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Abstract

RDF Knowledge Bases now available online scale to millions or even billions of triples

that should be effectively and efficiently processed and queried. This ever-increasing size

and number of RDF data collections dictate the usage of distributed data management

systems in order to efficiently query them. Apache Spark is one of the most widely used

distributed engines for big data processing, with more and more systems adopting it for

efficient query answering. Existing approaches exploit Spark for querying RDF data, and

adopt partitioning techniques for reducing the data that need to be accessed in order to

improve efficiency. However, simplistic data partitioning fails, on the one hand, to min-

imize data access and on the other hand to group data usually queried together. This

translates into limited improvements in terms of efficiency in query answering. Further, it

is common for queries to not terminate due to the complexity of the RDF datasets.

In this thesis, we present novel schema-based partitioning techniques accepting as in-

put an RDF dataset and effectively partitioning it, exploiting schema information in order

to provide efficient query answering.

We first focus on exact query answering. As RDF datasets are weakly structured, schema

information might be incomplete or absent. We present, the first incremental and hybrid

RDF type discovery system for RDF datasets, enabling type discovery in datasets where

type declarations are either partially available or completely missing. Using this identified

schema we explore summarization techniques for effectively partitioning data, conclud-

ing with a partitioning scheme that enables fine-tuning of data distribution, significantly

reducing data access for query answering.

Then we focus on progressive query-answering offering an alternative solution to long-

running queries and presenting the first system for progressive query answering over KGs.

We again rely on a mined hierarchical schema structure that we exploit for effectively par-

titioning data. The corresponding partitioning scheme enables the progressive evaluation

of input queries with minimal latency and allows trading query accuracy for efficiency.

The extensive experimental study on both real-world and synthetic datasets, with var-

ied query workloads, shows the effectiveness and the efficiency of our solutions, on both

exact and progressive query answering along with their internal components (i.e. schema

discovery & summarization), as well as their superiority with respect to baselines.

Keywords: RDF, Summaries, Data Partitioning, Spark, Query Answering
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Περίληψη

Οι γνωσιακές βάσεις RDF που είναι πλέον διαθέσιμες στο δίκτυο κλιμακώνονται σε εκατομμύρια

ή ακόμα και δισεκατομμύρια τριπλέτες που απαιτούν αποτελεσματική και αποδότικη επεξεργασία

και διαχείριση. Αυτό τα συνεχώς αυξανόμενο μέγεθος και πλήθος των συλλογών δεδομένων

RDF υπαγορεύουν τη χρήση κατανεμημένων συστημάτων διαχείρισης δεδομένων για την απο-

τελεσματική επερώτηση τους. Το Apache Spark είναι μια από τις πιο ευρέως χρησιμοποιημένες

κατανεμημένες μηχανές για την επεξεργασία μεγάλου όγκου δεδομένων, με όλο και περισσότερα

συστήματα να το υιοθετούν για αποδοτική απάντηση επερωτήσεων. Οι υπάρχουσες προσεγγίσεις

που εκμεταλλεύονται το Σπαρκ για την επερώτηση δεδομένων RDF, υιοθετούν τεχνικές κατακερ-

ματισμού για τη μείωση του όγκου των δεδομένων τα οποία πρέπει να προσπελαστούν. Ωστόσο,

ο απλοϊκός κατακερματισμός δεδομένων αποτυγχάνει, από τη μια πλευρά, να ελαχιστοποιήσει

τον όγκο των δεδομένων που προσπελαύνοντναι, από την άλλη, να ομαδοποιήσει δεδομένα που

συνήθως ερωτώνται μαζί. Αυτό μεταφράζεται σε περιορισμένες βελτιώσεις στο χρόνο αποτίμη-

σης των επερωτήσεων. Επιπλέον, είναι σύνηθες να μην τερματίζουν τα ερωτήματα λόγω της

πολυπλοκότητας των συνόλων δεδομένων RDF.

Σε αυτή τη διατριβή, παρουσιάζουμε νέες τεχνικές κατακερματισμού, με βάση σχήματα, που

δέχονται ως είσοδο ένα σύνολο δεδομένων RDF και το διαμερίζουν αποτελεσματικά, αξιοποιώντας

πληροφορίες σχήματος προκειμένου να παρέχουν αποδοτική απάντηση επερωτήσεων.

Αρχικά εστιάζουμε στην ακριβή απάντηση επερωτήσεων. Καθώς τα σύνολα δεδομένων

RDF είναι ασθενώς δομημένα, οι πληροφορίες σχήματος μπορεί να είναι ελλιπείς ή να απου-

σιάζουν. Παρουσιάζουμε συνεπώς, το πρώτο αυξητικό και υβριδικό σύστημα ανακάλυψης τύπων

RDF για σύνολα δεδομένων RDF, που επιτρέπει την ανακάλυψη τύπων σε σύνολα δεδομένων

όπου οι δηλώσεις τύπων είτε είναι μερικώς διαθέσιμες είτε λείπουν εντελώς. Χρησιμοποιώντας

αυτό το ανακαλυφθέν σχήμα, εξερευνούμε τεχνικές σύνοψης για τον αποτελεσματικό κατακερ-

ματισμό δεδομένων, καταλήγοντας σε μια διάταξη δεδομένων που μειώνει σημαντικά τον όγκο

των δεδομένων που προσπελαύνονται για την απάντηση επερωτήσεων.

Στη συνέχεια, εστιάζουμε στην προοδευτική απάντηση επερωτήσεων, προσφέροντας μια εναλ-

λακτική λύση σε χρονοβόρα επερωτήματα και παρουσιάζοντας το πρώτο σύστημα προοδευτικής

απάντησης επερωτήσεων σε Γνωσιακές Βάσεις. Και πάλι βασιζόμαστε σε μια εξορυσσόμενη ι-

εραρχική δομή σχήματος την οποία εκμεταλλευόμαστε για τον αποτελεσματικό κατακερματισμό

δεδομένων. Το αντίστοιχο σχήμα κατακερματισμού επιτρέπει την προοδευτική αξιολόγηση των

επερωτήσεων με ελάχιστη καθυστέρηση και επιτρέπει την ανταλλαγή της ακρίβειας των απα-

ντήσεων με την ταχύτητα απάντησης.

Η εκτεταμένη πειραματική μελέτη τόσο σε πραγματικά όσο και σε συνθετικά σύνολα δεδο-

xi



μένων, σε ποικίλες κατηγορίες επερωτήσεων, δείχνει την αποτελεσματικότητα και την αποδοτι-

κότητα των λύσεων μας, τόσο στην ακριβή όσο και στην προοδευτική απάντηση επερωτήσεων,

αναδεικνύοντας επίσης τα τμήματα που αποτελούν μέρος της συνολικής λύσης (δηλ. την ανα-

κάλυψη σχηματικής πληροφορίας και τις τεχνολογίες συνόψεων), καθώς και την υπεροχή τους

σε σχέση με τις προυπάρχουσες προσεγγίσεις.

Λέξεις Κλειδιά: RDF, Συνόψεις, Κατεκερματισμός Δεδομένων, Σπαρκ, Αποτίμηση Επερωτήσεων
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Chapter 1

Introduction

Semantic languages and models are increasingly used in order to describe, represent and

exchange data in multiple domains and forms. In particular, given the prevalence of the

World Wide Web Consortium (W3C)1 in the international technological arena, its standard

model for representing semantic graphs, namely RDF, has been widely adopted. Many

RDF Knowledge Bases (KBs, in short) of millions or even billions of triples are now shared

through the Web, also thanks to the development of the Open Data movement, which

has evolved jointly with the data linking best practices based on RDF. A famous repository

of open RDF graphs is the Linked Open Data cloud, currently referencing more than 62

billion RDF triples, organized in large and complex RDF data graphs [92]. Further, sev-

eral RDF graphs are conceptually linked together, as a node can appear in several graphs.

This enables querying answering across KBs, increasing at the same time the need to un-

derstand the basic properties of each data source before figuring out how they can be

queried together. Moreover, this ever-increasing size and number of RDF data collections

dictate the usage of distributed data management systems in order to efficiently query

them. In this direction, distributed big data processing engines partition datasets and pro-

cess them in parallel in order to increase query-answering efficiency. Apache Spark is one

of the most widely used distributed engines for big data processing, with more and more

systems adopting it for efficient query answering.

Existing approaches exploiting Spark for querying RDF data, adopt simplistic parti-

tioning techniques trying to reduce the data that need to be accessed to improve effi-

ciency. However, simplistic data partitioning fails, on the one hand, to minimize data ac-

cess and on the other hand to group data usually queried together. Further, it is common

for queries to not terminate due to the complexity of the RDF datasets.

In this thesis, we present novel schema-based partitioning techniques accepting as in-

put an RDF dataset and effectively partitioning it, exploiting schema information in order

to provide efficient query answering. Firstly, we focus on exact query answering and then

we focus on time-consuming queries that might not even terminate due to performance

1http://www.w3.org

1
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reasons, enabling progressive query-answering.

1.1 Data partitioning for efficient exact query answering (EQA)

Motivated by the lack of an effective method to partition RDF datasets and efficiently

query RDF data in the distributed environment of Spark, we propose DIAERESIS, a novel

platform, which accepts as input an RDF dataset and effectively partitions it. For parti-

tioning datasets we exploit RDF schema information using ideas from the summarization

field. Specifically, to efficiently partition the RDF data sources, we first focus on the study

of schema-based RDF graph summaries.

1.1.1 Hybrid and incremental type discovery.

A fundamental difficulty in processing RDF data is its lack of a standard structure (or

schema), as RDF graphs can be very heterogeneous and the basic RDF standard does not

give means to constrain the graph structure in any way. The proliferation of Semantic Web

has resulted into many weakly structured and incomplete data sources, where schema in-

formation is completely missing or partially defined. Existing approaches for schema in-

formation discovery, either completely ignore type declarations available in the dataset

(implicit type discovery approaches), or rely only on existing types, in order to comple-

ment them (explicit type enrichment approaches). Implicit type discovery approaches

are based on instance grouping, which requires an exhaustive comparison between the

instances. This process is expensive and not incremental. Explicit type enrichment ap-

proaches on the other hand, are not able to identify new types and they can not process

data sources that have little or no schema information. As such, in Chapter 3 we present

HInT, the first incremental and hybrid type discovery system for RDF datasets, enabling

type discovery in datasets where type declarations are either partially available or com-

pletely missing. To achieve this goal, we incrementally identify the patterns of the various

instances, we index and then group them to identify the types. Our work here has been

published in SSDBM as a full paper [50] and in ISWC as a demo [69]. Further in order to

thoroughly understand the domain we published a survey in VLDB journal [52].

1.1.2 Exploring summaries for increasing query efficiency

Using this identified RDF schema information we explore next summarization techniques

that can be leveraged for effectively partitioning data. More precisely, the purpose of the

summarization is to extract concise and meaningful information from RDF Knowledge

Bases, representing their content as faithfully as possible and can be used instead of the

original data sources. Summarizing semantic knowledge graphs is a multifaceted prob-

lem with many dimensions, and thus many algorithms, methods and approaches have
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been developed to cope with it [24]. Although generating summaries is an active field of

research, most of the works focus on generating one-time, static summaries, ignoring the

fact that different summaries might be required for a different set of queries or inputs by

the users. In addition, although exploration operators over summaries have already been

identified as really useful the available approaches so far are limited, expanding only the

hierarchy and the connections of selected nodes. Motivated by the lack of an effective

method to focus summaries on specific sections of the dataset we design and implement

a new approach enabling the dynamic exploration of summaries through two novel opera-

tions zoom and extend. The related work is presented in Chapter 4 and has been published

at ISWC as a full paper [105] and a demo [106]. Further in order to thoroughly understand

the domain we published a survey in VLDB journal [24].

1.1.3 Data partitioning for EQA

Finally, benefiting from the schema information, and the summaries generated on top, we

propose a partitioning scheme that enables fine-tuning of data distribution, significantly

reducing data access for query answering. Specifically, to achieve this, our approach first

identifies the top-k most important schema nodes, i.e., the most important classes, as

centroids and distributes the other schema nodes to the centroid they mostly depend on.

Then, it allocates the corresponding instance nodes to the schema nodes they are instanti-

ated under. Our algorithm enables fine-tuning of data distribution, significantly reducing

data access for query answering. The results are reported in Chapter 5. Our work here has

been accepted by Semantic Web Journal [101] and a demo has already been submitted at

ICDE [107]. Further in order to thoroughly understand the related work we conducted a

mini survey in the area [6].

1.2 Hierarchical partitioning for progressive query answering (PQA)

With the great experience from heuristic, schema-based partitioning for EQA, we present

next in Chapter 6 a new partitioning technique for Spark, which has been designed specif-

ically for hierarchically partitioning the data visited for query answering enabling trading

query answering efficiency and the percentage of the returned results. This can have many

advantages in big knowledge graphs as users still have to wait for a considerable amount

of time before they see a first answer to their queries due to the large chunks of data that

should be visited at once. Our approach again leverages mined schema information to ef-

ficiently partition data and then generates the appropriate indexes. At querying time the

partitions and indexes are leveraged to identify the data fragments required to return the

first part of the answer and to progressively return the remaining parts, thus enabling pro-

gressive query answering (PQA). This work has been submitted at VLDB [17] and a demo
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has been published at ISWC2023 [16].

The remaining of this thesis is structured as follows: In Chapter 2, we elaborate on

preliminaries, and in Chapter 3, we present our approach for hybrid and incremental type

discovery for large RDF data sources. In Chapter 4, we present our methods for exploring

RDF Knowldge Bases using summaries, and in Chapter 5, we detail a new partitioning

technique for Spark, which has been designed specifically for improving query answering

efficiency by reducing data visited at query answering. In Chapter 6, we introduce our

approach on progressive query answering, and finally, Chapter 7 concludes the thesis.



Chapter 2

Preliminaries

2.1 RDF & RDF Schema

In this work, we focus on datasets expressed in RDF, as RDF is among the widely-used

standards for publishing and representing data on the Web. Those datasets are based on

triples of the form of (s p o), which record that subject s is related to object o via property

p. Formally, representation of RDF data is based on three disjoint and infinite sets of re-

sources, namely: URIs (U), literals (L) and blank nodes (B). A key concept for RDF is that

of URIs or Unique Resource Identifiers; these can be used in either of the s, p and o po-

sitions to uniquely refer to some entity, relationship, or concept. Literals (constants) are

also allowed in the o position. Blank nodes in RDF allow representing a form of incom-

plete information for unknown constants or URIs. As such, a triple is a tuple (s p o) from

(U∪ B) ×U× (U∪ L∪ B).
In order to impose typing on resources, we consider three disjoint sets of resources:

classes (C ⊆ U ∪ B), properties (P ⊆ U), and individuals (I ⊆ U ∪ B). The set C includes

all classes and the set P includes all properties. The set I includes all individuals. Addi-

tionally, RDF datasets have attached semantics through RDFS. RDFS is the accompanying

W3C proposal of a schema language for RDF. It is used to describe classes and relation-

ships between classes (such as inheritance). Further, it allows specifying properties, and

relationships that may hold between pairs of properties, or between a class and a property.

RDFS statements are also represented by triples.

An RDF dataset can be represented as a labeled directed graph. Given a set A of labels,

we denote by G = (V,E) an A-edge labeled directed graph whose vertices are V, and whose

edges are E ⊆ V × A × V. In the graph nodes represent subjects or objects and labeled

directed edges represent properties.

In this work, we separate between the schema and the instances of an RDF dataset,

represented in separate graphs (GS and GI, respectively). The schema graph contains all

triples of the RDF Schema, which consists of all classes and the properties the classes are

associated with (via the properties domain/range specification); multiple domains/ranges

per property are allowed, by having the property URI be a label on the edge, via a labeling

5
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function λ, rather than the edge itself. The instance graph contains all individuals, and

the instantiations of schema properties; the labeling function λ applies here as well for the

same reasons. In addition, to state that a resource r is of a type τ, a triple of the form ”r
rdf:type τ” is used. Since this triple is about the resource r (not about the class τ), it is

viewed as a data triple.

Formally:

Definition 1 (RDF dataset) An RDF dataset is a tuple V =< GS,GI, λ, τc >, where:

• The schema graph GS is a labeled directed graph GS = (VS,ES) such that VS,ES are the

nodes and edges of GS, respectively, and VS ⊆ C ∪ L.

• The instance graph GI is a labeled directed graph GI = (VI,EI) such that VI,EI are the

nodes and edges of GI, respectively, and VI ⊆ I ∪ L.

• A labeling function λ : ES ∪ EI 7→ 2P determines the property URI that each edge

corresponds to (properties with multiple domains/ranges may appear in more than

one edge).

• A function τc : I 7→ 2C associating each individual with the classes that it is instanti-

ated under.

Next, we denote as p(ν1, ν2), an edge e ∈ ES in GS (where ν1, ν2 ∈ VS), or in GI (where

ν1, ν2 ∈ VI), from node ν1 to node ν2 such that λ(e) = p.

Definition 2 (Schema and Instance Node) an RDF dataset V =< GS,GI, λ, τc >, GS =
(VS,ES), GI = (VI,EI) we call schema node a node ν ∈ VS, and instance node a node u ∈ I∩VI.

Moreover, we use |ν|, where ν ∈ C ∩ VS, to denote the number of instance nodes that

belong to the class node ν in the dataset. Next, we define a path in VS.

Definition 3 (Path) A path from ν1 ∈ VS to ν2 ∈ VS, i.e. path(ν1, ν2), is a finite sequence of

edges, which connect a sequence of nodes, starting from the node ν1 and ending in the node

ν2.

Moreover, we denote with |path(ν1, ν2)| the length of the path, i.e., the number of edges

in it.

2.2 Querying

For querying RDF datasets, W3C has proposed SPARQL [2]. Essentially, SPARQL is a graph-

matching language. A SPARQL query Q defines a graph pattern P that is matched against

an RDF graph G. This is done by replacing the variables in P with elements of G such

that the resulting graph is contained in G. The most basic notion in SPARQL is a triple

pattern, i.e., a triple where every part is either an RDF term or a variable. One or more
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triple patterns form a basic graph pattern (BGP). Two example BGP queries are presented

in the sequel, the first one asking for the persons with their advisors and persons that those

advisors teach, whereas the second one asks for the persons with their advisors and also

the courses that those persons take.

Q1: SELECT * WHERE{?x advisor ?w. ?w teacherOf ?y.}

Q2: SELECT * WHERE{?x advisor ?w. ?x takesCourse ?y.}

The result of a BGP is a bag of solution mappings where a solution mapping is a partial

function μ from variable names to RDF terms. On top of these basic patterns, SPARQL

also provides more relational-style operators like optional and filter to further process and

combine the resulting mappings, negation, property paths, assignments, aggregates, etc.

Nevertheless, it is commonly acknowledged that the most important aspect for efficienq

SPARQL query answering is the efficient evaluation of the BGPs [91], on which we focus in

this thesis, leaving the remaining fragments for future work. As such our systems support

conjunctive SPARQL queries with no path expression, leaving the remaining fragments for

future work.

Common types of BGP queries are star queries and chain queries. Star queries are the

ones characterized by triple patterns sharing the same variable on the subject position. Q2

of the previous example is a star query. On the other hand, chain queries are formulated

using triple patterns where the object variable in one triple pattern appears as a subject in

the other, and so on. For example, the join variable can be on the object position in one

triple pattern, and on the subject position in the other, as shown in Q1. Snowflake queries

are combinations of several star shapes connected by typically short paths, whereas as

complex, we characterize queries that combine the aforementioned query types.

2.3 Apache Spark

Apache Spark [118] is an in-memory distributed computing platform designed for large-

scale data processing. Spark proposes two higher-level data access models, GraphX and

Spark SQL, for processing structured and semi-structured data. Spark SQL [9] is Spark’s

interface that enables querying data using SQL.

It also provides a naive query optimizer for improving query execution. The naive opti-

mizer pushes down in the execution tree the filtering conditions and additionally performs

join reordering based on the statistics of the joined tables. However, as we will explain in

the sequel in many cases the optimizer was failing to return an optimal execution plan

and we implemented our own procedure.

Applying Spark SQL on RDF requires a suitable storage format for triples and a transla-

tion procedure from SPARQL to SQL. The storage format for RDF triples is straightforward

and usually refers to a three-column table (s p o) stored in the HDFS, using HIVE or parquet
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format. Spark GraphX [117] is a library enabling graph processing by using the property

graph as its graph data model, i.e. a directed multigraph with user-defined objects at-

tached to each vertex and edge. A directed multigraph is a directed graph with potentially

multiple parallel edges sharing the same source and destination vertex.

Spark by default implements no indexing at all. It loads the entire data file in main

memory splitting then the work into multiple map-reduce tasks.

Applying Spark SQL on RDF requires a) a suitable storage format for the triples and b)

a translation procedure from SPARQL to SQL.

The storage format for RDF triples is straightforward and usually refers to a three-

column table (s p o) stored in the HDFS, using HIVE or parquet format which is adopted

from most of the systems in the domain. An optimization that some systems adopt here

(including ours) is to group triples by p and store only the columns s and o in separate files

named after p, saving valuable space.

The translation procedure from SPARQL to SQL depends on data placement (and in-

dexing) available and is usually custom-based by each system. The main idea however

here is to map each triple pattern in a SPARQL query to one or more files, execute the cor-

responding SQL query for retrieving the results for the specific triple pattern, and then join

the results from distinct triple patterns. Filtering conditions can be executed on the result

or pushed at the selection of the data from the various files to reduce intermediate results.



Chapter 3

Hybrid and Incremental Type Discov-
ery for Large RDF Data Sources

Today we are witnessing the proliferation of weakly structured, irregular, incomplete and

massive data sources; this is particularly the case of semantic web data, expressed in lan-

guages, such as RDF1. In order to exploit these data sources, it is often useful to character-

ize their content and describe it at a high level, in order to allow their relevant use. A char-

acteristic of these data is that they do not follow a predefined schema. Although semantic

web data might contain schema information, in many cases this is completely missing or

partially defined. On the other hand, the schema information of these sources is crucial

for a number of tasks, such as federated query answering [76], data integration [58], sum-

marization [105] and data partitioning [5]. As such, several works have focused in the past

on discovering the missing type declarations by employing clustering algorithms or by ex-

ploiting the partial availability of those types, in order to complement them. However,

type discovery in a data source where type information is partially or completely missing

currently meets several limitations that we present in the sequel:

Limitation 1: Partially working solutions. Approaches so far, either completely ignore

pre-existing type declarations, or can only work if typing information is partially available,

complementing the type declarations. As a result, the former approaches ignore really

useful type information that might be available, whereas the latter ones cannot work when

such information is completely missing. Novel, hybrid, systems are required being able

to fully work in absence of typing statements, but capable of exploiting this very useful

information when provided;

Limitation 2: Efficiency issues. Another limitation of the existing approaches, is that

they are not suitable for massive data processing. They are based on groupings, which

require in most of the cases an exhaustive comparison between the instances of the indi-

vidual groups, or require large in memory structures to handle the different types, and as

such are inefficient when data scale;

1Resource Description Framework: http://www.w3.org/RDF/

9
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Limitation 3: Missed incrementality opportunities. Finally, existing approaches do

not natively support incrementality. Each time new information is added, the types are

recomputed from scratch, and previously computed information is completely ignored.

Ideally, a type discovery approach should be able to incrementally detect new types or

assign dynamically types to new instances that appear.

Our solution: An incremental and hybrid type discovery method, working on large
data sources. In this chapter we present HInT, an approach that requires no comparison

between the instances of the available source, treating each instance independently. It

first identifies the pattern of a given instance, then assigns the instance to the groups with

similar patterns, and finally identifies the ones sharing the same type. We reduce instance

processing to pattern processing, where each instance is treated independently. Indeed,

discovering the types on the instances of a data set can be perceived as discovering the

types on the patterns. However, processing patterns is much less expensive than process-

ing instances. As such, the approach is incremental and suitable for large data sets. In

addition, our approach enables type discovery in datasets where type declarations are ei-

ther partially available or completely missing. It exploits meaningfully type information, if

available, during the discovery process. More specifically, our contributions in this chap-

ter are the followings:

• We present HInT, a novel framework, able to effectively and efficiently discover the

types of a given dataset;

• We propose the first hybrid approach, enabling type discovery for dataset with miss-

ing or incomplete typing information;

• We ensure the efficiency of the proposed approach by: (i) creating a pattern index for

the instances and (ii) introducing a novel grouping paradigm;

• We propose the first native, incremental approach by exploiting among others, for

the first time, the Locality Sensitive hashing (LSH) for an incremental type discovery;

• We experimentally show that our approach dominates existing approaches in terms

of: (i) efficiency, being orders of magnitude faster in most of the cases and (ii) quality,

providing a better identification of the available types.

The remaining of this chapter is structured as follows. In Section 3.1 we present related

work and in Section 3.2 we present the problem statement. Then in Section 3.3 we present

our method for type discovery. Section 3.4 presents our experimental evaluation. Finally

Section 3.5 concludes this chapter and presents directions for future work.

3.1 Related Work

Existing approaches for type discovery proceed in two completely different ways: (i) the

implicit type discovery approaches [27, 53, 54, 64, 74, 108] rely on the analysis of the struc-

ture of the instances and completely ignore schema declarations even when they are par-
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tially provided in the data source; while (ii) the explicit type enrichment approaches [36,77,

79, 80] rely on the schema declarations to complement or enrich them. HInT exploits the

structure of the instances, but when typing information is available for some instances, it

is also exploited to guide and improve the type discovery process. At the best of our knowl-

edge, HInT, is the first hybrid approach enabling type discovery in data sources where

schema information is either partially available or completely missing.

The first family of type discovery approaches are the implicit type discovery approaches

[27, 53, 54, 64, 74, 108]. These approaches are based on the grouping of structurally simi-

lar instances. A fundamental assumption behind this approach is that the more proper-

ties the instances share, the most likely they have the same types. To discover the types,

these approaches try to cluster the dataset into similar sets, and as such, identifying the

different types as that clusters. To this end, these approaches use different clustering al-

gorithms (k-means for [74], k-means++ for [108], hierarchical clustering for [27, 64] and

DBscan for [53,54]). The algorithms based on k-means(++) require specifying the number

k of desired types. However, the number of types in a data source is not known a priori.

The algorithms based on DBscan and Hierarchical clustering require an exhaustive com-

parison between the instances. This process is expensive and it can not handle a large

data sources.

In the past, although incrementality was recognized to be important, the only work

that presented results to that direction was SDA++ (Semantic Data Aggregator) [54]. In-

deed, SDA++ proposes a supervised learning step for a new incoming instances so that it

can be classified. Adding a classification step for new instances requires having a training

set (instances already typed) to be able to classify the new instance, while in our approach

the incrementality is native and it does not require any training set. Another difference is

that if the new instance is processed at the same time with the other instances, the result

of the typing may be different than if this instance is processed with the supervised learn-

ing step. Indeed, this is very dependent on the content of the training set. To achieve a

native incrementality, we have adapted Locality Sensitive Hashing (LSH), which is applied

for the first time for type discovery. The objective of the LSH family of functions is to hash

data points into buckets, so that points which are close to each other are hashed to the

same bucket with high probability while the ones which are far from each other are very

likely hashed in different buckets. Furthermore, no comparison between the instances is

performed since each instance is treated independently, whereas the number of types is

not required a priori. At the best of our knowledge, HInT, is the first native incremental

approach for type discovery.

To speed up the hierarchical clustering algorithm, StaTIX (Statistical Type Inference)

[64] uses statistics and reduces the similarity matrix at each clustering step. Each instance

in the input data set is represented as a vector of its weighted incoming and outgoing prop-

erties. The weight of a property, estimated by its frequency in the dataset, expresses the
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importance of the property. The experimental comparison (see section 3.4), shows that

as the data size and complexity grow, HInT dominates StaTIX both in terms of execution

time and quality of the results. Despite the optimization of the hierarchical clustering al-

gorithm, StaTIX can not process large dataset such as LUBM (even the case with the 2M

instances). Indeed, the similarity matrix speeds up the processing however, it stores pair-

wise similarities between the instances of the input RDF dataset. The size of this similarity

matrix in the first iteration is N2 where N is the number of instances in the dataset. The

matrix is generated and loaded into memory before being reduced, which can be very ex-

pensive for a large dataset. In addition, retaining the clusters in main memory is rather

expensive and eventually becomes a bottleneck (when run in a commodity machine can-

not scale beyond 120K triples). At the best of our knowledge, HInT, is currently the most

suitable system for type discovery for a large data source.

