
and integrate upstream. After some iterations we find the right value of p, for
passing through the SMSS. Then we integrate downstream from the AS. We
do the same until we find the right value for the pair p,,D;/E;. Then we
have the solution which begins subslow from the disk, cross the SMSS, the AS
and the FMSS. After crossing the FMSS we stop the solution at some angle 6,
because if we continue the integration, the solution will find another modified
fast point, in order to be subfast at # = 0 (from the construction of this model,

Such a solution is shown in Figs. 6.7,6.8.
With this method of integration (i.e. begining from the AS) the solution itself
finds the correct values of all quantities at § = 0 and 6 = 7/2. These values are
functions of the parameters 6, ,x,v,C1/F1, .
Note that, such a solution can be found without the self similar ansatz. We
can integrate the system of the MHD, PDE, beginning from a cone 6 = ;.
On this boundary we ’ll give the conditions A « 7%, the normal derivative
dA/df  r* and the free functions ¥4, L,Q,Q, E as functions of A. These
boundary conditions together with £, = 0 determine the unique solution of the
problem (as we discuss it in Chapter 3). Thus, one may test any numerical code
which solves the steady state axisymmetric MHD equations with the previous,
self similar solution.
After finding this solution, one should connect it with the ISM through a fast
MHD shock, but we have not done this yet.
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Figure 6.7: The various Mach numbers for the polytropic radially self similar
model and parameters @ = 3/4 0, = 60°,y = 5/3,C1/E1 = 15,p, = 45°.
From the Bernoulli integral at the Alfvén point we find Fy = 9.44868687, from
the Alfvén regularity condition Dy = 10.923935115 while the parameters which
are determined such that the solution passes through the SMSS and FMSS are
Dy /E; = 2.793464953 | p, = —5.57440185546875.
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polar axis

equator

Figure 6.8: The fieldlines (solid lines) and the characteristics (dashed and long
dashed lines). We see the limiting characteristics My, = Vo /Vs 9 =1, My =
Vs/V: o = 1 and the surfaces where the solution changes character from elliptic
to hyperbolic and vice-versa M. =V, /V. =1 M, =V, /V, =1, M; =V, /V; =
1. In the shadowed region the governing partial differential equations are of
elliptic type and no characteristics exist.
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Chapter 7

A class of exact MHD

models for astrophysical
jets

This Chapter examines a new class of exact and self-consistent MHD solutions
which describe steady and axisymmetric hydromagnetic outflows from the mag-
netized atmosphere of a rotating gravitating central object with possibly an
orbiting accretion disk. ' The plasma is driven by a thermal pressure gradient,
as well as by magnetic rotator and radiative forces. At the Alfvénic and fast
critical points the appropriate criticality conditions are applied. The outflows
start almost radially but after the Alfvén transition and before the fast critical
surface is encountered the magnetic pinching force bends the poloidal stream-
lines into a cylindrical jet-type shape. The terminal speed, Alfvén number,
cross-sectional area of the jet, as well as its final pressure and density obtain
uniform values at large distances from the source. The goal of the study is to
give an analytical discussion of the two-dimensional interplay of the thermal
pressure gradient, gravitational, Lorentz and inertial forces in accelerating and
collimating an MHD flow. A parametric study of the model is given, as well
as a brief sketch of its applicability to a self-consistent modeling of collimated
outflows from various astrophysical objects. For example, the obtained char-
acteristics of the collimated outflow in agreement with those in jets associated
with YSO’s.

7.1 Introduction

Collimated outflows are ubiquitous in astrophysics and cosmic jets are observed
in the radio, infrared, optical, UV and X-ray parts of the spectrum, from the

I This class of models is similar with the case (2) of Table 5.1, with the exception of including
here a radiative force.
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174 A class of exact MHD models for astrophysical jets

ground and space, most recently via the Hubble Space Telescope. Classes of
objects in association with which jets are observed include young stellar ob-
jects [Ray96], old mass losing stars and planetary nebulae [Liv97], black
hole X-ray transients [MRI6], supersoft X-ray sources [KT96], high-mass X-
ray binaries and cataclysmic variables [SLSC97] and many AGN and quasars
[Bir96, FMBR96]. Despite their observed abundance however, several key ques-
tions on their acceleration and collimation among others, have not been resolved
yet.

The theoretical MHD modeling of jets is not a simple undertaking, basically
due to the fact that the set of the MHD equations is highly nonlinear with
singular (or critical) points appearing in their domain of solutions; these singu-
larities - through which a physical solution inevitably will have to pass - are not
known a prior: but they are determined only simultaneously with the complete
solution. The purpose of the present study is to construct systematically a self-
consistent MHD model for astrophysical jets where the interplay of the various
forces acting on the plasma and which are able to accelerate and collimates the
outflow, is analytically examined. This modeling is an improvement over the
very few existing models developed so far to the same goal. For example, it is
fully 2-dimensional (c.f. Parker 1958 [Par58], Weber & Davis 1967 [WD67]),
it does not contain singularities along the symmetry axis and the outflow is not
overfocused but extends to large distances (e.g. [BP82, Ost97], the equation
of state is not constrained by the artificial polytropic assumption (as e.g. in
[CL94, HN89]), the thermal pressure is meridionally anisotropic (e.g. [ST94]),
the shape of the jet is self-consistently determined (e.g. [TTS97]), there is a
steady asymptotic state (c.f. [US85, OP97a, OP97b, GWBI7], etc).

In the following Sec. 7.2 the basic steps for the systematic construction of
this class of models are described. Then in Sec. 7.3 we discuss the critical
surfaces in the solution domain and in Sec, 7.4 the asymptotic behaviour of the
solution. In Sec. 7.5 we discuss about the integration of the resulting equations
(in relation with the boundaries and the singular points). A detailed parametric
study of the model is given in Sec. 7.6 while in the last Sec. 7.7 the connection of
the dimensionless parameters characterizing the present model to the observable
physical quantities of collimated outflows is sketched.

7.2 Construction of the model

In this section we describe in some detail how our model can be systematically
obtained from the closed set of the governing MHD equations.

7.2.1 Governing equations

The kinematics of astrophysical outflows may be described to zeroth order by
the well known set of the steady (9/9t = 0) ideal hydromagnetic equations:
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p(ﬁ~§)§:W—ﬁP—pﬁv+ﬁmd, (7.1)
V-B=0, ﬁ(pt?):o, ﬁx(ﬁxé):o, (7.2)

where é 17 —VY = —6( g/\/l/r) denote the magnetic, velocity and external
gravity fields, respectively, F},q the volumetric force of radiation while p and P
the gas density and pressure.

The energetics of the outflow on the other hand is governed by the first law of
thermodynamics :

5 [ 1 P -1
g=pV- [V (——) + PV ] , or (7.3)

- [/ T P 1o Pl /P
1= [v (F—lp) _pvp] - F—lv'v<pr) ’
where ¢ is the volumetric rate of net energy input/output [LT86], while ' =
¢p/cy with ¢, and ¢, the specific heats for an ideal gas.
With axisymmetry in spherical coordinates (r, 0, ¢), the azimuthal angle ¢ is
ignorable (3/0¢ = 0) and we may introduce the poloidal magnetic flux function
A(r,8), such that three free integrals of A exist. They are the total specific
angular momentum carried by the flow and magnetic field, L(A), the corotation
angular velocity of each streamline at the base of the flow, Q(A4) and the ratio

of the mass and magnetic fluxes, ¥4(A) [Tsi82].
From Stoke’s theorem wee have,

mag_//B -dS = //VX( )dS ]{ ~wd¢>¢> =27 At

The mass loss rate from both hemispheres is

Aout

M:z//ptz,.d§: / UadA =T (Ag)

0

(although we have a steady state, OM /3t # 0 since the comoving derivative is
zero

dmM 3/\/1 oM .

The total angular momentum loss rate from each hemisphere is

A
j://m@,ﬁ;%/mﬁA.
S 0
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The system of Egs. (7.1) - (7.2) reduces now to a set of two partial and
nonlinear differential equations, i.e., the r- and #- components of the momen-
tum equation on the poloidal plane. Note that by using the projection of the
momentum equation along a stream-field line A = const on the poloidal plane
(r,0), Eq. (7.3) becomes,

- = /1 r p Qrsin b -
pV~v<§V2+m;+V— T, )—V'Frad:(J~ (7.4)
For a given set of the integrals L(A), Q(A4) and ¥(A), equations (7.1) -
(7.2) - (7.3) could be solved to give p(r,0), P(r,0) and A(r,#), if the heating
function ¢(r,#) and the radiation force ﬁmd are known. Similarly, one may
close the system of Eqs. (7.1) - (7.2) - (7.3), if a functional relation of ¢ with
the unknowns p, P and A exists. As an example, consider the following special

functional relation of ¢ with the unknowns p, P and A [TTS92],

v~—IP~o =
=—F—V.V 7.5
1 '-1p P (7.5)

where v < I'. Then, Eq. (7.3) can be integrated at once to give the familiar
polytropic relation between P and p,

P=Q(A),", (7.6)

for some function Q(A) corresponding to the enthalpy along a poloidal surface
A = const. In this special case we can integrate the projection of the momentum
equation along a stream-field line A = const on the poloidal plane, Eq. (7.4)
by further assuming that V- Frga = 0, to get the well known Bernoulli integral
2 which subsequently can be combined with the component of the momentum
equation across the poloidal fieldlines (the transfield equation) to yield p and
A. After finding a solution, one may go back to Eq. (7.3) and fully determine
the function ¢(r,#). It is evident that even in this special polytropic case with
v # T the heating function ¢ (not its functional form but the function ¢(r,#)
itself) can be found only @ posteriori. Note that for ¥ = I' and only then the
flow is isentropic.

Evidently, it is not possible to integrate Eq. (7.3) for any functional form of the
heating function ¢, such as it was possible with the special form of the heating
function given in Eq. (7.5). To proceed further then and find other more general
solutions effectively having a variable value for v, one may choose some other
functional form for the heating function ¢ and from the first law, Eq. (7.3) derive
a functional form for the pressure. Equivalently, one may choose a functional
form for the pressure P and determine the volumetric rate of thermal energy
a posteriori from Eq. (7.3), after finding the expressions of p, P and A which
satisfy the two remaining components of the momentum equation. Hence, in
such a treatment the heating sources which produce some specific solution are

2in general, if there is a function V' such that V ~ﬁmd = —pv . ﬁv', the Bernoulli integral
exist,
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not known ¢ priori; instead, they can be determined only a posteriori. However,
it is worth to keep in mind that as explained above, this situation is analogous
to the more familiar constant v polytropic case, with v # I'. In this Chapter we
shall follow this approach, which is further illustrated in the following section.

However, even with this approach, the integration of the system of mixed
elliptic/hyperbolic partial differential equations (7.1) - (7.2) is not a trivial un-
dertaking. This is largely due to the fact that a physically interesting solution is
bound to cross some critical surfaces which are not known a priori but they are
determined simultaneously with the solution. For this reason only a very few
such self-consistent solutions are available. Further assumptions on the shape
of the critical surfaces are needed, as discussed in the following.

7.2.2 Assumptions

In order to construct analytically a new class of exact solutions, we shall proceed
by making the following two key assumptions:

1. that the Alfvén number M is some function of the dimensionless radial
distance R = r/r,, i.e., M = M(R)

and

2. that the poloidal velocity and magnetic fields have a dipolar angular de-
pendence,
2
B
A= r*?*.%l (o), o=

sin? 4. (7.7)
for some function G(R).

