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Š��o�o�o�
‘Ô ˆ·ÈÌ¸ÏÂÌÔ Ù˘Ì ÂÍÍÒÔ˛Ì ·¸ ·ÛÙÒÈÍ‹ ·ÌÙÈÍÂflÏÂÌ· - ‹ÛÙÒ· Í·È „·Î·ÓflÂÚ -

ÂflÌ·È „ÂÌÈÍ¸.  ‹ËÂ ÍÔÛÏÈÍ¸ ·ÌÙÈÍÂflÏÂÌÔ ˜‹ÌÂÈ Ï‹Ê· ÏÂ ÏÔÒˆfi ·Ì›ÏÔı Í·È Ï·Êfl
Ï¥ ·ıÙ¸Ì ÛÙÒÔˆÔÒÏfi. ‘Ô ÍÔÌÙÈÌ¸ÙÂÒÔ ·Ò‹‰ÂÈ„Ï· ÂflÌ·È ‚›‚·È· Ô fiÎÈÔÚ. ≈flÌ·È
„Ì˘ÛÙ‹ Ù· ˆ·ÈÌ¸ÏÂÌ· Ôı ÔˆÂflÎÔÌÙ·È ÛÂ Û˘Ï·Ùfl‰È· Ôı ›Ò˜ÔÌÙ·È ·¸ ÙÔÌ fiÎÈÔ
ÛÙÁÌ ·ÙÏ¸Ûˆ·ÈÒ· ÙÁÚ „fiÚ (ÔÎÈÍ¸ Û›Î·Ú, ÒÔ‚ÎfiÏ·Ù· ÛÙÈÚ ÂÈÍÔÈÌ˘ÌflÂÚ Í·Ù‹ ÙÁÌ
‰È‹ÒÍÂÈ· Ù˘Ì ÁÎÈ·Í˛Ì Í·Ù·È„fl‰˘Ì). ‘Ô ‰È·ÛÙÁÏ¸ÎÔÈÔ œ‰ıÛÛ›·Ú - ÙÔ Ò˛ÙÔ Ôı
Ù·Ófl‰Â¯Â ›Ó˘ ·¸ ÙÔ ÂflÂ‰Ô ÙÁÚ ÂÍÎÂÈÙÈÍfiÚ - Ï·Ú ›‰ÂÈÓÂ ¸ÙÈ Ô ÁÎÈ·Í¸Ú ‹ÌÂÏÔÚ
ÏÂÙ·‚‹ÎÂÙ·È ·ÒÍÂÙ‹ Í·Ë˛Ú ÍÈÌÔ˝Ï·ÛÙÂ ·¸ ÙÔÌ ÈÛÁÏÂÒÈÌ¸ ÒÔÚ ÙÔıÚ ¸ÎÔıÚ. ‘Ô
‰È·ÛÙÁÏÈÍ¸ ÙÁÎÂÛÍ¸ÈÔ Hubble ›˜ÂÈ ·Ò·ÙÁÒfiÛÂÈ ÎfiËÔÚ ÂÍÍÒÔ˛Ì ·¸ Û˜Â‰¸Ì ¸Î·
Ù· Âfl‰Á ·ÛÙÒÈÍ˛Ì ·ÌÙÈÍÂÈÏ›Ì˘Ì (Ò˘ÙÔ·ÛÙ›ÒÂÚ, ‰Ò·ÛÙfiÒÈ· Í›ÌÙÒ· „·Î·ÓÈ˛Ì Í.Î..).
œÈ ÈÔ ÔÎÎ›Ú ·¸ ·ıÙ›Ú ›˜ÔıÌ ÙÁÌ ÏÔÒˆfi fl‰·Í· Î‹ÛÏ·ÙÔÚ, ÂÛÙÈ·ÛÏ›ÌÁÚ ÂÍÍÒÔfiÚ
Ôı ÂÍÙÂflÌÂÙ·È ÛÂ ·ÔÛÙ‹ÛÂÈÚ ˜ÈÎÈ‹‰˘Ì ·ÛÙÒÔÌÔÏÈÍ˛Ì ÏÔÌ‹‰˘Ì ·¸ ÙÔ ÍÂÌÙÒÈÍ¸
Û˛Ï·, Ù· jets.

–·Ò‹ ÙÁÌ ÎÁË˛Ò· ·ıÙ˛Ì Ù˘Ì ÂÍÍÒÔ˛Ì, ÔÎÎ‹ ÂÒ˘ÙfiÏ·Ù· Ôı ÛıÌ‰›ÔÌÙ·È ÏÂ
ÙÔÌ Û˜ÁÏ·ÙÈÛÏ¸ ÙÔıÚ, ÙÔıÚ ÏÁ˜·ÌÈÛÏÔ˝Ú ÂÈÙ‹˜ıÌÛÁÚ ÙÁÚ ˝ÎÁÚ Ï›Û· ÛÂ ·ıÙ‹, ÙÁÚ
ÂÛÙfl·ÛÁÚ Í·È ÙÁÚ ÏÂÙ·ˆÔÒ‹Ú ÂÌ›Ò„ÂÈ·Ú, ‰ÂÌ ›˜ÔıÌ ÎfiÒ˘Ú ··ÌÙÁËÂfl. ÃÈ· ·¸ ÙÈÚ
‰ıÛÍÔÎflÂÚ ÂflÌ·È ¸ÙÈ ËÂ˘ÒÁÙÈÍ‹ ·ıÙfi Á ÏÔÒˆfi ˝ÎÁÚ - ÙÔ Î‹ÛÏ· - ÂÒÈ„Ò‹ˆÂÙ·È ·¸ ÙÔ
-·Í¸Ï· Í·È ÛÂ Ò˛ÙÁ Ù‹ÓÁ - ÔÎ˝ÎÔÍÔ Û˝ÛÙÁÏ· Ù˘Ì ÂÓÈÛ˛ÛÂ˘Ì ÙÁÚ Ï·„ÌÁÙÔ˚‰ÒÔ-
‰ıÌ·ÏÈÍfiÚ.�œ˘Ú ÂflÌ·È „Ì˘ÛÙ¸, ÂflÌ·È ÏÁ „Ò·ÏÏÈÍ¸ Û˝ÛÙÁÏ· ‰È·ˆÔÒÈÍ˛Ì ÂÓÈÛ˛ÛÂ˘Ì
ÏÂ ÏÂÒÈÍ›Ú ·Ò·„˛„ÔıÚ, ÔÈ Î˝ÛÂÈÚ ÙÔı ÔÔflÔı ··ÈÙÂflÙ·È Ì· ÂÒÌÔ˝Ì ·¸ ‰È‹ˆÔÒÂÚ
ÍÒflÛÈÏÂÚ ÂÈˆ‹ÌÂÈÂÚ. Àfl„ÂÚ ÍÎ‹ÛÛÂÈÚ ·ÓÈÛıÏÏÂÙÒÈÍ˛Ì, ÛÙ‹ÛÈÏ˘Ì Î˝ÛÂ˘Ì ›˜ÔıÌ
‚ÒÂËÂfl, ıÔË›ÙÔÌÙ·Ú Í‹ÔÈÔ ˜˘ÒÈÛÏ¸ ÏÂÙ·‚ÎÁÙ˛Ì ÛÙÈÚ ÛÁÏ·ÌÙÈÍ¸ÙÂÒÂÚ ‹„Ì˘ÛÙÂÚ
ÛıÌ·ÒÙfiÛÂÈÚ. ¡ıÙfi Á Ï›ËÔ‰ÔÚ - ·ÔÍ·ÎÂflÙÂ ·ıÙÔÔÏÔÈ¸ÙÁÙ· - Ï·Ú ÂÈÙÒ›ÂÈ Ì·
Ô‰Á„fiÛÔıÏÂ ÙÔ Û˝ÛÙÁÏ· ÛÂ ‰È·ˆÔÒÈÍ›Ú ÂÓÈÛ˛ÛÂÈÚ ÏÂ ÔÎÈÍ›Ú ·Ò·„˛„ÔıÚ, ÔÈ ÔÔflÂÚ
ÂflÌ·È ‰ıÌ·Ù¸Ì Ì· ·ÌÙÈÏÂÙ˘ÈÛÙÔ˝Ì ıÔÎÔ„ÈÛÙÈÍ‹. « ÂÈÎÔ„fi ˜˘ÒÈÛÏÔ˝ ÏÂÙ·‚ÎÁÙ˛Ì
ÂÈÎ›„ÂÙ·È ÏÂ ‚‹ÛÁ ÙÔ Ûı„ÍÂÍÒÈÏ›ÌÔ ·ÛÙÒÔˆıÛÈÍ¸ Ò¸‚ÎÁÏ·. Ã›˜ÒÈ Ù˛Ò·, ¸ÎÂÚ ÔÈ
Î˝ÛÂÈÚ Ôı ›˜ÔıÌ ‚ÒÂËÂfl ·ÌfiÍÔıÌ ÛÂ ‰ıÔ ÍÎ‹ÛÛÂÈÚ ·ıÙÔÔÏÔÈ¸ÙÁÙ·Ú: ÙÁÌ ÏÂÛÁÏ‚ÒÈÌfi
(Parker 1958, Tsinganos & Trussoni 1991, Sauty & Tsinganos 1994) Í·È ÙÁÌ ·ÍÙÈÌÈÍfi
(Blandford & Payne 1982, Contopoulos & Lovelace 1994). ÃÂ ÛıÛÙÁÏ·-
ÙÈÍ¸ ÙÒ¸Ô, Û¥ ·ıÙfi ÙÁ ‰È·ÙÒÈ‚fi ‚Ò›ËÁÍ·Ì ¸ÎÂÚ ÔÈ Î˝ÛÂÈÚ ·ıÙ˛Ì Ù˘Ì ÍÎ‹ÛÛÂ˘Ì
Í·Ë˛Ú Í·È ÏÈ· ÙÒflÙÁ ÍÎ‹ÛÛÁ, ·ıÙfi ÙÁÚ „ÂÌÈÍfiÚ ·ıÙÔÔÏÔÈ¸ÙÁÙ·Ú. ≈flÛÁÚ ›˜ÂÈ
·Ì·ÎıËÂfl Ô ·Ò·ÏÂÙÒÈÍ¸Ú ˜˛ÒÔÚ ÛÂ Í‹ÔÈÂÚ ·¸ ·ıÙ›Ú ÙÈÚ Î˝ÛÂÈÚ Í·È ›˜ÂÈ ÏÂÎÂÙÁËÂfl
Á ·ÛıÏÙ˘ÙÈÍfi ÙÔıÚ ÛıÏÂÒÈˆÔÒ‹.

‘· ÛıÏÂÒ‹ÛÏ·Ù· Í·È Á ÂÏÂÈÒfl· Ôı ·ÔÍÙfiËÁÍÂ, ‚ÔÁË‹ ÛÙÁÌ Í·Î˝ÙÂÒÁ Í·Ù·Ì¸-
ÁÛÁ ÙÁÚ ˆıÛÈÍfiÚ Ôı ÈÛ˜˝ÂÈ ÛÙÔ ÂÒÈ‚‹ÎÎÔÌ ÛıÏ·„˛Ì ‚·ÒıÙÈÍ˛Ì Û˘Ï‹Ù˘Ì.



Abstract
A widespread phenomenon in astrophysics is the outflow of plasma from the environ-

ment of stellar or galactic objects. This plasma outflows range from nonuniform winds
to highly collimated jets which are common to many stages of stellar evolution. For
example, collimated outflows are found around young stars (e.g., as in HH 30), older mass
losing stars (as in �-Carinae), symbiotic stars (e.g. in R Aqr), planetary nebulae nuclei
(as in the hourglass nebula), black hole X-ray transients (as in GRS 1915+105 and GRO
J1655-40), low- and high-mass X-ray binaries and recently also in cataclysmic variables
(e.g. T Pyxidis). Similarly, they are also found emerging from the nuclei of many radio
galaxies and quasars.

Nevertheless, despite their abundance the questions of the formation, acceleration and
propagation of nonuniform winds and jets have not been fully resolved. One of the main
difficulties in dealing with the theoretical problem posed by cosmical outflows is that
their dynamics needs to be described - even to lowest order - by the highly intractable set
of the MHD equations. As is well known, this is a nonlinear system of partial differential
equations with several critical points, and only very few classes of solutions are available
for axisymmetric systems obtained by assuming a separation of variables in several key
functions. This hypothesisallows an analysis in a 2-D geometry of the full MHD equations
which reduce then to a system of ordinary differential equations.

By a systematic method we construct general classes of exact and self-consistent
axisymmetric MHD solutions.

The unifying scheme contains three large groups of exact MHD outflow models, (I)
meridionally self-similar ones with spherical critical surfaces, (II) radially self-similar
models with conical critical surfaces and (III) generalized self-similar models with
arbitrary shape critical surfaces. This classification includes known polytropic models,
such as the classical Parker description of a stellar wind and the Blandford and Payne
(1982) model of a disk-wind; it also contains nonpolytropic models, such as those of
winds/jets in Sauty and Tsinganos (1994), Lima et al (1996) and Trussoni et al (1997).
Besides the unification of all known cases under a common scheme, several new classes
emerge and some are briefly analyzed; they could be explored for a further understanding
of the physical properties of MHD outflows from various magnetized astrophysical
rotators.

We also propose a new class of exact and self-consistent MHD solutions which describe
steady and axisymmetric hydromagnetic outflows from the magnetized atmosphere of a
rotating gravitating central object with possibly an orbiting accretion disk. The plasma is
driven by a thermal pressure gradient, as well as by magnetic rotator and radiative forces.
At the Alfv�enic and fast critical points the appropriate criticality conditions are applied.
The outflows start almost radially but after the Alfv�en transition and before the fast critical
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surface is encountered the magnetic pinching force bends the poloidal streamlines into a
cylindrical jet-type shape. The terminal speed, Alfv�en number, cross-sectional area of the
jet, as well as its final pressure and density obtain uniform values at large distances from
the source. The goal of the study is to give an analytical discussion of the two-dimensional
interplay of the thermal pressure gradient, gravitational, Lorentz and inertial forces in
accelerating and collimating an MHD flow. A parametric study of the model is given,
as well as a brief sketch of its applicability to a self-consistent modeling of collimated
outflows from various astrophysical objects. For example, the obtained characteristics of
the collimated outflow in agreement with those in jets associated with YSO's.

General theoreticalargumentsand variousanalytic self-similar solutions have recently
shown that magnetized and rotating astrophysical outflows may become asymptotically
cylindrical, in agreement with observations of cosmical jets. A notable common feature
in all such self-consistent, self-similar MHD solutions is that before final cylindrical
collimation is achieved, the jet passes from a stage of oscillations in its radius, Mach
number and other physical parameters. It is shown that under rather general assumptions
this oscillatory behaviour of collimated outflows is not restricted to the few specific
models examined so far, but instead it seems to be a rather general physical property
of an MHD outflow which starts noncylindrically before it reaches collimation. It is
concluded thence that astrophysical jets are topologically stable to small amplitude, time-
independent perturbations in their asymptotically cylindrical shape. Also, similarly to the
familiar fluid instabilities these oscillations may give rise to brightness enhancements
along jets.
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Chapter �

Introduction

In this Chapter we brie�y review the available observations for the various
classes of cosmic jets� Then� we discuss the numerical and analytical related
studies with emphasis on the models which have been proposed so far for their
theoretical description�

��� Observed classes of cosmic jets

Out�ows from astrophysical objects have been known since the beginning of
this century� The �rst highly collimated out�ow �or jet� associated with an
astrophysical object� was observed on ����� It was �a line of matter connected
to the elliptical galaxy M��� �Cur����
Much later� it was discovered that the nearest star� our sun� possesses an ex	
tended atmosphere� visible only during eclipses� the solar corona� The �rst
question about the solar corona was how far away it extends from the sun� The
idea of a hydrostatic extension of the solar atmosphere �Cha���� gives a pres	
sure at in�nity that is much larger than the expected pressure of the interstellar
medium �ISM�� Parker �Par���� was the �rst to answer this question correctly
the solar corona undergoes a magnetohydrodynamic expansion� the so called
solar wind� This idea of the solar wind� is supported by the fact that comet
tails are oriented radially away from the sun� Furthermore� the solar wind was
con�rmed in the early ��
�s� by �in situ� measurements of the plasma and
magnetic properties of the interplanetary medium� obtained from instruments
onboard spacecrafts� Thus� Parker was the �rst to show how cosmic out�ows
can be described correctly by using magnetohydrodynamics �MHD��
To this day� the high resolution of the modern instruments� has enabled as	
tronomers to observe in the sky many similar out�ows� Most of them are visible
due to the emission of lines of various common elements� such as hydrogen�
oxygen and sulfur�

The problem of how astrophysical jets are formed� has exercised the minds
of astrophysicists for nearly two decades �LB�
�� The most acceptable theory

�
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today to describe the closest and better studied jets associated with young stellar
objects� is the following
The out�ow has two components� one from the disc of gas which surrounds
the stellar �or galactic� object �disc jet� and the other from the central object
�stellar jet�� For the �rst� there is a magnetic �eld which has a strong poloidal
component pointing away from the disc plane� The �eld is tied to the disc
owing to the high conductivity of the inner disc material� Thus� the base of the
�eld is approximately in Keplerian rotation around the star �or galaxy�� The
magnetized �uid is then magnetocentrifugally driven along the �eld lines� as a
bead on a wire �BP���� The initial out�ow speed is low and the plasma moves
along the magnetic �eld lines� In doing so� the �uid gains angular momentum
e�ectively until it reaches the Alfv�en surface� where its kinetic energy exceeds
the magnetic energy� Then� near the rotation axis� the inertia of the rotating
wind enhances the toroidal component of the �eld to a point where it is capable
of collimating the out�ow into a jet� Away from the rotation axis� the wind
expands freely outward� removing angular momentum from the disc� Of course
thermal phenomena are important� at least near the disc �OL���� The pressure
gradient force� helps the gas to escape from the equatorial plane� Mass loss rates
���� to ����M�yr

�� are typical for this component of the out�ow �PL����
For the second component of the out�ow� which has its origin at the stellar

surface� the explanation is similar� This component is believed to have higher
velocities �of order of the escape speed from the surface of the star� and lower
mass loss rates than the previous� the one from the disc�

In the last few years� an increasing number of YSO jets has been found where
the optical jet structures are associated with Herbig	Haro objects �HH�� Almost
�fty years ago� George Herbig and Guillermo Haro independently discovered
a number of compact nebulae �shock	excited nebulae�� By the early ����s�
several HH objects were shown to be of partially ionized plasma moving away
from the energy source at speeds of ��� to over ���� km�s �BMR�� They are
formed in molecular clouds containing young low	mass stars� and are considered
as important signposts of very resent star formation �RBG��
�� Most often the
energy source� if found� is deeply embedded in the molecular cloud �only in a
few cases� an optically visible star has been identi�ed as the driving source��
Millimeter wavelength observations of carbon monoxide �CO� revealed many
molecular out�ows� of velocities � to ��� km�s� Astrophysicists now believe that
HH objects and CO out�ows are di�erent manifestations of the mass and angular
momentum loss phenomenon during star formation� Observations indicate that
jets ejected by young stars are the energy source for HH objects� When such jets
interact with CO molecular out�ow� they accelerate the later� In some cases�
shock surfaces are formed by the interaction of faster jet �uid elements moving
into the slower molecular �uid elements� These may be the so called molecular
�bullets� �BMR��

Jets have ejection velocities of order of several hundred kilometers per second
for low mass stars� and in excess of ��� km�s for high luminosity sources� Jet
densities vary from ��� to over ��� cm���

In the last few years� Hubble Space Telescope �HST� has been used to observe
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NGC 4261

Figure ��� Jets from AGN� quasars�

several jets in the sky �in particular inside our galaxy�� Up to now� highly
collimated jets have been observed from a wide variety of astrophysical objects

� active galactic nuclei �AGN� � quasars� e�g�� M��� �C���� NGC ��
�� etc�

� young stellar objects �YSOs�� e�g�� HH��� HH��� HH���� etc�

� planetary nebulae nuclei �PNN�� e�g�� the Egg Nebula� etc

� high� mass X ray binaries �HMXBs�� e�g�� SS���� etc�

� low� mass X ray binaries �LMXBs�� e�g�� GRO J�
��	��� GRO J��������
etc�

� symbiotic stars� e�g�� R Aquarii� CH Cygni� etc�

� black hole X�ray transients or microquasars� e�g�� GRS ��������� etc�

� cataclysmic variables �CVs�� e�g�� T Pyxidis� etc�

� super soft X�ray sources �SSSs�� e�g�� CAL ��� ��� etc�

Next we brie�y describe jets from these objects�

����� Jets from AGN

One of the most interesting objects in the universe is the active galactic
nucleus� which is generally believed to consist of a supermassive black hole
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�M�
���	M�� and an accretion disk which surrounds it �LB
��� Then the huge

amounts of energy released will build up a pressure so great that it forces away
matter residing close to the black hole� The matter is forced away in the di	
rections o�ering less resistance� i�e� the directions normal to the accretion disk�
The out	thrown matter forms usually two streams� Some AGN have jets which
extend to a few megaparsec scales beyond the host galaxies� Their velocities
cover a wide range� from a few hundred kilometers per second to nearly the
speed of light �BBR���� AGN jets are e�ectively adiabatic �Ray���� They
shine via synchrotron emission from the most energetic electrons� which have
Lorentz factors ������ �Bir�
�� A typical example of an AGN jet is NGC ��
�
and a jet associated with a QSO is �C���� �Fig� �����

����� Jets from YSOs

Stellar jets in the HST era can be used as �laboratories� to verify our models
of the MHD evolution of jets by direct comparison with observations� Stellar
jets are su�ciently near� so that we can measure proper motions� radial veloci	
ties and the location of components on the plane of the sky with high angular
resolution�

Jets from YSOs �e�g�� from T Tauri stars� are highly supersonic� with Mach
numbers �

� ��� and are very well collimated� at least several hundred AU from
their source� Their total length varies from a few hundred AU to several tenths
of a parsec� The jet is initially poorly focused before being asymptotically col	
limated into a �column� with diameter of order a few tens of AU� The initial
opening angle is very large ���
�o for the HH �� jet� �RMD��
�� Observations
show that most jets from YSOs are associated with accretion disks� The radius
of the disk is about ��� AU� the disk magnetic �eld � ��� G and the mass loss
rate from the disk is � ���
M�yr

�� �KT���� Jet velocities are usually in the
range ���	���� km�s� Typical examples of such jets are HH��� HH��� HH���
HH��� �Figs� ���	�����

����� Jets associated with PNN

Almost �� � of all stars that we see in our own galaxy� including the sun� will
become one day �planetary nebulae�� The other � � �those with masses larger
than � M�� will end their lives as supernovae�
The name �planetary nebulae� is a misnomer� it arose when over a century ago
astronomers saw these objects as compact� green	coloured objects that reminded
them the view of Uranus� These objects are not made of planets� They are the
gaseous and dusty material expelled by a geriatric star just before death�
The commonly accepted model for the formation of planetary nebulae is the
interacting stellar winds model� A solar mass star� while on the asymptotic
giant branch� losses mass steadily through a �superwind� with a velocity of ��
km�sec and mass loss rate ���� to ����M�yr

��� Toward the end of the asymp	
totic giant branch stage the star switches to loosing mass in the form of a fast
wind with a velocity rising up to ���� km�sec� albeit with a lower mass	loss rate
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Figure ��� Ground based and HST images in H���S II� of the HH �� system�
A scale indicates the relative size of each frame� Upper left� KPNO ��
 m
Schmidt� Lower right� KPNO ��� m� Lower middle� ESO ��� m NTT� Lower
left� HST WFPC��
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Figure ��� The HH ��� system� The top panel shows a � degree �eld of view
CTIO ��
 m Curtis Schmidt image that shows the terminal bow shocks �HH ���
and HH���� at the ends of the out�ow� The location of HH ��� is indicated by
the rectangle near the middle of the image� The bottom panel shows the HST
image of the HH ��� jet� In the colour image �S II� is red and H� is cyan�
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Figure ��� Ground based and HST images of the HH �
��� system� Back�
ground� ��� m ESO NTT� Foreground� HST WFPC�� In the colour image
�S II� is red and H� is cyan�
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Figure ��� HH�� The newly forming star is hidden behind the densest parts of
the disk� This protostar is ��� light	years away in the constellation of Taurus�
HH�� This protostar is ���� light	years away in the vicinity of the Orion
Nebulae� HH�� The HH �� system is ���� light	years away� and lies at the
edge of the Gum Nebulae� possibly an ancient supernova remnant which can be
seen from Earth�s southern hemisphere�
The scale on the bottom left corner of each picture represents ���� AU� All
images were taken with the Wide Field Planetary Camera � �WFPC�� in visible
light�
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���� to ����M�yr
��� The fast wind catches up with the slow wind and drives

a shocked shell through it� A contact discontinuity is formed at the interface
between the shocked slow and fast winds� The slow wind shell is identi�ed with
the visible boundary of the planetary nebulae� The outer edge of the shell is
the outward moving shock� whereas the contact discontinuity separates the shell
from the shocked fast wind material�
Deviations from sphericity are normally attributed to a nonuniformity in the
slow �superwind�� which leads to an asymmetry in the shape of the shell
�VCB�
� Che���� See also �BK���� Typical examples are the Egg Nebula�
the Siamese Squid Nebula� etc �Fig� ��
��

����� Jets from X�ray binaries

X	ray binaries � are binary stellar systems which are extremely bright at X	
ray wavelengths� They consist of an ordinary star circling around a collapsed�
relativistic object a neutron star or a black hole �KK�
�� A typical mass for
this object is one solar mass and a typical radius about �� km� The gravity at
the surface of this object is enormous� so if any matter falls onto the surface� it
produces an enormous amount of energy� which we see as X	rays�
The companion star �a supergiant of approximately ten solar masses� is very
close to the compact object typically its period is only a few hours� This
massive primary star usually possesses a strong stellar wind� The gravitational
pull of the compact object will lead to the capture of some fraction of this stellar
wind� This means that some matter spills o� the surface� forms an accretion
disk and falls into the compact object� producing X	rays�
In some cases� the surface of the primary star� is near the Roche lobe of the
compact object� Then� the wind	supplied accretion will be augmented by a tidal
stream�
In every case when an accretion disk exists� a jet is usually observed� The
prototype of jets from such X	ray binaries is the famous SS��� wherein the
velocity of the ejected material is about ���
 c�

����� Jets from symbiotic binaries

Symbiotic binaries are composed of two stars that orbit each other with a period
of one year or more� One star is a red giant with mass approximately one solar
mass but of course much bigger radius than the sun� The other star is a white
dwarf �a very compact and hot star�� Our Sun will eventually become a red
giant� and later on a white dwarf� so symbiotic binaries tell us about the future
of our own star� The red giant is loosing material via a stellar wind� and this is lit
up by the nearby white dwarf� The system creates both the nebula and the jet�
A typical example of this kind of binary system� is R Aquarii� The jet from this
binary has been examined by many authors �KHM��� DBL���� Kaf�
�� Optical
images show two knots of emission �C� � C�� which consist of several discrete

�High� or Low� mass X�ray binaries� it depends on the mass of the ordinary star �UKG����
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Figure ��
 A montage of images of planetary nebulae made with the HST�
These illustrate the various ways in which dying stars eject their outer layers as
highly structured nebulae� In the left panel� the
M�	� �Siamese Squid Nebula� or �Twinjet Nebula� while the other nine from
left to right and from top to bottom are
NGC 
��
 �Blinking Eye Nebula�
MyCn �� �Hourglass Nebula�
NGC ����
CRL �
�� �Egg Nebula�
NGC 
��� �Cat�s Eye Nebula�
�Hubble�s Double Bubble� �from the dying star Eta Carinae�
NGC ���� �Saturn Nebula�
�Red Rectangle�
NGC �

� �Blue Snowball Nebula��
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features� which are part of a continuous� well collimated stream of material� It
is now thought that these discrete features are condensations associated with the
expanding �inner� nebula which have been shock excited by a highly collimated�
supersonic wind �with velocity ���	
�� km�s� from the binary system �Sol����

����� Jets from black hole X�ray transients

The well known example of this category� is GRS ��������� a superluminal
source� It is the �rst source where the proper motions of both the approaching
and receding condensations can be detected and measured �� It is commonly
believed that in these accretion	powered X	ray sources� the acceleration and
the collimation of the ejection material is magnetohydrodynamic� Observations
suggest that this superluminal motion corresponds to actual bulk motions of
massive plasma clouds rather than the propagation of shocks �MR�
�� In the
later case� one would expect more erratic �uctuations in the proper motions
than the observed ones� The velocity of the ejected material is highly relativistic
V � ���� c�

����	 Jets from cataclysmic variables

Cataclysmic variables are characterized by their eruptive behaviour� induced
by mass transfer between two stars� The secondary star is typically a Main
Sequence star that is less massive than its compact companion� which is �lling
its Roche Lobe and transferring mass to the primary� These systems have small
orbits� with orbital periods typically ten hours� The �rst observed collimated
jet associated with a CV is in the nova T Pyxidis �SLSC���� Typically� out�ows
from CVs are observed to have velocities in the range ����	���� km�s �measured
by the Doppler shifted emission lines�� these are of the order of the escape
velocity from the central object�

����
 Jets from SSSs

They consist of a white dwarf which accretes mass from an evolved companion
at high rates ������
M�yr

���� that hydrogen burns steadily on the white dwarf
surface �vdHBNR���� This is the energy source which is always needed in order
to have collimated out�ows �Liv���� From the blue	 and red	 shifted emission
lines the jet velocities are of the order of ��� km�sec�

��� The MHD theoretical description

Among the main goals of research on jets associated with YSOs is to probe the
nature of the physical processes that operate within several Astronomical Units

�In the case of quasars	 only the proper motions of the approaching condensation have
been measured�
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�AUs� of a young star� to learn about the potential existence of physical condi	
tions that might lead to the formation of planets� and to understand how stars
and planetary systems form� The interplay between models and observations
may help us in estimating quantities for the star itself� or in understanding the
energy transfer mechanisms which is a yet unresolved problem in astrophysics�
Analogously� the research on jets from compact objects and AGN is aiming
at understanding the extreme physical conditions prevailing around stellar or
galactic black holes� In all cases� jets can be regarded as probes for understand	
ing what is happening in exotic and enigmatic environments directly inaccessible
to present day observations�

In the various mechanisms which are currently being investigated for acceler	
ating and collimating astrophysical out�ows in galactic and extragalactic scales�
magnetic rotator forces seem to play a rather dominant and crucial role �LB�
��
First� thermal gas pressure driven models are based on the de Laval nozzle anal	
ogy of the solar wind �Par
�� LS���� This requires temperatures of order ���

K to drive the observed several ��� km s�� �ows in YSO jets� However� if the
temperature in the source region of YSO jets is also ��� K as observed along
the jets� these temperatures are two orders of magnitude lower than required�
Of course this limitation does not apply to the X	ray emitting coronae around
stars and AGN� Second� magnetic pressure driven models are based on the un�
coiling spring analogy and have been examined by Draine �Dra��� and Uchida
� Shibata �US��� �see also Contopoulos �Con����� There� it is assumed that
a toroidal magnetic �eld B� is created and highly ampli�ed by the winding	
up of its �eld lines by a radially collapsing and non	Keplerian rotating disk�
Plasma is then accelerated from the disk in the poloidal direction by the ac	
tion of the resulting torsional Alfv�en waves� A critique usually attributed to
these models of transient bipolar out�ows has to do with the Parker instability
of the accumulated strong azimuthal magnetic �eld �Par

� MHSH���� Third�
magnetocentrifugally driven out�ow models are based on the classical bead on
a rotating rigid wire analogy �BP��� PP��� CL���� There� the magnetized �uid
is �ung out from the surface of the accretion disk� provided that the poloidal
�eld lines are inclined by less than 
�� from the disk midplane� although in
a relativistic treatment out�ows very close to a su�ciently fast rotating Kerr
black hole will be launched even when the initial angle is close to ��� �Cao����
An idealized situation would have the poloidal �eld lines perpendicular to a
thin disk� For distances further away and for not a very rapid rotation� the
less than 
�� angle requirement would not be satis�ed� as noted by Blandford
� Payne �BP���� not to mention other inherent di�culties of these self similar
models� such as the pinching o� in the jet radius at �nite vertical heights and
the singular electric current density at the symmetry axis�

In another type of model� the interaction of magnetosphere with its sur	
rounding accretion disk� results in the opening of some of the magnetospheric
�eld lines� Thus the disk	magnetosphere boundary creates a stellar wind� the
so called �X	wind� �SLRN��� SNO���� NS����

Heyvaerts and Norman �HN��� have been shown that polytropic out�ows
either become cylindrical at large distances from the source or parabolic� de	
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pending on whether they carry an electric current to in�nity or not�
De�nitely� magnetic �elds play an important role in the described out�ows�

The part of physics which describes this kind of matter is magnetohydrody	
namics� As we may see in the next Chapters� it consists of a system of partial
di�erential equations �PDE�� Up to now� researchers follow two di�erent ap	
proaches to solve the MHD equations

�� Solve the time	dependent problem� To �nd a steady state is a di�cult task�
Instead they follow the evolution in time of some initial con�gurations�
They choose an initial state and numerically �nd a steady state �if exists��
For example Bogovalov �Bog�
� BT��� studies what happens if plasma
is out�owing in a rotating monopole	like �eld� Some researchers have
developed the PPM numerical code �Bod��� CW���� However� some of

these studies have problems in satisfying Maxwell�s equation �r� �B � �� For
time dependent numerical simulations see also �SU��� WS��� GWB����

�� Solve the time	independent problem� The steady state equations� which
we try to solve in the following Chapters of this thesis� are rather di�cult
to be solved due to the fact that the equation for the poloidal magnetic
�eld is a mixed elliptic	hyperbolic partial di�erential equation �PDE�� Also
there are various singular points� the position of which is not known a	
priori� but can be determined only simultaneously with the solution� These
steady state equations have not be solved yet numerically�
Here� we shall solve them quasi	analytically� i�e� after a judicious separa	
tion of the variables we solve numerically the resulting ordinary di�erential
equations �ODE��
We concentrate on the dynamics of the �ow and not on the energetics�
since the later is not known yet �even for the sun� we don�t know how the
solar corona is heated to high temperatures��

����� The hypothesis of self similarity

The investigation of plasma equilibria is one of the most important problems
in magnetohydrodynamics �MHD�� and arise in a variety of �elds� such as ther	
monuclear fusion� astrophysics and solar physics� to mention just a few�

At present� di�culties associated with describing fully three	dimensional ��	
D� equilibrium con�gurations are far from being resolved� For that reason�
considering con�gurations with additional symmetries is imperative from the
mathematical point of view� Fortunately� these con�gurations are the most
interesting and important ones from the physical viewpoint as well� In many
astrophysical situations �solar wind� out�ows from YSOs� AGN� etc�� and in
thermonuclear fusion �tokamaks� axial symmetry is appropriate� in solar physics
�evolution of solar arcades� translational symmetry is a dominant one� etc�

As with any fully MHD approach and despite of the simpli�cations of steadi	
ness and the axisymmetric geometry� several approximations are still unavoid	
able in order to obtain exact solutions useful for an understanding of the MHD



�
 Introduction

mechanism for the initial acceleration and �nal collimation of astrophysical out	
�ows� Thus� one simple analytical way out is the use of self similarity� This
hypothesis allows an analysis in a �	D geometry of the full MHD equations which
reduce then to a system of ordinary di�erential equations� The basis of the self
similarity treatment is the assumption of a scaling law of one of the variables as
function of one of the coordinates� The choice of the scaling variable depends
on the speci�c astrophysical problem�

Several models self similar in the radial direction have been investigated
to analyze the structure of winds from accretion disks �BP��� CL��� LCB���
Li��� Li�
� Fer��� Ost���� In these models that cannot account however for the
�ow along the polar axis� the driving force and the collimation derive from a
combination of the magnetic and centrifugal forces� The absence of an exact
crossing of all the existing critical points in the solutions presented in these
papers prevents from considering their conclusions as de�nitive�

In a series of studies� solutions of the MHD equations that are self similar
in the meridional direction have been also analyzed �TT��� TT��� TS��� TS���
TT��� ST��� TTS���� Such a treatment allows to study the physical properties
of the out�ow close its rotational axis� As in this region the contribution to
acceleration of the magnetocentrifugal forces is small� the e�ect of a thermal
driving force is essential� This implies also that the structure of the gas pressure
in the �ow is essential�

Two main classes of these self similar solutions exist depending on whether
the components of the pressure gradient along the radial and meridional di	
rections are or not related� In this second case the shape of the streamlines
and �eldlines is prescribed  a priori�� and the main features of the dynamical
variables are deduced from the integration� In particular� it has been shown
that acceptable solutions for magnetized �ows with asymptotic superAlfv�enic
velocity exist only when rotation is included �TT��� TT��� TTS���� As a conse	
quence of this study it seems that even pressure con�ned jets from slow magnetic
rotators need magnetic �elds and rotation� In the other case� in which the two
components of the gas pressure are related� the structure of the streamlines is
deduced as a self consistent solution of the MHD equations�

The solutions which we examine in the rest of this thesis� are steady� ax	
isymmetric� nonrelativistic and can be used in order to describe jets from YSOs
and PNN� They may also be used in addition to understanding key	elements in
the physics of MHD out�ows� as initial states for a perturbation analysis� or� to
test numerical codes�
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Chapter �

MHD equations

In this Chapter we derive the basic equations which describe plasma out�ows
from various astrophysical objects� as those discussed in the previous Chapter�
Matter is regarded to be fully ionized and nonrelativistic while quantum phe	
nomena are negligible� Examination of the out�ows in terms of particle orbit
theory is useful in certain situations� however� it is adequate only when the
number density of particles is low enough for their interaction to be ignored�
On the other hand� when collisional e�ects are not negligible we use instead
the magnetohydrodynamic �MHD� approach which we shall invoke in all this
thesis� The MHD description of the plasma essentially describes how inertial�
electromagnetic� gravitational and pressure gradient forces interact in a �uid�
When we assume the �uid approximation we mean that a given particle remains
reasonably close to its neighbouring particles during time scales of interest� so
we may divide the plasma into small �uid elements and examine the motion of
these �particles��
In this approximation we get equations for the basic physical quantities of the
plasma �including the observable ones�� One of the principal goals of this thesis
is then to �nd analytical solutions of these equations�

��� Deriving the equations

The sun and the other stars are hot enough to be almost completely ionized�

The interstellar gas and the various out�ows in the ISM are also ionized� due
to the action of stellar radiation� This means that almost the whole universe
�about �� � � can be regarded to be in the plasma state� The plasma state is
usually called the fourth state of matter �the other three being the solid� liquid
and gaseous��
By a plasma state� we mean a partially or fully ionized gas which contains
enough free� charged particles for its dynamical behaviour to be dominated by
electromagnetic forces �BS
���
In Fig� ��� it is shown the area occupied by classical plasmas which is bounded

��
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Figure ��� Classi�cation of plasmas in a density	temperature plane� The var	
ious plasmas in our universe occupy the area indicated by the corresponding
number�
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by some curves indicating the validity of the corresponding governing equations�
In this n� T plane we distinguish the following domains

� kT � mec
� � i�e�� the plasma is nonrelativistic�

� kT � Ei � i�e�� the plasma is almost completely ionized �from the Saha
equation the number density of the ions divided by the number density of
the hydrogen atoms is proportional to e�Ei�kT where Ei is the ionization
energy of the atom��

� kT � e! � i�e�� the plasma is ideal� This means that the Coulomb in	
teraction potential ! is negligible compared to the thermal energy of the
particles� This also means that nl�D� the number of particles into the
Debye sphere is large� nl�D � ��

� kT � EF � where EF is the Fermi energy�
This means that quantum phenomena are negligible because the mean dis	
tance between the particles is much larger than the de	Broglie wavelength

h	me ��kT	me�
����

From Fig� ��� it follows that this region of classical plasmas contains almost
all non	relativistic gases in the atmospheres of stars and galaxies� In order to
derive the relations between the observable quantities �which are functions of
space and time�� �rst we remark that matter exhibits a �uid behaviour �the
collisions are not negligible so the orbit theory is not valid here�� This �uid
contains two species electrons with number density ne� and ions �protons� with
number density ni� Approximately this �uid is neutral� so ne � ni �only in
spheres with radius smaller than the Debye length lD� which is much less than
the length scale of the �uid� the electric potential ! is not zero��
The basic description of a classical plasma is given by the kinetic theory of gases
which uses statistical mechanics� For each of the species we de�ne the distribu	
tion function fe�i ��r��v� t� such that the quantity fe�i��r��v� t�d�rd�v represents the
probability of �nding particles �protons for the �i� and electrons for the �e��
within the 
	dimensional volume element d�rd�v� which contains the point ��r ��v�
in coordinate and velocity space �phase space� �BS
�� Fre��� Tsi����
The mean value of each quantity can be found if we know this distribution func	
tion� For example� the number density of particles in a �	dimensional volume
element d�r is

ne�i ��r� t� �

ZZZ
fe�i ��r��v� t�d�v

where the integration is in all �v space� and the mean velocities for ions and
electrons are