The second family of type discovery approaches concern the explicit type enrichment

approaches [36, 77, 79, 80]. These approaches use the statements on the schema to com-

plement or enrich them. They rely on different techniques: unsupervised learning using

association rules discovery algorithm [79], supervised learning using K-NN [77], or statis-

tics by analyzing the distribution of properties [80] / categories [36] on types. The ap-

proaches [36, 77] are specific to DBpedia. The first one tries to infer the missing types for

DBpedia entities by exploiting wikilinks, and the second exploits the category information.

The approach presented in [79] proposes a lazy learning algorithm for mining association

rules. However, the discovery of association rules in a large data source is very expensive.

SDType (Statistical Distribution of Types) [80] proposes a type inference heuristic. It en-

riches an entity by types information using RDFS inference rules, and computes the confi-

dence of a type for an entity. Unlike HInT, these approaches can not process data sources

that have little or no schema information. In addition, SDType does not introduce new

types, but considers instead the ones already assigned to entities in the dataset. The ex-

perimental comparison (see section 3.4), proves that HInT, dominates SDType in all cases

both quality-wise and performance-wise.

In addition to the discovery of types, our approach also provides a set of patterns as-

sociated with each type. This allows to know the different structures that an instance of

this type could have. Some works in the literature also target the problem of pattern dis-

covery: (i) a set of approaches discovering exact structural patterns [14, 21, 55, 56, 60, 87]

and (ii) a set of approaches discovering approximate structural patterns [11, 25, 48, 113,

121] from a dataset. An exact pattern represents the exact structure of a set of instances;

while an approximate pattern represents the approximate structure common to a set of

instances which may be described by optional properties. In an approximate pattern, the

co-occurrence of properties is not specified. Our approach discovers the exact patterns as-

sociated with each type. Approaches that discover exact patterns [21,55,56,60,87] require

typing information except [14, 21]. However, unlike HInT, the approaches [14, 21] discover
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the patterns in a data set but do not associate them with types.

Note that, in this related work section, we have focused on type and pattern discov-

ery work. For an extensive review on all semantic schema discovery techniques/methods

please refer to our survey [52]. However, our approach could be seen as a contribution

for a larger problem: identifying a compact representation of a data source. This issue,

has been the target of many works on schema discovery or summarization (see [24] for an

overview of the area).

3.2 Problem Statement

An RDF dataset D is a set of triples in the form of (s,p,o) stating that a subject s has the

property p and the value of that property is the object o. We consider only well-formed

triples, according to the RDF specification [112], belonging to (U ∪ B) × U × (U ∪ B ∪
L) where U is a set of Uniform Resource Identifiers (URIs), L a set of typed or untyped

literals (constants), and B a set of blank nodes (unknown URIs or literals); U,B,L are

pairwise disjoint. Blank nodes are essential features of RDF allowing to support unknown

URI/literal tokens.

An RDF graph of an RDF dataset is represented by a labeled directed graph G (schema

and instance graph together), where each node is a resource, a blank node or a literal and

where each edge from a node e to another node e′ labeled with the property p represents

the triple (e, p, e′) of the dataset D.

An instance/entity e in such RDF graph, is represented by a node corresponding to

either a resource or a blank node, that is, any node apart from the ones corresponding to

literals.

Figure 3.1: An example of an RDF dataset.

Figure 3.1 shows an example of an RDF dataset, related to conferences. We can see

that some entities are described by the property rdf :type, defining the types to which they

belong, as it is the case for e1, defined as a Student. For other entities, such as e2, this
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information is missing. Two entities having the same type are not necessarily described by

the same properties, as we can see for e4 and e5 in our example, which are both associated

to the Conf erence type, but their property sets differ.

Our problem can be stated as follows: given a large RDF dataset with incomplete typing

information and with a frequent arrival of new instances, how to discover the missing type

declarations for the available instances? To tackle this problem, we have to overcome the

following challenges:

• Typing information may be partially provided or completely missing. When the

type declarations are completely missing, the types could be discovered by analyzing

the structure of the instances. Indeed, the more instances have a similar structure,

the most likely they have the same types. In other hand, when type declaration are

partially provided, the missing types could be inferred using a supervised learning.

These two strategies are completely disjoint. Our first challenge is how to combine

these two strategies to enable a hybrid type discovery?

• Processing a large amount of data. Type discovery from the structure of instances

requires a multiple comparison of these instances to enable similar instances to be

grouped together through clustering for example. However, taking into perspective

the rapid increase on the size of the datasets, this naive solution may become impos-

sible: In order to find the similar pairs in a dataset of N instances, N*(N-1)/2 com-

parisons are required. For example, if N = 107, the number of comparisons reaches

the value of ≈ 1014. If each comparison requires 1 μs, the task would require approx-

imately 3 years to come to an end. Our second challenge is how to deal with a large

data source effectively?

• Incoming new instances. Assume that, each time, new instances may be added to

the dataset, such as with streaming data. To find the types of these incoming in-

stances a naive approach could be to re-process all the dataset. However, it is very

expensive. Another strategy could be to use a supervised learning step. However,

adding this step for new instances requires having a training set (instances already

typed) to be able to classify the new instances and the result of the typing may be dif-

ferent than if this instance is processed with the whole dataset. Indeed, this is very

dependent on the content of the training set. Our third challenge is how to achieve a

”native” incrementality for typing a new instance without having to compare it with

the current content of the dataset?

An important additional difficulty is to succeed in finding a single approach that could

tackle these three challenges at the same time.

Note that considering other minor variations in the data source, such as deleting or

modifying an instance, is not discussed in this chapter. Indeed, we target an approach

where each instance is processed independent of others, therefore, if an instance is deleted,

this is should not affect the discovered types of the other instances. When an instance is
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updated, just consider this instance as a new one and find its possible new type. We should

also note, that the focus on this chapter is to provide a solution, capable of processing large

amounts of data, even without the use of big data infrastructures (map-reduce, Spark etc.)

The proposed approach can easily be adapted to such technologies, which we leave for fu-

ture work. Nevertheless, currently, there is no approach in the area of RDF type discovery,

that exploits such big data infrastructures.

3.3 HInT: Enabling Hybrid and Incremental Type Discovery

To enable hybrid and incremental type discovery, for a large data source, we propose a

novel system called HInT. Figure 3.2, presents the high-level workflow we follow in our

approach.

Figure 3.2: HInT Workflow.

To optimize our approach, we first discover a pattern of an instance, as discovering the

types on patterns can be the proxy for discovering the types on the instances as well. How-

ever, it is less expensive since there are a lot less patterns than instances. Our approach

relies on LSH, a family of techniques allowing to retrieve similar entities without an pair-

wise comparison of these entities. The general idea is to hash them using different hash

functions designed to ensure that two similar entities are more likely to be assigned to the

same bucket than two dissimilar entities. After that, we identify, through grouping, the

available types considering the results of the locality sensitive hashing and the preexisting

typing declarations (if any).

This process is repeated for each instance independently. As a result, it is incremental

and extremely fast. In the sequel, we explain in detail each one of the aforementioned

parts: (A) Pattern discovery; (B) Locality sensitive hashing and (C) Type assignment.

3.3.1 Pattern Discovery

To begin with this task, we describe each instance using an instance vector. An instance

vector contains the properties of the specific instance, as properties provide a descriptive

representation of it.
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Definition 4 (Instance Vector (InV)) Given an instance e in a dataset D, the instance vec-

tor of e is a property set InV(e) composed of properties pi, each one annotated by an arrow

indicating its direction, and such that:

• If ∃(e, pi, e′) ∈ D then −→pi ∈ InV(e);
• If ∃(e′, pi, e) ∈ D then←−pi ∈ InV(e).

Note that in the instance vector, we do not store potentially available typing informa-

tion. We will see in the sequel how existing typing information is considered in our ap-

proach.

Example 3.3.1 Based on Definition 4, the instance vectors for the example shown in Fig. 3.1

are the following:

• InV(e1) = {−−−−→name,
−−−−−−→
address,

←−−−−−−−−−−−−−
hasParticipant}

• InV(e2) = {−−−−→name,
−−−−−−−→
specialty,

−−−−−−→
address,

−−−−−−−−−→
submitsTo,

←−−−−−−−−−−−−−
hasParticipant}

• InV(e3) = {−−−−→name,
−−−−−−−−−−−−−→
hasParticipant,

←−−−−−−−−−
submitsTo}

• InV(e4) = {−−−−→name,
−−−−−−−−−−−−−→
hasParticipant,

←−−−−−−−−−
submitsTo}

• InV(e5) = {−−−−→name,
−−−−−−→
address, −−−→year}

In our approach, we first try to reduce instance processing, to pattern processing. As

such, based on the instance vectors of the various instances, we gradually identify the

patterns existing in a dataset. Indeed, instances of the same type have a similar structure,

and many instances have exactly the same structure (pattern). Therefore, discovering the

types on the instances of a data set has the same result as discovering the types on the

patterns. However, processing patterns is much less expensive than processing instances.

We define a pattern as follows.

Definition 5 (Pattern) A pattern V for a dataset D is represented as a tuple V = {EV,PV,TV}

where:

• EV is the set of instances that are represented by this pattern V;

• PV is the set of properties that appear in the instance vector of the instances represented

by V, i.e. ∀e ∈ EV: InV(e) = PV;

• TV is the set of typing information already available for the instances represented by

V, i.e. If ∃e ∈ EV and ∃(e,rdf:type, t) ∈ D then t ∈ TV. If typing information is not

available for any of the instances in EV then: TV = ∅.

A pattern V represents a set of instances EV using exactly the same set of properties PV.

As a result, patterns improve the efficiency of the approach by: (i) avoiding unnecessary

processing on the subsequent index structures for instances having the same structure,

e.g., insertions, queries, etc., and (ii) reducing the memory footprint by not storing dupli-

cate information, e.g., many times the same instance vector for similar instances.
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The discovered patterns are stored in an index structure, i.e., the pattern index, as shown

in Fig. 3.2. The keys of the index correspond to instance vectors and the value for each

key is a list of patterns (remember that we have a pattern per assigned set of types). The

pattern index allows for efficient lookup of patterns based on instance vectors, whereas it

can effectively be used for identifying the existence of already stored patterns for a specific

instance vector.

Example 3.3.2 Based on the representations constructed on the first part of the running

example and taking into account the available type declarations presented in Fig. 3.1, we

construct the corresponding patterns and assign the instances to them. The left part of Fig.

3.3 presents the generated patterns, while the produced Pattern Index is presented in the

right part of the figure.

Figure 3.3: (a) Patterns & (b) Pattern Index produced from Fig. 3.1

Instances e3 and e4 are classified to the same pattern since they have the exact same rep-

resentation. Patterns v1, v3 and v4 have assigned types due to the available type declarations,

while pattern v2 has not. The final pattern index is composed of four entries, one for each

instance vector InV(e1), InV(e2), InV(e3), InV(e5).

3.3.2 Locality-Sensitive Hashing

To achieve a native incremental type discovery, we propose to adapt a Locality-Sensitive

Hashing (LSH) method [57]. The major advantage of LSH is the fact that each input is

treated independently. As a result, we can avoid the comparison between the patterns

constructed.

The aim of traditional (cryptographic) hashing is to minimize collisions by generating

significantly altered hash values even for a minor perturbation of the input. The goal of

Locality Sensitive hashing on the other hand, is the exact opposite, aiming to maximize

collisions for points that are similar, by ignoring slight distortions, so that the main content

can be identified easily. The hash collisions make it possible for similar items to have a

high probability of having the same hash value.

In our scenario, we attempt to group instances together based on their similarity, so

that the generated groups reflect the types in the dataset. An LSH family is defined as

follows.
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Definition 6 (Locality-Sensitive Hashing Function) An hash function family H = {h: Rn

→ U } is called (d1, d2, prob1, prob2)-sensitive, or Locality-Sensitive, for similarity measure

Dist, probabilities prob1 > prob2 > 0 and distances d1, d2, if for any e1, e2 ∈Rn:

• If Dist(e1, e2) ≤ d1 then Ph∈H [h(e1) = h(e2)] ≥ prob1;

• If Dist(e1, e2) ≥ d2 then Ph∈H [h(e1) = h(e2)] ≤ prob2.

The definition states that for two points e1, e2 having distance ≤ d1 between them, the

probability of sharing the same signature is ≥ prob1. Similarly, the probability that two

points e1, e2 have the same signatures is ≤ prob2 if the distance between them is ≥ d2.

In our approach, we propose to build an LSH index according to the sensitive hashing

value provided for a pattern. To construct an LSH Index, we specify 3 parameters: (i) the

number k of hash functions; (ii) the number b of bands and (iii) the size r of each band. It

should be noted that k = b ∗ r. To guaranty a native incremental approach, we propose to

construct an LSH Index, given an LSH FamilyH , as follows:

1. Choose r hash functions (h1, h2, ..., hr) at random fromH , b times in sets g1, g2, .., gb;

2. Construct b separate hash tables, with hash functions g1, g2, .., gb: For every point v,

place v in buckets2 with label gi(v) = (h1(v), h2(v), ..., hr(v)).

In the first step for building the LSH index, we concatenate r hash functions. A small

value of r increases the number of false positives (dissimilar instances collide). A large

value of r, has the side-effect of lowering the chances of similar instances to collide. To

ensure optimal collisions, in the second step we construct multiple hash tables. This tech-

nique is called banding.

As described in Section 3.3.1, when a new instance arrives for which a pattern does

not exist, a new pattern is generated. Then, the chosen LSH Family H is responsible for

generating the signature based on the generated pattern, which is then used to insert the

pattern to the LSH Index. In our case, for the LSH family, we selected MinHash, which is

based on Jaccard similarity3. In the LSH structure we have b hashtables. When a pattern is

added to the index, its signature is split in b bands of size r. The pattern is hashed to each

one of the hashtables, using the corresponding band as a key. Each key corresponds to a

collection of patterns, called bucket, that share the same key. Obviously, patterns having x
bands in common will share a bucket in each of the corresponding x hashtables. In order

to retrieve similar patterns, we propose to query the LSH index using a pattern’s signature.

2If each hi outputs 1 digit, every bucket will have an r-digit label.
3We also experimented with Random Projection, another popular LSH Family which corresponds to Cosine

similarity. However it produces similar results with MinHash but in addition requires that the input vectors
are of the same size which is a big drawback in our case as we don’t know a priori the number of properties in
the dataset. For an extensive study of LSH Families we redirect the reader on Chapter 3 of [85].
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When such a query is issued, the index will return a group of patterns that are hashed in

the same bucket as v in at least one of the hashtables, as candidate similar patterns. The

returned patterns are candidates, since LSH is an approximate algorithm that classifies a

pattern according to its signature, instead of the exact representation as already described.

Fig.3.2 shows that the second step for an instance e is to use an LSH FamilyH to gen-

erate the instance’s signature sig(InV(e)) based on its instance vector. Each new pattern

v is then inserted to an LSH index. The index contains multiple hash tables where the

patterns are hashed based on their signatures. Then, we query the LSH index using the

pattern’s signature in order to retrieve similar patterns.

Figure 3.4: Banding and Querying on LSH Index.

Example 3.3.3 The third part of our running example is presented in Fig. 3.4. This part

contains the banding and querying phases for the patterns described in the second step of

our running example. Note that although the signatures produced by using MinHash are in

the form of bytes, the signatures presented in Fig. 3.4 are in the form of bits to help the reader

to better understand the process of banding. For this example, the the values 6, 2, 3 have

been assigned to the parameters k, b, r respectively. Initially, each item is hashed using the

k hash functions which result in signatures of length 6 (assuming that each hash function

outputs 1 digit). During the banding phase, each signature is split into b (= 2) bands of

size r (= 3). Each band of each signature is hashed to the corresponding hashtable. For

example, the first band of each signature will be hashed to hashtable 1. Similarly, for the

second band of each signature. Patterns having the same value in a particular band will

be hashed to the same bucket in the corresponding hashtable. This is the case of patterns

v1 and v2 which share the same value in their first band. As a result, they will be hashed to

the same bucket in the first hashtable. Finally, a query for the similar patterns of a given

pattern v, using v’s signature, will retrieve the patterns that share a bucket with v in at least

one of the hashtables. Querying with pattern v1 for example, the candidate similar patterns
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returned are itself, v2 (which shares a bucket with v in hashtable 1) and v4 (which shares a

bucket with v in hashtable 2). Similarly, pattern v3 does not share a bucket with any pattern

and as a result, a query with its signature will return only itself.

3.3.3 Type Assignment

In order to achieve a hybrid type discovery exploiting the structure of the instances and

the provided type declarations, we propose to build groups of similar patterns according

to the values of their signatures from the sensitive-hashing functions and according to

the provided typing declarations. Each pattern can be assigned to one or more groups. A

group represents a collection of patterns. We define a group as follows.

Definition 7 (Group) A group G is defined as a tuple G = {TG,PG}where:

• TG is the type of the group, which can be either an existing type from the dataset or a

new fresh type generated by our system;

• VG = {v1, ..., vn} a set of patterns where Tvi = TG, 1 ≤ i ≤ n.

Figure 3.5: (a) Classification through grouping & (b) the corresponding group index.

As shown in Fig.3.2, in this step, we propose also to construct a group index to store the

correlation between patterns and groups. A more representative example for group index

is shown in Fig. 3.5, where keys correspond to patterns and the value of each key is a list

of groups.

Example 3.3.4 Continuing our running example, consider that instances e1, e2, e3 and e4
were previously processed and that the instance e5 has just arrived. After generating its in-

stance vector and the pattern v4, we insert it to LSH Index and issue the relevant query. Now,

we should classify it to one or more groups, considering also its available type declaration

(refer to Fig. 3.1). Pattern v4 is assigned with the types of e5, i.e., Conf erence. Next, we observe

that group g2 has already been assigned the type Conf erence and as a result, we classify v4 to

that group. Pattern v1 however, that was retrieved as similar to v4 will not be assigned to the

same group as it already has the type Student. Fig. 3.5 presents (a) the generated groups for

this scenario and (b) the group index.
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In the sequel we will explain in detail how those groups are formulated presenting the

hybrid and incremental type discovery algorithm (Algorithm 1). Note that for reasons of

brevity, we denote the potentially partial typing function for an instances e as τ : e ↪→ V
such that (e, rdf:type, τ(e)) ∈ D.

Hybrid and incremental type discovery algorithm. Our overall algorithm for hybrid

and incremental type discovery is presented in Algorithm 1. Each instance e is processed

independently as follows: at first, we create the instance vector InV(e) of the instance and

use the pattern index to retrieve the list S, i.e., the patterns that were previously discovered

and are also represented by InV(e) (line 4). In case such patterns exist (lines 5-31), we

distinguish between two cases depending on whether there is available type information

for e. In the first one, where type declarations are available (lines 6-22), we add e to the

pattern in S, which has the same types as e. If no such pattern exists, we classify e to the

pattern v in S, whose type set is empty and update it with the types of e. Furthermore, we

update the groups g′ of v using Alg. 2.

In case such a pattern does not exist either, we create a new pattern containing e, InV(e)
and the types of e, and store it in the pattern index. We generate its signature using the cho-

sen LSH FamilyH , insert it to the LSH Index and query to retrieve the bucket containing

its similar patterns. Then we update the groups required using Alg. 2. In the second case,

i.e., no type declarations are available (lines 22-31), if one pattern is contained in S, we

classify e to that pattern. Otherwise, for each distinct type t contained in the type sets of

the patterns in S, we retrieve the group g t that has t assigned, generate the union of the

properties of the patterns contained in g t and compute the Jaccard similarity with InV(e).
Finally, we assign e to the pattern in S that has the smallest type set that includes the type

with maximum similarity with e.
In case the instance vector InV(e) does not exist in the pattern index (lines 32-50), we

construct a new pattern v containing e and InV(e) and store it to the pattern index. We

generate its signature using the chosen LSH FamilyH , insert it to the LSH Index and query.

Similarly to when the instance vector exists in the pattern index, the type declarations may

be present or missing. In the first scenario (lines 38-40), the new pattern gets the types of

the instance and Alg. 2 is used to update or create the necessary groups. In more detail,

for each type t contained in the type set on the instance, we check the existence of a group

g with type t in groups. In case such a group does not exist, a new group g is generated and

type t is assigned as its type. The new pattern, as well as the ones contained in the bucket

whose type set is null or contain t are added to g. Finally, the new pattern will correspond

to a list of groups (one for each type t) in the group index.

In the second scenario, i.e., no types available (lines 41-50), If the types set of all the

patterns in the bucket are empty, we generate a new group with pattern v, we add each

pattern to the new group and we also add v to the groups of each pattern. Otherwise, we

find the distinct type that occurs the most in the types sets of the patterns in the bucket
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Algorithm 1 Hybrid and Incremental Type Discovery
Required: LSH FamilyH , k, b, r, instance set D

1: pattern index, group index, groups←∅
2: lsh index← new LSH Index(k, b, r)
3: for each e ∈ Ddo
4: S← pattern index[InV(e)]
5: if S != ∅ then ▷there is a pattern available
6: if τ(e) != ∅ then ▷there are types for e
7: if ∃ v ∈ S: Tv == τ(e) then
8: Iv = Iv ∪ e
9: else if ∃ v ∈ S: Tv == ∅ then

10: Iv = Iv ∪ e
11: Tv← τ(e)
12: for each g ∈ groups: v ∈ Vg∧Tg < τ(e) do
13: g.Vg = g.Vg − {v}
14: end for
15: updateGroups(groups, v, τ(e), ∅)
16: else ▷the are patterns but with different type(s)
17: v← new Pattern{e, InV(e), τ(e)}
18: store v in pattern index[InV(e)]
19: sig(e)←H(InV(e))
20: insert v to lsh index
21: bucket← lsh index.query(sig(e))
22: updateGroups (groups, v, τ(e), bucket)
23: end if
24: else ▷there are no types for e
25: if size(S) == 1 then
26: IS[0] = IS[0] ∪ e
27: else
28: for each t ∈ Tp where v ∈ S do
29: g t← find group with type(t, groups)
30: props←

⋃
{z∈Pg t} Sz

31: jac table[t]← Jaccard(props, InV(e))
32: end for
33: t′ ← f indTypeWithMaxJac(jac table)
34: add e in pattern v ∈ S with smallest type set that includes t′
35: end if
36: end if
37: else ▷there are no patterns available
38: v← new Pattern{e, InV(e), ∅}
39: store v in pattern index[InV(e)]
40: sig(e)←H(InV(e))
41: insert v to lsh index
42: bucket← lsh index.query(sig(e))
43: if τ(e) != ∅ then
44: Tv ← τ(e)
45: updateGroups (groups, v, τ(e), bucket)
46: else
47: if ∄t ∈ Tv : p ∈ bucket then
48: g← new Group{v, ∅}
49: for each v′ ∈ bucket do
50: add v′ in g
51: add v in each group g′ in group index[v′]
52: end for
53: store g to group index[v]
54: else
55: find type t′ with max occurrences in the bucket
56: updateGroups (groups, v, t′, bucket)
57: end if
58: end if
59: end if
60: end for
61: return distinct groups



3.3. HInT: Enabling Hybrid and Incremental Type Discovery 23

and use Algorithm 2 to update the required groups.

Algorithm 2 is used to update existing groups, or create new ones, if needed for a pat-

tern v. It also requires the set of generated groups, a type set T and a bucket of instances.

For each type t in T, if a group g with t exists, v is classified to that group (lines 3-4). Oth-

erwise, a new group is created, containing v and t and is stored in the group index (lines

5-7). Then, we add in g all patterns of the bucket that have no type, or t is contained in

their type sets (lines 8-17). We also add v to the groups g′ of these instances that have an

empty type. Type t is assigned to these groups, but since there can only be a single group

with a given type and group g is the one of type t, each group g′ is merged with g.

Algorithm 2 updateGroups
Required: groups, pattern v, types T, bucket B

1: for each t ∈ T do
2: let g ∈ group in groups that Tg = t
3: if g! = ∅ then
4: add v to g
5: else
6: g← new Group{v, t}
7: store v, g to group index
8: end if
9: for each v′ ∈ Bdo

10: if Tv′ == ∅OR t ∈ Tv′ then
11: add v′ to g
12: end if
13: if Tv′ == ∅ then
14: for each g′ ∈ group index[v′] : Tg′ == ∅ do
15: add v to g′
16: Tg′ ← t
17: merge groups g′ and g in g
18: delete group g′
19: replace g′ with g in group index
20: end for
21: end if
22: end for
23: end for

Example 3.3.5 For the last part of our running example, assume that instance e1 has been

processed and e2 is the newest one arrived. Consider also that the bucket produced after

querying the LSH Index with v2 contains the patterns [v1, v2]. Since there exists a pattern in

the bucket with types declared, i.e., v1 has been assigned the type Student, v2 will be classified

to that group.

Algorithm 1 requires a single pass over the data in order to discover the available types.
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In addition, it drastically reduces the processing required. Starting with N instances, we

can assume that we have V patterns for these instances - as our experiments showed, the

number of patterns usually is orders of magnitude smaller than the number of instances.

Then in the LSH stage, in the worst case, for each query all patterns will be returned, which

would require, updating all groups available each time. As such the worst case complexity

of our approach is O(V2). However, realistically, there is a small chance that a query over

the LSH will return all patterns as similar. This leads to a highly-efficient algorithm.

3.4 Evaluation

In this section, we present the evaluation performed for our approach using several real-

istic and synthetic datasets. The evaluation was performed using a commodity desktop

running Linux Ubuntu 18.04 LTS 64-bit with an Intel® CoreTM i7-4770 CPU @ 3.40GHz

(8 cores) and 8 GB RAM. The datasets4, as well as the source code5 of HInT are available

online.

Competitors. As we present a hybrid approach, we compare ourselves against ap-

proaches in both the fields of implicit type discovery and explicit type enrichment. In

the former line of works, we compare against the two state of the art, unsupervised type

inference approaches, available for RDF type discovery, StaTIX [64] and SDA++ [54]. Re-

garding the explicit type enrichment domain, HInT is compared against SDType, who has

already demonstrated superiority over relevant approaches [80]. All three competitors are

described in more detail in the related work section (Section 3.1).

For StaTIX, as there were various possible configurations, we used the best perform-

ing configuration as suggested by the author’s of the corresponding paper. SDA++ is a

self-adaptive approach that does not require the specification of any parameters, as it au-

tomatically detects a similarity threshold. Finally, SDType uses a threshold based on which

an inferred type declaration is classified as valid or invalid. The authors propose using val-

ues between 0.4 and 0.6 as they typically yield the best scores. In our experiments, we use

the best performing configuration for each case, searching the values recommended by

the authors.

Datasets. For evaluating our approach we started with the LUBM benchmark [?]. LUBM

is developed to facilitate the evaluation of Semantic Web repositories in a standard and sys-

tematic way and includes an ontology along with a data generator. We started with 91M

triples and 10M instances. However, as we shall see in the sequel all competitors failed

to terminate execution after 24 hours of execution - or returned a java heap error. We

then tried 13M triples and 2M instances, but still competitors were not able to terminate

execution after 24 hours. As such, we resolved to datasets that were previously used by

4http://islcatalog.ics.forth.gr/dataset/hint
5https://github.com/nickkard/HInT

http://islcatalog.ics.forth.gr/dataset/hint
https://github.com/nickkard/HInT
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Table 3.1: Evaluation Datasets.

Dataset Triples Instances Types Size
BNF 381 30 5 53 KB

Conference 1,430 208 12 262 KB
DBpedia 19,696 100 6 3.7 MB

histmunic 119,151 12,132 14 17 MB
LUBM 13,405,381 2,179,766 14 2.4 GB
LUBM 91,108,733 10,847,184 23 7.9 GB

competitors in order to be able to evaluate, besides efficiency, the quality of the generated

result. More specifically we reused the Conference, the BNF and the DBpedia datasets as

provided in the SDA++ paper [54], whereas the histmunic dataset was the largest datased

used by STATIX [64]. The Conference6 dataset consists of 1,430 triples and contains data

about Semantic Web conferences and workshops. The BNF7 dataset exposes data for the

French National Library and contains 381 triples. The third dataset is extracted from DBpe-

dia8. It contains 19,696 triples and considers the following types: Politician, Soccerplayer,

Museum, Movie, Book and Country. Finally, histmunic is an open government dataset9

which contains 119,151 triples. Table 3.1 presents statistics on those datasets. For config-

uring b and r in our approach, for each dataset, we exploited a naive hill-climbing algo-

rithm and we used the returned values. As such the values (9, 2), (7, 2), (10, 3), (7, 4), (4, 6),

(4, 7) have been set for (b, r) for the datasets in Table 3.1 respectively. Overall, our datasets

range from small (30) to a large number of instances (10M) and from homogeneous (Con-

ference) to heterogeneous (DBpedia) instances, and allow us to understand the benefits

and the drawbacks of each approach in various situations.

Metrics & Methodology. In order to compare HInT with competitors, we evaluate the

quality of the discovered types and the efficiency of the corresponding algorithms. The

methodology and the used metrics are described in the sequel.

Quality. To evaluate the quality of the discovered types by the various algorithms, we

adapted the methodology proposed in [53]. This allows to evaluate each generated type

group against the existing types.

Note, that a discovered type is represented by a group with HInT while it is represented

by a cluster with StaTIX and SDA++. In the rest of the description, we will refer to both

clusters and groups as groups.

As the types of the instances were available in the datasets used, they were exploited to

6http://www.scholarlydata.org/dumps/conferences/simple/dc-2010-complete.rdf
7https://old.datahub.io/fr/dataset/data-bnf-fr
8dbpedia.org
9https://opendata.swiss/dataset

http://www.scholarlydata.org/dumps/conferences/simple/dc-2010-complete.rdf
https://old.datahub.io/fr/dataset/data-bnf-fr
dbpedia.org
https://opendata.swiss/dataset


26 Chapter 3. Hybrid and Incremental Type Discovery for Large RDF Data Sources

formulate the ground truth of the identified types. Then, when we compare ourselves with

StaTIX and SDA++ (remember that they do not consider existing typing information), we

completely remove existing type definitions from the dataset and evaluate the precision

and recall for the discovered groups.

SDType on the other hand, does not produce any form of clusters-groups. It’s output

is a set of type declarations of the form < s rdf :type t >, where s corresponds to an instance

and t to a class name. In order to make a fair comparison, we use the following process:

first, we use the available type declarations in the dataset to create a set of groups. Then,

for each type declaration in SDType’s output, we classify instance s to the corresponding

group according to the class name t.
We annotate each generated group Gi with the most frequent type label associated to

its instances. For each type label Li corresponding to a type Ti in the dataset and each

inferred group Gi, such that Li is the label of Gi, we calculate the precision Pi(Ti,Gi) and

the recall Ri(Ti,Gi) for a group, as in Formula 3.1 and Formula 3.2 respectively.

Pi(Ti,Gi) =
|Ti ∩ Gi|

|Gi|
(3.1)

Ri(Ti,Gi) =
|Ti ∩ Gi|

|Ti|
(3.2)

In addition, for evaluating the overall quality of the m generated type groups we use the

overall precision described in Formula 3.3 and the overall recall described in Formula 3.4.

Precision =
∑m

i=1 Pi(Ti,Gi)
m (3.3)

Recall =
∑m

i=1 Ri(Ti,Gi)
m (3.4)

Based on the overall precision and recall we can now calculate the overall F1 score

using the formula 3.5.

F1 = 2 ∗ Precision ∗ RecallPrecision + Recall (3.5)

Since SDA++ and StaTIX aim at implicit type inference and SDType at explicit type

enrichment, a comparison between them would be meaningless. Approaches on the for-

mer field try to infer the types in a dataset, completely ignoring type declarations. On the

other hand, SDType aims at enriching the dataset with type declarations while imposing

the requirement that these types are declared in the dataset. To the best of our knowledge,

HInT is the first hybrid framework, by means of achieving both implicit type inference and

explicit type enrichment. As we shall show in the following experiments, it outperforms
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competitors in both fields, in terms of quality and efficiency in most of the cases.

In order to compare the quality of the approaches and due to their different nature

mentioned above, we perform two separate experiments. In the first one, we compare the

implicit type discovery approaches i.e., SDA++ and StaTIX with HInT while considering no

type declarations. In the second experiment, we compare SDType with HInT while vary-

ing the percentage of the available type declarations. In this experiment, we assume the

existence of a type declaration of an instance with probability p. We test different values

Figure 3.6: Qualitative evaluation.

of p, i.e., 0.25 and 0.5. We make 20 runs for each scenario (dataset, probability p). For each

run, a set of instances x is randomly chosen using the probability p and their type declara-

tions are omitted. The set y contains the remaining instances. The same runs, be means

of the sets x and y are used by both HInT and SDType, in order for the comparison to be

fair.

Efficiency. We compare the efficiency of HInT, StaTIX, SDA++ and SDType. We run each

approach on each dataset ten times and get the average execution time for discovering the

types for all systems.

3.4.1 Results on the quality of implicit type inference.

Figure 3.6 presents the precision, recall and F1 scores for the datasets presented in Table

3.1. As shown, HInT outperforms both StaTIX and SDA++ in all cases, when examining the

F1 score, except the DBpedia dataset where SDA++ performs better. For identifying the

reason for this exception we can look in Table 3.2, where we can easily identify that DBpe-

dia is by far the most heterogeneous dataset, as 99 distinct patterns are discovered for this

specific, more than triple the number of the other datasets. SDA++ uses DBscan which is

robust to noise and allows the discovery of clusters/types of arbitrary shape, which is well-

suited for very heterogeneous datasets. Nevertheless DBscan cannot be used in realistic

scenarios with big datasets as it is a really costly procedure and even for datasets that scale

beyond 100K triples, SDA++ fails to finish execution.
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Table 3.2: Pattern statistics.

Dataset Patterns Max patterns per type
BNF 21 5

Conference 23 13
DBpedia 99 42

histmunic 18 5
LUBM 20 4
LUBM 21 6

3.4.2 Results on the quality of explicit type enrichment.

Figure 3.7 and Figure 3.8 present the results when we compare HInT with SDType, in two

configurations for known types in the instances. Figure 3.7 presents a scenario where we

know the types of 25% of the instances, and Figure 3.8 presents a scenario where we know

the types of 50% of the instances. In each figure, we only report the F1-measure for reasons

of readability, whereas we omit other p configurations as they show the same behaviour

due to lack of space.

As we can see in both figures, in all cases HInT outperforms SDType. In addition, we

can see that when a small amount of typing information is available, SDType has a bad

performance (in all cases the F1-measure is bellow 0.62 (refer to Figure 3.7)), where as

more tying information becomes available the performance of the system improves (refer

to Figure 3.8). In addition, in more heterogeneous datasets SDType shows the worst per-

formance (0.438 for p=0.25 and 0.809 for p=0.5). Although this is true for HInT as well, our

system has a better performance in both cases. Overall, we observe that in all cases HInT

outperforms SDType.

3.4.3 Comparison of efficiency.

Finally, we compare the efficiency of the various systems for the different datasets. The

results are shown in Figure 3.9 for the implicit type discovery systems and in Figure 3.10

for the explicit type enrichment ones. As already mentioned, each bar is the average of 10

executions.

Implicit type discovery systems. As shown in Figure 3.9, in small datasets, such as Con-

ference or BNF, HInT is marginally slower than competitors as the LSH initialization im-

poses a small overhead on the whole process. However as the number of triples increases,

in all remaining datasets, HInT largely outperforms competitors. More specifically, in

those datasets, Hint outperforms StaTIX by at least one order of magnitude: one order

of magnitude in DBpedia, three orders of magnitude in histmunic and StaTIX could not
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Figure 3.7: F1 score for explicit type enrichment for p = 0.25

Figure 3.8: F1 score for explicit type enrichment for p = 0.5

finish execution for the LUBM datasets. When compared with SDA++, in those datasets,

again it outperforms it by at least one order of magnitude : one order of magnitude in

DBpedia, three orders of magnitude in histmunic and SDA++ could not finish execution

for the LUBM datasets. This result can be explained by the fact that SDA++ and StaTIX

both require reading the data and storing it in main memory, which is not the case for

HInT. In addition, SDA++ relies on a clustering algorithm that requires pairwise compari-
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Figure 3.9: Execution times for the implicit type inference systems in all datasets.

Figure 3.10: Execution times for the explicit type inference systems according to prob-
ability p.

son between all instances which hampers execution time. As such, both competitors are

not appropriate for massive datasets.

Explicit type enrichment systems. Moving to explicit type enrichment, we can ob-

serve in Figure 3.10 that in all cases our system largely outperforms SDType. From the

figure we can easily identify that HInT is at least one order of magnitude faster than SD-

Type in most of the cases, whereas both systems, show some stability and their execultion

times are only merely affected by the number of types available in the dataset.

Overall, we can easily see that the true benefits of our approach are: (i) its efficiency

when increasing the size of the datasets used and (ii) the high quality of the discovered

types. Indeed, unlike a type discovery approach based on a clustering algorithm, our ap-
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proach is based on patterns, reducing the number of comparisons required, and to LSH

which does not require pairwise comparisons among the available patterns. As our exper-

iments show, the quality of the returned results, in almost all the cases, is better than the

three competitors.

3.5 Conclusion

In this section we present HInT, the first incremental and hybrid type discovery approach

for large RDF data sources. Our approach allows to discover the types and their patterns

on a data source, without any schema information. However, when typing information

is available for some instances, it is exploited to improve the type discovery process. Our

approach is able to process a large data source, because it extracts the patterns of the in-

stances and process these patterns instead of the instances themselves. Indeed, instances

of the same type have a similar structure and many instances have exactly the same struc-

ture (pattern). Therefore, discovering the types on the instances of a data set, has the

same result as discovering the types on the patterns. However, processing patterns is

much less expensive than processing instances, for example, as show in the experiments,

the LUBM dataset contains 10M instances which are represented by 21 patterns only (a

ratio of approximately 0.0002%). In addition, unlike existing implicit types discovery ap-

proaches, our approach is not based on clustering, which requires an exhaustive com-

parison between the instances. Indeed, we have adapted the Locality sensitive hashing

(LSH) method to allow the processing of each instance independently of the others and

in a completely incremental way. The exhaustive comparison between the instances is

very expensive and it represents an important bottleneck for achieving incrementality. We

experimentally show that HInT strictly dominates competitors from both fields (implicit

type discovery and explicit type inference) in terms of efficiency as the data size grows,

in most of the cases by orders of magnitude. In addition, it also dominates existing ap-

proaches in most of the cases, providing a better identification of the available types. As

such, HInT is a power-full tool to discover the types and their patterns in large data sources

when typing information are partially available or even completely missing.

Future work. As future work, our next step is to explore the way other schema related

declarations, beside the type, can be used for type discovery. Indeed, it would be interest-

ing to explore rdf s:range and rdf s:domain declarations on the properties of an instance, for

augmenting type discovery. It would also be interesting to extend the approach in order to

discover more information about the schema, such as both the semantic and the hierarchi-

cal links between the discovered types. Another interesting direction would be to explore

LSH parameter tuning. These parameters are indeed crucial as they impact the quality of

the resulting types. One possible tuning approach consists of adjusting these parameters

to generate a set of types which conforms to the partial schema declarations provided in
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the data set. The work presented in this chapter could be seen as a first contribution to-

wards the scalability of schema discovery. Adapting LSH to the type discovery problem

has shown that each instance can be processed independently from the others and incre-

mentally. This not only allows to design a parallel version of HInT, but also to implement it

using a big data technology such as Spark. Indeed, the pattern of an instance could be con-

sidered as a first key to allow the distribution of instances with the Map/Reduce paradigm,

then the hash value of each pattern could be considered as a second key to allow the pro-

cessing of the patterns with Map/Reduce to generate the types.
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Exploring RDFS KBs Using Summaries

Due to the complex structure of RDF graphs and their heterogeneity, the exploration and

understanding tasks are significantly harder than in relational databases, where the schema

can serve as a first step toward understanding the structure. Summarization has been ap-

plied to RDF data to facilitate these tasks. Its purpose is to extract concise and meaningful

information from RDF knowledge bases, representing their content as faithfully as possi-

ble. There is no single concept of RDF summary, and not a single but many approaches

to build such summaries; each is better suited for some uses, and each presents specific

challenges with respect to its construction.

The majority of these RDF datasets have extremely complex schemas, which are diffi-

cult to comprehend, limiting the exploitation potential of the information they contain. As

a result, there is an increasing need to develop methods and tools that facilitate the quick

understanding and exploration of these data sources [34, 86].

To this direction, many approaches focus on generating ontology summaries [95, 102,

103, 115]. Ontology summarization [120] is defined as the process of distilling knowledge

from an ontology in order to produce an abridged version. Although generating sum-

maries is an active field of research, most of the works focus only on identifying the most

important nodes, exploit limited semantic information or produce static summaries, lim-

iting the exploration and the exploitation potential of the information they contain. In

addition, although exploration operators over summaries have already been identified as

really useful (e.g. [71]), the available approaches so far are limited, expanding only the hi-

erarchy and the connections of selected nodes [59]. As a result, there is an increasing need

to develop methods and tools in order to facilitate the understanding and exploration of

various data sources, through exploration operators on summaries.

Consider for example that we would like to get a quick view of the DBpedia version

3.8 shown in Fig. 4.1(a). By visualizing the graph of the schema, it is difficult to under-

stand the contents of the KB. Even if we highlight the most representative nodes (the red

ones), according to some importance measure (e.g. Betweenness) the problem persists.

Now consider selecting the top-k most representative nodes and connecting them. The

33
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Figure 4.1: the DBpedia 3.8 schema graph (a) and a schema summary (b) generated
using [78].

result is shown in Fig. 4.1(b). Here, we can better understand the contents of the DBpedia

v3.8. However, still the user might find the presented information overwhelming and s/he

would like to see less information, focusing only on the top-10 nodes. Ideally, s/he should

be able to zoom-in and zoom-out at will in the presented graph to understand the contents

at a selected granularity level. More than this, s/he might want to have more detailed in-

formation not only on the whole schema graph but on a selected subset of it. This could

happen by selecting some nodes, requesting more details on those. Those details could

be offered in terms of showing other nodes dependent on the selected ones as shown in

Fig. 4.1(b) (green nodes). Although exploration operators over summaries have already

been identified as useful (e.g. [71]), the available approaches are limited, expanding only

the hierarchy and the connections of the selected nodes.

Motivated by the lack of an effective method to explore KBs starting from summaries,

we have developed RDFDigest+. RDFDigest+ is a system that transparently and efficiently

handles exploratory operations on large KBs. In its core, it employs an algebra where two

operators are treated as first-class citizens in various exploration scenarios. Our algebra

contains the extend and the zoom operators with particular semantics. Extend focuses
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on a specific subgraph of the initial summary, whereas zoom on the whole graph, both

providing granular information access to the end-user.

More specifically, in this chapter, we focus in RDFS ontologies and demonstrate an ef-

ficient and effective method to enable exploration of RDFS KBs, using schema summaries

that can be extended and zoomed according to user selections. Our contributions are the

following:

• We present RDFDigest+, a novel system that is able to generate summaries, enabling

further exploration using zoom and extend operations.

• Summary generation is a two-steps process. First, all schema nodes are ranked ac-

cording to various measures, and then, the top-k selected nodes are linked using

edges that introduce the minimum number of additional nodes over the initial schema

graph.

• Over these generated summaries, we enable zoom-in and zoom-out operations to

get granular information, adding more important nodes or removing existing ones

from the generated summary.

• In addition, through the extend operator, we allow selecting a subset of the presented

nodes to visualize other dependent nodes.

• We provide algorithms for calculating the aforementioned operators on a given schema

graph and we show that the problem is NP-complete. To this end, we provide effec-

tive and efficient approximations as well.

• We demonstrate the added value of these operators, evaluating summary’s ability

to answer the most-frequent real users queries, and we show that the approximate

algorithms proposed can efficiently approximate both operators.

To our knowledge, this is the first approach that combines summaries with both zoom

and extend operations, enabling effectively and efficiently the granular exploration of a

KB.

The rest of this chapter is structured as follows: In Section 4.1, we discuss related work

and, in Section 4.2, we provide more details on schema summarization. Then, in Section

4.3, we introduce our ontology exploration operations and, in Section 4.4, we present our

experimental evaluation. Finally, in Section 4.5, we conclude this chapter and present

directions for further work.

4.1 Related Work

RDF summarization has been used in multiple application scenarios, such as: identify-

ing the most important nodes, query answering and optimization, schema discovery from

the data, or source selection, and graph visualization to get a quick understanding of the

data. Among the currently known RDF summarization approaches, some only consider

the graph data without the ontology, some others consider only the ontology, finally some
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use a mix of the two. Summarization methods rely on a large variety of concepts and tools,

comprising structural graph characteristics, statistics, pattern mining or a mix thereof.

Summarization methods also differ in their usage scope. Some summarize an RDF graph

into a smaller one, allowing some RDF processing (e.g., query answering) to be applied on

the summary. The output of other summarization methods is a set of rules, or a set of fre-

quent patterns, an ontology etc. For an extensive review on all summarizaton techniques
on semantic summaries please refer to our survey [24]. According to [24], our work, RDF

Digest+, is categorized to structural non-quotient RDF summaries for visualization and

query answering tasks.

According to [94], an effective ontology exploration system should provide a number

of core functionalities, such as providing a high level overview of the data, zooming in

specific parts of the data and filtering out irrelevant parts.

4.1.1 Ontology Visualization Systems.

Towards this direction, toolkits like Protege [72], TopBraid Composer [1] and Neon [32], in-

clude visualization plug-ins using the node-link diagram paradigm to represent entities in

an ontology and their taxonomy to domain relationships. In addition, many plug-ins, like

OwlViz in Protege and Graph View in TopBraid, allow navigating the ontology hierarchy by

expanding and hiding nodes.

SpaceTree [84] follows the node-link paradigm as well, but is able to maximize the

nodes on display by assessing the available display space. It also avoids clutter by uti-

lizing informative preview icons giving the user an idea of the size and shape of the corre-

sponding subtrees. CropCircles [114] on the other hand, uses geometric containment as

an alternative to classing node-link displays sacrificing space to make it easier for users to

understand the topological relations in an ontology. Hybrid solutions, like Jambalaya [98]

and Knoocks [61], combine containment-based and node-link approaches by providing

alternative integrated views of the two paradigms, whereas other approaches, like [30],

are based on the notion of distorting the view of the presented graph to combine context

and focus. The node on focus is usually the central one and the rest of the nodes are pre-

sented around it, reduced in size until they reach a point that they are no longer visible.

Finally, WebVOWL [63] implements the Visual Notation for OWL Ontologies (VOWL) by

providing graphical depictions for elements of the Web Ontology Language (OWL) that

are combined to a force-directed graph layout representing the ontology.

However, all aforementioned approaches in essence, use geometric techniques to pro-

vide the necessary abstraction, such as hyperbolic or force-directed graphs, geometric

containment or miniature sub-trees. However, we argue that an ideal visualization ap-

proach should start with the most important elements of the ontology allowing then pro-

gressively the users to explore other less important areas.



4.2. Schema Summarization 37

4.1.2 Ontology Summarization Systems.

Besides pure ontology visualization systems, ontology summarization systems have adopted

as well zooming functionalities. An example is KC-Viz [71], which focuses on the key con-

cepts of the ontology based on psycholinguistic criteria. Our system on the other hand,

allows users to select multiple measures for identifying importance. KC-Viz provides a set

of navigation and visualization mechanisms, including flexible zooming into and hiding

of specific parts of an ontology. However, this work is limited in selectively expanding the

hierarchy and the connections of selected nodes, whereas in our case besides zooming,

we also visualize dependent nodes enabling further exploration of the data source.

[62] supports zoom, filter, details-on-demand, relate, history and extract operations

using hierarchical connected circles to provide overview, indented trees to relate different

concepts and node-links for filtering and details on-demand, enabling the users to choose

the level of semantic zoom. However, the operations performed are not formalized, the

corresponding algorithms are not presented and an evaluation is completely missing from

the aforementioned work.

[49] proposes a tool that supports three visual exploration options. The first one,

named landmark view, provides an overview of the class(property) taxonomy giving only

representative classes in the hierarchy - selected automatically by a set of statistics mea-

sures and user preferences. Then, a user can further explore a specific area by extend-

ing(or collapsing) branches. The local view displays the full hierarchy of a set of classes

(properties) whereas the axiom view, provides information about a selected class and its

connectivity in the ontology. Compared to our work, this approach is limited mostly on

hierarchical structures.

4.2 Schema Summarization

Schema summarization aims to highlight the most representative concepts of a schema,

preserving important information and reducing the size and the complexity of the whole

schema. Central questions to summarization are (i) how to rank the schema nodes ac-

cording to an importance measure, and (ii) how to link the top-k ones in order to produce

a valid sub-schema graph.

4.2.1 Identifying Important Nodes in RDFDigest+

To identify the most important nodes, RDFDigest+ employs a variety of centrality mea-

sures like Degree, Bridging Centrality, Harmonic Centrality, Radiality, Ego Centrality and

Betweenness [78]. As [78] shows, among these measures, Betweenness produces sum-

maries with a better quality. In addition, in this chapter we explore for the first time to

this purpose, PageRank and HITS, two additional well-known centrality measures [15].
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Specifically, the importance measures (IM) we are going to explore for our experiments,

for selecting the top-k most important nodes are the following:

• Betweenness (BE). The number of the shortest paths from all nodes to all others that

pass through a node.

• PageRank (PR). This centrality measure assigns a score based on node’s connections,

and their connections. PageRank takes link direction and weight into account, so

links can only pass influence in one direction, and pass different amounts of influ-

ence.

• HITS (HT). HITS algorithm is based on the idea that in the Web, and in all document

collections which can be represented by directed networks, there are two types of

important nodes: hubs and authorities. Hubs are nodes which point to many nodes

of the type considered important. Authorities are these important nodes.

Independently of the importance measure (IM) selected, since those measures have

been developed for generic graphs, we adapt them to be used for RDFS graphs. To achieve

that we first normalize each measure IM on a scale of 0 to 1:

normal(IM(v)) = IM(v) −min(IM(GS))
max(IM(GS)) −min(IM(GS))

(4.1)

where IM(v) is the importance value of a node v in GS, and min(IM(GS)) is the minimum

and max(IM(GS)) is the maximum importance value in GS.

Similarly, we normalize the number of instances (InstV) that belong to a schema node.

As such, the adapted importance measure (AIM) of each node is the sum of the normalized

values of the importance measures and the instances.

AIM(v) = normal(IM(v)) + normal(InstV(v)) (4.2)

Next, let TOPAIM
k (V) be the function that returns the top-k nodes of an RDFS KB V,

according to the selected adapted importance measure (AIM) - for brevity we will use

TOPk(V) independently of the importance measure selected.

Overall, our system is flexible enough to enable the uninterrupted addition of new im-

portance measures by adding new function calls. The diverse set of importance measures

offered, enable exploring RDFS KBs according to the way users perceive importance, offer-

ing many alternatives and enhancing the exploration abilities of our system.

4.2.2 Linking Important Nodes

Having a way to rank the schema nodes of an RDFS KB according to the perceived impor-

tance, we then focus on selecting the paths that link those nodes, aiming to produce a

valid sub-schema graph. As the main problem of previous approaches [78,104] was the in-
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troduction of many additional nodes (besides the top-k ones), in this chapter, we focus on

selecting the paths that introduce the minimum number of additional nodes to the final

summary graph. As such, we model the problem of linking the most important nodes as a

variation of the well-known Graph Steiner-Tree problem (GSTP) [111]. The corresponding

algorithm targets at minimizing the additional nodes introduced for connecting the top-k

most important nodes [78]. However, the problem is NP-hard, and as such approximation

algorithms should be used for large datasets.

4.2.3 Summary Schema Graph

Having identified ways for locating important nodes and, in turn, for connecting them, we

define next the summary schema graph as follows:

Definition 8 (Summary Schema Graph of size n) Let V = ⟨GS,GI, λ, τc⟩ be an RDFS KB. A

summary schema graph of size n for V is a connected schema graph G′S = (V′S,E
′

S), G
′

S ⊆

Cl(GS), with:

• V′S = TOPk(V) ∪VADD,

• ∀vi, vj ∈ TOPk(V), ∃path(vi → vj) ∈ G′S,

• VADD represents the nodes in the summary used only to link the nodes in TOPk(V),
• ∄ summary schema graph G′′S = (V′′S ,E′′S ) of size n for V, such that, |V′′S | < |V

′

S|.

4.3 Exploration through Summaries

Getting the summaries, users can better understand the contents of a KB. However, still

the user might find the presented information overwhelming and he/she may like to see

less information, focusing for example, only on the top-10 nodes (zoom) or requesting

more detailed information for a specific subgraph of the summary (extend).

4.3.1 The Extend Operator

The extend operator gets as input a subgraph of the schema graph and identifies other

nodes that are depending on the selected nodes. Dependence has not only to do with

distance, but with additional parameters, including importance. Like TF-IDF, the basic

hypothesis here is that the greater the influence of a property on identifying a correspond-

ing instance is, the less times it is repeated, or in other words, infrequent properties are

more informative than frequent ones. This way, we define the dependence between two

classes as a combination of their cardinality closeness (defined in the sequel), the adapted

importance measures (AIM) of the classes and the number of edges appearing in the path
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connecting these two classes. So, dependence is defined as:

Dependence(u, v) =
AIM(u) −∑i∈Y

AIM(i)
CC((i−1),i)

dpath(u→ v) (4.3)

where the cardinality closeness CC is defined for a pair of classes as the number of distinct

edges over the number of all edges between them. Formally:

Definition 9 (Cardinality Closeness) Let ck, cs be two adjacent schema nodes and ui,uj ∈
GI such that τc(ui) = ck and τc(uj) = cs. The cardinality closeness of p(ck, cs), namely the

CC(p(ck, cs)), is defined as:

CC(p(ck, cs)) =
1 + |c|
|c| +

DistinctV(p(ui,uj))
Instances(p(ui,uj))

(4.4)

where |c|, c ∈ C ∩ VS, is the number of nodes in the schema graph, DistinctV(p(ui,uj)) is the

number of distinct p(ui,uj) and Instances(p(ui,uj)) is the number of p(ui,uj). When there are

no instances, Instances(p(ui,uj)) = 1 and DistinctV(p(ui,uj)) = 0.

As we move away from a node, the dependence becomes smaller by calculating the

differences of AIM across a selected path in the graph. We penalize additionally depen-

dence dividing by the distance of the two nodes. The highest the dependence of a path,

the more appropriate is the first node to represent the final node of the path. Also note

that Dependence(u, v) is different than Dependence(v,u), since the dependence of a more

important node towards a less important node is higher than the other way around, al-

though, they share the same cardinality closeness. To identify the dependent nodes of

a selected node, we use the function dependend(ui, range,number of nodes) that returns at

most number of nodes nodes depending on ui with a distance at most range.
The extend operator takes into account a particular subgraph of a summary schema

graph, and is defined as follows:

Definition 10 (Extend operator) Let G′S = (V′S,E
′

S) be the summary schema graph of an

RDFS KB V = ⟨GS,GI, λ, τc⟩. The extend operator, i.e., extend(Ge), takes as input a subgraph

Ge = (Ve,Ee) of G′S, Ge ⊆ G′S, and returns a connected schema graph G′e = (V′e,E′e), Ve ⊆ V′e,
for which:

• G′e ⊆ Cl(GS),
• V′e\Ve = Vd∪VADD′ , whereVd includes,∀vi ∈ Ve, all nodes vj, such that, dependend(vj, range,

number of nodes) = vi, and VADD′ the nodes that link the nodes in Vd with the other

summary nodes,

• ∀vi ∈ Vd ∪ TOPk(V), ∃path(vx → vy) ∈ G′e,
• ∄ G′′e = extend(Ge) = (V′′e ,E′′e ), such that, |V′′e | < |V′e|.
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Algorithm 3 presents the extend algorithm. The algorithm identifies the dependent

nodes (lines 2-5) using the depencence function. The algorithm starts from ui and cal-

culate the dependence of the adjacent nodes expanding progressively the range until it

reaches the number of nodes. Next, the algorithm tries to link the top-k nodes using the

Steiner-Tree algorithm (line 6). However, as the Steiner-Tree algorithm is NP-complete,

our problem is NP-complete as well.

Algorithm 3 Extend
Input: G′S = (V′S,E

′

S) the summary schema graph of GS, Ge = (Ve,Ee) the selected summary
schema subgraph
Output: G′e = (V′e,E′e) the result schema graph

1: procedure EXTEND

2: V′e = V′S
3: for each vi in Ve do
4: V′e = V′e ∪ dependent(vi, range,number of nodes)
5: end for
6: Calculate E′e using the Steiner-Tree algorithm over GS with the nodes in Ve as terminals
7: end procedure

Two optimizations that we explore in this work are the following:

CHINS. CHINS is an approximation of the Steiner-Tree algorithm [111] proved to have

a worst case bound of 2, i.e., ZT/Zopt ≤ 2 ·(1− l/ |Q|), where ZT and Zopt denote the objective

function values of a feasible solution and an optimal solution respectively, Q the set of

nodes to be linked (for the extend operator the top-k nodes and the selected dependent

ones) and l a constant [3]. The algorithm proceeds as follows:

1. Start with a partial solution consisting of a single selected node.

2. While the solution does not contain all selected nodes do

find the nearest nodes u∗ ∈ Vt and p∗ being a top-k node not in Vt.

As such, for each node to be linked, the algorithm has to visit at worst the whole set of

nodes and edges of the graph, and the corresponding complexity is O(Q · |V +E|). CHINS

has been proved to offer an optimal trade-off between quality of the generated summaries

and execution time [78], when used for generating summaries.

Shortest Paths. CHINS starts from a single node extending one by one the set of se-

lected nodes. However, having the nodes in the summary already, there is no need to start

from the first node. As such, another approximation could be to start with the nodes al-

ready available in the summary and then proceed to step 2 of CHINS. The algorithm for

each one of the |Q\TOPK(V)| nodes needs at worst to visit the whole graph. This way, the

worst-case complexity of the algorithm is O(|Q\TOPK(V)| · |V +E|).
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Dependent paths. In order to calculate the dependence between the selected nodes

and the ones introduced by the dependent functions, the visited paths can be recorded and

use these, already visited paths for connecting the selected nodes with the original sum-

mary. So, in this approximation, instead of finding the shortest path between the existing

summary and each dependent node, we calculate the shortest path between the extended

and the dependent node, which is already calculated in the previous step (the dependent

function). The complexity remains the same with the previous algorithm (O(|Q\TOPK(V)| ·
|V +E|)), since only the |Q\TOPK(V)| nodes are considered sequentially for linking them

to the existing summary.

4.3.2 The Zoom Operator

In this section, we focus on zooming operations, by exploiting the schema graph as a

whole. That is, we introduce the zoom-out and zoom-in operators to produce more de-

tailed or coarse summary schema graphs. To this end, we consider the n′ schema nodes

with the highest importance in GS, where n′ can be either greater than n, for achieving a

zoom-out, or smaller than n, for achieving a zoom-in, where n represents the number of

the most important nodes in a given summary.

Definition 11 (Zoom-out operator) Let G′S = (V′S,E
′

S) be the summary schema graph of

size n of an RDFS KB V = ⟨GS,GI, λ, τc⟩. The zoom-out operator zoomout(G′S,n
′), with n′ > n,

returns a connected schema graph G′zo = (V′zo,E′zo), for which:

• G′zo ⊆ Cl(GS),
• V′zo = V′S ∪ TOP∪VADD, where TOP = TOPn′(V)\V′S,

• ∀vi ∈ TOP, ∃vj ∈ V′S, such that, ∃path(vi → vj) ∈ G′zo,
• VADD represents the nodes in G′zo used only to link the nodes in TOP,

• ∄ G′′z o = zoomout(G′S,n
′) = (V′′zo,E′′zo), such that, |V′′z o| < |V′zo|.

Definition 12 (Zoom-in operator) Let G′S = (V′S,E
′

S) be the summary schema graph of size

n of an RDFS KBV = ⟨GS,GI, λ, τc⟩. The zoom-in operator zoomin(G′S,n
′), with n′ < n, returns

a connected schema graph G′zi = (V′zi,E′zi), for which:

• G′zi ⊆ G′S,

• V′zi = TOPn′(V) ∪VADD,

• VADD represents the nodes in G′zi used only to link the nodes in TOPn′(V),
• ∄ G′′zi = zoomin(G′S,n

′) = (V′′zi,E′′zi), such that, |V′′zi | < |V′zi|.

The simplest approach for zooming-in/out, is to calculate from scratch the TOPn′(V)
and then to use the Steiner-Tree algorithm from scratch to link the selected nodes. How-

ever, since we already have an existing summary as a basis for our zoom operations, we

explore the following approximations.
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Zoom-in. Remove the nodes in TOPn(V)\TOPn′(V) and their connections without re-

calculating the Steiner-Tree algorithm for TOPn′(V) – this might leave additional nodes in

the resulting summary.

Zoom-out - CHINS. Add the nodes in TOPn′(V)\TOPn(V) and link them with the exist-

ing summary, using the CHINS approximation algorithm.

Zoom-out - Shortest Paths. Add the nodes in TOPn′(V)\TOPn(V) and link them with

the existing summary, using the Shortest Paths approximation algorithm.

4.4 Evaluation & Implementation

To evaluate our approach, we use the version 3.8 of DBpedia1, which is consisted of 359

classes, 1323 properties and more that 2.3M instances, and offers an interesting use-case

for exploration. To identify the quality of our approach, we use a query log containing 50K

user queries provided by the DBpedia SPARQL end-point for the corresponding DBpedia

version. Our goal is to assess the percentage of the queries that can be answered solely

by using the generated schema summary along with the corresponding instances, i.e. the

coverage of the queries from a schema summary.

Having a summary, we can calculate for each query the percentage of the classes and

properties that are included in the summary. A class/property appears within a query

either directly or indirectly. Directly when the said class/property appears within a triple

pattern of the query. Indirectly for a class is when the said class is the type of an instance

or the domain/range of a property that appear in a triple pattern of the query. Indirectly

for a property is when the said property is the type of an instance. Having the percentages

of the classes and properties included in the summary, the query coverage is the weighted

sum of these percentages. As our summaries are node-based (they are generated based on

the top-k most important nodes; in zoom we add/remove important nodes; in extend we

add the dependent nodes) the weight on the nodes is larger than the one on the properties

(for our experiments we used 0.8 for nodes and 0.2 for edges).

4.4.1 Quality - Evaluating the Zoom Operator

In this section, we evaluate the quality of the zoom-out operator. To do that we start

from a summary containing 10% of the initial schema graph, and we zoom-out progres-

sively by 10%, until we reach the 40% of the schema graph. Having the coverage of each

query, we can calculate the average coverage for all queries in our log. In essence, an av-

erage coverage of 70% means that on average the 70% of the queries in the query log can

be answered only using the summary accompanied with its corresponding instances. As

when zooming-out, the next more important nodes are added to the summary, we expect

1http://wiki.dbpedia.org/

http://wiki.dbpedia.org/
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Figure 4.2: Zooming-out using various centrality measures and approximation algo-
rithms CHINS (CH) and Shortest Paths (SP).

that the average coverage of all queries should grow accordingly. The results are shown

in Fig. 4.2, whereas the actual improvement is shown in Fig. 4.3. As we can observe, in-

deed as the percentage of the summary increases, more queries are covered by the result

summary. In addition, HITS and Betweenness perform better, competing each other in all

cases. Specifically, HITS presents a more stable behavior with the best coverage from the

smallest zoom-out percentage, while Betweenness performs better from the 20% zoom-

out and on. PageRank is always worse than HITS and Betweenness. As a baseline we

added the Random bar as well, where we randomly select nodes from the schema graph

(connecting them with the corresponding measure). Even if sometimes randomly adding

more nodes improves a bit the results, overall, this is the approach with the worst perfor-

mance, clearly showing the benefits of our approach. Regarding the actual improvement,

we observe that CHINS and Shortest Paths return results of the same quality, with Short-

est Paths being slightly better in some cases. In this sense, Betweenness appears to be

the most stable measure with improvements around 35% to 45%, while PageRank shows a

good improvement, around 35%, for cases in which a 40% zoom-out is performed. Due to

space limitations, we omit the results of the zoom-in operator that presents similar behav-

ior.
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Figure 4.3: Improvement on Zooming-out using various centrality measures and ap-
proximation algorithms CHINS (CH) and Shortest Paths (SP).

Figure 4.4: Extend using HITS and Betweenness, and the approximation algorithms
random (RA), CHINS (CH), Shortest Paths (SP) and Dependent (DE).
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Figure 4.5: Improvement on extending using HITS and Betweeneess, and the approxi-
mation algorithms random (RA), CHINS (CH), Shortest Paths (SP) and De-
pendent (DE).

4.4.2 Quality - Evaluating the Extend Operator

Next, we evaluate the extend operator. To do that, we start again from a summary contain-

ing 10% of the initial schema graph, and we extend progressively requesting to extend 10%

of the available nodes in the summary, until we reach 40% of the initial summary schema

graph being extended.

As now we are interested in getting information relevant to particular selected nodes,

and not for the whole schema graph, we calculate the average coverage for the queries

including only classes from the selected part to be extended. In this case, an average cov-

erage of 70% means that on average the 70% of the queries in the query log, including one

of the extended nodes, can be answered only using the summary accompanied by its cor-

responding instances. As when more nodes related to the extended ones, are added to the

summary, we expect that the average coverage of those queries should grow accordingly.

The results are shown in Fig. 4.4, whereas the actual improvement is shown in detail in

Fig. 4.5.

Overall, we observe here that indeed the more nodes we extend, the more “local” queries

are covered. In addition, the Shortest Paths algorithm provides the best results in all cases,

followed by CHINS. This is reasonable since the Shortest Paths algorithm targets at identi-

fying the shortest path between the dependent nodes and the available summary, and as

such, it prioritizes nodes closest to the ones to be extended. On the other hand, the De-
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Figure 4.6: System architecture (left), Extend and zoom operators (right).

pendent paths algorithm does a minimum effort trying to connect the dependent nodes to

the existing summary and this has a direct effect on the quality of the produced summary.

PageRank presents the best coverage, on average around 68% to 78%, while HITS follows

with coverage around 65% to 73%. In turn, Betweenness has a coverage around 59% to

72%, while, as expected, Random presents the worst behavior with coverage from 35% to

40%. Overall, even if PageRank has the best performance, we observe that Betweeness has

the best improvement.

4.4.3 The RDFDigest+ System

All aforementioned measures and algorithms are available online on the RDFDigest+ sys-

tem2, a novel system that enables effective and efficient RDFS KB exploration using sum-

maries. The high-level architecture of the system is shown in Figure 4.6 (left) and an in-

stance of RDFDigest+ is shown in Figure 4.6 (right).

The summarization process starts by uploading an RDF/S file, or by providing the URL

of an online file. The file is then stored to a Virtuoso triple store. Our engine preprocesses

the available information and stores statistical and metadata information in a different

Virtuoso graph. As long as existing information is available for a specific file, it can be

reused and not recomputed. In the presented summary graph, the size of a node depends

on the its importance. By clicking on a node, additional metadata (e.g. the number of

instances, and the connected properties and instances) are provided to enhance ontology

understanding. Further exploration of the data source is allowed by clicking on the details

(on the left) of the selected class and properties. When clicked, its instances and connec-

tions appear in a pop-up window. Double-clicking on a node extends the summary of

that specific node providing more detailed information regarding the dependent nodes.

In addition, the summary can be zoomed-in and zoomed-out to present more detailed or

2http://rdfdigest.ics.forth.gr

http://rdfdigest.ics.forth.gr
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more generic information regarding the whole summary. Finally, the user can download

the summary as a valid RDF/S document. To our knowledge, no other system today is

available on the Web, enabling the summarization of RDF/S KB, providing functionalities

for active data exploration through summaries.

4.5 Conclusions

In this chapter we present a novel platform enabling KB exploration operations over sum-

maries. We introduce the zoom and extend operations, focusing on the number of im-

portant nodes of the generated summary, and on getting more detailed information for

selected schema summary nodes, respectively. We explore various approximation algo-

rithms showing that we can calculate efficiently the aforementioned operations without

sacrificing the quality of the result summary. In fact, we show that the Shortest Paths al-

gorithm provides an optimal trade-off between efficiency and quality. To the best of our

knowledge RDFDigest+ is currently the only system enabling such exploration operations

over summaries.

Future work. As future work, we intent to enable KB exploration at the instance level

as well, going from schema summaries to instance summaries, enabling zoom and ex-

tend operations both as schema and instance level, or exploiting big data frameworks to

speed the summarization process [6]. Another open issue we perceive as really important

is the dynamic nature of all these datasets. Since many datasets are rapidly changing, in-

cremental summarization algorithms should be studied. Moreover, given the dynamically

evolving datasets we handle, users are often interested in the state of affairs on previous

versions of the datasets, along with their corresponding summaries. To address this need,

archiving policies [97] typically store adequate deltas between versions, which are gener-

ally small, but this would create the overhead of generating versions at query time. As

a direct extension of our system, we will study the trade-off involved when focusing on

archiving dynamic RDF summaries.
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Data Partitioning for Efficient Exact Query
Answering (EQA)

To store, manage and query these ever increasing RDF data, many RDF stores and SPARQL

engines have been developed [8] whereas in many cases other non RDF specific big data in-

frastructures have been leveraged for query processing on RDF knowledge graphs. Apache

Spark is a big-data management engine, with an ever increasing interest in using it for ef-

ficient query answering over RDF data [6]. The platform uses in-memory data structures

that can be used to store RDF data, offering increased efficiency, and enabling effective,

distributed query answering.

The problem. The data layout plays an important role for efficient query answering in

a distributed environment. The obvious way of using Spark for RDF query answering is to

store all triples as a single large file in HDFS, loaded at query answering in the main mem-

ory search for the corresponding answers. However, using this approach, query answering

usually needs to access a large volume of data for retrieving the required information. This

results in poor query answering performance.

The elusive solution: simplified horizontal and vertical partitioning. As this prob-

lem has already been recognized by the research community, many approaches have been

proposed, by offering solutions that partition data, trying to minimize data access when

answering SPARQL queries [6]. To achieve this, most of the Spark-based RDF query an-

swering approaches exploit simplistic horizontal and/or vertical partitioning of triples (e.g.

creating a partition for every predicate, precomputing and storing one join step). The

idea behind all those approaches is that they try to minimize data access and to collo-

cate data that are usually queried together. However, although the aforementioned parti-

tioning techniques are successful in optimizing fragments or certain categories of SPARQL

queries, they fail to have a wider impact on all query categories, resulting in poor overall

performance improvement for query answering.

Our solution. To address these problems inspired by the proposed summarization

methodology in Chapter 4, we introduce DIAIRESIS, showing how to effectively partition

49
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data, balancing data distribution among partitions and reducing the size of the data ac-

cessed for query answering and thus, drastically improve query answering efficiency. The

core idea is to identify important schema nodes as centroids, then to distribute the other

nodes to the centroid that they mostly depend on, and, finally, assign the instance nodes

to the corresponding schema nodes. Finally, a vertical sub-partinioning step further mini-

mizes the accessed data during query answering.

More specifically our contributions are the following:

• We introduce DIAIRESIS, a novel platform that accepts as input an RDF dataset, and

effectively partitions data, by significantly reducing data access during query answer-

ing.

• We view an RDF dataset as two distinct and interconnected graphs, i.e. the schema

and the instance graph. Since query formulation is usually based on the schema, we

primarily generate partitions based on schema. To do so, we first select the top-k

most important schema nodes as centroids and assign the rest of the schema nodes

to the centroid they mostly depend on. Then, individuals are instantiated under the

corresponding schema nodes producing the final dataset partitions.

• To identify the most important nodes, we use the notion of betweenness as it has

been shown to effectively identify the most frequently queried nodes [78], adapting

it to consider the individual characteristics of the RDF dataset as well. Then, to as-

sign the rest of the schema nodes to a centroid, we define the notion of dependence.

Using dependence, we assign each schema node to the partition with the maximum

dependence between that node and the corresponding partition’s centroid. In ad-

dition, the algorithm tries to balance the distribution of data in the available parti-

tions. This method in essence tries to put together the nodes that are usually queried

together, while maintaining a balanced data distribution.

• Based on the aforementioned partitioning method, we implement a vertical sub-

partitioning scheme further splitting instances in the partition into vertical parti-

tions - one for each predicate, further reducing data access for query answering. An

indexing scheme on top ensures quick identification of the location of the queried

data.

• Then, we provide a query execution module, that accepts a SPARQL query and ex-

ploits the generated indexes along with data statistics for query formulation and op-

timization.

• Finally, we perform an extensive evaluation using both synthetic and real workloads,

showing that our method strictly outperforms existing approaches in terms of effi-

ciency for query answering and size of data loaded for answering these queries. In

several cases, we improve query answering by orders of magnitude when compared

to competing methods.

Overall in this chapter we present a new partitioning technique for SPARK, which has
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been designed specifically for improving query answering efficiency by reducing data vis-

ited at query answering. We experimentally show that indeed our approach leads to supe-

rior query answering performance.

The remaining of this chapter is structured as follows: In Section 5.1, we present related

work. We define the metrics used for partitioning in Section 5.2. In Section 5.3 we describe

our methodology for partitioning and exact query answering. Section 5.4 presents our

experimental evaluation, and finally Section 5.5 concludes the chapter.

5.1 Related Work

In the past, many approaches have focused on efficiently answering SPARQL queries for

RDF graphs. Based on the storage layout they adopt, a recent survey [26], classifies them

to a) the ones using a large table storing all triples (e.g., Virtuoso, DistRDF); b) the ones

that use a property table (e.g., Sempala, DB2RDF) that usually contains one column to

store the subject (i.e. a resource) and a number of columns to store the corresponding

properties of the given subject; c) approaches that partition vertically the triples (e.g.,

CliqueSquare, Prost, WORQ) adopting two column tables for the representation of triples;

d) the ones being graph based (e.g., TRiaD, Coral); d) and the ones adopting custom lay-

outs for data placement (e.g. Allegrograph, SHARD, H2RDF). For a complete view on the

systems currently available in the domain the interested reader is forwarded to the rele-

vant surveys [8, 26].

As in this work we specifically focus on moving a step forward the solutions on top

of Spark, in the remainder of this section we only focus on approaches that try to exploit

Spark for efficient query answering over RDF datasets. A preliminary survey on that area

is also available in the domain [6].

Using default Spark policy. Many of the works available for Spark, adopt the naive pol-

icy of storing the entire dataset in a big file and focusing on the query optimization step.

P-Spar(k)ql [39] tries to optimize and parallelize the query plan using GraphX, whereas

Bahrami et al. [13] use GraphFrames for pruning the query-specific search space. S2X [90]

is another approach that uses GraphX, where the basic idea is that every vertex in the

graph stores the variables of a query where it is a possible candidate for and query evalua-

tion proceeds by matching all triple patterns of a BGP independently, and then exchange

messages between adjacent vertices to validate the match candidates. Although DIAERE-

SIS also implements query optimization based on data statistics, our main contribution

lies in the intelligent data partitioning scheme implemented.

Implementing partitioning schemes. HAQWA [29] was the first approach that tried

to process RDF data on top of Apache Spark. Data allocation is performed based on a

two-step procedure. In the first step, hash-based partitioning is executed on the triple

subjects. This fragmentation ensures that star-shaped queries can be computed locally,
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but no guarantees are provided for other query types. In the second step, data are allocated

according to the analysis of frequent queries executed over the dataset. At query time,

the system decomposes a query pattern into a set of local sub-queries that can be locally

evaluated.

In SPARQLGX [40], RDF datasets are vertically partitioned. As such, a triple (s p o)

is stored in a file named p whose content keeps only s and o entries. By following this

approach, the memory footprint is reduced and the response time is minimized when

queries have bound predicates. As an optimization in query execution, triple patterns are

reordered based on data statistics.

S2RDF [91] presents an extended version of the classic vertical partitioning technique,

called ExtVP. Each ExtVP table is a set of sub-tables corresponding to a vertical partition

(VP) table. The sub-tables are generated by using right outer joins between VP tables.

More specifically, the partitioner pre-computes semi-join reductions for subject-subject

(SS), object-subject (OS) and subject-object (SO). For query processing, S2RDF uses Jena

ARQ to transform a SPARQL query to an algebra tree and then it traverses this tree to pro-

duce a Spark SQL query. As an optimization, an algorithm is used that reorders sub-query

execution, based on the table size and the number of bound variables.

Another work that is focusing on query processing is [73] that analyzes two distributed

join algorithms, partitioned join and broadcast join offering a hybrid strategy. More specif-

ically, the authors exploit a data partitioning scheme that hashes triples, based on their

subject, to avoid useless data transfer and use compression to reduce the data access cost

for self-join operations.

PRoST [28] stores RDF data twice, partitioned in two different ways, both as Vertical

Partitioning and Property Tables. It takes the advantage of both storage techniques with

the cost of additional storage overhead. Specifically, the advantage of the property tables,

when compared to the vertical partitioning, is that some joins can be avoided when some

of the triple patterns in a query share the same subject -star queries. It does not maintain

any additional indexes. SPARQL queries are translated into Join Tree format in which every

node represents the VP table or PT’s subquery’s patterns. It makes use of a statistics-based

query optimizer. The authors of PRoST report/show that PRoST achieves similar results

to S2RDF. More precisely, S2RDF outperforms in all query categories since its average exe-

cution times are better in all categories. In most of the cases (query categories), S2RDF is

three times faster than PRoST.

More recently, WORQ [65] presents a workload-driven partitioning of RDF triples. The

approach tries to minimize the network shuffling overhead based on the query workload.

It is based on bloom joins using bloom filters, to determine if an entry in one partition

can be joined with an entry in a different one. Further, the bloom filters used for the join

attributes, are able to filter the rows in the involved partitions. Then, the intermediate re-

sults are materialized as a reduction for that specific join pattern. The reductions can be
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Table 5.1: Characteristics of the Spark-based RDF systems.
System Query Processing Partitioning

S2X [90] Graph Iterations Default
Bahrami et al. [13] Pruning Query Space Default
P-Spar(k)ql [39] Parallel Query Plan Default

HAQWA [29] RDD API Hash / Query Aware
SPARQLGX [40] RDD API Vertical
S2RDF [91] Spark SQL Extended Vertical
Naacke et. al [73] Hybrid Hash-sbj
WORQ [65] Dataset API Workload Join Keys

S3QLRDF [43, 44] Spark SQL
Subset Property Table
& Vertical

DIAERESIS Spark SQL
Dependency Aware +
Vertical

computed in an online fashion and can be further cached in order to boost query perfor-

mance. However, this technique focuses on known query workloads that share the same

query patterns. As such, it partitions the data triples by the join attributes of each sub-

query received so far.

Finally, Hassan & Bansal [42–44] propose a relational partitioning scheme called Prop-

erty Table Partitioning that further partitions property tables into subsets of tables to min-

imize query input and join operations. In addition, they combine subset property tables

with vertical partitions to further reduce access to data. For query processing, an optimiza-

tion step is performed based on the number of bound values in the triple queries and the

statistics of the input dataset.

Comparison with DIAERESIS. The general goal of all approaches mentioned before

is to improve query performance by exploiting in-memory data parallelization. To this

purpose, most of the works end-up using simplistic vertical or horizontal partitioning

schemes. However, simplistic partitioning schemes do not succeed to reduce significantly

the data access on a query and to exploit the fact that usually many nodes are queried to-

gether. This has been recognized by latest works in the area, such as S2RDF [91], WORQ

[65] and S3QLRDF [43, 44]. WORQ is based on known workloads in order to keep together

nodes that are frequently accessed together, whereas is workload agnostic and works in-

dependently of the available workload. S2RDF keeps join reductions up to a data size

threshold, which is simple but not effective enough and can easily lead to a large storage

overhead. On the other hand, S3QLRDF approach is optimized for star queries, in essence,

pre-computing large fragments of star queries. However, the result tables are sparse con-

taining many NULL values which can on one hand significantly increase data size and on

the other hand introduce delays in query evaluation (in many complex queries as shown
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in [43] S3QLRDF falls behind S2RDF).

To the best of our knowledge, DIAERESIS is the only Spark-based system able to effec-

tively collocate data that are frequently accessed together, minimizing data access, keep-

ing a balanced distribution, while boosting query answering performance, without requir-

ing the knowledge of the query workload. An overview of all aforementioned approaches is

shown in Table 5.1, showing the query processing technology and the partitioning method

adopted. In addition, we added DIAERESIS in the last line of the table, to be able to directly

compare other approaches with it.

5.2 Identifying Centroids & Dependence (First-Level Partition)

To achieve efficient query answering, distributed systems attempt to parallelize the com-

putation effort required. Instead of accessing the entire dataset, targeting the specific data

items required for each computational node can further optimize query answering effi-

ciency. Among others, recent approaches try to accomplish this by employing data parti-

tioning methods in order to minimize data access at querying, or precomputing interme-

diate results so as to reduce the number of computational tasks. In this work we focus on

the former, providing a highly effective data partitioning technique.

Since query formulation is usually based on schema information, our idea for parti-

tioning the data starts there. The schema graph is split into sub-graphs, i.e., first-level par-

titions. Our partition strategy follows the K-Medoids method [51], selecting the most im-

portant schema nodes as centroids of the partitions, and assigning the rest of the schema

nodes to the centroid they mainly depend on in order to construct the partitions. Then we

assign the instances in the instance graph in the partition that they are instantiated under.

To identify the most important schema nodes, we exploit the Betweenness Centrality

in combination with the number of instances allocated to a specific schema node. Then,

we define dependence, which is used for assigning the remaining schema nodes (and the

corresponding instances) to the appropriate centroid in order to formulate the partitions.

Example 5.2.1 As a running example, Figure 5.1 presents a fragment from the LUBM ontol-

ogy and shows the three partitions that are formulated (k = 3). The first step is to select the

three most important schema nodes (the ones in boldface) as centrdois and then to assign to

each centroid, the schema nodes that depend on it. Based on this partitioning of the schema

graph, the individuals are assigned to the partitions that they are instantiated under. In the

sequel we present in detail the methods for identifying the most important schema nodes

and for calculating dependence.
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Figure 5.1: Dependence aware partitioning example for LUBM subset.

5.2.1 Importance Measure for Identifying Centroids in the Schema Graph

Many measures have been produced for assessing the importance of the nodes in a knowl-

edge graph and various notions of importance exist. When trying to group nodes from

an RDF dataset, that are frequently queried together, according to our past exploration on

centrality measures, the Betweenness Centrality (BC) has already shown an excellent per-

formance [78]. As the Betweenness Centrality was originally developed for generic graphs,

approaches focusing on the schema graph of RDF datasets, i.e. [105], adapted this mea-

sure by combing it with the number of instances that belong to a schema node. Following

the same idea, we initially identify the k most central schema nodes in a schema graph,

combining Betweenness Centrality with the number of their instances, calculating the Im-

portance Measure (IM) for each schema node.

In detail, the Betweenness Centrality of a schema node is equal to the number of the

shortest paths from all schema nodes to all others that pass through that schema node.

Formally:

Definition 13 (Betweenness Centrality) Let GS = (VS,ES) be an RDF schema graph with

VS nodes and ES edges. The Betweenness of a node ν ∈ VS is defined as:

BC(ν) =
∑
s,ν,t

σst(ν)
σst

(5.1)

where σst is the total number of shortest paths from node s to node t and σst(ν) is the number

of those paths that pass through ν.
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Calculating the Betweenness for all nodes in a graph requires the computation of the

shortest paths between all pairs of nodes. The complexity of the Brandes algorithm [22]

for calculating it, is O(|VS| × |ES|) for an RDF schema graph GS = (VS,ES).
As data distribution should also play a key role in estimating the importance of a schema

node [105], we combine the value of BC, with the number of instances of the correspond-

ing schema node in order to assess its importance. To do so, we normalize first the BC
value of each schema node ν on a scale between 0 and 1 using the following equation:

normalBC(ν) =
BC(ν) −minu∈VS(BC(u))

maxu∈VS(BC(u)) −minu∈VS(BC(u))
(5.2)

BC(ν) is the Betweenness Centrality value of a node ν ∈ VS,minu∈VS(BC(u)) andmaxu∈VS(BC(u))
are the minimum and the maximum BC value respectively in the schema graph. Similarly,

we normalize the number of instances for each schema node ν:

normalInst(ν) =
|ν| −minu∈VS(|u|)

maxu∈VS(|u|) −minu∈VS(|u|)
(5.3)

As such, the importance (IM) of each schema node is defined as the sum of the normal-

ized values of BC and the number of instances.

Definition 14 (Importance Measure) Let V =< GS,GI, λ, τc > be an RDF Dataset, GS =
(VS,ES). The Importance Measure of a schema node ν ∈ VS, i.e., the IM(ν), is defined as:

IM(ν) = normal(BC(ν)) + normaInst(ν)) (5.4)

For calculating the number of instances of all nodes, we should visit all instances once,

and as such the complexity of this part is O(|VI|). Overall, the complexity for calculating

IM for all schema nodes in an RDF dataset is O(|VI|) +O(|VS| × |ES|).

5.2.2 Assigning Nodes to Centroids using Dependence

Having a way to assess the importance of the schema nodes using IM, we are next inter-

ested in identifying how to split data into partitions, i.e., to which partition the remaining

schema nodes should be assigned. In order to define how dependent two schema nodes

are, we introduce the Dependence measure.

Our first idea in this direction comes from the classical information theory, where in-

frequent words are more informative than frequent ones. The idea is also widely used in

the field of instance matching [93]. The basic hypothesis here is that the greater the in-

fluence of a property on identifying a corresponding node, the fewer times the range of

the property is repeated. According to this idea, we define Cardinality Closeness (CC) as

follows:
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Definition 15 (Cardinality Closeness of two adjacent schema nodes) LetV =< GS,GI, λ, τc >
be an RDF dataset, GS = (VS,ES) and GI = (VI,EI). Let νk, νm ∈ VS be two adjacent schema

nodes connected through an edge e where λ(e) = p. The Cardinality Closeness of p(νk, νm),
namely the CC(p(νk, νm)), is defined as:

CC(p(νk, νm)) =


1+|VS |
|VS |

, when |vk| = 0
1+|VS |
|VS |

+ DistinctObjects(p(vk,vm))
|vk| , when |vk| , 0

(5.5)

where |VS| is the total number of nodes in the schema graph, andDistinctObjects(p(vk, vm))
is the number of distinct instances of vm connected with the instances of vk through p.

The constant 1+|VS |
|VS |

is added in order to have a minimum value for CC in case of no

available instances.

Example 5.2.2 Assume for example the schema nodes Person, Prof essor connected through

the property advisor. Moreover, there are instances of the theses two schema nodes connected

through the same property. Assume that there are ten instances of Person that are connected

through the property advisor with only two distinct instances of Prof essor. In essence, only

two professors advise 10 persons. We would like to calculate CC(advisor(Prof essor,Person))
knowing that the total number of schema nodes is |VS| = 20,DistinctObjects(advisor(Prof essor,
Person)) = 2 that are connected with the ten instances ofPerson. As suchCC(advisor(Prof essor,
Person)) = ((1 + 20)/20) + 2/ 10 = 1.05 + 0.2 = 1.25.

Having defined the Cardinality Closeness of two adjacent schema nodes, we proceed

further to identify the dependence. As such, we calculate the Dependence between two

schema nodes, combining their Cardinality closeness, the IM of the schema nodes and the

number of edges between them. Formally:

Definition 16 (Dependence between two schema nodes ) Let V =< GS,GI, λ, τc > be an

RDF dataset with GS = (VS,ES) be the RDF schema graph with VS schema nodes. The

dependence between two schema nodes νs, νe ∈ VS, i.e. Dependence(νs, νe), is defined as:

Dependence(νs, νe) =
1

|path(νs, νe)|2
∗

IM(νs) −
e∑

i=s+1

IM(νi)
CC(p(νi−1, νi))

 (5.6)

where minPath(vs, ve) is a minimum path between vs and ve.

Intuitively, as we move away from a node, the dependence becomes smaller by calcu-

lating the differences of IM across the path with the minimum distance in the graph. We

further penalize dependence, by dividing using the length of the path of the two nodes.

The highest the dependence of a path, the more appropriate the first node characterizes

the final node of the path, i.e., the final node of the path highly depends on the first one.
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Figure 5.2: DIAERESIS overview.

Example 5.2.3 Note also, that Dependence(νs, νe) is different than Dependence(νe, νs). For ex-

ample, Dependence(Publication, Book) ⩾ Dependence(Book, Publication). This is reason-

able, as the dependence of a more important node toward a less important one is higher

than the other way around, although they share the same cardinality closeness.

5.3 DIAERESIS Partitioning and Query Answering

Figure 5.2 presents an overview of the DIAERESIS architecture, along with its internal com-

ponents. Starting from the left side of the figure, the input RDF dataset is fed to the DI-

AERESIS Partitioner in order to partition it. For each one of the generated first-level parti-

tions, vertical partitions are created and stored in the HDFS. Along with the partitions and

vertical partitions, the necessary indexes are produced as well.

Based on the available partitioning scheme, the DIAERESIS Query Processor receives

and executes input SPARQL queries exploiting the available indexes. We have to note that

although schema information is used to generate the first-level partitions, in the sequel

the entire graph is stored in the system including both the instance and the schema graph.

In the sequel, we will analyze in detail the building blocks of the system.

5.3.1 The DIAERESIS Partitioner

This component undertakes the task of partitioning the input RDF dataset, initially into

first-level partitions, then into vertical partitions, and finally to construct the correspond-

ing indexes to be used for query answering. Specifically, the Partitioner uses the Depen-

dency Aware Partitioning (DAP) algorithm in order to construct the first-level partitions
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of data focusing on the structure of the RDF dataset and the dependence between the

schema nodes. In the sequel, based on this first-level partitioning, instances are assigned

to the various partitions, and the vertical partitions and the corresponding indexes are

created.

Dependency Aware Partitioning Algorithm

The Dependency Aware Partitioning (DAP) algorithm, given an RDF dataset V and a num-

ber of partitions k, splits the input dataset into k first-level partitions. The partitioning

starts from the schema and then the instances follow. The algorithm splits the schema

graph into sub-graphs, called first-level partitions, and then assigns the individuals in

the partitions that they are instantiated under. Specifically, it uses the Importance Mea-

sure (IM) for identifying the partition’s centroids, and the Dependence for assigning nodes

to the centroids where they belong. Depending on the characteristics of the individual

dataset (e.g. it might be the case that most of the instances fall under just a few schema

nodes), data might be accumulated into one partition, leading to data access overhead

at query answering, as large fragments of data should be examined. DAP tries to achieve

a balanced data distribution by reducing data access and maintaining a low replication

factor.

Algorithm 4 DAP(V, k)
Input: An RDF dataset V =< GS,GI, λ, τc >, the number of partitions k
Output: A set of partitions V1, ..., Vk.

1: for each schema node νi ∈ GS do
2: IMνi = caclulateImportance(GS, νi)
3: end for
4: topk = selectTopKNodes(IM, k)
5: for each schema node νi ∈ topk do
6: Vi = Vi ∪ νi
7: end for
8: for each schema node νi ∈ GS, νi < topk do
9: j = selectPartitionBalanced(νi, topk,GS)

10: Vj = VJ∪ schemaNodesInPathWithMaxDependence(νi, νj)
11: end for
12: for each schema node νi ∈ Vj, 1 ≤ j ≤ k do
13: Vj = Vj ∪ getNeighborsAndProperties(νi)
14: Vj = Vj ∪ instances(νi)
15: end for
16: return V1, ..., Vk

This is implemented in Algorithm 4, which starts by calculating the importance of all

schema nodes (lines 1-3) based on the importance measure (IM) defined in Section 5.2.1,

combining the betweenness centrality and the number of instances for the various schema
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nodes. Then, the k most important schema nodes are selected, to be used as centroids in

the formulated partitions (line 4). The selected nodes are assigned to the corresponding

partitions (lines 5-7). Next, the algorithm examines the remaining schema nodes in order

to determine to which partition they should be placed based on their dependency on the

partitions’ central nodes.

Initially, for each schema node, the dependence between the selected node and all

centroids is calculated by the selectPartionBalanced procedure (line 9). However, in order to

achieve a more balanced data distribution, the selectPartionBalanced procedure calculates

a space-bound for all partitions based on the number of triples in the dataset and the

number of partitions k. Until this bound is reached each partition is filled with the most

dependent schema nodes. Afterward, as this space bound is reached for a partition, the

procedure selects the next partition with enough space that maximizes the dependence

to allocate the selected schema node. Note that for calculating the space available, the

schema nodes along with the number of instances available for that nodes are assessed.

However, we are not only interested in placing the selected schema node to the identi-

fied partition, but we also assign to that partition, all schema nodes contained in the path

which connects the schema node with the selected centroid (line 10).

Then, we add the direct neighbors of all schema nodes in each partition along with the

properties that connect them (line 13). Finally, instances are added to the schema nodes

they are instantiated under (line 14). The algorithm terminates by returning the generated

list of first-level partitions (line 16) containing the corresponding triples that their subject

and object are located in the specific partitions.

Note that the aforementioned algorithm introduces replication (lines 12-15) that comes

from the edges/properties that connect the nodes located in the different partitions. Specif-

ically, besides allocating a schema node and the corresponding instances to a specific

partition, it also includes its direct neighbors that might originally belong to a different

partition. This step reduces access to different partitions for joins on the specific node.

Complexity. To identify the complexity of the algorithm, we should first identify the

complexity of the various components involved. Assume |VS| is the number of schema

nodes, |ES| is the number of edges of the schema graph, |VI| is the number of instances,

and |EI| are their connections. For identifying the cardinality closeness of the edges, we

should visit all instances’ edges once, hence the complexity of this step is O(|EI|). Then,

for calculating the betweenness centrality for all schema nodes, we use a Spark implemen-

tation [46] with complexity O(VS). Next, we have to sort all nodes according to their IM

and select the topk ones with cost O(|VS| × log|VS|). To calculate the dependence of each

node, we should visit each node once per selected node (O(k × |VS|)), whereas to identify

the path maximizing the dependence, we use the weighted Dijkstra algorithm with cost

O(|VS|
2). Finally, we should check once all instances for identifying the partitions to be

assigned with cost O(|EI|). Overall, the time complexity of the algorithm is polynomial
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O(|EI| + |ES| + |VS|) +O(|VS| × log|VS|) +O(k× |VS|) +O(|VS|
2) +O(|EI|) ⩽ O(|VS|

2 + |ES| + |EI|).

Vertical Partitioning

Besides first-level partitioning, the DIAERESIS Partitioner also implements vertical sub-

partitioning to further reduce the size of the data touched. Thus, it splits the triples of

each partition produced by the DAP algorithm, into multiple vertical partitions, one per

predicate, generating one file per predicate. Each vertical partition contains the subjects

and the objects for a single predicate, enabling at query time a more fine-grained selection

of data that are usually queried together. The vertical partitions are stored as parquet files

in HDFS (see Figure 5.2). A direct effect of this choice is that when looking for a specific

predicate, we do not need to access the entire data of the first-level partition storing this

predicate, but only the specific vertical partition with the related predicate. As we shall

see in the sequel, this technique minimizes data access, leading to faster query execution

times.

Number of First-Level Partitions

As already presented in Section 5.3.1, the DAP algorithm receives as an input the number

of first-level partitions (k). This determines data placement and has a direct impact on the

data access for query evaluation and the replication factor.

Based on the result data placement, as the number of partitions increases, the triples

in the dataset might increase as well due to the replication of the triples that have do-

main/range in different partitions.

Theorem 1 LetV =< GS,GI, λ, τc >be an RDF dataset andGS = (VS,ES). Let alsoDAP(V, k) =
V1, ...,Vk, the various partitions generated by the DAP algorithm forV and k, and let |DAP(V, k)| =∑k

i=1 triples(Vi) be the number of triples in the partitions of DAP(V, k). Then it holds that

|DAP(V, k)| ≤ |DAP(V, k + 1)|.

Proof. The theorem is immediately proved by construction (Lines 12-15 of the algo-

rithm) as increasing the k will result in more schema nodes being split between the in-

creased number of partitions, replicating all instances that span across the partitions.

Interestingly, as the number of first-level partitions increases, the average number of

data items located in each partition is reduced or at least stays the same since there are

more partitions for data to be distributed in. Further, the data in the vertical sub-partitions

decreases as well, i.e., even though the total number of triples might increase, on average,

the individual subpartitions of DAP(V, k + 1) contain less data than the individual subpar-

titions of DAP(V, k).
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Theorem 2 LetV =< GS,GI, λ, τc >be an RDF dataset andGS = (VS,ES). Let alsoDAP(V, k) =
V1, ...,Vk, and Bm be the vertical sub-partitions of DAP(V, k), Bm ∈ Vi, 1 ≤ i ≤ k. Further let

DAP(V, k + 1) = V1, ...,Vk+1, and Bn be the vertical sub-partitions of DAP(V, k + 1), Bn ∈ Vj,

1 ≤ j ≤ k + 1. Then it holds that AVGBm∈Vi(triples(Bm)) ≥ AVGBn∈Vj(triples(Bn)).

Proof. In order to prove this theorem, assume a partitioning for an RDF dataset V =<
GS,GI, λ, τc >, produced by DAP(V, k) splitting V into V1, ...,Vk and let Bm be the vertical

sub-partitions distributed in the various partitions. For the vertical sub-partitions we don’t

know a priori their exact number, however, we know that for every predicate of the schema

nodes in a first-level partition, we have one vertical sub-partition. In this layout for exam-

ple we have |VS| schema nodes distributed in the k partitions and we can assume that there

are p non-distinct predicates in the k partitions. As such we can safely assume that for Bm
it holds that 1 ≤ j ≤ p. Assume now a random schema node SC in the partition Vi, 1 ≤ i ≤ k.

SC is the domain of z properties which leads into z vertical sub-partitions for SC. Note that

other schema nodes might exist sharing the same predicates as SC. As such, in the verti-

cal sub-partitions of SC, instances of other schema nodes might also exist. Next assume

that we run the DAP algorithm for k + 1, increasing by one the number of the partitions

to be produced. Now DAP(V, k + 1) splits V into V1, ...,Vk+1 first-level partitions. In the

new configuration, the centroids of the V1, ...,Vk partitions are exactly the same as in the

DAP(V, k), however now we select the k + 1 schema node with the highest IM to be placed

as the centroid of the Vk+1 partition. Now we distinguish the following two cases:

1. SC is placed in a partition where more schema nodes have one or more of the same

predicates as SC. In this case, the number of triples of the vertical sub-partitions in-

creases as more triples are added by the other schema nodes which have the same

properties. However, although this happens locally, the schema node that is now in

the same partition as SC is removed from the partition it was in the DAP(V, k) con-

figuration. So when compared to the DAP(V, k) configuration, in total the overall

number of triples for the sub-partitions of the same properties is not increased. On

the contrary, as the partitioning is refined, and schema nodes are split into different

partitions the number of triples appearing in the sub-partitions is gradually reduced.

Specific attention should be paid here on cut-edges as they will introduce replication

in the vertical sub-partitions. Still, in that case, the number of instances is at most

doubled for each cut-edge; however, the average number of instances in the two ver-

tical sub-partitions generated because of that is reduced in half, which shows why

our theorem still holds.

2. SC is placed in a partition where fewer or the same schema nodes have one or more

of the same predicates as SC. In this case, the number of triples of the vertical sub-

partitions for SC is reduced or at least stays the same as in the DAP(V, k).
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The aforementioned theorem has a direct impact on query evaluation as it actually

tells us that if we increase k, the average data stored in the vertical sub-partitions, will

be reduced or at least stay the same. This is verified also in the experimental evaluation

(Section 5.4.2) showing the direct impact of k on both data replication and data access and

as a result in query efficiency.

Indexing

Next, in order to speed up the query evaluation process, we generate appropriate indexes,

so that the necessary sub-partitions are directly located during query execution. Specifi-

cally, as our partitioning approach is based on the schema of the dataset and data is parti-

tioned based on the schema nodes, initially, we index for each schema node the first-level

partitions (Class Index) it is primarily assigned to and also the vertical partitions (VP Index)

it belongs. For each instance, we index also the schema nodes under which it is instanti-

ated (Instance Index). The VP Index is used in case of a query with unbound predicates, in

order to identify which vertical partitions should be loaded, avoiding searching all of them

in a first-level partition.

The aforementioned indexes are loaded in the main memory of Spark as soon as the

query processor is initialized. Specifically, the Instance Index, and the VP Index are stored

in the HDFS as parquet files and loaded in the main memory. The Class Index is stored

locally (txt file) since the size of the index/file is usually small and is also loaded in main

memory at query processor initialization.

Example 5.3.1 Figure 6.3 presents example indexes for our running example. Assuming

that we have five instances in our dataset, the Instance Index, shown in the figure (left), in-

dexes for each instance the schema node to which it belongs. Further, the Class Index records

for each schema node the first-level partitions it belongs, as besides the one that is primar-

ily assigned, it might also be allocated to other partitions as well. Finally, the VP Index

contains the vertical partitions that the schema nodes are stored into (for each first-level

partition). For example, the schema node Organization (along with its instances) is located

in Partition-2 and specifically its instances are located in the vertical partitions affiliatedOf,

orgPublication and rdfs:subClassOf.

5.3.2 Query Processor

In this section, we focus on the query processor module, implemented on top of Spark.

An input SPARQL query is parsed and then translated into an SQL query automatically. To

achieve this, first, the Query Processor detects the first-level and vertical partitions that

should be accessed for each triple pattern in the query, creating a Query Partitioning In-

formation Structure. This procedure is called partition discovery. Then, this Query Parti-
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Figure 5.3: Instance, Class and VP indexes for our running example.

tioning Information Structure is used by the Query Translation procedure, to construct the

final SQL query. Our approach translates the SPARQL query into SQL in order to benefit

from the Spark SQL interface and its native optimizer which is enhanced to offer better

results.

Partition Discovery

In the partition discovery module, we create automatically an index of the partitions that

should be accessed for answering the input query, called Query Partitioning Information

Structure. Specifically, we detect the fist-level partitions and the corresponding vertical

partitions that include information to be used for processing each triple pattern of the

query, exploiting the available indexes.

The corresponding algorithm, shown in Algorithm 5, takes as input a query, the indexes

(presented in Section 5.3.1), and statistics on the size of the first-level partitions estimated

during the partitioning procedure and returns an index of the partitions (first-level and

vertical partitions) that should be used for each triple pattern.

The algorithm starts by initializing the variables queryIndex.Partitions, queryIndex.VP
used for storing the first-level and the vertical partitions and the variablesTypeswhich keeps

track of the types (rdf:type) of the variables in the various triple patterns (line 1). Then it

extracts from the input query all triple patterns in a list (line 2).

For each triple pattern the following variables are initialized (line 4): nodeClasses stores

the schema nodes identified for the specific triple pattern since they lead to the first-level

partitions, partitions stores the list of the first-level partitions that could be associated to a

triple patter and f inalPart is the first-level partition finally selected for that triple pattern.

While parsing each triple pattern, the node URIs (nodeURIs) and the variables (var) are

extracted from the subject or object positions of the triple (lines 5-6). If the predicate of the

current triple pattern is rdf:type and its object is an URI, then the nodeClasses of this triple

pattern is that URI (line 8) since the object is a schema node. Moreover, if the subject of

this triple pattern is a variable, we should remember that this variable refers to specific
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Algorithm 5 Partition Discovery(query, classIndex, instanceIndex, VPIndex, stats)
Input: query, the classIndex, the instanceIndex, the VPIndex, Statistics stats about each partition
Output: queryIndex

1: queryIndex.Partitions = queryIndex.VP = variablesTypes = ∅
2: triplePatterns = extractTriplePatterns(query)
3: for each tpi : p(vi.1, vi.2) ∈ triplePatterns do
4: nodeClasses = partitions = fPartartition = ∅
5: nodeURIs = f indURI(vi.1, vi.2) ▷Extracts available URIs
6: vars = f indVariable(vi.1, vi.2) ▷Extracts available variables
7: if p == rdf:type & vi.2 ∈ nodeURIs then
8: nodeClasses = {vi.2}
9: if vi.1 ∈ vars then

10: variablesTypes = variablesTypes ∪ {vi.1 → nodeClasses}
11: end if
12: else
13: nodeClasses = getSchemaNodes(nodeURIs, variablesTypes, instanceIndex)
14: end if
15: for each class ∈ nodeClasses do
16: partitions = partitions ∪ classIndex[class]
17: end for
18: f inalPart = smallestPartition(partitions, stats)
19: queryIndex.Partitions = queryIndex.Partitions ∪ {tpi → fPartartition}
20: if isVariable(p) then
21: queryIndex.VP = queryIndex.VP∪ {tpi → VPIndex[nodeClasses]}Unbound Predicate
22: else
23: queryIndex.VP = queryIndex.VP∪ {tpi → p}
24: end if
25: end for
26: return queryIndex

schema nodes and as such the association between the variable and the schema nodes is

added to the variablesTypes (line 10). This is happening as every triple pattern that shares

this variable should be mapped to the same partition, as it refers to the same schema node.

Overall, for each triple pattern we identify a list of schema nodes based on the available

URIs and the variables in it. We exploit variablesTypes for keeping track the variables with

known types already. When the URIs (uri) do not correspond to schema nodes, the In-

stance Index is used to obtain the schema nodes that the instances are instantiated under

(line 13). Then, by using the Class Index, we obtain the corresponding partitions (partitions)
that can be used for that triple pattern (lines 15-17). Based on statistics stored during the

partitioning procedure, the smallest partition is selected for the specific triple pattern (line

18) and is added in the queryIndex.Partitions structure (line 19).

A step further, the triple pattern is located in the vertical partition identified by the

predicate of the triple pattern (lines 20-24). Specifically, in the case that the predicate of
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the triple pattern is a variable (we have an unbound predicate), the VP Index is used to

obtain the set of vertical partitions based on the schema nodes (nodeClasses) that we have

already identified for that triple pattern (line 21). Otherwise, the predicate is added in the

queryIndex.VP since it specifies the vertical partition in which the triple pattern is located

(line 23). Finally, Query Partitioning Information Structure is returned (line 26) consisting

of the structures queryIndex.Partitions and queryIndex.VP that include information about

the fist-level and vertical partitions that each triple pattern can be located at.

Figure 5.4: Constructing Query Partitioning Information Structure.

Example 5.3.2 The creation of Query Partitioning Information Structure for a query is a

three-step process depicted in Figure 5.4. On the left side of the Figure, we can see the four

triple patterns of the query. The first step is to map every triple pattern to its correspond-

ing schema nodes. If a triple pattern contains an instance then the Instance Index is used

to identify the corresponding schema nodes. Next by using the Class Index (Figure 6.3), we

find for each schema node the partitions where it is located in (Partitions IDs in Figure 5.4).

Finally we select the smallest partition in terms of size, for each schema node based on statis-

tics collected for the various partitions. For example, for the second triple pattern (FORTH

orgPublication ?y) we only keep the partition 2 since it is smaller than partition 3. For each

one of the selected partitions, we finally identify the vertical partitions that should be ac-

cessed, based on the predicates of the corresponding triple patterns. In case of an unbound

predicate, such as in the third triple pattern of the query (FORTH ?p ?x) in Figure 5.4, the VP

Index is used to identify the vertical partitions in which this triple pattern could be located

based on its first-level partition (Partition ID:2). The result Query Partitioning Information

Structure for our running example is depicted on the right of Figure 5.4.

Query Translation & Optimization

In order to produce the final SQL query, each triple pattern is translated into one SQL sub-

query. Each one of those sub-queries specifically involves a vertical sub-partitioning table

based on the predicate name - the table name in the ”FROM” clause of the SQL query.
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For locating this table the Query Partitioning Information Structure is used. Afterward, all

sub-queries are joined using their common variables.

Finally, in order to optimize query execution we disabled default query optimization

by Spark as in many cases the returned query plans were not efficient and we implemented

our own optimizer. Our optimizer exploits statistics recorded during the partitioning phase,

to push joins on the smallest tables - in terms of rows - to be executed first, further boost-

ing the performance of our engine. The query translation and optimization procedures

are automatic procedures performed at query execution.

Figure 5.5: Query Translation.

Example 5.3.3 In Figure 5.5, an example is shown of the query processor module in action.

The input of the translation procedure is the Query Partitioning Information Structure of

Figure 5.4. Each triple pattern is translated into an SQL query, based on the corresponding

information for the first-level and vertical partitions (SQL Sub-Queries in Figure 5.5) that

should be accessed. The name of the table of each SQL query is the concatenation of the first-

level and the vertical partitions. In case of an unbound predicate, such as the third triple

pattern, the sub-query asks for more than one table based on the vertical partitions that exist

in the Query Partitioning Information Structure for the specific triple pattern. Finally, sub-

queries are reordered by the DIAERESIS optimizer that pushes joins on the smallest tables to

be executed first - in our example the p3 type is first joined with p2 orgPublication.

5.4 Evaluation

In this section, we present the evaluation of our system. We evaluate our approach in com-

parison to three query processing systems based on Spark, i.e., SPARQLGX [40], S2RDF

[91], and WORQ [65], using two real-world RDF datasets and four versions of a synthetic

dataset, scaling up to 1 billion triples.
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5.4.1 System Setup

LUBM. The Lehigh University Benchmark (LUBM) [41] is a widely used synthetic bench-

mark for evaluating semantic web repositories. For our tests, we utilized the LUBM syn-

thetic data generator to create four datasets of 100, 1300, 2300, and 10240 universities

(LUBM100, LUBM1300, LUBM2300, LUBM10240) occupying 2.28 GB, 30.1 GB, 46.4 GB,

223.2 GB, and consisting of 13.4M triples, 173.5M triples, 266.8M triples, and 1.35B triples

respectively. LUBM includes 14 classes and 18 predicates. We used the 13 queries pro-

vided by the benchmark for our evaluation, each one ranging between one to six triple

patterns. We classify them into three categories, namely, star, chain, snowflake, and com-

plex queries.

SWDF. The Semantic Web Dog Food (SWDF) [70] is a real-world dataset containing Se-

mantic Web conference metadata about people, papers, and talks. It contains 126 classes,

185 predicates, and 304,583 triples. The dataset occupies 50MB of storage. To evaluate

our approach, we use a set of 278 BGP queries generated by the FEASIBLE benchmark

generator [88] based on real query logs. In the benchmark workload, all queries include

unbound predicates. Although our system is able to process them, no other system was

able to execute them. As such, besides the workload with the unbound predicates (noted

as SWDB(u)), we also replaced the unbound predicates with predicates from the dataset

(noted as SWDF(b)) to be able to compare our system with the other systems, using the

aforementioned workload.

DBpedia. Version 3.8 of DBpedia, contains 361 classes, 42,403 predicates, and 182,781,038

triples. The dataset occupies 29.1GB of storage. To identify the quality of our approach, we

use a set of 112 BGP queries generated again by the FEASIBLE benchmark generator based

on real query logs. As it is based on real query logs the query workload here is closer to the

queries of real users instead of focusing on the system’s choke points - usually the focus

in synthetic benchmarks. As such they contain a smaller number of triple patterns as re-

ported also by relevant papers in the domain [19].