3. for the radiative acceleration we have assumed that it has two compo-
nents. The first component is due to continuum absorption and is set
proportional to the radiative flux. It drops with distance as r~2
larly to gravity. If L. is the Eddington luminocity, we may use the ratio
T. = L/L. such that this part of the radiative acceleration is I‘gpg/\/l/rz.
We have also assumed a second component of the radiative acceleration
due to line contribution. By adopting the optically thin atmosphere ap-
proximation [Lam86, CM94, KM97, KM98], this part of the acceleration
is simply a function of r since in general the total number of weak lines
is a function of r. Then, the corresponding expression of the radiative
acceleration is V.2/r.pQ (R).

The combination of gravitational and radiative acceleration is thus

, simi-

N N VZ 1/2
— Frog = = — |y
pvv—i— d T*p<Q(R) ZRZ)T’

where )
2

Vi = Ve‘;c (1-T.)= gM (1-T.).

Ve i V2
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The ratio between the radiative and gravitational forces is then

Fraa 2R*Q(1-T.)
_red _p g U0
_Fgravity v
Furthermore, we use for ) the approximation of a power law, @ (R) =
Ho/ R® with po, and # constants. The constant x measures the loss (z > 2)
or gain (# < 2) in radiative energy as a function of radial distance.

We are interested in transAlfvénic flows and denote by a x the respective value
of all quantities at the Alfvén surface. By choosing the function G(R) such
that G(R=1) = 1 at the Alfvén transition R = 1, it is evident that G(R)
measures the cylindrical distance w to the polar axis of each fieldline labeled by
«, normalized to its cylindrical distance @, at the Alfvén point, G (R) = w/w,.
For a smooth crossing of the Alfvén sphere R = 1 [r = ry, 0 = 0,4(«v)], the free
integrals L and Q are related by

L 2 2 o2 2

a- wo(A) =risin® () = rio. (7.8)
Therefore, the second assumption is equivalent with the statement that at the
Alfvén surface the cylindrical distance w, of each magnetic flux surface o =
const is simply proportional to /«.
Instead of using the three remaining free functions of «, (A, ¥4, ), we found
it more convenient to work instead with the three dimensionless functions of «,

(gl y 92 gS)a

1 7“2 \:[12
g1 (o) = /.,4 2doc, ga(a) = B—*Z / Q*04da, g3(a)= ﬁ : (7.9)
* *

These functions gq(«), g2(e), ga(«) are vectors in a 3D a-space with some
basis vectors uy(«), uz(«), us(e) [VT98]. Note that the forms of g1, 92,93 or
equivalently the forms of A, ¥4, Q, L = r2aQ and P should be such that the
two remaining components of the momentum equation are separable in the «
and R coordinates.

7.2.3 The method

The main steps of the general method for getting exact solutions under the
previous two assumptions are briefly the following.

First, by using « instead of § as the independent variable, we transform
from the pair of the independent variables (R, 6) to the pair of the independent
variables (R, «). The resulting form of the a- component of the momentum
equation can be integrated at once to yield for the gas pressure,

BZ
P(R,0) =

: : : B?
o= (fo+ Fagu + f1g) + faogy + oo + faogy) = ZYPT, (7.10)
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where fo(R) is a free function emerging from this integration, f; (R), i =
1,2,...,8 are functions of the spherical radius R given in the Appendix 5.A

2 2
while f9 = e (Q - 21/?) and P, Y are the (1 x 7) matrices,
Y = [Yl Yo Y3Y, Y5 Vs Y7] =|1g gll agll g2 ag; g3 |, (711)
P=[fofafi fafs f30]. (7.12)

Second, by substituting Eq. (7.10) in the r-component of the momentum
equation we obtain in terms of the (1 x 7) matrix X

X=[X1 Xy X3 Xu X5 X6 X7]= f(I) f:; —fe — fr fsl, —fs —fo |,
(7.13)

the following equation:
YX'=o0. (7.14)

A key step in the method is to find a possible set of vectors uy(«), uz(«),
uz(e) such that all components of the matrix Y belong to the same a-space.
So we choose uj(a) = 1 and uz(«) = gi(«). If this is the case, then our third
step is to construct a 3 x 7 matrix K such that

YI[Ul Ug Ug]K (715)

Then, from Eq. (7.14),
[Ul Ug Ug] I()(Jr IO,

and since u; are linearly independent it follows
KX'=o0. (7.16)

Finally, it follows from Eq. (7.10) , (7.12) and (7.15) that,

BZ
Pzﬁ(Po-i-glPl-l-U:st),

where the three components of the pressure Py, P; and P, are

[Py P, P]t = KPT. (7.17)

7.2.4 The Model

Let us know apply this method in the construction of a specific model. We may
recall that in [VT98] (see also Chapter 5), it was found that only nine distinct
general families of such vectors exist. One of them is,

ui(e) =1, wug(a)=a, uz(a)=a", (7.18)



180 A class of exact MHD models for astrophysical jets

while the corresponding free functions are,

gi(a) =a, ga(a) =E&a+ pafe, gs(a) =14 ba+ pdoat, (7.19)
(see the case (2) in Table 5.1).
For this particular choice of ui(a) = 1,uz(e) = o, uz(e) = af we find the

following form of the matrix K,

10 1 0 o0 O 1
K=|0101 ¢ ¢ & |. (7.20)
0 0 0 0 u/e p pbo

Then, from Eqs. (7.12) and (7.17) we get,

Py fo+ f1
Pl = fa+fa+é(fs+ 1) | . (7.21)
P w(fs/e+ f3)

Finally, from Eq. (7.16) using the definitions of Eqs. (7.13), (7.20) we
obtain, three ordinary differential equations for the functions of R in the model
for € £ 0,1 and p # 0 (only then we have a 3D a-space with 1, «, ¢ linearly
independent)

fo=Jo—fo=0
fom € (fi= ) —8fo=0 (7.22)
p (fsl,/6 —Js— 50f9) =0
with the functions f; (R), ¢ = 1,2,...,8 given in the Appendix 5.A and fo =
2 (v
M? 2R? )"
Egs. (7.22) can be found by setting equal to zero the three expressions in the
square brackets of Eq. (5.46), but in this Chapter we have proposed a simpler

way of finding them. This method could easily be applied in all the other models
of Table 5.1.

7.2.5 Physical quantities and final differential equations
of model

Altogether, let us summarize the characteristics of our model. The MHD inte-
grals have the following forms,

Uy = /4mp, (14 6o + pdoac), (7.23)

e—1
o Ve [_paTiHE (7.24)
e \| 14+ b+ pboact
/,LO[E+1 _|_€a2
L= . 7.25
Vi 14 6o+ pdoat ( )
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The physical quantities of the outflow have the following exact expressions:

Px

P=1p (14 ba + pboa®) (7.26)
2

P= % (Po + Pra + Ppac), (7.27)

M? 6 M?Fsin6 . 2_ Mm% .

cosf . sin 9+\/W G 3

— G2 2G? G(1-M?)
V=V (7.28)
V14 ba + pboast
= cos b Fsind . 1-G?

B=B,| —7¢r— —0-— C— 7.29
. ( o Ly Veat e G(l—M2)¢) )

where the five unknown functions G%(R), F(R), M2?(R), Po(R) and Pi(R) en-
tering in the above expressions are obtained from the integration of the following
five first order ordinary differential equations:

dG? F—2
- - _ 262 7.30
IR 7 (7.30)
dF  F dM?* F(F-2) F? -4 2G*RP,
dR~ 1—M? dR 2R 2R(1—M?) 1-— M?
(7.31)
2€R 2 4 4 2 2
——— [2M* - 1) G- M+ 2M* (1 -G
TR AL (1-62)]
dM? M?%(1— M?) v?
= 2660G? (1 — M? - —
dR (2M2—1)G4—M4{€0G ( >< 2R2)+
(7.32)
F—2
= [(e + 1)M2—(€—1)G4]}
ap P24 (1-62)°* ] am?
dR 2R2G2 G2(1- M2)*| dR
2 2
MEP AP 26 (2 M (F2 —4) (- 4) (7.33)
2R2G? dR ' M? 2R? 4R3G2
(F—2)[(2M? —1) G* — M*]
RG?M? (1 — M?)*
dPy 2 dM? 2 v? 2M?(F —2)
= 4 Q- s | - T2 7.34
dR i dR e ( 2R2) RG* (7.34)
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while the pressure component P,(R) is given explicitly in terms of the other
variables,

_ K
Pr= oy

G~ M? (1—(;2)2

eM?2(1—M?2) \1-M? (7.35)

The functional form of the pressure, Eq. (7.27), corresponds to the following
functional form for the heating function

q _V_fQo—i—Qloz—l—onf
pVe  2r, 14 6a 4 pdoac

M—Z(F—l)d PZ'MZF
with Qi = —— <dR :

one could proceed in the reverse way, i.e., to start with the functional form of
the heating function and deduce the functional form of the pressure Eq. (7.27).

, = 0,1,2. As discussed in subsection 7.2.1,

The current density J= %6 x B has a poloidal component
T

Jp =

— — = B = = B —
SV x By=V x (cw ¢v¢):v(m ¢) XV,
47 47 47

’WB¢

. . ) ¢
so the current lines on the poloidal plane are the lines = constant, or

1-G? 21,
Vpastl 4 fa? T cr*g* = constant . (7.36)
Note that from the structure of the model (basically from the forms of the

integrals), we conclude that we could have solved the problem similarly, with a
more general form for the radiative force

cos 8

sin 6

. V2
ﬂmzfii(wwm+ﬁuma+ﬁﬂmuww+

Tx

with given functions £;, ¢ =0,1,2,3,4.

7.2.6 Some properties of the model

Our model is meridionally self-similar, i.e., if we know the shape of one fieldline
a = oy we may derive the shape of any other streamline o = a9 by moving in
the meridional direction along each cycle R = const on the poloidal plane as
illustrated in Fig. 7.1.

Note that the flux function A is simply proportional to o which means that
for cylindrical solutions at R > 1, the magnetic field on the poloidal plane is
uniform and its strength is independent of «, | B_;, lco= By /G2,.

MM@@+EMENMW>,
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polar axis

equator

Figure 7.1: An illustration of the construction of the streamlines oo = const. on
the poloidal plane in meridionally selfsimilar outflows.

The density at the Alfvén surface is

_v

pa = G2 = pe (1+ b0+ puboa) |

i.e., 1t is similar to a Taylor expansion in the cylindrical distance w, from the
rotation and magnetic axis o« = 0. For example, for ¢ = 0.5 we have,

2
a W W
p_zl—i—ﬂéor——i—é(—) .

P * Tx

Also the parameters 8, udg , € help us to fit a desired profile for the density
on a given spherical distance (on the stellar surface, or at infinity etc). For
example we can choose low density on the polar axis and increased density with
increased « (hollow jets), or we can choose an outer line a,y+ such that p = 0
in this line, etc.

We’ve also introduced the expansion factor

Olma(R,6) _, RG_Z'

F dlnR G2’

which measures the flaring of the fieldlines on the poloidal plane, as illustrated
in Fig. 7.2. If locally, the function F' is constant, then G? o« R?™F, or A
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polar axis

equator

Figure 7.2: A geometrical illustration of the expansion factor F'(R) which deter-
mines the shape of the poloidal streamlines in a meridionally selfsimilar outflow.

RFsin?6@. Thus, if F > 2 the fieldlines turn towards the axis, if 7/ = 2 they

expand cylindrically, if /' = 0 they are purely radial while if 7' < 0 the fieldlines

turn toward the equator (in that case, there is a closed region near the equator).

If we eliminate F' in Eq. (7.31) [using Eq. (7.30)] we have the second derivative
2

of G (which corresponds to the term —— In the transfield equation). So, using
F' us an intermediate function we have only first order differential equations.