�Ve�i ��r� t� �
�

ne�i

ZZZ
�vfe�i ��r��v� t�d�v �

The total derivative of this function fe�i with respect to time is not zero due to
collisions 

dfe�i
dt

�

�
�fe�i
�t

�
C

� or�
�fe�i
�t

�
�
�v � �r

�
fe�i �

�
�Fe�i
me�i

� �r�v

�
fe�i �

�
�fe�i
�t

�
C
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where �Fe�i is the total force acting on electrons and ions �Lorentz force� gravi	
tational force� ratiative force e�t�c��� This equation is the kinetic equation in its
most general form�
If the collision term �the RHS of the previous equation� is given on the basis of
the two	body interaction �BS
�� we obtain the Boltzmann equation� By taking
various velocity moments of this equation we obtain relations between functions
of space and time only �like the observable quantities�� In particular� the zero	
order moment of the distribution function corresponds to the number density�
the �rst	order moment to the mean velocity� the second	order moment to the
pressure and temperature and the third	order moment to the heat �ux� The

scalar pressure can be de�ned by Pe�i �
me�i

�

ZZZ
v�fe�i ��r��v� t� d�v� It must be

noted that fe�i in general may not be isotropic in velocity space� in which case
the concept of a scalar pressure may be inappropriate� In this case we must take
into account all the components of the pressure tensor �Tsi��� GR���� But these
equations are not all very useful because there is a closure problem involving
moments of higher order there is always one more variable than there are equa	
tions� An approximate solution to this problem is the ideal MHD description
we discuss in the following�
First we introduce single	�uid variables
P � Pe � Pi � total pressure�
� � neme � nimi � nimi � total mass density�
�V �

�
neme

�Ve � nimi
�Vi

�
	 �neme � nimi� � �Vi� �because mi � me while as we

shall discuss later �Vi � �Ve�� bulk �ow speed �momentum of the �uid��
� � neqe � niqi � �ni � ne� j e j � total charge density� and
�J � neqe �Ve � niqi �Vi� current density�
Next� if we assume that the distribution function is close to a Maxwellian one�
�collisions� being a random process� tend to smooth out any anisotropies so that
within a few collision times the local distribution functions for both� ions and
electrons� approach Maxwellian distributions�� we get to the lowest order the
equations �for Maxwellian distributions� Pe � Pi � P	���

�

�t
� �V � �r

�
� � ��r � �V � � �continuity equation��

�

�
�

�t
� �V � �r

�
�V � ��rP � � �E�

�

c
�J � �B���rV� �Frad �momentum equation�

where V is the gravitational potential and �Frad is the volumetric force due to
radiation �this equation is often called the Euler equation	Euler��������

�

�
�

�t
� �V � �r

�
P

�"� �� �
� P �r � �V � q �energy equation�

with " the ratio of the speci�c heats of the gas " � cp	cv� The volumetric
heating rate q is the sum of all heating sources� There are heating �uxes due
to particle conduction� due to the net radiation� to the nuclear reactions� to
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viscous and wave heating� ohmic dissipation etc�
Using the continuity equation� the last relation is equivalent with to �rst law of
thermodynamics

q �
��

"� �

d

dt

�
P

��

�
� �

�
d

dt

�
P

�" � �� �

�
� P

d

dt

�
�

�

�	
�

Note that the comoving derivative d	dt � �	�t � �V � �r for each function of
space and time� represents the temporal changes within an element moving with
velocity �V �
These equations together with Maxwell�s equations and Ohm�s law

�r � �B � � �no magnetic monopoles exist�

�r � �E � ��� �Gauss law�

�r� �B �
��

c
�J �

�

c

� �E

�t
�Ampere�s law�

�r� �E � ��

c

� �B

�t
�Faraday�s law�

�E � ��

c
�V � �B �Ohm�s law for a perfect conductor�

form a closed system �for a known volumetric heating rate q�� The �elds �E � �B
are in inertial frame�

In these equations� because

object

E

P T 

BJ

V

,, ρ,δ

stellar or galactic

outfl
ow

Figure ��� Plasma out�ow from a cosmic ob	
ject

ne � ni � � � � �quasi	neutrality
of plasma�� the force associated
with the electric �eld in the mo	
mentum equation is negligible
�it is much smaller than the Lorentz
force��
Because the distribution func	
tions for ions and electrons are
almost equal to each other �both
are close to Maxwellian distri	
butions�� the velocities �Ve � �Vi
 this is the reason why we may
see the motion of a plasma as
the motion of a neutral gas with
velocity �V � Though these ve	
locities are close to each other� they are not equal� and a nonzero current density
is produced�
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��� Integrals for steady �ows with an ignorable
coordinate

In this section we present the Euler	Maxwell equations for the steady state case
�which means that all procedures are exactly the same in all times� and when
one coordinate of the system �x� � x� � x�� �say x�� is ignorable �which means that
all physical quantities depend on �x� � x�� alone�� For example� if the out�ow is
steady and axisymmetric� then the coordinate � is ignorable and all quantities
depend on �� � z� in cylindrical coordinates �z �� � ��� or on �r � �� in spherical
coordinates �r � � � ���

With
�

�t
� � the MHD equations are

�E � ��

c
�V � �B �����

�J �
c

��
�r� �B �����

� �
�

��
�r � �E �����

�r � �B � � �����

�r �
�
��V
�

� � �����

�r�
�
�V � �B

�
� � ���
�

�
�
�V � �r

�
�V � ��rP �

�

��

�
�r� �B

�
� �B � ��rV � �Frad �����

��V �
�
�r
�

P

�"� �� �

�
� P �r

�
�

�

�	
� q � �����

with
�

�x�
� �� From Eq� ������ there is a function A �x� � x�� such that �B �

�rA � �rx� � �B� � �r�
�
A�rx�

�
� �B� � Similarly� from Eq� ����� there exist a

function # �x� � x�� such that ����V � �r#� �rx������V� � From Eq� ���
� there
exist a function !� such that

�V � �B � �r!� �����

�this function is proportional to the electric potential since �E � ��

c
�V � �B �

��r �!�	c��� From the $x� component of Eq� ����� �if we assume that
�!�

�x�
� �

or equivalently E� � �� � such that there is no electric �eld in the ignorable
direction� we have # � # �A�� If this is the case� the components of �V and �B

�In �Con�
� the axisymmetric case with E� �� � is examined�
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on the plane �x� � x�� �which are usually called the poloidal components� �Vp � �Bp

respectively� are parallel to each other  �Vp		 �Bp� Next Eq� ����� together with
the $x� component of Eq� ����� gives that

!� � !� �A� From now on we put
d!�

dA
� % �A� � ������

�B� � �rx�
h��%#A � L#A

��#�
A	���

� ������

�V� � �rx�
h��%� L#�

A	���

�� #�
A	���

� ������

with L � L �A� �#A � d# �A�

dA
and h� �x� � x�� the line element of the coordinate

system associated with the x�	 coordinate�
So from these integrations we have

�B � �rA� �rx� � �rx�
h��%#A � L#A

��#�
A	���

� ������

�V �
#A

���
�rA� �rx� � �rx�

h��%� L#�
A	���

�� #�
A	���

� ������

together with the $x� � $x� components of Eq� ����� and Eq� ������
The vector Eq� ����� leads to two scalar equations in any two independent di	
rections �$x� � $x�� on the poloidal plane� We symbolize the $x� component �which
contains the derivative �P �x� � x�� 	�x�� with Mx� � � and the $x� compo	
nent with Mx� � �� So the momentum equation can be written in the form

Mx�
�rx� �Mx�

�rx� � � �
If we know the volumetric heating rate q or the relation of q with the functions
� �A � P and the integrals #A � L �% then the previous equations may in general
be solved to give � �A � P �
The integrals #A � L �%� in the axisymmetric case where the ignorable coordi	
nate is � and �r� � $�	� � h� � � � r sin � � have a special physical meaning 

� �rst A is the magnetic �ux function� which means that the magnetic �eld	
lines in the poloidal plane �r � �� or �� � z� are the lines where the function
A is constant

� near the stellar surface when the density is big enough� so #�
A	��� � �

we have V� � �%� so % is the angular velocity at the stellar base� If %
depends on A then we have a di�erential rotation �each line A�constant
has di�erent angular velocity % � % �A��� In general�

�V �
#A

���
�B � �%$z�� �r �

#A

���
�B � %� $��

� % is related with the electric �eld �E � ��

c
�V � �B � ��

c
%�rA�
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� L is the total angular momentum carried by the �uid and the electromag	
netic �eld� since L � � �V� �B�	#A��

� #A is the mass to magnetic �ux ratio�

Note that V�	B� � V�	B� � Vp	Bp �
#A

���
where Vp � Bp are the poloidal

components of
�
�V � �B

�
respectively�

The ratio #�
A	��� is the square of the Alfv�en Much number M�� since M� �

V �
p 	V

�
A�p � #�

A	��� with VA�p � Bp	
p

��� the poloidal Alfv�en velocity�

����� Other forms

The MHD equations can be also derived

� from the covariant di�erentiation T��
� � � of the energy	momentum tensor

T�� � T��
fluid �T��

em where T��
fluid � �e � P �u�u� �Pg�� and T��

em are the
stress tensors for the �uid and electromagnetic �eld respectively �in the
limit V	c� ���
e is the proper internal energy density� P is the proper pressure� g�� is
the metric tensor and u� is the �uid �	velocity �LL��� Cam�
� LMMS�
�
BT���

� as the minimizingEuler	Lagrange equations� from a single variational prin	
ciple �HO��� RP��� GL�
��

��� Appendix ��A� Alternative forms of reduced
MHD equations

����� General forms

Assume a generalized curvilinear orthogonal coordinate system �x� � x� � x���
with line elements hi �x� � x�� � i � �� �� �� wherein the coordinate x� is ignor	
able� We introduce the square of the Alfv�en Mach number M� � #�

A	��� and
S � V �	� � V � h�%B�	#A� Then the density is � � #�

A	��M� while the
components of velocity and magnetic �eld are

B� �
�

h�h�

�A

�x�
� B� � � �

h�h�

�A

�x�
� B� �

#A

h�

h��%� L

��M�
and ������

V� �
M�

#A
B� � V� �

M�

#A
B� � V� �

�

h�

h��%� LM�

��M�
� ����
�

Also we assume that the radiative force is negligible compared with the other
forces in the momentum equation�
The remaining equations are the $x�� and $x�� components of the momentum
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equation� Mx� � �� or
�S
�x�

� ��

�

�P

�x�
and Mx� � � or

�S
�x�

� ��

�

�P

�x�
respec	

tively� These two equations can be manipulated in the form �using the Poisson

brackets ff� � f�g �
�f�
�x�

�f�
�x�

� �f�
�x�

�f�
�x�

�Tsi���� or the Jacobian of the two

functions J
�
f� � f�
x� � x�

�
�

�f�
�x�

�f�
�x�

� �f�
�x�

�f�
�x�

�Tsi����

J
� S � A

x� � x�

�
� ��

�
J
�

P �A

x� � x�

� �
or � � ��P �A �S�

�S
�

� ������

� �
�

h�h�h�

�
�

�x�

h�
h�h�

�A

�x�
�

�

�x�

h�
h�h�

�A

�x�

�
�

#A

h�h�h�

�
�

�x�

h�
h�h�

#A

���

�A

�x�
�

�

�x�

h�
h�h�

#A

���

�A

�x�

�
� ��

�P �A �S�

�A
�

�

�h��

�
L � h��%

��M�

��
d#�

A

dA
� ���L

h��

dL

dA
� ���



L� h��%

��dL

dA
� h��

d%

dA

�
h�� ���M��

�������

Note that if we know the functional form which relates pressure and density
P � P �� �A� �e�g� polytropic relation�� Eq� ������ can be integrated to give

S �

Z
dP

�
� E �A� �

where the integration is performed keeping A constant �this is the generalized
Bernoulli integral��

In general there is an orthogonal system of coordinates �x� � � � x� � ���
on the poloidal plane� such that M � M ���� Also for compressible �ows �if
density isn�t constant on each line� f� �Ag 	� � 
 � 	� � �A��� we may regard as
the coordinate system on this plane the pair �� �A� �in general� a non	orthogonal
system��
After introducing

F� �
�A �� � ���

��
� �h�h�B� � F� �

�A �� � ���

���
� h�h�B� �

we may transform from the pair �� � ��� to the pair �� �A�� using the elementary
relations valid for each function G

�G �� � ���

��
�

�G �� �A�

��
� F�

�G �� �A�

�A
�
�G �� � ���

���
� F�

�G �� �A�

�A
�

Then we �nd the equations

��M�

#�
A

�P

��
�

�S
��

� � � ������
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�

h�h�h�

�
�

��

�
h�F�

h�h�

�
� F�

�

�A

�
h�F�

h�h�

�
�F�

�

�A

�
h�F�

h�h�

�	
�

#A

h�h�h�

�
�

��

�
h�M

�F�

h�h�#A

�
� F�

�

�A

�
h�M

�F�

h�h�#A

�
� F�

�

�A

�
h�M

�F�

h�h�#A

�	
�

��
�P

�A
�

#�
A

M�

�S
�A

�
�

�h��

�
L� h��%

��M�

��
d#�

A

dA
�

#�
AL

h��M
�

dL

dA
�

#�
A



L� h��%

��dL

dA
� h��

d%

dA

�
h��M

� ���M��
� � � ������

because
�P �A �S�

�A
� J

�
P �S
A �S

�
� J

�
P �S
A ��

�
	J
�
A �S
A ��

�
Eq	��	�	�

�
�P

�A
�

#�
A

��M�

�S
�A

� Note that in Eqs� ������������� the symbol �	�A means deriva	

tive with respect to A keeping � constant while �	�� means derivative with

respect to � keeping A constant� For the line elements we have h� � �	 j �r� j
and h� � �	 j �r�� j� while h� � �	 j �rx� j�

����� Axisymmetric case

General axisymmetric case

If the ignorable equation is the rotational angle �� then x� � � � �r� � $�	� � h� �
� � r sin � and from the momentum equation we have �HL���

��M�

��r� sin� �

�
��A

�r�
�

sin �

r�
�

��

�
�

sin �

�A

��

�	
�rA �

�

��r� sin� �

�M� �r � A�

�r

�A

��
�rA� $��

�M��r

�
�
�
�rA
��

��r� sin� �

�
��� ��rV �

B�

��r sin �
�r �r sin �B�� � �V �

�

r sin �
�r �r sin �� � �rP � � �

������

From this equation we have

� in spherical coordinates Mr � �� or

��M�

��r� sin� �

�
��A

�r�
�

sin �

r�
�

��

�
�

sin �

�A

��

�	
�A

�r
�

�

��r� sin� �

�M� �r � A�

�r

�
�A

��

��

�

�M� �

�r

�
BBB�
�
�A

�r

��

�

�
�A

r��

��

��r� sin� �

�
CCCA� �

�V
�r

�
B�
�

��r
�

B�

��

�B�

�r
� �V �

�

r
�

�P

�r
� � �

������
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and M
 � �� or

��M�

��r� sin� �

�
��A

�r�
�

sin �

r�
�

��

�
�

sin �

�A

��

�	
�A

��
� �

��r� sin� �

�M� �r � A�

�r

�A

��

�A

�r
�

�M� �

��

�
BBB�
�
�A

�r

��
�

�
�A

r��

��

��r� sin� �

�
CCCA � �

�V
��

�

B�
� cos �

�� sin �
�

B�

��

�B�

��
� �V �

� cos �

sin �
�

�P

��
� � �

������

� in cylindrical coordinates �using the relation
�

r

�A

��

�M� �r � A�

�r
�

�

r
J
�
M� � A

r � �

�
�

�

r
J
�
z ��

r � �

�
J
�
M� � A

z ��

�
� ��A

�z

�M� �� �A�

��
�

M� � �� or

��M�

����

�
�

�

��

�
�

�

�A

��

�
�

��A

�z�

	
�A

��
�

�

����

�M� �� �A�

��

�
�A

�z

��

�

�M� �

��

�
BBB�
�
�A

��

��

�

�
�A

�z

��
����

�
CCCA � �

�V
��

�
B�

���

�

��
��B�� � �V �

�

�
�

�P

��
� � �

������

and Mz � �� or

��M�

����

�
�

�

��

�
�

�

�A

��

�
�

��A

�z�

	
�A

�z
� �

����

�M� �� �A�

��

�A

�z

�A

��
�

�M� �

�z

�
BBB�
�
�A

��

��
�

�
�A

�z

��

����

�
CCCA� �

�V
�z

�
B�

��

�B�

�z
�

�P

�z
� � �

������

An alternative form of Eq� ������ is �Hey�
�

�rS �
�rP

�
�

�
�

����

�
�

��

�

�

�A

��
�

�

�z

�

�

�A

�z

�
�

#A

����

�
�

��

#A

����

�A

��
�

�

�z

#A

����

�A

�z

�
�

�

�����

�
L���%

��M�

��
d#�

A

dA
�
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L

��

dL

dA
�



L ���%

��dL

dA
��� d%

dA

�
�� ���M��

�
��� �rA � � �����
�

where S � V �	� � V � �%B�

#A
�

Polytropic axisymmetric case

When the relation between P and � is of the form P � Q �A� �� then force
balance along poloidal �eldlines� or MA� � �� gives �after integration�

V �

�
�

�

� � �

P

�
� V � �%

#A
B� � E �A� � ������

Note that if � � � �isothermal case� the term
�

� � �

P

�
must be replaced with

the term C�
s �A� ln�� In this case

P

�
� Q �A� � C�

s �A� is the square of the

isothermal sound speed�
On the other hand� force balance across the poloidal �eldlines� or MA � �� gives



��M�

� �
�r �
�

�rA

��

��
�#A

�
�rA
��

�
�
��

M�

#A

�	
�

�

���

�
L ���%

��M�

��
d#�

A

dA
�

���L

��

dL

dA
� ���



L ���%

��dL

dA
��� d%

dA

�
�� ���M��

� ���
dE

dA
� ��

��

� � �

dQ

dA
� � �������

The last equation is the most known form of the trans�eld equation�
By di�erentiating Eq� ������ solving for �r� and substituting in Eq� ������� we
get the Grad	Shafranov equation �GSE� �Sak��� TSS��
�

��M�

��

�
B�r�A�

�rA � �r
�
�rA
��

�
�
�rA
�� V �

p

V �
p � V �

p �C�
s � V �

A� � C�
sV

�
A �p

�
CA � F� �

������

where F� is a function of A � �rA and � while C�
s is the square of the sound speed

C�
s �

�P �� �A�

��
� �

P

�
�
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Chapter �

MHD Critical Surfaces

In this Chapter we �ll examine some generic properties of the physical solu	
tions of the set of the MHD equations� for steady� axisymmetric �ows� which
we outlined in the previous Chapter �� In particular� we investigate the role
which the limiting characteristics play in selecting the appropriate solution of
the MHD equations� We examine these characteristics in relation to the appro	
priate boundary conditions for an integration of the MHD equations� we show
how they can be constructed and also give their geometrical representation� The
propagation of magnetosonic waves in the various domains in which the limit	
ing characteristics devide the solution space� is discussed in their relation to the
correct number of boundary conditions� For the particular case of self similar
solution� at these characteristics the component of the �ow speed perpendicular
to the directions of the characteristics� which are the directions of self similarity�
equals to the fast�slow MHD wave speed in the same direction�

��� Polytropic MHD �ows

In an axisymmetric system the coordinate � is ignorable� so all physical quanti	
ties are functions of �x� � x�� alone� where x� and x� are orthogonal coordinates
on the poloidal plane �for example x� � r � x� � � when we use spherical co	
ordinates� or x� � z � x� � � when we use cylindrical coordinates�� First we
see that in the expressions for V� and B� we have a denominator #�

A	��� � �
� or M� � �� When this vanishes the numerator must vanishes too� in order to
have �nite values for V� and B�� So at the Alfv�en point� where the poloidal
speed is equal to the Alfv�en poloidal speed �that is to say M � ��� we have

L � �h��
�
M�� % or L � ��

�% � where �� �A� is the distance from the symmetry
axis at the Alfv�en point� for each line A �constant� We have seen in the pre	
vious Chapter that the full system of the MHD equations after the described
integrations in case of a steady state with one ignorable coordinate� reduces
to three equations the two components of the momentum equation and the
energy equation� If in addition� a polytropic relation between the pressure and

��



�
 MHD Critical Surfaces

the density exists
P � Q �A� �� � �����

we need to solve only the two components of the momentum equation and
the energy equation gives the function q� Equivalently� by assuming that q �
� � "

"� �

P

�
�V � �r� then the energy equation can be integrated to give the relation

between pressure and density P � Q �A� �� � In this case we de�ne the square of
the sound speed as the derivative of the pressure with respect to density� with
constant A

C�
s �

�P �� �A�

��
� �

P

�
�

This is an e�ective sound speed because only if � � " it is isentropic� i�e�� only
then the entropy remains constant on each �eld	streamline�
If this is the case� then we may have as the two remaining equations the two
components of the momentum equation parallel �MA� � �� and perpendicular
�MA � �� to the �eld	streamlines A �constant on the poloidal plane� The �rst
equation can be integrated at once �if the radiative force is negligible compared
with the other forces in the momentum equation� to give the Bernoulli equation

V �

�
�

�

� � �

P

�
� V � �%

#A
B� � E �A� � �����

while the other one is called the trans�eld equation�

It is worth to note that the term
�

� � �

P

�
�

Z
dP

�
� often called the e�ective

enthalpy� is equal with the enthalpy only for � � "�
So the full set of the MHD equations reduces to two equations with two unknown
functions� the density � and the �ux function A� Generally speaking one may
solve from the Bernoulli equation to yield � �this equation has only � and not
its derivatives but unfortunately it�s complex and can�t be solved analytically�
and then replace it in the trans�eld� So we�ll keep in mind that with the help of
numerical methods we �nd � from the Bernoulli while the derivatives of � can
be found after the di�erentiation of Eq� ������ The resulting equation called
the Grad	Shafranov equation �or GSE� is equivalent with the trans�eld� It is
a second order partial di�erential equation �PDE� for the �ux function A� of
a mixed type �elliptic or hyperbolic�� It can be written in the canonical form
�HO��� LMMS�
� TSS��
� TSS��
� �it is equivalent to Eq� ��������



��M�

�� a

h��

��A

�x��
�

�b

h�h�

��A

�x��x�
�

c

h��

��A

�x��
� d

�
� e � � � �����

where
a �

�
V �
� � V �

�



C�
s � V �

A

�
� C�

sV
�
A �p

�
V �
A�p	V

�
A �� �

b � V�V�V
�
p �

c �
�
V �
� � V �

�



C�
s � V �

A

�
� C�

sV
�
A ��

�
V �
A �p	V

�
A �� �
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while there are two lengthly expressions for d and e �note that in the nonrotating
case the expression for e vanishes ��� The functions a � b � c � d � e have only �rst
order derivatives of A �the density �� from Eq� ����� is a function of A and its
�rst order derivatives��
If Vs � Vf are the roots of the equation

V �
f �s � V �

f �s



C�
s � V �

A

�
� C�

sV
�
A �p � �

and the cusp velocity is de�ned by

V �
c �

C�
sV

�
A �p

C�
s � V �

A

�
V �
s V

�
f

V �
s � V �

f

�

the expression

D � b� � ac �


V �
p � V �

s

� 

V �
p � V �

f

� 

V �
p � V �

c

� 

C�
s � V �

A

�
�����

determines the type of the equation� In particular if Vc 
 Vp 
 Vs or Vp � Vf
the PDE Eq� ����� is hyperbolic while in the regimes where Vp 
 Vc or
Vs 
 Vp 
 Vf is elliptic� Assuming that near the stellar surface Vp 
 Vc
and as the plasma �ows away from the star we have certain surfaces where
Vp � Vc � Vp � Vs � Vp � VA �p � Vp � Vf � So if the �ow begins from the stellar
surface with subcusp velocity� then Eq� ����� will be elliptic until the surface
Vp � Vc� then hyperbolic until the surface Vp � Vs� then again elliptic until
the surface Vp � Vf �this domain includes the Alfv�en singular surface where
Vp � VA�p�� and �nally hyperbolic� At last� the solution maybe connected to
the interstellar medium with a fast MHD shock�

����� Integration of the GSE and the characteristics sur�
faces

Now let�s examine how we may integrate the second order PDE ����� for A�
Let�s start from some curve x �� � z� � constant�� or� parametrically � � �x� s�
and z � z �x� s� where ds� � d�� � dz�� where s is the arclength on the curve
x �constant� We may give on this curve the function A �s� and its normal deriva	

tive N �s� � $n� � �rA� where $n� is the unit vector normal to the line x � const on
the poloidal plane� together with the integrals L �% �#A� These are generalized
Cauchy boundary conditions� Then we must calculate the derivatives of A and
start the numerical integration of our system�
The �rst derivatives of A are calculated from the equations

N �s� � �dz

ds

�A

��
�

d�

ds

�A

�z
�

�thats why in the nonrotating case the Alfv�en critical point disappear
�If we rotate this curve around the �z axis	 the characteristic surface is produced�
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Figure ��� The characteristic curve x�constant� The unit vector perpendicular
to this surface is $no � � sin�x $� � cos�x$z� where sin�x � dz	ds � cos�x �
d�	ds� Note that $no should not be confused with $n� The later is normal to the
�eldline�

dA �s�

ds
�

d�
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�

dz
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�

The trouble comes with the second order partial derivatives of A� or equivalently
the �rst derivatives of the components of magnetic �eld� We have

d

ds

�
�A

��

�
�

d�

ds

��A

���
�

dz

ds

��A

���z
�

d

ds

�
�A

�z

�
�

d�

ds

��A

���z
�

dz

ds

��A

�z�
�

together with the GSE� Eq� ������ in cylindrical coordinates where x� � z � x� �
� �h� � h� � �� Altogether we have to solve the system�
�

d�

ds

dz

ds
�

�
d�

ds

dz

ds

c


��M�

�
�b


��M�

�
a


��M�

�

�
��������

�
�

��A

���

��A

���z

��A

�z�

�
����������

�

�
�

d

ds

�
�A

��

�

d

ds

�
�A

�z

�

�e � d


��M�

�

�
���������
�

This system can be solved to give the second derivatives of A unless the deter	
minant of the matrix is zero� This happens when �after some manipulation�
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Figure ��� Slow phase and group polars and the characteristics� �VA �
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�Con�
� STP�
�

V �
�x � V �

�x



C�
s � V �

A

�
� C�

sV
�
A�x � �� � �����

where the sound speed

C�
s �

�P �� �A�

��
� �

P

�
and V�x � �V � �rx	 j �rx j

is the component of the �ow velocity perpendicular to the surface x � const�
In each point of the poloidal plane� the values of d�	dz �or the directions
of $no� which make zero the previous determinant de�ne the directions of the
characteristics� If the tangent on the surface of integration coincides with one
of the characteristics� we can�t integrate the system from this surface� If this is
the case� we need to impose some kind of regularity condition in order that the
integration proceeds through this surface� �

����� Construction of the characteristics

One may see in Appendix ��A that fast and slow waves with wavevector �k � k$n�
normal to the characteristic surface on the poloidal plane have phase velocities

�The determinant vanishes to	 if ��M� � �	or V �

�x � V �

A�x � �� This case correspond to
the propagation of Alfv�en waves�

�When M � � the determinant vanishes to	 so when we reach the Alfv�en surface we cant
pass through it without imposing the Alfv�en regularity condition �for all possible directions
of tangent on the surface of integration at this point��
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satisfying the equation

V �
f �s�x � V �

f �s�x



C�
s � V �

A

�
� C�

sV
�
A�x � � �

So one surface is characteristic� if the component of the �ow velocity perpendic	
ular to this� is equal with the phase velocity of a fast or slow magnetosonic wave
with wavevector perpendicular to it V �

�x � V �
f�x or V �

�x � V �
s�x� This can be

seen geometrically with the help of the phase	polar diagram for the wave phase
speed �or the group	polar for the wave group velocity��

If we have waves in the frame of the axisymmetric equations �that is to say �k is
on the poloidal plane and thus the wave quantities do not depend on the angle
�� the phase and group polars are shown in Figs� �������� Let�s examine the
fast wave �for the slow wave we do the same�� Suppose that we are in a point

A of the poloidal plane� If �AO � �Vp� then with the origin at O we plot the

phase polar diagram and we look in a direction �OB such that the point B is on
the phase polar and �OB � �AB� Note that in this case� �AO		 �Bp since �Vp		 �Bp�

Then the projection of �Vp on the direction �OB is equal with the phase speed in

this direction� But the direction �OB is perpendicular to �AB� Thus �AB is the

characteristic direction �there is another characteristic �AB
�

� in a symmetrical

position with respect to the axis of �Bp��
Equivalently� if we plot the group polar �which is the envelope of lines AB

with �OB � �AB and B moves in all the phase polar 	see Fig� ����� or Fig�� in
�Con�
�� then the characteristics at one point A are lines which are tangent to
the group polar� One can see from Figs� ������� that when Vp � Vf there are
two fast characteristics while when Vc 
 Vp 
 Vs there are two slow character	
istics� When Vs 
 Vp 
 Vf or Vp 
 Vc there are no characteristics � This is
expected because only for Vp � Vf and Vc 
 Vp 
 Vs the PDE equation for A
is hyperbolic �otherways it is elliptic and no characteristics exist��

����� Another geometrical representation of the charac�
teristics

Let�s go back to Eq� ������ Because V�x	VA�x � M this can be written in the
form V �

�x



V �
�x � C�

s � V �
A � C�

s	M
�
�

� � � The vanishing of the �rst term V �
�x

gives us two slow characteristics which correspond to a non	propagating layer
�see the footnote��

On the other hand when the bracket vanishes� we have

V �
�x � C�

s � V �
A �C�

s	M
� ���
�

�this is the solution of Eq� ����� equivalent to V�x � Vf�x if Vp � Vf or
to V�x � Vs�x if Vc 
 Vp 
 Vs�� So another geometrical representation of
characteristics is the following �see also Fig� ����

Suppose that we are in a point A and �AO � �Vp� With center O we draw a

�In all cases there are two slow characteristics parallel to �Bp �corresponding to tangents

at points N �N
�
� but these are degenerate since there is no slow wave traveling parallel to

the �eldline on the poloidal plane �the phase speed in that direction vanishes and the wave
correspond to a non�propagating layer in the moving frame� �Dra����
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circle with radius
p
C�
s � V �

A � C�
s	M

� �this radius depends on the �uid velocity
Vp�� The tangents from point A to this circle are the characteristics �since the
component of Vp tangent to them� is equal with the radius of the circle�� Two
tangents exist when the point A is outside the circle �or V �

p � C�
s � V �

A �
C�
s	M

�� and the radius of the circle is real �or C�
s � V �

A � C�
s	M

� � ��� These

two conditions are equivalent with f
V �
p � V �

s

� �
V �
p � V �

f

�
� � and V �

p � V �
c g

respectively� or fVp � Vf or Vc 
 Vp 
 Vfg as we expect�
From Fig� ��� we have V�x � Vz cos�x � V� sin�x � Vp sin ��� �x� since
Vz � Vp sin� � V� � Vp cos�� So Eq� ���
� can be rewritten in the forms

sin �� � �x� � �
p
C�
s ��� �	M�� � V �

A

Vp



tan �� � �x� � �
vuut �C�

s � V �
A�


V �
p � V �

c

�


V �
p � V �

s

� �
V �
p � V �

f

� � �����

If we choose a system of orthogonal coordinates � � n� on the poloidal plane�
such that the lines of constant  are the poloidal �eld	streamlines � �  �A��

and normal to these lines the unit vector is $n � �rA	 j �rA j� then tan ��� �x� �
hndn	hd� So the two characteristics are

hndn

hd
� �

vuut �C�
s � V �

A�


V �
p � V �

c

�


V �
p � V �

s

� �
V �
p � V �

f

� �����

Sakurai �Sak��� has this relation with hn � h � � since he considers a local
Cartesian system � � n��

If we move from the pair � � n� to a pair

ϕ xϕ−

p
B

O

p
V

A

Figure ��� The characteristics�
as tangents to a circle�

of orthogonal coordinates on the poloidal
plane �x� � x�� then the characteristics are
h�dx�	h�dx� � tan��� because d�r � h�dx�$x��
h�dx�$x�� Using � � �x � ��� � ��� and
B� � Bp cos ��� � B� � �Bp sin ��� we get

h�dx�
h�dx�

�

B�
hndn

hd
� B�

B� �B�
hndn

hd

or after some manipulation

h�dx�
h�dx�

�
b�pb� � ac

a
�

c

bpb� � ac
������

This is the well known de�nition for the characteristics of a second order PDE
equation like Eq� ������ � So there are two families of curves� the characteristics

�Without imposing the integralsA ��A � L �� �E we have a PDE system of seven unknowns
��V � �B � �� and there are seven characteristics �Con��	 STP���� One of them is identical with
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�solutions of Eq� ������ u� �x� � x�� � constant � u� �x� � x�� � constant which
�ll all the hyperbolic domain of the solution� Note that in the non	orthogonal
system of coordinates �u� � u��� Eq� ����� can be written as

��A

�u��u�
� L�

where L� is a function containing �rst order derivatives of A�

����� Propagation of waves and boundary conditions

Now suppose that we know a solution of the MHD equations and look for the
characteristics� First let�s look about the fast ones which start from the surface
Vp � Vf downstream� If at this surface these curves have dn 
 � as in Fig�
��
 then for the �	� sign we have d � � while for the ��� sign� d 
 � �on
the surface Vp � Vf � d � �� from Eq� ������� The sign of the slope dn	d is
constant in each characteristic� So we can see from the geometry of the problem
that the ��� characteristics which begin from the surface Vp � Vf can not �ll
all the hyperbolic domain from this surface through in�nity� The same for the
curves which begin from in�nity and can not intersect the surface Vp � Vf � Thus
there is one �at least� separatrix surface �or limiting characteristic� which is the

the �eld�stream line on the poloidal plane �corresponding to the entropywave�� The associated
Riemman invariant is the �ux function A� In our case �ve of them �one entropy	 two slow and
two Alfv�en characteristics� are identical and parallel to the �ow in the poloidal plane� The
Riemman invariants associated with them are the integrals �constants as we move parallel
to the �ow onto poloidal plane� while the other two are the slow or the fast characteristics
�depend on magnitude of Vp��
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Figure ��
 Sketch of the elliptic	hyperbolic regimes� The fast characteristics
�with arrows� shows the envelope of the vectors �Vg �i ���� �Vp for various �� The
slow characteristics shows only where the Riemman invariants remain constants�
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only closed characteristic in the regime Vp � Vf �Sak��� TSS��
� TSS��
��
From now on we �ll call this surface fast magnetosonic separatrix surface� or
FMSS �LL��a� Bog��� Bog�
� Bog����
Now let�s think about the relation of characteristics with a signal traveling in
a moving �uid� As it is shown in Appendix ��A the two fast characteristics
which pass through a point A� determine the part of the whole space where a
signal from point A travels �as the Mach �cone� in a supersonic hydrodynamic
�ow�� So looking at Fig� ��
� if a signal is generated at a point in the regime
downstream from the FMSS� it cannot in�uence points in the regime upstream
from the FMSS� This is the causality principle the �ow must pass this FMSS
in order to be steady� Otherways a small disturbance at �in�nite� distance from
the origin of the out�ow will change all the solution� But if the solution pass this
FMSS then any disturbance at in�nity will a�ect the solution through a surface
where a fast	shock will connect the new solution with the previous steady one
in the regime downstream from the FMSS�
Now let�s see about the slow characteristics in the regime Vc 
 Vp 
 Vs� As
before� there is at least one slow magnetosonic separatrix surface �SMSS� or
limiting characteristic Fig� ��
�
But a signi�cant di�erence from the previous case is occurred when we examine
the propagation of waves in this regime� As it is shown in Appendix ��A� if
we make a disturbance at one point A of this regime� the signal in�uences this
part of space which is determined from the cusp points of the slow group	polar
and not from the slow characteristics� So there is no necessity for passing the
solution through the SMSS �there in no relation with the causality principle on
this surface�� In this regime the characteristics have the meaning that on these
lines the Riemman invariants remain constants�
Another important property of the characteristics is the following Suppose
that you are in some point of space and imagine a surface passing through this
point� This surface separates space in two domains� Then assume that we want
to answer the following question In which domain travel the two signals with
wavevectors perpendicular to the surface �for an observer without velocity with
respect to the star�& The answer depends on the phase velocity of the signal
�the signal moves with the group velocity but since the phase velocity depends

only on the angle between �k and �Bp� the component of the group velocity

perpendicular to the surface is the phase velocity �Vph � Vph$k�� So one can �nd
the answer by looking at the phase polar diagram� which is di�erent for various
values of the poloidal speed of the �ow� Vp� For the slow wave

� If Vp 
 Vc there is one signal traveling downstream and one upstream�

� If Vp � Vs there are two signals traveling downstream�

� If Vc 
 Vp 
 Vs there are two characteristic surfaces such that if our
surface is not in the domain which these two characteristics make and
include the �eldline� then there is only one signal moving downstream
�the other one is moving upstream� � otherwise there are two� See Fig�
���
 in Appendix ��A�
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Similarly for the fast and the Alfv�en waves �the entropy wave is always moving
with the �uid��
So in each point of the space �or for each value of Vp� when Vp � Vf or
Vc 
 Vp 
 Vs there are two directions such that if our surface is tangent to
one of them� we can�t answer the previous question� These surfaces are the
characteristics �lines on the poloidal plane��

����� Number of boundary conditions and characteristics

Now let�s consider the boundary conditions and the integration of the GSE �in
relation with the propagation of waves in the moving plasma �PD��� JT
��
GH
�� Gud
����
Suppose that we start the integration downstream from the stellar surface� The
number of the boundary conditions depend on the relation of Vp with Vc � Vs
and Vf � In general� if we start the integration downstream from some surface�
the number of boundary conditions which we must give on this surface is equal
to the number of waves which can be emitted from this surface downstream�
�These waves which can propagate from a given surface are one entropy� two
Alfv�en� two slow and two fast magnetosonic waves�� The remaining conditions
�until reach the number seven� are speci�ed in order to pass through singular
surfaces� When we pass through these closed surfaces the number of outgoing
waves is changed� These surfaces are the SMSS� the Alfv�en surface and the
FMSS�
For example� if we begin the integration from the stellar surface with the com	
ponent of the velocity perpendicular to this surface less than the corresponding
component of the slow speed� then we must give four boundary conditions �re	
lated to the entropy wave� to one Alfv�en� one slow and one fast wave�� The
other three are speci�ed in order to pass the solution through the SMSS� the
Alfv�en surface �AS� and the FMSS� Totally we have seven functions that de�ne
the steady state the integrals L �% �#A � Q �E and for the component of the
electric �eld �E� �the last integral is usually taken to be zero� but it must be
added for completeness �Con�
�� together with the free functions �which de�ne
the solution of the GSE� A and �A	�$n�� We see that the number of the free
functions ��� is larger from the sum of the number of boundaries plus the num	
ber of regularity conditions ���� That�s why one of the free functions depend
on the history of the �ow �Bog���� In all this thesis we have chosen this free
function to be �E� � ��
If we begin the integration with the component of the velocity perpendicular to
the stellar surface less than the same component of the Alfv�en speed but greater
than the same component of the slow speed� then we must give �ve boundary
conditions �related to the entropy wave� to one Alfv�en� two slow and one fast
wave�� We �ll come back to this issue when we �ll examine the Blanford � Payne
model �in Chapter 
��
Note that� in general� the surfaces where the PDE changes character from ellip	
tic to hyperbolic or vice	versa� �namely the surfaces where Vp � Vc � Vs � Vf � are
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not singular� Experience shows that the solution passes through the surfaces
of this kind without any di�culty while the singularities appear when the solu	
tion crosses limiting characteristics �BP��� Sak��� TT��� LCB��� TS��� Con���
ST���� This happens if we solve the Bernoulli equation simultaneously with the
trans�eld equation �or GSE��
It is worth to note that another approach to solve the MHD equations is the
following
One can pretend that the shape of the �eldlines on the poloidal plane is known�
such that at the moment we may ignore the trans�eld equation� Then the
�ux function and its derivatives are known� Then we need to examine the
Bernoulli equation in order to �nd the density � or the Alfv�en Mach number
M �

p
#�
A	��� as a function of the position �or function of G � �	��� on

each line A�constant� This we discuss in the following�
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����� Study of the Bernoulli equation

Using variables G � �	�� �M � �	�� �where �� � �� are the values of � � � on
the Alfv�en surface M � �� Eqs� ������������� can be written in the forms

�B �
�

��G
�rA � $�� $���%#A

��G�

G ���M��
�

�V �
M�

��#AG
�rA� $� � $���%

G� �M�

G ���M��
�

The Bernoulli equation ����� is then B �A �G �M � � E �A� with

B �A �G �M � �
j �rA j�

���
�#�

AG
�
M� �

�

� � �
Q����� M������� �

�
��
�%�

�

� 

G� �M�

��
G� ���M���

� �
�� G�

��M�

�
� V � ������

where the terms j �rA j and V are regarded as functions of G and A only�
If we want to �nd M at each G and on a constant line A� we must �nd the
intersection of the function B �regarded as a function of M only� with E �A� 
�
For each G 	� � we have

�B �A �G �M �

�M�
�

j �rA j�
��
�#�

AG
�
M� � �Q����� M��� � ��

�%�



�� G�

��
G�

M�

���M���
�

��B �A �G �M �

� �M��
� �

j �rA j�
��
�#�

AG
�

���Q����� M����������
�%�



��G�

��
G�

�M� � �

���M��
� �

We see that

��B �A �G �M �

� �M���
� � � �M� and lim

M����

��B �A �G �M �

� �M���
� �� �

So the �rst derivative
�B �A �G �M �

�M�
monotonically increases from �� �when

M� � ��� to � �when M� � ��� and from �� �when M� � ��� to
� �when M� � ��� Therefore� �M�

� � �� � �� �M�
� � �� ��� such that�

�B �A �G �M �

�M�

�
M��M�

� ��

� ��

As we see in general there are four roots �see Fig� ���� which correspond to
super	 or sub	Alfv�enic� in	 or out	�ow� So� as we change G the function B con	
sists of two grooves which connect with each other at G � � �the singularity
M � � disappears when G � �� and then separate again �see Fig� ����� The
two local minima of these grooves move� and when B � E at this minimum

�A similar analysis is presented in �HN��	 Hey����
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Figure ��� The function B for various values of G� The example is taken from an
exact polytropic� r	 self similar solution� which is analyzed in detail in Chapter

� See also Figs� 
���
���

we have a critical point because at this point �B �A �G �M �	�M � � and
�B �A �G �M �	�G � � �since immediately after this point the minimum of the
function B decreases in order to be solvable the equation B � E�� This point
corresponds to a saddle point of the Bernoulli surface �Fig� �����
After some manipulation� we �nd that

M� �B �A �G �M �

�M�
�

V �
p � V �

p



C�
s � V �

A

�
� C�

sV
�
A �p

V �
p � V �

A �p

�� So when at this point

B � E� �this minimum is a point of the solution�� we have Vp � Vs or Vp � Vf �
After �nding the necessary conditions in order to pass the solution for M from
the two critical points Vp � Vs � Vf �otherwise as we see from the contours in
Fig� ��� the solution is unphysical�� one must go back to the trans�eld equation
and examine if the known �eldlines and the function M which is found from
the Bernoulli equation �together with the integrals which are determined for the
passing through critical points�� satisfy this equation� If not we must assume
another form of the lines and do the same �rst with the Bernoulli and secondly
with the trans�eld until this algorithm converts to the right solution �Sak����

�Note that without rotation	 � � �	 we have M�
�B �A �G �M�

�M�
� V �

p � C�

s � Thus in this

case	 the only critical point is the sonic point �correspond to a saddle point of the Bernoulli
function	 which consists of only one groove in this case�



�� MHD Critical Surfaces

0
0.5

1
1.5

2
2.5

3 M

1

10

G>1

-5

0

5

10

15

Bernoulli function

0.2
0.4

0.6
0.8

1
1.2

1.4

M
1

G<1

-4
-2
0
2
4
6
8

10

Bernoulli function

0 0.5 1 1.5 2 2.5 3

M

1

10

G. ..

.
. .

