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Περίληψη

Σε αυτή την μεταπτυχιακπή εργασία ασχολούμαστε με το οπτικό γραφένιο, το οποίο είναι το οπτικό
ανάλογο του γραφενίου, ενός δισδιάστατου υλικού, αλλά αντί για άτομα έχουμε κυματοδηγούς. 
Μελετάμε τις συμμετρίες του οπτικού γραφενίου και υπολογίζουμε τις ιδιοτιμές τις ενέργειας. Στην 
συνέχεια σπάμε κάποιες συμμετρίες, και παρατηρούμε πως μεταβάλλονται οι ενεργειακές 
ιδιοκαταστάσεις. Η παρούσα μεταπτυχιακή εργασία ασχολείτε αρχικά με το άπειρο γραφένειο, στη 
συνέχεια θεωρούμε περιοδικές συνοριακές συνθήκες στην μία διάσταση και πεπερασμένες στην 
άλλη. Αυτό το κάνουμε για τέσσερεις διαφορετικές περιοδικές συνθήκες. Τέλος λύνουμε το 
πρόβλημα του πεπερασμένου γραφενίου, για τρία διαφορετικά είδη. Όλα τα προβλήματα λύνονται 
με την μέθοδο της διαγωνιοποίησης ώστε να βρεθούν οι ιδιοτιμές τις ενέργειας, και όπου υπάρχει 
περιοδικότητα, χρησιμοποιούμε την Χαμιλτονιανή του Bloch.



Abstract

In this master thesis, we solve the problem of optical graphene.This problem is the analogue of 
graphene but instead of atoms we have waveguides. First we study the symmetries of optical 
graphene. And calculate the eigenvalues. Then we break the time reversal symmetry, and we see the
change in energy eigenstate that this break of symmetry creates. In the beginning we solve the 
problem of infinite graphene, then we solve the problem of semi infinite graphene, for four different
cases of boundary conditions. At the end we solve the problem of finite graphene. We do this for 
three different cases of finite graphene models. We solve these problems using the method of 
diagonalization and when periodicity is present we use the Bloch Hamiltonian which is the Fourier 
transform of the original Hamiltonian, in order to account for periodicity.
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Chapter 1

Defining the problem

In this thesis, we study two-dimensional photonic graphene lattices. In this first chapter, we
begin by explaining what photonic graphene and honeycomb lattice are. Furthermore, we discuss
the concept of coupling, which we use in the whole thesis, and we will introduce the notion of
waveguides. We will also talk about graphene as a solid due to its intriguing properties, applications
and importance in solid state physics and material science.

1.1 Honeycomb lattice structure properties

A


B


Figure 1.1a: An infinite honeycomb lattice. A
waveguides are represented in blue, while B
waveguides in red. The grey circles represent the
area of the nearest atoms of A and B waveguides.
Remark that every nearest waveguide of A is a B,
and every nearest waveguide of B is an A.

The graphene’s lattice is called honeycomb
lattice and is a special case of hexagonal lattice
whose unit cell consists of two kinds of atoms[1].
Honeycomb lattice is shown in figure 1.1a. Ob-
serve in figure 1.1a that every waveguide con-
nects to three neighbour waveguides. Further-
more, there are only two kinds of waveguides in
the lattice. These waveguides are called A and
B waveguides. The difference between these two
is that A waveguides are connected to two B
waveguides below and one B waveguide above,
while B waveguides are with two A waveguides
above and one A waveguide below. Namely, the
coupling’s orientation gives A waveguides and
B waveguides different properties.

The experimental structure consists of
waveguides, which distributes as a honeycomb
lattice imposes. Then we choose the initial con-
ditions we decide by using a laser of the de-
sired intensity, pointing at the waveguides that
the initial conditions demand. After the light
reaches the wave guides, since they are coupled,
the light will move in the neighbour waveguides
and eventually will spread in the whole lattice.
The main difference between this experiment
and the study of graphene is that we cannot
put waveguides at the same length as carbon atoms are on graphene so that the final system is
some order of magnitudes larger than graphene is.
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Figure 1.1b: Caption.

We can study this system both theoretically
and experimentally. In addition, graphene lat-
tice can be also studied as an arrangement of
atoms, having the same properties discussed
above. The main difference between the atomic
structure and the structure we deal with, is that
when you study atoms you need to consider all
the atomic states, that all principal quantum
numbers n, all angular momentum numbers l,
and all projections of angular momentum ml.
As we will see in section 1.2.1, in the case of a
photonic lattice, this is not the case, and we can
make reasonable and almost necessary simplifi-
cations, to only consider the first mode of our
system. The other difference with the atomic
graphene, is that the propagation of the system
is happening in time, while, in the case of pho-
tonic graphene, the system propagates in the

direction of the waveguides.
We can also study graphene theoretically by assuming that we have a Hamiltonian where the

diagonal elements represent the energy of the carbon atoms when no interaction between them is
present. The non-diagonal elements represent the coupling of each other. Since experimentally we
measure energy differences, there is no point in writing the exact energy of a Carbon atom. We can
set the energy of a free carbon atom to zero, and measure any other energy difference with respect
to that. That was the process we mostly do in this thesis. The non-diagonal elements are given
by calculating the coupling between the atoms. We will see this explicitly below. By diagonalizing
this matrix, we can get the spectrum of graphene, and thus we can calculate

Graphene as an atomic structure, was explicitly studied in the previous two decades, and it
continues to study it. It has some intriguing properties that we should discuss, even if this thesis
deals with photonic graphene. But atomic graphene, also mentioned as just graphene, is one of the
most important solids in the material science, so we should discuss its properties before we move
on to our problem.

Graphene is a two-dimensional structure consisting of carbon atoms arranged in a honeycomb
lattice. The distance between carbon atoms in the Bravoir lattice is a = 1.42Å [2], and it is only 3.4Å
thick. It is a material with high mobility of approximately µ = 2×105cm2/V at room temperature,
which also gives a high conductivity of around 35% higher than copper. These properties make
Graphene a semi-metal, which means that it is not metal though it behaves like one. A property
that distinguishes graphene from metals is its optical properties. Most conductors are optically
opaque due to the screening effect in atoms which alters electrons’ absorption frequencies from
UV to optical. In addition, its transparency is roughly independent of the wavelength of light.
Also, graphene is an excellent thermal conductor. The thermal conductivity is larger than 3000
W/mK at room temperature, which is the highest along all metals. Even higher than a diamond.
Its thermal conductivity is isomorphic. Graphene is chemical rather stable. The sp2 bonds in
graphene are one of the strongest in nature. The bond energy is 607 KJ/mol, even higher than the
diamond (347 KJ/mol). Due to the bond strength, it cannot easily break the bonds using acids
and basis, although very strong acids and basis; do modify graphene properties to some extent. At
room temperature, it is also rather stable with oxygen, but at high temperatures of about 700 ℃
graphene reacts with oxygen into CO2. On the other hand, the surface of graphene is relatively
easy to modify with oxygen or nitrogen containing functional groups. Finally, we mention the high
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breaking strength of graphene, which is as high as 130 GPa, about 100 times greater than steel.
Graphene was first produced by Andre Geim and Konstantin Novoselov in 2005 using a me-

chanical exfoliated method1, and especially, by rubbing graphite in another surface and studying
the second surface to find graphene mono-layers [3]. Today this method is performed by sticking
graphite into a tape and then sticking the tape on another surface, so part of the graphite will move
to the other surface due to van der Walls force between the graphite on the tape, the surface, and
the tape itself. After this process has been repeated a desirable number of times, so that a lot of
monolayers remain on the tape, we finally stick the tape into a substrate and remove it, in which we
will study the graphite remain on this tape, which is expected to have a few graphene monolayers.
In general, graphene is widely studied so that a great number of properties is known [4].

Due to the sp2 hybridization in graphene states of principal quantum number n = 2, and since
graphene consists only of carbon atoms, no direction is preferable, and thus we have exactly 120°
angles. Furthermore, due to the same reasoning as before, there would be no difference in the length
of the bonds, so we define that the distance of the bond is a. a was experimentally calculated, as
we have discussed above, but we will not use the experimental value. We will denote it just as a.
These figures can be seen in figures 1.1a and 1.1b. Using these properties, we conclude that the
vectors between atom A and its three neighbour atoms are given by

u⃗1 = a(
√
3/2,−1/2), u⃗2 = −a(

√
3/2, 1/2), u⃗3 = a(0, 1). (1.1a)

In addition, the vector between B atoms and the nearest neighbour A atoms are given by

v⃗1 = −a(
√
3/2,−1/2), v⃗2 = a(

√
3/2, 1/2), v⃗3 = −a(0, 1). (1.1b)

Vectors u⃗1, u⃗2, u⃗3; v⃗1, v⃗2 and v⃗3 are represented in figure 1.1b.
Next, we define the concept of coupled quantum states. Two quantum states |ψ1⟩, |ψ2⟩, in the

presence of a potential V are called coupled if ⟨ψ1|V |ψ2⟩ ̸= 0. When two states are coupled, it
means that one affects the other.Maybe we should explain this concept a little bit more We notate
the wave function of the A atoms as Ψ and the wave function of the B atoms as Φ. In the system
we study, each atom is coupled only to the three neighbour atoms, namely the atoms it is connected
with. This hypothesis is called “nearest neighbour approximation”, and is compatible with the
exponentially decaying of the wave functions in atoms. This assumption can be mathematically
formed by

⟨Ψ|V |Φi⟩ = ⟨Ψ|H|Φi⟩ ≡ ti, (1.2a)

where the Hamiltonian in the second equality appeared because we assumed that ⟨ψ1|ψ2⟩ = 0, so
we can have a complete base. The i index represents any of the atoms in the direction u⃗i with
respect to the A atom we assumed. The variable ti is called coupling constant between the A and
the B atom in the direction of u⃗i. Note that by defining the coupling constant of ⟨Ψ|V |Φ⟩, we have
also defined the coupling constant of B in the direction of v⃗i this time, since

⟨Φ|V |Ψi⟩ = ⟨Φi|V |Ψ⟩ = ⟨Ψ|V |Φi⟩ = t̄i, (1.2b)

where z̄ denotes the complex conjugate of a complex number z, and the index i, has to be the same
index as in Eq. (1.2a), or else Eq. (1.2b) would not be the same. So in the graphene system by
the assumption of nearest neighbour atom approximation, three coupling terms exist. We call them
t1, t2, t3, which correspond to A atoms and the set of u⃗ vectors, namely u⃗1, u⃗2 and u⃗3, and their
complex conjugates will correspond to B atoms and to the set of v⃗ vectors.

1Mechanical exfoliated method is a method which uses mechanical forces in order to separate one surface from
another.
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Furthermore, we consider loss of probability for A atoms and gain of probability for B atoms.
That is, as the total wave function propagates in time or space in the case of waveguides, or
waveguides type A lose photons while B atoms gain photons. The model we define experience gain
and losses is linearly in the probability by a factor γ. We can solve this problem using two methods.
The first one is by solving Schröndinger equation, and then diagonalising the Hamiltonian to get
the solution. The other is by using the second quantization formalism to define the Hamiltonian
using creation and annihilation operators to describe coupling. The coupling can be measured
experimentally [5], and one can see that the second neigbour term will play much less of a role.

1.2 The physics of waveguides

1.2.1 Introduction to waveguides

We will now derive the equations for waveguides. Since this focuses more on the attention of
engineers than physicists we will show analytically how the equations of waveguides are derived.
We will also show explicitly that the problem of graphene is identical to the problem of waveguides
in a honeycomb lattice.