Looking at the form of 2, we see that we can choose the parameters p1,&,6, b
in order to fit the differential rotation of a star (we remind that © is the an-
gular velocity of the star, since near the stellar surface, if M? <« 1, V, =
M%) 4 4+ Qw ~ Qw).

In the following we shall discuss the results of the integration of the previ-
ous system of differential equations (7.30), (7.31), (7.32), (7.33), (7.34), (7.35).
Finally, we shall calculate all the other remaining physical quantities. A para-

metric study will be made only for € > 0, since for € < 0 we have lir%p = oo.
a—

For ¢ = 0 or 1 (or equivalently for u = 0), we get a degenerate case which
needs an extra condition between the functions of R. This case has been studied
in [ST94] (where the components of the pressure Py, Py are set proportional
to each other) and [TTS97] (where the function G(R) is given a priori). Here,
in the case y = 0 we ’ve chosen this extra condition to be f;/e — fa—b0fo =0
(c.f., the last equation of the system (7.22)).
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7.3 Critical Surfaces

In the domain of the solutions there exist several critical surfaces. In the fol-
lowing we briefly discuss the physical context of these critical surfaces.

7.3.1 Alfvén critical surface

We recall that one of our goals is to investigate transAlfvénic solutions wherein
L = w2Q. By multiplying Eq. (7.31) with 1 — M? and evaluating the resulting
expression at the Alfvén point we get

F2—4

Fop, — 2P, =0, (7.37)

with F, P, and p, = (dMZ/dR)* the respective values of these quantities

at the Alfvén transition R = 1. Eq. (7.37) is the so-called Alfvén regular-
ity condition in the present model. Note that if we also multiply Eq. (7.33)
with 1 — M? and evaluate the resulting expression at the Alfvén point we get
an identical expression while Eq. (7.32) after using L’Hospital’s rule gives an
identity (corresponds to a star-type critical point). At the Alfvén point, the
parameters F, ,p, are related with Vj, , By, since (using the L’Hospital rule

(1—(}2) _2—F*)
1_M2 *_ p‘k

[ pat+Ea ( 2—F*) 2—F,
Ve, =V, 1— , By = =By paf+ Ea .
dx * 1—|—5Oz—|—ﬂ500z5 'y bx *V M i3 'S

7.3.2 Slow/fast critical surfaces.

In order to locate the critical surfaces where the radial component of the flow
speed equals to the corresponding slow/fast MHD wave speeds [TSS196], we
need to calculate first the sound speed Cf; to this goal we may proceed as fol-
lows.

Consider that at some fixed distance R of a given streamline labeled by a we
make a small change in the density p and the pressure P. We may define the
square of the sound speed as the ratio of such an infinitesimal change of P and
p, (see subsection 3.2.1)

oP (a, R, MZ)

oP OM?
C? = =— = —vH 7.38
’ (ap)ayR ap<aaRaM2) ’ ( )
oM?
or, from Eqs. (7.26) - (7.27)
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0Py (R, M?) 8P (R,M?) 0Py (R, M?)

CZ — _V_*ZM‘I OM? OM? o OM? “ (739)
y 2 1+ 8a + poa® ’
Substituting

APy _ 9Py (RM?) 9Py (R, M?) di?
dR IR IM? dR
in Eq. (7.34) we get

(apo (R, M?) 2 ) dM? 2 ( v? )_2M2(F_z)_apo (R, M?)

OM?2 Gt dR T MZ\ Y 2R? RG* R
At the critical point wh aM> _ 0 h
€ Critica. pOlIl wlere dR = 0 we nave
9Py (R, M? 2
LZ) = [_—4] : (7.40)
oM o G* | pep.

T

From Eq. (7.33) after substituting dF/dR from Eq. (7.31) we can calculate in
the same way 0Py (R, MZ)/ﬁMZ:

IM?

apPy (R, M?) ]

F? 4 (1-G2)* M2F? ]
T op2y2 3 2002 (1 — M2

2R2G G%(1— M?) 2R?G? (1 - M?) e

(7.41)

Finally, from Eq. (7.35) by taking the derivative of Py((G, M?) for constant

=itz T

G(R) we get similarly,

oPy (R, M%) p

oM? G2

(M* —1) G Mt (1= G2)?
eM4(1— M?2)? (1— M2)°

Substituting Eqs. (7.40), (7.41) and (7.42) in Eq. (7.39) we obtain the expres-
sion of the sound speed. The general formula for the sound speed may have an

(7.42)

additional term, which vanishes at the critical point. So in general

o Nk (1—M2
s T Tx

GY(1— M%) (1+ba + pboa®) M?
G2(1-M?) P2 GE(1-G2)?

@ REM? AREMP T apz (1= ar2)?
Jara-ay? 2 2M - 1) Gt —
Ml MEa ey 2¢MS(1— M?2) |

, (2M? - 1) G* — M*
G PR (1~ 377 E(R,a)). (7.43)
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where we have introduced some unknown function £ (R, «).

An inspection of Eq. (7.32) for the Alfvén number M(R) reveals that be-
sides the Alfvén transition where M = (G = R = 1, there may be other dis-
tances R, # 1 where the denominator of this equation becomes zero, D =
[(2M2 — 1) G* — M4]R:RZ =0 3. In such a case, the numerator of Eq. (7.32)
should be also set equal to zero and we have conditions typical of a critical
point (using L’Hospital’s rule we find two solutions for the slope of M? in this
point, i.e., this singularity corresponds to an x-type critical point). To clarify
the physical identity of such a critical point, we may manipulate the denomina-
tor D and write it in the form

14 6o+ pdoa®
D =267
VEVE, (uafc+

ﬁW—ﬁnmﬁwﬂd+ﬁvaLL

(7.44)
where V4, V4, are the total and radial Alfvén speeds, respectively. So the

zeros of D correspond to surfaces R = R, where the component of the flow per-
pendicular to them, is equal with the same component of the phase velocity of
fast or slow MHD waves (see also subsection 3.2.1). Evidently, a critical point
at R, corresponds to the modified by the meridional self-similarity fast/slow
critical points [TSST96]. In other words, the sphere R = R, is the correspond-
ing spherical separatrix in the hyperbolic domain of the system of the MHD
differential equations [Bog96]. The sound speed is well defined at the critical
points where D = 0, but it is an open question if this definition can be extended
everywhere.

Suppose we know the sound speed everywhere. Then the characteristics are

rdf _b:l:\/bz—ac
dr 4 - a
where

a=VIVI-C:-Vi+C:/M?] | b=V?V,Vy and
c=VEVZ-Cl-Vi+CIM?] .

We see that there is a closed characteristic when a = 0 (only then the char-
acteristic is » = constant). This is the limiting characteristic. Looking at Eq.
(7.44) we see that when ¢ = 0, D = 0 too. In #— self similar models, we start
the integration from a surface r = r; and continue always on spherical surfaces.
When we reach the position of a spherical (limiting-closed) characteristic (the
one where ¢ = 0) as we have studied in Chapter 3, we can not continue the

2

dR

integration without imposing some regularity condition (the numerator of

also vanishes there).

4
x

2M2 — 1
(corresponds to a modified fast magnetosonic singular point).

3From this equality, G% = = Gz > 1, so the point is in the superAlfvénic regime
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On the polar axis (o« = 0), where V4 = V4 ,, the zeros of a, (a = 0)

correspond to points where V. = V4 (Alfvén point) or V, = C (sonic point).
So the second equality must hold in any possible critical point (R = R; # 1)
on the axis. Eq. (7.43) verifies this result, because for &« = 0 and D = 0 gives
Cs =V,
Generally speaking, there may be more than two critical points on the axis (in
all these points with R = R, # 1, V, = (s, since C; changes as we move
downstream). But from the integration of the equations (as we see in Sec. 7.6)
we found at most two singular points: the Alfvén and the modified by the self
similarity fast magnetosound critical point. On the basis of causality arguments,
we should choose the superfast solution because only then, conditions at infinity
will not influence the solution at the base, since no signal can be propagated from
infinity upstream in a flow which is superfast (see Chapter 3). Note that there
is no necessity for passing the solution through the other limiting characteristic
which correspond to the modified slow magnetosound singular point. As we
discuss in Chapter 3 there are not causality problems in this surface. The flow,
simply starts from the stellar surface with superslow velocity.

7.4 Asymptotic analysis

According to the asymptotical behaviour of the poloidal streamlines we may
distinguish two different types of solutions.

7.4.1 Cylindrical asymptotics achieved through oscillations
(Type I solutions)

In this case the poloidal streamlines undergo oscillations of decaying amplitude
and finally they become cylindrical. A similar oscillatory behaviour is found
in all physical quantities, a situation which has been already analyzed in detail
[VT97] (see also Chapter 4). According to this analysis, as R > 1 we have

D
M? = M2 (14 X)), G*=G% (1-¢), E(r)%r—ssin(kr—l—qbo), (7.45)

_ 261 -9 (M -GS

k2 e e (7.46)
s (1 - Moo)
1— M2
do = [(e+ 1) M2 —(e—1)Ga,] GMZ 1) Gh ML (7.47)
Ao M2
s=24 ﬁ . (7.48)

Note that for s > 1 the gravitational term is dominant, but the analysis is still
correct because the oscillatory perturbation is independent of the ”background”
term 1/r [VT97].
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7.4.2 Converging to the axis asymptotics (Type II solu-
tions)

An analysis of the system of the differential equations (7.31)- (7.35) for Rlim G=

0, P}im M = oo and lim F = F,, shows that in this case the value of the ex-
— 00 — 00

pansion factor F, at R > 1 approaches a constant value, the positive root of
the equation

(€+3) <e+;) F2 —2(c+2) <e+;) Foo —4(e+2)=0.

As we shall see later, interesting solutions are obtained mainly for € > 0, in
which case this root is greater than 2, Fi, > 2, i.e., the cross-sectional area of
flow tube drops to zero at large radii, G? o< R?~F>~. The poloidal velocity goes
to infinity as V. o R(F2D(F==2) to conserve mass , while the toroidal velocity
grows like V(R — o) oc Rf=~% from angular momentum conservation.

7.5 Method of integration

Suppose that we start from a spherical surface » = r; and integrate in the
downstream direction. First of all, we see that Eqs. (7.30)-(7.35) takes the
forms:

dG? F=2

T~ e (7:49)
dF _ F  dM* F(F-2) F?_4 2GR (r/ri) Pu(rifr)”
d(r/r;) - 1—=M2d(r/r) 2(r/r;) 2(r/r) (1 — M?) 1— M?

2§ (ri/r*)z (r/ri) 2 4 4 2 2
MR (1) [(2M? —1) G* — M* +2M7 (1 - G?)]

dM? - M2 <1_M2) 2 2y [ T VAT
d(rjr) ~ @M2—1)G'— M* {2650(? (1—M7) (ZQ - W) +(7 .
F-2

W[(G-I-l)M —(e—l)G]}

(7.50)
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dM? 3
d(r/ri)

dPy (ri/r)*
d(r/r)

F? -4 e (-6
2 mrce T e Ty

M2F dF | 26(rifr,)? (r_ v/ ) M ) (F ) 75

2(r/ri)2G2d(7°/7°z’)+ M? T 2(r/r;)* 4(r/r)* G2

) (F—2)[(2012 1) & — 7]

5(7%'/7“*) (7“/7%) G2 M2 (1 _ M2)2
dPy 2 dM? 2 r; v, v 2M2%(F —2)
d(r/ri) _@W + M2 (ZQ - 2(7“/7“2')2) B RG* (7.53)
. g 1 Gt — M? 1—G2\?| /rsino\*
Pea® = pnlri/r )™z |\ G = ~ (1—M2) ( G ) - (7:34)

We see that if we introduce new constants

Hi = (77/7“*)26 & =< (ri/r*)z 05 =06 (ri/r*)z vf = VP [T poi = o (r*/ri)x_l
and the new functions Py; = P; (ri/r*)z S = o (r*/ri)z then the parameter r,

disappears from the differential equations and from the integrals.