All information about the datasets is summarized in Table 5.2. Further, all workloads

along with the code of the system are available in our GitHub repository1.

Setup

Our experiments were conducted using a cluster of 4 physical machines that were running

Apache Spark (3.0.0) using Spark Standalone mode. Each machine has 400GB of SSD stor-

age, and 38 cores, running Ubuntu 20.04.2 LTS, connected via Gigabit Ethernet. In each

machine, 10GB of memory was assigned to the memory driver, and 15GB was assigned

to the Spark worker for querying. For DIAERESIS, we configured Spark with 12 cores per

1https://github.com/isl/DIAERESIS

https://github.com/isl/DIAERESIS
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Table 5.2: Dataset Statistics
Dataset #Triples Size (.nt) #Classes #Predicates
LUBM 100 13,405,381 2.28 GB 14 18
LUBM 1300 173,546,369 30.1 GB 14 18
LUBM 2300 266,814,882 46.4 GB 14 18
LUBM 10240 1,340,300,979 223.2 GB 14 18
SWDF 304,583 49.2 MB 126 185
DBpedia 182,781,038 29.1 GB 361 42,403

worker (to achieve a total of 48 cores), whereas we left the default configuration for other

systems.

Competitors

Next, we compare our approach with three state-of-the-art query processing systems based

on Spark, i.e., the SPARQLGX [40], S2RDF [91], and WORQ [65]. In their respective pa-

pers, these systems have been shown to greatly outperform SHARD, PigSPARQL, Sem-

pala and Virtuoso Open Source Edition v7 [91]. We also made a consistent effort to get

S3QLRDF [43, 44] in order to include it in our experiments, however access to the system

was not provided.

SPARQLGX implements a vertical partitioning scheme, creating a partition in HDFS for

every predicate in the dataset. the experiments we use the latest version of SPARQLGX 1.1

that relies on a translation of SPARQL queries into executable Spark code that adopts eval-

uation strategies to the storage method used and statistics on data. S2RDF, on the other

hand, uses Extended Vertical Partitioning (ExtVP), which aims at table size reduction,when

joining triple patterns as semijoins are already precomputed. In order to manage the ad-

ditional storage overhead of ExtVP, there is a selectivity factor (SF) of a table in ExtVP, i.e.

its relative size compared to the corresponding VP table. In our experiments, the selectiv-

ity factor (SF) for ExtVP tables is 0.25 which the authors propose as an optimal threshold

to achieve the best performance benefit while causing only a little overhead. Moroever,

the latest version of S2RDF 1.1 is used that supports the use of statistics about the tables

(VP and ExtVP)) for the query generation/evaluation. Finally, WORQ [65](version 0.1.0) re-

duces sets of intermediate results that are common for certain join patterns, in an online

fashion, using Bloom filters, to boost query performance.

Regarding compression, all systems use parquet files to store VP (ExtVP) tables that

enable better compression, and also WORQ uses dictionary compression.

DIAERESIS, S2RDF, and WORQ exploit the caching functionality of Spark SQL. As such,

we do not include caching times in our reported query runtimes as it is a one-time oper-

ation not required for subsequent queries accessing the same table. SPARQLGX, on the
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other hand, loads the necessary data for each query from scratch so the reported times in-

clude both load time and query execution times. Further, we experimentally determined

the number of partitions k that achieves an optimal trade-off between storage replication

and query answering time. More details about the number of first-level partitions and

how it affects the efficiency of query answering and the storage overhead can be found

in Section 5.4.2. As such LUBM 100, LUBM 1300, LUBM 2300, and SWDF were split into

4 first-level partitions, LUBM 10240 into 10 partitions, and DBpedia into 8 partitions. Fi-

nally, note that a time-out of one week was selected for all the experiments, meaning that

after one week without finishing the execution, each individual experiment was stopped.

Table 5.3: Preprocessing Dimensions.
System Preprocessing Time Output Storage Replication Factor

LUBM 100 (13.4M triples)
SPARQLGX 0.73 min 101.52 MB 0.33
S2RDF 8.21 min 332.3 MB 1.10
WORQ 2.16 min 73.19 MB 0.24
DIAERESIS 8.12 min 336.07 MB 1.12

LUBM 1300 (173.5M triples)
SPARQLGX 4.91 min 1.48 GB 0.35
S2RDF 25.76 min 4.39 GB 1.05
WORQ 21.71 min 0.86 GB 0.21
DIAERESIS 124.31 min 4.74 GB 1.14

LUBM 2300 (266.8M triples)
SPARQLGX 7.55 min 2.30 GB 0.35
S2RDF 36.63 min 6.84 GB 1.06
WORQ 33.96 min 1.32 GB 0.21
DIAERESIS 130.07 min 6.89 GB 1.06

LUBM 10240 (1.35 billion triples)
SPARQLGX 64.6 min 12.42 GB 0.38
S2RDF 175.61 min 33.99 GB 1.04
WORQ 275.49 min 9.54 GB 0.29
DIAERESIS 187.44 min 44.32 GB 1.36

SWDF (304K triples)
SPARQLGX 0.45 min 5.38 MB 0.40
S2RDF 15 min 44.58 MB 3.31
WORQ 2.3 min 6.05 MB 0.45
DIAERESIS 2.5 min 11.59 MB 0.86

DBpedia (182M triples)
SPARQLGX 3.7 min 3.7 GB 0.41
S2RDF Timeout - -
WORQ Timeout - -
DIAERESIS 273.56 min 16.7 GB 2.41
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Preprocessing

In the preprocessing phase, the main dimensions for evaluation are the time needed to

partition the given dataset and the storage overhead that every system introduces in terms

of the Replication Factor (RF). Specifically, RF is the number of copies of the input dataset

each system outputs in terms of raw compressed parquet file sizes. Table 5.3 presents the

results for the various datasets and systems.

Preprocessing time. Focusing, initially, on the time needed for each system to parti-

tion the dataset, we can observe that SPARQLGX has almost in all cases the fastest pre-

processing time. This is due to the fact that it implements the most naive preprocessing

procedure, as it aggregates data by predicates and then creates a compressed folder for ev-

ery one of these predicates. However, exactly due to this simplistic policy, large fragments

of data are required for query answering as we will show in Section 5.4.2. S2RDF partitions

13.4M triples (LUMB 100) faster than 304K (SWDF) ones. This happens as LUBM, being

a synthetic dataset, has only 18 predicates, compared to SWDF which has 185. Regarding

preprocessing time for the other LUBM datasets, S2RDF shows an almost linear increase.

In the case of DBpedia, which has 42,403 predicates and is relatively big, both S2RDF and

WORQ fail to preprocess it. More precisely, S2RDF was returning an error failing to process

the complex structure of DBpedia, whereas the WORQ preprocessing stage was running

for more than a week without returning results. Besides DBpedia, WORQ has relatively

good preprocessing time for the remaining datasets showing also an almost linear increase

in preprocessing time as the data grow. DIAERESIS requires more preprocessing time to

finish, since it employs a more sophisticated algorithm. However, it is not stalled by com-

plex datasets, such as WORQ and S2RDF. Nevertheless preprocessing is a task that is only

executed once and offline for all systems before starting to answer queries.

Replication. By further examining the results shown in Table 5.3, SPARQLGX has no

replication overhead since, as already explained, it is implementing a naive vertical parti-

tioning schema. In fact, as information is omitted from the generated vertical partitions

(i.e. the predicates), the result dataset is even smaller than the input. S2RDF, on the other

hand, precomputes both the VP tables and every other possible semi-join combination

of the dataset (up to a limit). This results in storage overhead. Regarding WORQ, again

the result of preprocessed data is smaller than the initial dataset since it uses dictionary

compression.

Looking at Table 5.3, for the LUBM datasets, the replication factor of SPARQLGX is

around 0.35, for WORQ ranges between 0.21 and 0.29, for S2RDF is around 1.05, whereas

for our approach it ranges between 1.05 and 1.36.

For the SWDF dataset, we see that SPARQLGX and WORQ have a replication factor of

around 0.4, S2RDF has a replication factor of 3.31 due to the big amount of predicates con-

tained in the dataset, whereas our approach has 0.86, achieving a better replication factor
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than S2RDF in this dataset, however falling behind the simplistic partitioning methods

of SPARQLGX. That is, placing dependent nodes together, sacrifices storage overhead, for

drastically improving query performance.

Overall, SPARQLGX wins in terms of preprocessing time in most of the cases due to its

simplistic partitioning policy, however with a drastic overhead in query execution as we

shall see in Section 5.4.2. On the other hand, S2RDF and WORQ fail to finish partitioning

on a complex real dataset.

Nevertheless, we argue that preprocessing is something that can be implemented of-

fline without affecting overall system performance and that a small space overhead is ac-

ceptable for improving query performance.

5.4.2 Query Execution

Next, we evaluate the query execution performance for the various systems. The times

reported are the average of 10 executions of each set of queries. Note that the times pre-

sented concern only the execution times for DIAERESIS, S2RDF, and WORQ (as they use

the cache to pre-load data), whereas for SPARQLGX include both loading and execution

times as these steps cannot be separated in query answering.

Figure 5.6: Query execution for LUBM datasets and systems.
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LUBM

In this experiment, we show how the performance of the systems changes as we increase

the dataset size using the four LUBM datasets - ranging from 13 million to 1.35 billion

triples.

Figure 5.6 compares the average query execution time of different systems for the LUBM

datasets. We can observe that in all cases, our system strictly dominates the other systems.

More importantly, as the size of the dataset increases, the difference in the performance

between DIAERESIS and the other systems increases as well. Specifically, our system is

one order of magnitude faster than all competitors for LUBM100 and LUBM10240. For

LUBM1300, DIAERESIS is two times faster than the most efficient competitor, whereas for

LUBM2300, DIAERESIS is 40% faster than the most efficient competitor.

DIAERESIS continues to perform better than the other systems in terms of average

query execution time across all versions, enjoying the smallest increase in execution times,

compared to the other systems, as the dataset grows. For the largest dataset, i.e., LUBM10240,

our system outperforms the other systems, being almost three times faster than the most

efficient competitor. This demonstrates the superiority of DIAERESIS in big datasets. We

conclude that as expected, the size of the dataset affects the query execution performance.

Generally, SPARQLGX has the worst performance since it employs a really naive partition-

ing scheme, followed by S2RDF and WORQ - only in LUBM1024, WORQ is better than

S2RDF. In contrast, the increase in the dataset size has the smallest impact for DIAERESIS,

which dominates competitors.

Query Categories. Next, we study separately the four types of queries available, i.e.,

star, chain, snowflake, and complex queries. Their execution times are presented in Fig-

ure 5.7. Regarding star queries, we notice that for all LUBM datasets, DIAERESIS has the

best performance followed by S2RDF, WORQ, and in the end SPARQLGX with a major dif-

ference. S2RDF performs better than WORQ due to the materialized join reduction tables

since it uses fewer data to answer most of the queries than WORQ, as we will see in Section .

Since our system places together dependent fragments of data that are usually queried to-

gether, it is able to reduce data access for query answering, performing significantly better

than competitors.

For chain queries (Figure 5.7), the competitors perform quite well except for SPAR-

QLGX which performs remarkably worse. More precisely, S2RDF performs slightly better

than WORQ except for the LUBM100, the smallest LUBM dataset, where the difference is

negligible. Still, DIAERESIS delivers a better performance than the other systems in this

category for all LUBM datasets.

The biggest difference between DIAERESIS and the competitors is observed in com-

plex queries for all LUBM datasets (Figure 5.7). Our system is able to lead to significantly

better performance, despite the fact that this category contains the most time-demanding
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Figure 5.7: Query execution for (a) LUBM 100, (b) LUBM 1300, (c) LUBM 2300, (d)
LUBM 10240

queries, with the bigger number of query triple patterns, and so joins. The difference in the

execution times between our system and the rest becomes larger as the size of the dataset

increases. S2RDF has the second better performance followed by WORQ and SPARQLGX

in LUBM100, LUBM1300 and LUBM2300. However in LUBM10240 S2RDF comes third

since WORQ is quite faster and SPAQGLGX is the last one. S2RDF performs better than

WORQ due to the materialized join reduction tables since S2RDF uses fewer data to an-

swer the queries than WORQ in all cases However, as the data grow, i.e., in LUBM10240,

the complex queries with many joins, perform better in WORQ than S2RDF due to the

increased benefit of the bloom filters.

Finally, in snowflake queries, again we dominate all competitors, whereas S2RDF in

most cases comes second, followed by WORQ and SPAQLGX. Only in the smallest dataset,

i.e. LUBM100, WORQ has a better performance. Again SPARQLGX has the worst perfor-

mance in all cases.

The value of our system is that it reduces substantially the accessed data in most of the

cases as it is able to retain the same partition dependent schema nodes that are queried

together along with their corresponding instances. This will be subsequently presented in

the section related to the data access reduction.

Individual Queries. Examining closely the individual queries and their execution times
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Figure 5.8: Query execution for (a) LUBM 100, (b) LUBM 1300, (c) LUBM 2300, (d)
LUBM 10240

(Figure 5.8), for the star queries, DIAERESIS dominates other systems in all star queries for

all LUBM datases. On the other hand, S2RDF wins WORQ in all LUBM datesets, except

LUBM100 that it performs worse in five queries out of the total six star queries - except Q4

which is the only one in this category that has three joins while the others have one join.

Regarding chain queries, DIAERESIS outperforms the competitors on all individual

chain queries, except Q13 in LUBM1300, LUBM2300 and LUBM 10240 where S2RDF is

slightly better. This happens as S2RDF has already precomputed the two joins required

for query answering and as such despite the fact that DIAERESIS loads fewer data (accord-

ing to Fig. 5.9) the time spent in joining those data is higher than just accessing a bigger

number of data. For Q6, WORQ performs better than S2RDF in all LUBM datasets. How-

ever, for Q14, S2RDF wins WORQ in LUBM1300, LUBM230, and slightly in LUBM10240,

while WORQ is significantly faster than S2RDF in LUBM100.

Complex and snowflake queries put a heavy load on all systems since they consist of

many joins (3-5 joins). DIAERESIS continues to demonstrate its superior performance and

scalability since it is faster than competitors to all individual queries for all LUBM datasets.

Competitors on the other hand do not show stability in their results. S2RDF comes sec-

ond followed by WORQ and then SPARQLGX, in terms of execution time for most of the

queries of the complex category, except LUBM10240. Specifically, for the biggest LUBM
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dataset, WORQ wins S2RDF in all complex queries apart from one. In the snowflake cate-

gory, WORQ is better in LUBM100 and in LUBM10340 but not in the rest.

Data Access Reduction. Moving to explain the large performance improvement of

our system, we present next the percentage of the reduction in the size of the data ac-

cessed for query answering for all systems when compared to DIAERESIS for each query

for LUBM10240 (refer to Figure 5.9).

To evaluate data access reduction we use the following formula:

Data Access Reduction = 100 ∗ (# rows accessed by Competitor − # rows accessed by DIAERESIS)
# rows accessed by Competitor

(5.7)

The formula calculates the percentage of the difference between the total rows ac-

cessed by the competitors and the total rows accessed by DIAERESIS for each query. The

rows can be easily measured by summing the number of rows of all the vertical partition

tables loaded/used for answering a query.

We only present LUBM10240 as the graphs for the other versions are similar. As shown,

our system consistently outperforms all competitors, and in many cases to a great ex-

tent. DIAERESIS accesses 99% less data than WORQ for answering Q4, whereas for many

queries the reduction is over 90%. For S2RDF on the other hand, the reduction in most of

the cases is more than 60%. In only one case (Q12), our system loads 8.12% more data than

Figure 5.9: Reduction of Data Access for LUBM10240
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S2RF, as the reduction tables used by S2RDF are smaller than the subpartitions loaded by

DIAERESIS. However, even at that case, DIAERESIS performs better in terms of query exe-

cution time due to the most effective query optimization procedures we adopt, as shown

already in Figure 5.8. Note that although in five cases the data access reduction of S2RDF,

WORQ and SPARQLGX when compared to DIAERESIS seems to be the same (Q1, Q3, Q10,

Q6, Q14) as shown in Figure 5.9, S2RDF performs better that WORQ and SPARQLGX due

to the query optimization it performs. Regrading SPARQLGX, in the most of the cases, the

percentage of the reduction is over 80%, and in many cases over 90%.

Overall we can conclude that DIAERESIS boosts query performance, while effectively

reducing the data accessed for query answering.

Real-World Datasets

Figure 5.10: Query execution for Real-World Datasets and systems

Apart from the synthetic LUBM benchmark datasets, we evaluate our system against

the competitors over two real-world datasets, i.e., SWDF (unbound and bound) and DB-

pedia (Figure 5.10).

As already mentioned, no other system is able to execute queries with unbound pred-

icates (i.e., SWDF(u)) in Figure 5.10), whereas for the SWDF workload with bound pred-

icates (277 queries) (i.e., SWDF(b) in Figure 5.10) our system is one order of magnitude

faster than competitors. WORQ was not able to execute star queries (147 queries) in this
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dataset, since the triples of star queries for this specific dataset should be joined through

constants instead of variables as usual. Regarding DBpedia (Figure 5.10), both S2RDF and

WORQ failed to finish the partitioning procedure due to the large number of predicates

contained in the dataset and the way that the algorithms of the systems use this part.

Query Categories. Examining each query category in Figure 5.11, we can verify again

Figure 5.11: Query execution for (a) SWDF(p), (b) DBpedia

that DIAERESIS strictly dominates other systems in all query categories as well. More

specifically, DIAERESIS is one order of magnitude faster in star and complex queries than

the fastest competitor able to process these datasets. The SWDF workload did not con-

tain complex queries, whereas for the DBpedia dataset for complex queries, DIAERESIS is

again one order of magnitude faster than SPARQLGX.

Overall, the evaluation clearly demonstrates the superior performance of DIAERESIS

in real datasets as well, when compared to the other state-of-the-art partitioning systems,

for all query types. DIAERESIS does not favour any specific query type, achieves consistent

performance, dominating all competitors in all datasets.

Impact of the number of the first-level partitions

In this subsection, we experimentally investigate the influence of the number of first-level

partitions on storage overhead, data access for query evaluation, and query efficiency ver-

ifying the theoretical results presented in Section 5.3.1.
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Table 5.4: Comparing DIAERESIS and competitors for different number of first-level
partitions (k).

System Partitions Replication Factor
Data Access (M
rows)

Execution Time

LUBM 10240
DIAERESIS 4 1.32 2,531 179,357 ms
DIAERESIS 6 1.35 2,509 160,189 ms
DIAERESIS 8 1.35 1,460 147,203 ms
DIAERESIS 10 1.36 1,406 116,908 ms
SPARQLGX 0.38 7,510 758,218 ms
S2RDF 1.04 4,348 318,668 ms
WORQ 0.29 7,510 318,299 ms

DBpedia
DIAERESIS 4 1.83 353 37,731 ms
DIAERESIS 6 2.20 242 32,635 ms
DIAERESIS 8 2.41 184 20,777 ms
DIAERESIS 10 2.50 145 18,650 ms
SPARQLGX 0.41 925 599,134 ms

For this experiment, we focus on the largest synthetic and real-world datasets, i.e. LUBM10240

and DBpedia, since their large size enables us to better understand the impact of the num-

ber of first-level partitions on the data layout and the query evaluation. We compare the

replication factor, the total amount of data accessed for answering all queries in the work-

load in terms of number of rows, and the total query execution time varying the number

of first-level partitions between four and ten for the two datasets.

The results are presented in Table 5.4 for the various DIAERESIS configurations and we

also include the competitors able to run in these datasets.

For both datasets, we notice that as the number of first-level partitions increases, the

replication factor increases as well. This confirms empirically Theorem 1, which tells us

that as the number of partitions increases, the total storage required might increase as

well.

The rate of the increase in terms of storage is larger in DBpedia than in LUBM10240

since the number of properties in DBpedia is quite larger compared to LUBM10240 (42.403

vs 18). The larger number of properties in DBpedia result in more properties spanning

between the various partitions and as such increasing the replication factor more.

Further, looking at the total data access for query answering, we observe as well that

the larger the number of partitions the smaller the data required to be accessed for answer-

ing all queries. This empirically confirms also Theorem 2 which tells us that the more the

partitions the smaller the data required for query answering in terms of total data accessed.
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The reduced data access has also a direct effect on query execution which is reduced as K
increases.

Compering DIAERESIS performance with the other competitors, we can also observe

that they access a larger fragment of data for answering queries in all cases, which is trans-

lated into a significantly larger execution time.

Example query

In order to illustrate the impact of the number of the first-level partitions we present in

detail a query from the LUBM benchmark (Q3) on the LUBM10240 dataset. This query

belongs in the star queries category and returns six results as an answer. The query is

shown in the sequel and retrieves the publications of AssistantProf essor0.

PREFIX swat: <http://swat.cse.lehigh.edu/onto/univ-bench.owl/>

PREFIX dep: <http://www.Department0.University0.edu/>

Q3: SELECT ?X WHERE{

?X rdfs:type swat:Publication.

?X swat:publicationAuthor dep:AssistantProfessor0 .

}

In DIAERESIS, the query is translated in the following query for a K = 10 partitioning

schema:

X SELECT tab1.X AS X FROM

(SELECT s AS X FROM part7_type

WHERE o == ’swat:Publication’) AS tab0,

(SELECT s AS X FROM part7_publicationauthor

WHERE o == ’dep:AssistantProfessor0’) AS tab1

WHERE tab0.X=tab1.X

Table 5.5: Data access and execution time for various k for the Q3 query of the LUBM
Benchmark.

Partitions Data Access (rows)
Execution Time
(ms)

4 256,956,192 6,274 ms
6 232,724,179 5,852 ms
8 230,779,372 5,828 ms
10 229,550,400 5,727 ms
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Table 5.5 presents data access and execution times for the various k of the partitioning,

varying the number of first-level partitions between four and ten. We observe that data

access decreases for this query as the number of first-level partitions increases. In the

same direction, the execution time decreases since we access less data to answer the query

as the number of partitions for the dataset increases.

Overall comparison

Summing up, DIAERESIS strictly outperforms state-of-the-art systems in terms of query

execution, for both synthetic and real-world datasets. SPARQLGX aggregates data by pred-

icates and then creates a compressed folder for every one of those predicates, failing to ef-

fectively reduce data access. High volumes of data need to be touched at query time, with

significant overhead in query answering. S2RDF implements a more advanced query pro-

cessor, by pre-computing joins and performing query optimization using table statistics.

WORQ, on the other hand, focuses on caching join patterns which can effectively reduce

query execution time. However, in both systems, the data required to answer the various

queries are not effectively collocated leading to missed optimization opportunities. Our

approach, as we have experimentally shown, achieves significantly better performance

by effectively, reducing data access, which is a major advantage of our system. Finally,

certain flaws have been identified for other systems: no other system actually supports

queries with unbounded predicates, S2RDF and WORQ fail to preprocess DBpedia, and

WORQ fails to execute the star queries in the SWDF workload.

Overall our system is better than competitors in both small and large datasets across

all query types. This is achieved by the hybrid partitioning of the triples as they are split

by both the domain type and the name of the property leading to more fine-grained sub-

partitions. As the number of partitions is increased the sub-partitions become even smaller

as the partitioning scheme also decomposes the corresponding instances, however with

an impact on the overall replication factor which is a trade-off of our solution.

5.5 Conclusions

In this chapter, we focus on effective data partitioning for RDF datasets, exploiting schema

information and the notion of importance and dependence, enabling efficient query an-

swering, and strictly dominating existing partitioning schemes of other Spark-based so-

lutions. First, we theoretically prove that our approach leads to smaller sub-partitions

on average (Theorem 2) as the number of first-level partitions increases, despite the fact

that total data replication is increased (Theorem 1). Then we experimentally show that

indeed as the number of partitions grows the average data accessed is reduced and as

such queries are evaluated faster. We experimentally prove that DIAERESIS strictly out-
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performs, in terms of query execution, state-of-the-art systems, for both synthetic and

real-world workloads, and in several cases by orders of magnitude. The main benefit of

our system is the significant reduction of data access required for query answering. Our

results are completely in line with findings from other papers in the area [91].

Limitations. We have to note that our approach assumes that datasets are static and

do not evolve over time, an assumption that might not always be true. In such a scenario,

the pre-processing cost is something you only pay once at the configuration phase in order

to enjoy the benefits at querying time.

Future work. An open issue we perceive as really important is the dynamic nature of

the datasets. Thus, a principal next step would be to update partitioning by investigating

incremental partitioning methods as the RDF/S KB evolves. Another interesting direction

would be to explore further query optimization techniques based on additional statistics

(e.g based on selectivities), additional indexes (e.g. Bloom filters), or materialization of

intermediate results.



Chapter 6

Hierarchical Partitioning for Progres-
sive Query Answering (PQA)

While exact query processing on RDF data has received a lot of attention in recent years

[116], performance problems are widespread, as shown by empirical analyses of SPARQL

query logs [18, 20]. Several queries of publicly available SPARQL endpoints, such as Wiki-

data and DBPedia, are actually timed out, due to the fact that their evaluation on the en-

tire RDF graph is time-consuming. Nonetheless, distributed big data infrastructures like

Spark have emerged and offer increased efficiency. Indeed, Spark has been exploited for

efficient query answering [6], by employing partitioning techniques, precomputing joins,

and constructing indexes to reduce the amount of data needed for query answering.

The problem. Despite the success of such approaches, in the case of big graphs, users

still have to wait for a considerable amount of time before they see a first answer to their

queries. One of the key reasons behind this is that query answering on interconnected

data typically requires loading large chunks of it. Currently, an approach for progressively

returning query results to users is lacking.

Our solution. We propose a novel approach that uses hierarchical information to ef-

ficiently identify the data fragments required to return the first part of the answer and

to progressively return the remaining ones, thus enabling progressive query answering

(PQA). While such hierarchies have been successfully used to represent RDF graphs as re-

lations [66], ours is the first work to exploit these to generate fine-grained graph partitions

for progressive query processing and further consumption in big data infrastructures.

In order to illustrate the problem at hand, along with our solution, let us consider the

following example.

Example 6.0.1 Fig. 6.1(a) depicts three example proteins, from the real-world Uniprot1 dataset,

together with their relations. Proteins are characterized by numerous properties. For ease of

presentation, we focus on four of them: namely, occursIn, hasKeyword, ref erence, and interacts.
1https://www.uniprot.org/
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Figure 6.1: UniProt example proteins and a hierarchical schema structure extracted
that can partition them into three partitions (L1, L2, L3).

The hierarchy of the proteins can be overly complex and challenging to navigate and not all

the properties are attached to each protein. However, a hierarchical structure (which we

name characteristic set (CS) hierarchy as we will explain in Section 6.2.2) can be computed

based on the existing properties (see Fig. 6.1(b)). Intuitively, this means that the occursIn and

hasKeyword properties are specific to a protein, while ref erence and interacts are supplemen-

tary properties, i.e., further refinements. As such, the proteins can be split into partitions L1,

L2, and L3 (see Fig. 6.1(c)).

Assume that in the three levels, we also store other associated instances. Fig. 6.1(c) shows

the number of instances, with both occursIn and hasKeyword properties, that can be pro-

gressively loaded - i.e., considering L1; L1 and L2; and L1, L2, and L3 - for a synthetically

generated Uniprot dataset of 3GB. Let us consider the SPARQL query:

SELECT * WHERE {?x occursIn ?b. ?x hasKeyword ?d.}

This matches the properties at each level of the partitions, from the top level L1 to the

following levels L2 and L3. For progressive query answering, we start returning answers first

by only visiting L1 in just 0.4 seconds. Then, in 0.5 additional seconds, we add more re-

sults from level L2, and, after 0.3 extra seconds, we include the answers from L3, completing

querying for all levels in 1.2 seconds overall. The accuracy (i.e., the percentage of the results

only from certain levels divided by the total number of results) of PQA ranges from 12%, at

the highest level of abstraction (L1), to 100%, when considering instances at levels L2 and L3.

This example gives a high-level overview of the practical usage of PQA and of the trade-off

between accuracy and runtime incurred when progressively considering more data.

We present the novel concept of progressive query answering over the computed lev-
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els of a characteristic set hierarchy, a hierarchical schema, applicable to both typed and

untyped RDF instances. This characteristic set hierarchy (hierarchical schema) is mined,

based on the properties of the various instances, to design a multi-level partitioning of

the dataset. As such, we regroup, on the same level, all the instances that have exactly the

same set of outgoing properties. We then exploit the inclusion relationship of these sets of

properties to further partition the dataset.

Finally, the multi-layered characteristic set hierarchy is exploited for progressive query

answering. PQA, as opposed to exact query answering (EQA), allows for carrying out the

query evaluation procedure gradually. To this end, we use the query symbols to navigate

the characteristic set hierarchy and the induced multi-layered partitioning of the dataset.

In exploring the partitioning, we only consider sets of levels that cover all the query sym-

bols, which we call slices, and that can, thus, produce subsets of the total answers. As we

visit all possible slices, we iteratively load more levels and return more answers, until the

query evaluation is fully completed. Our system PING supports the following tasks:

• Progressive Query Answering. Queries are evaluated on increasingly larger cumu-

lative partitions, obtained by drilling down from the top (most abstract) level. The

results are increasingly more refined and accurate.

• Exact Query Answering. The hierarchical partitioning scheme also allows exact query

answering. PING is able to identify more precisely the portions of the data graph

that should be loaded for query answering than competitors. As such, exact query

answering is more efficient.

By being able to locate and navigate across the CS hierarchy levels, progressive query

evaluation algorithms can strike a balance between accuracy and performance. To the best

of our knowledge, PING is the first approach to allow progressive graph query answering

over CS hierarchies allowing also for exact query evaluation

The chapter is structured as follows. Section 6.1 provides an outline of related work on

flexible, exact, and approximate query answering. Section 6.2 presents the proposed parti-

tioning method for PQA, while Section 6.3 highlights its advantages for performing query

answering guided by the CS hierarchy. The comparative performance of our framework is

experimentally evaluated in Section 6.4. Section 6.5 concludes the chapter and outlines

future work.

6.1 Related Work

As efficient and effective query answering is key to many scientific problems, providing

”flexibility” for query answering has been the focus of many works [8].

Flexible Query Answering. For semi-structured data, the RELAX [47] operator allows

ontology-based relaxation of specified triple patterns, whereas in other approaches [31,67]

query relaxation is based on user preferences. Other works like [38] introduce the APPROX
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operator, enabling triple pattern replacement by other valid properties. However, our work

is not focused on flexible query approximation, i.e., on generating and evaluating variants

of the original query, but on evaluating the query directly on the knowledge graph. These

approaches are complementary to ours.

Exact Query Answering. For semantic graphs, several works have focused on exploit-

ing extracted schemas and summaries for exact query answering, as surveyed in [24]. S+EPPs

[37] exploits bisimulation quotient summaries for summary-based exploration and navi-

gational query optimization. However, their approach focuses on SPARQL navigational

extensions, which are beyond our scope. Other works focus on storage layouts [23,45] and

on structural indexes [83, 100] for SPARQL query optimization. Such methods are orthog-

onal to ours. ASSG [119] builds summaries of the part of an RDF graph that is concerned

by a particular set of queries, however without proper evaluation. Lately, hierarchies are

proposed for querying big graphs [35], by identifying regular structures in generic graphs,

collapsing these into supernodes, and building a hierarchy of contracted graphs. By con-

trast, our approach is based on discovering the CS hierarchy of RDF graphs. Furthermore,

the authors focus on exact query answering on a single machine, whereas PING is able to

deliver progressive answers, focusing on big, parallel data infrastructures.

Approximate Query Answering. Progressive query answering, as done by PING, is

novel, albeit reminiscent of approximate query processing (AQP). As AQP has mainly been

designed for relational databases [4] and not for graphs, only a few works tackle semantic

graphs. For example, some approaches [7, 96] support answer approximation only for a

limited set of analytical queries, returning intermediate approximate results at any time

point. Compared to [96], PING’s partitioning is not driven by fair-use policies, but by a CS

hierarchy, and allows users to control query evaluation. SAGE [7,68] relies on probabilistic

data structures to approximate count-distinct queries in a single pass, with strong error

guarantees. Unlike SAGE, PING supports evaluation in multiple passes, depending on

the trade-off between accuracy and speed users desire. Crucially, unlike AQP approaches,

PING guarantees the absence of false positives by construction and allows users to pro-

gressively refine answer accuracy.

Restricted SPARQL servers. Restricted SPARQL servers, e.g., SAGE, TPF [110], or SmartKG

[10], ensure BGP queries terminate while preserving SPARQL endpoint responsiveness.

However, they require an intelligent client that may introduce additional response time

overhead.

The Triple Pattern Fragments (TPF) [110] paginates query results, in order to avoid

server congestion. As such, a page of results can be obtained in bounded time, pushing

query processing workload to the client side, but causing the unnecessary transfer of irrel-

evant data on complex queries with large intermediate results.

SmartKG [10] tries to share the load between servers and clients, while significantly

reducing data transfer volume, by combining TPF with shipping compressed KG partitions.
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Still, this requires an intelligent client, and although compressed, shipping KG partitions

introduces additional response time overhead.

Web preemption [7, 68] allows a Web server to suspend a running SPARQL query af-

ter a quantum of time and resume the next waiting query. Suspended queries are re-

turned to users who can re-submit them to continue the execution for another quantum

of time. However, it still requires a smart client as the preemptable server only implements

a SPARQL fragment; the smart Web client has to implement the missing operators such as

joins and projections to recombine the results obtained from the server.

Our approach, however, does not require a smart client. Also, even if the triple store

processing is guaranteed to terminate, the size of the data transfer in the aforementioned

approaches is high and this might result in a time-consuming execution of the queries.

RDF Query Answering Using Spark. Some works perform exact query answering on

partitions over big data infrastructures such as Spark. The most popular ones are SPAR-

QLGX, S2RDF, and WORQ.

SPARQLGX [40], vertically partitions the RDF datasets to increase query answering ef-

ficiency, keeping a file for each predicate in the dataset, which only includes domain and

range entries.

S2RDF [91] exploits an extended version of the classic vertical partitioning. Each ex-

tended vertical partitioning table is a set of sub-tables corresponding to a vertical partition

table. The sub-tables are generated by using right outer joins between vertical partition-

ing tables. For query processing, S2RDF transforms a SPARQL query to an algebra tree and

then it traverses this tree to produce a corresponding SQL query.

WORQ [65] uses a workload-driven partitioning of RDF triples. This tries to minimize

the network shuffling overhead based on the query workload using Bloom filters for filter-

ing and for determining if an entry in one partition can be joined with an entry in another.

However, all these works adopt simplistic partitioning schemes and fail to exploit multi-

level hierarchical partitioning for exact query answering, as we show in the experimental

evaluation. Moreover, none of these works can perform progressive query answering.

Overall, no other available approach exploits multi-resolution, modular hierarchical

structures, for progressive query answering.

6.2 Hierarchical Partitioning

6.2.1 High-level architecture

We depict the high-level architecture of our PING system in Figure 6.2. The framework

comprises two main components, implemented on top of Spark: the partitioner and the

query processor. The partitioner processes the initial dataset, extracts its CS hierarchy, and

generates hierarchical partitions, as well as sub-partitions and the necessary indexes. For
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each one of the generated sub-partitions, indexes are created and stored in the Hadoop

Distributed File System (HDFS). The query processor leverages these latter structures for

PQA.

Figure 6.2: High-level architecture of the PING framework.

We focus on RDF datasets, a widely-used standard for publishing and representing

data on the Web, promoted by the W3C. An RDF graph G (in short a graph) is a set of

triples of the form (s, p, o). A triple states that a subject s has the property p, whose value

is the object o. We only consider triples that are well-formed according to the RDF speci-

fication [112]. These belong to (U ∪ B) × U × (U ∪ B ∪ L), whereU is a set of Uniform

Resource Identifiers (URIs), L is a set of typed or untyped literals (constants), and B is a

set of blank nodes. We assume an infinite set X of variables, where U,B,L, X are pair-

wise disjoint. Blank nodes are an essential feature of RDF and represent unknown URIs or

literal tokens. The RDF standard also includes the rdf:type property, which allows speci-

fying the type(s) of a resource. Each resource can have zero, one, or several types. We will

henceforth denote (x, rdf:type, Z) as τ(x) = Z.

For querying, we use SPARQL [2], the W3C standard query language for RDF datasets.

A SPARQL query q defines a graph pattern P that is matched against an RDF graph G. This

is done by replacing the variables in P with elements of G, such that the resulting graph

is contained in G. The basic building blocks of SPARQL are triple patterns, i.e., elements

of (U ∪ B ∪ X) × (U ∪ X) × (U ∪ B ∪ L ∪ X). A set of triple patterns forms a basic graph

pattern (BGP). It is commonly acknowledged that the most important aspect for efficient

SPARQL query answering is the efficient evaluation of the BGPs [91], on which we focus

in this chapter, leaving the remaining fragments for future work. Common types of BGPs

are star and chain queries. Star queries are characterized by triple patterns sharing the

same variable on the subject position, whereas chain queries are formulated using triple

patterns where the object variable in each triple pattern appears as a subject in the one

immediately succeeding it. We henceforth refer to queries that combine star and chain
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patterns as complex. To define the semantics of SPARQL queries, let us consider the partial

function μ that instantiates their variables, i.e., μ : X → U ∪ B ∪ L. The evaluation of a

BGP q over an RDF graph G is q(G) = {μ | dom(μ) = var(q) ∧ μ(q) ⊆ G}, where dom(μ) is

the subset of X defining μ and var(q) is the set of variables in q. Finally, let sym(q) be the

U ∪B ∪ L subset corresponding to the symbols in q. We will henceforth use s, p, and o to

denote terms (variables or constant symbols) in the subject, predicate, and object position

of triple patterns and t to denote a triple pattern.

6.2.2 Characteristic Sets

One of the benefits of RDF is that it is loosely structured; one can extend and modify the

schema at will, by adding or deleting new triples. Neumann and Moerkotte [75] intro-

duced the notion of a characteristic set (CS) as a means to capture the underlying structure

of an RDF dataset.

Definition 17 (Characteristic Set) Given a RDF graphG, the characteristic set of a node s is

defined as CS(s) = {p | ∃o : (s, p, o) ∈ G}.

As such, the characteristic set of a node is the set of all predicates, i.e., outgoing edges,

attached to it. Such characteristic sets exhibit hierarchical relationships, due to overlaps

in their comprising sets of properties. To the best of our knowledge, the PING system is

the first to appropriately leverage the hierarchical structure induced by characteristic sets

for semantic graph partitioning.

We henceforth distinguish between the nodes in the dataset’s graph that denote types,

which we call type nodes, and the rest, which we call instance nodes.

Example 6.2.1 The characteristic sets of the Protein instance nodes in Fig. 6.1 are the fol-

lowing: CS(Protein26474)={occursIn, hasKeyword}, CS({Protein43426})= {occursIn, hasKey-

word, reference},CS({Protein38952})={occursIn, hasKeyword, reference, interacts}. Note that

while all these node instances belong to the same type, i.e., τ(Protein26474)=τ(Protein43426)

= τ(Protein38952)=Protein, they all have different characteristic sets.

Example 6.2.2 The CSs of the Protein instance nodes in Fig. 6.1 are:

CS(Protein26474) = {occursIn, hasKeyword}
CS(Protein43426) = {occursIn, hasKeyword, ref erence}
CS(Protein38952) = {occursIn, hasKeyword, ref erence, interacts}

While the nodes are of Protein type: τ(Protein26474) = τ(Protein43426) = τ(Protein38952),
note that they all have different characteristic sets, as seen in the example.
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6.2.3 Extraction of the CS hierarchy

Characteristic sets help extract a CS hierarchyH from existing instance nodes.

Definition 18 (CS Subsumption) Given two instance nodes ν1 and ν2, CS(ν1) subsumes

CS(ν2) when CS(ν1) ⊂ CS(ν2).

Definition 19 (CS Hierarchy H) CS subsumption creates a partial hierarchical ordering,

such that if CS(ν1) ⊂ CS(ν2), then CS(ν1) is a parent of CS(ν2). Formally, a CS hierarchy is

a graph latticeH = {VH ,EH }, such that VH ⊆ C and EH ⊆ (VH ×VH), where C is the set of

all the CSs.

The key idea is that, based on the instances, we construct a CS hierarchy, used to index

and partition the dataset. In order to do so, we visit all instance nodes in an RDF graph G

once, identifying their various CSs.

Example 6.2.3 Notice that CS(Protein26474) ⊂ CS(Protein43426) ⊂ CS(Protein38952).
Hence,H will be enriched by those three CSs: the first in level one, the second, in level two,

and the last, in level three. Another protein, e.g., Protein67453, where CS(Protein67453) =
{encodes, receivesSignal, reacts}, would also be placed in level one, as there is not any other

instance x with CS(x) ⊂ CS(Protein67453).

6.2.4 Hierarchical Partitioning

Let us fix an arbitrary RDF graph G. We also denote the extracted CS hierarchy with H ,

the induced RDF graph partitioning with L, and withHi and, respectively, Li, their corre-

sponding contents at level i. Based on H , we construct a multi-level partitioning L of G

comprising partitions Li; these regroup all instances whose characteristic set belongs to

Hi. Note that we henceforth use the terms ”partition” and ”level” interchangeably.

In the resulting hierarchical partitioning, the highest (most abstract) level is a coarse-

grain representation and the lower levels correspond to refinements of the initial graph.

The partitions are computed once, by assigning instances to their respective level, based

on their CS. Next, we state the modularity and losslessness properties of our partitioning,

which hold by construction.

Theorem 3 (Modularity) Given a graph G and the generated CS hierarchy H , the result

hierarchical partitioning scheme is modular, i.e., Li ∩ Lj = ∅, for all i, j ≤ |H|.

Theorem 4 (Losslessness) Given a graph G and a CS hierarchy H , the result partitioning

scheme is lossless, i.e., L= ⋃i≤|H| Li.
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6.2.5 Sub-Partitioning

As already described the CS hierarchy is used in order to assign instances to a specific

level, i.e., to a specific partition. On top of this, we also implement, for each partition,

a vertical partition (VP) step, called sub-partitioning, in order to further reduce the size

of the data touched at query answering. For this, we split the triples of each partition

Li, into multiple vertical partitions Li[p], one file per property p. The vertical partitions

are stored as parquet files in HDFS. Each vertical partition contains the subjects and the

objects for a single property, enabling a more fine-grained selection of data at query time.

Consequently, when looking for a specific property, we do not need to access the entire

data of the level storing instances with this property, but only the specific sub-partition at

that level with the related property. As shown in Section 6.4, this minimizes data access,

leading to faster query execution times.

6.2.6 Indexing

To speed up query evaluation, we generate custom indexes, so that the necessary sub-

partitions of the various levels can be directly identified during query execution.

To this end, we leverage the CS hierarchy to construct property, subject, and object in-

dexes (VP, SI, and OI, respectively). Specifically, as our partitioning approach is based

on the hierarchy of CSs, which include the corresponding sets of their properties, initially,

we index for each property the partitions it is primarily assigned to (VP). For each in-

stance, we index also the partition in which it is located when it is in a subject position

(SI) and an object position (OI) respectively. Thus, we can directly identify to which par-

titions each such instances belong. The aforementioned indexes are stored in HDFS and

are loaded in the main memory of Spark as soon as the query processor is initialized.

Example 6.2.4 In Fig. 6.3 we present the SI, OI, and VP indices constructed in Fig. 6.2.

For example, we record, among others, that Protein26474 is located on L1, in the SI index,

and on L1 and L2, in theOI index. Also, we can access the levels on which each property oc-

curs through theVP index. For example, in theVP index, we record that occursIn appears

on L1, L2, and L3, whereas the Protein43426 is located in L2, as a subject, and Keyword789,

in L3, as an object.

6.2.7 Partitioning Algorithm

Algorithm 6 presents the overall partitioning. Initially, we construct the CS hierarchy H

(line 2). Then, for each instance triple (lines 3-4), we identify the hierarchy level it should

be assigned to based on its CS (line 5). Next, we build the layering of our dataset: we collect

on the same level all the instances whose subjects have a CS in the same hierarchy level

and update the computed partitioning (lines 6-7). On individual levels, for each property
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Figure 6.3: Indexes available for our running example.

of its instances, we add the corresponding triples parts (domain and range) into the proper

sub-partitions, named after the property (lines 8-9). Finally, we add the location of the

subject, object, and property to the three indexes (lines 10-12).

The algorithm needs to do one pass over all triples in order to calculate the CS hierar-

chy in line 2 and then another pass to assign the instances into the various partitions/sub-

partitions and generate the necessary indexes. Hence, the complexity of the algorithm is

linear, i.e., O(n) where n is the number of triples in the graph. Note that although an in-

stance might have multiple types, it will always have only one CS and, hence, be uniquely

assigned to a level/partition.

This partitioning scheme has two key benefits. First, instances with the same CS are

assigned to the same level, in a single file, highly minimizing the amount of data loaded

for the queries that target it. Second, it enables PQA, as higher volumes of data, spanning

various CSs, are distributed in different partitions.

6.3 Progressive Query Answering (PQA)

Next, we explain how PING performs progressive query answering. Let us fix a set of levels

L that partitionsG, as presented in Section 6.2, and a query q. The main idea behind PING

is that it exploits precomputed indexes to identify, and gradually visit, the levels in L that

should be accessed for query answering. As long as all the symbols in q appear on a given

level, Li, this can be used to partially answer q. This key definition of query safety is given

below.

Definition 20 (Safety) A symbol r is safe on a set of levels S from L if it occurs on at least one

level. A triple t is safe on S if all its symbols are safe on S. A query q is safe on S if all its triple
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Algorithm 6 Partitioning(G)
Input: G: a graph dataset;
Output: L: a set of levels;VP,SI,OI: vertical partitioning, subject, and object indexes

1: L← ∅,VP← ∅, SI ← ∅, OI ← ∅
2: H ← calculateCSHierarchy(G) ▷Schema Extraction
3: for all t ∈ G do
4: (s, p, o)← t
5: i← getHierarchyLevel(H ,CS(s))
6: Li ← {(s, p, o) ∈ G | CS(s) = i}
7: L← {Li} ∪ L ▷Partitioning
8: for all s, o, p ∈ Li do
9: Li[p]← Li[p] ∪ {s, o} ▷Sub-Partitioning

10: VP[p]← {i} ∪ VP[p] ▷VP Indexing
11: SI[s]← {i} ∪ SI[s] ▷SI Indexing
12: OI[o]← {i} ∪ OI[o] ▷OI Indexing
13: end for
14: end for
15: return L,SI,OI,VP

patterns are also safe.

Definition 21 (Slice) We call a set S of sub-partitions from La slice for a query q, a symbol

r, or a triple t, if these are safe on S. S is a minimal (respectively, a maximal) slice, if exists no

slice S′ exists, such that S′ ⊂ S (respectively, S ⊂ S′).

Leveraging slicing and, hence, respecting safety, we can produce partial answers, by

only focusing on specific levels. Let us henceforth fix a query q.

Lemma 1 (PQA Monotonicity) For any slices S′, S, if S′ ⊆ S, then q(S′) ⊆ q(S).

Proof. By monotonicity of the core SPARQL fragment we consider, i.e., covering select,

project, join, and union.

Lemma 1 thus tells us that the evaluation of a query can be performed gradually, on a

set of its slices, and that it leads to increasingly more accurate results, the more of these we

consider. The soundness of PQA on every slice, i.e., the fact that we only obtain (subsets

of) correct results, holds by the lemma below.

Lemma 2 (PQA Boundedness) For any slice S, it holds that q(S) ⊆ q(G).

Proof. By construction and by the definition of query safety.

Considering the entire set of slices for the query, i.e., its maximal slice, we obtain its

exact, lossless evaluation. As such, PING can also be used for EQA.
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Theorem 5 (EQA Soundness and Completeness) Given a query q, it holds that q(S) = q(G),
where S is the maximal slice for q.

Proof. By monotonicity (Lemma 1) and boundedness (Lemma 2), via Knaster-Tarski [99],

PQA admits a fixed point. By van Emden-Kowalski [109] and the equivalent fixed point

semantics [82] of our SPARQL fragment, it is the unique minimal answer to q.

Algorithm 7 captures the PQA of a query q over a hierarchical partitioning of a graph

G. We iterate over all the triple patterns in q and inspect all their symbols. Depending on

whether they correspond to a predicate or to a subject or object constant, we inspect the

corresponding index structures in order to collect the set of all sub-partitions where the

instances are located inside the various partitions.

We take the intersection of all such sub-partition sets and compute the minimal slice

of the triple, i.e., the corresponding minimal set of duplicate-free partitions in the levels

that covers its symbols (lines 2-3). Using this, we determine the set of all slices of q, i.e., the

sets of sub-partitions that contain all of its symbols. As such, we iterate over the cartesian

product of the individual triple pattern slices (line 5). For every element, we take the union

of its levels and build each query slice S (line 6). We then call EQA (i.e., Algorithm 8) and

add S to the set of visited levels C (line 7).

Algorithm 7 PQA(G, L, q,VP,SI,OI)
Input: G: graph dataset; L: partitioning of G (set of levels); q: query;VP,SI,OI: vertical
partitioning, subject, and object indexes
Output: Φ – the answers to q

1: Φ← ∅, C← ∅ ▷initialization
2: for all t ∈ q do
3: HL(t)← ⋂r∈sym(t){Li ∈ L | i ∈ VP[r] ∪ OS[r] ∪ SI[r]} ▷slice of a query triple
4: end for
5: for all St ∈ ×t∈qHL(t) do ▷iterating over all safe level sets
6: S←

⋃
Li∈St Li ▷computing each query slice

7: Φ← Φ ∪ EQA(S, q, C) ▷accumulating query answers
8: C← S ∪ C ▷marking slice as visited
9: end for

10: return Φ

Example 6.3.1 To illustrate PQA, consider the query q:

SELECT * WHERE ?x occursIn ?b. ?x hasKeyword Keyword789. ?x interacts ?y.

To evaluate it, we inspect each triple pattern, identifying the corresponding levels/partitions

and sub-partitions indicated by our indexes and properties. For the first triple, T0, as the

property occursIn appears on L1, L2, L3, we have HL(T0) = {L1[occursIn],L2[occursIn],
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L3[occursIn]}. For the second triple, T1, we consider the property hasKeyword and the ob-

ject symbol Keyword789. We know that set of levels for hasKeyword is {L1,L2,L3}, according

to VP index, and that the one for Keyword789 is {L3}, according to the OI index. As we

choose the intersection of the set of sub-partitions, we have HL(T1) = {L3[hasKeyword]}. For

T2, we have HL(T2) = {L3[interacts]}, since the set of levels for interacts is {L3}. The set

of all query slices HL is thus: HL(T0) ×HL(T1) ×HL(T2). For each of its elements, we take

the union of their sub-partitions (Algorithm 7, line 6) and pass the resulting updated slice

for EQA.

Algorithm 8 implements our EQA algorithm. Given a slice S, it loads its unvisited levels

(lines 2-3), calls query evaluation (line 4), and returns the result (line 5).

Algorithm 8 EQA(S, q, C)
Input: S: slice (set of levels); q: query; C: visited set of levels
Output: Φ – the answers to q

1: Σ ← ∅ ▷initialization
2: for all L ∈ S ∧ L < C do ▷iterating over unvisited slice levels
3: Σ ← Σ ∪ L ▷building cumulative slices
4: end for
5: Φ← q(Σ ∪ C)
6: return Φ

We illustrate how PING progressively computes query answers by sequentially calling

EQA.

Example 6.3.2 Revisiting our running example, since our accumulator C is empty the first

time EQA is called, we first compute a first partial answer considering only the slice {L1,L3}
and adding it to C. In the next iteration of PQA, the EQA algorithm is called on slice {L2,L3}
and, since L3 has been already visited, we only add L2 to C and evaluate q on the entire

dataset {L1,L3,L2}, returning all answers. Note that Algorithm 8 will terminate by being

called on the maximal slice of q, as we iteratively accumulate (in C) all the slices on which

q is safe. Note that we can directly compute the EQA of q on G by passing the maximal slice

to the algorithm from the start. We illustrate this in Fig. 6.4. As such, Fig. 6.4(b) illustrates

the vertical partitions and the levels that PING determined should be used. PING lever-

ages these to formulate the SQL sub-queries shown in Fig. 6.4(c), joining their results (see

Fig. 6.4(d)) and computing the final answers.

The combined complexity of query evaluation of a query q on our hierarchical multi-

level dataset partitioning L is O(|P| · (log|P| + ΣLi∈Llog|Li|)), where |P| is the number of triple

patterns in q, following the standard complexity of evaluating BGP fragments of SPARQL

[81].
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Figure 6.4: Computing the EQA of q on its maximal slice.

Implications for aggregate queries and complex datasets. Notably, the CS hierarchy of a

real dataset might be very complex. However, this is a rather positive fact, as the dataset

can be split into more partitions, enabling fine-grained progressive query answering. Fur-

ther, although we focus on BGP queries, downstream aggregate query processing can also

benefit from progressive querying, continuously refining the answer as time goes on, pro-

gressively improving its quality.

6.4 Evaluation

We study the performance and accuracy of PING on RDF graphs of various sizes, with di-

verse hierarchy levels. These highlight the effectiveness of PQA, which strikes a balance be-

tween query-answering efficiency and accuracy. We also assess the performance of PING

on exact query answering. The code is open source and the datasets and queries used in

our experiments are available online2.

6.4.1 Setup

The experiments were conducted using a cluster of 4 physical machines running Apache

Spark 3.0.0, a popular MapReduce framework. Each machine is equipped with 235GB

of memory, 400GB of storage, and 38 cores running Ubuntu 20.04.2 LTS. In each machine,

10GB of memory was assigned to the memory driver, and 200GB was assigned to the Spark

worker.

6.4.2 Datasets & Workloads.

To evaluate our approach, we used three synthetic datasets (Uniprot, Shop, and Social)

of various sizes, obtained using the gMark [12] domain and query language-independent

graph instance and query workload generator, along with a large-scale real-world dataset

(DBpedia). Their characteristics are provided in Table 6.1:

Uniprot encodes the schema of the homonymous dataset, encoding protein sequences

2https://github.com/giannisvassiliou/PING-VLDB-2024

https://github.com/giannisvassiliou/PING-VLDB-2024
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and their functional information, comprising 3GB and 2.1M triples. Shop simulates the

default schema of the Waterloo SPARQL Diversity Test Suite (WatDiv)3, representing pur-

chased products and the customer information, comprising 100GB and 1 billion triples.

Social encodes the fixed schema of the LDBC Social Network Benchmark [33], represent-

ing a social network with people and the messages they post along with their likes, com-

prising 18GBand 50M triples. DBpedia includes version 3.8 of the homonymous dataset,

comprising 30GBand 182M triples.

Star Chain Complex
Dataset Size Triples

Min Max Min Max Min Max
Uniprot 3GB 2.1M 2 5 2 5 2 5

13GB 23M
Shop

100GB 1B
2 5 2 5 3 5

Social 18GB 50M 3 5 3 4 1 5
DBpedia 30GB 182M 1 5 1 4 4 5

Table 6.1: Dataset & Query workload characteristics

For each synthetic dataset, we produce 60 queries (20 star, 20 chain, and 20 complex),

whereas for DBpedia we randomly select 60 BGP (20 star, 20 chain, 20 complex) queries,

obtained using the FEASIBLE benchmark generator [89], based on real-world query logs.

The query workload characteristics are shown in Table 6.1 in terms of their minimum and

maximum number of triple patterns.

6.4.3 Competitors

As PING is the first to implement progressive, multi-resolution query answering for RDF

datasets, we do not have direct competitors. However, in the extreme case that our system

is used for exact query answering, we compare our approach with other representative

systems focusing on exact query based on Spark, i.e., S2RDF [91] and WORQ [65]. We have

chosen these since, in their respective papers, these have been shown to greatly outper-

form other state-of-the-art competitors, i.e., SHARD, PigSPARQL, Sempala, and Virtuoso

Open Source Edition v7 [91].

S2RDF uses Extended Vertical Partitioning, whereas WORQ uses Bloom filters on top

of vertical partitioning to efficiently reduce data access for query answering. For a fair

comparison, in both systems, we disabled caching of precomputed joins, as this is orthog-

onal to data partitioning and indexing, studied in this work. All systems included in the

comparison, i.e., PING, SPARQLGX, S2RDF, and WORQ only accept BGP queries for eval-

uation, whereas all of them use Parquet files for storing the data. Finally, a time-out of

twenty-four hours was selected, i.e., after this time lapse without finishing the execution,

3https://dsg.uwaterloo.ca/watdiv/

https://dsg.uwaterloo.ca/watdiv/
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each individual experiment was stopped.

6.4.4 Metrics

We use the following evaluation metrics.

Query execution time: We evaluate the efficiency of the various configurations of our

algorithm.

Data access: We analyze the rows that should be accessed to perform query answering.

Figure 6.5: Data distribution across hierarchy partitioning levels for Shop 13 (left) and
Shop 100 (right).

Figure 6.6: Data distribution across hierarchy partitioning levels for Uniprot (left), So-
cial (center), and DBpedia (right).

Accuracy: As we partition the initial graph, when the loaded levels do not amount to

the maximal slice of a query, we lose information when we evaluate it. We use the fol-

lowing formula to measure accuracy: |q(S)|
|q(G)| , where |q(S)| and |q(G)| denote the number of

answers obtained when evaluating q on a set of levels, up to and including, the slice S and,

respectively, on G.

Further, when our system is used for EQA we compare with the aforementioned com-

petitors besides query execution time and data access the following metrics as well.
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Preprocessing time: We evaluate the efficiency of the various algorithms for building

the (sub)partitions and indexes.

Replication factor: We evaluate the replication factor, i.e., the number of copies of the

input dataset each system outputs in terms of raw compressed parquet file sizes.

In calculating the aforementioned metrics in each case, we report an average of 10

executions.

6.4.5 Results on Progressive Query Answering

Results on Data Distribution

The distribution of the datasets in the various levels is shown in Fig. 6.5 and Fig. 6.6. As

shown for the most synthetically generated datasets, the CS hierarchy has 5 − 7 levels,

whereas we have 11 for Social and 17 for DBpedia. Regarding the spread of triples across

levels, we notice a great variability, which is, however, dataset-specific. Note that gMark

allows us to control the characteristics of the generated instances and query workloads.

Hence, our benchmarks are structurally diverse and provide interesting use cases.

Results on Query Execution

Next, we present the results on progressive query answering for the various datasets we

use.

Figures 6.7, 6.8, 6.9, 6.10 and 6.11 show the runtime, loaded data amount, and accu-

racy of star, chain, and complex queries, varying the number of slices used to answer them

on our various ensemble of datasets. We discuss the results per dataset in the following.

Figure 6.7: PQA performance on the Shop 13 dataset.

Shop. According to Fig. 6.7, the more slices we visit, the more the execution time in-

creases. This is in line with the data access trends. Similarly, the more slices we visit, the

more the accuracy improves. However, at the fifth slice, we achieve 100% accuracy, thus

avoiding us visiting the last slice. We also observe different behaviors depending on the

query type: chain queries are almost completely answered by visiting four slices, on which
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Figure 6.8: PQA performance on the Shop 100 dataset.

Figure 6.9: PQA performance on the Uniprot dataset.

Figure 6.10: PQA performance on the Social dataset.

Figure 6.11: PQA performance on the DBpedia dataset.

star queries are answered much faster than other query types, respectively chain and com-

plex queries. These tendencies hold when scaling to 1 billion triples (see Fig. 6.8). The
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Figure 6.12: Average execution time as returned data increases.

larger dataset requires more execution time; everything else is similar to the 13GB version.

Uniprot. For the Uniprot dataset (see Fig. 6.9), we can observe similar trends, despite

now having only five slices. We record 100% accuracy as soon as we consider four slices

and evaluate chain (and star) queries faster.

Social. For the Social dataset (see Fig. 6.10), we need to inspect 10 slices (out of 11) to

reach 100% accuracy, where execution time stabilizes after four slices. Despite the fact that

this dataset contains more levels, we can still leverage full accuracy after a small number

of slices.

DBpedia. DBpedia includes many instances without a predefined schema, as triples

are introduced by various users. Hence, it includes numerous levels (more than double

that in other datasets). We observe that chain queries reach higher accuracy values while

running faster than the other query types. Compared to other datasets, to achieve accu-

racy closer to 100%, PING needs to visit almost all 17 slices in the case of DBPedia, with a

comparable increase in execution times and loaded rows. Also, chain queries in DBpedia

are typically small (one to four triple patterns), as also confirmed by previous analysis of

real-world logs [20]. Their execution time stays steady across PQA, even with a large num-

ber of slices. This is clearly not the case for star and complex queries on DBPedia, whose

execution time increases with the number of levels. Conversely, chain queries quickly ac-

cess a large percentage of the overall number of rows needed for EQA. This results in a

significant increase in the percentage of data loaded at the early slices and in accuracy,

compared to star and complex queries.

Average execution time as returned data increases. In Fig. 6.12 we also plot the aver-

age execution time as the data accessed for query answering increases. In all datasets, we

can observe a linear increase showing the benefits of our progressive approach, as it is able

to guarantee that as more data are returned the query execution time linearly increases.

6.4.6 Results on Exact Query Answering

In the extreme case that PING is used for exact query answering, as already mentioned,

we compare with WORQ and S2RDF.
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Preprocessing Time

The times required for preprocessing the various datasets and systems are presented in

Fig. 6.13.

For PING, as shown, the time scales based on the complexity and the size of the datasets

range between 8 minutes, for the smallest dataset (Uniprot), to 273 minutes, for the most

complex one (DBpedia). For the same dataset (Shop), its largest version requires signifi-

cantly more time, as more triples have to be examined and placed in the appropriate parti-

tions. On the other hand, in real datasets (DBpedia), a significant number of variations in

the instances generates far more CSs than the synthetic ones, leading to large partitioning

times.

Competitors require also a significant preprocessing time in order to partition the datasets

and create the necessary indexes. In most cases, PING is considerably faster than competi-

tors, except for Uniprot, where PING is slower than S2RDF. Both S2RDF and WORQ fail to

process complex datasets such as DBpedia, timing out after one week. Nevertheless, par-

titioning is a task that is only executed once and offline before starting to answer queries

and, as such, is transparent to the users.

Figure 6.13: Preprocessing time comparison.
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Reduction Factor

Fig. 6.14 presents the reduction factor for the various systems. WORQ adopts a dictio-

nary compression policy for storing the data and as such the result parquet files occupy

a small fragment only of the initial file with a reduction factor ranging between 0.27 and

0.42. S2RDF introduces additional extended vertical partitions and as such in most cases

requires additional storage reaching a reduction factor of up to 1.94 of the initial dataset

for Shop13. PING, on the other hand, adopts a sub-partitioning approach and is able

to minimize the space required, by removing the property name from the stored triples.

Hence, the reduction factor is always smaller than 1, ranging from 0.79 to 0.83.

Figure 6.14: Reduction factor comparison.

Query Execution Time

We report our results for exact query answering, comparing our system with S2RDF and

WORQ. For lack of space, we only present results on the largest dataset, as the trends are

similar to the other ones. Also, to make the value of our system apparent, we generate

queries targeting a specific number of levels from the partitions. In Fig. 6.15, we report

results regarding the runtimes of query execution and the number of rows that had to be

accessed.

As long as the queries require accessing the entire set of levels where a specific resource
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Figure 6.15: Execution time and triples visited for EQA on Shop 100 GB.

exists, our partitioning policy, in essence, is reduced to a vertical partitioning scheme -

adopted by WORQ and S2RFD. Thus, execution times for queries that require access to

the entire set of levels that include the symbols in those queries are similar. Note that the

performance of WORQ is always worse than S2RDF, as Bloom filters unsuccessfully try to

reduce the visited data. In essence, a minimal query optimization policy, as implemented

by S2RDF, is enough to accelerate it (perform small joins first). However, if instances are

available in the query, PING is able to focus on the specific levels that include this informa-

tion and only accesses a subset of the entire vertical partition. This drastically improves

query execution efficiency. For example, when PING only accesses two levels out of six,

PING is one order of magnitude faster than both S2RDF and WORQ, visiting two orders
of magnitude fewer triples for EQA.

Figure 6.16: Execution time, loaded rows, and accuracy for the visited Q55 slices.

6.4.7 Discussion of a real use case from DBpedia

To better illustrate PING’s PQA method, we conducted a qualitative study on a real query

from DBpedia, i.e., Q55. We have chosen this query since it is a complex query, with four

triple patterns, requiring all DBpedia levels (as seen in Fig. 6.6) for its evaluation. As shown

below, the query retrieves the types of companies founded in California and the products

they produce:
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PREFIX dbo: <http://dbpedia.org/ontology/>

PREFIX dbr: <http://dbpedia.org/resource/>

Q55: SELECT * WHERE {

?company rdf:type ?company_type.

?company dbo:foundationPlace dbr:California.

?product dbo:developer ?company.

?product rdf:type ?product_type.

}

To evaluate Q55, PING first identifies the levels of its symbols using the available in-

dexes, shown in Table 6.2.

Symbol Levels
rdf:type 1-17

dbo:foundationPlace 2-13
dbo:developer 2-11
dbr:California 2-17

Table 6.2: Symbol levels of DBpedia’s Q55 query.

As such, for the first triple pattern, we need to visit all levels. For the second triple pat-

tern, since dbo:foundationPlace is available in levels 2-13, and dbr:California is avail-

able as an object 2-17, we only need to visit levels 2-13. For the third triple pattern, again

we need to visit 2-11 levels, whereas for the fourth triple pattern, we need to visit all levels.

Next, the algorithm identifies the slices needed for evaluation. For the first slice, for

the first and the last triple pattern, PING loads the L1[type] vertical sub-partition, for the

second triple pattern, the L2[foundationPlace] sub-partition, and for the third triple pat-

tern, the L2[developer] sub-partition. As shown in Fig. 6.16, the selected sub-partitions

do not have rows that can be joined, hence PQA accuracy on slice 1 is zero. For slice 2, we

additionally load L1[type] ∪ L2[type], needed for the first and last triples. Again, there are

no rows that can be joined. Similarly, the slices are formulated one by one, and query eval-

uation is progressive. Slices that do not offer results are quickly skipped, and execution

time increases as soon as results start to emerge, improving the accuracy progressively.

Shifting our attention to the results in Fig. 6.16, the accuracy is almost zero for the

first 9 slices. This happens as the loaded rows are limited (as shown in the loaded rows

diagram of Fig. 6.16) and they cannot be joined among the tables corresponding to the

different predicates. However, after slice 9 more data that gives results is accumulated and

the accuracy gradually improves. This also requires more execution time.

The qualitative study highlights additional advantages of PQA over (bulk) EQA. Namely,

the breakdown of query evaluation per level provides more insights and renders it user-
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controllable.

6.4.8 The PING System

The PING system that uses a hierarchical schema structure to partition KGs and enables

progressive query evaluation is available online 4. Also, there is a video demonstrating

its functionality 5. The global architecture of PING system is depicted in Figure 6.17 (top)

and an instance of the PING system is shown in Figure 6.17 (bottom). The framework

comprises three main parts. The GUI allows users to select a pre-loaded dataset, visualize

statistics regarding its partitioning, write SPARQL queries, and inspect diagrams depicting

the efficiency and accuracy of evaluating them with PING’s progressive query answering

module. The query processor exploits the hierarchical partitioning in order to perform

progressive query answering. The partitioner processes the chosen dataset, extracts its

hierarchical schema, and generates hierarchical partitions, as well as sub-partitions and

indexes.

Figure 6.17: System architecture (top), A screenshot of the PING system (bottom).

The process starts by choosing the dataset in which the user is interested. Since the

characteristics of hierarchical partitioning are dataset dependent, the user can inspect the

partitioning of each dataset, the distribution of its triples across the various levels, as well

as its sub-partitions and indexes. Through the GUI, the user is able to select example

queries, check the valid levels on which each query can be partially answered and then

set the number of partitions on which this query will run. PING can perform PQA on

4http://pingdemo.free.nf/ping.php
5https://tinyurl.com/ISWCPING

http://pingdemo.free.nf/ping.php
https://tinyurl.com/ISWCPING
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any subset of these slices and report the runtime, memory consumption, and accuracy.

Specifically, the result is visualized using plots showing the trade-off between accuracy

(percentage of returned results vs. the total results) and execution time. We notice that

by increasing the number of visited partitions more data are added to the result and, thus,

the query answering accuracy improves, albeit resulting in an increase in execution time

as well. In general, slices can be freely added or dropped by the user, following the desired

balance between efficiency and accuracy. When all partitions are used, the query can be

answered with 100% accuracy achieving exact query answering.

6.5 Conclusions

We have presented PING, the first system for progressive query answering over KGs. PING

uses a CS hierarchy to partition KGs and progressively evaluate queries. As such, it offers

minimal latency and allows trading query accuracy for efficiency. Experiments on syn-

thetic and real-world datasets confirm the flexibility of our solution which can transform

KGs into partitions and progressively evaluate these. Moreover, we show that PING has

the potential to dominate competitors, even when used for exact query answering, in sev-

eral cases being orders of magnitude faster than competitors.

Future Work. Although Spark enables efficient and effective distributed data processing,

our partitioning strategy can also be implemented in other frameworks, even in central-

ized implementations. Further, we plan to render PING amenable to interactive, user-

centered KG exploration so that it can provide answers based on specific efficiency and

accuracy requirements. Exploring orthogonal techniques, such as Bloom filters (to iden-

tify levels with relevant answers) and precomputation of joins (to boost efficiency) is also

an interesting direction. Also, PING currently considers that datasets are static and do not

regularly update, which might not be true in practice. As such, we intend to develop an

incremental update algorithm for the existing partitioning scheme. Finally, within PING

we have explored PQA progressing sequentially, through the hierarchy levels. However, we

could optimize PING to return the largest/smallest partition first, before processing the

remaining ones.
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Chapter 7

Conclusions

In this thesis, we tackle the challenge of efficient query answering for large RDF Knowl-

edge Graphs using Spark. The data layout has a direct impact on the data access for query

evaluation. As such we focus on optimizing data placement for improving an important

aspect of query processing, i.e., the amount of data touched for query answering, by devis-

ing methods to achieve this through data partitioning. Specifically, we present our journey

in studying novel schema-based partitioning techniques for exact and progressive query

answering.

We start by contributing approaches to schema discovery by presenting the first in-

cremental and hybrid type discovery approach for large RDF data sources. Then, seek-

ing to identify effective data partition techniques, we proceed to create operators over

schema-based summaries for dynamic exploration of RDF KGs introducing the zoom and

extend operations. Exploiting the discovered schema and the schema-based summaries

we proceed further to generate effective partitioning methods, enabling efficient query

answering. We propose DIAERESIS, a complete framework delivering methods for par-

titioning, sub-partitioning, and indexing, facilitating rapid exact query answering. Our

framework enables fine-tuning of data distribution, significantly reducing data access for

query answering. Thus, it achieves overall performance improvement for query answering

regarding all query categories. Through the experimental evaluation using both synthetic

and real workloads, we prove that our approach strictly dominates existing partitioning

schemes of other Spark-based approaches, for all query categories and dataset sizes, show-

ing that we drastically improve query answering performance in several cases by orders of

magnitude. Moreover, DIAERESIS is the only system that can execute queries with un-

bound predicates.

Next, we focus on alternative schema-based partitioning schemes facilitating progres-

sive query answering as a response to time-consuming RDF queries that oftentimes do

not even terminate, due to performance reasons. Again we meticulously design a whole

framework named PING, including partitioning, sub-partitioning, and indexing that de-

liver the first system in the domain enabling progressive query answering, trading query
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efficiency for answers accuracy. Specifically, we propose a hierarchical structure, that fa-

cilitates effective data partitioning and allows our query evaluation algorithm to progres-

sively target and access the different hierarchy levels required for query answering. Again,

the experimental study on both synthetic and real-world datasets confirms the flexibility

of our solution which can effectively partition KGs and progressively evaluate them. We

achieve returning the first results two to four times faster than waiting for the entire answer

to be returned to the user.

7.1 Future Work

However, a lot of rather interesting directions are yet to be explored. Firstly, for both ex-

act and progressive query answering orthogonal techniques can be used to boost query

answering performance, which for the time being were out of the scope of this thesis. For

example, query optimization based on additional statistics (e.g. based on selectivities), ad-

ditional indexes (e.g. Bloom filters), or materialization of intermediate results would be all

rather interesting directions.

Further, a hard class of queries is analytical queries that are becoming more and more

prominent as a result of the proliferation of knowledge graphs. Yet, query answering sys-

tems are not optimized to perform such queries efficiently, leading to long processing

times. A well-known technique to improve the performance of analytical queries is to

exploit materialized views. Although popular in relational databases, view materialization

for RDF and SPARQL has not yet transitioned into practice, due to the non-trivial appli-

cation to the RDF graph model. As such, crafting techniques for generating materialized

views for RDF data and selecting which views to materialize based on cost functions is

another interesting direction. The proposed schema-based partitioning technique can be

used as the base to investigate further this field.

Finally, we have to note that our approach assumes that datasets are static and do not

evolve over time, an assumption that might not always be true. Thus, an important next

step would be to update partitioning investigating incremental partitioning methods as

the RDF/S KB evolves.
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versioned schemas from NoSQL databases and its applications. In ER, pages 467–

480, 2015.

[88] Muhammad Saleem, Qaiser Mehmood, and Axel-Cyrille Ngonga Ngomo. FEASIBLE:

A feature-based SPARQL benchmark generation framework. In ISWC, pages 52–69,

2015.

[89] Muhammad Saleem, Qaiser Mehmood, and Axel-Cyrille Ngonga Ngomo. Feasible: A

feature-based sparql benchmark generation framework. In The Semantic Web-ISWC

2015: 14th International Semantic Web Conference, Bethlehem, PA, USA, October 11-

15, 2015, Proceedings, Part I 14, pages 52–69. Springer, 2015.

[90] Alexander Schätzle, Martin Przyjaciel-Zablocki, Thorsten Berberich, and Georg

Lausen. S2X: graph-parallel querying of RDF with graphx. In Big-O(Q)/DMAH, 2015.

[91] Alexander Schätzle, Martin Przyjaciel-Zablocki, Simon Skilevic, and Georg Lausen.

S2RDF: RDF querying with SPARQL on spark. PVLDB, 9(10):804–815, 2016.

[92] Max Schmachtenberg, Christian Bizer, and Heiko Paulheim. State of the LOD Cloud

2014. http://linkeddatacatalog.dws.informatik.uni-mannheim.de/state/. Ac-

cessed: 2017-03-30.

[93] Md Seddiqui, Rudra Pratap Deb Nath, Masaki Aono, et al. An efficient metric of

automatic weight generation for properties in instance matching technique. arXiv

preprint arXiv:1502.03556, 2015.

[94] Ben Shneiderman. The eyes have it: A task by data type taxonomy for information

visualizations. In IEEE Symposium on Visual Languages, 1996.

[95] Peroni Silvio, Motta Enrico, and d’Aquin Mathieu. Identifying key concepts in an

ontology, through the integration of cognitive principles with statistical and topo-

logical measures. In ASWC, 2008.

http://linkeddatacatalog.dws.informatik.uni-mannheim.de/state/


Bibliography 119

[96] Arnaud Soulet and Fabian M. Suchanek. Anytime large-scale analytics of linked

open data. In The Semantic Web - ISWC 2019 - 18th International Semantic Web

Conference, Auckland, New Zealand, October 26-30, 2019, Proceedings, Part I, vol-

ume 11778 of Lecture Notes in Computer Science, pages 576–592. Springer, 2019.

[97] Kostas Stefanidis, Ioannis Chrysakis, and Giorgos Flouris. On designing archiving

policies for evolving RDF datasets on the web. In ER, 2014.

[98] Margaret-Anne D. Storey, Natasha F. Noy, Mark A. Musen, Casey Best, Ray W. Ferger-

son, and Neil A. Ernst. Jambalaya: an interactive environment for exploring ontolo-

gies. In IUI, 2002.

[99] Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific

Journal of Mathematics, 5(2):285 – 309, 1955.

[100] Thanh Tran, Günter Ladwig, and Sebastian Rudolph. Managing structured and

semistructured RDF data using structure indexes. IEEE TKDE, 25(9), 2013.

[101] Georgia Troullinou, Giannis Agathangelos, Haridimos Kondylakis, Kostas Stefanidis,

and Dimitris Plexousakis. DIAERESIS: RDF data partitioning and query processing

on Spark. Semantic Web, 2023.

[102] Georgia Troullinou, Haridimos Kondylakis, Evangelia Daskalaki, and Dimitris Plex-

ousakis. RDF digest: Efficient summarization of RDF/S kbs. In The Semantic Web.

Latest Advances and New Domains - 12th European Semantic Web Conference, ESWC

2015, Portoroz, Slovenia, May 31 - June 4, 2015. Proceedings, pages 119–134, 2015.

[103] Georgia Troullinou, Haridimos Kondylakis, Evangelia Daskalaki, and Dimitris Plex-

ousakis. RDF digest: Ontology exploration using summaries. In Proceedings of the

ISWC 2015 Posters & Demonstrations Track co-located with the 14th International Se-

mantic Web Conference (ISWC-2015), Bethlehem, PA, USA, October 11, 2015., 2015.

[104] Georgia Troullinou, Haridimos Kondylakis, Evangelia Daskalaki, and Dimitris Plex-

ousakis. Ontology understanding without tears: The summarization approach. Se-

mantic Web, 8(6):797–815, 2017.

[105] Georgia Troullinou, Haridimos Kondylakis, Kostas Stefanidis, and Dimitris Plex-

ousakis. Exploring RDFS KBs Using Summaries. In The Semantic Web - ISWC 2018 -

17th International Semantic Web Conference, Monterey, CA, USA, October 8-12, 2018,

Proceedings, Part I, pages 268–284, 2018.

[106] Georgia Troullinou, Haridimos Kondylakis, Kostas Stefanidis, and Dimitris Plex-

ousakis. Rdfdigest+: A summary-driven system for kbs exploration. In Proceed-

ings of the ISWC 2018 Posters & Demonstrations, Industry and Blue Sky Ideas Tracks



120 Bibliography

co-located with 17th International Semantic Web Conference (ISWC 2018), Monterey,

USA, October 8th - to - 12th, 2018., 2018.

[107] Georgia Troullinou, Kostas Stefanidis, Dimitris Plexousakis, and Haridimos Kondy-

lakis. Knowledge graph partitioning for efficient query answering. In 2022 IEEE 40th

International Conference on Data Engineering (ICDE). IEEE, 2024.

[108] Yuroti Tsuboi and Nobutaka Suzuki. An algorithm for extracting shape expression

schemas from graphs. In Sonja Schimmler and Uwe M. Borghoff, editors, ACM Sym-

posium on Document Engineering, pages 32:1–32:4, 2019.

[109] Maarten H. van Emden and Robert A. Kowalski. The semantics of predicate logic as

a programming language. J. ACM, 23(4):733–742, 1976.

[110] Ruben Verborgh, Miel Vander Sande, Olaf Hartig, Joachim Van Herwegen, Lau-

rens De Vocht, Ben De Meester, Gerald Haesendonck, and Pieter Colpaert. Triple

pattern fragments: A low-cost knowledge graph interface for the web. J. Web Se-

mant., 37-38:184–206, 2016.

[111] Stefan Voß. Steiner’s problem in graphs: Heuristic methods. Discrete Applied Math-

ematics, 40(1):45–72, 1992.

[112] W3C. Resource description framework. http://www.w3.org/RDF/.

[113] Ke Wang and Huiqing Liu. Schema discovery for semistructured data. In KDD, pages

271–274, 1997.

[114] Taowei David Wang and Bijan Parsia. Cropcircles: Topology sensitive visualization

of OWL class hierarchies. In ISWC, 2006.

[115] Gang Wu, Juanzi Li, Ling Feng, and Kehong Wang. Identifying potentially important

concepts and relations in an ontology. In ISWC, 2008.

[116] Marcin Wylot, Manfred Hauswirth, Philippe Cudré-Mauroux, and Sherif Sakr. Rdf

data storage and query processing schemes: A survey. ACM Comput. Surv., 51(4),

sep 2018.

[117] Reynold S. Xin, Joseph E. Gonzalez, Michael J. Franklin, and Ion Stoica. Graphx: a

resilient distributed graph system on spark. In GRADES, 2013.

[118] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion

Stoica. Spark: Cluster computing with working sets. In HotCloud, 2010.



Bibliography 121

[119] Haiwei Zhang, Yuanyuan Duan, Xiaojie Yuan, and Ying Zhang. ASSG: adaptive

structural summary for RDF graph data. In Proceedings of the ISWC 2014 Posters

& Demonstrations Track a track within the 13th International Semantic Web Confer-

ence, ISWC 2014, Riva del Garda, Italy, October 21, 2014., pages 233–236, 2014.

[120] Xiang Zhang, Gong Cheng, and Yuzhong Qu. Ontology summarization based on rdf

sentence graph. In Proceedings of the 16th International Conference on World Wide

Web, WWW 2007, Banff, Alberta, Canada, May 8-12, 2007, pages 707–716, 2007.

[121] Mussab Zneika, Claudio Lucchese, Dan Vodislav, and Dimitris Kotzinos. Summa-

rizing linked data RDF graphs using approximate graph pattern mining. In EDBT,

pages 684–685, 2016.




	Acknowledgments
	Abstract
	Abstract in Greek
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Data partitioning for efficient exact query answering (EQA)
	Hybrid and incremental type discovery.
	Exploring summaries for increasing query efficiency
	Data partitioning for EQA

	Hierarchical partitioning for progressive query answering (PQA)

	Preliminaries
	RDF & RDF Schema
	Querying
	Apache Spark

	Hybrid and Incremental Type Discovery for Large RDF Data Sources
	Related Work
	Problem Statement
	HInT: Enabling Hybrid and Incremental Type Discovery
	Pattern Discovery
	Locality-Sensitive Hashing
	Type Assignment

	Evaluation
	Results on the quality of implicit type inference.
	Results on the quality of explicit type enrichment.
	Comparison of efficiency.

	Conclusion

	Exploring RDFS KBs Using Summaries
	Related Work
	Ontology Visualization Systems.
	Ontology Summarization Systems.

	Schema Summarization
	Identifying Important Nodes in RDFDigest+
	Linking Important Nodes
	Summary Schema Graph

	Exploration through Summaries
	The Extend Operator
	The Zoom Operator

	Evaluation & Implementation
	Quality - Evaluating the Zoom Operator
	Quality - Evaluating the Extend Operator
	The RDFDigest+ System

	Conclusions

	Data Partitioning for Efficient Exact Query Answering (EQA)
	Related Work
	Identifying Centroids & Dependence (First-Level Partition)
	Importance Measure for Identifying Centroids in the Schema Graph
	Assigning Nodes to Centroids using Dependence

	DIAERESIS Partitioning and Query Answering
	The DIAERESIS Partitioner 
	Query Processor

	Evaluation
	System Setup
	Query Execution

	Conclusions

	Hierarchical Partitioning for Progressive Query Answering (PQA)
	Related Work
	Hierarchical Partitioning 
	High-level architecture
	Characteristic Sets
	Extraction of the CS hierarchy
	Hierarchical Partitioning
	Sub-Partitioning
	Indexing
	Partitioning Algorithm

	Progressive Query Answering (PQA)
	Evaluation
	Setup
	Datasets & Workloads.
	Competitors
	Metrics
	Results on Progressive Query Answering
	Results on Exact Query Answering
	Discussion of a real use case from DBpedia
	The PING System

	Conclusions

	Conclusions
	Future Work

	Bibliography