Waveguides are used for directing electromagnetic waves in a certain direction. They use Snell’s
law [6] and particularly the fact that light experiences full reflection when we move from a larger
refractive index to a medium with a smaller refractive index, and the incident angle is larger than
the critical angle. The critical angle is defined as the smaller angle where all light is reflected. This
is defined mathematically as

n1 sin θ1 = n2 sin θ2 ⇒ sin θcrit = n1/n2 ⇒ θcrit = arcsin(n1/n2)

Notice that for the equation above to make sense we need n2 > n1 as we established before. In that
case, the light is trapped inside the medium. One example of waveguides is optical fibres.

In order to talk about waveguides, we need an equation describing the motion of electrons in a
waveguide. This is going to be the so-called “paraxial approximation” equation that describes the
electric field. The paraxial equation has the form

i
∂A(r⃗, t)

∂z
+
∂2A(r⃗, t)

∂x2
+
∂2A(r⃗, t)

∂y2
+ U(x, y)A(r⃗, t). (1.3)

We prove paraxial equation on appendix A.
The paraxial equation seems a lot to Schröndinger equation. The differences are the following.

Firstly, in this case, we do not have a wave function, but we have a field describing the electric
field of light. Furthermore, the potential is the opposite of the potential of Schröndinger equation.
This means that photonic states become more localized as potential increases, while in quantum
mechanics the opposide is true. States become more localized when potential is very low.

1.2.2 Proprties of waveguides

Now we will prove some properties of the waveguides that are going to be very useful for
understanding the difference between photonic lattices and atom lattices. The general solution of
the paraxial equation gives a linear combination of all the modes in the system as we know from the
theory of PDEs. Furthermore, the higher the eigenvalue of the mode, the higher the energy needed
to provide for the system to reach that eigenvalue. In addtition, waveguides do not always support
all modes in the system. The frequency of the mode should be higher from a certain frequency
called cut-off frequency. This makes total sense when a waveguide has a specific shape, because not
all wavelengths have modes in a specific distance, but only certain of them. In our case, we assume
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that the laser has enough energy that the lowest mode has enough frequency to be supported by
the wave guide.

Another property that is usually seen in PDE is what we call node theorem. The first mode of
the system has no modes, the second mode has one mode, the third mode has three etc. Even if
this theorem is true only in one dimension, this is observed in more dimensions as well2. So, we will
have that the first mode of the problem will have no nodes.

Since the light emitted by laser has a Gaussian form, and since waveguides support as a first
mode, an envelope with no nodes, we can easily see that the higher coefficient, will be the one that
correspond to the first mode of the waveguide, because it is a lot alike the Gaussian. All the other
coefficients will be sufficiently smaller. Furthermore, we can change the shape and the dielectric
constant of the waveguide as we please, so that the first mode of the waveguide will be almost
identical (or identical) with the Gaussian form of the envelope. This makes the first mode of the
system as the only mode that there is. These makes things much more simple, because we do not
need to study the coupling between different modes of the system, we can just restrict ourselves on
the first mode. This is what we will do on the rest of this thesis.

2For example when we have spherical symmetry in a system, we know that the solution of the angular part of the
system will be given by the spherical Harmonics, so the only unknown part is the radial part of the PDE, which using
separation of variables have turn into an ODE, so indeed the node theorem will apply in this case as well

7



Chapter 2

Methodologies for solving the problem

2.1 Methodology for solving the problem

In this section, we will introduce the methodologies that we use to solve each problem. As we
will see, the methodology we use differs in the infinite and the finite case.

2.1.1 Diagonalization of Hamiltonian

First, we talk about the method of diagonalizing the system. This method is useful when we
have finite dimensional systems. We can also use it when we have periodic boundary conditions by
putting some elements into the write rows and columns of the matrix1.

We start by defining the wave function of our system. We can see in figure 1.1a, our system
is constructed by a two-dimensional array of atoms. Each of these atoms will have its probability
density for the electron, so its wave function. The total wave function, that is the envelope of all the
waveguides will be a superposition of the wave functions of all these atoms. So the wave function
would have the form,

|ψ⟩ =
∑
i,j

cA;i,j |Ψ⟩+
∑
i,j

cB;i,j |Φ⟩ , (2.1)

where the index A correspond to the wave functions belonging to A atoms, and correspondingly to
index B. The two indexes i and j represent the exact position of the atom. Since we have a two-
dimensional lattice, the degree of freedom of each atom is two, and so we need two indexes to fully
describe their positions. Lastly, ci,j are some complex coefficients whose norm squared corresponds
to the probability of finding the wave function at i, j position. Coefficients cA;i,j correspond to A
atoms, while coefficients cB;i,j correspond to B atoms.

The solution of the system is obtained by the diagonalization of the Schröndinger equation.
The Schröndinger equation states that by acting with the Hamiltonian operator in the total wave
function of the problem, we get the time evolution of the total wave function and it is summarized
in the equation

H |ψ⟩ = H
∑
i,j

cA,i,j |Ψ⟩+H
∑
i,j

cB,i,j |Φ⟩ ⇒ i
∂ψ

∂t
= H

∑
i,j

cA,i,j |Ψ⟩+H
∑
i,j

cB,i,j |Φ⟩ . (2.2)

By separation of variables, we can split Schröndinger equation in the so-called “time indepen-
dent Schröndinger equation”, and on the time evolution of each state. By doing this we turn the

1We will discuss this part explicitly below
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Schröndinger equation into the eigenvalue problem

H |ψ⟩ = E |ψ⟩ (2.3)

where |ψ⟩ is given by Eq. (2.1). The solution to this equation can be obtained by acting with
every bra state from the left. If we act with one bra state, then on the right-hand side, we get
just the energy with the coefficient of the states we acted since we assumed perfect completeness
in our model. On the left-hand side, we would have the energy of the left-acted state, as well as
the states that couple to the bra state. If we do it for every state in our Hilbert space, that is for
every possible atom, we would get a system of the equation that needs to be satisfied. If we write
the system into a matrix form, we get

E0

. . .

E0

E0 C
C̄ . . .

E0





cA;1,1

cB;1,1

cA;2,1
...

cA;n,m

cB;n,m


= E



cA;1,1

cB;1,1

cA;2,1
...

cA;n,m

cB;n,m


(2.4)

where the unperturbed energies of the atoms are in the diagonal elements of the matrix, and the
reason that we have chosen these specific elements for the coupling terms will be specified in chapter
4. So in order to solve this problem we have to solve this diagonalization problem, that is, we have to
diagonalize the matrix and obtain the eigenvalues and eigenvectors of the system. The eigenvalues
give us the energy spectrum, and the eigenvectors give the exact form of the total wave function
for every energy eigenstate.

Hamiltonian (2.4) is correct but does not accurately describe graphene. As we will see in section
3.1, graphene has the property that the Fermi energy is exactly zero. So to describe graphene
accurately, we will approximate this matrix into the form

0
. . .

0

0 C
C̄ . . .

0





cA;1,1

cB;1,1

cA;2,1
...

cA;n,m

cB;n,m


= E



cA;1,1

cB;1,1

cA;2,1
...

cA;n,m

cB;n,m


(2.5)

As we can see from Eq. (2.4), this method is effective when we have a finite system, since we solve
it by diagonalization of the Hamiltonian, which can be obtained computationally. This process
however is not able to solve the infinite system because we cannot. In order to solve the infi-
nite problem we have to use another method which is obtained by the definition of creation and
annihilation operators, and by using the second quantization approach.
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2.1.2 Bloch Hamiltonian

We have seen in section 2.1.1 how to solve any finite problem. In this section, we will study how
to solve the infinite problem.

HA;m,n = −iγ +
∑
NN

(
tNN b†NN ;m,nam,n + h.c

)
,

HB;m,n = iγ +
∑
NN

(
tNN a†NN ;m,nbm,n + h.c

)
,

(2.6)

where the first term is responsible for the gain and loss of probability2, and the second term
corresponds to the coupling of atoms with the nearest neighbour atoms. The quantity tNN in the
second term expresses the coupling constant of the state with all NN atoms and b, a; b†, a† are
operators act in B or A atoms respectively, which annihilate or create atoms respectively. In general,
every atomic bond will have a different coupling constant, so we have denoted t with the subscript
NN so that it depends on the exact NN atom3. The two operators in the second term; express the
probability of annihilation of the electron from the atom and the creation of the electron to the NN
atoms, and the hermitian conjugate part expresses the inverse process. Particularly the operator
a†NN ;n,mbn,m reads “the electron is annihilated from the B atom and goes to the NN atom B”.

So the operators in the sum are local operators since they only act on each atom and have
the property to create or annihilate particles. These operators are known to be constructed in
the second quantization formalism, which we describe in appendix B, and the exact form of these
operators, as it is proven in the appendix, has the form of Eq. (B.2). This expression depends on
the position of the atoms on the lattice, so the exact form of the second term of Eq. (2.6) is needed.
That is, we have to know the position of the particles. Using figure 1.1b we see that we have three
coupled states both for A and B, so, by substituting (B.2), we getHA;m,n = −iγ +

(
t1b

†
m,n;1am,n + t2b

†
m,n;2am,n + t3b

†
m.n;3am,n + h.c

)
HB;m,n = iγ +

(
t1a

†
m,n;1bm,n + t2a

†
m,n;2bm,n + t3a

†
m,n;3bm,n + h.c

) (B.2)
===⇒

⇒

HA;m,n = −iγ +
(
t1 +

∑
k⃗
e−ik⃗u⃗1 + t2

∑
k⃗
e−ik⃗u⃗2 + t3

∑
k⃗
e−ik⃗u⃗3

)
HB;m,n = iγ +

(
t1
∑

k⃗
e−ik⃗v⃗1 + t2

∑
k⃗
e−ik⃗v⃗2 + t3

∑
k⃗
e−ik⃗v⃗3

)
.

(2.7a)

Where the last equality is a consequence of

bm,n;i am,n =
1√
V

∑
q⃗

aq⃗ † e−iq⃗R⃗m,n;i
1√
V

∑
k⃗

ake
ik⃗R⃗m,n =

1

V

∑
q⃗,⃗k

ei(q⃗−k⃗)R⃗m,ne−iq⃗u⃗i =

=
∑
q⃗,⃗k

δq⃗,p⃗e
−iq⃗u⃗i =

∑
k⃗

e−ik⃗u⃗i .

2The reason it represents the gain and loss of probability can be seen by setting the coupling constant to be zero.
Then we have only H = iγ RightarrowH |ψ⟩ = iγ |ψ⟩ ⇒ |ψ⟩ = eγt |ψ⟩. So we see that for γ > 0, we have gain of
probability, and for γ < 0 we have loss of probability.

3Notice that this is not physically correct. Since we have the same atoms and at the same distance, the coupling
constants cannot be different. But we can always generalize that one bond can be stronger than the other. In the
case of waveguides, however, we can always choose one bond to have a stronger coupling than the others. Also, it has
theoretical interest since we can see how the change of a coupling would affect the whole system
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In the derivation above we used the identity 1/V
∑

q⃗ e
i(k⃗−q⃗)r⃗n,m = δ

k⃗,q⃗
SAY ONE WORD FOR THIS

IDENTITY. By substituting Eqs. (1.1a) and (1.1b), we get

HA;m,n = −iγ +

t1∑
k⃗

e−i
√
3/2akx+ia/2ky + t2

∑
k⃗

ei
√
3/2akx+i/2·aky + t3

∑
k⃗

e−iaky

 (2.7b)

HB;m,n = −iγ +

t1∑
k⃗

ei
√
3/2akx+i/2·aky + t2e

−i
√
3/2akx−i/2·aky + t3

∑
k⃗

eiaky

 (2.7c)

As we can see, from Eqs. (2.7b) and (2.7c), the Hamiltonian of the system is summed in all allowed
momenta. To make the Hamiltonian simpler, we will write it in a matrix form where the first row
and column will correspond to the A atom, and the second row and column will correspond to the
B atom, and also we will write from one allowed momentum. So we define a new quantity which is
the Hamiltonian for one momentum.