According to the analysis in Chapter 3 (see also [Bog97]) the steady solution is

fully determined if we give on this boundary surface eight free functions. One

of them (Ey = 0) corresponds to the history of the flow, while the remaining

seven corresponds to boundary conditions and regularity conditions at singular

points. If we give on the spherical surface r = r; (with known r;) the functions

of 6:

B, (or A), By (or the normal derivative of A, 9A/dr), V. (or M?), P,p,Q,L

and Fy = 0, then we can find

M?% =4rpV?/B? G? = r?sin® 0Q/L,F = —2Bg cos0/B, sin 0, Py = (2P/p, V)
Py = (2P/p V2 — Py — Pyaf) / (sin 0/G)? with p, = (P)gooM? and V, =

(V) g—o G*/M? and we begin the integration. Note that the parameters & ,8; , 60, €,
are known from the expressions of the integrals on the surface r = r;, while

v?, x, pio; are known from the expressions of the external forces.

=0’

7.6 Parametric study of solutions

The two crucial parameters which affect the qualitative behaviour of the model
are &£ and e.

First for ¢, from the expression of the density p in Eq. (7.26) it is required that
¢ > 01in order that the density at the axis, p(a = 0, R) and the pressure are finite.
In the case ¢ = 1 the electric current I,(«, R) enclosed by a poloidal magnetic



7.6 Parametric study of solutions 191

flux tube a = const. and the corresponding confining azimuthal magnetic field
Bg(a, R) are proportional to «; this case has been already studied in [ST94]
and 1t was found that cylindrical asymptotics is obtained through oscillations.
If € > 1, I,(, R) and By(a, R) are increasing faster with o which results in
a stronger magnetic pinching force which eventually reduces the cross-sectional
area of the flow tube to zero. Therefore we expect that when 0 < ¢ < 1
we obtain asymptotically cylindrical solutions while for larger values (¢ > 1),

solutions where asymptotically Rlim G = 0, as 1t may be seen in Figure 7.11.
— OO

For the larger values of ¢ > 1 the pinching is so strong that oscillations do not
exist. This may also be seen from Eq. (7.46) where k? < 0 for ¢ > 1 (for
E(M2Z — G%) > 0). Note that if e > 1, it is needed to have & > 0 such that the
square roots in Eqs. (7.24), (7.25) are positively defined near the axis o & 0.

Altogether then, we shall divide accordingly our parametric study to the
intervals 0 < € < 1, for cylindrical asymptotics with oscillations [cases (a)-(b)]
and € > 1, for converging to the axis fieldlines without oscillations [case (c)] .
Second, the parameter ¢ is related to the asymptotic value of the pressure com-
ponent P;. For cylindrical solutions at R > 1 we get from the asymptotic
analysis

S (M? - 1) (G* — M?) + M2 (1 - G?)*
hee G2M? (1 — M?)? n

For example when ¢ > 0, in which case from the integration we find G <
1 € My, we obtain P; oo > 0 and the pressure gradient assists the magnetic
pressure in collimating the outflow. In that respect solutions with & > 0 cor-
respond to an underpressured jet [TTS97]. On the other hand when & < 0 in
which case from the integration Géo > Mgo > 1 and we find Py o > 0, Py o < 0.
In all solutions with cylindrical asymptotics (i.e., for € < 1), one finds that for
& > 0 the total pressure force in the @ direction —&V (P + 32/871') is towards
the axis while for £ < 0 it is in the opposite direction. In all these cases we have

E(M2Z - GE) > 0, 0r, & ((pVTZ/Z)a:Oﬁ>>1 - <pv7“2/2)a:0,R:1) > 0. In other
words the sign of ¢ determines if the poloidal kinetic energy on the axis is larger
at the Alfvén point or at infinity. Thus, according to the range of values of ¢
and € we distinguish the following cases:

7.6.1 Case (a): 0<e<1,¢>0

In this case cylindrical asymptotics is achieved through small amplitude os-
cillations of decaying amplitude (Type I solutions). In the left panel of Fig. 7.3
the shape of the field/streamlines on the poloidal plane is shown in the inner re-
gion between the stellar base, the Alfvén (dashed, R = 1) and fast (dot-dashed,
R = 2) critical surfaces. The poloidal lines are almost radial up to the Alfvén
surface while after the fast critical surface they have attained a cylindrical shape.
However, the final cylindrical shape of the poloidal field/stream lines is reached
further out, i.e., at about R = 20, as 1t is shown in the larger scale of Fig. 7.3
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Figure 7.3: Poloidal streamlines for case (a) with parameters: ¢ = 0.5, £ = 10,
§v? = 3.5, 6ov? = 0.1, o = 0, F, = 1 and p, ~ 2.2655. For the value of
€ = 0.5, the magnetic pinching force just collimates the outflow to a jet of finite
asymptotic radius.
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Figure 7.4: In the left panel are plotted the components of the magnetic (solid),
pressure gradient (small dashes), gravitational (dot-dashed) and total acceler-
ation (long dashes) perpendicular to the poloidal streamlines on line o = ayim
for the parameters of the previous figure. In the right panel the corresponding
components parallel to the poloidal lines are plotted also for case (a) and the
same parameters: € = 0.5, £ = 10, év% = 3.5, 6ov? = 0.1, o = 0, F, = 1 and
Py A 2.2655

(right panel) where their asymptotically cylindrical shape can be better seen.
The bending of the poloidal field/stream lines towards the magnetic/rotational
axis is caused by the magnetic pinching force as it can be seen in the left panel
of Fig. 7.4 where the various components of the forces acting on the plasma
perpendicular to the poloidal fieldlines are plotted. In the inner region of the
outflow, the total inertial force perpendicular to the lines (centripetal force) is
almost exclusively provided by the inwards magnetic force, with the outward
pressure gradient balancing the inward component of gravity. Asymptotically
however, the magnetic pinching force and gravity are negligible and the pressure
gradient of the underpressured jet balances the centrifugal force. The accelera-
tion of the plasma along the poloidal lines can be seen in the right panel of Fig.
7.4. Evidently, in the inner region gravity is balanced by the pressure gradient
force and the plasma is accelerated only by the remaining magnetic force while
in the outer region where gravity and the magnetic force are negligible, it is
accelerated by the dominant pressure gradient force. As it may also seen in the
left panel of Fig. 7.6 most of the acceleration occurs on the far region at £ > 10
by the thermal pressure gradient force.

The solution discussed in this representative example crosses the modified
by self-similarity fast critical point and a note is in order here on how such a
solution may be obtained. First, we integrated Eqs. (7.31) - (7.35) downstream

1000
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Figure 7.5: The solid line gives the relation between the expansion factor F)
and the slope p, of M?(R) at the Alfvén point for a solution through all critical
points, for case (a) with parameters: ¢ = 0.5, £ = 10, év? = 3.5, fov? = 0.1,
po = 0. The topologies of M2(R) at the neighboring points (1), (2), (3) and (4)
are also shown.

of the Alfvén critical point at which R=G =M =1, F = F,, P; = P, and
Py = Poy, a free parameter which determines the pressure at infinity. At R =1
the Alfvén regularity condition relates Fy, p, and Py, Eq. (7.37). Also there is
a relation between Fj, p, such that the solution passes through the fast critical
point; this is the solid line in Fig. 7.5. Assume for example that we choose
F, = 1 and we vary p,, Fig. 7.5. There is only one value of p, & 2.26 which
satisfies the Alfvén regularity condition and the solution crosses the fast critical
point. For other values of p, above and below p, &~ 2.26 we have three different
types of unphysical solutions shown in Fig. 7.5:

e from point (1) of Fig. 7.5 corresponding to p, higher than 2.26 we get
solutions in which the denominator of the differential equation for M?
becomes zero and the curve M%(R) turns back to smaller distances,

e from point (2) of Fig. 7.5 corresponding to p, lower than 2.26 till point
(3) we get solutions in which the numerator of the differential equation
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Figure 7.6: Dimensionless velocities (left panel) and current lines (right panel)
for case (a) with parameters: ¢ = 0.5, £ = 10, §v% = 3.5, §v? = 0.1, pp = 0,
F, =1 and p, & 2.2655

for M? becomes zero and then the solutions become again subAlfvénic,

e finally, from point (4) of Fig. 7.5 we get solutions in which there is a
distance R wherein M — oo and the solutions terminate there.

A fine tuning between points (1) and (2) gives the unique solution which
goes to infinity with superAlfvénic and superfast radial velocity, satisfying also
the causality principle for the propagation of MHD perturbations. After finding
such a critical value for p, we also integrate Eqgs. (7.31) - (7.35) upstream of
the Alfvén point.

We found from the integration a spherical surface R = Ry in the superAlfvénic
regime, where G =1 (but M # 1), or By = 0. This corresponds to a vanishing
poloidal current 7, there (see Eq. (7.36)). For R < Ry, as we see in the right
panel of Fig. 7.6, the current lines are closed, while for R > Ry they are open.

7.6.2 Case (b): 0<e<1,£(<0

In this case we may have two possibilities. In one the solution crosses the fast
critical point and the situation is similar to the previous case (a). At the same
time however asymptotically cylindrical solutions exist which do not cross the
modified fast critical point, being simply superAlfvénic. An example of this type
of behaviour is shown in Figures 7.7- 7.10. As in case (a), cylindrical asymptotics
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Figure 7.7: Poloidal streamlines for case (b) with parameters: ¢ = 0.5, £ = —5,

§v? = 4, §v? = 0.001, gg = 0, F, = 1 and p, = 2. With dotted lines the
density isocontoures are indicated with p/p, = 0.1,1,10 from top to bottom
in the left panel and p/p, = 0.01,0.04,0.07,1,10 from left to right in the right
panel. The jet has a finite asymptotic cylindrical radius.
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Figure 7.8: In the left panel are plotted the components of the magnetic (solid),
pressure gradient (small dashes), gravitational (dot-dashed) and total accelera-
tion (long dashes) perpendicular to the poloidal streamlines on line o = gy,
In the right panel the corresponding components parallel to the poloidal lines
are plotted also for case (b) and the same set of parameters: ¢ = 0.5, £ = —5,
§v? =4, bov* = 0.001, 1o =0, F, =1 and p, = 2

is achieved through oscillations of decaying amplitude (Type I solutions). In the
left panel of Fig. 7.7 the shape of the field/streamlines on the poloidal plane
is shown in the inner region between the stellar base and the Alfvén (dashed,
R = 1) critical surface. The poloidal lines are almost radial up to this Alfvén
surface while outside R = 1 they attain a cylindrical shape. However, the final
cylindrical shape of the poloidal field/stream lines is reached further out, i.e.,
at about R = 20, as it is shown in the larger scale of the right panel of Fig.
7.7 where their asymptotically cylindrical shape obtained through the decaying
amplitude oscillations can be better seen.

As in case (a), the focusing of the poloidal field/stream lines towards the
magnetic and rotation axis is caused predominantly by the magnetic pinching
force; this may be seen in the left panel of Fig. 7.8 where the various compo-
nents of the forces acting on the plasma perpendicular to the poloidal fieldlines
are plotted. In the inner region of the outflow R<S1, the total inertial force
perpendicular to the lines (centripetal force) is almost exclusively provided by
the inwards magnetic force. In the far zone where gravity is negligible, R 21,
the inwards magnetic pinching force is balanced by the pressure gradient of the
overpressured jet and the centrifugal force. The acceleration of the plasma along
the poloidal lines can be seen in the right panel of Fig. 7.8. In the inner region
R 51 the magnetic and pressure gradient forces accelerate the plasma; in the
outer region where gravity and the magnetic forces are negligible, the pressure
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Figure 7.9: The solid line gives the relation between the expansion factor F)
and the slope p, of M?(R) at the Alfvén point for a solution through all critical
points, for case (b) with parameters: ¢ = 0.5, £ = —5, 6v? = 4, §ov? = 0.001,

pto = 0. The topologies of M?(R) at the neighboring points (1) to (6) are also
shown.

gradient force is left alone to accelerate the plasma. As in case (a), it may also

be seen in the right panel of Fig. 7.8 that most of the acceleration occurs in the
far region at R = 10 by the thermal pressure gradient force.

Figure 7.9 is a plot of the values of p, and F, for which the fast point is
crossed. As in case (a), we integrated Eqgs. (7.31) - (7.35) downstream of the
Alfvén critical point at which R=G =M =1, F = F,, Py = Py, and Py = Py,.
At R = 1 the Alfvén regularity condition relates Fj, p, and Py, Eq. (7.37).
Also there is a relation between Fj,p, such that the solution passes through the
fast critical point; this is the solid line in Fig. 7.9. Assume for example that we
choose F, = 0.7 and we vary p,, Fig. 7.9. There is only one value of p, ~ 2.6
which satisfies the Alfvén regularity condition and the solution crosses the fast

critical point. For other values of p, above and below p, a2 2.6 we have different
types of solutions shown in Fig. 7.9:
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e at point (6) of Fig. 7.9 corresponding to p, higher than p, ~ 2.6 we get
solutions in which the denominator of the differential equation for M?
becomes zero and the curve M%(R) turns back to smaller distances,

e at points (5), (4) and (1) of Fig. 7.9 we get solutions in which the nu-
merator of the differential equation for M? becomes zero and then the
solutions become again subAlfvénic,

e at points (2) and (3) of Fig. 7.9 we get oscillatory solutions which do not
cross the fast critical point. These solutions were shown in the previous
Figures 7.7,7.8,7.10.

A fine tuning between points (6) and (5) gives the unique solution which
goes to infinity with superAlfvénic and superfast radial velocity.

Note that in this case there exists a value a,,; where V5 = 0 and By = 0.
In this streamline the poloidal current is zero. For g = 9 and the parameters as
in Fig. 7.7, agye = 3.24.
If we examine Eq. (7.36) we see that in the case where £ < 0,0 < ¢ < 1,
1

ple+1)
‘ 21¢]| ‘ ‘
has a maximum. For o < aj the current density flows upstream, while for

a > ag it flows downstream (see the right panel in Fig. 7.10). On the line
1

Qoyt = <|/g—|) 1-c¢ we have [, = 0 and Bg = 0.

there is a line oy = ( ) 1 =€ Ghere the absolute poloidal current | I, |

7.6.3 Case (c): ¢>1,6>0

As discussed in the beginning of Sec. 7.6, when ¢ > 1 the strong magnetic
pinching force results in a jet of zero asymptotic radius; in addition, this asymp-
totics is achieved without oscillations, i.e., we obtain type II solutions, Fig. 7.11
- 7.13. The values of p, and F, for which the solution crosses the fast critical
point are shown in Fig. 7.12.

As with the previous cases, for each value of F), there is only one value of the
Alfvén number slope p, such that the solution passes through the fast critical
point; this is the solid line in Fig. 7.12. Assume for example that we choose
F, = 0.8 and we vary py, Fig. 7.12. There is only one value of p, &~ 2.53 which
satisfies the Alfvén regularity condition and the solution crosses the fast critical
point. For other values of p, above and below p, &~ 2.53 we have two different
types of unphysical solutions shown in Fig. 7.12:

e at point (1) of Fig. 7.12 corresponding to p, higher than 2.53 we get
solutions in which the denominator of the differential equation for M?
becomes zero and the curve M%(R) turns back to smaller distances,
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Figure 7.10: Dimensionless velocities (left panel) and current lines (right panel)
for case (a) with parameters: ¢ = 0.5, £ = —5, §v% =4, §ov2 = 0.001, pg = 0,
F,=1and p, =2

e at point (2) of Fig. 7.12 corresponding to p, lower than 2.53 we get solu-
tions in which the numerator of the differential equation for M? becomes
zero and then the solutions become again subAlfvénic,

A fine tuning between points (1) and (2) gives the unique solution which
goes to infinity with superAlfvénic and superfast radial velocity. Nevertheless,
the jet radius goes to zero in this case.

7.6.4 The case where 6, =0

We examine this special case only because for §o = 0, Eq. (7.32) can be inte-
grated at once to give
G4 _ M2
G2+ M2 (1 — M?)

= constant .

This constant is equal with 14 2 (Fy, — 2) /p, (at the Alfvén point) or

(G4 — M2) /G M2 (1 — M2) (at infinity).

The derivative dM?/dG? is of the form 0/0 if M2 = (e+1)/(e+3),G% =
(e+ 1)2 / (e +3) (¢ — 1), so there is a critical point if € > 1 (when M, < 1,G; >
1) or e < —3 (when M, > 1,G,; > 1). The solution pass from this point when

e+1

et1
pe = (2= F,) /Cp with Cp = % — 2(5:'_31) [(T?_I)_(f)zl)] . Both solutions are
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pinching force results in a jet of zero asymptotic cylindrical radius in this case.
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Figure 7.12: The solid line gives the relation between the expansion factor F),
and the slope p, of M?(R) at the Alfvén point for a solution through all critical
points, for case (c) with parameters: ¢ = 2, £ = 10, §v? = 4, §orv? = 0.1,
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velocities in units of Vv,

1000

Figure 7.13: Dimensionless velocities for case (¢) with parameters: € = 2, £ = 10,
Sv? =4, 6o = 0.1, g = 0, F, = 0.8 and p, ~ 2.5636.

unphysical, since for € < 0 we have infinite density on the polar axis, and for
€ > 1 we are in the subAlfvén regime but we have cross section bigger than the
Alfvén cross section.

7.7 Astrophysical Applications

It should be noted that the purpose of this study has not been to construct
a specific model for a given collimated outflow; instead, our goal has been to
outline via a specific class of exact and self-consistent models, the interplay of
the various MHD processes contributing into the acceleration and collimation
of jets. Nevertheless, the illustrative examples analyzed in this Chapter can be
compared with the observable characteristics of outflows from stellar or galactic
objects, say, those associated with young stellar objects. For this purpose, in
the following we establish the connection between the nondimensional models
and the observable parameters of the outflow.

Suppose that at the polar direction of the stellar surface (r = ro,a = 0) we
know the values of V,. | B, and p, say, Vj, Bo and pg, respectively. Then we may
calculate Mo = Vo+/4mpo/Bo. From the integration we can find the distance Ry
where M(Rg) = Mo. Thus we may calculate the Alfvén distance r, = ro/Ro.
Each line which has its footpoint on the stellar surface at angle 6; is labeled
by o = (rosinb; /r.G (ro/r*))z. The last line originating from the star is am,.
Each line which has its footpoint on the disk at distance r; > rg from the axis
of rotation is labeled by a = (r;/r,G (ri/r*))z > Qi -
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If at the stellar surface G(Ro) = Go we find the Alfvén values, V, = VoG2/M¢Z,
By = BoG%, py = poMZ and from Egs. (7.26) to (7.29) we can find all
physical quantities at any point. For example at R > 1, « = 0 we have
the following asymptotic values: Vo, = VoGEMZ /MEG?,, Bow = BoG3/G2,
Poo = pOMOZ/Mgo .

7.7.1 Model of case (a)

For a typical solution with parameters as those plotted in Fig. 7.3 and rg =
2 x 10t em, Vo = 3 x 10%em/sec, Bo =7 x 1073G, po = 1.6 x 10~ gr/em?® we
find Ro = 0.2, M? =3,2x 1073, G2 =82x 1072 and M2 = 31.3, G = 0.477
so we have oy, = 0.49, 7, = 102em and Voo = 5 x 107cm/sec, B, = 1073,
poo = 1.66 x 10721gr/em? (or neo = 103/em?). Choosing v? = 462 we have a
stellar mass 2 x 1033gr while for ¢ = 0.01 the angular velocity at the equatorial
point of the stellar surface is 2 x 107%/sec .

Note that in this case (a) the toroidal component of the magnetic field changes
sign at some spherical surface (c.f. the velocity Vagy 1im in the left panel of
Fig. 7.6). This means that the poloidal current enclosed by this surface is zero
(see the right panel of Fig. 7.6). All fieldlines which pass through this surface
have the same cylindrical distance from the axis with the Alfvén point (G =1
at this spherical surface) while for larger distances G < 1. After crossing this
surface the Poynting flux changes its sign and thus the toroidal component of the
velocity becomes large enough (in general Vy/wQ = (M?% — G?) /G* (M? - 1)).

7.7.2 Model of case (b)

If the star has radius o = 2 x 10'em and at the pole on the stellar sur-
face Vo = 6.5 x 10%m/sec, Bo = 0.3 G, po = 8 x 107 18gr/em3 we find r, =
102em, ME = 422 x 1072, G2 = 0.206 and M2 = 203,G% = 64,V =
108¢m/sec, poo = 1.66 x 1072Lgr/em3 | B, = 103G, The last line connected
with the star has aym, = 0.19 while the disk has a radius 2.45 x 102em. If
we choose v? = 0.3 then the mass of the star is one solar mass. The equa-
tor of the star rotates with a speed 2.7 x 10%em/sec so the angular velocity is
1.3 x 1077 /sec.

The asymptotic radius of the jet (which is bounded with the line agyz) is
1 A.U. while the part of the flow starting from the stellar surface has a radius
0.23 A.U..This part of the jet is collimated at a distance about 4 A.U. from the
equatorial plane, while the whole solution collimates at the height of 3.3 A.U.
These results are consistent with recent observations of YSO’s [Ray96].

7.7.3 Model of case (b) including radiation

There are two parameters (pg,#) related to the radiative force (the third is
included into v2).
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Figure 7.14: Dimensionless asymptotic values of the radial velocity (left panel)
and dimensionless asymptotic values of the radius of the jet (right panel) as a
function of the radiative force parameters # and po for case (b) with parame-
ters: ¢ = 0.5, & = =5, v? =4, $? = 0.001, 2 =03, F, =1 and p, = 2. In
all these cases in the surface of the star M = 4.22 x 1072,

For the parameters of case (b) but for o # 0 we examine the effect of the
radiative force on the velocity and the asymptotic radius of the outflow. As
we expect, as the radiative force increases, the terminal velocity becomes larger
(Fig. 7.14) while the Alfvén surface moves closer to the stellar base. From mass
conservation we expect that the cross sectional area of the jet decreases as x
increases, as it is shown in Fig. 7.14.

7.8 Summary and Conclusions

In this study we have examined a class of exact solutions of the full set of the
MHD equations (7.1) - (7.2) governing the kinematics of a magnetized outflow
from a rotating gravitating object. For this system to be closed, an additional
equation is needed to describe the energetics of the outflow, i.e., some form of
the energy conservation principle, Eq. (7.3). The often used simplifying poly-
tropic relationship between pressure and density which corresponds to a specific
functional form of the net heating/cooling in the plasma, was not used. This led
to the inconvenient result that the sound speed is ill defined and it can be cal-
culated only at the modified by self-similarity fast MHD critical point. Besides
this inconvenience we did not suffer any loss of generality in adopting a more
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general functional form of the total heating, than the polytropic assumption
implies. As it was explained in subsection 7.2.1, in both, the familiar polytropic
case of constant 7 and the present nonconstant v approach, the detailed spatial
distribution of the required heating can be calculated only a posterior:.

The analyzed class of solutions in this Chapter belongs to the group of nine
classes of meridionally selfsimilar MHD solutions which have been shown to
exist in [VT98] under the two assumptions that the Alfvén Mach number is
a function of the radial distance and the poloidal magnetic field has a dipolar
angular dependence, Eq. (7.7) (the only difference is the appearing of Fy.4). No
assumption was made about the asymptotics of the outflows. It is interesting
that the self-consistently deduced shape of the streamlines and magnetic field
lines was found to be helices wrapped on surfaces which asymptotically are
cylindrical. In other words, the streamlines extended to infinite heights above
the central object and its disk obtaining the form of a jet. This result may be
contrasted to the quite often referred Blandford & Payne [BP82] solutions which
by overfocusing towards the axis terminate at finite heights above the disk. The
cylindrical asymptotics of the present nonpolytropic solutions agrees with the
polytropic analysis of Heyvaerts & Norman [HN89] and also with the class of
exact solutions of Sauty & Tsinganos [ST94] for efficient magnetic rotators.
However, no radial asymptotics was found in this class of models, contrary to
the other class of meridionally selfsimilar solutions examined in [ST94] where
for inefficient magnetic rotators radial asymptotics was found; it may be that
the present model belongs to the group of efficient magnetic rotators.

The topologies of the solutions are rather rich as it was shown in the plane
defined by the slope of the Alfvén number p, and the streamline expansion fac-
tor F, at the Alfvén transition. For example, for a given streamline expansion
factor F, we obtained terminated solutions for p > p,, similarly to the cor-
responding terminated solutions in Parker’s [Par58] HD wind, or, the Weber
& Davis [WD67] magnetized wind. For a given pressure at the Alfvén point,
the requirement that a solution crosses the Alfvén and fast critical points elim-
inates the freedom in choosing p, and Fj through the corresponding regularity
and criticality conditions.

A plotting of the various forces acting along and perpendicular to the poloidal
streamlines reveals that the wrapping of the field lines around the symmetry
axis 1s caused predominantly by the hoop stress of the magnetic field which it
is already strong at the Alfvén (and fast) critical surfaces. Asymptotically the
cylindrical column is confined by the interplay of the inwards magnetic pinching
force, the outward centrifugal force and the pressure gradient, as in [TTS97].
On the other hand, the acceleration of the plasma along the poloidal magnetic
lines, in the near zone close to the Alfvén distance it is due to the combination
of thermal pressure and magnetic forces while at the intermediate zone beyond
the Alfvén point it is basically the pressure gradient that is responsible for the
acceleration.
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Chapter 8

Accretion on dilatonic black

hole

A detailed analysis of spherical steady state adiabatic hydrodynamical accretion
onto a four dimensional dilatonic black hole is presented. Because the event hori-
zon of a dilatonic black hole possess an area much smaller than a Schwarzschild
one of the same mass, and at the same time its accretion radius is indistin-
guishable from that of an accreting Schwarzschild black hole, accretion flows
on the dilatonic background exhibits novel effects particularly as the extreme
limit is approached. By a combination of numerical and analytical techniques,
it is shown that for any equation of state obeying the causality constraint and
any subsonic at infinity flow, there always exist a transonic, regular over the
event horizon flow. For background corresponding to a dilatonic black hole
approaching the extreme limit, the asymptotic behavior of the transonic flow
near the horizon, differs considerably from flows occurring near the horizon of a
Schwarzschild black hole. For the former case the accreting plasma even though
crosses the horizon supersonicaly, it is not any longer in the state of free fall.
Furthermore it is heated enormously, so that the proton component becomes
relativistic. As a consequence we have found that the adiabatic assumption is
not any longer justified, the need for incorporating radiative transport effects
is pointed out. It is argued that if such black holes exist in the universe, they
should have a distinct observational signature associated with them.

8.1 Introduction

The discovery of a new class of asymptotically flat spherical black hole solutions
of the Einstein non vacuum field equations [Gib82, GM88, GHS91] caught many
researchers by surprise. The new class establishes beyond any doubts that in
general non-linearities in field configurations may resist the pull of gravity and
thus peacefully coexist with a regular event horizon. Furthermore the new
class constitutes a counterexample to the popular believe that isolated black
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holes have always their exterior empty apart from an electromagnetic field. The
“hair” consists of a dilaton coupled to a U(1) field. In the domain of outer
communication the geometry of a dilatonic black hole (nick name for the new
class) can be written in the following manner:

ds® = —(1 — g)dt2 +(1- g)_ldrz + g(r)dQ?*, (8.1)
where g(r) = r%(1 — %), M > 0 is the mass of the hole while Q stands for a
combination of the electric or magnetic charge ¢ and the value of the dilatonic
field at infinity namely Q = ¢%e2?>. We shall denote here after by @ = % The
black hole sector characterized by positive M and values of @ in the interval
[0,2]. More specifically @ = 2 characterize the extreme dilatonic solution, @ > 2
covers the space of naked singularities while for @ = 0 the Schwarzschild black is
recovered. Introducing a new dimensionless parameter x = 53; and computing
the scalar curvature R and proper area A, of r =constant spheres one finds

a M -2 4(X—1) -3

R= ﬁ(m—pllpl) WX ; (8.2)
S LG e - ), (33)

where m,; and [,; are respectively the Planck mass and length. Expression (8.3)
implies for @ > 2 the spacetime singularity “lies outside the event horizon”.
Furthermore Eqs. (8.1)-(8.3) show that the dilatonic black hole possesses a few
distinct properties worth mentioning. At first the extreme case and in sharp con-
trast to the extreme Reissner-Nordstrom solution, is characterized by a pointlike
singular event horizon. Furthermore thermodynamically it possesses non zero
Hawking temperature and vanishing entropy, in contradistinction to the thermo-
dynamical properties of an extreme Reissner-Nordstrom solution (zero Hawking
temperature, non vanishing entropy). Away from the extreme limit, a first look
at the line elements in Eq. (8.1) suggests, that the geometry of a dilatonic black
hole should not differ very much from the well known Schwarzschild one.The
two metrics "differ at one point”. The dilatonic metric endows the proper area
of the SO(3) orbits with less area than the corresponding Schwarzschild. In fact
Eq. (8.3) shows that a dilatonic state close to the extreme limit could possess
an event horizon whose proper area lies many orders of magnitude bellow the
corresponding area for a Schwarzschild black hole. In addition Eq. (8.3) shows
that as one approaches the extreme limit, for instance even assuming an ex-
tremely fined-tuned value @ — 2 = 10~° then for a solar mass black hole the
area radius, lies many orders of magnitude below the Planckian values. There-
fore quantum gravitational effects on the black hole exterior can be ignored. In
fact such nearly extreme states are rather bizzare. Extremely compact in size,
but at the same time exerting the same gravitational influence as a solar mass
Schwarzschild black hole does. Besides this purely geometrical difference, as al-
ready stated earlier,the dilatonic states are accompanied by classical hair. From
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the observational point of view, the background dilaton field is not expected to
play any significant role, at least for the range of energy scales where various
astrophysical process take place. On the other hand the background monopole
electric or magnetic field may be of importance. An electrically charged dila-
tonic black hole, residing somewhere in the universe, likely to get neutralized via
preferential accretion of charge of the opposite sign. Such process presumably
will drive @ towards zero. It would be then of some independent interest to find
out what will happen to the dilaton field. For the magnetically charged hole,
the background monopole field cannot be transformed away. Depending on its
strength it is expected to play significant role in astrophysical process involving
angular momentum and charged particles. Note however for purely radial infall
the exerted Lorentz force is vanishing and thus its role is insignificant.

In view of the above differences one wonders whether the new class interacts
with the rest of the universe in an entirely different fashion than the corre-
sponding Schwarzschild one. Since accretion of ambient matter is the dominant
interaction mode of black holes with the external world, it is natural to examine
accretion phenomena on a magnetically charged dilatonic background. As a pre-
liminary step, in the present Chapter a detailed examination of Bondi adiabatic
accretion [Bon52], will be discussed. Recall, such accretion is radial, therefore
the background monopole magnetic field is unimportant. So the main focus of
the present Chapter, is to probe possible effects upon hydrodynamical flows,
due to the the rapid reduction in the area of the SO(3) spheres as the event
horizon is approached. A priori it is not clear whether smooth accretion flows
exist for all values of @ in [0,2]. For instance, development of standing shocks is
a possibility. In addition presence of multiple critical points is not excluded. In
particularly the second possibility is enhanced in view of the close connection
between multiple critical points and the rapid convergence-divergence in the
cross sectional area of the “tube” where the flow takes place [Hol77, HT83].
For comparison purposes we may recall that Bondi accretion on a Schwarzschild
background is rather well behaved. It has been established that as long as adi-
abaticity is maintained and the flow is subsonic at infinity, there always exist
a unique transonic flow regular over the event horizon. Because of the way @
enters the metric, it is expected that Bondi accretion on a dilatonic background
to share the same properties as well provided @ remains close to zero. However
things become unclear as @ deviates away from the zero value and in particularly
for the nearly extreme dilatonic backgrounds.

Primarily motivated by the above questions, we begin the Chapter by first
reminding the reader of the relevant equations governing spherical, steady state
flows on a dilatonic background. In section (8.4) we discuss the delicate issue
of the critical points admitted by the flow equations. It is shown that for any
dilatonic black hole, the relevant hydrodynamical equations, always admit a
critical point of the sadle type, which is located outside the event horizon. The
extreme one, admits an additional critical point residing on the pointlike singular
event horizon. It is found that the accretion rate is insensitive to all values of
@, even for the extremal ones. In the same section an equivalent formulation of
the flow equations are presented which shows that the critical point is actually
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a sonic horizon. With the help of numerical integration the existence of a
unique transonic solution subsonic at infinity, passing through the critical point
and reaching supersonicaly the event horizon is established. Its asymptotic
behavior as well as its regular nature near the horizon is discussed in details. We
found that the transonic flow near the horizon may differ significantly from that
occurring on a Schwarzschild background. Specifically while for the latter the
flow is in a free fall state, for a nearly extreme dilatonic background that is any
longer so. Because the even horizons cross section is reduced considerably the
flow is retarded significantly, resulting into extreme dense plasma. Consequences
of this retardation is discussed. In particularly the adiabaticity assumption is
put under scrutiny. We present arguments indicating adiabaticity is not any
longer compatible with flows taking place on holes approaching the extreme
limit. The physical reasons leading to this behavior is presented in details.
We finish the Chapter by commenting on some open problems and discussing
possible observational signatures associated with dilatonic black holes.

8.2 Bondi accretion on a dilatonic black hole

We begin by considering a perfect fluid moving on the background of Eq. (8.1).
The fluid is considered to be a test one, thus causing negligible distortion on
the background geometry. It is described by a conserved stress tensor

Tap = (p+ P)uaus + Pgap (8.4)
and a conserved baryon current J, = nug i.e.:
VT =0 and (8.5)

Va(nu®)=0. (8.6)

In above p,n, P, are the total mass-energy density, baryon number density and
pressure respectively as measured by an observer comoving with the fluid. As
long as there is no external supply of energy and irrespectively of the equation
of state, the first law of thermodynamics combined with the conservation Eqs.
(8.5), (8.6) implies that the fluid evolves without its constituents exchanging
any heat i.e. the motion is adiabatic. Thus if S, T" are the entropy per baryon
and temperature respectively as measured in the local rest frame of the fluid
then,

ufVu(

3

1
)+ PutV,(=)=Tu'V,S=0. (8.7)
n
The covariant conservation of the stress tensor is equivalent to:
u*Vap+(p+ P)Vau® =0, (8.8)

(p+ P)u’Vsu, = —Va4P —ugu’ V5P (8.9)
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Making use of Eq. (8.1), spherical symmetry and the steady state character of
the flow, the continuity Eq. (8.6) and Euler Eq. (8.9) yield:

d
E(nug) =0, (8.10)
du, dP
(p+ PYT2) + uy e =0, (8.11)
du 1 dP,_ 2M  , M
e N A A (8.12)

Eq. (8.8) is automatically satisfied, provided Eqs. (8.9)-(8.12) hold. In above
u stands for the radial component of the flow i.e. v” and u, = gyyu®. Taking

into account the adiabaticity assumption the following conservation laws can
obtained from Eqs. (8.10)-(8.12):

drmnug = M , (8.13)
+ P 2M + P
o - =y = (252, (8.14)
n T
P P
i i L S (8.15)
n n

The parameter m stands for a mass scale associated with the baryons. M is
a spacetime independent constant representing the accretion rate of rest mass
energy down to the horizon while the right hand side of Egs. (8.14), (8.15) are
computed at infinity. Conservation laws Eqs. (8.14), (8.15) are actually not
independent of each other. They are different ways of expressing the covariant
version of Bernoulli equation i.e.:

a +P c
w Vo[ o (gueu’e)] = 0,

valid for any geometry admitting a Killing field ¢ and any flow invariant under
the action of the isometry. Assuming an equation of state P = P(n,S) and
introducing the adiabatic speed of sound a via a? = %h Egs. (8.10)-(8.12) can
be recast as:

W=7 (8.16)

n = —%, (8.17)

u; _uona2 % ,  where (8.18)

po ot ¥+u2), (8.19)
un

Dy = ——[— — Ad*(1 — TJruz)], (8.20)
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1. M 9
and A is defined by
d 4y —a
A= —1 =
dr nlg(r) ]| 2Mx (2xy — Q)

Eqgs. (8.16)-(8.21) are the basic equations describing the flow. We shall ignore
here after Eq. (8.18) as redundant and concentrate on Eqs. (8.16), (8.17). An
inspection of them shows that they reduce to the corresponding flow equations
for Schwartzcild background provided g(r) = r%. It is worth however to note the
non trivial manner the parameter @ enters the flow equations. A close look at
D1,D5 shows whereas for the Schwarzschild case and near the event horizon, the
first term within the square bracket in Eqs. (8.20), (8.21) dominates the rest,
the situation is reversed for the class of dilatonic black holes approaching the
extreme limit. In fact at the extreme limit the second term diverges. Following
Bondi and others, any type of radiation losses will be initialy ignored and thus
adopt the polytropic equation of state P = P(n) = Kn! as the relevant equation
of state describing the accreting plasma. The parameter K is a constant and
the polytropic index will satisfy T < 5/3. Such equation of state actually makes
the flow to be isentropic and the first law implies the following expression for
the speed of sound and energy density p:

2 dP n TKnpl-1

= — = 8.22
dnp+P m+TKa'-1/(I'-1)’ (8.22)

S N S (8.23)

dp  p+ KnT p=mnt ey '

Thus a? and p are functions of the baryon density alone. For numerical purposes
it is convenient to reformulate the above flow equations in a slightly different
manner, a manner which also reveals that if critical point exists,then necessary
are sonic horizons. Namely horizons defined by the property that outgoing sound
waves emitted by the background flow interior to critical sphere are actually
dragged inwards. Therefore any observer in the asymptotic region is soundly
disconnected from the interior of the flow. Put it differently: the sound cone
is tilted inwards for all points located interior to the critical sphere. This at
least for the steady flows occurs, whenever a local orthonormal observer at
rest relative to the coordinate system Eq. (8.1) find the speed of the flow
being identical to that of sound. The importance of sonic horizons to accretion
problems is well known. As we shall presently verify the requirement that the
flow passes via the critical point, allows the determination of M in terms of the
asymptotic quantities. Eliminating the baryon density » in favor of the sound
speed a? and introducing the ordinary three velocity v = % measured by a local
orthonormal observer,related to u via

g LM

u’ =v m(l . ), (8.24)
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Egs. (8.16), (8.17) transformed into the following equivalent system:

y(1 = y)(v* — a?) dv? 2q2 4—ya y(v? — a?)
=Y 3 1- —_— 8.25
v3(1 —v?%)?2 dy Y 1—v22—ya( y)+ 1—02 ( )
2yl —y)(v* —a?) da® 4 yav(l-y) (8.26)
1— )T —1—a?) dy 7 “2—ya (1—2) :
where y = % Adding them together one obtains:
@ 2 vP (1-y-ay)?
Tt =2 8.27
[I‘—l—az] 1 —v? y* 2 (8.27)

while dividing the first one by a?, the second one by v? and add them yield:

(1 —v2)(L —1—a?)?
l-y

=\ (8.28)

where the right handsides of Eqs. (8.27)-(8.28) are constants. Imposing v = 0
at y = 0 one gets A\; = (I‘ —-1- ago)z while Aj is in general a free parameter.
Its relation with the accretion rate is

2 . 2
(KT NTT (W
27 \m (r—-1) 8amM?

The above integrals of motion are just the conservation laws shown in Egs.
(8.13)-(8.14). Their usefulness in establishing numerically the uniqueness of a
regular transonic flow will be discusses later on.

8.3 The determination of the critical points

In order to get a better feeling about the global behavior of the flow, we should
know whether the dynamical equations (8.16)-(8.18) admit critical points, and if
so their character i.e. whether they are saddles, nodes etc. On general grounds,
smooth flows that are subsonic at infinity and regular over the horizon (a condi-
tion that as we shall see in the next section requires u#0) are expected to pass
via critical points. This can be inferred by noting that Eq. (8.19) indicates that
at radial infinity D < 0 while for any equation of state satisfying the causality
constraint i.e. a? < 1, it follows again from Eq. (8.19) that D > 0 at the hori-
zon. Therefore there will be at least one point at the black hole exterior where
D(r) = 0. Egs. (8.16), (8.17) shows that flows reaching such points character-
ized by infinity gradients in the velocity and baryon density. Physically the flow
turns over and its continuation is considered as being unphysical. Physically
important flows reaching ”turning over points” must simultaneously satisfy:

D=D1=Dy=0. (8.29)
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Extending the flow through the critical point may be a delicate issue. Whether
an unambiguous extension is possible depends upon the character of the critical
points. However, as we shall see in more details in the next section the critical
points are saddles and for such cases the extension is free of ambiguities. In
fact demanding the flow to pass via, as well as being regular over the event
horizon, singles a unique solution determined solely by the boundary conditions
at infinity. In view of the significance of the critical points, their proper iden-
tification is of prime importance. By definition potential critical points of the
flow equations satisfy constraints (8.29). Note that if instead of (8.16), (8.17)
the alternative set of equations (8.25), (8.26) is employed, one finds that at any
critical point, an orthonormal observer measures the speed of the flow being
equal to the local speed of sound. Thus the critical hypersurfaces are actually
sonic horizons. In the subsequent analysis we shall employ equations (8.16),
(8.17) for their determination. Starting from Eq. (8.29), one infers that ug, a,
at the potential location of the critical points rs satisfy:

1M
oM M \!
a? = u? (1 -+ W) . (8.31)

Combining Eqgs. (8.30), (8.31) together with Bernoulli Eq. (8.14) and in view
of (8.22) the coordinates of the critical points r; and the corresponding baryon
density, n, satisfy the following algebraic system of equations:

u? _dP n

v = 8.32
(1—¥+/¥A)| dnp+P| (532
p+ P, 2M M p+ P,
1—— 4+ —)s = oo - 8.33
e assy (8.33)
In terms of the variable x = 57; defined earlier and
b p+ P _ m(T'—1)
n r—-1—a?’
they can be rewritten in the following manner;
2y — @ 1 2y — @ dP n
=l —+ — (=) s (8.34)
2x(4x — @) X 2x(dx—a) dn p+ P
2y —a R
1 x-—a _ Ml (8.35)

~ 4+ — = .
X 2x(4x—a)  h?;

Introducing the function

h?| oo '—1-—a?
oo _ 42 % 12 (.36)

A=d?|, =
lmr = aliT—z
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from the last equation we have
2y —a A 1
2y(dy —a) a

when Eq. (8.34) gives

==\ 8.37
YT @A (1—a?) ( )
From this last equation we see that y > 1, thus the critical point lies outside
the event horizon. Substituting the above expressions for x, A in Eq. (8.34)
after long algebraic computations, we get the following equation determining

the sound speed at the critical points:
8Aa' —2(1+aA)a?[a2—A(1—a®)]+a[a®—A(1—a®)]"=0. (8.38)

This equation has been studied numerically. We have found that for various
values of a%, and T = 4/3 there always exist a solution lying in the interval
[0, —1). Note for any polytropic equation of state the speed of sound is
bounded above by T' — 1 see Eq. (8.22). At the critical point, using

e (5L Y Dt 2 4 ot and (8.39)
=m _ =m a ar .
'-1-a? r-1
2 2aZ, 4
A:a(l—l—r_l)—l—O(a), (8.40)
we get
1
a? = 2a%, T +0(al, a*a), (8.41)
15—-3T
== + O(al,, a*a). (8.42)

Furthermore the numerical computations confirm the expressions (8.41), (8.42).
In summary therefore there always exist one critical point whose coordinate
location and speed of sound are given by equations (8.41), (8.42). Notice also
that expressions (8.41), (8.42) are identical to those occurring for accretion
taking place on a Schwarzschild background. Utilizing the information of the
flow at the critical point one easily computes the accretion rate in terms of
asymptotic quantities at infinity:

. 2 So) ) s
M =4x) (5—3I‘) M*nyaZ’, (8.43)
i.e. the same rate as if the background would have been a Schwarzschild black
hole with the same mass M. The parameter A is combination of the various nu-
merical factors, is of order unity and independent upon @, while any contribution
of @ appears as correction term of the order a? a.
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8.4 The nature of the critical points

Having established the existence of a critical point, we shall now examine its
topological nature. This entails an understanding of the way various solutions
curves of Egs. (8.16), (8.17) behave in the neighborhood of the critical point.
Ultimately one like to show that for a flow that is stationary at infinity a unique
regular solution exists reaching the event horizon. For that is necessary that the
critical point exhibit saddle like character, which by definition implies that only
two at least C'! solution pass through the critical point. One describing accretion
and the other a “stellar wind”. However outflows on a black hole background
are consider as unphysical since as we shall discuss further later on, they are
singular over a non singular horizon. In order unravel the nature of the critical
point, it is convenient to turn Egs. (8.16), (8.17) into a three dimensional
dynamical system.Introducing a parameter [ along the solution curves of the
system (8.16), (8.17) and defining as one column vector: & = [r({), u({), n(l)]
one gets the equivalent three dimensional system

(#)' = (D, D1, D), (8.44)

where overdot signifies differentiation with respect to !, while ¢ signifies trans-
position of the the row vectors. In this formulation the critical points appear
as equilibrium points i.e. points where the right hand-side of Eq. (8.44) is van-
ishing. According to Hartmann-Grobmann theorem [Per91], in the vicinity of
a critical point (equilibrium point) the solution curves of (8.44) are homeomor-
phically equivalent to its linearized version i.e.

Z=FF, (8.45)

where F' stands for the differential matrix of the vector valued function defined
by the right hand side of (8.44) and computed at the critical point. Denoting
by A;, By, C; with ¢ = 1, 2.3 the partial derivatives of D, Dy, Dy with respect to
r, u, n respectively and taking into account Eq. (8.29) one finds the following
expressions valid at the critical point:

2Aa? 2(1 — a? 2
Alz_ auaAZI ( a)aA3:_Laia
n n na? on
Z 24 A 2Aa? Au? §a*
Blzu—[——|——8 +24%%], By = au,B:s:—u Oa” 5
n - n or n na? on

24  0A

Clz_u(_+a_),02:_2A,03:0~ (846)
r r

Furthermore in terms of the partial derivatives, the characteristic equation de-
fined by F has the following form;

—[(A1 = A)(Ba — M)A+ [B3Cq + Az By + A3C1]A

—|—[—A13302 + AngCl + A33102 — AngCl] =0 (847)
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A straightforward computation then shows that the last term in the character-
istic equation is vanishing. Therefore one of the eigenvalues is zero while by
noting that A; = — By the remaining two non zero eigenvalues are given by:

At = +[—(A?2 + BsCy 4 AyBy + AsCh)]? . (8.48)

Expanding out the quantity within the square root one finds that at the critical
point the eigenvalues are real and of opposite sign. Diagonalizing the differential
matrix F' and following the standard procedure [Per91], one may show explicitly
that only two solutions pass through the critical point. Therefore locally the
solution curves exhibit a saddle type behavior, implying further the existence
of two distinct solutions passing through the critical point. Thus the critical
point is of the same nature as the one admitted by the corresponding flow
equations on a Schwarzschild background. ' We have established the existence
a unique transonic flow, subsonic at infinity, passing trough the critical point
and reaching the horizon, by resorting to numerical techniques. For that we
found more convenient to employ equations (8.27), (8.28). They have been
plotted for values of Ay appropriate to typical interstellar medium and various
values of the parameter Ay. Numerically we have found that for any choice of
A1 there a exist a critical value of Ay (and thus a “critical” accretion rate M)
such that a flow subsonic at infinity, passes through a critical point and reaches
the event horizon. The various solution curves for v,a are showing in Figures
8.1,8.2.

8.5 Asymptotic analysis

If for the moment we ignore the numerical results discussed in last paragraph,
the analysis of the accretion flow presented so far is entirely independent upon
the particular value of @. The flow up to the critical point is uniquely determined
for all values of @ and irrespective whether @ lies within [0,2].2 However, its
continuation from the critical point inward depends whether it is propagating
on a black hole background or a naked singularity. The crucial element that
differentiates between the two is the set of boundary conditions obeyed by the
flow on the horizon and singularity respectively. For the first case, one can
naturally infer a set of conditions obeyed by the flow at the horizon. According
to the standard black hole physics, one demands that nothing peculiar takes
place as the flow crosses the event horizon. In particularly at the crossing
no physical scalars are allowed to diverge. This kind of regularity conditions
have been introduced and discussed at some length by Thorne [Tho81] and
Thorne et al [TFZ81]. However for flows running on naked singularities things
are rather umbigious. It not clear what conditions are to be imposed on the

L Although attention has been restricted to the exterior critical point,the same conclusion
valid for the other critical point.The analysis utilize only relations (8.29) and these are inde-
pendent of the location of the critical point.

2For the case of naked singularities,  must constrained so that the critical point lies outside
of singular “sphere”.
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Figure 8.1: Figure shows the topology of the various solution curves for the v?
obtained from plotting Eqgs. (8.27), (8.28). In order exhibit clearly the saddle
character of the critical point and the transonic solution we have taken I' = 4/3,
@=138,a% =0.133 and vy, = 0.

[

o] 2 4 .8 .8
v==2M/1r

Figure 8.2: Figure shows the topology of the various solution curves for the a?
obtained from plotting Eqs. (8.27), (8.28). The parameters are the same as in
the previous figure.
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v=2M/T

Figure 8.3: Critical solutions in the y — v? plane, for a Schwarzschild black hole
@ = 0 and for an extreme dilatonic one @ = 1.99. The other parameters I' = 4/3,
a?, = 0.133 and v,, = 0. Note that for realistic boundary conditions a?, < 1,

oQ

the critical point lies practically on the horizontal axis.
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o] 2 4 .
v=2M/T

Figure 8.4: The same as in the previous figure but

6

in the y — a? plane.
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singularity. Note in particularly that for @ = 2 the saddle character of the
critical point, at the space time singularity, implies that outflows are not a priori
excluded. This point may interpreted as implying that space time singularities
are totally unpredictable. Here after we shall concentrate on flows on black hole
backgrounds. For our problem, it is sufficient to demand that the magnitude of
the four-acceleration of the flow as well as the baryon density n are bounded at
the horizon. The first condition implies that the non gravitational forces acting
upon the flow are finite while a consequence of the second conditions is that all
other flow parameters remain bounded as well. A straightforward calculation
shows that the non vanishing components of the four acceleration vector a* are
given by;

, Ot

or

,O0u, M 1 2M u'u,
5 TEi_or vy | %
r

_ 0
ay = u 6u—|—u

In terms of the ordinary velocity velocity v and the parameter y introduced
earlier, one finds the following expression for the magnitude a”a,:

1 y? 1 y? v dv

Pa, = — 1 1_—1_ %73_'
B apm (1—y)z (1—v?)2 ZM( v) (1—v?)2 dy

A close look at the right hand side of the above expression indicates that the
magnitude of the four acceleration is unbounded on the horizon, unless v(y)
exhibits the following behavior;

o) =1+ o (1= ) + O = 17).

In that case we find that

1
ata,(y = 1)~(;l—v)y5:1 +0(y—1)%.
)
However from Eq. (8.25) one can easily infer Z—Z|y:1 is non zero and bounded at
the horizon. In turn equation (8.24) shows that a regular flow must have radial
velocity w = «” non vanishing on the horizon. In the following the asymptotic
behavior of the flow near the horizon compatible with ©#0 and bounded n will
be determined for various values of the parameter @ belonging to [0,2). From
Eqgs. (8.16), (8.17) one finds the following equations describing the flow near
the horizon y ~ 17:
ldu  m=z—wdLlnlyg]|
udy u?(1—a?) ’

(8.49)

ldn _gz—u'g-n|g]

ndy u?(1 — a?)
We shall look for asymptotic solutions describing regular flows over the event
horizon. It is clear that the nature of the asymptotic solutions depends upon the

(8.50)
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particular value of @. We shall explicitly write down the closed form solutions for
the two extreme cases of the @, namely for @ close to zero and the diametrically
opposite case i.e. a extremely close to value 2. For the former case the second
term in the numerator of Eq. (8.49) may be ignored. In that case demanding
that v 1s non vanishing on the horizon, one arrives at

)= 1m0 =
X X2

i.e. the well known free fall asymptotic solution on Shwarzchild background.

However as we have argued earlier for a nearly extreme dilatonic black hole, the

second term cannot any longer be ignored. In fact dominates the first term. In

such case one finds

a? 1

u(x) = Arg(x) =%, n(x) = A29(x) =7, (8.51)

where A;, As are arbitrary constants of integration. Demanding satisfaction of
Eq. (8.13) near the horizon one finds that A;, Ay obey:

AyAy =M, (8.52)
while Bernoulli equation implies:

A FEES + P
A—l(p + Py = 2 (8.53)
2 n

The solution are consistent provided p + P = %P i.e. mn = 0, or the rest
masses are negligible. In such case we find that a? = T'—1 = 1/3 where we have
taken the polytropic index to equal to 4/3. Manipulation of the above equa-
tions shows that near the horizon the baryon density is given by the following
expression:

TEn(o0) M

(T =1)(p+ Peo 9(x)

n(x) = [ ]2 (8.54)

8.6 Break down of the adiabaticity assumption

The above asymptotic solutions indicates that n(y) became extremely high as
the one allows the parameter @ to get close to the extreme values. But high den-
sities imply high temperatures. Assuming an ideal plasma then the temperature
measured in the the local rest frame of the fluid is given by 7(r) = n(r)I'=1.
In more realistic models of accreting interstellar medium onto a black hole, the
inflowing plasma consists of a proton and an electron component of equal den-
sities. Initially i.e. at radial infinity, both component are considered as non
relativistic and thus I' = g Model calculations for the Schwarzschild hole show
that the electron component barely becomes relativistic while the proton com-
ponent remains non relativistic all the way down to the horizon. However for
the dilatonic case,things may be different. The asymptotic solutions indicate
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that for dilatonic black holes close to the extreme limit conditions are such that
both components of the inflowing plasma become highly relativistic. Physically
then one expects that many collisions such as thermal bremsstrahlung, pair
creation, electron-positron annihilation and proton-proton collisions leading to
pion production, to take place. Because of this important difference in the ac-
cretion near an extreme dilatonic black hole, it is natural to wonder whether the
initially imposed adiabaticity assumption is still justified by the obtained solu-
tion. The large production of radiation may not any longer neglected. On the
other hand adiabaticity would be consistent provided the outgoing luminosity
due to various processes is negligible comparatively to the increase in the inter-
nal energy density of the plasma due to the work done by gravitational forces.
As i1s known Bondi accretion on a Schwarzschild background indeed fulfill this
requirement. To check the validity of the adiabaticity assumption for accretion
on a a nearly extreme dilatonic black hole, one has to compute in details the
production of photons due to various processes. This task however entails an
element of uncertainty mainly due to ambiguities in the various cross sections
particularly if one allows values of @ that lead into pions production via proton
colission. Fortunately we do not need to enter into such fine details. As we
shall see taking into account only thermal bremsstrahlung it will be sufficient to
conclude that indeed adiabaticity it is not consistent with the asymptotic solu-
tions and thus treatment incorporating radiative transport is necessary. Since
the sensitive region is near the event horizon we shall perform our theoretical
experiment at the same region. In view of the fact that the plasma is highly
relativistic, we may set without loss of generality I' = 4/3. According to the
calculations of Novikov and Thorne [NT73], a gram of the plasma in the local
rest frame of the fluid losses radiation according to:

r—1

= ~g(x)

=

1
epsrT2ren(y)

On the other hand the first law implies the rate of increase of the internal energy
by the work done by gravity is given by

o=

d(=) = Kn"g(x\)~g(x)~

Comparing the two one concludes that the outgoing luminosity outweighs the
internal energy gaining and thus Bondi adiabatic accretion strictly is not any
longer consistent with a dilatonic black hole @ approaching the extreme limit.
In some sense this is rather understandable. The plasma due to the excessive
heating emits much more free-free radiation in the case of extreme dilatonic

black hole.

8.7 Discussion

In summary the results obtained so far, show that accretion on a dilatonic black
hole may be of entirely different nature than accretion on a Schwarzschild one.
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The crucial element is the value of @. The breakdown of Bondi adiabatic accre-
tion indicates the need of inclusion of radiative transport effects. However even
with the inclusion of such effects we believe that outflowing luminosity would
be much larger than the one would have emerged if the background was that
of a Schwarzschild black hole. Since as is clear from the so far discussion is the
geometry of the dilatonic black hole which causes large luminosity generation.
The incorporation of radiative transport effects as well as the incorporation of
the background monopole field, are currently under consideration.
This work has done in collaboration with Thomas Zannias [VZ].
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