.G>1

G<1

Figure ��� The three	dimensional diagram for the function B� and the isocon	
toures on the G �M plane� We see the critical solution �thick line� which pass
through the three critical points the slow� where Vp � Vs� the Alfv�en� where
Vp � VA �p and the fast� where Vp � Vf � The example is taken from an exact
polytropic� r	 self similar solution� which is analyzed in detail in Chapter 
 �see
Figs� 
���
���� Note that only if we know one exact solution of the MHD equa	
tions� we can plot this Bernoulli function� Exceptions are the models where
the trans�eld equation is identically satis�ed as in the Parker�s solution and the
Weber	Davis equatorial wind�
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��� Self�similar approach

On the poloidal plane one may de�ne a system of non	orthogonal coordinates
O�� such that all physical quantities are functions of � and �� If we give the
� dependence in all these quantities then PDE becomes an ordinary di�erential
equation �ODE� with respect to the coordinate �� This is practically done in
the self similar approach� The whole problem after this assumption is simpli�ed
though it remains again very di�cult due to the existence of singular surfaces
�now singular points since � disappears from the equations� the position of
which is not known a priori but is found simultaneously with the solution� In
subsection ����� even if we have non	polytropic �ows we prove that these singu	
lar surfaces are the Alfv�en and the modi�ed by the self similarity slow and fast
magnetosonic critical �or singular� surfaces� where

V �
� � V �

�



C�
s � V �

A

�
� C�

sV
�
A �� � � �

The last singular surfaces are the limiting characteristics �or separatrices�� Ob	
viously all singular surfaces in all self similar cases correspond to � �constant�
At this point we remark the di�erence on integration between the general so	
lution of the MHD equations and the self similar solution� When we integrate
the GSE� we must analyse with a di�erent method the hyperbolic and elliptic
regimes �Shu��a�� In elliptic regimes we may use the relaxation method� In
hyperbolic regimes one way is the method of characteristics �LS�
� Li�
�� An	
other method is the integration using the � � n� coordinates �BT���� Generaly
speaking in a hyperbolic regime we begin the integration from a given surface�
and we move from this to another �close to the previous� surface� Theoreti	
cally speaking we can integrate with this way the elliptic regime too� But this
method is very unstable �Shu��a�� Thus� the right way for integration in an
elliptic regime is to give conditions in a closed boundary �because a disturbance
in one point of an elliptic regime can a�ect the whole elliptic regime� using the
method of relaxation� Of course the di�culty is that we don�t know a priori
the end of the elliptic regime�
But in a self similar solution we integrate all regimes like the hyperbolic ones
since the ODE have in�nite acurracy� Thus we move from a surface � � �� to
another one � � �� � d�� with j d� j�j �� j� When we pass the Alfv�en surface
and slow or fast limiting characteristic we can�t continue the integration with	
out imposing some regularity condition �in the next Chapters we �ll examine in
detail self similar solutions��
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����� Singular points in self similar �ows

Using the pair �� �A� as the independent coordinates on the poloidal plane� the
full set of the MHD equations reduces to Eqs� ��������������
Next regarding each function G �� �A� of � and A as a function of � �A and M��
we have

�G �� �A�

��
� �G

��
�

�G 
� �A �M�
�

��
�

�G 
� �A �M�
�

�M�

dM�

d�
and

�G �� �A�

�A
� �G

�A
�

�G 
� �A �M�
�

�A
�

Thus� when the operator
�

��
acts on a function which may depend implicitly

on M�� generates a term� proportional to
dM�

d�
� The functions P �F� �F� and

S �see their de�nitions in Chapter �� may have a M�	dependence�
Assume that this is not the case for the line elements h� � h� and h�� This is
true in all the examined �until now� self similar models

� in �	 self similarity� � � r and �� � � so h� � � � h� � r� We see that h�
doesn�t depend on M� �r� since it�s simply equal to r�

� in r	 self similarity � � � and �� � �r so h� � r � h� � �� But r is an
explicit function of � �G ��� and � as we�ll see in Eq� ������ �we remind
that the dimensionless radius G � �	�� depend only on � and not on
M� although its derivative may depend on M���

Now collecting the terms with
dM�

d�
in Eqs� ������������� we end up �after some

manipulation� with�
��M�

#�
A

�P


� �A �M�

�
�M�

�
�S 
� �A �M�

�
�M�

�
dM�

d�
� G�



� �A �M�

�
� � and

�������

��M�

� �F�



� �A �M�

�
�M�

� F�

�
dM�

d�
� G�



� �A �M�

�
� � � ������

So at each point where in the derivative of M� the numerator and denominator

simultaneously vanish�
dM�

d�
�

�

�
we have

�
��M�

#�
A

�P


� �A �M�

�
�M�

�
�S 
� �A �M�

�
�M�

�
x

� � and ������

�
�F�



� �A �M�

�
�M�

� F�

��M�

�
x

� � � ������
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A point where this happens is called singular or critical �in self similar solutions
it is an isocontour � �constant�� We de�ne the square of the sound speed as
the in�nitesimal change of the pressure divided by the change of density� for a
disturbance in a given point of space �so from the three �variables� � �A and
M�� only the third is changed�

C�
s �

�
�P

��

�
�� �A�

�

�P


� �A �M�

�
�M�

��


� �A �M�

�
�M�

� ���M�

#�
A

�P


� �A �M�

�
�M�

� ������

Now� using Eqs� �����������
��������� we �nd that if at the critical point�
�F�



� �A �M�

�
�M�

�
x

� � � ����
�

then Eq� ������ is equivalent with�
V �
� � V �

�



C�
s � V �

A

�
� C�

sV
�
A ��

�
x

� � � ������

Eq� ����
� holds at every point in all known self similar models where � � r or

� � � �in all these cases F� � �
dA

d�

���

���
which is independent of M� since G is

independent of M���
Note that a combination of Eqs� ������	������� at each point �not only at the
critical ones� is

dM�

d�
� V �

�



��M�

�G� �M�B�
�G�	#�

AF�

V �
� � V �

� �C�
n � V �

A� � C�
sV

�
A ��

������

where

C�
n �

�
�P

��

�
�� �A�

� M�

�
�B�

�	��

��

�
�� �A�

� C�
s � M�

�B�
�



� �A �M�

�
���M�

��


� �A �M�

�
�M�

�

In all known self similar models Cn � Cs� since
�F�



� �A �M�

�
�M�

� � 

B�



� �A �M�

�
�M�

� �� From the Eq� ������ it is obvious that at each critical

point� Eq� ������ holds�
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��� Appendix ��A� MHD wave propagation in a
moving medium

����� Dispersion relations and polar diagrams

Suppose that we have a stationary axisymmetric solution of the MHD equations�
Consider small axisymmetric perturbations of this system� If we consider small
range disturbances� then we assume that the unperturbed solution is space
independent� So we may look for perturbations having a Fourier dependence

ei��it�
�k��ri� �

with �i � �k being real constants� �k on the poloidal plane and �ri the position
vector in a frame moving with the �uid velocity� After linearizing the time	
dependent MHD equations and assuming polytropic relation between pressure
and density P � �� � we have the following types of dispersion relations �or
waves� �Wei��� Pri��� Shu��b�

� entropy wave �i	k � Pe where Pe � �

� Alfv�en wave �i	k � PA where PA � VA �p j cos � j and � is the angle

between �Bp and �k �if x �constant is the line perpendicular to �k� on the
poloidal plane� then VA�x � PA��

� slow wave �i	k � Ps where

Ps �

vuutC�
s � V �

A �
q

�C�
s � V �

A�
� � �C�

sV
�
A �p cos� �

�
�in this case Vs�x � Ps��

� fast wave �i	k � Pf where

Pf �

vuutC�
s � V �

A �
q

�C�
s � V �

A�
� � �C�

sV
�
A �p cos� �

�
�in this case Vf�x � Pf ��

The last two phase velocities satisfy the equation

V �
f �s�x � V �

f �s�x



C�
s � V �

A

�
� C�

sV
�
A�x � � �

In the plasma� the number of the waves with the wave vector perpendicular to a
surface x �constant� is equal to the number of the parameters de�ning the state
of the plasma� In the magnetized plasma these are the density� the pressure�
three components of �V and two components of �B �since �r � �B � ��� Totally
we have seven parameters� Correspondingly we have seven MHD waves the
entropy wave� two Alfv�en waves �with $k � ��rx	 j �rx j�� two slow and two fast
magnetosound waves�
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Figure ��� Unit vectors�

In the inertial frame �the frame of the star�� we must replace �i with the Doppler	

shifted frequency � � �i � �Vp � �k� The phase velocity in the moving frame is
�Vph �i � $k�i	k � $kP� We see that this velocity depends only on the angle �

but not on the j �k j� k� So the group velocity in the moving frame is �Vg �i �
�r�k�i � $k P � $k � $� dP	d�� where $k � $� is the unit vector on the poloidal

plane� perpendicular to �k� In the frame of the star we have �Vg � �Vg �i � �Vp and

�Vph � $k
�
P � $k � �Vp

�
�

Let�s examine the direction of �Vg �i� If �g is the angle which �Vg �i makes with

the poloidal magnetic �eld �Bp� then

tan�g �

�Vg �i �
�
�Bp � $�

�
�Vg �i � �Bp

�
P sin� � P � cos�

P cos ��P � sin�
�

sin�g � $Vg �i �
�

$Bp � $�
�
�

where P � � dP	d��
In the frame of the star� the phase polar depend on the poloidal velocity of the
�ow �Vp� We �ll examine only the case where �Vp		 �Bp�

Suppose we are in a surface x �constant �line on the poloidal plane� and

we examine the two waves with �k perpendicular to this surface� For one �k � � �
���	� � �	�� while for the other � � ��� ���	�� � ��	� � ��� �We remind that

� is the angle between �Bp and �k�� The phase velocity is Vph � �i	k � Vp cos��

So for the �rst �k� the �Vph is on the downstream regime �note that the wave

may propagate downstream or upstream� since the �Vg shows the direction of

propagation� �Vph shows as only in which midplane the wave propagates�� For
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Figure ���� The angle of the group velocity �VA � � � VA�p � ��� � Cs � �����

the other� j � j� �	�� and Vph � �i	k � Vp cos � �j cos � j 
f � V �
p

� 
p
f � Vp

�
where f � ��i	k cos ���� For the slow wave we see from Fig� ���� that

� if Vp 
 Vc� then fslow � Vp � �� � so Vph � � or �Vph �� �k�

� if Vp � Vs � Vph 
 � or �Vph �� �k�

� if Vc 
 Vp 
 Vs� there is an angle �� � ��	� � �� such that in this direction
�and in the symmetric one � � ����� Vph � �� For j � j� �� � Vph � ��
The lines � � ��� are perpendicular to the characteristics�

Similarly for the fast wave� we see from Fig� ���� that

� if Vp 
 Vf � Vph � �

� if Vp � Vf � there is an angle �� � ��	� � �� such that in this direction �and
in the symmetric one � � ����� Vph � �� For j � j� �� � Vph 
 �� The
lines � � ��� are perpendicular to the characteristics�

Fig� ���� shows the phase and group polars� for slow� Alfv�en and fast waves �for
various values of Vp��
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Figure ���� Fast wave group polar �VA � � � VA�p � ��� � Cs � ����� Paramet	

rically� �Vg �i � $Bp � P cos� � P � sin� and �Vg �i �
�

$Bp � $�
�

� P sin� � P � cos��

This diagram is the envelope of lines AB of �g� ��� as point B moves on the
phase polar and A moves on the axis of �Bp� in a way such �OB � �AB� See �g�
�����
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Figure ���� Slow wave group polar �VA � � � VA�p � ��� � Cs � ����� As in the
previous �gure� it is the envelope of lines AB of �g� ��� as point B moves on
the phase polar and A moves on the axis of �Bp in a way such �OB � �AB� See
�g� �����
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Figure ���� Slow wave phase polar �VA � � � VA�p � ��� � Cs � ����� Left panel
Vp � 
 � Vs� Right panel Vp � � 
 Vc�



	� MHD Critical Surfaces

−5.0 0.0 5.0 10.0
−4.0

−2.0

0.0

2.0

4.0

Vc<Vp<Vs

Figure ���
 Slow wave phase polar �VA � � � VA�p � ��� � Cs � ����� In this
diagram Vp � � �Vc 
 Vp 
 Vs�� The lines � � ��� are shown �they are
perpendicular to the characteristics��
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Figure ���� Fast wave phase polar �VA � � � VA�p � ��� � Cs � ����� Left panel
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 Vf � Right panel Vp � 
 � Vf � The lines � � ��� are shown�
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Figure ���� Phase �left panels� and group �right panels� polars� for the slow
�top diagrams�� Alfv�en �diagrams in the middle� and fast �bottom diagrams�
waves� In this example we choose VA � � � VA�p � ��� � Cs � ���� so Vc �
����� � Vs � ���� � Vf � ���
� We plot the polar diagrams in the cases where
Vp � � 
 Vc � Vp � ��� � �Vc � Vs� � Vp � ��� � �Vs � Vf � � Vp � 
 � Vf �
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����� The area to which a signal may propagate

Imagine that at point A and t � � there is a small axisymmetric disturbance�
This disturbance travels with velocity equal to the group velocity �Vg �i� with
respect to the moving frame while in the frame of the star moves with velocity
�Vg � �Vg �i � �Vp� So the components of the signal velocity in the � � n� system of

coordinates �where $ � $Bp � $n � $� are

h
d

dt
� �Vg �i � $n and hn

dn

dt
� �Vg �i � $ � Vp �

By eliminating the time in these two equations �divide them�

hd

hndn
�

�Vg �i � $n

�Vg �i � $ � Vp
�

P sin� � P � cos�

Vp � P cos�� P � sin�
� ������

The envelope of the family of the previous curves for various values of �� is given
from the system of Eq� ������ together with

� �
d

d�

�
P sin�� P � cos �

Vp � P cos��P � sin�

�
�

After some manipulation this last equation yields�
P �� � P

�
�P � Vp cos�� � � � ������

� For the fast wave
One can prove that P ��f � Pf 	� � � �� while the vanishing of the second
parenthesis Pf � Vp cos� � � gives us two solutions� the � � ��� �see
the previous subsection�� which are the characteristics� For Vp 
 Vf � the
envelope doesn�t exist� since in this case the signal moves everywhere�
Thus in the case of the fast wave� the situation is similar with the sound
waves in hydrodynamics� where the characteristics shows the regime where
the signal travel in a supersonicaly moving medium �LL��b�� Fig� ����
shows the propagation of a fast wave�

� For the slow wave
In this case� the vanishing of the second parenthesis in Eq� ������ gives
the slow characteristics� But as we see in Figs� ��������� the area where
the wave is propagating� is determined from the vanishing of the second
parenthesis in Eq� ������� When this happens� we have as the envelope the

lines
hd

hndn
�

�
Ps sin� � P �s cos �

Vp � Ps cos ��P �s sin�

�
���o

� where
�
P ��s � Ps

�
���o

�

�� The solution of the last equation are the cusp points of the slow group
polar� � � ��� � � � � � �� �see Figs� �����������
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����� Propagation of a wave packet

Let�s illustrate the meaning of the group velocity of a slow or fast MHD wave
with an example� Suppose that at time t � � we have on the poloidal plane

�xy� with
�

$x � �Bp	Bp

�
a source which produces the quantity

G ��ri � t � �� � e�x
�	���x � y�	���y cos

�
�ko � �ri

�
� where �ko � kox$x�koy $y �GR����

It represents a wave packet with a Gaussian envelope�
We can re	express G ��ri � t � �� in terms of its Fourier transform

G ��ri � t � �� � Re

�
��x�y

��

�	Z
�	

�	Z
�	

e
i�k � �ri � ��x

�
�kx � kox�

� � ��y
�

�ky � koy�
�

dkx dky

�
���

with �k � kx$x � ky$y�
If the quantity G ��ri � t� represents a wave quantity� it must satisfy the wave

equation
��

k�
r�G �

��G
�t�

� So at each time t� in order to get the time evolution�

we replace �k ��ri with �k ��ri��
�
�k
�
t� The frequency � depends on �k �dispersion

relation for each wave�� In the case of the fast and slow MHD waves� � � kP ���
where tan� � ky	kx�
So we have at each time t

G ��ri � t� �

Re

�
��x�y

��

�	R
�	

�	R
�	

e
i
h
�k � �ri � �

�
�k
�
t
i
� ��x

�
�kx � kox�� � ��y

�
�ky � koy��

dkx dky

�
�� �

������

For a given set of �x � �y � kox � koy and t� we calculate numerically the quantity G�

Figs� �������������� for slow� and Fig� �������������
 for fast show this result�
If kox�x�koy�y � � �there exist many oscillations inside the initial wavepacket��
we may expand the wavefrequency and keep only the �rst two terms

�
�
�k
�
� �

�
�ko

�
�
�
�k � �ko

�
�
�
�r�k�

�
�k��ko

�

Substituting in Eq� ������ we get

G ��ri � t� � Re

�
�e�i

�
�
�
�ko

�
� �ko �

�
�r�k�

�
�k��ko

	
t
�

�x�y
��

�	R
�	

�	R
�	

e
i�k �

�
�ri �

�
�r�k�

�
�k��ko

t

	
� ��x

�
�kx � kox�

� � ��y
�

�ky � koy�
�

dkx dky

�
��� �

������
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Figure ���� For various values of the angle between �ko � �Bp and time t � �
we�ve plot the quantity G in the midspace G � � as a function of the co	
ordinates �x � y� of the poloidal plane� In this example� VA � � � VA�p �
��� � Cs � � � �x � �y � ��� � kox � ko cos� � koy � ko sin�� with ko � �� and
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�o � ��o and ���o� In the middle of the bottom diagrams�
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Figure ���� The same as in the previous �gure� but only for the slow and time
t � ��� Altogether the wave packets bring to light the half triangle	shape group
polar of the slow wave�
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Figure ���� The same as in the previous �gure� but for time t � ��� The group
polar is seen very clear�
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Figure ���� The same as in the previous �gure� but for the fast and time t � ��
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Figure ���
 The same as in the previous �gure� but for time t � ���
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Now the factor beginning with
�x�y
��

is exactly G
�
�ri �

�
�r�k

�
�
�k��ko

t � �

�
� In

other words� the original packet moves with velocity �Vg �i

�
�ko

�
�
�
�r�k�

�
�k��ko

which is called group velocity �Shu��c��
Figs� ����	���
 verify this result �we see the triangle	shape slow group polar and
the ellipse	shape fast group polar� The factor on the �rst line is an overall space	
independent time oscillation corresponding to the fact that the wave fronts are

propagating at the phase velocity�
�
�
�ko

�
ko

$ko� while the wave	packet moves at

the group velocity�
�
��	��k

�
�k��ko

� not equal to
�
�
�ko

�
ko

$ko� But in the case of

slow and fast MHD waves where the component of the group velocity in the
direction of the vector �ko is equal with the phase speed� this factor is simply
unity� So in this case� the wave	packets simply moves in space� without changing
their shape� Of course if kox�x�koy�y is not much larger than unity� this result
is only an approximation�
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Chapter �

Asymptotic analysis of

MHD out�ows

General theoretical arguments and various analytic self	similar solutions have
recently shown that magnetized and rotating astrophysical out�ows may become
asymptotically cylindrical� in agreement with observations of cosmical jets� A
notable common feature in all such self	consistent� self	similar MHD solutions is
that before �nal cylindrical collimation is achieved� the jet passes from a stage
of oscillations in its radius� Mach number and other physical parameters� In
this Chapter it is shown that under rather general assumptions this oscillatory
behaviour of collimated out�ows is not restricted to the few speci�c models
examined so far� but instead it seems to be a rather general physical property
of an MHD out�ow which starts noncylindrically before it reaches collimation�
It is concluded thence that astrophysical jets are topologically stable to small
amplitude� time	independent perturbations in their asymptotically cylindrical
shape� Also� similarly to the familiar �uid instabilities these oscillations may
give rise to brightness enhancements along jets�

��� Introduction

Astrophysical jets are by now widely observed in several cosmical environments�
from the rich variety of stellar objects to AGN and Quasars �e�g�� see reviews
�Bir�
� FMBR�
� Ray�
��� Three key aspects of the theoretical problem posed
by the observations of jets are �i�� the construction of self	consistent dynamical
equilibria describing the initial acceleration and �nal collimation of the out�ow�
�ii� examination of the stability properties of the beam and the detailed en	
ergetics of the out�ow together with the in situ acceleration of particles and
subsequent emission of radiation� and �iii� the modeling of the time	dependent
problem�

Since magnetic �elds seem to play a pivotal role in the acceleration� colli	
mation and emission of radiation in jets� one may try to answer these questions

��
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by considering to lowest approximation the magnetohydrodynamic �MHD� de	
scription� For example� in meridionally self	similar models �ST��� TST�
� the
out�ow is accelerated by a combination of gas pressure gradients and mag	
netocentrifugal forces� after the out�ow crosses the modi�ed by self	similarity
slow�fast magnetoacoustic surfaces �TSS��
�� the jet is con�ned either mag	
netically� or� by the thermal gas pressure� Similar is the situation in radi	
ally self	similar �BP��� FH�
�� or translationally self	similar MHD models
�CH��� BC��� DZC�
��

Regarding the question of classical stability of collimated out�ows� it is well
known that low Mach number� laboratory �uid beams maintain their direction	
ality for relatively short distances� typically �� times their diameter�The basic
reason for beam disruption is the familiar Kelvin	Helmholtz �KH� instability
due to the motion of the �uid of the beam relatively to the surrounding medium
�FTZ��� FTZ��� FMBR�
�� Linear KH stability analysis �FTZ��� FTZ��� pre	
dicts that the most unstable modes are of the order of the circumference of the
beam times its Mach number� �KH � ��RjMj while typical times of the fastest
growing modes are of the order of the ratio of the circumference of the beam to
the sound or Alfv�en speed times its Mach number� �KH � ���Rj	cs�Mj � Never	
theless� astrophysical jets �rstly observed in association with extragalactic radio
sources and secondly in association with young stellar objects� often extend over
distances which are a much larger multiple of their width� Apart the occasional
wiggles and knots of enhanced surface brightness along their length� these astro	
physical jets appear to survive much longer periods than the time scales of the
linear analysis of the KH instability predict that they should break up� In order
to investigate possible saturation e�ects of the linear phase of the instability� the
nonlinear evolution of the KH hydrodynamic instability has also been followed
�BMFT��� BMR����� In this case� it is found that the persistence of the jet
depends principally on the density contrast with the ambient medium and the
Mach number�

In addition to the KH instabilities� magnetized jets are also subject to cur	
rent driven instabilities which are well known to create great di�culties in the
con�nement of laboratory plasmas� In superfast magnetosonic jets with speeds
exceeding the fast MHD speed� the kinetic energy dominates the sum of the
magnetic and thermal energies and therefore the KH instability growth rates
are an order of magnitude or so� higher than the growth rates of the kink in	
stabilities �AC��� App�
�� Instead� in transfast magnetosonic jets� the current
and �uid instabilities have comparable e�ects�

Probably related to the stability of jets� a notable aspect of available self	
consistent MHD equilibrium solutions is that the beam width and other pa	
rameters undergo small amplitude oscillations which often decay with distance
from the source �CH��� BC��� CL���� These exact and quasi	analytic solutions
have been obtained under speci�c assumptions such as the corresponding self	
similarity ansatz� The subject of this Chapter is to further investigate the ques	
tion which naturally arises then whether the particular feature of oscillations
in the jet�s width can be obtained from the general set of the MHD equations�
regardless of speci�c models� Hence� we shall examine the topological stabil	
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ity of an MHD out�ow which is asymptotically collimated and together with
its ambient medium consists of a compressible plasma of in�nite conductivity�
Classical stability theory addresses the question whether a given equilibrium
con�guration evolves away from �unstable� or back toward �stable� the initial
state when perturbed� In the present context� topological stability refers to the
question whether a given equilibrium state preserves its topological properties
when subjected to a perturbation� We should keep in mind that topologically
stable con�gurations may well be unstable from the classical point of view�
However� since for su�ciently slow time variations� the out�ow can be modeled
by a sequence of quasi	static �equilibrium� states� the topological stability of a
con�guration may provide evidence on its classical stability�

��� Perturbations of collimated out�ows

Consider the steady ��	�t � �� hydromagnetic equations�

�
�
�V � �r

�
�V �

�
�r� �B

�
� �B

��
� �rP � ��rV � �����

�r � �B � � � �r �
�
��V
�

� � � �r�
�
�V � �B

�
� � � �����

where �B� �V � ��rV are the magnetic� velocity and external gravity �elds� respec	
tively while � and P denote the gas density and pressure� With axisymmetry
��	�� � ��� we may introduce the magnetic �ux function A� such that three
free integrals #�A��%�A�� L�A� exist �see Chapter ��� In terms of these integrals
and the square of the poloidal Alfv�en number�

M� �
���V �

p

B�
p

�
#�
A

���
� �����

the magnetic �eld and bulk �ow speed are given in cylindrical coordinates
����� z� by the forms�

�B �
�rA� $�

�
� L#A ���%#A

��� �M��
$� �

�V �
#A

���

�rA� $�

�
�

��%� LM�

��� �M��
$� � �����

while force balance in the poloidal plane is expressed by the trans�eld Eq� �������
or 
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If P is related to � and A� for example� via a polytropic relationship with con	
stant or variable polytropic index �� this last vector equation leads to two scalar
equations in any two independent directions on the poloidal plane for the un	
knowns A and M� �or� equivalently A and ��� Quasi	analytical solutions of
Eq� ����� have been found only by additionally assuming a self	similar ansatz
for the dependence of the physical variables on the spherical �r� ��� or cylindri	
cal coordinates ��� z� of the poloidal plane� Thus� we have available solutions
which are self	similar in �i� the cylindrical radius � �CH��� BC��� DZC�
��
�ii� the spherical radius r �BP��� CL��� FH�
� and �iii� the meridional angle �
�TT��� ST����
In the following we shall consider an in�nitely long jet where in a direction
perpendicular to the �ow axis� the outwards directed centrifugal force is bal	
anced by the inwards tension of the toroidal magnetic �eld and gradient of the
magnetic pressure� enhanced �reduced� by the gradient of the gas pressure�

�V �
�

�
�

d

d�

�
B�

��
� P

�
�

B�
�

���
� ���
�

where � is the cylindrical distance in spherical coordinates �r� �� ��� � � r sin��
In such a case of an asymptotically �r ���� collimated out�ow �jet� �HN����
the magnetic �ux function A	� Alfv�en number M	 and gas pressure P	 all
become functions of the cylindrical distance � at large radial distances r �in
comparison to the Alfv�en radius r�� from the source of the out�ow where we
may neglect the gravitational �eld�

A	 � A	 ��� � M�
	 � M�

	 ��� � P	 ��� �

Z
F�d� � �����

where the pressure gradient F� is given in Appendix ��A� For example� in the
cases of cylindrical collimation of �ST��� and �CL���� M	 ��� � const� while
A	 ��� � ��� or� A	 ��� � �x� for a constant x� in �ST��� and �CL����
respectively�
In the following we shall investigate the topological or structural stability of
such collimated solutions� Namely� we are interested to check whether there
exist small amplitude steady and axisymmetric perturbations in the streamline
shape� Alfv�en number and pressure� which satisfy Eq� ������ We are interested
to derive the dependence of these perturbations on the radial distance from
the central object� Consider then a solution which is topologically close to one
describing a collimated out�ow� Eq� ������

A � A	 ��� �� � �� � M� � M�
	 ��� �� � ��� �

P � P	 ��� � �P� �����

where all functions j � j� j �� j and j �P	P	 j� �� Substituting Eqs� ����� into
Eq� ����� and by assuming that the derivatives of �� �� are also very small �so
that we may ignore squares and products of the perturbation quantities�� we
obtain from the $z and $� components of the momentum Eq� ����� two equations
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which the perturbations �� �� and �P satisfy�
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The perturbations �� �� and �P satisfy the above equations containing the
lengthy general expressions �F����� F����� F����� and �G����� G����� G�����
G����� G����� G����� which are all given in Appendix ��A�
The previous analysis is independent of a speci�c polytropic relationship be	
tween pressure and density� some particular dependence of the perturbations ��
�� and �P on their variables� as well as of any special choice of the free integrals
#A�A�� L�A� and %�A�� In order to get some insight into the behaviour of the
perturbations� one should analyze the above general nonlinear equation� This
is however a formidable mathematical task and instead it occurred to us that
some physical understanding of the physical trends of the perturbations can be
gained by examining separately� �a� the case where the perturbations in stream	
line shape and Alfv�en number are related� �b� the case where the perturbations
in streamline shape and Alfv�en number are unrelated� and �c� the case where a
constant index polytropic relation between pressure and density is assumed� In
each of the above cases �a�� �b� or �c�� we shall further examine separately the
various cases where a separation of the variables in the perturbations � and �� is
possible� Finally� in each such subcase� we shall apply the results of our analysis
to the few examples where special sets of the free integrals #A�A�� L�A� and
%�A� have provided known quasi	analytical solutions�

��� Linearly related perturbations	 �� � �� ��� �

In order to make further progress� we shall �rst examine the case where the
perturbations � and �� are linearly related�

�� � �� ��� � � ������

No speci�c polytropic relationship between pressure and density is imposed at
this stage where the pressure perturbation is given by Eq� ����� while � and

�If we write the di�erential equation for the perturbation A�� then the A� disappear
�consistent with the initial equations where only derivatives of A appears��
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����� satisfy Eq� ������ which now becomes�

���
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� � � � ������

The above equation obtained by substituting Eq� ������ into Eq� ������� relate
the two unknown functions � and �� and their derivatives� However� it is still
complicated for a general analysis� in the following� we shall analyze Eq� ������
in some special cases where the variables of the perturbations can be separated
in various coordinates of the poloidal plane�

����� Perturbations separable in � � r

Assume that the variables of the cylindrical and radial distances� ��� r� are
separable in ��

� � f ��� g �r� � j g j� � � ������

Then Eq� ������ gives�
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Therefore �Appendix ��B�� there are constants �s� k� such that

g
��

� �s
g
�

r
� k�g � � � ����
�

or�

x�
d�y

dx�
� x

dy

dx
�

�
x� �

�
s � �

�

��
�
y � � �

x � kr � y � gxs�
�
� � ������

The last di�erential equation is the familiar Bessel di�erential equation with the
solution

y � D�Js��
�
�x� � D�Ys� �

�
�x�� ������

In the limit x��� Bessel�s functions become�

J��x�
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and therefore the solution of ����
� is

g �
D

rs
sin �kr � ��� � ������

Finally� Eq� ������ gives two conditions relating the functions of ��
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Note that for k � � � g � r���s while for k� 
 � � g � e�jkjr	rs � cases which
apply to non	oscillating solutions�
In the following we shall test our analysis by comparing it with available exact
solutions of analytical models of out�ows which exhibit an oscillatory behaviour�

Example �

We may start with the simplest case wherein M	� ��� f� G� and G� are
constants and A	 ��� � ��� Indeed this case has been studied in �ST��� �see
also �TST�
��� They considered the following expressions of the free integrals�

A �
r��B�

�
��R� ��� #A��� �

����V�
B�

p
� � ���

� �
��

r��G
� �R�

� R �
r

r�
� ������

L��� � �r�V�
�p

� � ��
� %��� �

�V�
r�

�p
� � ��

� ������

where G�R� is the radius of the jet in units of the Alfv�en radius and �� � and
G �R��� � G	 are constants� while the starred quantities refer to values at
the Alfv�en radius r�� Writing down the expressions of the perturbations for this
case we have�

��r� �
G�
	

G��r�
� � � ���r� �

M��r�

M�
	

� � � ������

It follows from Eqs� �����'����� that f��� � � while �� is a constant which
furthermore can be calculated at r � r��

�� � �j��j � � M�
	 � �

M�
	�G�

	 � ��
� ����
�

This is the same result with that in the study of �ST��� although the surface
r � r� is not always in the asymptotic regime where gravity is negligible� The
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functions G� and G� given in Appendix ��A are constants in this model and from
Eqs� �����'����� the corresponding expressions for s and k are�

s � � �
��M

�
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������
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(�
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�
���

r�� ���M�
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	 �M�

	

M�
	 ���M�

	�

�
� ������

The wavelength of the oscillations grows quadratically with the Alfv�en number�
(osc	r� � M�

	� while the amplitude of the oscillations drops with distance as
r����j��j�� as found in �ST��� �their Figs� �� �� ���� For example� as the mag	
nitude of the asymptotic Alfv�en number M	 increases by a factor of about ��
when the energetic parameter � in the �ST��� notation decreases from � � �� to
� � �� (osc increases accordingly by a factor of about ���� Similarly� the ampli	
tude of the oscillations (osc in the width of the jet and the Alfv�en number drops
with radial distance as r�s� where � 
 s 
 � with its exact value s � � � j��j
depending on M	 and G	� according to Eq� �������

Example �

Another more general class of solutions can be generated by the following
set of free integrals �VT����

A �
r��B�

�
��R� ��� #A��� �

����V�
B�

p
� � �� � ������

� �
��

r��G �R��
� L��� � r�V��

s
 � �����

� � �� � �����
�

%��� �
V�
r�

s
 � �����

� � �� � �����
� ������

where �� �� ��� are constants� in addition to the ones introduced in the previous
example� If M	 � �� and f are constants then�
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Figure ��� Dimensionless radial velocity Vr on the rotation�magnetic axis vs�
dimensionless radial distance R� The solid curve indicates the super	fast exact
solution of the model of example � for the following set of parameters � � ����
� � ����� �� � �����  � �� � � ����� �GM	r�V

�
� � ��� From the integration

of the MHD Eq� ��� we �nd that M�
	 � ������� G�

	 � ����
�� The dotted
line indicates the corresponding solution which emerges from the perturbation
analysis with D� � ����� ��
� �� � ���
��

Substituting in Eq� ����� the above expressions for k and s we �nd the perturbed
form of the streamfunction�

A � B��
�

�G�
	

�
� �

D�

R���
sin

�p
� ��� ��

M�
	

R � ��

��
� ������

A comparison of the oscillatory behaviour of a solution obtained by this pertur�
bative analysis with the corresponding exact solution obtained by an integration
of the MHD equations and selecting a super	fast solution crossing the modi�ed
by self	similarity fast critical point is shown in Figs� �������� In Fig� ��� the di	
mensionless radial speed oscillates with the dimensionless radial distance while
in Fig� ��� the shape of the streamlines in the poloidal plane shows a similar be	
haviour� Since by assumption the present perturbation analysis applies to large
distances where gravity is negligible and the jet starts approaching its cylindri	
cal shape� such a comparison is meaningful far away from the Alfv�en surface�
r � r�� Then� the purpose of Figs� ������� is to show by a speci�c example that
in such distances the perturbation analysis gives results which compare rather
well with the corresponding exact solution� And with the perturbation analysis
being independent of any speci�c model� this comparison shows that the e�ect
of the oscillations is rather model	independent� as discussed in the last section�

For the speci�c example shown in Figs� �������� the amplitude of the oscilla	
tions in the strength of the radial speed is rather low� at the �� level� However�
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0.12380 0.12390 0.12400 0.12410
1350.0

2350.0

3350.0

4350.0

z−r*

−r*
ω−

Figure ��� Shape of the streamline on the poloidal plane for the model of
example �� as emerges from the perturbation analysis �D� � ����� ��
� �� �
���
�� With dotted line an exact solution is shown for the model of example �
where gravity is included�

the same oscillatory behaviour has also been found for other parameters yielding
larger amplitudes of the oscillations close to the �� � level �VT���� similarly
to the �ST��� solution �see Chapter ��� However� a peculiarity of the present
model Eq� ������ is that the crossing of the critical point becomes numerically
rather di�cult for parameters giving larger amplitude oscillations� And such a
crossing of the critical point is the main di�culty for obtaining exact solutions
�TSS��
�� Hence� in the illustration shown in Figs� ������� we have been re	
stricted to a case with an unambiguous crossing of the critical point� In other
words� numerical di�culties prohibit the construction of exact solutions with
larger amplitudes of oscillations� unlike the case of �ST���� Nevertheless and
as it is discussed in the last session� the physics of the oscillations remains the
same�

����� Perturbations separable in � � �

Assume next that the variables of the cylindrical distance and meridional angle
��� ��� are separable in ��

� � f ��� g ��� � j g j� � � ������

Then Eq� ������ gives�

� � sin� �g
��

� sin � cos �g
�

�
�
�f

�

f
�

�A
�

A

�
�� ��M

�

��M�

�
� �

�
	

�



��� Linearly related perturbations� �� � �� ��� � 
�

i

z i+1 =e

π
μ Α

,       i
z

z
i+1

Ro
tati

ona
l A

xis
z

i

z
i-1

Figure ��� Sketch of an oscillating streamline on the poloidal plane in this case�

We see that the wavelength increases logarithmicaly such that
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Therefore �Appendix ��B�� there are constants �� � such that

sin� �g
��

� ��� � �� sin � cos �g
�

�


�� � ��

�
g � � � ����
�

or�



�� x�

� d�y
dx�

� �x
dy

dx
�

�
� �� � ��� ��

�� x�

	
y � � � ������

where
x � cos �� y � g sin� � � ������

The last di�erential equation is the associated Legendre equation and the solu	
tion is given in terms of the associated Legendre functions P�

� �x� and Q�
� �x�

y � D�P
�
� �x� � D�Q

�
� �x� � ������

For �� 
 � as � � � the solutions of the associated Legendre equation are ����
or sin �j � j ln �� � cos �j � j ln �� �AS��� and therefore the solution of Eq� ������
is

g � D��� cos �j � j ln � � D�� 
 g � D ��	z��� cos
�
j � j ln

�

z
� D�

�
�

We see an oscillatory behaviour in the angle ��x� similar to the Bessel functions
of the previous section �with the wavelength logarithmically increased 	 see Fig�
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�����
Furthermore� Eq� ������ gives two conditions for the functions of ���
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It is worth to note that the Eqs� �����'����� are identical to the corresponding
Eqs� �����'����� except the factor �� in the denominator of Eqs� ������� The
wavelength of the oscillations was found constant in section ������� while now
it varies with distance �it grows logarithmically��

����� Perturbations separable in � � z

Assume �nally that the variables of the cylindrical and axial distances� ��� z�
are separable in ��

� � f ��� g �z� � j g j� � � ������

Then Eq� ������ gives�

g
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� g
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Proceeding as before �Appendix ��B�� it follows that there is constant k such
that

g
��

� k�g � � 
 g � D sin �kz � ��� � ������

and the oscillations are undamped in this case� This result should be expected
because now the radial distance r with its associated scale r � r� does not enter
directly into the analysis while with the neglect of gravity the distance z along
the jet does not have any associated scale�

��� Unrelated perturbations

Nonoscillating jet	type solutions have been also found recently �Trussoni et al
���
� and they also emerge from this topological stability analysis by considering
the case where the perturbations in the streamline shape and Alfv�en number
are uncoupled� Assume for simplicity that � � g �r� and �� � g� �r�� For
A	 � �A�

�� �A � constant and M��
	 � �� Eq� ������ takes the form

g
��

� �
g
�

r
� �M�

	

��M�
	

g
�

�

r
� G�g � G�g� � � � ������
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Then �Appendix ��B�� there are constants c�� c� such that�

g
��

� �
g
�

r
� �M�

	

��M�
	

g
�

�

r
� c�g � c�g� � � � ����
�

Comparing this with Eq� ������ it follows that�

�G� � c�� g � �G� � c�� g� � � � ������

From this last equation two possibilities emerge� The �rst� where g and g� are
proportional to each other� has been already studied in Sec� ������� and it was
found to give an oscillatory behaviour� The second one corresponds to setting
G� � c� and G� � c�� By solving these equations we �nd then the following
general expressions�

�
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c�M
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�
A



��M�
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������

where c� is a constant� In other words� if the functions of A L#A	A and %#A

are given by Eqs� ����� ' ����� the corresponding solutions may not exhibit an
oscillatory behaviour� In other words� the above conditions are the necessary
�but not su�cient� conditions for the appearance of oscillations in the asymp	
totic regime of collimated out�ows� if � and �� are functions only of r�

Examples

For the case which has been studied by Trussoni et al ����
� the free integrals
are given be Eqs� ������ with �A � B�	�G�

	� Their non	oscillating solutions
there correspond in the notation of the previous section to�

c� � �� c� � ����


�M�

	 � �
�
G�
	 �M�

	

r��M
�
	 ���M�

	��
�

c� �
��B�

�

r��G
�
	 ���M�

	��
� ������

Another general class of solutions can be generated by the set of the free
integrals given by Eqs� ������� Non	oscillating solutions also exist within this
model for the following values of the constants�
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��
 Polytropic models

Assume now that there exists a polytropic relation between density and pressure

P � �� � or � PM�� � Q �A� � ������

for some constant index �� For a small perturbation this relation becomes�

�P	 � �P �M��
	 �� � ���

� � Q	 � �Q � ������

with
Q	 ��� � P	M��

	 � ������

and

�Q �

�
dQ

dA

�
	

A	� �
Q
�

	A	
A�

	

� � ����
�

Substituting the pressure perturbation from Eqs� �����'���
� in Eq� ����� gives�
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We shall distinguish two cases
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and

�b� F� � �P	 	� � � �� � K�� �K�
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� ������

In case �a�� we may solve Eq� ������ and get for each of the particular depen	
dence of �� the three following cases
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�iii� for � � f ��� g �z��
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where g is an arbitrary function of z� In all cases Eq� ������ gives ���

Case �b� with F� � �P	 	� � on the other hand� turns out to be and the most
interesting and will be analyzed in more detail in the following� Then Eq� ������
takes the form 

H�� �H�
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�H�

���

���
�

���

�z�
� � � ���
��

����� Perturbations separable in � � r

Assume �rst that the variables of the cylindrical and axial distances� ��� z� are
separable in �� � � f ��� g �r� � j g j� �� Then Eq� ���
�� gives�
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Therefore �Appendix ��B�� there are constants �s� k� s�� s�� such that
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The asymptotic solution of the previous equation is the solution of the section
�������� although the relations between the functions of � are di�erent�

����� Perturbations separable in � � �

Assume next that the variables of the cylindrical distance and meridional angle
��� ��� are separable in �� � � f ��� g ��� � j g j� �� Then Eq� ���
�� gives�
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Therefore �Appendix ��B�� there are constants s�� s�� s� such that

sin� �g
�� 


� � s� � s� sin� �
�

� sin � cos �g
� 

s� � �s� sin� �

�
� s�g � � ���
��

For s� � �� the solution goes asymptotically as g � �tan���s��s� � while for the
most interesting case of s� 	� �� we may introduce the new constants �� � with
� � � and ���� � s�	�s� � ��� ����� � s�	�s� � ��� such that the di�erential
equation for g becomes

sin� �g
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The asymptotic solution of the previous equation is similar to the solution of
Eq� ����
�� i�e�� it is given by Eq� ������� with of course di�erent relations
between the functions of �� Oscillations like those predicted by the analysis of
this section have been indeed found in the model of Contopoulos � Lovelace
�CL��� where

A �
�

�

G ���

�x
� #A � A�� �

�x �

L � A
�
�x � % � A�

�
�x � Q � A�� �

x � ���
��

and where �M	� f� are constants�

����� Perturbations separable in � � z

Finally� assume that the variables of the cylindrical and axial distances� ��� z�
are separable in �� � � f ��� g �z� � j g j� �� Then Eq� ���
�� gives�
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� g
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f
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Therefore �Appendix ��B�� there is a constant k such that

g
��

� k�g � � 
 g � D sin �kz � ��� � ������

and the oscillations do not decay due to the lack of scale in the direction z�
similarly to the case of Sec� �������� Examples of models with such oscillations
have been analyzed by Chan � Henriksen �CH���� Bacciotti � Chiuderi �BC���
and Del Zanna � Chiuderi �DZC�
��
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Figure ��� Sketch of an oscillating streamline on the poloidal plane ��� z� of
an MHD out�ow from a central object� The inwards magnetic pinching force
FB equals the outward inertial centrifugal force FC at position �� At position �
FB is greater than FC while at position � FB is greater than FC�

��� Discussion

Previous studies have shown that under fairly general conditions magnetized
out�ows may become asymptotically cylindrical �HN���� And� this tendency
for asymptotic collimation has been also demonstrated via quasi	analytic self	
similar solutions �ST��� CL��� TST�
� VT���� A common feature in all such
self	similar solutions is that before the �nal cylindrical collimation is achieved�
the jet passes through a stage of oscillations in its radius� Alfv�en number and
other physical parameters� In the previous sections we have shown under rather
general assumptions that this oscillatory behaviour of collimated out�ows is not
restricted to the few speci�c models studied so far� but instead it is a rather
generic physical property of the MHD out�ow as it reaches collimation�

A simple way to demonstrate physically this e�ect can be provided by the
simpli�ed construction shown in Fig� ���� A single streamline A��� z� � const�
of an initially radial magnetized and rotating out�ow becomes asymptotically
cylindrical �dotted line�� Assume for simplicity that the jet carries an electric
current Iz � �� with a uniform surface density Jz � const� In its asymptotic
regime the jet is con�ned by the interplay of the magnetic pinching force� the
gas pressure gradient and the centrifugal force of rotation �ST��� TST�
�� As	
sume for simplicity that the gas pressure gradient and the magnetic pressure
gradient associated with the poloidal magnetic �eld are negligible such that at
equilibrium the magnetic pinching force exactly balances the centrifugal force�
In the superAlfv�enic regime� most of the conserved speci�c angular momentum
is carried by the �uid� such that L � �V�� The magnetic pinching force FB
which results from such a current Iz and the centrifugal force FC for the assumed
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angular momentum conservation are then�

FB �
B�
�

���
�

�

��

B�
�

��
� �� FC �

�V �
�

�
� L�

��
� ������

under uniform density conditions� If now at some equilibrium location �� say
at the cylindrical distance � � �� on the dotted line in Fig� ���� we have
FB���� � FC����� then at larger distances �� � �� �location � in Fig� ���� we
have according to Eq� ������ that FB���� � FC����� Conversely� at the smaller
cylindrical distances �� 
 �� �location � in Fig� ���� we have again according
to Eq� ������ FC���� � FB����� The net result is that as the parcel of gas
moves along the poloidal streamline from the central object to in�nity� it feels
an inward force at location � which brings it towards the rotation axis� On the
other hand� due to inertia and its poloidal speed� it overpasses the equilibrium
position � and arrives at location � where now feels an outward force bringing
it again away from the rotation axis towards location �� etc� The �nal result
is the oscillatory shape of the streamline shown in Fig� ��� and derived in the
previous sections� The oscillations start at the collimation distance Rc where
the streamlines start to deviate signi�cantly from radiality and by means of the
magnetic pinching forces are brought to the cylindrical geometry� Obviously�
at large distances from the collimation radius Rc the cause of the oscillations
disappears and accordingly their amplitude decays to zero� i�e�� the uniform
cylindrical shape is �nally reached�

At the asymptotic and collimated regime of the out�ow� we expect that
gravity should be negligible� For this reason and in order to simplify the math	
ematics� in the analysis presented in this Chapter gravity was not included�
Indeed� this assumption is veri�ed by the plot of Figs� ������� where with dot	
ted line is given a full solution of the problem by including gravity while by
solid line is the approximate solution which is calculated by neglecting gravity�
These two curves almost coincide with some deviation starting as we approach
the source of the �ow where gravity becomes rather important�

In the example shown for illustrative purposes in Figs� �������� the oscilla	
tions in the magnitudes of the �ow speed� temperature� density and pressure of
the beam are rather weak at the few percent level� However� this is only due
to the fact that the availability of exact super	fast solutions for model � is con	
strained by numerical problems associated with the crossing of the fast critical
point� See for details the analysis of this model in Chapter � and in �VT��� �for
sub	Alfv�enic at in�nity solutions the oscillations are strong enough�� In �ST���
stronger oscillations of similar origin at the ��� level have been presented which
also emerge from the present perturbation analysis� Then� such large amplitude
oscillations in the beam may have notable e�ects� for example via enhanced
radiation emission either in local compressions of the �ow pattern or in shock
transitions� For example� observed brightness enhancements �knots� along the
jet of M�� in Virgo have been attributed to shocks �Bir�
� with a similar sit	
uation for stellar jets �Ray�
�� Such shocks may be caused by an oscillatory
�ow channel in which case the hydrodynamic equations allow multiple transonic
solutions connected by shocks �FMBR�
�� In the present study we have shown
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that oscillations in the cross	section of the jet may be due� in addition to the
familiar Kelvin	Helmholz instabilities� to the interplay of the magnetic and in	
ertial forces in the acceleration region of the out�ow� Although an examination
of the detailed solution topologies of the present MHD case is far more compli	
cated than the corresponding hydrodynamic solution topologies� it is naturally
expected that similar shocks connecting various transonic solutions may exist
in the present MHD case as well� However� a demonstration of their existence
in self	similar MHD solutions is beyond the scope of this thesis and remains a
challenge for future studies� It will also be interesting to check if fully numerical
studies of collimated MHD out�ows show an oscillatory behaviour in the shape
of the streamlines� In the only available so far such study of a paraboloidally
collimated disk wind �Sak��� such oscillations are not evident�
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�� Appendix ��B� theorem

Theorem If F �x�� fi�x�� gi�y�� i � �� �� � � � � n are arbitrary functions of the
independent variables x and y and

F �x� � f� �x� g� �y� � f� �x� g� �y� � � � �� fn �x� gn �y� � ������

then� there exist constants c�� c�� � � � � cn such that�

F �x� � c�f� �x� � c�f� �x� � � � �� cnfn �x� � ������

Proof� We �ll use the method of mathematical induction

�i� For n � �� F �x� � f� �x�g� �y� �
If f� �x� � � then F �x� � � � c�f� �x��
If f� �x� 	� � then�

F �x�

f� �x�
� g� �y� � c� � F �x� � c�f� �x� � ������

i�e� for n � � Eq� ��� holds�

�ii� Assume that for n � k Eq� ��� holds� i�e�� for given

F �x� � f� �x� g� �y� � f� �x� g� �y� � � � �� fk �x� gk �y� ������

� � c�� c�� � � � � ck such that� F �x� � c�f� �x� � c�f� �x� � � � �� ckfk �x�
for every F� fi� gi� i � �� �� � � � � k�

�iii� Then� for n � k � �� let F �x� � f� �x�g� �y� � � � �� fk�� �x� gk�� �y�� If
fk�� �x� � � then from the previous hypothesis

F �x� � c�f� �x� � ���� ckfk �x� � c�f� �x� � ���

�ck��fk�� �x� � ������

i�e�� Eq� ��� holds� If on the other hand� fk�� �x� 	� � then�

F �x�

fk�� �x�
�

f� �x�

fk�� �x�
g� �y� � � � �

�
fk �x�

fk�� �x�
gk �y� � gk�� �y� � ������
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d

dx

�
F �x�

fk�� �x�

�
�

d

dx

�
f� �x�

fk�� �x�

�
g� �y� � � � �

�
d

dx

�
fk �x�

fk�� �x�

�
gk �y� � ������

So from the hypothesis that for n�k there are ci such that�

d

dx

�
F �x�

fk�� �x�

�
� c�

d

dx

�
f� �x�

fk�� �x�

�
� � � �

�ck
d

dx

�
fk �x�

fk�� �x�

�
�� ������

F �x�

fk�� �x�
� c�

f� �x�

fk�� �x�
� � � �� ck

fk �x�

fk�� �x�
� ck��

�� F �x� � c�f� �x� � � � �� ck��fk�� �x� � ����
�

and therefore Eq� ��� holds for every n�
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Chapter �

Systematic Construction of

Exact MHD models

By a systematic method we construct general classes of exact and selfconsis	
tent axisymmetric MHD solutions describing �ows which originate at the near
environment of a central gravitating astrophysical object� The unifying scheme
contains three large groups of exact MHD out�ow models� �I� meridionally self	
similar ones with spherical critical surfaces� �II� radially self	similar models with
conical critical surfaces and �III� generalized self	similar models with arbitrary
shape critical surfaces� This classi�cation includes known polytropic models�
such as the classical Parker description of a stellar wind and the Blandford and
Payne ������ model of a disk	wind� it also contains nonpolytropic models� such
as those of winds�jets in Sauty and Tsinganos ������� Lima et al ����
� and
Trussoni et al ������� Besides the uni�cation of all known cases under a common
scheme� several new classes emerge and some are brie�y analyzed� they could be
explored for a further understanding of the physical properties of MHD out�ows
from various magnetized and rotating astrophysical objects in stellar or galactic
systems�


�� Introduction

A widespread phenomenon in astrophysics is the out�ow of plasma from the
environment of stellar or galactic objects� either in the form of a noncollimated
wind �Par��� FPBH�
�� or� in the form of collimated jets �BR��� Bir�
�� These
out�ows not only occur around typical stars and the nuclei of many radio galax	
ies and quasars� but they are also associated with young stars� older mass losing
stars and planetary nebulae nuclei� symbiotic stars� black hole X	ray transients�
low	 and high	mass X	ray binaries and cataclysmic variables �for recent reviews
see e�g�� respectively� �FMBR�
� Ray�
� Kaf�
� MR�
� Liv���� Even for the
two spectacular rings seen with the HST in SN����A� it has been proposed that
they may be inscribed by two processing jets from an object similar to SS���

���
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on a hourglass	shaped cavity which is created by nonuniform winds of the pro	
genitor star �BK��� Bea���� Also recently� in the well known long jet of the
distant radio galaxy NGC 
��� an about ��� light	year	wide warped dust disk
perpendicular to the main jet�s axis has been observed by HST to surround and
re�ect UV light from the bright core of the galaxy which probably hosts a black
hole �CV����

Nevertheless� despite their abundance the questions of the formation� ac	
celeration and propagation of nonuniform winds and jets have not been fully
resolved� One of the main di�culties in dealing with the theoretical problem
posed by cosmical out�ows is that their dynamics needs to be described 	 even
to lowest order 	 by the highly intractable set of the MHD equations� As is well
known� this is a nonlinear system of partial di�erential equations with several
critical points� etc� and only very few classes of solutions are available for ax	
isymmetric systems obtained by assuming a separation of variables in several
key functions� This hypothesis allows an analysis in a �	D geometry of the full
MHD equations which reduce then to a system of ordinary di�erential equa	
tions� The basis of such self	similarity treatment is the prescription of a scaling
law in the variables as a function of one of the coordinates� The choice of the
scaling variable depends on the speci�c astrophysical problem�

In spherical coordinates �r � � � ��� a �rst broad class for describing out�ows
are the so	called meridionally self	similar MHD models� Parker�s classical mod	
eling of the spherically symmetric polytropic solar wind �Par��� is the simplest
member of this class� A new class of such type of models for describing mag	
netized and rotating MHD out�ows from a central gravitating object has also
been examined �ST��� LTP�
� TTS���� For example� an energetic criterion for
the transition of an asymptotically conical out�ow originating at an ine�cient
magnetic rotator to an asymptotically cylindrical out�ow from an e�cient mag	
netic rotator was derived� In the present Chapter� it will be shown that this
special class of meridionally self	similar solutions is one of the simplest possible
meridionally self	similar models� Furthermore� a new interesting member of this
class of radially self	similar MHD models will be brie�y sketched�

A second broad class of solutions contains the radially self	similar MHD
models� Bardeen � Berger �BB��� presented the �rst such models in the
context of hydrodynamic and polytropic galactic winds� Nevertheless� their
generalization to a cold magnetized plasma by Blandford � Payne �BP����
remains widely known because of their success in showing for the �rst time
that astrophysical jets can be accelerated magnetocentrifugally from a Keple	
rian accretion disk� if the poloidal �eldlines are inclined by an angle of 
�o�
or less� to the disk midplane �when the �ow on the equatorial plane is cold
and exactly Keplerian�� see also� Cao �Cao���� A further extension has been
presented by Contopoulos � Lovelace �CL��� for a hot plasma with a more
general parametrization of the magnetic �ux on the disc� while these models
form the basis of several investigations of accretion	ejection �ows from stars
and AGN �Kon��� FP��� Fer��� Li��� Li�
�� In this Chapter it will be shown
that this special class of radially self	similar solutions is one of the simplest
possible such models� Furthermore� a new interesting member of the radially
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self	similar MHD models will be sketched�
The Chapter is organized as follows� After a brief introduction of the basic

MHD quantities� in subsection ��� we use a theorem in order to construct several
classes of meridionally self	similar solutions and the resulting cases are then
summarized in Tables ��� and ���� The general method is applied in subsection
����� to a step by step construction of a new model for collimated out�ows which
is also brie�y sketched there� In section ��� the other remaining possibility in
spherical coordinates� i�e�� radial self similarity is taken up� The resulting cases
are summarized in Table ��� while a new model is also brie�y sketched which
gives asymptotically cylindrical� paraboloidal and conical streamlines� In section
��� we present a new class of self similar solutions where the shape of the critical
surfaces comes out from the solution� The results are summarized in Sec� ����
Finally� in Sec� ��
 some other solutions are brie�y presented�


�� Meridionally self�similar MHD out�ows

Consider the steady ��	�t � �� hydromagnetic equations� They consist of a set
of eight coupled� nonlinear� partial di�erential equations expressing momentum�
magnetic and mass �ux conservation� together with Faraday�s law of induction
in the ideal MHD limit�

�
�
�V � �r

�
�V �

�
�r� �B

�
� �B

��
� �rP � ��rV � �����

�r � �B � � � �r �
�
��V
�

� � � �r�
�
�V � �B

�
� � � �����

�B� �V � ��rV � ��r ��GM	r� denote the magnetic� velocity and external gravity
�elds� respectively� while � and P the gas density and pressure�
With axisymmetry ��	�� � ��� we may introduce the magnetic �ux function
A� such that three free integrals exist for the total speci�c angular momentum
carried by the �ow and the magnetic �eld� L�A�� the corotation angular velocity
of each streamline at the base of the �ow� %�A� and the ratio of the mass and
magnetic �uxes� #A�A� �Chapter ��� In terms of these integrals and the square
of the poloidal Alfv�en Mach number �or simply Alfv�en number��

M� �
���V �

p

B�
p

�
#�
A

���
� �����

the magnetic �eld and bulk �ow speed are given in spherical coordinates �r� �� ��
by�

�B � �r� A�r� ��$�

r sin �
� L#A � r� sin� �%#A

r sin ��� �M��
$� � �����

�V �
#A

���
�r� A�r� ��$�

r sin �
�

r� sin� �% � LM�

r sin ����M��
$� � �����

To construct classes of exact solutions� we shall make two crucial assumptions
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�� that the Alfv�en number M is some function of the dimensionless radial
distance R � r	r��

M � M �R� � ���
�

and

�� that the poloidal velocity and magnetic �elds have a dipolar angular de	
pendence�

A �
r��B�

�
A ��� � � �

R�

G�
sin� � � �����

with G � G�R� � �����

By choosing G �R � �� � � at the

po
la

r 
ax

is

equator

R=
1

const

α
α

ω

ω

1
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1
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α2

ω
ω

1

2

α

Figure ��� An illustration of the con	
struction of the streamlines � � const�
on the poloidal plane in meridionally
selfsimilar out�ows�

Alfv�en transition R � �� G�R� evi	
dently measures the cylindrical dis	
tance � to the polar axis of each �eld	
line labeled by �� normalized to its
cylindrical distance �� at the Alfv�en
point� G �R� � �	��� For a smooth
crossing of the Alfv�en sphere R � �
�r � r�� � � �a����� the free integrals
L and % are related by

L

%
� ��

��A� � r�� sin� �a��� � r��� �

�����
Therefore� the second assumption is
equivalent with the statement that at
the Alfv�en surface the cylindrical dis	
tance �� of each magnetic �ux sur	
face � � const is simply proportional
to
p
��

Note also that the gravitational po	
tential V � �GM	r can be expressed in terms of the escape speed Vesc at the
Alfv�en radius r��

V � ���V �
�

�R
� � �

Vesc
V�

� Vesc �

r
�GM
r�

�

Instead of using the three free functions of �� �A �#A � %�� we found it more
convenient to work instead with the three dimensionless functions of �� �g� � g� �
g���

g� ��� �

Z
A��d� � g� ��� �

r��
B�
�

Z
%�#�

Ad� � g� ��� �
#�
A

����
� ������
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Also� we shall indicate by ) the total pressure in units of the magnetic pressure
at the Alfv�en surface on the polar axis� B�

�	�� � ��V
�
� 	��

) �
��

B�
�

�
P �

B�

��

�
�

such that�

P �
B�
�

��

�
) � f�g

�

� � f��g
�

� � f��g
�

�

�
� ������

The functions fi�R�� i � �� �� � are given in Appendix ��A while all starred
quantities refer to their respective values at the polar Alfv�en point �R � � � � �
��� Hence�

A� �� � �� � � � #A �� � �� �
p

���� �

or�
g
�

� �� � �� � � � g� �� � �� � � � ������

With assumptions �i�	�ii� and in this notation� the $r� and $��components
of the momentum equation become�

�) �R� ��

�R
� f�g

�

� �

�
f
 �

F

R
f�

�
�g

�

� �

�
f� �

F

R
f�

�
�g

�

� � f	g� � ������

�) �R� ��

��
� � cot �

�
f��g

�

� � f��g
�

�

�
� ������

Next� by using � instead of � as an independent variable� we may transform
from the pair of the independent variables �R � �� to the pair of the indepen	
dent variables �R ���� With the following elementary relations valid for any
di�erentiable function G�

�G �R� ��

�R
�

�G �R���

�R
� �

F

R

�G �R���

��
� ������

�G �R� ��

��
� �� cot �

�G �R���

��
� ����
�

we may transform Eqs� ������� ������ into the following two equations

�) ���R�

��
� f�g

�

� � f�g
�

� � ������

�) ���R�

�R
� f�g

�

� � f
�g
�

� � f��g
�

� � f	g� � ������

By integrating Eq� ������ we get ) � f�g� � f�g� � f� where f� is an arbitrary
function of R� From Eq� �
���� the pressure is

P �
B�
�

��

�
f�g� � f�g� � f� � f�g

�

� � f��g
�

� � f��g
�

�

�
� ������
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Table ��� Meridionally Self	similar Models
constraints

Case g���� g���� g���� on constants

���
a

� ��� � � ��

���
b

� �� ����� � � ��� ����
� � �� ���� � �� �

��� � �� �� ln� � � ��� ���� ln� � �� �

��� ��e
�
�� �e

�
�� � � ��e

�
�� � �

�
e
�
�� � �

�

���
��
�
j �
��

� � j���
�
�
��

� �
�

 j �
��

� � j� � � � j �
��

� � j� �� j �
��

� � j��� �� � � � �� ���

��� ��� ln j
�
��

� � j  ln j �
��

� � j � � � ln j �
��

� � j � � �
��������

�
� �
���ref

� ln �
�ref

� � � � � �� � �ref � � ��� ln �
�ref

� �� �

���
�ref

�
�
���ref

� � �
�ref

��
���

� � ���
��� � � ��

�
�� � ��ref

�
� ��

�
���� � ����

ref

�
� �� ���

�	�
�ref

���ref
ln �

�ref
�� ln �

�ref
�

��
�

� � �� ln �
�ref

� ��
�
�
�
� �

�ref

�

a�TT��	 ST�
�
bsee Chapter �	 or �VT���

or�

P �
B�
�

��
YPy �

where P and Y are the �� � �� matrices�

P � � f� f� f� f� f� f� � � � ������

and

Y � � Y� Y� Y� Y� Y� Y� Y
 � �
h

� g� g
�

� �g
�

� g� �g
�

� g�

i
� ������

Substituting for ) in Eq� ������ it follows�

�f	g� � f��g
�

� � f
�

�g� � f
�g
�

� � f�g
�

� � f
�

�g� � f
�

� � � � ������

an expression of the form

X
 �R�Y
 ��� � X� �R�Y� ��� � � � �� X� �R�Y� ��� � � � or �YXy � � � ������

with X the �� � �� matrix

X � � X� X� X� X� X� X� X
 � �
h
f
�

� f
�

� � f� � f
 f
�

� � f� � f	

i
�������

����� Systematic construction of classes of meridionally
self�similar MHD out�ows

It is straightforward to prove the following useful theorem �see Appendix ��B�
or �VT����
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Theorem If Fn���� Yi���� Xi�R�� i � �� �� � � � � n are arbitrary functions of the
independent variables � and R and

Fn ��� � Y� ���X� �R� � � � �� Yn ���Xn �R� � ������

then� there exist constants c�� c�� � � � � cn such that�

Fn ��� � c�Y� ��� � c�Y� ��� � � � �� cnYn ��� � ����
�

Consider then a relation of the form�

Xn �R�Yn ��� � � � �� X� �R�Y� ��� � � � ������

Regarding the �rst term of the sum there are evidently only two possibilities�
Either�

�� Xn �R� � � for every R� in which case �indicated by the digit ���� we have

Xn�� �R�Yn�� ��� � � � �� X� �R�Y� ��� � � �

or�

�� Xn �R� 	� �� in which case �indicated by the digit ���� we have

Yn ��� � �X� �R�

Xn �R�
Y� ���� � � � � Xn�� �R�

Xn �R�
Yn�� ��� �

Then� according to the theorem stated in the beginning of this sec	

tion� there are constants �
�n�
i � i � �� �� � � �� n � � such that Yn ��� �Pn��

i�� �
�n�
i Yi ���� This gives a condition between the functions of ��

Substituting this condition in the initial sum we �nd

h
Xn�� �R� � �

�n�
n��Xn �R�

i
Yn�� ����

h
Xn�� �R� � �

�n�
n��Xn �R�

i
Yn�� ��� � � � �

�
h
X� �R� � �

�n�
� Xn �R�

i
Y� ��� � � �

������

Hence� in both cases �i�	�ii� we �nd a sum with n�� terms� Following this algo	
rithm at the end we �ll have only one term� Since for each product we have the
above two possibilities� totally we obtain �n cases� Each of them corresponds
to a set �xx� � �xx� with x � �� � �n digits�� The number of ��� digits is the
number of conditions between functions of � while the number of ��� digits is
the number of conditions between functions of R�

Following this method from Eq� ������ we get �
 solutions� Each of them
corresponds to a set �xxxxxxx� with x either �� or� �� Of those numbers
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�� The �rst digit is always ��� �because X
 	� ���

�� The last digit is always ��� �because Y� 	� ���

�� Since A� 	� �� it follows that g�� 	� � and thus g� cannot be a constant�
Hence� the function Y� � g� cannot be proportional to Y� and therefore
all numbers always have ���� at the end�

�� We have totally six unknown functions the three functions ofR� �G�M� f��
and the three functions of �� �g�� g�� g��� On the other hand� the num	
ber of conditions between the functions of R �their number is equal to
the number of digits ���� and the functions of � �their number equals to
the number of digits ���� in each one of the sets �xxxxxxx� is seven� It
follows that the system of �G�M� f�� and �g�� g�� g�� is overdetermined�
Note however that since the forms of the functions Xi�R� are more com	
plicated than the forms of the functions Yi���� we choose sets �xxxxxxx�
with at most three ���s� because in the case of � or more ���s� we have
correspondingly � or more relations between the � functions of R� which in
general overdetermines the system of �G�M� f��� In this way we shift the
di�culty of overdetermination of the problem to the set of the � functions
of �� �g�� g�� g�� which need to satisfy � relations� In this system however�

it is possible to choose the constants �
�j�
i such that a consistent solution

for the functions of � can be �nally constructed�

Altogether� then and with these considerations in mind� from the �
 � ���
possible cases we end up with only �ve �������� �������� �������� ��������
�������� For each of one of those sets we can solve the system for g� � g� � g�� as
it is shown in the example of the next section�
From a di�erent perspective� g����� g����� g���� are vectors in a �D �	space
with basis vectors �u���� � u���� � u������ This space contains all vectors gi����
i � �� �� � subject to the �	self	similarity constraint manifested by Eq� �������
i�e�� that for a given such set gi���� i � �� �� �� the vectors �� �g

�

���� � �g
�

����
and g

�

���� also belong to the same space� Each of the resulting functions gi����
i � �� �� � are then a linear combination of the basis vectors u����� u����� u�����
In the following� we choose u� � �� u� � g����� All such sets of basis vectors
give all possible meridionally self	similar solutions� Therefore� collecting all
possibilities� we end up with the classes of solutions shown in Table ����
Note that in the last three cases A

�

�� � �� 	� �� but one can say that the starred
quantities refer to values at the point R � �� � � �ref 
 �� �

In all nine cases of Table ���� from Eqs� ������ we may easily �nd the forms
of the free integrals from the relations�

�We have assumed that at point r � r� � � � � we have � � ��� So we have excluded
solutions with zero density on the axis� But we may easily extent the models of Table ����
Generally	 if the starred quantities B� � V� � �� refer to values of Br � Vr � � at the point r �
r� � � � �ref 	 then we may substitute g� � constant � g� and g� � constant � g� in a way

such at � � �ref � g
�

�
��� �� � � and g� � ��
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A �
B�r

�
�

�

�Z
�

q
g
�

� d� �#A �
p

����g� �

% �
V�
r�

s
g
�

�

g�
� L � r�V��

s
g
�

�

g�
� ������

while by substituting g�� g�� g� in Eqs� ������� ������� the corresponding ordinary
di�erential equations for the jet radius G�R�� Alfv�en number M �R� and pressure
component f��R� are found from the R	relations� as it is illustrated in the
following section�
From the perspective of the �	space� in each one of the cases of Table ��� there
exists a �� � matrix K such that

Y � � u� u� u� �K � ������

so that from Eq� �������

� u� u� u� � KXy � � �

If ui are linearly independent then

KXy � � �

These three equations are the ordinary di�erential equations for the functions
of R in each model while the pressure is�

P �
B�
�

��
� u� u� u� �KPy �

B�
�

��
�P� � P�g� � P�u�� �

where

KPy � �P� P� P��
y �

The �rst two cases of Table ��� are of some interest� The �rst� is a degenerate
one with u� � � and the following form of the free integrals

A �
B�r

�
�

�
� � #A �

p
���� �� � ��� �% �

�V�
r�

�p
� � ��

� ������

This is a special case of the more general following case ��� for � � � �and
 � ��� and has been studied in detail in �ST��� and �TTS���� It is the single
case where we have only two conditions between the functions of R� so that
the third relation between the unknown functions G� M� f� is freely chosen�
In �TTS��� this corresponds to an a priori speci�cation of the shape of the
poloidal streamlines� while in ST�� in an a priori imposed relationship between
the spherically and nonspherically symmetric components of the pressure� This
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Table ��� Meridionally Self	similar Radial Models
Case g���� g���� g����

���
a

� ln j �� � j � �

��� b
�
R

��

��� d�� ln j �� � j �� �
�

�
� � ���

��� �� ln j �� � j� ��
R

ln�
��� d� � ln� �� � �� ln�

��� g���� �� �� ln j �� � j� �� � �g
�

� ��� �� � �

��� � ln j �� � j g���� �� ����� ln�� ��� ���
�� � ��� �

aParkers solution �Par���
b�LTP���

last case leads to a generalized polytropic	type relation between pressure and
density of the form�

P ���R�

P ��� R�
� function of

����R�

���� R�
� ������

As a result� a Bernoulli	type constant exists and� among others� this constant
gives a quantitative criterion for the transition of an asymptotically conical wind
from an ine�cient magnetic rotator to an asymptotically cylindrical jet from an
e�cient magnetic rotator�
The second case with � 	� �� �� � 	� � has u� � �� u� � ��� The corresponding
form of the free integrals is 

A �
B�r

�
�

�
�� #A �

p
���� �� � �� � ������ �% �

V�
r�

s
����� � 

� � �� � �����
�������

This is a new case which emerged from the present systematic construction�
The corresponding di�erential equations are derived in detail in the example of
the next section where the solution is brie�y analysed�

In the special con�guration with G � R 
 � � sin� �� the �eld and stream
lines on the poloidal plane are radial� The functions fi � i � �� � � �� are given in
Appendix ��A� Eqs� ������������� are simpli�ed to

P �
B�
�

��

�
f�g� � f� � f�g

�

� ��� �� � f��g
�

�

�
� ������

�f	g� � f��g
�

� � f
�

�g� � f� ��� ��g
�

� � f
�

� � � � ������

If this is the case� following the algorithm of the previous sections� we �nd the
�ve cases shown in Table ����
The �rst case is a degenerate one� wherein there is only one condition be	
tween the unknown functions M �R� � f��R�� Thus� a second relation between
M �R� � f��R� can be imposed a priori� for example� a polytropic relation be	
tween pressure and density� This last possibility leads precisely to Parker�s
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�Par
�� classical solar wind solution with a radial and nonrotating out�ow �see
Chapter 
�� All other cases ���	��� are non�degenerate� i�e�� there are two rela	
tions between M �R�� f��R��
The second case has been analyzed in detail in Lima et al �LTP�
� and cor	
responds to a radial but heliolatitudinally depended out�ow� If in addition
� � ��� � � � this case coincides with ��� in Table ��� for radial poloidal stream	
lines� Note that a common feature of all rotating cases with radial stream lines
on the poloidal plane is that they cannot be extended in all the poloidal plane�
for su�ciently fast magnetic rotators� For example� in the model of Lima et al�
����
� the pressure becomes negative at some colatitude �max� for large values
of rotation� This is basically due to the fact that with the poloidal magnetic
�eld dropping like �	R� and the azimuthal �eld dropping like �	R� the magnetic
pressure drops like �	R� and by itself alone cannot balance the magnetic ten	
sion which drops like �	R�� a strong pressure gradient is then needed from the
pole towards the equator to balance the magnetic pinching� In fast magnetic
rotators this pressure gradient is so strong that it leads to negative values of
the pressure at angles � � �max� A collimated out�ow with uniform asymptotic
conditions is the only way left for an everywhere valid out�ow from an e�cient
magnetic rotator �HN��� ST����

����� Example of a new model for a meridionally self�
similar MHD out�ow

Let us illustrate the previous construction with the example ������� obtained
from the present case with n � �� This number means the following

Since the �rst digit is �� there are six constants �
�
�
i � i � �� �� � � � � 
 such that

the following relation holds between the functions Yi���� i����� ����

Y
 �
�X

i��

�
�
�
i Yi � ��	relation	�� � ����
�

Substituting this expression of Y
 in the initial relation Eq� ������ between the
functions �Xi� Yi�� i������� we obtain�

X� � �
�
�
� X


�
Y� �

�
X� � �

�
�
� X


�
Y� � � � ��

�
X� � �

�
�
� X


�
Y� � � � ������

Now the second digit is again � and thus there are �ve constants �
���
i � i �

�� �� � � � � � such that

Y� �
�X

i��

�
���
i Yi � ��	relation	�� � ������

while substituting this relation in Eq� ������ we obtain�h�
X� � �

�
�
� X


�
� �

���
�

�
X� � �

�
�
� X


�i
Y� � � � �

�
h�

X� � �
�
�
� X


�
� �

���
�

�
X� � �

�
�
� X


�i
Y� � � �

������
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The third digit is � and hence�
X� � �

�
�
� X


�
� �

���
�

�
X� � �

�
�
� X


�
� �

�R	relation	��

������

a relation between the functions of R� With the help of Eq� ������� Eq� ������
now reduces to�

�X
i��

h�
Xi � �

�
�
i X


�
� �

���
i

�
X� � �

�
�
� X


�i
Yi � � � ������

The fourth digit is � and thus there are three constants �
���
i � i � �� �� � such that

Y� �
�X
i��

�
���
i Yi � ��	relation	�� � ������

Substituting this relation in Eq� ������ we obtain

P�
i��

nh�
Xi � �

�
�
i X


�
� �

���
i

�
X� � �

�
�
� X


�i
�

�
���
i

h�
X� � �

�
�
� X


�
� �

���
�

�
X� � �

�
�
� X


�io
Yi � � �

������

The �fth digit is � and there are two constants �
���
i � i � �� � such that

Y� � �
���
� Y� � �

���
� Y� � ��	relation	�� � ������

Substituting this in Eq� ������ we �nd a relation involving Y� and Y�� Finally�
we must put equal to zero the multipliers of Y�� Y� in this relation because the
two remaining digits are �� So we haveh�

Xi � �
�
�
i X


�
� �

���
i

�
X� � �

�
�
� X


�i
�

�
���
i

h�
X� � �

�
�
� X


�
� �

���
�

�
X� � �

�
�
� X


�i
�

�
���
i

�h�
X� � �

�
�
� X


�
� �

���
�

�
X� � �

�
�
� X


�i
�

�
���
�

h�
X� � �

�
�
� X


�
� �

���
�

�
X� � �

�
�
� X


�i�
� � �

for i � �� � �R	relations	���� �

������

These last two equations together with Eq� ������ are the three equations for
the functions of R� On the other hand� Eq� ����
�� Eq� ������� Eq� ������ and
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Eq� ������ are four relations among the three functions of �� These relations
of the functions of � �Eqs� ������� ������� ������� ����
�� are equivalent to the
system

Y� � c�Y� � c�Y�
Y� � c�Y� � c�Y�
Y� � c�Y� � c�Y� � c
Y�
Y
 � c�Y� � c	Y� � c��Y�

����
���


��� 
��!

g
�

� � c� � c�g�
�g

�

� � c� � c�g�
�g

�

� � c� � c�g� � c
g�
g� � c� � c	g� � c��g�

Note that we have renamed the constants and also used Eq� ������� From the
�rst� if c� 	� � it follows that g� � �c�	c� � cec��� Then� from the second c � �
and hence g� � �c�	c�� But g� cannot be a constant� Thus� c� � � while the
�rst two equations combined with Eq� ������ give g� � � � c�� while the third
has the solutions

g� �

� 
!

c�
��c	

� � c�� � c���
c	 � if c
 	� �� �

c�� ln� � c�� � c��� � if c
 � �
c�� � c�� ln� � c�
 � if c
 � � �

For the �rst possibility� we have �nally the second case of Table ��� 

g� � �
g� � � � ���	� �
g� � � � �� � ����

�
� 	� �� �

where we have absorbed the constants c��� c�� in the unknown function f��
c��f� � c��f� � f� � f�� Eqs� ������� �������

After substituting these values of g�� g�� g� in Eqs� ������ 	 ������� we �nd
that

�f
�

� � f� � f	� �
h
f
�

� � f
�

� � f
 � f� � �f	

i
� � �

h
f
�

�	�� f� � ��f	

i
�� � � �����
�

and

P �
B�
�

��
�P� � P�� � P��

��

�
B�
�

��

�
f� � f� � �f� � f� � f� � f��� � �

�
f�
�

� f�

�
��
	
�

������

By setting equal to zero the three expressions in the square brackets of Eq�
����
� �since � 	� � and � � � � �� are linearly independent vectors in the �	space
for � 	� �� � � we �nd the three R	relations for the functions G�R�� M �R��
f��R� �which are the same with Eqs� ��������������� Using the functions f�� F
and the de�nitions of P� and P� we obtain �ve� �rst order� ordinary di�erential
equations for G�R�� F �R�� M �R� and the two pressure components P��R� and
P��R��

dG�

dR
� �F � �

R
G� � ������
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dF

dR
�

F

��M�

dM�

dR
� F �F � ��

�R
� F � � �

�R ���M��
� �G�RP�

��M�
�

�R

M� ���M���
�


�M� � �
�
G� �M� � �M�



��G�

��
������

dM�

dR
�

M�


��M�

�
��M� � ��G� �M�

"������ G�


��M�

�
R�

�

F � �

R

�
�� � ��M� � �� � ��G�

�# ������

dP�

dR
� �

�
F � � �

�R�G�
� �



��G�

��
G� ���M��

�

�
dM�

dR
�

M�F

�R�G�

dF

dR
� ���

R�M�
� M�



F � � �

�
�F � ��

�R�G�
�


�F � ��

�

�M� � �

�
G� �M�

�
RG�M� ���M���

������

dP�

dR
� � �

G�

dM�

dR
� ��

R�M�
� �M� �F � ��

RG�
������

Note that the third pressure component P��R� is given explicitly in terms
of M and G �f� and f��� An integration of the above set of equations will
give the complete solution� However� this exercise is rather complicated since
any physically accepted solution should pass through the various MHD critical
points �TSS��
�� This undertaking� together with a discussion of the solution
and application to collimated out�ows is the subject of Chapter ��

It is worth mentioning at this point that our analysis of model ��� of Table
��� shows that mainly cylindrically collimated solutions are obtained� The set
of Figures ������� illustrates such a typical solution for a representative set of
the constants describing the particular model� This solution crosses the Alfv�en
surface for appropriate values of the slope of the square of the Alfv�en number
p� �



dM�	dR

�
�
� the expansion function F� and P�� which satisfy the Alfv�en

regularity condition �HN��� ST��� which is easily obtained from Eq� ������ of
Appendix ��A at �R � G � M � ��� i�e��

F�p� � �f�� � ������

The nonspherically symmetric part of the pressure P�� is obtained from its de�	
nition while the functions f�� � f�� are calculated for R � � using the L�Hospital
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Figure ��� Poloidal �eld and streamlines close to the stellar base �left panel�
and in an enlarged scale to show the asymptotical collimation reached after the
oscillations have decayed �right panel� for the �	self similar model of case ���
from Table ���� for the following set of parameters � � ���� �� � �GM	r�V

�
� �

��� ��� � ���� ���� � ����  � ���� � � ��� p� �


dM�	dR

�
�

� ��
�F� � ����
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Figure ��� Out�ow velocities in units of V�� the radial speed at the Alfv�en point
�� � �� R � ��� for the parameters given in the caption of Fig� ��� of model ���
of Table ����

rule� Figs� ������� correspond to the set F� � ��� and p� � ��
� Note that af	
ter the Alfv�en star	type critical point is crossed� the modi�ed by self	similarity
X	type fast critical point �TSS��
� may be crossed by further adjusting ap	
propriately the triplet of the variables �F� � p� � P���� It su�ces to note that
solutions crossing only the Alfv�en surface do not di�er qualitatively from those
which in addition cross the modi�ed by the present meridional self	similarity
fast critical surface�

The left panel �g� ��� shows the shape of the streamlines on the poloidal
plane and close to the Alfv�en surface� The cylindrical asymptotical shape of the
poloidal streamlines may be better seen in the enlarged scale of the right panel
of the same �gure� Note also the constant wavelength but the decaying with
distance amplitude of the oscillations� in full agreement with the analysis in
�VT����At the last shown �eldline �out � �� the toroidal �elds vanish� B� � ��
V� � �� For � � �out �%

� becomes negative� so there is no solution there� The
same oscillatory behaviour can be seen in the �eldlines which are not rooted on
the star but they are perpendicular to a thin disk around it �dotted curves in
Figs� ��������� The oscillatory structure of all �ow speeds before the �ow reaches
full cylindrical collimation is also shown in Fig� ��� where we have plotted the
characteristic velocities in units of the Alfv�en speed at the polar axis and Alfv�en
sphere �� � � � R � ��� V��

The poloidal speed along the polar axis Vp�pol increases to a uniform super	



��� Meridionally self�similar MHD out�ows ���

Alfv�enic value and is higher than the same speed along the limiting streamline
Vp�lim �i�e�� the last �eldline rooted on the stellar base rstar taken to be at
�����r��� Both reach asymptotically uniform values after Vp�lim intersects the
curve of the poloidal Alfv�en speed VAp�lim at R � �� Note that corotation
may be seen up to the Alfv�en distance R � � the azimuthal speed V��lim at
the �limiting �eldline� increases until the Alfv�en surface is reached and drops
from angular momentum conservation as the out�ow expands almost conically�
Further away however� this speed too levels o� to a constant value when full
collimation is achieved� as expected� Finally� the fact that the jet has a large
component of toroidal �eld is re�ected by the large values of the Alfv�en speed as	
sociated with the toroidal magnetic �eld� VA��lim� as compared to the rotational
speed V��lim�
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�� Systematic construction of classes of radi�
ally self�similar MHD out�ows

To construct general classes of radially self	similar solutions� we make the fol	
lowing two key assumptions
�i� the Alfv�en Mach number M is solely a function of ��

M � M ��� � ������

with M ���� � � and
�ii� that the poloidal velocity and magnetic �elds have a dipolar angular depen	
dence�

A �
Bo�

�
o

�
A ��� � � �

R�

G�
sin� � � R �

r

�o
� with ������

G � G��� � ����
�

where Bo� �o are constants�
By choosing G ���� � � at the Alfv�en
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Figure ��� An illustration of the con	
struction of the streamlines � � const�
on the poloidal plane in radial selfsimi	
lar out�ows�

transition ��� G��� evidently measures
the cylindrical distance � to the po	
lar axis of each �eldline labeled by
�� normalized to its cylindrical dis	
tance �� at the Alfv�en point� G ��� �
�	��� For a smooth crossing of the
Alfv�en cone � � �� �r � r� ��� � � �
���� the free integrals L and % are re	
lated by

L

%
� ��

��A� � r�� ��� sin� �� � ��
o� �

������
Therefore� the second assumption is
equivalent with the statement that at
the Alfv�en conical surface� the cylin	
drical distance �a of each magnetic
�ux surface � � const is simply pro	
portional to

p
�� exactly as in the pre	

vious meridionally self	similar case�
Instead of using the three functions of �� �A �#A� %� we found it more conve	
nient to work with the three dimensionless functions of �� �q� � q� � q���

q� ��� �

Z A��
�

d� � q� ��� �
��
o

B�
o

Z
%�#�

Ad� � q� ��� �
GM
B�
o�o

Z
#�
A

�
�
�

d� � ������
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Table ��� Radially Self	similar Models
Case q���� q���� q���� constants

���
a E�

x���
x�� D�

x���
x�� C�

x���
x�� E�� x� � �� �

��� b
E� ln� D� ln� C� ln� E� �� �

��� E��
x� � E��

x� D��
x� �D��

x� C��
x� � C��

x� E�
� �D�

� � C�
� �E�� x�� x�� x� � x� �� �

��� E� ln�� E��
x D� ln��D��

x C� ln�� C��
x E�

i �D�
i � C�

i � x �� �� i � ���

��� E� �ln��
� � E� ln� D� �ln��

� �D� ln� C� �ln��
� � C� ln� E�

� �D�
� � C�

� �� �

��� E��
x ln�� E��

x D��
x ln��D��

x C��
x ln�� C��

x E�
� �D�

� � C�
� �� �

a�CL�
	 BP���
b�CL�
� for x � �

Following the same algorithm as in the previous case� we shall use �� � �� as the
independent variables and transform the derivatives with respect to r and � to
derivatives with respect to � and � in the $r	 and $�	components of the momentum
equation� Integrating the resulting $r'component of the momentum equation we
get

P �
B�
o

��

�
h��q

�

� � h��q
�

� � h�q� � h�q� � h�q� � h�

�
� ������

or

P �
B�
o

��
YPy

with

P � � h� h� h� h� h� h� � � � ���
��

and

Y � � Y� Y� Y� Y� Y� Y� Y
 � �
h

� q� �q
�

� q� �q
�

� q� �q
�

�

i
� ���
��

and after substituting the pressure in the other component of the momentum
equation we obtain

Fh��q
�

� � h
�

�q� � h� �F � ���q
�

� � h
�

�q��

�
h�
�
��M�

����
�q

�

�

���M��
� h

�

�q� � h
�

� � � �

���
��

where a prime in the functions of qi���� i������ and hi indicates a derivative
with respect to their variables � and ln sin �� respectively� while the functions
hj ��� � j � �� �� �� �� � and F are given in Appendix ��B�
This expression is again of the form

X
 ��� Y
 ��� � X� ��� Y� ��� � � � �� X� ���Y� ��� � � � or �YXy � � ���
��
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with X the �� � �� matrix

X � � X� X� X� X� X� X� X
 � �

�
�h�� h��

�
h�
�
��M�

����
���M��

h
�

� h� �F � �� h
�

� Fh�

�
�� � ���
��

As in the previous case of meridionally self	similar solutions� we classify the
various possibilities by the sets �xxxxxxx�� And� these sets always have ���� at
the end� their �rst digit is ���� they have at most three ���s�� while from the �


possibilities we end up again with the cases �������� �������� �������� ��������
�������� Now the vectors q����� q����� q���� belong to a �D �	space with basis
vectors �e���� � e���� � e������ This space contains all vectors qi���� i � �� �� �
subject to the r	self	similarity constraint manifested by Eq� ���
��� i�e�� that for
a given such set qi���� i � �� �� �� the vectors �� �q

�

i��� � i � �� �� � also belong
to the same space� Each of the functions qi���� i � �� �� � which satisfy this
constraint are then a linear combination of the basis vectors e����� e����� e�����
In the following� we choose e� � �� e� � q����� All such sets of basis vectors give
all possible radially self	similar solutions� Therefore� collecting all possibilities�
we end up with the 
 classes of solutions shown in Table ����

In all of the cases of Table ���� from Eqs� ������ we �nd the form of the
functions of ��

A �
Bo�

�
o

�

Z �

�

q
�q

�

�d� � #�
A �

B�
o�o

GM �
�
� q

�

� �

%� �
GM
��
o

q
�

�

q
�

�

��
�
� � L� � GM�o

q
�

�

q
�

�

�
�
� � ���
��

Finally� by substituting q� � q� � q� in Eqs� ������� ���
��� we �nd the ordinary
di�erential equations which the functions G��� �M ��� � h���� obey�
In �	space� for each of the cases of Table ��� there exists a �� � �� matrix K
such that

Y � � e� e� e� � K � ���

�

and from Eq� ���
��
� e� e� e� � KXy � � �

If the basis vectors ei are linearly independent� then�

KXy � � �

These three equations are the ordinary di�erential equations for the functions
of � in each model of Table ���� while for the pressure�

P �
B�
o

��
� e� e� e� �KPy �

B�
�

��
�P� � P�q� � P�e�� �
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where
KPy � �P� P� P��

y �

As with the previous meridionally self	similar solutions� the �rst three classes
are of particular interest� The �rst corresponds to the following form of the free
integrals

A �
Bo�

�
o

p
E�

x
�
x
� � #�

A �
C�B

�
o�o

GM ��x����� � %� �
D�GM
��
oC�

��
�
� � ���
��

This is a degenerate case� i�e�� e� � � and we have only two conditions
between the functions of �� It follows that we are free to impose a third re	
lation between the unknown functions �G��� �M ��� � h������ One possibility is
that such a third imposed relation is of the polytropic type� P � �� �in this
case h� � ��� In such a polytropic case which has been analyzed in detail in
Contopoulos � Lovelace �CL���� the magnetic �ux is of the form A � ff ���Rx

with ff ��� � �sin �	G����x �for notation see also �TSS��
��� The magnetic �eld
at the equatorial plane � � ��o is B � Rx��� the density � � R�x��� while
the sound� Alfv�en and rotational speeds scale as their Keplerian counterparts�

i�e�� as R����� Note that if �D�G ��	��	C��
�
�G� �M��	G



��M�

���

��

�
� ��

the rotational velocity at the equatorial plane is exactly Keplerian� The classi	
cal and simplest subcase analyzed in �BP��� corresponds to the subclass with
x � �	�� wherein B � R����� The two relations among the functions of � are
the two resulting �rst order di�erential equations for the Alfv�en number M ���
and dimensionless radius G��� �m��� � M���� and ��� � G���	G��� � in the
notation of �BP�����
The second case is also degenerate since e� � � with again only two conditions
between the functions of �� As before� we are free to impose a third relation
between the unknown functions �G��� �M ��� � h������ for example� a polytropic
relationship� Then one can prove that this case is a subcase of the �rst one �if
it is polytropic�� for x � ��
All other cases shown in Table ��� are nondegenerate� The third class� is char	
acterized �rst by a set of parameters describing the particular model and the
dependence of the free integrals on the magnetic �ux function A ����
�x� � x� � E� � E� � C� � C� � D� � D��� second by the Alfv�en angle ��� and third� by
the set of the critical point parameters p� �



dM�	d�

�
�

and �� which denote
the slope of the Alfv�en number and the expansion angle� respectively� at the
Alfv�en angle ��� together with the pressure component P�� through h��� This
triplet of �dynamical� parameters �xes the physical solution and they are related
through the Alfv�en regularity condition which is now obtained from Eq� ������
of Appendix ��B at the Alfv�en angle �� where M � G � � and h� � h��� i�e�� �

h�� � �sin� �� tan��� � ���p� � ���
��

As with the previous case of meridional self	similarity� this condition relates the
slope of the square of the Alfv�en number p� �



dM�	d�

�
�

and the expansion
angle �� with the pressure component P�� through h��� Finally� the requirement
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Figure ��� Left panel Field and streamlines for the cylindrical r	self similar
model of case ��� from Table ��� and the following set of parameters x� � ���
�
x� � ����� E� � ������ E� � ����� C� � ����� C� � ���
� D� � ����
D� � ���� �� � 
�o� �� � ��o� p� � ��� At the disk level� V� � R���� while
on the poloidal �eld�streamline �out � 
������
� Bp � Vp � �� Right panel
The characteristic velocities in units of the z	component of the �ow speed at
the point �� � �� � � �	�� � Vo�
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that the solution crosses the two slow and fast X	type critical points �modi�ed
by the radial self	similarity assumption� �TSS��
� determines all these three
�dynamical� parameters ��� � p� � P����

It is interesting to note that contrary to classes ���	��� in Table ���� this
model ��� may be characterized by a scale� for example the radial distance on
the plane of the disk where the magnitudes of the poloidal speed and magnetic
�eld or the toroidal speed and magnetic �eld become zero� Hence� it occurred to
us that this is an interesting generalization of the �BP��� model and therefore
worthy of further investigation�

Fig� ��� are a typical illustration of model ��� for describing collimated jet	
type out�ows with an oscillatory behaviour� In the left panel the poloidal �eld
and streamlines reach a cylindrical shape after undergoing oscillations in their
radius� As we move downstream� the amplitude of these oscillations decays
while their wavelength increases� In fact� the exact behaviour of the oscilla	
tions is analytically described in �VT��� �see also Chapter �� where it is shown
that they can be regarded as perturbations on an asymptotically cylindrical
shape which can be expressed in terms of the Legendre functions P�

� �cos ��
and Q�

� �cos ��� According to this analysis� when �� 
 �� the asymptotically
cylindrical shape is �nally obtained through those oscillations� Then the per	
turbation �for � � �� is proportional to ����� � or since �� 
 �� proportional to

�
z

���
cos

j � j ln �

z � Do

�
� In the example shown in Fig� ��� the amplitude

of the oscillations is rather weak� Note however� that cases also exist with an
extremely strong oscillation amplitude and such examples will be analyzed in
another Chapter� On the other hand� when �� � � the asymptotically cylin	
drical shape is reached without such oscillations� Exactly this last possibility is
shown in the following case of Figs� ��
�

To further illustrate the various possibilities for the asymptotic behaviour
of out�ows starting from a Keplerian disk� we examine brie�y the group of
three models in Figs� ��
�������� where depending on the values of the model
constants� we get one with cylindrical� parabolical� or conical terminal geometry

��� In Fig� ��
 a cylindrically collimated out�ow lim

��

�M� � G�� � constants�

is obtained for a set of the model parameters �xi� Ei� Ci� Di�� i����� The Alfv�en
conical surface is taken at �� � 
�o where the slope of the square of the Alfv�en
number is �xed as p� � ���� while the expansion angle �� � ��o �the angle
of the poloidal streamline with the cylindrical radius�� The characteristic scale
of the model is taken to indicate approximately the radius of the jet� or more
precisely� the distance along the disk where for �out � � we have Bp � Vp � ��
In the right panel of Fig� ��
 the velocities on the reference line � � � are plotted
in units of Vo� the z	component of the �ow speed at the point �� � �� � � �	���

��� In Fig� ��� an r	self similar model belonging to case ��� in Table ��� with
parabolic asymptotical geometry lim


��
�M� � G�� � �� is examined for another

set of parameters �xi� Ei� Ci� Di�� i����� The Alfv�en conical surface is taken
now at �� � ��o where the slope of the square of the Alfv�en number is chosen
as p� � ���� and the expansion angle �� � ��o�
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Figure ��
 Left panel Field and streamlines for the cylindrical r	self similar
model of case ��� from Table ��� and the following set of parameters x� � �����
x� � ���
� E� � ��������

� E� � ��
�������� C� � ����������� C� � D� �
�� D� � ��
��

���� �� � 
�o� �� � ������
�
o� p� � ����� At the disk level�
V� � R���� while on the poloidal �eld�streamline �out � �� Bp � Vp � ��
Right panel The characteristic velocities in units of the z	component of the
�ow speed at the point �� � �� � � �	�� � Vo�
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Figure ��� Left panel Poloidal �eld and streamlines for the parabolic r	self
similar model of case ���� Table ��� and the following set of parameters x� �
����� x� � ���
� E� � ����������� E� � �������� C� � ��������� C� �
D� � �� D� � ����������� �� � ��o� �� � ����
����o� p� � ����� In this
case V� � R���� on the equatorial plane while on the streamline �out � ��
Bp � Vp � �� Right panel The characteristic velocities in units of the z	
component of the �ow speed at the point �� � �� � � �	�� � Vo�
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Figure ��� Left panel Field and streamlines for the conical r	self similar model
of case ���� Table ��� and the following set of parameters x� � ����� x� � ����
and E� � ����
��
��� E� � ����������� C� � �������� C� � D� � �� D� �
�������� �� � 
�o� �� � ���������o� p� � ����� In this case V� � R���� on the
equatorial plane while on the poloidal �eld�streamline �out � �� Bp � Vp � ��
For large distances from the disk all lines with � � � go asymptotically to
the line � � �min� Right panel The characteristic velocities in units of the
z	component of the �ow speed at the point �� � �� � � �	�� � Vo�
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��� Finally� in Fig� ��� the r	self similar model of case ��� in Table ��� gives a
conical asymptotical geometry for a third set of the parameters �xi� Ei� Ci� Di��
i���� and �� � 
�o� �� � ��o� p� � ����� Note that now the solution exists
only for � � �min where �min � ����o� When this value of � is approached�

lim

�
min

�M� � G�� � ��

In all these four possibilities and along a given �eld�streamline� the out�ow
starts from the equator where V� � R���� with a low subAlfv�enic poloidal speed�
This poloidal speed Vp crosses the Alfv�en conical surface at �� in all cases� In
the cylindrical case of Fig� ��
� Vp increases rapidly to a uniform value when
collimation is achieved� The azimuthal speed V� on the other hand� drops with
height in all cases� as rotational energy is transformed to poloidal kinetic energy�
Finally� the azimuthal Alfv�en speed is the strongest in the cylindrical case where
the toroidal magnetic �eld is responsible for the ensuing �nal collimation�
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the poloidal plane in general selfsimilarity�
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����� General equations

In this section we �ll examine general self similar solutions of the MHD equations�
In general� M� is a function of some variable � �with � a function of r and ��
which in some cases is not known a�priori��

Thus� M� � M� ��� 
 �� ���

� �� � ��
� M� ���� where �� is the density at the Alfv�en

surface�
First let�s de�ne the function � as the ratio between the free integrals L �%

� �
L

��
o%

where �o is some reference scale �for adimensionalization�� We are

interested for transAlfv�enic �ows� where L � %��
�� and �� is the cylindrical

radius at the Alfv�en surface� Thus � �
��
�

��
o

� Without loss of generality� we

de�ne the adimensional cylindrical distance from the polar axis

G �� � �� �
� �� � ��

�� ���
�

� �� � ��

�o
p
�

�

At the Alfv�en point M �� � ��� � � it�s obvious that G �� � � � ��� � �� for

each line � �constant� So � �
��

��
oG

�
� As in the previous self similar solutions�

our �rst assumption is that G is a function of � only

G � G��� � or G � G�M � � ���
��

This is then a general �de�nition� of self similarity G and M are functions of
the same variable� or in other words M is a function of G and vice	versa� Self
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similarity means that if we know one �eldline then we can �nd all the others as

follows Moving along a single line M �constant �or � �constant��

r
��

��
�

��

��

�because at this curve G �constant��
The second crucial assumption is

r � �of ��� g ��� � ������

Note that this assumption is made because in the momentum equation we have
the gravitational force which is a function of r�
So we may transform from the familiar spherical coordinates �r � �� to the new
coordinates �� � �� via the relations

sin � �
G ���

p
�

f ��� g ���
and r � �of ��� g ��� � ������

We can use these two relations in order to move from the �r � �� to the �� � ��
coordinates on the poloidal plane�
Note that� the assumption Eq� ������� for g � � takes the form r � �of ���� or
� � � �r�� Thus Eqs� ���
��	������ are equivalent to M � M �r� � G � G�r��
On the other hand� for g �

p
�� using � � �oG

p
�� it takes the form sin � �

G ��� 	f ���� or � � � ���� Thus Eqs� ���
��	������ are equivalent to M �
M ��� � G � G ����
Introduce the functions

Y ��� �
d ln j g j
d ln�

�Z ��� � �d ln j f j
d lnG�

�
�

F � �

d ln j f j
d ln j � j �

if the expansion factor is de�ned by F � �� d lnG�

d ln j � j �
Then�

� lnG�

� ln r
�

�Y � �

Y � Z
�

� lnG�

� ln j sin � j �
�Y

Y � Z
and

� ln�

� ln r
�

�Z � �

Y � Z
�

� ln�

� ln j sin � j �
�Z

Y � Z
�
At this point we note the following two inportand facts

� If we were to choose the coordinates � and � to be orthogonal� then we
would have �r���rG � �� or after solving the resulting di�erential equation
it follows that G � r	�o � g �constant� f	G �constant and � � sin� ��
Thus the only case is the radial �	 self similar model�

� We can take the previous r	 or �	 self similar solutions as special cases�

First� by choosing Y �
�

�
� in which case � � � ���� if in addition � �

sin � � Z � ��

�
� �

F � �
� Second� by choosing Y � �� in which case � �

� �r�� if in addition � � r � Z �
�

F � �
�
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In the general self similar case we have

A �
Bo�

�
o

�
A ��� � � �

R�

G� ���
sin� � � R �

r

�o
�

%�#�
A �

B�
o

��
o

g
�

� ��� � L � ��
o�% �

Br � Bo
Z cos �

G� �Y � Z�

dA
d�

�B
 � �Bo



Z � �

�

�
sin �

G� �Y � Z�

dA
d�

�B� � �Bo

q
�g

�

�

�

G

��G�

��M�
�

Vr �
M�

#�
A

Br � V
 �
M�

#�
A

B
 � V� �
Bo

p
�g

�

�

#A

�

G

G� �M�

��M�
�

If we substitute � and � instead of r and � in the momentum equation we get
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and for the component of the momentumequation in the direction of �r� M� �
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this last equation can be written in the form
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which gives the familiar Bernoulli integral if we have a polytropic relation P �
Q �A� �� � or in general if P � P� �A�P� ����
It is worth to mention that if P � P� �A�P� ��� then we can again integrate
this equation as in the �	 self similar model �ST��� where P� �A� � � � �� and
P� ��� � ) �R��

����� Solutions with constant Y

In order to �nd solutions of Eqs� ������	������ the simplest way to proceed is to
assume that

Y � ��� constant� or equivalently g � ����Y �

If this is the case� Eq� ������ is a sum of products between functions of � and
functions of �� so we may proceed as in the previous self similar cases�
For that goal we introduce the functions of � � q� � q� � q� � g� � g� and g��o such
that
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where primes indicate derivative with respect to ��
Then� Eq� ������ can be integrated at once with respect to � to yield
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where S� � S� ��� is the constant of the integration� while the functions Si ��� � i �
�� � � � � � are given in Appendix ��C�
If we substitute this form of the pressure in Eq� ������ we �nd

S ���S ��g��Q��g
�

��Q��
�Y g

�

��S ��g��Q��g
�

��
�F � ��Z

f�M�
g��o�S �
q��S ��q� � � �

����
�
where the functions Qi ��� � i � �� �� � are given in Appendix ��C� Primes in the
functions of � indicate derivatives with respect to ��
This case where Y �constant� includes the cases of r	 and �	 self similarities as
special cases

� For Y � �
� we have � � � ���� If we choose � � sin �� say� � �

sin �

sin ��
�

then Eqs� ������ give Eqs� ������� while Eq� ������ and Eq� ����
� are
equivalent to Eq� ������ and Eq� ���
�� respectively�

� For Y � � we have � � � �r�� If we choose � � r� say� � �
r

�o
with

�o � r�� then Eq� ������ gives Eqs� ������� while Eq� ������ and Eq�
����
� are equivalent with Eq� ������ and Eq� ������ respectively�

Now we may proceed looking for solutions with Y 	� � � �� �
Eq� ����
� can be written in the form

	X
i��

Xi ���Yi ��� � � or YXy � � �

with X �Y the �� � �� matrices
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� Q� Q� S �� S
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f�M�Y

	
�

������

As in the previous self similar cases �previous sections of this Chapter� the so	
lutions correspond to sets �xx � � �xxx$ %z &

	digits

� where x � �� ��

We have four unknown functions of � S� �M� � f � Z and three unknown func	
tions of� g� � g� � q� �we remind that the functions g� � q� � q� depend on g� � g� � q��
see Eq� �������� So following the method of the previous sections �choosing
numbers with at most four ���s�� which corresponds to at most four relations
between functions of � and examining the overdetermination of the system for
the functions of ��� from the �	 cases we end up with only seven
�����������������������������������������������������������and ����������
Only the �rst set corresponds to degenerate cases� because in this set we have
only three relations between the four functions of ��
One can solve in each set the system for the functions g� � g� � q� and M� � G� � f �S�
in order to construct new models�
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Examination of the degenerate set ���������

If we solve the system for g� � g� � q� in the frame of this set we end up with three
cases
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Under this assumption we have one more unknown �the function S ����
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����� Solutions with constant Z

Another way to separate the variables �� � �� in Eq� ����
� is to assume

Z � constant� or f � G��Z �

If this is the case� from Eq� ������� � is a function of r��Z � Equivalently� the
equation of the lines is

z

�
�

s�
�

� �z � ��

���Z��
� � �

So if we �nd solutions of Eq� ����
� they will correspond to cases with prescribed
�eldlines�
If Z � ��

� we have radial �eldlines on the poloidal plane while for other values
of Z �g� ���� shows the shape of the lines�


�
 Summary

In this Chapter we have examined a systematic way for constructing exact MHD
solutions for plasma �ows� The �rst assumption was to consider the ideal plas	
mas MHD equations for time	independent conditions� Eq� �����	������ without
imposing the extra constraint of the frequently used polytropic assumption� Sec�
ond� we con�ned our attention to axisymmetric situations� without an electric
�eld in the ignorable direction �Con���� in which case the poloidal magnetic
and velocity �elds can be expressed in terms of the magnetic �ux function A
while several integrals exist� Eq� �����	������ In that case� besides A� a second
natural variable is the Alfv�en Mach number M � Eq� ������ We denoted by G
the cylindrical distance � of a poloidal streamline from the system�s symmetry
axis� in units of the cylindrical distance of the Alfv�en surface from the same axis�
��� Third� we further con�ned our attention to transAlfv�enic out�ows in which
case the regularization of the azimuthal components in Eq� ����	���� requires
that the ratio of the two integrals of the total speci�c angular momentum in
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the �ow L�A� and corotation frequency %�A� is some function ��A� �as in Eq�
������� By introducing some reference scale �o this function � is dimensionless�
�as in Eq� ����� where �o � r��� Apparently �M��� is a rather convenient set
of dimensionless variables for describing all physical quantities in the poloidal
plane� For any set of orthogonal curvilinear coordinates suitable for describ	
ing axisymmetric problems� we may then convert their poloidal coordinates
to �M���� Examples are spherical coordinates �r�M���� ��M���� ��� cylindri	
cal coordinates �z�M���� ��M���� ��� toroidal coordinates �u�M���� v�M���� ���
oblate�prolate spheroidal coordinates ��M���� ��M���� ��� paraboloidal coordi	
nates� etc� Then� the distance from the symmetry axis of the out�ow in units
of the corresponding Alfv�en distance� is G�M���� In the present �rst study we
made the simplifying fourth assumption that G is independent of �� G � G�M �
only� Finally� to re	establish the connection with the geometry of the problem
and the particular set of the coordinates used� we made our �fth and �nal as	
sumption that M � M ��� �and G � G����� where � � r� or� � � �� or generally�
r � �of ��� g ���� This leads then to the three broad classes of meridionally
�with spherical critical surfaces� M � M �R��� radially �with conical critical
surfaces� M � M ����� and generalized self	similar out�ows �with � �constant
critical surfaces� M � M ����� Needless to say that additional symmetries may
in principle be considered� something which may be taken up in another con	
nection �equilibria in tokamak geometries� etc��

After these �ve assumptions are well posed and with the help of a simple
theorem� it is possible to �i� unify all existing exact solutions for astrophysical
out�ows �Tables ���� ��� and ���� and �ii�� to qualitatively sketch a few of
them� With this method� the system of the coupled MHD equations for r	 or
�	 self similar out�ows� reduces to a set of �ve ordinary di�erential equations
for the dimensionless jet radius �G�� the �ow�s expansion factor or angle �F �
or ��� the Alfv�en Mach number �M � and the two pressure components �P�

and P��� The requirement that the solutions pass through the Alfv�en critical
point gives a condition relating the values of the expansion function or angle�
Alfv�en number slope and pressure component at this critical point� The Alfv�en
regularity conditions� Eqs� ���
��� ������ are similar to that discussed in �HN���
ST����

As a byproduct of this construction� two representative models for radially
and meridionally self	similar out�ows� �BP��� and �ST���� respectively� have
been generalized� In the former case of �BP���� it is well known that the cold
plasma solution is terminated at a �nite height above the disk while the general
case ��� in Table ��� extends all the way to in�nity� Also� it is shown that the
expressions of the MHD integrals which correspond to the �ST��� model are
only a special case of case ��� in Table ����

Having in mind the ubiquitously observed collimated out�ows from astro	
physical objects� we paid more attention to the selfconsistently derived asymp	
totical shape of the streamlines� Of the various such asymptotic geometries
derived� a prominent member seem to be the cylindrically collimated jet	type
solutions� in accordance also with the conclusions of observations �Liv���� gen	
eral theoretical arguments �Heyvaerts � Norman �HN���� and recent numerical
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simulations �GWB���� Another feature that appeared in the solutions is that
cylindrical collimation may or may not be achieved with oscillations in the width
of the jet �VT���� Although in the examples analyzed here the amplitude of the
oscillations is rather weak and the �ow collimates rather smoothly� preliminary
results show that cases also exist where it can become rather large and the �nal
radius of the jet can be much smaller than the initial large cylindrical radius
and corresponding opening angle� Finally� we should note that the pressure P
denotes the total pressure �including gas pressure� Alfv�en waves pressure� radia	
tive forces� etc�� For example� the same formalism may be used also in radiation
driven winds�


�� Some other solutions

In the previous sections� we have described a method to construct axisymmetric
MHD models� However� this is a general method and can be applied in other
similar situations� Next we apply it in two such cases�

����� Translational symmetry in uniform gravity

Suppose that we want to study �ows near the surface of a star or galaxy �for
example solar arcades�� Then we assume uniform gravitational �eld V � gz�
with g �constant� $z is the direction normal to the surface� We choose a system
of coordinates �x � y� on this surface� such that the y is ignorable� We search
polytropic �ows� P � Q�A��� � �for � � � isothermal �ows�� with Vy � � and
By � �� Assume now that the �ow is self similar in a way such that

�� for the Alfv�en Mach number� M � M ��� � � � x	zo and zo some reference
length

�� for the �ux function A � BozoA��� � � � eG���� z	zo and Bo is a con	

stant� Choosing G�� � �� � � and

�
�
dA
d�

�
���

� �� Bo is the $x	 compo	

nent of the magnetic �eld at x � z � ��

Then in the cartesian coordinate system Ox�x�x�� with x� � z � x� � x � x� � y
and the Eqs� ������	������ with % � � � L � � we get �nally that the only
possible case in order to be separable the coordinates x � z� is the following

A � � � #�
A � ���oM

��� � ���� � Q � Qo�
������� �

E �

�
V �	� � V � Qo ln �

�o
� Eo � ��Qo � gzo� ln� � if � � �

V �	� � V � �
���

P
� � Eo � gzo ln� � if � 	� �

� ������

The case � � � � Eo � � have been analyzed in �TSP��� �in this paper� �	zo �
	�H �Qo	g � H��
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����� HD �� self similar axisymmetric �ows

In general� in steady axisymmetric hydrodynamical �HD� case� we have

Vr �
�

���r� sin �

d#

d�

��

��
� V
 � � �

���r sin �

d#

d�

��

�r
� V� �

L���

r sin �
�

where � � R� sin� �	G� � R � r	ro�
We search for self similar solutions with

�� G � G�R� � and

�� � � �og����	N�� with N � N �R��

Then� after introducing the functions

g� �
�

�����or
�
oV

�
o

Z
�

g�

�
d#

d�

��
d� � g� �

�

r�oV
�
o

Z
L�g�
��

d�

instead of #��� � L��� � we �nd that in order to separate the variables � �R the
set of the functions g� � g� � g� must be one of the nine cases of Table ����
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� Appendix 
�B� Functions of � in radial self
similarity

F ��� � �� G��
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� � ln��R� ��

� ln sin �
� ������
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sin � sin �� � ��

cos � cos �� � ��
� �� �
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cos � cos �� � ��
� ������

where the expansion angle � ��� is the angle between the line and the equatorial
plane�
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F ��� � �� d lnG�

d ln j � j � �������

Note that � and F are intermediate variables� If we change �� F changes too

but the derivative
�

�F � ��

d

d�
remains the same

�dG
�F � �� d�

� � dG
d lnG�

� for any function G ��� � �������
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Chapter �

Some known self similar

models

In this Chapter we brie�y review several exact MHD models for cosmic out�ows
which belong in our net of the meridionally and radially self similar models� For
completeness of the review of all existing models we also discuss the classical
Weber	Davis model for a magnetized equatorial wind� At the end we also brie�y
present a novel and unique polytropic radially self similar model in which the
solution passes from all critical points�

��� Parker�s classical solution

We shall begin our analytical examination of meridionally self similar models
with the �rst case of Table ���� In this case we have g� � � ln j �� � j � g� � �
and g� � �� with � � sin� �� so from Eq� ������ we have

A � B�r
�
� ��� cos �� � �B�r

�
� sin�

�

�
�#A �

p
���� �% � � and L � � �

Thus� we have a non	rotating� radial out�ow� The magnetic �eld is from Eq�

����� �B �
B�

R�
$r� i�e�� a monopole	like �eld� The density is spherically symmetric�

since � �
#�
A

��M�
�

��
M�

� From Eq� ����� we have �V � V�
M�

R�
$r �equivalently

��r��V �constant� where V� is the velocity at the Alfv�en point r � r� 
 R �
r	r� � �� At this point B�

�	�� � ��V
�
� 	��

Substituting the functions g� � g� and g� in Eqs� ������ and ������ we get �we
remind that in all radial models� we have G � R and F � ���

P �
B�
�

��
�f� � f�� �

B�
�

��

�
f� � �

R�

�
and �
���

f
�

� � f� � f	 � � 
 ��

R�M�
�

�

R�
M�� � �

��M�

R�
� f

�

� � � � �
���

���
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Eliminating f� from the two previous equations we have

d

dR

�
��P

B�
�

�
� � ��

R�M�
� �

M�

R�
� �

R�
M�� � �
���

This equation has two unknowns P �M� �or the pressure and density�� Thus
this case is degenerate� If we assume a polytropic relation between P and � of

the form P �
P�
���

�� then we have only one unknown� say M�

R

M�

dM�

dR
�

�
M������

R�
� ��

M������

R

�
M������

R�
� ��

P�
��V �

�

or
r

�

d�

dr
�
GM	r� �V �

V � � �P	�
� �
���

where r��V �constant� r����V� and P	�� �constant� P�	�
�
� �

This is exactly Parker�s solution for the solar wind �Par
��� De�ning the sound
speed Cs �

p
�P	� we have after some manipulation�

r

V

dV

dr
�

�C�
s�V

���
� r

������
� � GMV ���r����

V ���r������ � C�
s�V

���
� r

������
�

or
r

V

dV

dr
�

��P	� � GM	r

V � � �P	�
� �

�
���
This equation after integration gives the Bernoulli integral

V �

�
� V �

�

� � �

P

�
� E � constant� �
�
�

Note that for the isothermal case � � � the term �
���

P
� must be replaced with

the term C�
s� ln��

The solution has a critical point when the numerator and denominator of Eq�
�
��� simultaneously vanish� This happens at the point rx where �for � 	� �	��

rx
r�

�

�
V�
Cs�

�� ��� � ��

���	�� ��
�

�r�C�
s�

GM
�� � � �

���	�� ��
and

Vx
V�

�

�
V�
Cs�

�����	�� ��

���	�� ��
�

�r�C�
s�

GM
� ��� � ��

���	�� ��
�

For � � �	� we have a critical line V �
x �

GM
�rx

if C�
s�V� �

�GM
�r�

��

�

At this point Vx � Csx� so the �uid velocity is equal with the local sound speed

�sonic point�� For E � Ex �
�

�
V �
x

�	�� �

� � �
we have the only acceptable solution�

the critical solution�
Eq� �
�
� with x � r	rx � y � V	Vx � C � �E �Ex� 	V �

x is equivalent with

C �
y� � �

�
� �

�
�

x
� �

�
�

�

� � �

�
x�������y������ � �

�
� �
���
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Figure 
�� Topologies of Parker�s solution for various values of ��
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which is the integral of the di�erential equation �equivalent with Eq� �
����

x

y

dy

dx
� �

�� x����y���

x������y��� � �
�

Fig� 
�� shows various solutions in the plane x � y �isocontoures of Eq� �
�
�
for various values of C�� We see that for � � �	� we get unphysical solutions�
in the sense that lim

x��
y � �� For � 
 �	� the solution begins with subsonic

velocity near the stellar surface and becomes supersonic at larger distances�
Note however� that since the density decreases monotonically� in this case we
must have heat reservoir� extending all the way to in�nity� since the heating

function is always positive q �
� � "