H
k⃗
=

[
−iγ t1e

−i
√
3/2akx+ia/2ky + t2e

−i
√
3/2akx−i/2·aky + t3e

−iaky

t1e
i
√
3/2akx+i/2·aky + t2e

−i
√
3/2akx−i/2·aky + t3e

iaky iγ

]
(2.8)

and the total Hamiltonian is given by

H =
∑
k⃗

H
k⃗
. (2.9)

The matrix above can be written in the following simpler form.

H
k⃗
=

[
H

k⃗;AA
H

k⃗;AB

H
k⃗;BA

H
k⃗;BB

]
,

H
k⃗;AA

= −iγ, H
k⃗;AB

= t1e
−i

√
3/2akx+ia/2ky + t2e

i
√
3/2akx+i/2·aky + t3e

−iaky

H
k⃗;BA

= t1e
i
√
3/2akx+i/2·aky + t2e

−i
√
3/2akx−i/2·aky + t3e

iaky , H
k⃗;BB

= iγ.

(2.10)

In the case of graphene, the diagonal terms are zero as we said in section 2.1.1, so the Hamiltonian
will be given by

H
k⃗
=

[
0 H

k⃗;AB

H
k⃗;BA

0

]
(2.11)

where H
k⃗;AB

and H
k⃗;BA

will be given by Eq. (2.10).

2.2 Approximations of total Hamiltonian

As we have seen in the previous sections, Hamiltonian given by Eqs. (2.6), or(2.8) is a compli-
cated Hamiltonian. Nevertheless, it is a Hamiltonian that we can solve analytically, and it is the
most general Hamiltonian one can write for honeycomb lattices. But there is one disadvantage. This
system rarely appears in any physical problems. This has mostly to do with the difference between
the coupling constants. As we said, the system of graphene consists of individual atoms, so it is
reasonable that no difference in the coupling constants exists, which is exactly what experiments
show as we described in section refMethodology for solving the problem.
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In this section, we will divide our problem into three levels of difficulty. The first one is when
all coupling constants are different. This is the most general problem, and it is not very applicable
in nature. We will call them the “hard” problem. The second is when two coupling constants
are identical. This is a problem that is much more encountered in physics EXPALIN WHY THIS
IS THE CASE. We call them “medium difficulty” problems. The third case is when all coupling
constants are identical. This is the problem in which the graphene structure appears, which makes
it the most important and applicable of these cases. We will call it the “easy” problem.

The hard problem has already been established in the previous section. It is described by
Hamiltonian (2.8) for the finite system and Hamiltonian (2.6) for the infinite system. We have
no approximations in this Hamiltonian, so every other level of difficulty is a special case of this
problem.

The medium difficulty problem is a special case of the hard problem when
In the first level of difficulty, we assume that all couplings are equal one another: t1 = t2 = t3 = t.

When this applies Eq. (2.8), using Euler’s formula eiθ = cos θ + i sin θ, the Hamiltonian gets the
form

H
k⃗
=

[
−iγ 2tei/2·aky · cos

(√
3/2akx

)
+ te−iaky

2te−i/2·aky · cos
(√

3/2akx
)
+ teiaky iγ

]
(2.12)

{
i∂zam,n = −iγam,n + t(bm−1,n + bm,n+1 + bm,n−1)

i∂zbm,n = iγbm,n + t(am+1,n + am,n+1 + am,n−1)
(2.13a)

where γ is a real number which denotes the amplitude of gain and loss and t expresses the coupling
of each atom with its neighbour atoms. We can generalize the system even more by assuming γ as
a complex number γ̃. If we do this the system at Eq. (2.13a) can be written in the form{

i∂zam,n = −(∆ + iγ)am,n + t(bm−1,n + bm,n+1 + bm,n−1)

i∂zbm,n = (∆+ iγ)bm,n + t(am+1,n + am,n+1 + am,n−1)
, γ̃ = γ − i∆, (2.13b)

and Eq. (2.13b) comes from Eq. (2.13a) by the substitution γ → γ̃. The solution of this system
highly depends on the edges of the problem, since the solution will diffuse until it reaches the
boundaries where it will be reflected since it cannot propagate away from the boundary due to the
absence of atoms for the wave function to couple to. So to solve this system, we assume different
geometries in the edges, and we will solve the system (2.13b) at all these cases.

12



Chapter 3

Solving the system of infinite
graphene

In the previous chapter we defined the equations of the model of graphene. These equations
connect every state with the three nearest states of the problem. This is however not satisfied by
the states at the edge of the sample. These states, the so called “edge states”, are affected only by
atoms inside the sample. That is, the equations we showed in the previous chapter are not satisfied
by these states, so the energy band will be affected by edge states. On he other hand, all the other
states satisfy Eq. (2.5), so their energy spectrum will not differ as much1. Due to this observation,
we can split our system into two pieces. The edge states of the system, and the bulk states of the
system.

In this chapter we will focus on the bulk states of the system. As we will see in section 4, the
further we get inside the bulk, the more edge states become less important. So states deep in the
bulk, see an infinite periodic structure of atoms which extend to infinite. So by solving the infinite
honeycomb lattice, we get an approximate solution for the behavior of the center of the bulk. This
is useful to compare with the solution when edges are far away. Some work in this are has been
done by [7], [8]

3.1 General Hamiltonian for graphene

In the previous part we settled the general Hamiltonian that we will solve. We also explained
the similarities with the graphene problem as well as with an arrangement of wave guides. In
this section we will explain this concept with detail to see how we can experimentally create this
Hamiltonian. In this section, the symmetrical structure of graphene will be of great importance. In
an experiment, we measure properties on the bulk of graphene, where edge states play little to no
role.

3.1.1 Definition of d vector

In the previous chapter we explained that graphene is an arrangement of atoms where each
particle is affected by the three neighbour atoms giving the Hamiltonian of the form Eq. (2.5), or in
an infinite system which we will study, from Eq. (2.12). The energies we will measure in experiment
have to be real, so the Hamiltonian have to be hermitian, and also, since graphene forms a solid,
it has to be momentum dependent. The most general 2 × 2 hermitian Hamiltonian is written as

1As we will see in section 4, these states are still affected by the edge states, because they coupled to the edge
states of the system, or they couple to other states that they couple to the edge states of the system.
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a linear combination of four matrices. The three Pauli matrices, and the unitary matrix. In the
case where the Hamiltonian is dependent in a certain parameter, as here where the Hamiltonian
depends on momentum, the coefficients in front of Pauli and unitary matrices should be momentum
dependent, so the Hamiltonian can be written as a linear combination of σ⃗ = (σx, σy, σz), the Pauli
matrix vector and σ0 the identity matrix. If we notate the four coefficients as di’s, then we get,

H
k⃗
= d⃗(k⃗) · σ⃗ + d0(k⃗)σ0 =

[
d0(k⃗) + dz(k⃗) dx(k⃗)− idy(k⃗)

dx(k⃗) + idy(k⃗) d0(k⃗)− dz(k⃗)

]
(3.1)

Since we know that the momentum Hamiltonian for graphene is given by Eq. (2.12), we can split
the Hamiltonian into the form of Pauli matrices. First of all since Eq. (2.12) has no components on
the diagonals, we infer that d0(k⃗) = dz(k⃗) = 0. For the non diagonal points, we get for the element
H

k⃗;B,A
that dx(k⃗) would be its real part, and dy(k⃗) would be its imaginary part, so we have

dx(k⃗) = t cos(aky) + 2t cos

(
aky
2

)
cos
(√

3/2 · akx
)

(3.2a)

dy(k⃗) = t sin(aky)− 2t sin

(
aky
2

)
cos
(√

3/2 · aky
)

(3.2b)

The equations above represent a mapping from momentum space, to the space of vector d⃗(k⃗) as you
can see on figure ref. Since we have the Hamiltonian from Eq. (3.1), as a function of the d vector,
we can diagonalize the Hamiltonian, and find the energies and the wave functions as a function of
the d vector. We start with the energy eigenvalues which ae given by

det

[
d0(k⃗) + dz(k⃗)− E dx(k⃗)− idy(k⃗)

dx(k⃗) + idy(k⃗) d0(k⃗)− dz(k⃗)− E dx(k⃗)

]
= 0 ⇒

(
E − d0(k⃗)

)2
− d2z(k⃗) = d2x(k⃗) + d2y(k⃗),

So we get that the energies of the system, are

E± = ±
√
d2x(k⃗) + d2y(k⃗) + d2z(k⃗) + d0(k⃗) (3.3)

Having the energies, we can see into what eigenvectors correspond to. We can easily see2 that the
eigenvectors corresponding to E± are

u
k⃗;± =

1√
2d(d± dz

[
dz ± d
dx + idy

]
, where d =

√
d2x + d2y + d2z. (3.4)

In the case of graphene, where dz = 0 the eigenvalues have the form

u
k⃗;± =

1√
2

[
±1
eiθ

]
(3.5)

3.1.2 Graphene symmetries

We saw previously that the z component of the d vector vanishes. We will see now that this
is a fact of the symmetries that graphene has. More precisely we will see that the graphene has
two symmetries. The first that we will study is called C2 symmetry or inversion symmetry, and the
other is called time reversal symmetry. The combination of these symmetries is forcing graphene to
have Dirac points.

2In order to prove it, we can make the dot product of the vector with the matrix of Hk⃗ − E± where E± is the
eigenvalue we found. Indeed, the dot product is zero since (dz∓d, dx+idy)·(dz±d, dx−idy) = (dz∓d)(d±dz)+d2x+d2y =
−(d − dz)(d + dz) + d2x + d2y = −d2 + d2z + d2y + d2x = 0, where we cover just the case of the up sign because
(dz − d)(d+ dz) = (dz + d)(d− dz), so it does not matter which sign will I pick, I will have the same result for both
of these. So we have found that indeed that vector on Eq. (3.4) is indeed an eigenvector of the system.
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Inversion symmetry

Graphene has two symmetries. The one symmetry is called inversion symmetry, and it is defined
such that, at any point r⃗ = (x, y, z) in the unit cell, there is an indistinguishable point −r⃗ =
(−x,−y,−z). The other is called C2 symmetry, and it states that if I rotate my system with angle
π in respect to the z axis, then the system will not change, it is symmetric under π rotations.
Notice that the two symmetries above are different because they behave differently on the z axis.
At inversion symmetry, every z is mapped to a −z, while at C2 symmetry, the z axis remains intact.

We can easily prove that rotations by π are identical with the inversion symmetry in two-
dimensions. In order to see it take a general two-dimensional vector and we rotate it by an angle π
using the rotation matrix R(θ = π).

v⃗ ≡
[
x
y

]
, v⃗′ = R(π)v⃗ =

[
cosπ − sinπ
sinπ sinπ

] [
x
y

]
=

[
−1 0
0 −1

] [
x
y

]
= −

[
x
y

]
= −v⃗ ⇒

⇒ v⃗′ = −v⃗

So indeed inversion symmetry and C2 symmetry give us the same result in two dimensions. So,
from now on, we will refer to both these symmetries as inversion symmetry.

Let us now see how inversion symmetry will affect the Hamiltonian. We start with how the
vector cj will be affected.

Icj,AI
−1 = c−j,B, Icj,BI

−1 = c−j,A (3.6)

IcjI
−1 = σxc−j (3.7)

Ic
k⃗
I−1 = σxc−k⃗

(3.8)

So the total Hamiltonian will be affected like

σxHk⃗
σx = H−k⃗

(3.9)

Since we can write the Hamiltonian in the form of Eq. (3.1) we can find how exactly the inversion
symmetry would affect the Hamiltonian.

H−k⃗
= σx

(
d⃗(k⃗) · σ⃗ + σ0d0(k⃗

)
σx

Since Pauli matrices anticommute with each other, and because σ2i = 1 for every Pauli matrix, we
pass σy and σz from σx with the cost of a minus sign, and we pass σx and the identity matrix, and
get

σ0d0(−k⃗) + σxdx(−k⃗) + σydy(−k⃗) + σzdz(−k⃗) = σ0d0(k⃗)− σxdx(−k⃗)− σyd(−k⃗) + σzd(−k⃗)

Since all of Pauli matrices, taking also into account the identity, are linear independent, we get that
the coefficients in the RHS should be equal to the corresponding coefficients in the LHS. So, we get
that the inversion symmetry is described by

d0(k⃗) = d0(−k⃗), dx(k⃗) = dx(−k⃗), dy(k⃗) = −dy(−k⃗), dz(k⃗) = −dz(−k⃗), (3.10)
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Time reversal symmetry

Now we will define the time reversal symmetry3. Time reversal symmetry transforms the imag-
inary unity i into −i, or in a mathematical form,

TiT−1 = −i (3.11a)

This operator also has effect on the momentum. This is because the momentum is given by an
imaginary exponential, so when time acts on the momentum, it shifts the imaginary unit in the
factor eikx, which is equivalent as the shift in momentum

TciT
−1 = ci, T c

k⃗
T−1 = c−k⃗

(3.11b)

The transformation of the Hamiltonian, is given by

H
k⃗
= H̄−k⃗

(3.12)

which gives

d0(k⃗) = d0(−k⃗), dx(k⃗) = dx(−k⃗), dy(k⃗) = −dy(−k⃗), dz(k⃗) = dz(−k⃗), (3.13)

Results and breaking of Symmetry

We discussed how the two symmetries affect the d vector. We see that these two constraints
that the symmetries give us a strong constrain for the z component of the d vector. From Eqs.
(3.10) and (3.13) we get

dz(k⃗) = 0 (3.14)

3.2 Solving the infinite system

Now we will solve the system by assuming gain and losses on A and B atoms respectively. In
the beginning we assume that honeycomb lattice has no edges and it extends to infinite in both
dimensions. This is called “the infinite system” and it is described in figure 1.1a. We will solve it
both analytically and computationally, since the analytic approach and solution is simple enough.
As we will see the steps for solving the system using the computational approach does not differ
significantly with the analytic approach. At this system every state is affected by the neighbour
states, and we have no edge states, so we can just use a two by two Hamiltonian to describe every
unit cell in our system. Since we only want to calculate the first Brillouin zone, and because the
Brillouin zone is the Fourier transform of the unit cell of the system, it is enough to stick to this
two by two matrix. The Hamiltonian of the unit cell is given by

H =

[
−∆− iγ 2tei/2·aky cos(

√
3/2 · akx) + te−iaky

2te−i/2·aky cos(
√
3/2 · akx) + teiaky ∆+ iγ

]
(3.15)

We can find analytically the energies if the sample by diagonalization as you can see below

det

[
−∆− iγ − E 2tei/2·aky cos(

√
3/2 · akx) + te−iaky

2te−i/2·aky cos(
√
3/2 · akx) + teiaky ∆+ iγ − E

]
= 0

(E +∆+ iγ) (E −∆− iγ) = t2
∣∣∣2ei/2·aky cos(√3/2 · akx) + e−iaky

∣∣∣2
3Or spinless time reversal symmetry
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(a) Caption 1 (b) Caption 2

Figure 3.1: Solution of the infinite Hamiltonian for different values of ∆. These figures shows that
the larger the parameter ∆, the larger the splitting.

Where in the last equality we have the complex conjugate because the non diagonal terms are
complex conjugates one another, which is the definition of norm squared. Also when we multiply a
number by a phase, his norm does not change, so we multiply the norm with e−i/2·aky , to simplify
the expression, and get

E2 = ∆2 + 2iγ∆− γ2 + t2
[(

2 cos(
√
3/2 · akx) + cos(3/2 · aky)

)2
+ sin2(3/2aky)

]

E = ±
√
∆2 + 2i∆γ − γ2 + 4t2 cos2(

√
3/2 · akx) + 4t2 cos(

√
3/2 · akx) cos(3/2 · aky) + t2 (3.16)

We see that the energies of the system are in general complex, despite the PT symmetry of the
Hamiltonian. That is, we have exceptional points in the system where the eigenvalues of Hamiltonian
become complex. These exceptional points appear when the two energy eigenvalues vanish, namely
when

E = 0 ⇒
√

∆2 + 2i∆γ − γ2 + 4t2 cos(
√
3/2akx) + 4t2 cos(

√
3/2akx) cos(3/2aky) + t2 = 0.

The imaginary value 2i∆γ vanishes if ∆ = 0 or if γ = 0. If the imaginary part of a function is non
zero, then the real part of the square root of the function will be non zero4. That means that the
exceptional points...

We can also find computationally the energies by using diagonalization for different values for
γ or γ̃. This helps us understand how γ̃, namely how ∆ and γ affects the energies of the system.
First let us see how ∆ affects the system. We can do it analytically by simply setting γ = 0 at Eq.
(3.16), and see that the equation gives

E± = ±
√
∆2 + 4t2

(
cos2(

√
3/2 · akx) + cos(

√
3/2akx) cos(3/2aky)

)
+ t2 (3.17)

The expression ∆2 is always positive since we assume that ∆ is a real number. So the expression
totally depends on the expression 4t2

(
cos2(

√
3/2 · akx) + cos(

√
3/2akx) cos(3/2aky)

)
+ t2. This

4This is easily proved, since any complex number can be written in the form z = reiθ =
√
x2 + y2ei arctan(y/x) so

its square can be written as
√
z = (x2 + y2)1/4e1/2i arctan(y/x) which always have a non zero imaginary part, which

vanishes as x→ ∞.
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(a) Caption 1 (b) Caption 2

Figure 3.2: Solution of the infinite Hamiltonian for different values of ∆. These figures shows that
the larger the parameter ∆, the larger the splitting.

expression this expression is always positive or zero since it is equal to the eigenvalues of a Hermitian
operator. More precisely, its minimum value is zero and can be found on points (), (), .... So we see
that in the case of γ = 0, the property of ∆ is to split the two bands. The larger the value of ∆,
the larger the gap between the bands.

This becomes more obvious by plotting the solution, but instead of this, we will solve it com-
putationally. We use the values ∆ = 0 and for ∆ = 0.25 and we plot the results on figure 3.1. The
value of γ at these figures is zero. We see that in the case of ∆ = 0 valence band touches just one
point of the conduction band. This point is called Dirac point. As we increasing the parameter ∆
the two bands split. The more we increase ∆ the more the band will split.

Now we see how γ affects the solution. For the study of this case, we set the value of ∆ to be
zero. We will generalize it even more later.

We have plotted our results for γ = 0 and for γ = 0.5. Th difference in this case is that the
existance of γ forces the energy band to extend to the complex plane, so we plot both the real and
the imaginary part of the energy to get the whole information of the system.
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Chapter 4

Solving the semi finite problem

In the previous chapter we solved the infinite problem. In experiments however, no infinite
sample is possible. We can only use finite samples. At this kind of problems, we have to take into
account the boundary conditions of the system. In this section we will see all the possible boundary
conditions that we can have in graphene structures, and we will solve them computationally.

As we will see, the Bloch Hamiltonian will be given by (2.8), but with the exception that we
will have two neighbour atoms at the edge states. A lot of work has been done for the solution of
the semi infinite lattice, like for example [9], [10], [11], [8], [12]. A nice detailed paper for graphene
and semi infinite graphene is given by [13].

4.1 Splitting the positions

It is essential, at any finite problem, to be able to give each waveguide a certain value corre-
sponding to the element of the matrix it belongs. In this section we will give each waveguide a
natural number which correspond to the position of the waveguide in the system. This process is
not unique, and in principle you can give the elements any place in the matrix (2.5) assuming that
coupling terms are in agreement. In this section, we will talk about both the notation that we use
when we are talking about the states at the edges, and what happens when we talk about a finite
graphene sample. Let us start with the finite graphene sample seen on figure 4.1. Since we are in
two dimensions, every space is characterized by two degrees of freedom. So, we will notate the wave
functions Ψ and Φ with two natural numbers, i and j, indicating the atom’s position. The variable
i describe the position on the x axis of graphene as we can see on figure 4.1, and the j variable
describes the y axis position. Every atom will be characterized by a unique doublet of i and j as
you can see on the same figure.

However, this cannot help us build the Hamiltonian of every problem. We will use this numbering
only for semi infinite states. When we deal with finite photonic graphene lattices, we will use a
different way of numbering the waveguides of each problem.

Since we have a finite graphene lattice in one specific dimension, we have a finite number of
waveguides in this direction which we will calculate explicitly on section 5 for different models.
For now we will assume that the total number of waveguides on the photonic graphene structure
is N. For the Hamiltonian to be build, we need each electron to represent a specific row of the
Hamiltonian. This means that the whole Hamiltonian will have the same dimension as the total
number of particles, that is the Hamiltonian will be a N×N matrix. This makes sense because after
the diagonalization, we will get the same number of energy eigenstates as the number of atoms, and
the states will eventually be a linear combination of the first mode of all the waveguides.

Next is the case of a semi finite sample which we study in this section, we will have a different
way of numbering the states of the system because we treat the system like a one-dimensional array
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Figure 4.1: Caption

of atoms. So we cannot have two variables, but only one variable. There are two way to assume
periodic boundary conditions1. The first is by assuming periodic boundary conditions in x and that
the photonic graphene is finite in the y direction, and the other way is to assume that we have
periodic boundary conditions in y direction and finity in x direction. In both cases we can describe
the electrons using as a number its position of the direction that graphene is finite. That is we start
from the left, and we go to the right when photonic graphene is finite on the x direction, and we
will start from the bottom, and we will go to the top when graphene is finite in the y direction.

4.2 Armchair edge

Firstly we will assume finite sample only on one axis and infinite sample on the other axis. This
is called “the semi finite-problem”. The reason we make this assumption is in order to see all the
possible boundary conditions that we can have in graphene. Furthermore, this is not an unrealistic
scenario for experiments. We can create experimental structures that have the same properties.
These kind of structures are atomic structures and not photonic. This is because we can create
cylindrical samples. We know that cylindrical samples have periodic boundary conditions in one
axis and they are finite in the other axis. These structures are called nanotubes, and they have
the form of figure SAY MORE THINGS ABOUT THEM. We will begin by writing the general
equation for a unit cell of the system, that is, for now we will not consider the effects of the edge.
This equation can be obtained by using Eq. (2.5) in the easy case, namely by assuming that all
coupling constants are equal. Due to the aforementioned, we get the system{

−tΨn−1,m − tΨn+1,m+1 − tΨn+1,m−1 = EΦn,m

−tΦn+1,m − tΦn−1,m−1 − tΦn−1,m+1 = EΨn,m.
(4.1a)

Here let me explain how this equation came from. This is exactly the same equation as (2.1), or
equivalent Eq. (2.1.1), with the exception that we have only picked the energy component of n,m

1Actually there are more, and we will see this in this chapter
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(a) Caption 1

(b) The unit cell of armchair unit cell. In this figure,
x =

√
3/2a.

Figure 4.2: In figure 4.2a, you see the armchair edge. Every waveguide on the bottom edge corre-
sponds to number one. Note that all the bottom atoms in this case are B atoms. Every waveguide
to the second chain corresponds to number two waveguides. These waveguides are A atoms. This
goes on until the final chain of atoms, the N atoms. The reason we assume that all waveguides cor-
responding to the same value j, that is are on the same y, are equivalent is because of thbe periodic
boundary conditions. Since we have periodicity on the x axis, we have translational symmetry, so
all waveguides at the same y are equivalent.
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eigenstate, and we have done that both for an A atom and for a B atom. This is why we have a
2× 2 system. It is reminded that Ψi,j and Φi,j are not wave function, but coefficients.

Furthermore, we will also solve the medium difficulty problem which is given by
So, the finding of the solution of the semi infinite problem is equivalent with the solution of the

above system with the appropriate boundary conditions. Since the system is semi finite, we will
assume periodic boundary conditions in one dimension. If we choose the system periodic in respect
to the x direction, then the wave functions take the form

Ψn,m = eikxxΨn, Φn,m = eikxxΦn, x = xm =
√
3/2ma, (4.2a)

where the last equality show the possible values of x since x is a discrete variable which is increased
by a constant length

√
3a as you can see on figure 4.2b, since the value x is

√
3/2a. Furthermore,

we have to see after which value the momentum k, starts to repeat its values. We know that in real
space this is happening at every 2 a distance. Using that, we can find what is the lattice constant
on momentum space in the y direction. We have

eikxx = eikx(x+
√
3a) ⇒ ei

√
3kxa = 1 = ei2nπ ⇒ kx =

2nπ√
3a

(4.2b)

So, kx repeats its self after every

kx =
2π√
3a

(4.2c)

Eq. (4.2b) gives us the values that kx can take. Of course, we can give kx a larger value, but it will
have the same exact energy with a previous value. So, we will plot the values of kx given by the
equation above.

4.2.1 Original Armchair edge

First we will talk about the armchair edge. The armchair edge has the form seen in figure 4.2a,
where we use the same numbering discussed in section 4.1. Since it is a finite system, to solve it, we
need to write the Hamiltonian describing this system as we did in section 2.1.1. Furthermore, since
we have periodicity in the x direction, we expect to have exponentials of kx in the Hamiltonian, and
as we will see, this is indeed the case.

In order to solve this system, we use the system of Eqs. (4.1a) with the boundary conditions
(4.2a). This gives us the system,{

−teiky
√
3/2maΨn−1 − teiky

√
3/2(m+1)aΨn+1 − teiky

√
3/2(m−1)aΨn+1 = Eeiky

√
3/2maΦn

−te−iky
√
3/2maΦn+1 − teiky(m−1)aΦn−1 − tei

√
3/2ky(m+1)aΦn−1 = EΦn

⇒

⇒

{
−tΨn−1 − tei

√
3/2kyaΨn+1 − te−i

√
3/2kyaΨn+1 = EΦn

−tΦn+1 − te−i
√
3/2kyaΦn−1 − tei

√
3/2kyaΦn−1 = EΨn

Using Euler’s formula for exponential, we can write it in the final and elegant form{
−tΨn−1 − 2t cos(

√
3/2kxa)Ψn+1 = EΦn

−tΦn+1 − 2t cos(
√
3/2kxa)Φn−1 = EΨn

(4.3)

Now, we have to take into account the boundary conditions. We assume that we have N
waveguides in total in one chain, so that the waveguide at n = 1 and the waveguide at n = N
will be coupled only with one waveguide. More specifically, the waveguide at n = 1 will only be
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(a) Four unit cells. So there are 16 energy eigenstates.
(b) Twenty unit cells. So there are 80 energy eigen-
states.

Figure 4.3: Energy momentum bands for different number of unit cells for value a = 1 and t = t1 =
t2 = t3 = 1. The kx axis starts from value −π/

√
3 and ends at π/

√
3

connected with the waveguide n = 2 (notice that there are two waveguides of the form n = 2
connected to n = 1, so we will have a t2 coupling as you see on equation (4.4)). In other words we
can say that Φ0 = ΨN+1 = 0 which in quantum mechanical terms express the absence of probability
in finding the electron at atom n = 0 and n = N + 1. In photonic term, this corresponds to the
probability amplitude of finding the photon at waveguide n = 0 and n = N + 1. By doing this, the
Bloch Hamiltonian will have the form

H =



0 −t2
−t2 0 −t1

−t1 0 −t2
−t2 0

. . .

−t2
−t2 0


, (4.4)

where t1 = t and t2 = 2t cos(
√
3/2 · akx). We wrote them as t1 and t2 for elegance, so that the

Bloch Hamiltonian look nice. As we see, the t2 coupling depends on the wavelength kx, that is
t2 = t2(kx), as it should, since we have periodicity on the x axis.

Here we will explain why Hamiltonian given by Eq. (4.4) has this exact form. Let us first
use figure 4.2a. Each row represent one waveguide in the Hamiltonian. So the first row of the
Hamiltonian correspond to the waveguide number one in figure 4.2a. We see from the same figure
that this waveguide is coupled to two waveguides of type two. Since these two waveguides are
equivalent, we sum their coupling as we explained when we solved the system (4.11), and we write
it us the coupling t2. Since it is represented with number two on figure 4.2a, we put the t2 on the
element H12 of the Hamiltonian, that is H12 = −t2. So in the first row, we just have a t2 coupling
in the second column. Now we go to the waveguide corresponding to number 2 in figure 4.2a.
This is an A atom. As we can see, this waveguide is coupled to two waveguide of corresponding
number 1, that is coupling t2, and one waveguide corresponding to number three, which is coupling
t1 according to Eq. (4.7a). So in the second row we put t1 in the first collumn, and t2 in the third
collumn. The third row corresponds to the waveguides of j = 3, which in figure 4.2a are coupled
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(a) γ = 0.1. (b) γ = 0.5. (c) γ = 1.

(d) γ = 1.5. (e) γ = 3. (f) γ = 5.

Figure 4.4: Energy momentum bands. We plot the real part of energies in the case of twenty unit
cells for the values a = 1 and t = t1 = t2 = t3 = 1. The kx axis starts from value −π/

√
3 and ends

at π/
√
3.

with one waveguide on the y axis at y = 2, so t1 at H32, and two waveguides corresponding to
number four, so H34 = t2. We can continue like this and built the whole Hamiltonian.

One faster way to do this is to observe that every A atom which as we see in figure 4.2a, is
conneted with a t2 coupling with the previous number atom, and t1 with the next number. This
means that every element in the Hamiltonian, corresponding to A atoms will have as the only non
zero elemetns, the elements

Hii+1 = −t1 and Hii−1 = −t2. (4.5a)

Furthermore, we can see from figure 4.2a, that A atoms correspond to even numbers. So all even
number of the Hamiltonian will have the form of Eq. (4.5a), with the exception of the final atom
in the armchair edge, which is only coupled to the previous waveguide with t2 coupling.

For B atoms we can see in figure 4.2a that all B waveguides are coupled to their previous
waveguide with couplng t1, and in the next with coupling t2, and since the B waveguides are
presented on the odd rows of Hamiltonian, in all odd rows except the first one which we only have
a t2 coupling with above, we have

Hii+1 = −t2 and Hii−1 = −t1. (4.5b)

It is important to note that the unit cell of the armchair chain has four atoms. So the Hamiltonian
must be a 4n×4n matrix where n ∈ N. If this doesn’t apply then the Hamiltonian does not describe
an armchair edge. We have plotted the states on figure 4.3

As we can see on figure 4.3, this is the shape that energy eigenstates have in the case of an
armchair edge. The states that begin and end at zero energy are the edge states, that is the states
correspond at waveguides n = 1 and n = N . As we see in the figures, the shape does not change as
we put more and more unit cells, just the states becomes denser.
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4.2.2 Armchair edge with gain and losses

Now we will put gain and losses on the system. This is trivial to do. As we said previously, we
put on the diagonal elements the term iγ in order to put losses, and the term −iγ in order to put
gains. If we do this, the Hamiltonian takes the form

Hkx =



−iγ −t2
−t2 iγ −t1

−t1 −iγ −t2
−t2 0

. . .

−t2
−t2 iγ


. (4.6)

The solution of this Hamiltonian can be found by diagonalization, but now, we can have complex

(a) γ = 0.1. (b) γ = 0.5. (c) γ = 1.

(d) γ = 1.5. (e) γ = 3. (f) γ = 5.

Figure 4.5: Energy momentum bands for different number of unit cells for value a = 1 and t = t1 =
t2 = t3 = 1. The kx axis starts from value −π/

√
3 and ends at π/

√
3.

values for the eigenstates. We assume twenty unit cells for the solution, and that t1 = t2 = t3 = 1.
Finally we put the value of the distance a between two waveguides to be a = 1. The results for the
real part of energy are represented at figure 4.4

We now discuss, how the real part of energy eigenstates of the Bloch Hamiltonian changes as
we increase gain and losses. We begin with γ = 0 where we have figure 4.3b (remember that we
work for the case of N = 4 unit cells). As we increase gain and losses, we see that states expand
going closer to zero since the energy gap for states close to kx = 0 becomes smaller, and we also see
that more states approach values close to kx = ± π√

3
, so that the whole shape seems to take more

the shape of a sphere. At γ = 1 is the value where the states are close to the values of kx = ± π√
3
,

so it seems most like a sphere shape (more like an eye shape actually). After the value of γ = 1,
as we increase gain and losses more, the real part of energy eigenstates decrease more and more, as
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Figure 4.6: This is the definition of the beared
edge. It is the same as the Armchair edge
with the exception that the first B atom and
the final A atom are missing. Each carbon
atom is at distance a with every other car-
bon atom. The total number of atoms in a
bearded chain is assumed to be N, which is
an even number.

we see on figure 4.4d, and the circle starts to sring. After γ = 3, no real energies exists as we can
see on figures 4.4e and 4.4f.

Now let use how the imaginary part of the energies is affected by gain and losses. You can see
this on figure 4.5.

Now let us see what is going on with the imaginary part of the energy eigenstates. In the
beginning there are no states with imaginary part. All states are real since the original Hamiltonian,
given by Eq. (4.4), is hermitian. If we start putting gain and losses, we see that most states stays
zero, but states smaller than the value of kx ≈ −1.15 and states larger than the value of kx ≈ 1.15,
start to have a non zero imaginary part. This is true even for very small values of γ. The only
thing that changes as we descrease γ is the value of the imaginary part of the energies which will be
smaller. But the same exactly states will have a non zero imaginary part. As we increase gain and
losses, we see that there are some ellipses that start appearing around point kx = 1.15, and growing
larger as γ increases. This can be seen in figure 4.5b. At value γ = 1, these ellipses almost tough
each other (actually by a small change in the value of γ they will connect), and also imaginary values
at kx = ± π√

3
start to appear as we can see on figure 4.5c. After this value, the ellipses have been

connected, and also as we increase gain and losses more and more, no energies with zero imaginary
part remain at valus near kx = ± π√

3
as you can see in figure 4.5d. As we continue increasing the

value of γ, more and more states, closer to kx = 0 start to get an imaginary part. At γ = 3 no
states with non zero imaginary part remains, as you can see in figure 4.5e. Finally, for large gains
and losses, all states go to the limit of the imaginary part as you can see in figure 4.5f.

4.3 Bearded edge

Another kind of boundary condition is the so called bearded boundary conditions which can
be seen on figure 4.6. Namely it has the same form as an armchair chain, but we exclude the two
atoms on the edges, that is the B waveguide on the bottom edge and the A waveguide to the top
edge. Thus we change the boundary conditions of the model. The total number of waveguides (or
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(a) Four unit cells and 14 energy states.
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(b) Twenty unit cells and 78 energy states.

Figure 4.7: This is the solution of bearded edge. In the

atoms in the case of regular graphene) in this case, is the same as in the previous case studied on
section 4.2, minus the two atoms that missing. So we have 4N − 2 waveguides in the case of the
bearded edge.

The bulk of the problem is the same with the one we discussed on section 4.2, so it is given
by the system (4.1a). This is why we expect that the bearded edge case, will give similar results
for the bulk of the edges with the armchair edge. As we said, what will change is the edge states.
Now the edge states are not the same, so we expect that the edge states will change, but the rest
of the spectrum will mostly be the same. In this case, the Bloch Hamiltonian of the problem can
be written on the matrix form

H =



0 −t1
−t1 0 −t2

−t2
. . .

−t1
−t1 0


. (4.7)

As we can see, the Bloch Hamiltonian is the same with out Hamiltonian is a (4n − 2) × (4n − 2).
This is because we have subtracted the two atoms for he edges, so we have remained with 4n − 2
atoms as we said before.

In order to computationally calculate the energy eigenstates of this problem, we just diago-
nalize Hamiltonian (4.7) as we did for the previous problem at section 4.2.1. The result of the
diagonalization can be seen on figure 4.7.

We see from this result that the two energy bands seem a lot alike. What is different are the
edge states. All the other result is more or less the same. This makes sense because the system is
exactly the same in the bulk, and the only thing that is different is the edge states. The edge states
are now connected only with one state, so there is t1 coupling, and not t2 as in the previous case.

We could have put gains and losses in this system as well, but as we have seen the solution of
the system is identical except of the edge states, we find that when we assume zero gain and losses,
or in other words, we put zero γ, the solution is identical with figure 4.2. In the case of gain and
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Figure 4.8: Here is the armchair bearded edge
which is a combination of armchair edge (in
the bottom) and bearded edge (in the top).
We see that the waveguide in the top is only
cpupled to one wave guide, while the waveg-
uide on the bottom is coupled to two waveg-
uides. In other words the B type waveguide
in the upper edge experience a t1 coupling,
while the B type waveguide on the botton ex-
perience a t2 coupling.

losses, the Hamiltonian will take the form

H =



iγ −t1
−t1 −iγ −t2

−t2 iγ
. . .

−t1
−t1 −iγ


. (4.8)

The results once again is almost identical with the results from the armchair edge, since the only
thing that differs are the edge states. Particularly, in the real part that the edge states are zero
inside the area as you can see in figure 4.7b. This does not change when we assume gain and losses.
The edge states on the inside part will always be zero. Furthermore, the imaginary part of the
states has an interesting property. As we said in section 4.2, values below Kx = −1.15 and above
kx = 1.15

4.4 Armchair bearded edge

Another kind of boundary conditions are the so called armchair bearded boundary condition.
This is a chain of atoms which can be seen on figure 4.8. As you can see in this figure, it is a
combination of armchair edge and bearded edge. In the bottom edge it has armchair edge, while in
the top edge, it has bearded edge.

Once again the bulk of the system is the same and given by Eq. (4.11), so the Bloch Hamiltonian
will be the same. The difference once again lie on the edge states. As you see in figure 4.8, in this
case, the bottom wave guide, placed at position n = 1 experience a t2 coupling, while the top
waveguide, placed in position n = N experience a t1 coupling. So, in this case, the Hamiltonian
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Figure 4.9: Solution of the zig-zag bearded Hamiltonian for two different numbers of unit cells.

takes the form,

H =



0 −t2
−t2 0 −t1

−t1
. . .

−t1
−t1 0


, (4.9)

where in this case the Hamiltonian is a (4n−1)× (4n−1) matrix since we have 4N −1 waveguides.
This can be proved trivially, because we have the same number as in the armchair edge case which
is 4N , but we exclude one waveguide on the top, so indeed we remain with 4N − 1 waveguides.

The computational results from the diagonalization of the Hamiltonian (4.9), are given in the
figure 4.9. As we see, the characteristic property of the zig-zag bearded energy spectrum are the
edge states since they are always zero in this case.

We can put in this case too gains and losses in the system. If we do this, by putting gain on A
atoms and losses on B atoms, the Hamiltonain will take the form

H =



−iγ −t2
−t2 iγ −t1

−t1 −iγ
. . .

−t1
−t1 −iγ


, (4.10)

In this case, the figures of the real part of the energy is exactly the same, with the exception of
the edge states, as in the bearded system as well. The edge states in the armchair bearded are
always zero, as in the hermitian case where no gains and losses exist in the sample. Furthermore,
the imaginary part of the energy eigenstates has a constant non zero part for every kx. You can see
this on figure 4.7a.
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Figure 4.10: Armchair edge

4.5 Zig-zag edge

The zig-zag edge is one of the two edges that graphene is usually seen to have. It is different
from the armchair edge and it can be seen on figure 4.2. As we will see it has a very different
behaviour from the case of armchair edge. We will just solve this system computationally for two
different cases of unit cells, as we did in the previous sections.

Now we will count the number of waveguides we have in this problem. In this case, we will
measure the hexagons that we put. The first hexagon gives 3 atoms. The second one gives other
two atoms since the last of the previous hexagon is equivalent with the first of the new hexagon.
So every new hexagon puts two electrons in the Hamiltonian. That is, then order of the matrix of
the Hamiltonian will be (4N − 2)× (4N − 2). The system of this problem is given by{

−e−ik/2Φm − Φm−1 − Φm+1 = EΦm

−eik/2Φm −Ψm−1 −Ψm−1 = EΦm

(4.11)

And the Hamiltonian corresponding to system (4.11) is given by

H =


0 −t2 0 −t1

−t2 0 −t1
0 −t1 0 −t2 0 −t1

−t1 0 −t2 0 −t1
. . .

 (4.12)
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Figure 4.11: Solution of the zig-zag bearded Hamiltonian for two different numbers of unit cells.
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Chapter 5

Solving the finite problem

In this chapter, we will solve the finite problem of photonic graphene lattice. As we will see,
this is not a particular problem, but we can choose the two dimensional lattice as we please in order
to solve the problem. In this thesis, we will define a couple of different problems concerning two
dimensional lattices, and we will solve each one of them. Finally, we will discuss our results.

5.1 Two dimensional graphene of type 1

5.1.1 Defining the problem of type 1 graphene

Here we define the first problem of two dimensional graphene that we will solve. We will call it
“type 1 graphene”. This problem is the same as the one seen on figure 4.1. That is we build it by
putting hexagons one of top of the other. The way we define it is by giving the number of hexagons
we put on the x axis, and the hexagons we put in the y axis. Suppose that the number of hexagons
in the x axis is Nx and the number of hexagons in the y axis is Ny. We assume that each problem is
defined by the two natural number Nx and Ny. We call the problem that it is of the form Nx×Ny.

In figure 5.1 we present some kind of problems to be more clear. As we said in chapter 5, the
first thing we need to do in order to computationally solve the problem is to give each waveguide,
a certain numerical value corresponding to the position of the waveguide, or more importantly, in
the row of the Hamiltonian that this waveguide corresponds to. In the figure below the numbering
is written.

As you can see, we use the same numbering discussed in section 4.1. That is we begin with
the atom with i = 1, and we increase the number j, or in other word, we count all the waveguides
corresponding to smallest x, starting from lower to larger. After we end this counting, we start
counting the second smallest value for x,and we continue like that until the end.

The waveguide number one will correspond to the first row, the waveguide corresponding to
number two will correspond to the second row and second column of the Hamiltonian and so on. So
that the diagonal terms correspond to the energy eigenstates, and the non diagonal terms represent
the coupling between the waveguides correspond to the rows and columns of this term. That is the
term H12 corresponds to the coupling between the waveguides number one and two.

5.1.2 Solution of the finite system of type 1

As we said in chapter 2.1, the way we solve the finite problem is the diagonalization method.
In this case, there is no periodicity, so we expect that the Hamiltonian that we diagonalize will
be independent of momentum, that is we will not have a Bloch Hamiltonian to diagonalize, but a
regular Hamiltonian that we need to diagonalize.
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(a) 2x1 problem.

(b) 2× 2 problem.

(c) 2× 3 problem.

(d) 3× 3 problem.

Figure 5.1: Caption

When the Hamiltonian does not depend on momentum, we expect to find the eigenstates and
the eigenvalues corresponding to the problem. This is our goal in this section. First we write the
Hamiltonian of the problem. In this section we will solve the 2 × 2 problem which is the easier
problem we will deal with, the 2× 3 problem, the 3× 3 problem and the 10× 10 problem which is
the most difficult problem we deal with.

We will not write the Hamiltonian for every problem, for elegance, but we will only write a
part of the Hamiltonian of the 2 × 2 problem, and explain why it has the form that it has. The
Hamiltonian of the 2× 2 problem can be written as

H =


0 −t3 −t2

−t3 0 0 −t1
−t2 0 0 0 0− t1

. . .

 (5.1)

Now let us explain why the Hamiltonian above corresponds indeed to the Hamiltonian of the
2 × 2 problem. First we begin with the first waveguide, which we know that corresponds to the
first row of the Hamiltonian. We see that the waveguide number one in figure 5.1b is coupled to
the two waveguides next to it. That is waveguides number two and number three. So we put as
only non zero terms in the first row of the Hamiltonian the elements H12 and H13. Now we begin
with the second row of the Hamiltonian, or in other words the waveguide number two. We see that
the neigbour waveguides of this waveguide are the waveguides number one and number four. This
means that the only non zero elements will be H21 and H24. For the waveguide number three, we see
that it couples to waveguides one and six, so have that the only non zero terms are in the third row
of the Hamiltonian are H31 and H36. So this is why the Hamiltonian has these non zero elements.
If we continue with the waveguide number four, we can see that the only non-zero elements are the
elements H42, H45 and H47. We can now choose, if it is a t1, a t2 or a t3 coupling according to figure
1.1b. We see if we have an A or a B atom. If we have an A atom, then we will put the coupling
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t1 or t2 or t3, as it is. If ir is a B atom, we have to put its complex conjugate. Since we chose the
coupling to be real, we do not need to care about complex conjugation. It is just mentioned for
completeness.

The results of the energy eigenstates as well as the probability amplitude of the ground state,
can be seen on figure 5.2a. For the plotting of these states, we used for the coupling the values
t1 = t2 = t3 = 1. We will discuss these results below.

We start from the 2× 2 system. In this system, where 16 waveguides, and thus 16 energy eigen-
states in total states exists, we get that the ground state energy is Eg(2×2) = −2.532088886237956
and we see from figure 5.2b that the maximum probability amplitude is on the waveguides numbered
seven and ten. By looking at figure 5.1b, we see that these waveguides are the waveguides that are
in the middle of the sample. Furthermore these waveguides are connected with their three neigbour
waveguides, that it, with the maximum number of the waveguides that we can connect them, so this
is the maximum way that electrons can come to these two waveguides. The waveguides, that seven
and ten waveguides are connected are the numbers four, six eleven and thirteen and all of these
waveguides are also connected with three waveguides each, but this gives lower energy because some
of the waveguides that numbers four, six, eleven and thirteen are connected, are coupled with waveg-
uides with two other waveguides connected. So this gives in total smaller probability amplitude for
the photon to be found in these waveguides. the next smaller energy eigenstates are the numbers
five, eight, nine and twelve. These waveguides are only connected to two other waveguides, whose
one of the other is a waveguide that couples three, and the other a waveguide that couples to two
other1. The waveguides with a little bit less probability amplitude are the waveguides 2,3,14 and
15. These waveguides have exactly the same properties, but the reason that they have less enenrgy
than the previous is because one of the state that these waveguide couples to are the waveguides
1 and 16 which are the only ones which ar econnected with two waveguide that couple only to

1For example, waveguide five couples to two wave guides. The first is waveguide number four, and the second is
waveguide number 8. Waveguide number 8 couples only to two waveguides (5 and 11) and waveguide 4 couples to
three waveguides (2,5 and 7).
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(a) Energy eigenstates, for 2× 2
system for γ = 0.
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(b) Probability amplitude of 2×2
system.
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(c) Eigenstates of 2× 3 system.
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(d) Ground state of 2 × 3 prob-
lem.
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(e) Energy eigenstates of 3 × 3
system.
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(f) Probability amplitude of the
ground state of 3× 3 system.
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(g) Energy eigenstate of 3×3 sys-
tem for high gains and losses.
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(h) Energy eigenstates for 10×10
system of type 1. No gains and
losses.
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(i) Probability amplitude of the
ground state of 10×10 system of
type 1 problem.
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(j) Energy eigenstate of 10 × 10
system for high gains and losses.

Figure 5.2a: Above you see the solution of some systems of type 1 finite graphene problem. In
the first column of figures, that is figures... you see the solution of energy eigenstates when no
gain or losses are present in the system. Since the Hamiltonian is hermitian, we expect that all
energy eigenstates are real. In the second column of figures, namely figures... we have notated
the probability amplitude of ground state of each case. Finally the third column of figures, we
presented the energy eigenstates of each case with high gain and losses. In that case we do not
present the energy eigenstates of the ground state because, as you can see in these figures, there is
high degeneracy, so you cannot pick a particular ground state.

two waveguides. So they should have less energy. And finally the two waveguides that have the
least probability amplitude, are the waveguides 1 and 16, since, as we just said, they are the only
waveguides that are connected with two waveguides that couple only to two waveguides, so there is
the elast probability that the photon will found there.

Now let us move on to the 2× 3 system. We will not discuss this system is such detail. We see
that the larger probability amplitude can be seen in waveguides 14 and 15, then in waveguide 10
and 11, which are all waveguides that couples to three waveguides which are also connected with
other three waveguides, and then, the next smaller energy is seen in waveguides 6 and 7 which are
coupled to three waveguides, which two of them are connected to two. Furtheremore, there is higher
probability amplitude for the photon to be found on the right edge, that is on waveguides 21 and
22, than on the waveguides 1 and 4. This is because the waveguides 1 and 4 are connected to two
waveguides which couple to two, while in the right edge the waveguides are coupled to two which
one of them is coupled to three. This is a very important fact, because it denotes that there is no
inversion symmetry to our problem. We will talk later in more detail about that.

Most of the features discussed above are present to the 3 × 3 problem of type 1. We see that
the maximum probability amplitude are on the waveguides 14 and 15 which we can see on figure
5.1d that they are in the middle of the sample. In general most of the probability amplitude is
on waveguides that are more in the middle of the sample than the edges. And furthermore, the
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probability that you will find the photon on the left edge, is higher than the probability to find the
photon on the right edge. As we will see later, this is in general a consequence of the problems
where Ny is an odd number as we will see in section 5.2.

The last problem we solved on figure 5.2a, is the 10 × 10 problem which we have written the
probability amplitude of the ground state on figure 5.2i. Here we see everything we discussed so far.
Once again the probability amplitude is on the waveguides in the center, and as we leave the center
and we go closer to the edge states, the probability amplitude gets lower and lower until we reach
the waveguides number 1 and 240 where the probability amplitude is minimum. Furthermore, we
see in the same figure a behavior like a beat. This is due to the way we counted the waveguides. As
we said in section 5.1.1, we count all the states starting from the bottom edge, and moving through
the upper edge. So it makes sense that the probability will start from low, it will reach a maximum
when we will be in the middle of the chain of atoms, and it will reach again a minimum, when we
reach on the top edge.

Another feature that we can see in figure 5.2a, is that when Ny is an even number, then all the
energy eigenstates at high gain and losses become imaginary and are concentrated in six points.
The value of Nx is not important, only the value of Nx has to be an even number. When Ny is an
odd number, then this is not true. Actually, what happens in the case of an odd Ny is that now
the energy eigenstates are concentrated into 2(2Nx + 1) points in the energy complex plane.

Before we move on, let us see how the energy eigenstates change as we increase the gains and
losses of the system. On figure 5.3 we plot the real and imaginary part of energy eigenstates as a
function of the gains and losses in the system, namely the variable γ.
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Figure 5.3: Caption

We see in the figure 5.3, that

5.2 Two dimensional graphene of type 2

5.2.1 Defining the problem of type 2 graphene

In order to test weather the reason of concentration in the six points is the inversion symmetry
seen on the even values of Ny, we can define a model which has inversion symmetry on the odd
values of Ny, but lacks C2 symmetry for the even values. We call this new type of finite graphene
“type 2 graphene”. We represent some kinds of type 2 graphene lattices, in order to be more clear.
You can see them on figure 5.4

So we see that the difference in this case is that we do not put the final hexagon at the even
values of Ny. When we create for example a 4×4 problem using a type 2 graphene, we first put four
hexagons on the bottom, since Nx = 4. On the top, we do not continue with four hexagons too,
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(a) 2× 2 problem. (b) 3× 3 problem.

Figure 5.4: Different type 2 problems

but we put three hexagons. After that, on the top of them we continue by putting four hexagons,
and then again three hexagons. So what we really do is that we continue with Nx, on the top we
put Nx − 1, then again Nx and Nx − 1, and so on. This shape we can easily observe that it has
inversion symmetry for odd value of Ny. For example you can see that figure 5.4a does not have
inversion symmetry, while figure 5.4b has.

We use the same method that we described to form the Hamiltonian in this case. As with type
1 graphene, we can find the solution via diagonalization. We will also find the solution for four
problems. The 2 × 2 problem, the 3 × 3, the 5 × 5, and the 10 × 10 problem. The results are
presented in figure 5.8a. Once again in order to plot the results we used t1 = t2 = t3 = 1. Below
we discuss the results.

In figure 5.8a, where we have the 2 × 2 system, we see that the waveguide with the larges
probability to find the photon is the waveguide number 7. By looking on the figure 5.4a we see that
this makes sense, because this waveguide is exactly on the middle of the sample. The less probable
waveguides are numbers 4, 6 and 10, which are the waveguides that are coupled with the waveguide
7. The waveguides with less probability are the waveguides1,8 and 12, which once again makes sense
because they are at the edges of the sample. As we clearly see from both figures 5.4a and 5.8a,
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Figure 5.5a: Caption

there is no inversion symmetry in this case. On the other hand, we can easily see that there is C3

symmetry in this case, and this is the reason that waveguides 1,8 an 12 have the same eigenvalue,
as well as that the triplet of waveguides 3, 5, 13 and 2, 9 and 11 wave the same probability. In
addition to C3 symmetry, there are also mirror symmetries, but we will mostly talk about this in
section 5.7.

At figure 5.8b we see indeed we have inversion symmetry in our system, since the histogram is
symmetric, and that we have the same behaviour as we have seen in section 5.1, where we studied
the type 1 graphene. That is, the maximum probability is in the center of our sample. We have a
beating behavior because we count the atoms in y axis, so I expect to have low probability on the
bottom and upper edge and maximum probability in the middle.

Then we see the 5× 5 system which has inversion symmetry as we see, and the 10× 10 system
which does not, and the wave the same beating behavior.

Finally we see, that still the states with even Ny are concentrated into six point in the energy
complex plane, while the problems with odd Ny are concentrated into 2(2Nx +1) points, so we can
see that the inversion symmetry was not the reason for this particular concentration.

Now let us see how the states change as we change γ.
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(a) N = 3 problem. (b) N = 4 problem.

Figure 5.7: Type of 3
graphene problems.

5.3 Two dimensional graphene of type 3

Now we will study a new type of problem, which we will call “type 3 graphene”. This has no
real connection to the previous problems. It has its own philosophy. We note now that the following
problem is a very famous problem.

5.3.1 Defining the problem of type 3 graphene

In this part we will define the problem of type 3 graphene. This problem is defined just by one
number. You just give the numbers of hexagons on the bottom which in this part of thesis we will
call N for simplicity, and you obtain the whole picture of the problem.

The algorithm you need to make the graphene structure is the following. You begin by putting
the first N hexagons in the bottom aligned with the x axis. Then, above this chain of hexagons you
put another chain. This time you put N − 1 atoms, as we did in section 5.2.1. When we go to the
third row of hexagons, we put N − 2, above that N − 3 etc, until we put only one hexagon on the
top. The type of finite graphene we have in this case can be seen in figure 5.7.
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Figure 5.8a: Caption
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Appendix A

Paraxial equation

In this Appendix we will solve Maxwell’s equations inside matter, using the so called “paraxial
approximation”. By doing this we will prove Eq. (1.3), which is symmetric to the Schröndinger
equation as we will see. In the first section we will prove what is the form of Maxwell’s equation
inside matter. Then we will solve these equations

A.1 Maxwell equations inside medium

Assume that you have light inside a waveguide. Our goal is to describe the propagation of light
inside the waveguide. We assume that the waveguide can have a material with varying properties,
that is with varying dielectric constant, in x and y directions, but the dielectric constant does not
change in z direction. Maxwell’s equations inside matter have the form

∇⃗ · E⃗ = ρ/ϵ(x, y),

∇⃗ · B⃗ = 0,

∇⃗ × E⃗ = −∂B⃗
∂t
,

∇⃗ × B⃗ = µ0J⃗ + µ0ϵ(x, y)
∂E
∂t
.

(A.1)

Inside dielectric materials, the charge density can be splitted into two parts. The first one is called
“bound charge”, and it describes the charge that stays on atoms. That is the charge that atoms
has1. Furthermore, we can also have free charges. These are electrons that are not confined in an
atom. These electrons can move from atom to atom, they are delocalized, so they belong to the
conduction band of the solid. The way we put free charges to the material is via dopping. That is
we put atoms that have one extra electron so that that they give one extra electron that can escape
the atom even in relative small temperatures2. We should note that we cannot put electrons in
the material to give the solid more free currents, because these currents would leave the material
anytime it was in contact with another solid, which makes this way impractical. So we can write
that the total charge is given by

ρ = ρb + ρf , (A.2a)

1We should say here that usually we do not expect ions in the material, but what can happen is that atoms are
polarized, namely that the electron cloud is has not the nucleus as its center, but it is a little bit translated as you
can see in figure ??. In this case, the molecule is affected by an applied electric field.

2The usual temperature for these electrons to escape from the atoms is given by...
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where ρb represent the bound charges and ρf the free charges. In our case, we will not use dopping,
so we will only consider bound charge in the medium. Bound charges are given by [Griphits4.2]

ρb = −∇⃗ · P⃗ , (A.2b)

where P⃗ is the polarization.
Now we will move on the current. The current inside a medium is given by

J⃗ = J⃗f + J⃗M + J⃗P .

As we can see above, the current is separated into three parts. Jf describes the current due to the
motion of free charge. Since we assumed that there are no free charges, we do not have free current
in our system. J⃗M represent the current produced by electronic motion due to induced magnetic
field inside the material. This is usually tiny, so we consider it negligible. Finally, as we said before
external elecric fields produce polarization in the material. The change in polarization can create
current given by

J⃗ = J⃗P =
∂P⃗

∂t
. (A.2c)

Due to Eqs. (A.2a) and (A.2c) Maxwell’s equations take the form
∇⃗ · E⃗ = ρb/ϵ(x, y),

∇⃗ ·B = 0,

∇⃗ × E⃗ = −∂B⃗
∂t ,

∇⃗ × B⃗ = µ0J⃗p

⇒


∇⃗ ·
(
ϵ0E⃗ + P⃗

)
= 0,

∇⃗ · B⃗ = 0,

∇⃗ × E⃗ = −∂B⃗
∂t ,

∇⃗ ×
(
B⃗/µ0

)
= ∂

∂t

(
ϵ0E⃗ + P⃗

) (A.3)

By defining

ϵ0E⃗ + P⃗ ≡ D⃗, and B⃗/µ0 ≡ H⃗ (A.4)

Eq. (A.3) can be written in the form

∇⃗ · D⃗ = 0,

∇⃗ · B⃗ = 0,

∇⃗ × E⃗ = −∂B⃗
∂t
,

∇⃗ × H⃗ =
∂D⃗

∂t
.

(A.5)

A.2 Wave equation inside a medium

Now we prove the wave equation inside a material. In order to do this we will use Eq. (A.5),
but with an important difference. We assume that the material’s dielectric constant vary in x and
y direction, but it is constant on the z direction where light propagates. This requires

ϵ0 → ϵ = ϵ(x, y). (A.6)

We should also change the magnetic permeability of free space, with the magnetic permeability
inside a medium. But experiments suggests that permeability stays almost intact, so we will keep
the magnetic permeability of the vacuum. By plugging Eq (A.6) into Eqs. (A.5) we get

∇⃗ ·
(
ϵ(x, y)E⃗

)
= 0 (A.7a)
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∇⃗ · B⃗ = 0 (A.7b)

∇⃗ × E⃗ = −∂B⃗
∂t

(A.7c)

∇⃗ × B⃗ = µ0ϵ(x, y)
∂E⃗
∂t

(A.7d)

We take equation (A.7c), and calculating its curl, we get

∇⃗ × E⃗ = −∂B⃗
∂t

⇒ ∇⃗×
(
∇⃗ × E⃗

)
= − ∂

∂t

(
∇⃗ × B⃗

)
⇒ ϵijk∂iϵklm∂lEm = −µ0ϵ(x, y)

∂2E⃗
∂t2

⇒

⇒ ϵijkϵklm∂i∂lEm = −µ0ϵ(x, y)
∂2E⃗
∂t2

⇒ (δilδjm − δimδjl) ∂j∂lEm = µ0ϵ(x, y)
∂2E⃗
∂t2

⇒

⇒ ∇⃗
(
∇⃗ · E⃗

)
− ∇⃗2E⃗ = −µ0ϵ(x, y)

∂2E⃗
∂t2

(A.8)

Since we assume that we have no charge in the waveguide, we get

∇⃗
(
ϵ(x, y) · E⃗

)
= ∇⃗ϵ(x, y) · E⃗ + ϵ(x, y)∇⃗E⃗ = 0 ⇒ ∇⃗ · E⃗ = −E⃗ ∇⃗ · ϵ(§, †)

ϵ(x, y)

By using this equation and substituting into Eq. (A.8), we get the final form of wave equation in
matter, which is

∇⃗2E⃗ − µ0ϵ(x, y)
∂2E⃗
∂t2

+ ∇⃗

(
E⃗ ∇⃗ϵ(x, y)

ϵ(x, y

)
= 0 (A.9)

A.3 Paraxial equation inside medium

In this section we will use the wave equation inside a medium, that is Eq. (A.9), in order to
prove paraxial equation which describes the propagation of a beam of light inside a medium. We
will assume that we have a waveguide, that is a medium with constant properties on the z direction
but varying dielectric constant on the x and y direction, so that Eq. (A.9) is satisfied.

Firstly we assume weakly guiding approximation which is expressed by

∇⃗

(
E⃗ · ∇⃗ϵ(x, y)

ϵ(x, y)

)
≈ 0 (A.10)

SAY ONE OR TWO THINGS ABOUT THIS EQUATION. Using Eq. (A.10) on Eq. (A.9), we get

∇⃗2E⃗ − µ0ϵ(x, y)
∂2E⃗
∂t2

. (A.11)

We assume, as we descussed previously on this appendix, propagation on the z axis. This means
that the electric field will have the form,

E⃗ = k̂Φ(x, y, z)ei(kz−ωt) (A.12)

(
∂2

∂x2
+

∂2

∂y2

)
Φ(x, y, z)ei(kz−ωt) +

∂2Φ

∂z2
+ 2ik

∂Φ

∂z
ei(kz−ωt)

−k2Φ(x, y, z)ei(kz−ωt) +
n2(x, y)

c2
ω2Φ(x, y, z)ei(kz−ωt) = 0
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∂2Φ

∂x2
+
∂2Φ

∂y2
+ 2ik

∂Φ

∂z
+ k20

(
(n+(x, y))2 − n2(x, y)

)

i
∂Φ

∂z
+

1

2k

(
∂2Φ

∂x2
+
∂2Φ

∂y2

)
+ k0V (x, y, z)
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Appendix B

Second quantization

Second quantization is called the fact that wave like phenomena, for example electric field in an
interaction with an atom, behave like particles. It is not a “new” quantization, but more like a new
way to think about wave phenomena in quantum mechanics. An example of second quantization
is the description of the momentum of the particles which can be described by a momentum wave
function in an atomic description which is called Fock space. Fock space obeys the same algebra as
the Harmonic oscillator1. A general state in Fock space is written as

|n1, n2, · · · ⟩ =
∏
i=1

(a†pi)
ni√

(ni)!
|{0}⟩. (B.1)

Also using the formalism of second quantization, we can write local operators that create or annihi-
late particles at a certain position r⃗. In order to construct these operator we use a linear combination
of all momentum eigenstates. We work in the case where momentum is discrete, since in a periodic
lattice, the eigenvalues of momentum are always discrete. We claim that these states have the form,

ψ(r⃗) =
1√
V

∑
p⃗

eip⃗r⃗ap⃗, ψ(r⃗)† =
1

V
e−ip⃗r⃗a†p⃗, (B.2)

where the first annihilates a particle which is at position r⃗, and the second creates a particle at
position r⃗. We prove that claim below by acting with state ⟨r⃗′| from the write to infer the probability
amplitude to be at any point in space. Suppose that you act with ψ(r⃗)† on the vacuum. Then you
create a state which we define as |ψ⟩

|ψ⟩ = ψ†(r⃗) |0⟩ = 1√
V

∑
p⃗

e−ip⃗r⃗a†p⃗ |0⟩

We claim that the state above has created a particle at position r⃗. We act with state ⟨r⃗′ to get the
probability amplitude of being at position r⃗′. This probability amplitude is given by

⟨r⃗′|ψ†(r⃗)|0⟩ = 1√
V

⟨r⃗′| |
∑
p⃗

e−ip⃗r⃗′ap⃗† |0⟩ =
1√
V

∑
p⃗

e−ip⃗r⃗′ ⟨r⃗|p⃗⟩ (B.3a)

1For example suppose that we can only have a system with three different momenta: p1, p2, p3. Then, the
state |1, 0, 0⟩ = a†p1 |0⟩ in Fock space describes just one particle with momentum p1, and nothing else. The state
|1, 1, 0⟩ = a†p1a

†
p2 |0⟩ represents a Fock state with two particles, one with momentum p1, and one with momentum

p2, and finally the state |2, 1, 1⟩ = 1/
√
2 (a†p1)

2a†p2a
†
p3 |0⟩ has 4 particles in total, two with momenta p1, one with p2,

and one with p3. We see that in order to describe it we use the harmonic oscillator formalism, where a† creates a
particle with a certain momentum, and a annihilates a particle with a certain momentum, just like a and a† create
and annihilate particles
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And since we know,

⟨r⃗|p⃗⟩ = 1√
V
eip⃗r⃗, (B.3b)

we can substitute Eq. (B.3b) in Eq. (B.3a) and we get

⟨r⃗′|ψ⟩ = 1

V

∑
p⃗

eip⃗(r⃗−r⃗′) ⇒

⇒ ⟨r⃗′|ψ⟩ = δ(r⃗ − r⃗′), (B.3c)

where the last equation comes from the identity,

1

V

∑
p⃗

eip⃗r⃗ = δ(r⃗). (B.3d)

The reason Eq. (B.3d) is satisfied is easy to understood in the continuous case, since then you have
the definition of δ function in the form of the integral of the exponential. In the discrete case, the
reason Eq. (B.3d) applies is because in the case where r⃗ ̸= r⃗′, we have the sum of roots of the unity
which are zero. Remember that in discrete case the position vector r⃗ is also discrete. And in the
case of r⃗ = r⃗′, the exponential is equal to one for any momentum, and since we have infinitely many
momentum states, the expression is infinite in this case, which is the definition of δ function.

The probability amplitude of being at any point in space given by Eq. (B.3c). It is zero at every
point with the exception of r⃗′ = r⃗. Then the probability is one, so we have showed that Eq. (B.2)
creates a particle in position r⃗.

The second thing we need to show is that in that case there is one and only one electron in that
point in space. In order to show that we act with the number operator which as we said has the
same form as the harmonic oscillator number operator.
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Appendix C

Supplementary figures

In this appendix, we will give the figures that do not fit in the thesis, and furthermore, because
they are not crucial for describing the solution of the Hamiltonian for particular problems. The
main reason of this appendix is to make the thesis more elegant, so that we do not have a lot of
figures together.

C.1 Bearded edge Imaginary part of the solution of the energies

(a) γ = 0.1. (b) γ = 0.5. (c) γ = 1.

(d) γ = 1.5. (e) γ = 3. (f) γ = 5.

Figure C.1: Energy momentum bands for different number of unit cells for value a = 1 and t =
t1 = t2 = t3 = 1. The kx axis starts from value −π/

√
3 and ends at π/

√
3.

C.2 Bearded armchair edge Imaginary part of the energy eigen-
states
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(a) γ = 0.1. (b) γ = 0.5. (c) γ = 1.

(d) γ = 1.5. (e) γ = 3. (f) γ = 5.

Figure C.2: Energy momentum bands for different number of unit cells for value a = 1 and t =
t1 = t2 = t3 = 1. The kx axis starts from value −π/

√
3 and ends at π/

√
3.
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