"� �

P

�
�V � �r� �

" � �

"� �

P

�
V

�
�d�

dr

�
�

Nevertheless� the thermal speed is �nite and the total Bernoulli energy is E �
V �
		��
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��� The Weber�Davis equatorial model

In this section we sketch brie�y the model of Weber and Davis �WD
��� for
an equatorial wind� A monopole like �eld is assumed near the equator� A �
B�r

�
� ��� cos �� � or� Br � B�	R

� � with R � r	r�� and the starred quantities
referring to their values at the point r � r� on the equatorial plane� In this
case� on the equator A �constant� If we want to solve the MHD equations only
near the equator� we regard A and all free functions L �% �#A as constants�
with L � r��% for transAlfv�enic solutions� The trans�eld equation is ignored
since the poloidal �eldlines are prescribed �� and only the Bernoulli equation
is examined� This last equation� for polytropic �ows� P � Q�� � and after
introducing the constants

� �
r�%

V�
� � �

��Q

�� � �� ��V �
�

� �� �
�GM
r�V �

�

� � �
�E

V �
�

�

gives B�


R �M�

�
� �� with

B�


R �M�

� � M�

R�
�

�

M������
� ��

R
� ��

� 

R� �M�

��
R� ���M���

� �
�� R�

��M�

�
�

Obviously� the parameter � measures rotation �� such that for � � � a star is
characterized as a fast rotator� while for � � �� a slow rotator� The parameter
� measures pressure gradient and �� gravity�
The various isocontours of the Bernoulli equation� give the solutions
M� � M��R �� � � � �� � � � �� on the equatorial plane�
As we discuss in Chapter �� this equation has two critical points� They ap	
pear when the poloidal velocity of the �ow is equal to the phase speed of an
MHD wave� This can be seen in this case also� if we di�erentiate the Bernoulli
equation� to get

dM�

dR
� ��B�

�R
	
�B�
�M�

� with



��M�

� �B�
�M�

�


��M�

� ��M�

R�
� � �� � ��M���

	
����M

�

R�

�
��R�

��M�

��

�

� �

V �
� V

�
p

�
V �
p � V �

p



C�
s � V �

A

�
� C�

sV
�
A �p

�
� and



��M�

� �B�
�R

�


��M�

����
M�

R�
�

��

R�

�
� ���



�M� � �

�
R� �M�

R� ���M��
�

Note that the Alfv�en point is not critical for the Bernoulli equation �all the
contours B� � � pass through this star	type point�� The slow point �Rs �Ms� and
the fast �Rf �Mf � are critical points� If we give the values Rs �Ms � Rf �Mf then
from the equations ��B�	�R�Rs �Ms

�


�B�	�M�

�
Rs �Ms

� ��B�	�R�Rf �Mf
�

�For � � 	
�	 the trans�eld equation is an identity if

�
�

��

�
P �

B�

�

�	

��
�	���

� �

�For � � � we have the Parkers solution
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Figure 
�� A solution of the Weber	Davis model� for Rs � ��
 �Ms � ��� � Rf �
���
 �Mf � ��
�� when � � ����� � �� � ���
��� � � � ������ � � � ������
 � � �
�� We show the Bernoulli function on the R �M plane� The critical solution
pass through the two saddle critical points �slow� fast� and the Alfv�en point�



�B�	�M�

�
Rf �Mf

� � we �nd a one to one correspondence with the constants

� � � � �� � �� If in addition �B��Rs �Ms
� �B��Rf �Mf

� then we have a solution
which pass through all critical points� In Figs� 
���
���
���
��� we show various
solutions of this equation�

Note that only for � 
 �	� we get physically acceptable solutions� in the
sence that lim

R��
V � � �Hey�
��

As R�� the Bernoulli energy along the critical solution becomes

� �
M�

R�
� ��� R

�

M�
�

�
V	
V�

��

� ��� V�
V	

�

For � � ����� we get the minimum energy solution �Mic
�� Hey�
� BM�
��
when the fast ctitical point is at in�nity� where V	 � ����V��

If at the base the Poynting energy dominates �neglecting at the base the
thermal and gravitational terms� we have � � ���� In this case� the minimum

energy solution has � � ��	������ This characteristic solution has V	 � �V�	�

and it is called Michel�s solution� For all other � � ��	��
���

we have one su	

perfast and one subfast solutions at in�nity� For � 
 ��	����� no superAlfv�enic
solution exist at in�nity�

�This is the regularity condition in order to pass the solution for both critical points� the
slow and the fast� The other one is simply the choice of ��
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Figure 
�� Isocontours of the Bernoulli function for the Weber	Davis model�
The parameters are the same as in the previous �gure�
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Figure 
�� Slow magnetic rotator with parameters Rs � ��
 �Ms � ��� � Rf �
����� �Mf � ����� when � � ����� � �� � ����
 � � � ���� � � � ����� � � � �����
We see that the fast point is close to the Alfv�en� as in the solution presented by
�WD
�� and appropriate for the solar wind�
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In the second meridionally� radial self similar solution of Table ��� we have
g� � �

R
��

���d� � ln j �� � j � g� � ����	� and g� � � � ���� with � � sin� ��
so that from Eq� ������ we have

A � B�r
�
�

Z 


�

sin �

q
� � � sin�� � d� �#A �

q
����



� � � sin�� �

�
�

% � �
V�
r�

sin��� �p
� � � sin�� �

� L � �r�V�
sin��� �p

� � � sin�� �
�

Substituting the functions g� � g� and g� in Eqs� ������ and ������ we have

P �
B�
�

��

�
f� � f� �



��f�	� � �f� � ��f�

�
sin�� �

�
�

and
f
�

� � f� � f	 �
�
��f

�

�	�� �f� � ��f� � �f	

�
sin�� � � � �

or� �since � 	� ��

f
�

� � f� � f	 � � � and ��f
�

�	�� �f� � ��f� � �f	 � � �

These last two equations are the ODE for this model� The �rst of these two is
exactly the same with that for Parker�s Eq� �
���� But now the rotation term
sin�� � does not allow us to impose polytropic relation between P � �� Instead� we
have a case with nonconstant �� This model has been examined in �LTP�
� and
succeeded to �t the Ulysses observations for the solar wind out of the eclliptic
plane�
The subcase � � �� � � � � has been examined in �TT����

��� The solution of Sauty	 Trussoni and Tsinganos

Let�s start the examination of meridionally self similar non	radial models with
the �rst case of Table ���� In this case we have
g� � � � g� � ��� and g� � � � �� ��
So substituting the functions g� � g� and g� in Eq� ������ we have

A �
B�r

�
�

�
� �#A �

p
���� �� � ��� �

% �
�V�
r�

�p
� � ��

� L � �r�V�
�p

� � ��
�

�Note that the density on the polar axis cannot be taken equal to zero� But if we choose

g� �
�

�� �ref
� g� � �� and g� � � � �

�
�� �ref

�
then for ��ref � � we have zero density

on the axis �the ODE are almost the same� only the constants must be changed��
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while from Eqs� ������ and ������ P �
B�
�

��
�P� � P��� with

P� � f� � f� and P� � f� � f� � �� �f� � f�� and

f
�

� � f� � f	 � � � f
�

� � f
 � ��
�
f
�

� � f�

�
� �f	 � � �

We have two ODE with three unknowns M� � G� and f�� So the system is
degenerate and we are free to impose a third relation� Up to now� this is done
in two di�erent ways �LT�
� TL��� HL��� TT��� TS��� TT��� ST����

����� The prescribed �eld�streamline subcase

Trussoni and Tsinganos in �TT��� give explicitly the function G�R�� or equiv	

alently their f�R� � R�

G�
� They choose f�R� � � � R�	R�

c in order to have an

asymptotically cylindrically collimated out�ow�
Note that the denominator in the resulting di�erential equation for M� contains
simply the derivative of the function f � A comparison of this equation with Eq�
������ shows that the modi�ed by the self similarity slow and fast singular points
may appear when the lines are radial� or equivalently when the expansion factor
F � Rf

�

	f vanishes �note that in this case the modi�ed singular points coin	
cides with the points Vp � Vs �f since at these points the poloidal velocity is
radial� normal to the surfaces of constant R�� So if one chooses an appropriate
function f�R� such that its derivative have two zeros� he will found a solution
with three singular points �the Alfv�en together with the modi�ed by the self
similarity slow and fast magnetosonic points�� This can be done� for example�
via a function

f�R� � �Rs��Rf��R�
fRs�R��� �Rs � �Rf �R��Rf �Rf � �Rs� lnR��R�

fRs	R

with Rs 
 � � Rf � � � For this function� f
�

�R� � �
�R�Rf �� �R� Rs�

R�
so the

modi�ed slow point is at R � Rs while the fast is at R � Rf � The �eldlines are

cylindrical at in�nity� since lim
R�	

R
f
�

f
� � 
 f�R�

R
�� R� 
 A
R
�� �� �

There is a closed regime near the stellar surface which ends at R � Rs �in this
regime F 
 ��� Note that we can put the stellar surface in a desired position
in the domain � 
 R 
 Rs� For example in the root of Rf

�

	f � �� �which
corresponds to a dipole like magnetic �eld A � sin� �	R�� Fig� 
�
 shows these
�eldlines for Rs � ��� and Rf � ����

����� The free �eld�streamline subcase

Sauty and Tsinganos in �ST��� imposed a third relation between P� � P� of the

form P� � ) � and P� � �)� In this case� P �
B�
�

��
) �R� �� � ���� so the

�A more general form is P
 � � � P

 with constant P

 �
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pressure is a product of function of R times a function of �� If this is the case�
there exist a Bernoulli	type integral� The function S � V �	� � V ��%B�	#A

is written as

S �
V �
�

�

S� �R� � S� �R��

� � ��
� while

�P

�R
�

��V
�
�

�

�
P
�

� � P
�

��
�
�

Then� the general Bernoulli equation �S	�R��P	��R � � gives two equations
S �i � M�P

�

i � � � i � �� �� Using P� � ) � P� � �) and eliminating ) we get

S �� � �S �� � �� or S� � �S� �constant�
After the integration of the ODE� Sauty and Tsinganos found two types of
solutions cylindrically collimated ones with oscillations �jet type solutions� and
wind	type solutions �with asymptotically radial lines�� They succeed in passing
through the modi�ed slow and Alfv�en singular points�
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��
 Polytropic radially self similar models

����� Derivation of the ODEs

In this section we examine the �rst two cases of Table ���� In the �rst one we

have q� �
E�

x� �
�x�� � q� �

D�

x� �
�x�� � q� �

C�

x� �
�x�� � So the free integrals

are

A �
Bo�

�
o

p
E�

x
�
x
� � #�

A �
C�B

�
o�o

GM �x���� �

%� �
D�GM
��
oC�

��
�
� � L� �

D�GM�o

C�
�

�
� �

�
���

where � �
R�

G� ���
sin� � �R � r	�o and Bo� �o are constants� As we discuss in

Chapter �� the function G ��� measures the cylindrical distance � to the polar
axis of each �eldline labeled by �� normalized to its cylindrical distance �� at
the Alfv�en point� G ��� � �	���

The density is � �
#�
A

��M�
�

C�B
�
o�o

��GM
�x����

M�
and M ��� is the poloidal Alfv�en

Mach number�
In this case the form of the magnetic �eld is

�B � Bo

p
E��

x
���

�
�

G�

sin �

cos �� � �� ��
�cos� $� � sin�$z� �

r
D�

E�

�

G

�� G�

��M�
$�

�
��
���

while for the velocity

�V �

r
E�GM
C��o

�����

�
M�

G�

sin �

cos �� � �� ��
�cos� $� � sin�$z� �

r
D�

E�

�

G

G� �M�

��M�
$�

�
��
����

We remind that � is the angle between the poloidal �eld	streamline and the
equatorial plane� From Eq� ���
�� �see also �VT���� we have

h
�

� � � � and

C�Fh��
C�

x� �
h
�

��D�h� �F � ���
D�

x� �
h
�

��E�

�
h�
�
��M�

����
��M�

�
E�

x� �
h
�

� � �

�
����
where primes indicate derivatives with respect to ln�sin ��� So in this degenerate
case we have two equations for the three unknown functions G �M and h��
Choosing h� � � we impose the polytropic relationship� P � �� in each �eldline�
as the third relationship� or using Eq� ������

P �
B�
o

��
D�E�M

����x�� with constant D� and �
����
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h� � D� �x� ��M��� � �x� ��h� � D�

E�
�x� ��h� � D�

E�
h� � C�

E�
h� � �
����

If we substitute Eq� �
���� in Eqs� ������
���� we have two di�erential equations
for the functions G and M � The functions F and � are related with the deriva	
tive of G via Eqs� �������������������� � so we have three �rst order di�erential
equations for the functions G�� and M �
In this polytropic case� there exist the Bernoulli integral

�

�
V � �

�

� � �

P

�
� V � %r sin �

#A
B� � E�A� �

where V � � GM
�oR

and E�A� �
GME�E�

�oC�
����� � with constant E� �

or� solving for �

� � � � �  arctan

(
G�

M� sin� �

�
�E� � �D�

�� � ��M������
�

�C� sin �

E�G
� D�

E�

� 

G� �M�

��
G� ���M���

� �
��G�

��M�

��
� �

����

�

�
����

The upper sign corresponds to the out�ow case Vr � ��
The two remaining equations are

dG�

d�
�

�G� cos�

sin � cos �� � ��
� �
����

dM�

d�
� ��

sin �� � ��

cos �� � ��

(
�C� sin �

E�G
�D� �x� ��M�����

M�

G�



��M�

� cos� sin �

sin �� � ��
� M�

G�
�x� ��

sin� �

cos� �� � ��
�

D�

E�

M�

G�
�x� ��

�
�� G�

��M�

��

�
D�

E�

M�

G�

G� �M�

��M�
�

D�

E�

cos�

sin � sin �� � ��



�M� � �

�
G� �M�

G� ���M��

�
	

�
�D�



��M�

�
M��� � �

D�

E�

M�

G�

�
�� G�

��M�

��

� �
M� sin� �

G�

�
�� �

M� cos� �� � ��

��
�

�
��
�

The denominator of the last equation equals to�

�
M� sin� �

G�

V �

 � V �






C�
s � V �

A

�
� C�

sV
�
A�


V �



�
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Thus we see that at the singular points V
 � Vs �f � 
 in agreement with the
analysis in Chapter ��
If we introduce new constants

E� �
G�


�
�

�
�x��o

� D� �
��

�x��o

� C� �
GMM�



�
�

�
�oV �

o �
x����
o

� D� �
��PoM

��


�
�

�
B�
oG

�


�
�

� � and

M�


�
�

�
�

���oV �
o

B�
o

� we have

� � �o

�
�

�o

�x���� M�


�
�

�
M�

� P � Po

�
�

�o

�x�����x������
�

�o

��
�

�Bp � Bo

�
�

�o

�x
��� G�

��
�

�
G�

sin �

cos �� � � � ��
�sin�$z � cos� $�� �

� Bo

�
�

�o

�x
��� G�



�
�

�
G�

sin �
h
tan �� � � � �� $r � $�

i
�

�Vp � Vo

�
�

�o

����� G�


�
�

�
G�

M�

M�


�
�

� sin �

cos �� � �� ��
�sin�$z � cos� $�� �

� Vo

�
�

�o

����� G�


�
�

�
G�

M�

M�


�
�

� sin �
h
tan �� � �� �� $r � $�

i
�

B� � ��Bo

�
�

�o

� x
��� �� G�

G ���M��
� V� � �Vo

�
�

�o

�����
�

M�


�
�

� G� �M�

G ���M��
�

Then �o � Po � Bo � Vo are the values of � � P �Bz � Vz respectively at the point
� � �o � � � �

� �
The footpoint of the line �o on the equator lies at distance �oG



�
�

�p
�o from

the axis while the Alfv�en point in the same line is at radius �o
p
�o� So if we

choose �o � �� then �o is the radius of the jet at the Alfv�en point on the line

�o� If we choose �o �
�

G�


�
�

� then �o is the radius of the footpoint of the line

�o on the equator�
If the �ow begins from the equator with zero poloidal velocity �as in �BP�����
then Vo � � �M



�
�

�
� � but the ratio between them is constant� Note that the

polytropic second case of Table ��� corresponds to the previous equations with
x � ��

����� Other ways of deriving the ODEs

Generally in this radially self similar case we have two relations for the functions
of �

�� the Bernoulli integral� f�
�
� �M �G �G

�
�

� � and

�� the GSE� f�
�
� �M �G �G

�

� G
��
�

� ��

Note that� since the model is self similar� the �ux function A does not appear
in these two equations�
In order to �nd the ordinary di�erential equations �ODEs�� one way is to solve
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Table 
�� The notation of �BP����

�BP��� our notation
cold D� � �
Vp �z � �� � � M ��	�� � �

exactly Keplerian
C�

D�
� G� ��	��

��� x
ro �oG ��	��

p
�

�
G ���

G ��	�� tan �
� z �� � �� 	� �� � �	��

 ���
G ���

G ��	��
� � �� � �� 	� �� � �	��


�

���
�

tan�

�
�

G� ��	��
�

s
D�

C�G ��	��

J � G ���

G ��	��

cos �� � ��

sin � sin�
m ��� M� ���

f ��� �
r

E�G ��	��

C�

M�

G�

sin � sin�

cos �� � ��
� Vz�

���

r
�oG ��	��

GM
k #A�A�
l L�A�
� %�A�
e E�A�

Bo Bo

p
E�

�x����

G� ��	�� sin �� �� � �	���

�

r
C�

E�
G� ��	��

�
E�E�

C�
G ��	��

B�
oro

���GM
E�M

�

C�G� ��	�� sin� �� �� � �	���

� D�
G� ��	�� sin� �� �� � �	���

�

�
E�

C�G� ��	�� sin� �� �� � �	���

��
U

�

sin��

S
G ��	��

G ���
sin �

��	�
E�E�

C�
G ��	��� �

G� ��	��

g�
 � �m	

��m

G� �M�

G ��	��G ���M��

n �
m

� � �B�	Bp�
�

M�

� �
D�

E�
G� cos� �� � ��

sin� �

�
��G�

��M�

��
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Table 
�� The notation of �CL����

�CL��� our notation
# A

F #A

H �L#A

J � %H

F
E

Jo � %oHo

Fo
E�

�
G�

��

�
��M�

��G�

���

����

ai �oG ��	��
p
�o

r�

r
�

�o

#o
Bo�

�
o

x
�oG

� ��	��

Bo Bo

vo

�
�Vo
M�G

G� �M�

��M�

�

����

Fo �

�
G� �M�

G ���M��

�

����

" �

x x

Ho � �

G ��	��

%o

�
G� ��M�

G� �M�

�

����

Jo

�
G�

��

�
��M�

G� �M�

�� 

E�G

� � ��
��


����

�o �
GM
aiv�o

GM
�oV �

o

p
�o

�
M�G

��

�
��M�

G� �M�

��
�

����

�
C�

E�

�
G�

��

�
��M�

G� �M�

���

����

vo
�� %o

Ho � Fo
Vo

K Po
B�
o

�
��M�G�

��

�
��M�

G� �M�

��
��

����

�
D�G

� ��	��

��

�
��G�

��

�
��M�

G� �M�

��
��

����

Vz �Z � ��

�
M�G

�

��M�

G� �M�

	

����
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Table 
�� The notation of �Ost����

�Ost��� our notation
cold D� � �
Vp �z � �� � � M ��	�� � �

exactly Keplerian� GM	%�R
�
� � �

C�

D�
� G� ��	��

! A

� ��	#A

J L

E E � L%
�� q

�
x

R�	RA G ��	��
R�	RA G ���

j � �RA	R��
� �	G� ���

e �
�

�
�R�	R��

� �

�
�G ��	�� 	G �����

R	RA � �� ��� 	� �����
�

q�� G ��� � �	��

R � �� ��� !�	!�
�

q�� R� �

�� �

q � �

�
�

�
tan � F

RA ��

MA M
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the Bernoulli integral for G
�

and substituting this in the GSE to yield M
�

� Then
we have a system of two �rst order ODE� We have followed this method in the
previous analysis �see also �BP��� CL�����
Another way is to use the Bernoulli integral in order to �nd at each point of the
solution the value of M �knowing G �G

�

at this point�� while substituting M on
the GSE we get a second order ODE for G� This method followed in �Ost����

����� Alfven singularity

At the Alfv�en angle ��� using the L�Hospital�s rule��
�� G�

��M�

�
�

���
�

� cos��
p� sin �� cos ��� � ���

�

where p� is the slope of the square of the Alfv�en number p� �


dM�	d�

�
�
� So

from Eq� ���
��� �or from Eq� �
��
� at � � ��� we �nd the Alfv�en regularity
condition

�x� ��

�
�D�

E�
� p�� sin� ��

�
tan� ��� � ��� �

�
p�� sin� �� � �D�

E�
p� �

�D� �x� ��

E� tan ��

�
tan ��� � ��� �

�x� ��

�
D�p

�
� � p�� sin� �� �

�D�

E� tan� ��

�
�

C�

E�
p�� sin �� � D�

E�
p�

�
p� � �

tan ��

�
� �

�
����

����� About the criterion � �� 	 ���
 � ��o

The Bernoulli integral can be written as

E � L% �
V �
p

�
�

�V� ��%��

�
�

�

� � �

P

�
� V � �

�
��%�

or� after substituting all the quantities �when the �ux function disappears�

E�E��D� �
E�M

� sin� �

�G� cos� �� � �� ��
�
D�M

�

�G�

�
�� G�

��M�

��

�
�

� � �

D�E�

�M������
�C� sin �

G
�D�G

�

�
�

Assume cold plasma �D� � �� and Vp �� � �	�� � �� or M ��	�� � �� Then the
constant E�E� �D� can be determined at � � �	�

E�E� �D� � � C�

G ��	��
� D�G

� ��	��

�
�

So at each � we have

f ��� � C�

�
sin �

G
� �

G ��	��

	
�

D�

�

�
G� � G� ��	��

�
�
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E�M
� sin� �

�G� cos� �� � � � ��
�

D�M
�

�G�

�
�� G�

��M�

��

�

The RHS of this last equation is positive� for any � � �� � �	��� So the function
f ��� must be positive too� f ��� � ��
For values of � close to �	� we have �using Eq� �
���� we �nd the Taylor
expansion up to the �rst order� f ��� � f

�

��	�� �� � �	��� with f
�

��	�� ��
C� �D�G

� ��	��
�
	G ��	�� tan �� ��	���� Since � � �	� 
 �� this derivative

must be negative �if it is nonzero�� Equivalently
�
V �
� 	

GM
r

�

����

� �� The

rotation �if it is not Keplerian� must be superKeplerian on the equatorial plane�

This happens if f
�

��	�� 	� ��
If on the other hand the rotation is exactly Keplerian� when C� � D�G

� ��	���
we must expand f ��� up to the second order� We have

f
�

��� �
C� cos �

G
�

cos�
�
D�G

� �C� sin �
�

G sin � cos �� � ��
and f

��

��	�� � � C�

G ��	��
�

�D�G
� ��	��

tan� �� ��	���
�

Since f ��� � f
��

��	�� �� � �	��� must be positive� f
��

��	�� � �� or using
C� � D�G

� ��	��� � ��	�� 
 
�o� �

This criterion is valid only if the plasma is cold and begin with Keplerian ve	
locity from the equatorial plane� If the velocity is not Keplerian� then we found
that the only possible case for the acceleration of a cold plasma is to have su	
perKeplerian rotation�
Of course� if the pressure is not negligible� we can �nd a smallest value for the
pressure gradient in order to have acceleration in any case� However� thermal
e�ects are important near the disk surface 
�

����� �BP
��

Blandford and Payne in �BP��� examined the acceleration of a cold plasma�

 rotating on the equatorial plane with a Keplerian speed� Their equations
correspond to the previous analysis with x � �	�� As a consequence� there
exist only two singular points the Alfv�en and the modi�ed fast point �for
Cs � �� the slow point disappears while on the fast V �


 � V �
A� since the roots

of V �
s �f � 
 � V �

s �f � 




C�
s � V �

A

�
�C�

sV
�
A �
 � �� when Cs � �� are simply V �

s � 
 �

� � V �
f � 
 � V �

A��
In this case the �ow begins from the equatorial plane �i�e�� the disk� with zero
poloidal velocity �while for the toroidal component V �

� � GM	r�� Equivalently�
M ��	�� � � and lim


����
� � ��

They found two types of solutions

�For relativistic �ows there exist again an upper bound for the angle �	 at each point of
the disk	 i�e�	 � � �max ��� �Cao����

�Blandford and Payne appreciated that their model of a  cold wind does not properly
describe the �ow in the neighborhood of the surface of the disk	 where thermal e�ects must
become impotrtant� See also �OL����



	�� Polytropic radially self similar models �	�

�� Solutions which are elliptic everywhere and the conical surface Vp � Vf is
reached by the plasma at in�nite heights above the disk �at � � ���

�� Solutions which have the surface Vp � Vf at a �nite angle� They analyzed
this case numerically� A limiting characteristic then exist at some angle
above the line Vp � Vf � �at a smaller angle�� but they did not succeeded to
pass the solution through this� Note that if a solution passes through this
point� it must pass it again� because from the construction of the model
lim

��

V
	VA � ���

They found a turning point in these solutions �wich we will discuss later�
and stopped the solution before reaching it�

The procedure for constructing a solution is to solve the Bernoulli integral for
f �or equivalently for Vz� and then substitute it in the GSE to yield dm	d�
�or dM�	d��� Among their main results is to explicitly show that the real
singular points are not the points where the poloidal �ow speed is equal with
the poloidal phase velocity of MHD waves but the points where the components
of the previous velocities normal to the direction of symmetries are equal� In
the r	 self similar models this means for the Alfv�en that V
 � VA �
 �which
however is the same with Vp � VA �p� and for the slow	fast that V
 � Vs �f � 
�

����� �CL���

Contopoulos and Lovelace in �CL��� examined the generalization of the Bland	
ford and Payne model introducing the exponent x which is not always equal to
�	� including the pressure in the solution� They found three kinds of solutions
�see Fig� � in �CL���� �

� xcrit 
 x 
 � with parabolic asymptotical geometry

� x 
 xcrit  recollimated solutions

� x � �  the magnetic tension is always inward �the jet carries a nonzero
axial current� and the �ow recollimates� They found oscillating solutions
with cylindrical asymptotical geometry�

Nevertheless we found that if we continue the integration at larger heights �small
enough values of ��� the solution always has one of the following problems

�� reaches again the Alfv�en point M � � � G � �

�� hits the modi�ed fast singular point and it is needed to change the initial
conditions until it is passed

�� reach a point where Vr � � �a turning point�� Note that the exact position
of this point depends on how we use the Bernoulli integral� If we solve
for Vr� the turning point occurs when Vr � �� Above this point we must

�See also �RP�
�� In this paper	 the parameter � is used instead of our exponent x�
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change sign in Vr and continue the integration �see Eq� �
����� If we solve
for Vz� it occurs when Vz � �� One can overpass this technical problem
using the di�erential form of the Bernoulli equation� but the solution is
anyway unphysical�

����	 Asymptotic analysis for the oscillating solution x � 

Assume that we have a cylindrically collimated solution at in�nity� Then
lim

��

G � G	� so lim

��

A � A	 ��� � ��	G	�x� Before the solution reaches

this exactly cylindrical stage� we have

A � ��	G ����x � ��	G	�x �� � g ����

where g � x ���G	G	�� with j g j� ��
Following the analysis of Chapter � �see also �VT���� we see that Eq� ������
with f �constant holds� As explained there� the solution is of the form

g � D��� cos �j � j ln � � D�� 
 g � D ��	z��� cos
�
j � j ln

�

z
� D�

�
�

�
����
After substituting this in Eq� ������� we �nd the relation of the free functions
A �#A � L �% with the constants � � �� Long calculations �nd that

� � x� � � �
����

But in this case� x � � 
 � � �� and the amplitude of the oscillations grows
as a power of �	�� Then the function g and consequently the functions G �M
together with their derivatives have no limit as � � �� The analysis of �HN���
has no relation with these solutions� since the limits which are discussed there
do not appear here� We can see that as this function grows� the functions G �M
will reach the values G � � �M � �� thus the solution hits again an Alfv�en
point� It is remarkable that this may happens at very small values of �� so one
can argue that the solution is not self similar there� or it has already connected
to the interstellar medium �ISM�� We remind however that without passing the
limiting characteristic it will be unstable to perturbations at in�nity� Note that
numerical results veri�es the previous analysis although �as we have prove� the
function g is not small at all�

����
 �Ostr�	�

Ostriker �Ost��� examined the cold case with x � �� i�e�� with cylindrical
asymptotics� The integration began upstream from in�nity �� � �� and found
non oscillating solutions which pass only from the Alfv�en critical point and reach
the equator �the disk� with zero poloidal velocity and exactly Keplerian toroidal
velocity� �The Bernoulli integral was used in order to �nd the value of M and
then solve a second order ODE for G��
After the previous asymptotic analysis we can understand why these solutions
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were obtained� As we have said� when x � �� the form of the perturbations is
given by Eq� �
����� But then the function g and its derivative has no limit at
� � � unless D � �� Assuming that at � � � the function g has a real value as it
was assumed in order to begin the integration from in�nity� it is equivalent with
choosing D � �� So� the �rst deviation for the cylinder is of order sin � � ��
or of the order of the gravitational potential �this is e�ectively what happens
when the integration starts from in�nity� see the paragraph A� in Appendix of
�Ost�����

����� A solution which pass from all singular points

The main di�culty in �nding exact MHD solutions is the appearance of singular
points� Although we have assumed self similarity �so we have to solve ODEs�
the problem is still highly intractable� The right solution should pass through
the SMSS �if the out�ow starts from the stellar surface or the disk with subslow
velocity�� the AS and �nally the FMSS �for details see Chapter ��� The last two
singular points are very important and the solution must pass through them
because

� at in�nity we want the solution to carry small magnetic �elds and has large
velocities �so M	 � ��� while on the disk or stellar surface the opposite
holds �M ��	�� � ��� Thus at some � � �� �M ���� � ��

� as we discuss in Chapter � in order to connect the solution to the ISM
with a fast shock �only then a small disturbance at in�nity does not a�ect
the solution upstream from this shock�� the solution must be superfast at
some distance beyond the Alfv�en surface�

In the AS we know the regularity condition� Eq� �
����� Also at the modi�ed
by the self similarity slow and fast singular points we know that the numerator
of dM�	d� vanishes �simultaneously with the denominator�� But the position
of these singular points is not known a	priori� So we know only some relations
between functions at some points� That can not help us much� It remains the
shooting method� We start the integration from a point � � �i and continue
until the solution hits a singular point �for example the modi�ed fast� or FMSS��
That is to say� we see that the numerator �or denominator� in dM�	d� vanishes�
but not the denominator �or numerator�� We go back in � � �i� change one
parameter and integrate again� We use this algorithm until it converges� i�e��
the numerator and the denominator simultaneously vanish� We do the same for
passing through the other singular points�
Until now all researchers who have tried to integrate the equations of this model�
start their integration from the equator �BP��� CL���� or� from in�nity �Ost����
and they have not succeed in passing through all singular points�
We propose that it is easier to start the integration from one of these critical
points� For example� let us start from the Alfv�en surface �AS�� This surface is the
cone � � ��� We give the parameters �� � x � � � C�	E� � �� � D�	E� � p�� As we see
later� we use the last two parameters for passing through the SMSS and FMSS
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singular surfaces �points in self similar models�� From the Alfv�en regularity
condition Eq� �
���� we calculate the constant D� �it must be positive�� From
the Bernoulli integral Eq� �
���� we calculate E� �the ratio



�� G�

�
	


��M�

�
can be found using L� Hospital�s rule�� We start the integration upstream from
the Alfv�en point� We encounter the SMSS but we can�t pass through it� For
example the numerator of dM�	d� vanishes but not the denominator� We go
back on the Alfv�en point� change the parameter p� and integrate again� until
we �nd the opposite behaviour on the SMSS �the denominator vanishes but not
the numerator�� With �ne tuning in the value of p� we �nd the solution which
pass the SMSS�
Now we integrate downstream from the Alfv�en point� We encounter the FMSS
but we can�t cross it� We go back at the AS� change the parameter D�	E�

and integrate upstream� After some iterations we �nd the right value of p� for
passing through the SMSS� Then we integrate downstream from the AS� We
do the same until we �nd the right value for the pair p� � D�	E�� Then we
have the solution which begins subslow from the disk� cross the SMSS� the AS
and the FMSS� After crossing the FMSS we stop the solution at some angle ��
because if we continue the integration� the solution will �nd another modi�ed
fast point� in order to be subfast at � � � �from the construction of this model�

lim

��

V

Vf �


� ���

Such a solution is shown in Figs� 
���
���
With this method of integration �i�e� begining from the AS� the solution itself
�nds the correct values of all quantities at � � � and � � �	�� These values are
functions of the parameters �� � x � � � C�	E� � ���
Note that� such a solution can be found without the self similar ansatz� We
can integrate the system of the MHD� PDE� beginning from a cone � � �i�
On this boundary we �ll give the conditions A � rx� the normal derivative
dA	d� � rx and the free functions #A � L �% � Q �E as functions of A� These
boundary conditions together with E� � � determine the unique solution of the
problem �as we discuss it in Chapter ��� Thus� one may test any numerical code
which solves the steady state axisymmetric MHD equations with the previous�
self similar solution�
After �nding this solution� one should connect it with the ISM through a fast
MHD shock� but we have not done this yet�
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Figure 
�� The various Mach numbers for the polytropic radially self similar
model and parameters x � �	� � �� � 
�o � � � �	� � C�	E� � �� � �� � ��o�
From the Bernoulli integral at the Alfv�en point we �nd E� � �����
�
��� from
the Alfv�en regularity condition D� � ������������ while the parameters which
are determined such that the solution passes through the SMSS and FMSS are
D�	E� � ������
���� � p� � �������������
����



��� Some known self similar models

0.0 2.0 4.0 6.0 8.0 10.0
0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

Mf
=1

M
m

f
=

1

0.0 2.0 4.0 6.0 8.0 10.0
equator

0.0

5.0

10.0

15.0

20.0
p

o
la

r 
a

x
is

Ms=1

Mms=1

Mc=1

Figure 
�� The �eldlines �solid lines� and the characteristics �dashed and long
dashed lines�� We see the limiting characteristics Mms � V
	Vs 
 � � �Mmf �
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	Vf 
 � � and the surfaces where the solution changes character from elliptic
to hyperbolic and vice	versa Mc � Vp	Vc � � �Ms � Vp	Vs � � �Mf � Vp	Vf �
�� In the shadowed region the governing partial di�erential equations are of
elliptic type and no characteristics exist�
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Chapter �

A class of exact MHD

models for astrophysical

jets

This Chapter examines a new class of exact and self	consistent MHD solutions
which describe steady and axisymmetric hydromagnetic out�ows from the mag	
netized atmosphere of a rotating gravitating central object with possibly an
orbiting accretion disk� � The plasma is driven by a thermal pressure gradient�
as well as by magnetic rotator and radiative forces� At the Alfv�enic and fast
critical points the appropriate criticality conditions are applied� The out�ows
start almost radially but after the Alfv�en transition and before the fast critical
surface is encountered the magnetic pinching force bends the poloidal stream	
lines into a cylindrical jet	type shape� The terminal speed� Alfv�en number�
cross	sectional area of the jet� as well as its �nal pressure and density obtain
uniform values at large distances from the source� The goal of the study is to
give an analytical discussion of the two	dimensional interplay of the thermal
pressure gradient� gravitational� Lorentz and inertial forces in accelerating and
collimating an MHD �ow� A parametric study of the model is given� as well
as a brief sketch of its applicability to a self	consistent modeling of collimated
out�ows from various astrophysical objects� For example� the obtained char	
acteristics of the collimated out�ow in agreement with those in jets associated
with YSO�s�

��� Introduction

Collimated out�ows are ubiquitous in astrophysics and cosmic jets are observed
in the radio� infrared� optical� UV and X	ray parts of the spectrum� from the

�This class of models is similar with the case ��� of Table ���	 with the exceptionof including
here a radiative force�

���
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ground and space� most recently via the Hubble Space Telescope� Classes of
objects in association with which jets are observed include young stellar ob	
jects �Ray�
�� old mass losing stars and planetary nebulae �Liv���� black
hole X	ray transients �MR�
�� supersoft X	ray sources �KT�
�� high	mass X	
ray binaries and cataclysmic variables �SLSC��� and many AGN and quasars
�Bir�
� FMBR�
�� Despite their observed abundance however� several key ques	
tions on their acceleration and collimation among others� have not been resolved
yet�

The theoretical MHD modeling of jets is not a simple undertaking� basically
due to the fact that the set of the MHD equations is highly nonlinear with
singular �or critical� points appearing in their domain of solutions� these singu	
larities 	 through which a physical solution inevitably will have to pass 	 are not
known a priori but they are determined only simultaneously with the complete
solution� The purpose of the present study is to construct systematically a self	
consistent MHD model for astrophysical jets where the interplay of the various
forces acting on the plasma and which are able to accelerate and collimates the
out�ow� is analytically examined� This modeling is an improvement over the
very few existing models developed so far to the same goal� For example� it is
fully �	dimensional �c�f� Parker ���� �Par���� Weber � Davis ��
� �WD
����
it does not contain singularities along the symmetry axis and the out�ow is not
overfocused but extends to large distances �e�g� �BP��� Ost���� the equation
of state is not constrained by the arti�cial polytropic assumption �as e�g� in
�CL��� HN����� the thermal pressure is meridionally anisotropic �e�g� �ST�����
the shape of the jet is self	consistently determined �e�g� �TTS����� there is a
steady asymptotic state �c�f� �US��� OP��a� OP��b� GWB���� etc��

In the following Sec� ��� the basic steps for the systematic construction of
this class of models are described� Then in Sec� ��� we discuss the critical
surfaces in the solution domain and in Sec� ��� the asymptotic behaviour of the
solution� In Sec� ��� we discuss about the integration of the resulting equations
�in relation with the boundaries and the singular points�� A detailed parametric
study of the model is given in Sec� ��
 while in the last Sec� ��� the connection of
the dimensionless parameters characterizing the present model to the observable
physical quantities of collimated out�ows is sketched�

��� Construction of the model

In this section we describe in some detail how our model can be systematically
obtained from the closed set of the governing MHD equations�

	���� Governing equations

The kinematics of astrophysical out�ows may be described to zeroth order by
the well known set of the steady ��	�t � �� ideal hydromagnetic equations
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�
�
�V � �r

�
�V �

�
�r� �B

�
� �B

��
� �rP � ��rV � �Frad � �����

�r � �B � � � �r �
�
��V
�

� � � �r�
�
�V � �B

�
� � � �����

where �B� �V � ��rV � ��r ��GM	r� denote the magnetic� velocity and external

gravity �elds� respectively� �Frad the volumetric force of radiation while � and P
the gas density and pressure�
The energetics of the out�ow on the other hand is governed by the �rst law of
thermodynamics 

q � ��V �
�
�r
�

�
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�

�
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�
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"� �
�V � �r

�
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�
�

where q is the volumetric rate of net energy input�output �LT�
�� while " �
cp	cv with cp and cv the speci�c heats for an ideal gas�
With axisymmetry in spherical coordinates �r� �� ��� the azimuthal angle � is
ignorable ��	�� � �� and we may introduce the poloidal magnetic �ux function
A�r� ��� such that three free integrals of A exist� They are the total speci�c
angular momentum carried by the �ow and magnetic �eld� L�A�� the corotation
angular velocity of each streamline at the base of the �ow� %�A� and the ratio
of the mass and magnetic �uxes� #A�A� �Tsi����
From Stoke�s theorem wee have�

Fmag �

Z
S

Z
�Bp � d�S �

Z
S

Z
�r�

�
A

$�

�

�
� d�S �

I
c

A
$�

�
�
�
�d�$�

�
� ��Aout �

The mass loss rate from both hemispheres is

*M � �

Z
S

Z
��Vp � d�S �

AoutZ
�

#A dA � # �Aout�

�although we have a steady state� �M	�t 	� � since the comoving derivative is
zero

dM
dt

� � 
 �M
�t

� �V � �rM � � with
�M
�t

� � *M� �

The total angular momentum loss rate from each hemisphere is

*J �

Z
S

Z
L��Vp � d�S �

�

�

AZ
�

L#A dA �



��	 A class of exact MHD models for astrophysical jets

The system of Eqs� ����� 	 ����� reduces now to a set of two partial and
nonlinear di�erential equations� i�e�� the r	 and �	 components of the momen	
tum equation on the poloidal plane� Note that by using the projection of the
momentum equation along a stream	�eld line A � const on the poloidal plane
�r� ��� Eq� ����� becomes�

��V � �r
�

�

�
V � �

"

"� �

P

�
� V � %r sin �

#A
B�

�
� �V � �Frad � q � �����

For a given set of the integrals L�A�� %�A� and #�A�� equations ����� 	
����� 	 ����� could be solved to give ��r� ��� P �r� �� and A�r� ��� if the heating

function q�r� �� and the radiation force �Frad are known� Similarly� one may
close the system of Eqs� ����� 	 ����� 	 ������ if a functional relation of q with
the unknowns �� P and A exists� As an example� consider the following special
functional relation of q with the unknowns �� P and A �TTS����

q �
� � "

"� �

P

�
�V � �r� � �����

where � � "� Then� Eq� ����� can be integrated at once to give the familiar
polytropic relation between P and ��

P � Q �A� �� � ���
�

for some function Q�A� corresponding to the enthalpy along a poloidal surface
A � const� In this special case we can integrate the projection of the momentum
equation along a stream	�eld line A � const on the poloidal plane� Eq� �����

by further assuming that �V � �Frad � �� to get the well known Bernoulli integral
� which subsequently can be combined with the component of the momentum
equation across the poloidal �eldlines �the trans�eld equation� to yield � and
A� After �nding a solution� one may go back to Eq� ����� and fully determine
the function q�r� ��� It is evident that even in this special polytropic case with
� 	� " the heating function q �not its functional form but the function q�r� ��
itself� can be found only a posteriori� Note that for � � " and only then the
�ow is isentropic�
Evidently� it is not possible to integrate Eq� ����� for any functional form of the
heating function q� such as it was possible with the special form of the heating
function given in Eq� ������ To proceed further then and �nd other more general
solutions e�ectively having a variable value for �� one may choose some other
functional form for the heating function q and from the �rst law� Eq� ����� derive
a functional form for the pressure� Equivalently� one may choose a functional
form for the pressure P and determine the volumetric rate of thermal energy
a posteriori from Eq� ������ after �nding the expressions of �� P and A which
satisfy the two remaining components of the momentum equation� Hence� in
such a treatment the heating sources which produce some speci�c solution are

�in general	 if there is a function V
�
such that �V � �Frad � ���V � �rV

�
	 the Bernoulli integral

exist	
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not known a priori� instead� they can be determined only a posteriori� However�
it is worth to keep in mind that as explained above� this situation is analogous
to the more familiar constant � polytropic case� with � 	� "� In this Chapter we
shall follow this approach� which is further illustrated in the following section�

However� even with this approach� the integration of the system of mixed
elliptic�hyperbolic partial di�erential equations ����� 	 ����� is not a trivial un	
dertaking� This is largely due to the fact that a physically interesting solution is
bound to cross some critical surfaces which are not known a priori but they are
determined simultaneously with the solution� For this reason only a very few
such self	consistent solutions are available� Further assumptions on the shape
of the critical surfaces are needed� as discussed in the following�

	���� Assumptions

In order to construct analytically a new class of exact solutions� we shall proceed
by making the following two key assumptions

�� that the Alfv�en number M is some function of the dimensionless radial
distance R � r	r�� i�e�� M � M �R�
and

�� that the poloidal velocity and magnetic �elds have a dipolar angular de	
pendence�

A �
r��B�

�
A ��� � � �

R�

G� �R�
sin� � � �����

for some function G�R��

�� for the radiative acceleration we have assumed that it has two compo	
nents� The �rst component is due to continuum absorption and is set
proportional to the radiative �ux� It drops with distance as r��� simi	
larly to gravity� If L� is the Eddington luminocity� we may use the ratio
"� � L	L� such that this part of the radiative acceleration is "��GM	r��
We have also assumed a second component of the radiative acceleration
due to line contribution� By adopting the optically thin atmosphere ap	
proximation �Lam�
� CM��� KM��� KM���� this part of the acceleration
is simply a function of r since in general the total number of weak lines
is a function of r� Then� the corresponding expression of the radiative
acceleration is V �

� 	r��Q �R��
The combination of gravitational and radiative acceleration is thus

���rV � �Frad �
V �
�

r�
�

�
Q �R�� ��

�R�

�
$r �

where

�� �
V �
esc

V �
�

��� "�� �
�GM
r�V �

�

��� "�� �
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The ratio between the radiative and gravitational forces is then

Frad
�Fgravity � "� �

�R�Q ��� "��

��
�

Furthermore� we use for Q the approximation of a power law� Q �R� �
��	R

x with ��� and x constants� The constant x measures the loss �x � ��
or gain �x 
 �� in radiative energy as a function of radial distance�

We are interested in transAlfv�enic �ows and denote by a  the respective value
of all quantities at the Alfv�en surface� By choosing the function G�R� such
that G �R � �� � � at the Alfv�en transition R � �� it is evident that G�R�
measures the cylindrical distance � to the polar axis of each �eldline labeled by
�� normalized to its cylindrical distance �� at the Alfv�en point� G �R� � �	���
For a smooth crossing of the Alfv�en sphere R � � �r � r�� � � �a����� the free
integrals L and % are related by

L

%
� ��

��A� � r�� sin� �a��� � r��� � �����

Therefore� the second assumption is equivalent with the statement that at the
Alfv�en surface the cylindrical distance �� of each magnetic �ux surface � �
const is simply proportional to

p
��

Instead of using the three remaining free functions of �� �A �#A � %�� we found
it more convenient to work instead with the three dimensionless functions of ��
�g� � g� � g���

g� ��� �

Z
A��d� � g� ��� �

r��
B�
�

Z
%�#�

Ad� � g� ��� �
#�
A

����
� �����

These functions g����� g����� g���� are vectors in a �D �	space with some
basis vectors u����� u����� u���� �VT���� Note that the forms of g� � g� � g� or
equivalently the forms of A� #A� %� L � r���% and P should be such that the
two remaining components of the momentum equation are separable in the �
and R coordinates�

	���� The method

The main steps of the general method for getting exact solutions under the
previous two assumptions are brie�y the following�

First� by using � instead of � as the independent variable� we transform
from the pair of the independent variables �R � �� to the pair of the independent
variables �R���� The resulting form of the �	 component of the momentum
equation can be integrated at once to yield for the gas pressure�

P �R��� �
B�
�

��

�
f� � f�g� � f�g

�

� � f��g
�

� � f�g� � f��g
�

�

�
�

B�
�

��
YPy � ������
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where f� �R� is a free function emerging from this integration� fi �R�� i �
�� �� � � � � � are functions of the spherical radius R given in the Appendix ��A

while f	 �
�

M�

�
Q� ��

�R�

�
and P� Y are the �� � �� matrices�

Y � � Y� Y� Y� Y� Y� Y� Y
 � �
h

� g� g
�

� �g
�

� g� �g
�

� g�

i
� ������

P � � f� f� f� f� f� f� � � � ������

Second� by substituting Eq� ������ in the r	component of the momentum
equation we obtain in terms of the �� � �� matrix X

X � � X� X� X� X� X� X� X
 � �
h
f
�

� f
�

� � f� � f
 f
�

� � f� � f	

i
�

������
the following equation

YXy � � � ������

A key step in the method is to �nd a possible set of vectors u����� u�����
u���� such that all components of the matrix Y belong to the same �	space�
So we choose u���� � � and u���� � g����� If this is the case� then our third
step is to construct a �� � matrix K such that

Y � � u� u� u� �K � ������

Then� from Eq� �������
� u� u� u� � KXy � � �

and since ui are linearly independent it follows

KXy � � � ����
�

Finally� it follows from Eq� ������ � ������ and ������ that�

P �
B�
�

��
�P� � g�P� � u�P�� �

where the three components of the pressure P�� P� and P� are

�P� P� P��
y � KPy � ������

	���� The Model

Let us know apply this method in the construction of a speci�c model� We may
recall that in �VT��� �see also Chapter ��� it was found that only nine distinct
general families of such vectors exist� One of them is�

u���� � � � u���� � � � u���� � �� � ������
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while the corresponding free functions are�

g���� � a � g���� � � � ���	� � g���� � � � �� � ����
� � ������

�see the case ��� in Table �����
For this particular choice of u���� � � � u���� � � � u���� � �� we �nd the
following form of the matrix K�

K �

�
� � � � � � � �

� � � �   �
� � � � �	� � ���

�
� � ������

Then� from Eqs� ������ and ������ we get��
� P�

P�

P�

�
� �

�
� f� � f�

f� � f� �  �f� � f��
� �f�	� � f��

�
� � ������

Finally� from Eq� ����
� using the de�nitions of Eqs� ������� ������ we
obtain� three ordinary di�erential equations for the functions of R in the model
for � 	� �� � and � 	� � �only then we have a �D �	space with � � � � �� linearly
independent�

f
�

� � f� � f	 � �

f
�

� � f
 � 
�
f
�

� � f�

�
� �f	 � �

�
�
f
�

�	�� f� � ��f	

�
� �

����
��� ������

with the functions fi �R�� i � �� �� � � �� � given in the Appendix ��A and f	 �
�

M�

�
Q� ��

�R�

�
�

Eqs� ������ can be found by setting equal to zero the three expressions in the
square brackets of Eq� ����
�� but in this Chapter we have proposed a simpler
way of �nding them� This method could easily be applied in all the other models
of Table ����

	���� Physical quantities and �nal di�erential equations
of model

Altogether� let us summarize the characteristics of our model� The MHD inte	
grals have the following forms�

#A �
p

���� �� � �� � ������ � ������

% �
V�
r�

s
����� � 

� � �� � �����
� ������

L � V�r�

s
����� � ��

� � �� � �����
� ������
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The physical quantities of the out�ow have the following exact expressions

� �
��
M�

�� � �� � ����
�� ����
�

P �
��V

�
�

�
�P� � P�� � P��

�� � ������

�V � V�

M� cos �

G�
$r � M�F sin �

�G�
$� �
p
� � ���

G� �M�

G ���M��
$�

p
� � �� � �����

������

�B � B�

�
cos �

G�
$r � F sin �

�G�
$� �
p

� � ���
��G�

G ���M��
$�

�
� ������

where the �ve unknown functions G��R�� F �R�� M��R�� P��R� and P��R� en	
tering in the above expressions are obtained from the integration of the following
�ve �rst order ordinary di�erential equations

dG�

dR
� �F � �

R
G� � ������

dF

dR
�

F

��M�

dM�

dR
� F �F � ��

�R
� F � � �

�R ���M��
� �G�RP�

��M�
�

�R

M� ���M���
�


�M� � �
�
G� �M� � �M�



��G�

�� ������

dM�

dR
�

M�


��M�

�
��M� � ��G� �M�

(
����G

�


��M�

��
Q� ��

�R�

�
�

F � �

R

�
�� � ��M� � ��� ��G�

�# ������

dP�

dR
� �

�
F � � �

�R�G�
� �



��G�

��
G� ���M���

�
dM�

dR
�

M�F

�R�G�

dF

dR
�

��

M�

�
Q� ��

�R�

�
� M�



F � � �

�
�F � ��

�R�G�
�


�F � ��

�

�M� � �

�
G� �M�

�
RG�M� ���M��

�

������

dP�

dR
� � �

G�

dM�

dR
�

�

M�

�
Q� ��

�R�

�
� �M� �F � ��

RG�
������
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while the pressure component P��R� is given explicitly in terms of the other
variables�

P� �
�

G�

�
G� �M�

�M� ���M��
�
�

��G�

��M�

��
�
� ������

The functional form of the pressure� Eq� ������� corresponds to the following
functional form for the heating function

q

�Vr
�

V �
�

�r�

Q� �Q�� �Q��
�

� � �� � �����

with Qi �
M�������

"� �

d


PiM

��
�

dR
� i � �� �� �� As discussed in subsection ������

one could proceed in the reverse way� i�e�� to start with the functional form of
the heating function and deduce the functional form of the pressure Eq� �������

The current density �J �
c

��
�r� �B has a poloidal component

�Jp �
c

��
�r� �B� � �r�

�
c�B�

��
�r�

�
� �r

�
c�B�

��

�
� �r� �

so the current lines on the poloidal plane are the lines
c�B�

��
� constant� or

p
����� � ��

�� G�

��M�
� � �Ip

cr�B�
� constant � ����
�

Note that from the structure of the model �basically from the forms of the
integrals�� we conclude that we could have solved the problem similarly� with a
more general form for the radiative force

�Frad �
��V

�
�

r�

�
�L� �R� � L� �R�� � L� �R����� $r �

cos �

sin �
�L� �R�� � L� �R����� $�

�
�

with given functions Li � i � �� �� �� �� � �

	���� Some properties of the model

Our model is meridionally self	similar� i�e�� if we know the shape of one �eldline
� � �� we may derive the shape of any other streamline � � �� by moving in
the meridional direction along each cycle R � const on the poloidal plane as
illustrated in Fig� ����

Note that the �ux function A is simply proportional to � which means that
for cylindrical solutions at R � �� the magnetic �eld on the poloidal plane is
uniform and its strength is independent of �� j �Bp j	� B�	G

�
	�
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Figure ��� An illustration of the construction of the streamlines � � const� on
the poloidal plane in meridionally selfsimilar out�ows�

The density at the Alfv�en surface is

�� �
#�
A

��
� �� �� � �� � ����

�� �

i�e�� it is similar to a Taylor expansion in the cylindrical distance �� from the
rotation and magnetic axis � � �� For example� for � � ��� we have�

��
��

� � � ���
��

r�
� �

�
��

r�

��

�

Also the parameters � � ��� � � help us to �t a desired pro�le for the density
on a given spherical distance �on the stellar surface� or at in�nity etc�� For
example we can choose low density on the polar axis and increased density with
increased � �hollow jets�� or we can choose an outer line �out such that � � �
in this line� etc�

We�ve also introduced the expansion factor

F � � ln��R� ��

� lnR
� �� R

G��

G�
�

which measures the �aring of the �eldlines on the poloidal plane� as illustrated
in Fig� ���� If locally� the function F is constant� then G� � R��F � or A �
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equator
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Figure ��� A geometrical illustration of the expansion factor F �R� which deter	
mines the shape of the poloidal streamlines in a meridionally selfsimilar out�ow�

RF sin� �� Thus� if F � � the �eldlines turn towards the axis� if F � � they
expand cylindrically� if F � � they are purely radial while if F 
 � the �eldlines
turn toward the equator �in that case� there is a closed region near the equator��
If we eliminate F in Eq� ������ �using Eq� ������� we have the second derivative

of G �which corresponds to the term
��A

�r�
in the trans�eld equation�� So� using

F us an intermediate function we have only �rst order di�erential equations�

Looking at the form of %� we see that we can choose the parameters � �  � � � �� � ��
in order to �t the di�erential rotation of a star �we remind that % is the an	
gular velocity of the star� since near the stellar surface� if M� � �� V� �
M�	#A � %� � %���

In the following we shall discuss the results of the integration of the previ	
ous system of di�erential equations ������� ������� ������� ������� ������� �������
Finally� we shall calculate all the other remaining physical quantities� A para	
metric study will be made only for � � �� since for � 
 � we have lim

���
� � ��

For � � � or � �or equivalently for � � ��� we get a degenerate case which
needs an extra condition between the functions of R� This case has been studied
in �ST��� �where the components of the pressure P� � P� are set proportional
to each other� and �TTS��� �where the function G�R� is given a priori�� Here�
in the case � � � we �ve chosen this extra condition to be f

�

�	�� f� � ��f	 � �
�c�f�� the last equation of the system ��������
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��� Critical Surfaces

In the domain of the solutions there exist several critical surfaces� In the fol	
lowing we brie�y discuss the physical context of these critical surfaces�

	���� Alfven critical surface

We recall that one of our goals is to investigate transAlfv�enic solutions wherein
L � ��

�%� By multiplying Eq� ������ with ��M� and evaluating the resulting
expression at the Alfv�en point we get

F�p� � F �
� � �

�
� �P�� � � � ������

with F�� P�� and p� �


dM�	dR

�
�

the respective values of these quantities

at the Alfv�en transition R � �� Eq� ������ is the so	called Alfv�en regular	
ity condition in the present model� Note that if we also multiply Eq� ������
with � �M� and evaluate the resulting expression at the Alfv�en point we get
an identical expression while Eq� ������ after using L�Hospital�s rule gives an
identity �corresponds to a star	type critical point�� At the Alfv�en point� the
parameters F� � p� are related with V�� � B�� since �using the L�Hospital rule�

��G�

��M�

�
�

�
�� F�
p�

�

V�� � V�

s
��� � �

� � �� � �����

�
�� �� F�

p�

�
� B�� � �B�

p
��� � �

�� F�
p�

�

	���� Slow�fast critical surfaces�

In order to locate the critical surfaces where the radial component of the �ow
speed equals to the corresponding slow�fast MHD wave speeds �TSS��
�� we
need to calculate �rst the sound speed Cs� to this goal we may proceed as fol	
lows�
Consider that at some �xed distance R of a given streamline labeled by � we
make a small change in the density � and the pressure P � We may de�ne the
square of the sound speed as the ratio of such an in�nitesimal change of P and
�� �see subsection ������

C�
s �

�
�P

��

�
��R

�

�P


��R�M�

�
�M�

��


��R�M�

�
�M�

� ������

or� from Eqs� ����
� 	 ������
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C�
s � �V �

�

�
M�

�P�



R�M�

�
�M�

�
�P�



R�M�

�
�M�

� �
�P�



R�M�

�
�M�

��

� � �� � ����
� � ������

Substituting

dP�

dR
�

�P�



R�M�

�
�R

�
�P�



R�M�

�
�M�

dM�

dR

in Eq� ������ we get�
�P�



R�M�

�
�M�

�
�

G�

�
dM�

dR
�

�

M�

�
Q� ��

�R�

�
��M� �F � ��

RG�
��P�



R�M�

�
�R

�

At the critical point where
dM�

dR
�

�

�
we have

�
�P�



R�M�

�
�M�

�
R�Rx

�

�
� �

G�

	
R�Rx

� ������

From Eq� ������ after substituting dF	dR from Eq� ������ we can calculate in
the same way �P�



R�M�

�
	�M��

�P�



R�M�

�
�M�

�
R�Rx

�

�
�F � � �

�R�G�
� �



��G�

��
G� ���M��

� �
M�F �

�R�G� ���M��

�
R�Rx

�

������
Finally� from Eq� ������ by taking the derivative of P��G�M�� for constant

G�R� we get similarly�

�P�



R�M�

�
�M�

�
�

G�

�

�M� � �

�
G� �M�

�M� ���M���
� �



�� G�

��
���M���

�
� ������

Substituting Eqs� ������� ������ and ������ in Eq� ������ we obtain the expres	
sion of the sound speed� The general formula for the sound speed may have an
additional term� which vanishes at the critical point� So in general

C�
s � V �

�

M�

G� ���M�� �� � �� � ������

�
��M�

M�
�

�

�
�G�



��M�

�
R�M�

�
F �G�

�R�M�
� 

G�


��G�

��
M� ���M���

�
�

���

�
G�


��G�

��
M� ���M��

� �G�



�M� � �

�
G� �M�

��M� ���M��

�
�

G�



�M� � �

�
G� �M�

�M� ���M��
L �R���

�
� ������
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where we have introduced some unknown function L �R����
An inspection of Eq� ������ for the Alfv�en number M �R� reveals that be	
sides the Alfv�en transition where M � G � R � �� there may be other dis	
tances Rx 	� � where the denominator of this equation becomes zero� D ��


�M� � �
�
G� �M�

�
R�Rx

� � �� In such a case� the numerator of Eq� ������
should be also set equal to zero and we have conditions typical of a critical
point �using L�Hospital�s rule we �nd two solutions for the slope of M� in this
point� i�e�� this singularity corresponds to an x	type critical point�� To clarify
the physical identity of such a critical point� we may manipulate the denomina	
tor D and write it in the form

D � �G� � � �� � ����
�

V �
� V

�
A�r ����	� � L�



V �
r � V �

A�r

� �
V �
r � V �

r



C�
s � V �

A

�
� C�

sV
�
A�r

�
�

������
where VA� VA�r are the total and radial Alfv�en speeds� respectively� So the

zeros of D correspond to surfaces R � Rx where the component of the �ow per	
pendicular to them� is equal with the same component of the phase velocity of
fast or slow MHD waves �see also subsection ������� Evidently� a critical point
at Rx corresponds to the modi�ed by the meridional self	similarity fast�slow
critical points �TSS��
�� In other words� the sphere R � Rx is the correspond	
ing spherical separatrix in the hyperbolic domain of the system of the MHD
di�erential equations �Bog�
�� The sound speed is well de�ned at the critical
points where D � �� but it is an open question if this de�nition can be extended
everywhere�
Suppose we know the sound speed everywhere� Then the characteristics are�

rd�

dr

�
�

�
b�pb� � ac

a

where

a � V �
p

�
V �
r �C�

s � V �
A � C�

s	M
�
�
� b � V �

p VrV
 and

c � V �
p

�
V �

 �C�

s � V �
A � C�

s	M
�
�
�

We see that there is a closed characteristic when a � � �only then the char	
acteristic is r � constant�� This is the limiting characteristic� Looking at Eq�
������ we see that when a � �� D � � too� In �� self similar models� we start
the integration from a surface r � ri and continue always on spherical surfaces�
When we reach the position of a spherical �limiting	closed� characteristic �the
one where a � �� as we have studied in Chapter �� we can not continue the

integration without imposing some regularity condition �the numerator of
dM�

dR
also vanishes there��

�From this equality	G�
x �

M�
x

�M�
x � �

� Gx � �	 so the point is in the superAlfv�enic regime

�corresponds to a modi�ed fast magnetosonic singular point��
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On the polar axis �� � ��� where VA � VA �r� the zeros of a� �a � ��
correspond to points where Vr � VA �Alfv�en point� or Vr � Cs �sonic point��
So the second equality must hold in any possible critical point �R � Rx 	� ��
on the axis� Eq� ������ veri�es this result� because for � � � and D � � gives
Cs � Vr �
Generally speaking� there may be more than two critical points on the axis �in
all these points with R � Rx 	� �� Vr � Cs� since Cs changes as we move
downstream�� But from the integration of the equations �as we see in Sec� ��
�
we found at most two singular points the Alfv�en and the modi�ed by the self
similarity fast magnetosound critical point� On the basis of causality arguments�
we should choose the superfast solution because only then� conditions at in�nity
will not in�uence the solution at the base� since no signal can be propagated from
in�nity upstream in a �ow which is superfast �see Chapter ��� Note that there
is no necessity for passing the solution through the other limiting characteristic
which correspond to the modi�ed slow magnetosound singular point� As we
discuss in Chapter � there are not causality problems in this surface� The �ow�
simply starts from the stellar surface with superslow velocity�

��� Asymptotic analysis

According to the asymptotical behaviour of the poloidal streamlines we may
distinguish two di�erent types of solutions�

	���� Cylindrical asymptotics achieved through oscillations
�Type I solutions�

In this case the poloidal streamlines undergo oscillations of decaying amplitude
and �nally they become cylindrical� A similar oscillatory behaviour is found
in all physical quantities� a situation which has been already analyzed in detail
�VT��� �see also Chapter ��� According to this analysis� as R� � we have

M� � M�
	 �� � ���� � G� � G�

	 ��� �� � ��r� � D

rs
sin �kr � ��� � ������

k� �
� ��� ��



M�
	 � G�

	

�
r��M

�
	 ���M�

	��
� ����
�

�� �
�
�� � ��M�

	 � ��� ��G�
	

� ��M�
	

��M�
	 � ��G�

	 �M�
	

� ������

s � � �
��M

�
	

M�
	 � �

� ������

Note that for s � � the gravitational term is dominant� but the analysis is still
correct because the oscillatory perturbation is independent of the �background�
term �	r �VT����



��� Method of integration �
�

	���� Converging to the axis asymptotics �Type II solu�
tions�

An analysis of the system of the di�erential equations ������ 	 ������ for lim
R�	

G �

� � lim
R�	

M � � and lim
R�	

F � F	 shows that in this case the value of the ex	

pansion factor F	 at R � � approaches a constant value� the positive root of
the equation

�� � ��

�
� �

�

�

�
F �
	 � � �� � ��

�
� �

�

�

�
F	 � � �� � �� � � �

As we shall see later� interesting solutions are obtained mainly for � � �� in
which case this root is greater than �� F	 � �� i�e�� the cross	sectional area of
�ow tube drops to zero at large radii� G� � R��F� � The poloidal velocity goes
to in�nity as Vr � R������F���� to conserve mass � while the toroidal velocity
grows like V��R��� � RF��� from angular momentum conservation�

��
 Method of integration

Suppose that we start from a spherical surface r � ri and integrate in the
downstream direction� First of all� we see that Eqs� ������	������ takes the
forms

dG�

d �r	ri�
� �F � �

�r	ri�
G� � ������

dF

d �r	ri�
�

F

��M�

dM�

d �r	ri�
� F �F � ��

� �r	ri�
� F � � �

� �r	ri� ���M��
� �G� �r	ri�P� �ri	r��

�

��M�
�

� �ri	r��
�

�r	ri�

M� ���M���
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�
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�
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dP� �ri	r��
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We see that if we introduce new constants
�i � � �ri	r��

��
� i �  �ri	r��

�
� �i � � �ri	r��

�
� ��i � ��r�	ri � ��i � �� �r�	ri�

x��

and the new functions P�i � P� �ri	r��
�
� �i � � �r�	ri�

�
then the parameter r�

disappears from the di�erential equations and from the integrals�
According to the analysis in Chapter � �see also �Bog���� the steady solution is
fully determined if we give on this boundary surface eight free functions� One
of them �E� � �� corresponds to the history of the �ow� while the remaining
seven corresponds to boundary conditions and regularity conditions at singular
points� If we give on the spherical surface r � ri �with known ri� the functions
of �
Br �or A�� B
 �or the normal derivative of A � �A	�r�� Vr �or M��� P � � �% � L
and E� � �� then we can �nd
M� � ���V �

r 	B
�
r � G

� � r�i sin� �%	L � F � ��B
 cos �	Br sin � � P� �


�P	��V �

�

�

��

�

P�i �


�P	��V

�
� � P� � P��

�
�
	 �sin �	G�� with �� � ���
��M

� and V� �
�Vr�
��G

�	M� and we begin the integration� Note that the parameters i � �i � �� � � � �i
are known from the expressions of the integrals on the surface r � ri� while
��i � x � ��i are known from the expressions of the external forces�

��� Parametric study of solutions

The two crucial parameters which a�ect the qualitative behaviour of the model
are  and ��
First for �� from the expression of the density � in Eq� ����
� it is required that
� � � in order that the density at the axis� ��� � �� R� and the pressure are �nite�
In the case � � � the electric current Ip���R� enclosed by a poloidal magnetic
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�ux tube � � const� and the corresponding con�ning azimuthal magnetic �eld
B����R� are proportional to �� this case has been already studied in �ST���
and it was found that cylindrical asymptotics is obtained through oscillations�
If � � �� Ip���R� and B����R� are increasing faster with � which results in
a stronger magnetic pinching force which eventually reduces the cross	sectional
area of the �ow tube to zero� Therefore we expect that when � 
 � 
 �
we obtain asymptotically cylindrical solutions while for larger values �� � ���
solutions where asymptotically lim

R�	
G � �� as it may be seen in Figure �����

For the larger values of � � � the pinching is so strong that oscillations do not
exist� This may also be seen from Eq� ����
� where k� 
 � for � � � �for
�M�

	 �G�
	� � ��� Note that if � � �� it is needed to have  � � such that the

square roots in Eqs� ������� ������ are positively de�ned near the axis � � ��
Altogether then� we shall divide accordingly our parametric study to the

intervals � 
 � 
 �� for cylindrical asymptotics with oscillations �cases �a�	�b��
and � � �� for converging to the axis �eldlines without oscillations �case �c�� �
Second� the parameter  is related to the asymptotic value of the pressure com	
ponent P�� For cylindrical solutions at R � � we get from the asymptotic
analysis

P��	 � �
�


M� � �
� 


G� �M�
�

� M�


�� G�

��
G�M� ���M��

�

�
	

�

For example when  � �� in which case from the integration we �nd G	 

� � M	� we obtain P��	 � � and the pressure gradient assists the magnetic
pressure in collimating the out�ow� In that respect solutions with  � � cor	
respond to an underpressured jet �TTS���� On the other hand when  
 � in
which case from the integration G�

	 � M�
	 � � and we �nd P��	 � �� P��	 
 ��

In all solutions with cylindrical asymptotics �i�e�� for � 
 ��� one �nds that for

 � � the total pressure force in the $� direction � $��r 
P � B�	��
�

is towards
the axis while for  
 � it is in the opposite direction� In all these cases we have

�M�
	 � G�

	� � �� or� 
�


�V �
r 	�
�
����R
�

� 
�V �
r 	�
�
����R��

�
� �� In other

words the sign of  determines if the poloidal kinetic energy on the axis is larger
at the Alfv�en point or at in�nity� Thus� according to the range of values of 
and � we distinguish the following cases

	���� Case �a�� � � 	 � � 
 � �

In this case cylindrical asymptotics is achieved through small amplitude os	
cillations of decaying amplitude �Type I solutions�� In the left panel of Fig� ���
the shape of the �eld�streamlines on the poloidal plane is shown in the inner re	
gion between the stellar base� the Alfv�en �dashed� R � �� and fast �dot	dashed�
R � �� critical surfaces� The poloidal lines are almost radial up to the Alfv�en
surface while after the fast critical surface they have attained a cylindrical shape�
However� the �nal cylindrical shape of the poloidal �eld�stream lines is reached
further out� i�e�� at about R � ��� as it is shown in the larger scale of Fig� ���
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Figure ��� Poloidal streamlines for case �a� with parameters � � ����  � ���
��� � ���� ���

� � ���� �� � �� F� � � and p� � ���
��� For the value of
� � ���� the magnetic pinching force just collimates the out�ow to a jet of �nite
asymptotic radius�
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Figure ��� In the left panel are plotted the components of the magnetic �solid��
pressure gradient �small dashes�� gravitational �dot	dashed� and total acceler	
ation �long dashes� perpendicular to the poloidal streamlines on line � � �lim
for the parameters of the previous �gure� In the right panel the corresponding
components parallel to the poloidal lines are plotted also for case �a� and the
same parameters � � ����  � ��� ��� � ���� ���� � ���� �� � �� F� � � and
p� � ���
��

�right panel� where their asymptotically cylindrical shape can be better seen�
The bending of the poloidal �eld�stream lines towards the magnetic�rotational
axis is caused by the magnetic pinching force as it can be seen in the left panel
of Fig� ��� where the various components of the forces acting on the plasma
perpendicular to the poloidal �eldlines are plotted� In the inner region of the
out�ow� the total inertial force perpendicular to the lines �centripetal force� is
almost exclusively provided by the inwards magnetic force� with the outward
pressure gradient balancing the inward component of gravity� Asymptotically
however� the magnetic pinching force and gravity are negligible and the pressure
gradient of the underpressured jet balances the centrifugal force� The accelera	
tion of the plasma along the poloidal lines can be seen in the right panel of Fig�
���� Evidently� in the inner region gravity is balanced by the pressure gradient
force and the plasma is accelerated only by the remaining magnetic force while
in the outer region where gravity and the magnetic force are negligible� it is
accelerated by the dominant pressure gradient force� As it may also seen in the
left panel of Fig� ��
 most of the acceleration occurs on the far region at R � ��
by the thermal pressure gradient force�

The solution discussed in this representative example crosses the modi�ed
by self	similarity fast critical point and a note is in order here on how such a
solution may be obtained� First� we integrated Eqs� ������ 	 ������ downstream
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Figure ��� The solid line gives the relation between the expansion factor F�
and the slope p� of M��R� at the Alfv�en point for a solution through all critical
points� for case �a� with parameters � � ����  � ��� ��� � ���� ���� � ����
�� � �� The topologies of M��R� at the neighboring points ���� ���� ��� and ���
are also shown�

of the Alfv�en critical point at which R � G � M � �� F � F�� P� � P�� and
P� � P��� a free parameter which determines the pressure at in�nity� At R � �
the Alfv�en regularity condition relates F�� p� and P��� Eq� ������� Also there is
a relation between F�� p� such that the solution passes through the fast critical
point� this is the solid line in Fig� ���� Assume for example that we choose
F� � � and we vary p�� Fig� ���� There is only one value of p� � ���
 which
satis�es the Alfv�en regularity condition and the solution crosses the fast critical
point� For other values of p� above and below p� � ���
 we have three di�erent
types of unphysical solutions shown in Fig� ���

� from point ��� of Fig� ��� corresponding to p� higher than ���
 we get
solutions in which the denominator of the di�erential equation for M�

becomes zero and the curve M��R� turns back to smaller distances�

� from point ��� of Fig� ��� corresponding to p� lower than ���
 till point
��� we get solutions in which the numerator of the di�erential equation
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Figure ��
 Dimensionless velocities �left panel� and current lines �right panel�
for case �a� with parameters � � ����  � ��� ��� � ���� ���� � ���� �� � ��
F� � � and p� � ���
��

for M� becomes zero and then the solutions become again subAlfv�enic�

� �nally� from point ��� of Fig� ��� we get solutions in which there is a
distance R wherein M �� and the solutions terminate there�

A �ne tuning between points ��� and ��� gives the unique solution which
goes to in�nity with superAlfv�enic and superfast radial velocity� satisfying also
the causality principle for the propagation of MHD perturbations� After �nding
such a critical value for p� we also integrate Eqs� ������ 	 ������ upstream of
the Alfv�en point�
We found from the integration a spherical surface R � RI in the superAlfv�enic
regime� where G � � �but M 	� ��� or B� � �� This corresponds to a vanishing
poloidal current Ip there �see Eq� ����
��� For R 
 RI � as we see in the right
panel of Fig� ��
� the current lines are closed� while for R � RI they are open�

	���� Case �b�� � � 	 � � 
 � �

In this case we may have two possibilities� In one the solution crosses the fast
critical point and the situation is similar to the previous case �a�� At the same
time however asymptotically cylindrical solutions exist which do not cross the
modi�ed fast critical point� being simply superAlfv�enic� An example of this type
of behaviour is shown in Figures ���	 ����� As in case �a�� cylindrical asymptotics
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Figure ��� Poloidal streamlines for case �b� with parameters � � ����  � ���
��� � �� ���

� � ������ �� � �� F� � � and p� � �� With dotted lines the
density isocontoures are indicated with �	�� � ���� �� �� from top to bottom
in the left panel and �	�� � ����� ����� ����� ���� from left to right in the right
panel� The jet has a �nite asymptotic cylindrical radius�
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Figure ��� In the left panel are plotted the components of the magnetic �solid��
pressure gradient �small dashes�� gravitational �dot	dashed� and total accelera	
tion �long dashes� perpendicular to the poloidal streamlines on line � � �lim�
In the right panel the corresponding components parallel to the poloidal lines
are plotted also for case �b� and the same set of parameters � � ����  � ���
��� � �� ���� � ������ �� � �� F� � � and p� � �

is achieved through oscillations of decaying amplitude �Type I solutions�� In the
left panel of Fig� ��� the shape of the �eld�streamlines on the poloidal plane
is shown in the inner region between the stellar base and the Alfv�en �dashed�
R � �� critical surface� The poloidal lines are almost radial up to this Alfv�en
surface while outside R � � they attain a cylindrical shape� However� the �nal
cylindrical shape of the poloidal �eld�stream lines is reached further out� i�e��
at about R � ��� as it is shown in the larger scale of the right panel of Fig�
��� where their asymptotically cylindrical shape obtained through the decaying
amplitude oscillations can be better seen�

As in case �a�� the focusing of the poloidal �eld�stream lines towards the
magnetic and rotation axis is caused predominantly by the magnetic pinching
force� this may be seen in the left panel of Fig� ��� where the various compo	
nents of the forces acting on the plasma perpendicular to the poloidal �eldlines
are plotted� In the inner region of the out�ow R�

��� the total inertial force
perpendicular to the lines �centripetal force� is almost exclusively provided by
the inwards magnetic force� In the far zone where gravity is negligible� R �

���
the inwards magnetic pinching force is balanced by the pressure gradient of the
overpressured jet and the centrifugal force� The acceleration of the plasma along
the poloidal lines can be seen in the right panel of Fig� ���� In the inner region
R �

�� the magnetic and pressure gradient forces accelerate the plasma� in the
outer region where gravity and the magnetic forces are negligible� the pressure
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Figure ��� The solid line gives the relation between the expansion factor F�
and the slope p� of M��R� at the Alfv�en point for a solution through all critical
points� for case �b� with parameters � � ����  � ��� ��� � �� ���� � ������
�� � �� The topologies of M��R� at the neighboring points ��� to �
� are also
shown�

gradient force is left alone to accelerate the plasma� As in case �a�� it may also
be seen in the right panel of Fig� ��� that most of the acceleration occurs in the
far region at R � �� by the thermal pressure gradient force�

Figure ��� is a plot of the values of p� and F� for which the fast point is
crossed� As in case �a�� we integrated Eqs� ������ 	 ������ downstream of the
Alfv�en critical point at which R � G � M � �� F � F�� P� � P�� and P� � P���
At R � � the Alfv�en regularity condition relates F�� p� and P��� Eq� �������
Also there is a relation between F��p� such that the solution passes through the
fast critical point� this is the solid line in Fig� ���� Assume for example that we
choose F� � ��� and we vary p�� Fig� ���� There is only one value of p� � ��

which satis�es the Alfv�en regularity condition and the solution crosses the fast
critical point� For other values of p� above and below p� � ��
 we have di�erent
types of solutions shown in Fig� ���
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� at point �
� of Fig� ��� corresponding to p� higher than p� � ��
 we get
solutions in which the denominator of the di�erential equation for M�

becomes zero and the curve M��R� turns back to smaller distances�

� at points ���� ��� and ��� of Fig� ��� we get solutions in which the nu	
merator of the di�erential equation for M� becomes zero and then the
solutions become again subAlfv�enic�

� at points ��� and ��� of Fig� ��� we get oscillatory solutions which do not
cross the fast critical point� These solutions were shown in the previous
Figures �������������

A �ne tuning between points �
� and ��� gives the unique solution which
goes to in�nity with superAlfv�enic and superfast radial velocity�

Note that in this case there exists a value �out where V� � � and B� � ��
In this streamline the poloidal current is zero� For � � � and the parameters as
in Fig� ���� �out � �����
If we examine Eq� ����
� we see that in the case where  
 � � � 
 � 
 ��

there is a line �I �

�
� �� � ��

� j  j
� �

�� � where the absolute poloidal current j Ip j
has a maximum� For � 
 �I the current density �ows upstream� while for
� � �I it �ows downstream �see the right panel in Fig� ������ On the line

�out �

�
�

j  j
� �

�� �
we have Ip � � and B� � ��

	���� Case �c�� 	 � � 
 � �

As discussed in the beginning of Sec� ��
� when � � � the strong magnetic
pinching force results in a jet of zero asymptotic radius� in addition� this asymp	
totics is achieved without oscillations� i�e�� we obtain type II solutions� Fig� ����
	 ����� The values of p� and F� for which the solution crosses the fast critical
point are shown in Fig� �����

As with the previous cases� for each value of F� there is only one value of the
Alfv�en number slope p� such that the solution passes through the fast critical
point� this is the solid line in Fig� ����� Assume for example that we choose
F� � ��� and we vary p�� Fig� ����� There is only one value of p� � ���� which
satis�es the Alfv�en regularity condition and the solution crosses the fast critical
point� For other values of p� above and below p� � ���� we have two di�erent
types of unphysical solutions shown in Fig� ����

� at point ��� of Fig� ���� corresponding to p� higher than ���� we get
solutions in which the denominator of the di�erential equation for M�

becomes zero and the curve M��R� turns back to smaller distances�
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Figure ���� Dimensionless velocities �left panel� and current lines �right panel�
for case �a� with parameters � � ����  � ��� ��� � �� ���� � ������ �� � ��
F� � � and p� � �

� at point ��� of Fig� ���� corresponding to p� lower than ���� we get solu	
tions in which the numerator of the di�erential equation for M� becomes
zero and then the solutions become again subAlfv�enic�

A �ne tuning between points ��� and ��� gives the unique solution which
goes to in�nity with superAlfv�enic and superfast radial velocity� Nevertheless�
the jet radius goes to zero in this case�

	���� The case where �� 	 �

We examine this special case only because for �� � �� Eq� ������ can be inte	
grated at once to give

G� �M�

G������M� ���M��
� constant �

This constant is equal with � � � �F� � �� 	p� �at the Alfv�en point� or

G�
	 �M�

	

�
	G

������
	 M�

	



��M�

	

�
�at in�nity��

The derivative dM�	dG� is of the form �	� if M�
x � �� � �� 	 �� � �� � G�

x �

�� � ��� 	 �� � �� ��� ��� so there is a critical point if � � � �when Mx 
 � � Gx �
�� or � 
 �� �when Mx � � � Gx � ��� The solution pass from this point when

p� � ��� F�� 	Cx with Cx � �
� � ���

������

h
����������
������

i �
�
�

� Both solutions are
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Figure ���� Dimensionless velocities for case �c� with parameters � � ��  � ���
��� � �� ���� � ���� �� � �� F� � ��� and p� � ���
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unphysical� since for � 
 � we have in�nite density on the polar axis� and for
� � � we are in the subAlfv�en regime but we have cross section bigger than the
Alfv�en cross section�

��� Astrophysical Applications

It should be noted that the purpose of this study has not been to construct
a speci�c model for a given collimated out�ow� instead� our goal has been to
outline via a speci�c class of exact and self	consistent models� the interplay of
the various MHD processes contributing into the acceleration and collimation
of jets� Nevertheless� the illustrative examples analyzed in this Chapter can be
compared with the observable characteristics of out�ows from stellar or galactic
objects� say� those associated with young stellar objects� For this purpose� in
the following we establish the connection between the nondimensional models
and the observable parameters of the out�ow�

Suppose that at the polar direction of the stellar surface �r � r� � � � �� we
know the values of Vr � Br and �� say� V�� B� and ��� respectively� Then we may
calculate M� � V�

p
����	B�� From the integration we can �nd the distance R�

where M �R�� � M�� Thus we may calculate the Alfv�en distance r� � r�	R��
Each line which has its footpoint on the stellar surface at angle �i is labeled
by � � �r� sin �i	r�G �r�	r���

�� The last line originating from the star is �lim�
Each line which has its footpoint on the disk at distance ri � r� from the axis
of rotation is labeled by � � �ri	r�G �ri	r���

�
� �lim�
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If at the stellar surface G�R�� � G� we �nd the Alfv�en values� V� � V�G
�
�	M

�
� �

B� � B�G
�
�� �� � ��M

�
� and from Eqs� ����
� to ������ we can �nd all

physical quantities at any point� For example at R � �� � � � we have
the following asymptotic values V	 � V�G

�
�M

�
		M�

�G
�
	� B	 � B�G

�
�	G

�
	�

�	 � ��M
�
�	M

�
	 �

	�	�� Model of case �a�

For a typical solution with parameters as those plotted in Fig� ��� and r� �
�� ����cm� V� � �� ���cm	sec� B� � �� ����G� �� � ��
� ����
gr	cm� we
�nd R� � ���� M�

� � �� �� ����� G�
� � ���� ���� and M�

	 � ����� G�
	 � �����

so we have �lim � ����� r� � ����cm and V	 � �� ��
cm	sec� B	 � ����G�
�	 � ��

� �����gr	cm� �or n	 � ���	cm��� Choosing �� � �
� we have a
stellar mass �� ����gr while for � � ���� the angular velocity at the equatorial
point of the stellar surface is �� ����	sec �
Note that in this case �a� the toroidal component of the magnetic �eld changes
sign at some spherical surface �c�f� the velocity VA� �lim in the left panel of
Fig� ��
�� This means that the poloidal current enclosed by this surface is zero
�see the right panel of Fig� ��
�� All �eldlines which pass through this surface
have the same cylindrical distance from the axis with the Alfv�en point �G � �
at this spherical surface� while for larger distances G 
 �� After crossing this
surface the Poynting �ux changes its sign and thus the toroidal component of the
velocity becomes large enough �in general V�	�% �



M� � G�

�
	G�



M� � �

�
��

	�	�� Model of case �b�

If the star has radius r� � � � ����cm and at the pole on the stellar sur	
face V� � 
�� � ���cm	sec � B� � ��� G � �� � � � �����gr	cm� we �nd r� �
����cm �M�

� � ���� � ���� � G�
� � ����
 and M�

	 � ��� � G�
	 � 
� � V	 �

���cm	sec � �	 � ��

� �����gr	cm� � B	 � ����G� The last line connected
with the star has �lim � ���� while the disk has a radius ���� � ����cm� If
we choose �� � ��� then the mass of the star is one solar mass� The equa	
tor of the star rotates with a speed ���� ���cm	sec so the angular velocity is
���� ���
	sec�

The asymptotic radius of the jet �which is bounded with the line �out� is
� A�U� while the part of the �ow starting from the stellar surface has a radius
���� A�U��This part of the jet is collimated at a distance about � A�U� from the
equatorial plane� while the whole solution collimates at the height of ��� A�U�
These results are consistent with recent observations of YSO�s �Ray�
��

	�	�� Model of case �b� including radiation

There are two parameters ��� � x� related to the radiative force �the third is
included into ����
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Figure ���� Dimensionless asymptotic values of the radial velocity �left panel�
and dimensionless asymptotic values of the radius of the jet �right panel� as a
function of the radiative force parameters x and �� for case �b� with parame	
ters � � ����  � ��� ��� � �� ���� � ������ �� � ���� F� � � and p� � �� In
all these cases in the surface of the star M�

� � ����� �����

For the parameters of case �b� but for �� 	� � we examine the e�ect of the
radiative force on the velocity and the asymptotic radius of the out�ow� As
we expect� as the radiative force increases� the terminal velocity becomes larger
�Fig� ����� while the Alfv�en surface moves closer to the stellar base� From mass
conservation we expect that the cross sectional area of the jet decreases as x
increases� as it is shown in Fig� �����

�� Summary and Conclusions

In this study we have examined a class of exact solutions of the full set of the
MHD equations ����� 	 ����� governing the kinematics of a magnetized out�ow
from a rotating gravitating object� For this system to be closed� an additional
equation is needed to describe the energetics of the out�ow� i�e�� some form of
the energy conservation principle� Eq� ������ The often used simplifying poly	
tropic relationship between pressure and density which corresponds to a speci�c
functional form of the net heating�cooling in the plasma� was not used� This led
to the inconvenient result that the sound speed is ill de�ned and it can be cal	
culated only at the modi�ed by self	similarity fast MHD critical point� Besides
this inconvenience we did not su�er any loss of generality in adopting a more
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general functional form of the total heating� than the polytropic assumption
implies� As it was explained in subsection ������ in both� the familiar polytropic
case of constant � and the present nonconstant � approach� the detailed spatial
distribution of the required heating can be calculated only a posteriori�

The analyzed class of solutions in this Chapter belongs to the group of nine
classes of meridionally selfsimilar MHD solutions which have been shown to
exist in �VT��� under the two assumptions that the Alfv�en Mach number is
a function of the radial distance and the poloidal magnetic �eld has a dipolar
angular dependence� Eq� ����� �the only di�erence is the appearing of Frad�� No
assumption was made about the asymptotics of the out�ows� It is interesting
that the self	consistently deduced shape of the streamlines and magnetic �eld
lines was found to be helices wrapped on surfaces which asymptotically are
cylindrical� In other words� the streamlines extended to in�nite heights above
the central object and its disk obtaining the form of a jet� This result may be
contrasted to the quite often referred Blandford � Payne �BP��� solutions which
by overfocusing towards the axis terminate at �nite heights above the disk� The
cylindrical asymptotics of the present nonpolytropic solutions agrees with the
polytropic analysis of Heyvaerts � Norman �HN��� and also with the class of
exact solutions of Sauty � Tsinganos �ST��� for e�cient magnetic rotators�
However� no radial asymptotics was found in this class of models� contrary to
the other class of meridionally selfsimilar solutions examined in �ST��� where
for ine�cient magnetic rotators radial asymptotics was found� it may be that
the present model belongs to the group of e�cient magnetic rotators�

The topologies of the solutions are rather rich as it was shown in the plane
de�ned by the slope of the Alfv�en number p� and the streamline expansion fac	
tor F� at the Alfv�en transition� For example� for a given streamline expansion
factor F� we obtained terminated solutions for p � p�� similarly to the cor	
responding terminated solutions in Parker�s �Par��� HD wind� or� the Weber
� Davis �WD
�� magnetized wind� For a given pressure at the Alfv�en point�
the requirement that a solution crosses the Alfv�en and fast critical points elim	
inates the freedom in choosing p� and F� through the corresponding regularity
and criticality conditions�

A plotting of the various forces acting along and perpendicular to the poloidal
streamlines reveals that the wrapping of the �eld lines around the symmetry
axis is caused predominantly by the hoop stress of the magnetic �eld which it
is already strong at the Alfv�en �and fast� critical surfaces� Asymptotically the
cylindrical column is con�ned by the interplay of the inwards magnetic pinching
force� the outward centrifugal force and the pressure gradient� as in �TTS����
On the other hand� the acceleration of the plasma along the poloidal magnetic
lines� in the near zone close to the Alfv�en distance it is due to the combination
of thermal pressure and magnetic forces while at the intermediate zone beyond
the Alfv�en point it is basically the pressure gradient that is responsible for the
acceleration�
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Chapter 	

Accretion on dilatonic black

hole

A detailed analysis of spherical steady state adiabatic hydrodynamical accretion
onto a four dimensional dilatonic black hole is presented� Because the event hori	
zon of a dilatonic black hole possess an area much smaller than a Schwarzschild
one of the same mass� and at the same time its accretion radius is indistin	
guishable from that of an accreting Schwarzschild black hole� accretion �ows
on the dilatonic background exhibits novel e�ects particularly as the extreme
limit is approached� By a combination of numerical and analytical techniques�
it is shown that for any equation of state obeying the causality constraint and
any subsonic at in�nity �ow� there always exist a transonic� regular over the
event horizon �ow� For background corresponding to a dilatonic black hole
approaching the extreme limit� the asymptotic behavior of the transonic �ow
near the horizon� di�ers considerably from �ows occurring near the horizon of a
Schwarzschild black hole� For the former case the accreting plasma even though
crosses the horizon supersonicaly� it is not any longer in the state of free fall�
Furthermore it is heated enormously� so that the proton component becomes
relativistic� As a consequence we have found that the adiabatic assumption is
not any longer justi�ed� the need for incorporating radiative transport e�ects
is pointed out� It is argued that if such black holes exist in the universe� they
should have a distinct observational signature associated with them�

�� Introduction

The discovery of a new class of asymptotically �at spherical black hole solutions
of the Einstein non vacuum �eld equations �Gib��� GM��� GHS��� caught many
researchers by surprise� The new class establishes beyond any doubts that in
general non	linearities in �eld con�gurations may resist the pull of gravity and
thus peacefully coexist with a regular event horizon� Furthermore the new
class constitutes a counterexample to the popular believe that isolated black

���



��� Accretion on dilatonic black hole

holes have always their exterior empty apart from an electromagnetic �eld� The
+hair� consists of a dilaton coupled to a U��� �eld� In the domain of outer
communication the geometry of a dilatonic black hole �nick name for the new
class� can be written in the following manner

ds� � ���� �M

r
�dt� � �� � �M

r
���dr� � g�r�d%� � �����

where g�r� � r��� � Q
Mr �� M � � is the mass of the hole while Q stands for a

combination of the electric or magnetic charge q and the value of the dilatonic
�eld at in�nity namely Q � q�e��o � We shall denote here after by a � Q

M� � The
black hole sector characterized by positive M and values of a in the interval
������ More speci�cally a � � characterize the extreme dilatonic solution� a � �
covers the space of naked singularities while for a � � the Schwarzschild black is
recovered� Introducing a new dimensionless parameter � � r

�M and computing
the scalar curvature R and proper area Ao of r �constant spheres one �nds

R �
a

��
�
M

mpl
lpl�

�� ���� ��

���� a��
��� � �����

Ao���

��
�

�

�
�
M

mpl
lpl�

������� a�� � �����

where mpl and lpl are respectively the Planck mass and length� Expression �����
implies for a � � the spacetime singularity +lies outside the event horizon��
Furthermore Eqs� �����	����� show that the dilatonic black hole possesses a few
distinct properties worth mentioning� At �rst the extreme case and in sharp con	
trast to the extreme Reissner	Nordstrom solution� is characterized by a pointlike
singular event horizon� Furthermore thermodynamically it possesses non zero
Hawking temperature and vanishing entropy� in contradistinction to the thermo	
dynamical properties of an extreme Reissner	Nordstrom solution �zero Hawking
temperature� non vanishing entropy�� Away from the extreme limit� a �rst look
at the line elements in Eq� ����� suggests� that the geometry of a dilatonic black
hole should not di�er very much from the well known Schwarzschild one�The
two metrics �di�er at one point�� The dilatonic metric endows the proper area
of the SO��� orbits with less area than the corresponding Schwarzschild� In fact
Eq� ����� shows that a dilatonic state close to the extreme limit could possess
an event horizon whose proper area lies many orders of magnitude bellow the
corresponding area for a Schwarzschild black hole� In addition Eq� ����� shows
that as one approaches the extreme limit� for instance even assuming an ex	
tremely �ned	tuned value a � � � ���� then for a solar mass black hole the
area radius� lies many orders of magnitude below the Planckian values� There	
fore quantum gravitational e�ects on the black hole exterior can be ignored� In
fact such nearly extreme states are rather bizzare� Extremely compact in size�
but at the same time exerting the same gravitational in�uence as a solar mass
Schwarzschild black hole does� Besides this purely geometrical di�erence� as al	
ready stated earlier�the dilatonic states are accompanied by classical hair� From
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the observational point of view� the background dilaton �eld is not expected to
play any signi�cant role� at least for the range of energy scales where various
astrophysical process take place� On the other hand the background monopole
electric or magnetic �eld may be of importance� An electrically charged dila	
tonic black hole� residing somewhere in the universe� likely to get neutralized via
preferential accretion of charge of the opposite sign� Such process presumably
will drive a towards zero� It would be then of some independent interest to �nd
out what will happen to the dilaton �eld� For the magnetically charged hole�
the background monopole �eld cannot be transformed away� Depending on its
strength it is expected to play signi�cant role in astrophysical process involving
angular momentum and charged particles� Note however for purely radial infall
the exerted Lorentz force is vanishing and thus its role is insigni�cant�

In view of the above di�erences one wonders whether the new class interacts
with the rest of the universe in an entirely di�erent fashion than the corre	
sponding Schwarzschild one� Since accretion of ambient matter is the dominant
interaction mode of black holes with the external world� it is natural to examine
accretion phenomena on a magnetically charged dilatonic background� As a pre	
liminary step� in the present Chapter a detailed examination of Bondi adiabatic
accretion �Bon���� will be discussed� Recall� such accretion is radial� therefore
the background monopole magnetic �eld is unimportant� So the main focus of
the present Chapter� is to probe possible e�ects upon hydrodynamical �ows�
due to the the rapid reduction in the area of the SO��� spheres as the event
horizon is approached� A priori it is not clear whether smooth accretion �ows
exist for all values of a in ������ For instance� development of standing shocks is
a possibility� In addition presence of multiple critical points is not excluded� In
particularly the second possibility is enhanced in view of the close connection
between multiple critical points and the rapid convergence	divergence in the
cross sectional area of the +tube� where the �ow takes place �Hol��� HT����
For comparison purposes we may recall that Bondi accretion on a Schwarzschild
background is rather well behaved� It has been established that as long as adi	
abaticity is maintained and the �ow is subsonic at in�nity� there always exist
a unique transonic �ow regular over the event horizon� Because of the way a
enters the metric� it is expected that Bondi accretion on a dilatonic background
to share the same properties as well provided a remains close to zero� However
things become unclear as a deviates away from the zero value and in particularly
for the nearly extreme dilatonic backgrounds�

Primarily motivated by the above questions� we begin the Chapter by �rst
reminding the reader of the relevant equations governing spherical� steady state
�ows on a dilatonic background� In section ����� we discuss the delicate issue
of the critical points admitted by the �ow equations� It is shown that for any
dilatonic black hole� the relevant hydrodynamical equations� always admit a
critical point of the sadle type� which is located outside the event horizon� The
extreme one� admits an additional critical point residing on the pointlike singular
event horizon� It is found that the accretion rate is insensitive to all values of
a� even for the extremal ones� In the same section an equivalent formulation of
the �ow equations are presented which shows that the critical point is actually



��� Accretion on dilatonic black hole

a sonic horizon� With the help of numerical integration the existence of a
unique transonic solution subsonic at in�nity� passing through the critical point
and reaching supersonicaly the event horizon is established� Its asymptotic
behavior as well as its regular nature near the horizon is discussed in details� We
found that the transonic �ow near the horizon may di�er signi�cantly from that
occurring on a Schwarzschild background� Speci�cally while for the latter the
�ow is in a free fall state� for a nearly extreme dilatonic background that is any
longer so� Because the even horizons cross section is reduced considerably the
�ow is retarded signi�cantly� resulting into extreme dense plasma� Consequences
of this retardation is discussed� In particularly the adiabaticity assumption is
put under scrutiny� We present arguments indicating adiabaticity is not any
longer compatible with �ows taking place on holes approaching the extreme
limit� The physical reasons leading to this behavior is presented in details�
We �nish the Chapter by commenting on some open problems and discussing
possible observational signatures associated with dilatonic black holes�

�� Bondi accretion on a dilatonic black hole

We begin by considering a perfect �uid moving on the background of Eq� ������
The �uid is considered to be a test one� thus causing negligible distortion on
the background geometry� It is described by a conserved stress tensor

T�� � �� � P �u�u� � Pg�� �����

and a conserved baryon current J� � nu� i�e�

r�T
�� � � and �����

r��nu�� � � � ���
�

In above �� n� P� are the total mass	energy density� baryon number density and
pressure respectively as measured by an observer comoving with the �uid� As
long as there is no external supply of energy and irrespectively of the equation
of state� the �rst law of thermodynamics combined with the conservation Eqs�
������ ���
� implies that the �uid evolves without its constituents exchanging
any heat i�e� the motion is adiabatic� Thus if S� T are the entropy per baryon
and temperature respectively as measured in the local rest frame of the �uid
then�

u�r��
�

n
� � Pu�r��

�

n
� � Tu�r�S � � � �����

The covariant conservation of the stress tensor is equivalent to

u�r�� � �� � P �r�u
� � � � �����

�� � P �u�r�u� � �r�P � u�u
�r�P � �����
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Making use of Eq� ������ spherical symmetry and the steady state character of
the �ow� the continuity Eq� ���
� and Euler Eq� ����� yield

d

dr
�nug� � � � ������

�� � P ��
duo
dr

� � uo
dP

dr
� � � ������

u
du

dr
� � �

�� � P �

dP

dr
��� �M

r
� u�� � M

r�
� ������

Eq� ����� is automatically satis�ed� provided Eqs� �����	������ hold� In above
u stands for the radial component of the �ow i�e� ur and uo � gttu

o� Taking
into account the adiabaticity assumption the following conservation laws can
obtained from Eqs� ������	������

��mnug � *M � ������

�
� � P

n
����� �M

r
� u�� � �

� � P

n
��j	 � ������

� � P

n
uo � �� � P

n
j	 � ������

The parameter m stands for a mass scale associated with the baryons� *M is
a spacetime independent constant representing the accretion rate of rest mass
energy down to the horizon while the right hand side of Eqs� ������� ������ are
computed at in�nity� Conservation laws Eqs� ������� ������ are actually not
independent of each other� They are di�erent ways of expressing the covariant
version of Bernoulli equation i�e�

uara�
� � P

n
�gbcu

bc�� � � �

valid for any geometry admitting a Killing �eld  and any �ow invariant under
the action of the isometry� Assuming an equation of state P � P �n� S� and
introducing the adiabatic speed of sound a via a� � dP

d� js Eqs� ������	������ can
be recast as

u
�

�
D�

D
� ����
�

n
�

� �D�

D
� ������

u
�

o � �uoa
�

n
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D
� where ������
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u� � a���� �M

r � u��
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� ������

D� � � �

n
�
M
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� Aa���� �M

r
� u��� � ������
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D� �
�

u
��M

r�
� Au�� � ������

and A is de�ned by

A � d

dr
ln j g�r� j� ��� a

�M� ���� a�
�

Eqs� ����
�	������ are the basic equations describing the �ow� We shall ignore
here after Eq� ������ as redundant and concentrate on Eqs� ����
�� ������� An
inspection of them shows that they reduce to the corresponding �ow equations
for Schwartzcild background provided g�r� � r�� It is worth however to note the
non trivial manner the parameter a enters the �ow equations� A close look at
D��D� shows whereas for the Schwarzschild case and near the event horizon� the
�rst term within the square bracket in Eqs� ������� ������ dominates the rest�
the situation is reversed for the class of dilatonic black holes approaching the
extreme limit� In fact at the extreme limit the second term diverges� Following
Bondi and others� any type of radiation losses will be initialy ignored and thus
adopt the polytropic equation of state P � P �n� � Kn� as the relevant equation
of state describing the accreting plasma� The parameter K is a constant and
the polytropic index will satisfy " 
 �	�� Such equation of state actually makes
the �ow to be isentropic and the �rst law implies the following expression for
the speed of sound and energy density �

a� �
dP

dn

n

� � P
�

"Kn���

m � "Kn���	 �"� ��
� ������

dn

d�
�

n

� � Kn�

 � � mn �

P

"� �
� ������

Thus a� and � are functions of the baryon density alone� For numerical purposes
it is convenient to reformulate the above �ow equations in a slightly di�erent
manner� a manner which also reveals that if critical point exists�then necessary
are sonic horizons� Namely horizons de�ned by the property that outgoing sound
waves emitted by the background �ow interior to critical sphere are actually
dragged inwards� Therefore any observer in the asymptotic region is soundly
disconnected from the interior of the �ow� Put it di�erently the sound cone
is tilted inwards for all points located interior to the critical sphere� This at
least for the steady �ows occurs� whenever a local orthonormal observer at
rest relative to the coordinate system Eq� ����� �nd the speed of the �ow
being identical to that of sound� The importance of sonic horizons to accretion
problems is well known� As we shall presently verify the requirement that the
�ow passes via the critical point� allows the determination of *M in terms of the
asymptotic quantities� Eliminating the baryon density n in favor of the sound
speed a� and introducing the ordinary three velocity v � dr

dt
measured by a local

orthonormal observer�related to u via

u� � v�
�

��� v��
��� �M

r
� � ������
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Eqs� ����
�� ������ transformed into the following equivalent system

y�� � y��v� � a��

v���� v���
dv�

dy
� y � �a�

�� v�
�� ya

�� ya
��� y� �

y�v� � a��

�� v�
� ������

�y�� � y��v� � a��

��� v��a��"� �� a��

da�

dy
� �y � �

�� ya

�� ya

v��� � y�

��� v��
� ����
�

where y � �
� � Adding them together one obtains

�
a�

"� �� a�
�

�
���

v�

�� v�
��� y��� � ay��

y�
� �� ������

while dividing the �rst one by a�� the second one by v� and add them yield

�� � v���" � �� a���

�� y
� �� ������

where the right handsides of Eqs� ������	������ are constants� Imposing v � �

at y � � one gets �� �


"� �� a�	

��
while �� is in general a free parameter�

Its relation with the accretion rate is

�� �

�
K"

m �"� ��

� �
���

�
*M

��mM�

��

�

The above integrals of motion are just the conservation laws shown in Eqs�
������	������� Their usefulness in establishing numerically the uniqueness of a
regular transonic �ow will be discusses later on�

�� The determination of the critical points

In order to get a better feeling about the global behavior of the �ow� we should
know whether the dynamical equations ����
�	������ admit critical points� and if
so their character i�e� whether they are saddles� nodes etc� On general grounds�
smooth �ows that are subsonic at in�nity and regular over the horizon �a condi	
tion that as we shall see in the next section requires u	��� are expected to pass
via critical points� This can be inferred by noting that Eq� ������ indicates that
at radial in�nity D 
 � while for any equation of state satisfying the causality
constraint i�e� a� 
 �� it follows again from Eq� ������ that D � � at the hori	
zon� Therefore there will be at least one point at the black hole exterior where
D�r� � �� Eqs� ����
�� ������ shows that �ows reaching such points character	
ized by in�nity gradients in the velocity and baryon density� Physically the �ow
turns over and its continuation is considered as being unphysical� Physically
important �ows reaching �turning over points� must simultaneously satisfy

D � D� � D� � � � ������



��	 Accretion on dilatonic black hole

Extending the �ow through the critical point may be a delicate issue� Whether
an unambiguous extension is possible depends upon the character of the critical
points� However� as we shall see in more details in the next section the critical
points are saddles and for such cases the extension is free of ambiguities� In
fact demanding the �ow to pass via� as well as being regular over the event
horizon� singles a unique solution determined solely by the boundary conditions
at in�nity� In view of the signi�cance of the critical points� their proper iden	
ti�cation is of prime importance� By de�nition potential critical points of the
�ow equations satisfy constraints ������� Note that if instead of ����
�� ������
the alternative set of equations ������� ����
� is employed� one �nds that at any
critical point� an orthonormal observer measures the speed of the �ow being
equal to the local speed of sound� Thus the critical hypersurfaces are actually
sonic horizons� In the subsequent analysis we shall employ equations ����
��
������ for their determination� Starting from Eq� ������� one infers that us� as
at the potential location of the critical points rs satisfy

u�s �
�

A

M

r�s
� ������

a�s � u�s

�
�� �M

rs
�

M

Ar�s

���
� ������

Combining Eqs� ������� ������ together with Bernoulli Eq� ������ and in view
of ������ the coordinates of the critical points rs and the corresponding baryon
density� ns satisfy the following algebraic system of equations

u�

�� � �M
r � M

r�A �
js �

dP

dn

n

� � P
js � ������

�
� � P

n
����� �M

r
�

M

r�A
�js � �

� � P

n
��j	 � ������

In terms of the variable � � r
�M de�ned earlier and

h �
� � P

n
�

m �"� ��

"� �� a�
�

they can be rewritten in the following manner�

��� a

������ a�
� ��� �

�
�

��� a

������ a�
��
dP
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��

n

� � P
�js � ������

�� �

�
�

��� a

������ a�
�

h�j	
h�js � ������

Introducing the function

( � a�jsh
�j	
h�s

� a�s�
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from the last equation we have

��� a

������ a�
�

(

a�
� � �

�

�
�

when Eq� ������ gives

� �
a�

a� � ( ��� a��
� ������

From this last equation we see that � � �� thus the critical point lies outside
the event horizon� Substituting the above expressions for ��( in Eq� ������
after long algebraic computations� we get the following equation determining
the sound speed at the critical points

�(a� � � �� � a(� a�
�
a� � (



�� a�

��
� a
�
a� � (



�� a�

���
� � � ������

This equation has been studied numerically� We have found that for various
values of a�	 and " � �	� there always exist a solution lying in the interval
���" � ��� Note for any polytropic equation of state the speed of sound is
bounded above by "� � see Eq� ������� At the critical point� using

h� � m�

�
"� �

"� �� a�

��
� m��� �

�a�

"� �
� � O�a�� and ������

( � a��� �
�a�	
"� �

� � O�a�� � ������

we get

a�s � �a�	
�

�� �"
� O�a�	� a�a� � ������

� �
�

�

�� �"

�a�	
� O�a�	� a�a� � ������

Furthermore the numerical computations con�rm the expressions ������� �������
In summary therefore there always exist one critical point whose coordinate
location and speed of sound are given by equations ������� ������� Notice also
that expressions ������� ������ are identical to those occurring for accretion
taking place on a Schwarzschild background� Utilizing the information of the
�ow at the critical point one easily computes the accretion rate in terms of
asymptotic quantities at in�nity

*M � ���

�
�

�� �"

� ����
������

M�n	a��	 � ������

i�e� the same rate as if the background would have been a Schwarzschild black
hole with the same mass M� The parameter � is combination of the various nu	
merical factors� is of order unity and independent upon a� while any contribution
of a appears as correction term of the order a�	a�
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�� The nature of the critical points

Having established the existence of a critical point� we shall now examine its
topological nature� This entails an understanding of the way various solutions
curves of Eqs� ����
�� ������ behave in the neighborhood of the critical point�
Ultimately one like to show that for a �ow that is stationary at in�nity a unique
regular solution exists reaching the event horizon� For that is necessary that the
critical point exhibit saddle like character� which by de�nition implies that only
two at least C� solution pass through the critical point� One describing accretion
and the other a +stellar wind�� However out�ows on a black hole background
are consider as unphysical since as we shall discuss further later on� they are
singular over a non singular horizon� In order unravel the nature of the critical
point� it is convenient to turn Eqs� ����
�� ������ into a three dimensional
dynamical system�Introducing a parameter l along the solution curves of the
system ����
�� ������ and de�ning as one column vector �x � �r�l�� u�l�� n�l��
one gets the equivalent three dimensional system

� *�x�t � �D�D�� D��
t � ������

where overdot signi�es di�erentiation with respect to l� while t signi�es trans	
position of the the row vectors� In this formulation the critical points appear
as equilibrium points i�e� points where the right hand	side of Eq� ������ is van	
ishing� According to Hartmann	Grobmann theorem �Per���� in the vicinity of
a critical point �equilibrium point� the solution curves of ������ are homeomor	
phically equivalent to its linearized version i�e�

*�x � F�x � ������

where F stands for the di�erential matrix of the vector valued function de�ned
by the right hand side of ������ and computed at the critical point� Denoting
by Ai� Bi� Ci with i � �� ��� the partial derivatives of D�D�� D� with respect to
r� u� n respectively and taking into account Eq� ������ one �nds the following
expressions valid at the critical point

A� � ��Aa�u

n
�A� �
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n
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�Aa�u
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�B� �
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na�
�a�

�n
�

C� � �u�
�A

r
�

�A

�r
� � C� � ��A �C� � � � ����
�

Furthermore in terms of the partial derivatives� the characteristic equation de	
�ned by F has the following form�

���A� � ���B� � ���� � �B�C� � A�B� � A�C���

���A�B�C� � A�B�C� � A�B�C� � A�B�C�� � � ������
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A straightforward computation then shows that the last term in the character	
istic equation is vanishing� Therefore one of the eigenvalues is zero while by
noting that A� � �B� the remaining two non zero eigenvalues are given by

�� � ����A�
� � B�C� � A�B� � A�C���

�
� � ������

Expanding out the quantity within the square root one �nds that at the critical
point the eigenvalues are real and of opposite sign� Diagonalizing the di�erential
matrix F and following the standard procedure �Per���� one may show explicitly
that only two solutions pass through the critical point� Therefore locally the
solution curves exhibit a saddle type behavior� implying further the existence
of two distinct solutions passing through the critical point� Thus the critical
point is of the same nature as the one admitted by the corresponding �ow
equations on a Schwarzschild background� � We have established the existence
a unique transonic �ow� subsonic at in�nity� passing trough the critical point
and reaching the horizon� by resorting to numerical techniques� For that we
found more convenient to employ equations ������� ������� They have been
plotted for values of �� appropriate to typical interstellar medium and various
values of the parameter ��� Numerically we have found that for any choice of
�� there a exist a critical value of �� �and thus a +critical� accretion rate *M �
such that a �ow subsonic at in�nity� passes through a critical point and reaches
the event horizon� The various solution curves for v� a are showing in Figures
��������

�
 Asymptotic analysis

If for the moment we ignore the numerical results discussed in last paragraph�
the analysis of the accretion �ow presented so far is entirely independent upon
the particular value of a� The �ow up to the critical point is uniquely determined
for all values of a and irrespective whether a lies within ������� However� its
continuation from the critical point inward depends whether it is propagating
on a black hole background or a naked singularity� The crucial element that
di�erentiates between the two is the set of boundary conditions obeyed by the
�ow on the horizon and singularity respectively� For the �rst case� one can
naturally infer a set of conditions obeyed by the �ow at the horizon� According
to the standard black hole physics� one demands that nothing peculiar takes
place as the �ow crosses the event horizon� In particularly at the crossing
no physical scalars are allowed to diverge� This kind of regularity conditions
have been introduced and discussed at some length by Thorne �Tho��� and
Thorne et al �TFZ���� However for �ows running on naked singularities things
are rather umbigious� It not clear what conditions are to be imposed on the

�Although attention has been restricted to the exterior critical point	the same conclusion
valid for the other critical point�The analysis utilize only relations ������ and these are inde�
pendent of the location of the critical point�

�For the case of naked singularities	 amust constrained so that the critical point lies outside
of singular !sphere �
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Figure ��� Figure shows the topology of the various solution curves for the v�

obtained from plotting Eqs� ������� ������� In order exhibit clearly the saddle
character of the critical point and the transonic solution we have taken " � �	��
a � ���� a�	 � ����� and v	 � ��

Figure ��� Figure shows the topology of the various solution curves for the a�

obtained from plotting Eqs� ������� ������� The parameters are the same as in
the previous �gure�
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Figure ��� Critical solutions in the y� v� plane� for a Schwarzschild black hole
a � � and for an extreme dilatonic one a � ����� The other parameters " � �	��
a�	 � ����� and v	 � �� Note that for realistic boundary conditions a�	 � ��
the critical point lies practically on the horizontal axis�

Figure ��� The same as in the previous �gure but in the y � a� plane�
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singularity� Note in particularly that for a � � the saddle character of the
critical point� at the space time singularity� implies that out�ows are not a priori
excluded� This point may interpreted as implying that space time singularities
are totally unpredictable� Here after we shall concentrate on �ows on black hole
backgrounds� For our problem� it is su�cient to demand that the magnitude of
the four	acceleration of the �ow as well as the baryon density n are bounded at
the horizon� The �rst condition implies that the non gravitational forces acting
upon the �ow are �nite while a consequence of the second conditions is that all
other �ow parameters remain bounded as well� A straightforward calculation
shows that the non vanishing components of the four acceleration vector a� are
given by�
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In terms of the ordinary velocity velocity v and the parameter y introduced
earlier� one �nds the following expression for the magnitude a�a�
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A close look at the right hand side of the above expression indicates that the
magnitude of the four acceleration is unbounded on the horizon� unless v�y�
exhibits the following behavior�

v�y� � � �
dv

dy
jy����� y� � O��y � ���� �

In that case we �nd that

a�a��y � ����
dv

dy
�
�
�
y�� � O�y � ��� �

However from Eq� ������ one can easily infer dv
dy jy�� is non zero and bounded at

the horizon� In turn equation ������ shows that a regular �ow must have radial
velocity u � ur non vanishing on the horizon� In the following the asymptotic
behavior of the �ow near the horizon compatible with u	�� and bounded n will
be determined for various values of the parameter a belonging to ��� ��� From
Eqs� ����
�� ������ one �nds the following equations describing the �ow near
the horizon � � ��
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We shall look for asymptotic solutions describing regular �ows over the event
horizon� It is clear that the nature of the asymptotic solutions depends upon the
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particular value of a� We shall explicitly write down the closed form solutions for
the two extreme cases of the a� namely for a close to zero and the diametrically
opposite case i�e� a extremely close to value �� For the former case the second
term in the numerator of Eq� ������ may be ignored� In that case demanding
that u is non vanishing on the horizon� one arrives at

u���� �
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� n��� �

C

�
�
�

�

i�e� the well known free fall asymptotic solution on Shwarzchild background�
However as we have argued earlier for a nearly extreme dilatonic black hole� the
second term cannot any longer be ignored� In fact dominates the �rst term� In
such case one �nds

u��� � A�g���
a�

��a� � n��� � A�g���
� �

��a� � ������

where A�� A� are arbitrary constants of integration� Demanding satisfaction of
Eq� ������ near the horizon one �nds that A�� A� obey

A�A� � *M � ������

while Bernoulli equation implies

A�
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The solution are consistent provided � � P � �
���P i�e� mn � �� or the rest

masses are negligible� In such case we �nd that a� � "�� � �	� where we have
taken the polytropic index to equal to �	�� Manipulation of the above equa	
tions shows that near the horizon the baryon density is given by the following
expression
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�
� � ������

�� Break down of the adiabaticity assumption

The above asymptotic solutions indicates that n��� became extremely high as
the one allows the parameter a to get close to the extreme values� But high den	
sities imply high temperatures� Assuming an ideal plasma then the temperature
measured in the the local rest frame of the �uid is given by T �r� � n�r�����
In more realistic models of accreting interstellar medium onto a black hole� the
in�owing plasma consists of a proton and an electron component of equal den	
sities� Initially i�e� at radial in�nity� both component are considered as non
relativistic and thus " � �

� � Model calculations for the Schwarzschild hole show
that the electron component barely becomes relativistic while the proton com	
ponent remains non relativistic all the way down to the horizon� However for
the dilatonic case�things may be di�erent� The asymptotic solutions indicate
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that for dilatonic black holes close to the extreme limit conditions are such that
both components of the in�owing plasma become highly relativistic� Physically
then one expects that many collisions such as thermal bremsstrahlung� pair
creation� electron	positron annihilation and proton	proton collisions leading to
pion production� to take place� Because of this important di�erence in the ac	
cretion near an extreme dilatonic black hole� it is natural to wonder whether the
initially imposed adiabaticity assumption is still justi�ed by the obtained solu	
tion� The large production of radiation may not any longer neglected� On the
other hand adiabaticity would be consistent provided the outgoing luminosity
due to various processes is negligible comparatively to the increase in the inter	
nal energy density of the plasma due to the work done by gravitational forces�
As is known Bondi accretion on a Schwarzschild background indeed ful�ll this
requirement� To check the validity of the adiabaticity assumption for accretion
on a a nearly extreme dilatonic black hole� one has to compute in details the
production of photons due to various processes� This task however entails an
element of uncertainty mainly due to ambiguities in the various cross sections
particularly if one allows values of a that lead into pions production via proton
colission� Fortunately we do not need to enter into such �ne details� As we
shall see taking into account only thermal bremsstrahlung it will be su�cient to
conclude that indeed adiabaticity it is not consistent with the asymptotic solu	
tions and thus treatment incorporating radiative transport is necessary� Since
the sensitive region is near the event horizon we shall perform our theoretical
experiment at the same region� In view of the fact that the plasma is highly
relativistic� we may set without loss of generality " � �	�� According to the
calculations of Novikov and Thorne �NT���� a gram of the plasma in the local
rest frame of the �uid losses radiation according to

eff�T �
��n���

���
� �g����

�
�

On the other hand the �rst law implies the rate of increase of the internal energy
by the work done by gravity is given by

d�
�

n
� � Kn���g����g����

�
�

Comparing the two one concludes that the outgoing luminosity outweighs the
internal energy gaining and thus Bondi adiabatic accretion strictly is not any
longer consistent with a dilatonic black hole a approaching the extreme limit�
In some sense this is rather understandable� The plasma due to the excessive
heating emits much more free	free radiation in the case of extreme dilatonic
black hole�

�� Discussion

In summary the results obtained so far� show that accretion on a dilatonic black
hole may be of entirely di�erent nature than accretion on a Schwarzschild one�




�� Discussion ���

The crucial element is the value of a� The breakdown of Bondi adiabatic accre	
tion indicates the need of inclusion of radiative transport e�ects� However even
with the inclusion of such e�ects we believe that out�owing luminosity would
be much larger than the one would have emerged if the background was that
of a Schwarzschild black hole� Since as is clear from the so far discussion is the
geometry of the dilatonic black hole which causes large luminosity generation�
The incorporation of radiative transport e�ects as well as the incorporation of
the background monopole �eld� are currently under consideration�

This work has done in collaboration with Thomas Zannias �VZ��



��	 Accretion on dilatonic black hole



Bibliography

�Bon��� H� Bondi� MNRAS ��� ������� ����

�GHS��� D� Gar�nkle� G� Horowitz� and A� Strominger� Phys� Rev� D �� �������
�����

�Gib��� G� W� Gibbons� Nucl� Phys� B ��� ������� ����

�GM��� G� W� Gibbons and K� Maeda� Nucl� Phys� B ��
 ������� ����

�Hol��� T� E� Holzer� J� Geophys� Res� 
� ������� ���

�HT��� S� R� Habbal and K� Tsinganos� J� Geophys� Res� 

 ������� ��
��

�NT��� I� D� Novikov and K� Thorne� in Black Holes� Gordon and Breach� N�
Y�� �����

�Per��� L� Perko� Di�erential Equations and Dynamical Systems� Spring	
Verlag� �����

�TFZ��� K� S� Thorne� R� A� Flammang� and A� N� Zytkow� MNRAS ���
������� ����

�Tho��� K� S� Thorne� MNRAS ��� ������� ����

�VZ� N� Vlahakis and T� Zannias� unpublished�

���


