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UNIVERSITY OF CRETE

Abstract
Department of Medicine

Master in Bioinformatics

Localizing selective sweeps using higher order Site Frequency Spectra: the 2-D
SFS.

by Maria Malliarou

When an allele is favored by natural selection, its frequency may increase in the
population and linked neutral variants will increase their frequency as well a phe-
nomenon called selective sweep. As the distance from the beneficial mutation in-
creases, recombination will allow neutral variants to escape the so-called ‘hitchhik-
ing effect’ of the beneficial mutation, thus, generating characteristic patterns of neu-
tral variants, locally, around the target of natural selection. These patterns of neutral
variants have been exploited in the last 20 years by computational methods that aim
at localizing the action of positive selection on genomes obtained from natural popu-
lations. It is well-known that certain demographic models pose severe challenges on
the detection of selective sweeps because they generate patterns of neutral variants
that resemble those of a selective sweep. Considerable effort has been devoted to
understanding the patterns of neutral variants generated by demographic models,
solely. However, we still have no description of a selective sweep model in a pop-
ulation that has experienced demographic changes during its evolutionary history.
Thus, even though neutrality is well-described, this is not the case for the model
of positive selection. Here, we present a novel methodology for incorporating de-
mography on the selection model of a selective sweep. We demonstrate that certain
demographic models may change dramatically the well-known patterns of positive
selection. To facilitate the detection of positive selection in non-isolated natural pop-
ulations that have experienced demographic changes we implemented a selective
sweep detection software, called SweeD-sim that extends Sweep Detector (SweeD)
software. Moreover, to incorporate specific Linkage Disequilibrium patterns of ge-
netic hitchhiking we have expanded our approach in two dimensions, creating a so
called Two Dimensional Site Frequency Spectrum (2D-SFS) in hope of more signifi-
cant results .

Keywords: selective sweeps, simulations, kernel density estimation, 2D-SFS
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ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

Περίληψη

Τμήμα Ιατρικής

Μεταπτυχιακό Βιοπληροφορικής

Εντοπισμός επιλεκτικής συμπαράσυρσης χρησιμοποιώντας μεγαλυτερης διάστασης

φάσμα αλληλικών συχνοτήτων: 2D-SFS

Μαρία Μαλλιαρού

΄Οταν ένα αλληλόμορφο επιλέγεται μέσω φυσικής επιλογής, η συχνότητά του μπορεί να
αυξηθεί στο πλυθυσμό και συνδεδεμένες με αυτό, ουδέτερες μεταλλάξεις, θα αυξηθούν
σε συχνότητα, ένα φαινόμενο που ονομάζεται επιλεκτική συμπαράσυρση. Καθώς η
απόσταση από την ευεργετική μετάλλαξη αυξάνεται, ο ανασυνδυασμός επιτρέπει
ουδέτερες παραλλαγές να ξεφύγουν από το λεγόμενο «φαινόμενο ωτοστόπ» της
ωφέλιμης μεταλλαγής, δημιουργώντας έτσι χαρακτηριστικά μοτίβα ουδέτερων
παραλλαγών, τοπικά, γύρω από τον στόχο της φυσικής επιλογής. Αυτά τα μοτίβα

ουδέτερων πολυμορφισμών έχουν αξιοποιηθεί τα τελευταία 20 χρόνια με υπολογιστικές
μεθόδους που στοχεύουν στον εντοπισμό της δράσης της θετικής επιλογής σε

γονιδιώματα που λαμβάνονται από φυσικούς πληθυσμούς. Είναι γνωστό ότι ορισμένα
δημογραφικά μοντέλα θέτουν σοβαρές προκλήσεις στην ανίχνευση επιλεκτικής

συμπαράσυρσης επειδή δημιουργούν μοτίβα ουδέτερων πολυμορφισμών που μοιάζουν με

εκείνα μίας επιλεκτικης συμπαράσυρσης. ΄Εχει καταβληθεί σημαντική προσπάθεια για την
κατανόηση των προτύπων ουδέτερων παραλλαγών που δημιουργούνται αποκλειστικά από

δημογραφικά μοντέλα. Ωστόσο, δεν υπάρχει ακόμη περιγραφή ενός επιλεκτικού μοντέλου
σάρωσης σε έναν πληθυσμό που έχει βιώσει δημογραφικές αλλαγές κατά την εξελικτική

του ιστορία. ΄Ετσι, παρόλο που η ουδετερότητα έχει μελετηθεί εκτενώς, αυτό δεν ισχύει
για το μοντέλο της θετικής επιλογής. Εδώ, παρουσιάζουμε μια νέα μεθοδολογία για την
ενσωμάτωση της δημογραφικής ιστορίας ενός πλυθυσμού στο μοντέλο επιλογής μιας

επιλεκτικής σάρωσης. Δείχνουμε ότι ορισμένα δημογραφικά μοντέλα μπορεί να αλλάξουν
δραματικά τα γνωστά πρότυπα θετικής επιλογής. Για να διευκολύνουμε την ανίχνευση
της θετικής επιλογής σε μη απομονωμένους φυσικούς πληθυσμούς που έχουν βιώσει

δημογραφικές αλλαγές, εφαρμόσαμε ένα λογισμικό ανίχνευσης επιλογής μέσω
προσομοιώσεων (SweeD-sim) που επεκτείνει το ήδη υπάρχον εργαλείο Sweep

Detector(SweeD). Επιπλέον, για να ενσωματώσουμε συγκεκριμένα μοτίβα ανισορροπίας
σύνδεσης της γενετικής συμπαράσυρσης, έχουμε επεκτείνει την προσέγγισή μας σε δύο
διαστάσεις, δημιουργώντας ένα λεγόμενο δισδιάστατo φάσμα αλληλικών συχνοτήτων

(2D-SFS) με στόχο στατιστικά σημαντικότερα αποτελέσματα.

Λέξεις κλειδιά: επιλεκτική συμπαράσυρση, προσομοιώσεις, εκτίμηση πυκνότητας με
πυρήνες, δισδιάτατο φασμα αλληλικών συχνοτήτων
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Chapter 1

Introduction

1.1 Selective Sweep Theory

When a beneficial mutation emerges in a population, its frequency tends to increase
in individuals. Consequently, neutral or weakly selected variants close to the muta-
tion under selection will also have higher frequencies, a process that Maynard Smith
and Haigh (1974) (1) called genetic hitchhiking. As a result of this process, hitchhik-
ing events can reduce genetic variation near the site of selection in a genome, thereby
inducing a selective sweep. Selection against recurrent deleterious mutations also
reduces variation at linked loci (Charlesworth et al., 1993 (2)) a mechanism called
“background selection” which causes the continuous removal of linked sequences
along with deleterious mutations.

The fundamentals of the hitchhiking model which were analyzed by Maynard
Smith and Haigh (1974) (1) are shown in Figure 1.1. Initially, when a beneficial allele
arises by mutation, three different haplotypes are present in the population: two of
them are polymorphic at the neutral locus (with alleles A and a) and monomorphic
at a selected locus nearby, while the third haplotype carries the beneficial allele at the
selected locus and the neutral allele A at the other locus. After fixation of the bene-
ficial allele, only one haplotype exists in the population. If no recombination event
has occurred between the neutral and selected loci (lower left side of the panel); in
this case, variation at the neutral locus is eliminated at the time of fixation through
the hitchhiking effect. If recombination has occurred during the fixation process of
the beneficial allele, the neutral locus remains polymorphic, and thus two haplo-
types are present in the population (lower right side). After fixation of the beneficial
allele, the neutral locus remains polymorphic as long as it can escape hitchhiking.
The chance of this happening increases with the recombination rate and with the
time available for recombination to occur. The latter is proportional to the selection
coefficient of the beneficial allele.

Although genetic hitch-hiking was introduced in 1974, it was in the late 1980’s
where patterns of reduced variation were found in regions of the genome with low
recombination rates in Drosophila Species (Aguadé et al., 1989; (4), Stephan and
Langley, 1989 (5)). Also in 1991, Berry et al. (6) showed lack of polymorphism in
the cubitus interruptus locus located on the nonrecombinant fourth chromosome of
Drosophila natural lines, indicating recent positive sweeps. Begun and Aquadro’s
work in 1992 (7) demonstrated a correlation between levels of DNA variation and
recombination rates in the D.melanogaster genome whereas average divergence to
D.simulans was hardly affected by recombination. All of the aforementioned stud-
ies led to more extended models of genetic hitch-hiking by Kaplan et al. (1989) (8)
who created a three-phase simulation model to study the effect of selective sweeps
on genealogies, Wiehe and Stephan (1993) (9) who used diffusion equations meth-
ods, Barton (1998) (10) who improved the theory concerning the effects of a single
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FIGURE (1.1) Basic hitchhiking model. The upper part of the figure
shows the three haplotypes present in a population when a beneficial
mutation (filled circle) occurs at the selected locus. The wild type al-
lele at the selected locus is indicated by an open circle. At the neutral
locus two alleles A and a are present. The haplotypes after the fixa-
tion of the beneficial allele are depicted in the lower part of the figure.
If no recombination occurs during the fixation process one haplotype
is present (left side).With recombination the neutral locus stays poly-
morphic and two haplotypes remain (right side).(Stephan 2019) (3)

sweep and Gillespie (2000) (11) who called this effect “genetic draft” and studied
it as stochastic process. The authors have determined that in large populations di-
versity vanishes in recombining regions at the site of selection immediately after the
fixation of the beneficial allele and increases as a function of the ratio of the recom-
bination rate (between the neutral and selected sites) and the selection coefficient.

1.2 Signatures of Selective Sweeps

1.2.1 Site Frequency Spectrum

The Site Frequency Spectrum (SFS) is a count of the number of mutations that ex-
ist in a frequency of xi = i

n for i = 1, 2, ..., n − 1, in a sample of size n. In other
words, it represents a summary of the allele frequencies of the various mutations in
the sample. In a standard neutral model (i.e., a model with random mating, constant
population size, no population subdivision, etc), the expected value of xi is propor-
tional to 1

i . As shown by Braverman et al. (1995) (12) and Fay and Wu (2000) (13), a
selective sweep will increase the fraction of mutations segregating at low frequencies
in the sample. Neutral variants that are initially linked to the beneficial mutation,
increase in frequency, whereas variants that are initially not linked to the beneficial
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mutation, decrease in frequency during the fixation of the beneficial mutation. Fig-
ure 1.2 illustrates the shift of the SFS after a selective sweep and the corresponding
polymorphic table.

FIGURE (1.2) The SFS signature of a selective sweep compared to
the neutral SFS. In the polymorphic table, black cells denote derived
alleles, whereas the white cells denote ancestral alleles. Each column
in the polymorphic table represents a SNP. Monomorphic sites have
been excluded. a Neutral SFS and its respective polymorphic table. b
SFS after a selective sweep and its respective polymorphic table (14)

Given this information, Kim and Stephan (2002) (15) developed a composite-
likelihood ratio (CLR) test to detect local reductions of nucleotide diversity along
a recombining chromosome, and predict the strength and location of the target of
selection, using the SFS signature of a selective sweep. In a likelihood ratio test
we compare two statistical models usually by maximizing the parameters in the
first model and keep the second. The CLR test compares the probability of the ob-
served polymorphism data under the standard neutral model (i.e., constant popu-
lation size) with the probability of the data under the model of a selective sweep.
Under neutrality, the expected number of sites where the derived variant is in the
frequency interval [p, p + dp] in the population is given by

φ0(p)dp =
θ

p
dp (16)

where θ is given from the formula θ = 4Nµ with Ν being the effective number of
individuals in a diploid population and µ the mutation rate per generation. Based
on the model proposed by Fay and Wu (2002) (13) after a hitchhiking event this
distribution is transformed approximately to

φ0(p) =

 θ
p −

θ
C , for 0 < p < C.

θ
C , for 1− C < p < 1 .

, where C is given approximately by 1 − ε
r
s , where ε is the frequency of the

beneficial allele when it begins to increase deterministically and approximately is
estimated by the formula ε = 1

a based on simulations, a = 2Ns , s is the selection
coefficient, r is the recombination fraction between the neutral locus and the selected
locus. The probability of observing a site where k derived alleles are found in a
sample of size n is given by



4 Chapter 1. Introduction

Pn,k =
∫ 1

0

(
n
k

)
pk(1− p)n−kφ(p)dp, ( k = 1, ..., n− 1)

and

Pn,0 = 1− (Pn,1 + ... + Pn,n−1)

where φ(.) = φ0(.) under the neutral model and φ(.) = φ1(.) under the hitch-
hiking model. The likelihood of all data under the model of genetic hitchhiking is
obtained by multiplying the probabilities for all nucleotide sites under considera-
tion. Then, the authors calculated the maximum composite likelihood under the
neutral model (L0) and that under the hitchhiking model (L1 ) and the likelihood ra-
tio is given by L1/L0. Since both functions have a lot of free parameters, the authors
chose only s as a free variable that maximizes the CLR and the others are either spec-
ified or obtained empirically by the data. Although the Kim and Stephan CLR test
was the first test to detect selective sweeps, it was only efficient for small genome
fragments and since it was based on Fay and Wu’s model, it was sensitive to as-
sumptions regarding mutation rates and rates of recombination. Moreover, since
the neutral model was derived by an equilibrium neutral population, i.e., a popu-
lation with constant population size, Jensen et al. (2005) (17) showed that the test
is not robust to undetected population structure or a recent bottleneck, with some
parameter combinations resulting in a false positive rate of nearly 90%.

In 2005, Nielsen et al. (18) developed a similar method for detecting selective
sweeps in whole-genome data comparing a model under neutrality and a selective
sweep model by introducing two modifications to the Fay and Wu’s CRL test. For
the neutral model (the denominator of the CLR test), instead of assuming standard
neutrality and obtaining the SFS based on Kimura (1971), they used the empirical
SFS derived from the background pattern of variation of their data. For their se-
lection model, they estimated the probability pe of each ancestral state escaping a
selective sweep through recombination onto the selected background. This approxi-
mated probability offered by studies like Maynard Smith and Haigh 1974 (1); Barton
1998 (10); Kim and Stephan 2002 (15)) of the descendant neutral copy at the end of a
sweep is given by

pe = 1− e−αd

where d is the distance of from the location of the sweep to the sampled SNP
locus and α is a parameter that depends on the rate of recombination, the effective
population size, and the selection coefficient of the selected mutation. Then under
specific assumptions, the probability pe(k), that k where 0 < k < n, out of n gene
copies sampled for a locus escaped the sweep, is binomially distributed with param-
eters pe and n :

Pe(k) =
(

n
k

)
pk

e(1− pe)
n−k

If k lineages escape the sweep, the ancestral sample right before the sweep con-
tains H = minn, k + 1 lineages. If the distribution of allele frequencies in a sample of
size n, in the absence of a selective sweep, is given by p = (p1, p2, ..., pn−1) )then the
probability of observing j mutant lineages in an ancestral sample of size H is given
by
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pj,H =
n−1

∑
i=j

pi
(i

j)(
n−i
H−j)

( n
H)

If there are j mutant lineages in an ancestral sample of size k + 1, the probability
that the most recent common ancestor of the lineages that did not escape the se-
lective sweep is of the mutant type, is j / (k + 1). This implies that the probability
of observing a mutant allele of frequency B out of n in the sample after a selective
sweep, is

p∗B = pe(n)pB +
n−1

∑
k=0

pe(k)(pB+1−n+k,k+1
B + 1− n + k

k + 1
+ pB,k+1

k + 1− B
k + 1

)

With this expression, they calculated the composite likelihood for a set of SNP
data assuming a selective sweep of intensity α at a certain location in the genome
where by maximizing for α and p for all possible locations in the genome. Since
this modification does not rely on the θ parameter which can vary among a chro-
mosome, it is feasible to perform the test on a larger scale. Computationally, their
tool, SweepFinder, can process small and moderate sample sizes efficiently but not a
large number of sequences. Yet again, their model does not take into account demo-
graphic scenarios like a bottleneck, population subdivision or gene-flow with other
populations.

In 2013, Pavlidis et al. (19), released SweeD, a computationally advanced test
based on the SweepFinder algorithm which provides the user the option to employ
a user-specified demographic model for the theoretical calculation of the expected
neutral SFS. Their implementation can analyze data of a larger scale which increases
sweep detection accuracy.

1.2.2 Linkage Disequilibrium

Levels of linkage disequilibrium (LD), the correlation among alleles from different
loci, tend to increase in regions under selection although Przeworski (2001) (20)
showed that this phase may be relatively short. Upon fixation of the beneficial mu-
tation, elevated levels of LD emerge on each side of the selected site, whereas a
decreased LD level is observed between sites found on different sides of the selected
site. The high LD levels on the different sides of the selected locus are due to the fact
that a single recombination event allows existing polymorphisms on the same side
of the sweep to escape the sweep. On the other hand, polymorphisms that reside on
different sides of the selected locus need a minimum of two recombination events
in order to escape the sweep. Given that recombination events are independent, the
level of LD between SNPs that are located on different sides of the positively selected
mutation decreases.

1.3 Selective Sweeps and Coalescence Theory

Coalescence (Hudson, 1983 (21); Kingman, 1982 (22)) is a stochastic process to gener-
ate genealogies from a population by tracing randomly sampled alleles backwards
in time. Consider a population of N individuals that reproduce under the neutral
Wright - Fisher model which means that each generation is discrete and is formed
by randomly sampling N parents with replacement from the current generation.
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The number of offsprings of a specific individual is binomially distributed where
the probability of being chosen is 1/N whereas the probability of not being chosen
is 1 - 1 / N. Going backwards in time, lineages coalesce whenever two or more indi-
viduals are produced from the same parent until the most recent common ancestor
(MRCA) is found. This means that in a sample of k individuals where k(k-1)/ 2 pairs
could coalesce the probability of one of these coalesces in the previous generation is
given by

P(coalescence) =
k(k− 1)

2
1

2N
As a result, expected coalescence time for k alleles is exponentially distributed

with a mean 4N and coalescence rate of k(k−1)
4N for diploid populations and a mean

2N and coalescence rate of k(k−1)
2N for haploid population. Since the assumptions of

the Wright Fisher model are violated in the case of an loci undergoing a selective
sweep Hudson and Kaplan (1986) showed how conditioning on the allelic types
of a sample alters the coalescent process, in a way that is similar to the effect of
geographic structure and migration. Two lineages with the same allelic type may
coalesce, but two lineages with different types must wait for mutation to change the
type of one or the other. This idea led Hudson et al. (1988) (23) to apply this idea
to a locus under selection, showing that rates of coalescence and mutation in the
ancestral process depend on the frequencies of the two alleles. Consider a locus A
with two alleles A1 and A2 where A2 is selectively favored. If in a given time t in the
past the allelic frequency of A2 is x(t) and there are i ancestral lineages then the rate
of coalescence between any pair of them is 1

x(t) , and the total rate is

( i
2)

x(t)
=

i!2
(i− 2)!x(t)

If x(t) = 1, the rate is the same as in the standard neutral coalescent. However,
if x(t) < 1, then the rate is greater than in the standard neutral coalescent. The
reason for this is that, when x(t) is smaller, there are fewer possible parents of the
i lineages, so the probability of a common ancestor in a single generation is larger.
Then let’s consider a locus B close to the selected locus A at a distance m. Each of
the members of a sample of size n taken at the B locus will be linked either to an
A1 allele or to an A2 allele at the selected locus, and the same is true of the ancestral
lineages of the sample.This linkage that makes the ancestry at the B locus differ from
the standard neutral coalescent. This means that if i B-locus lineages are linked to
A2 alleles, then the rate of coalescence between each pair is 1

x(t) and the total rate is
identical to the total rate for the A locus as given. This is true to m values not being
too large,minimising the possibility that both recombination and coalescence occur
in a single generation. The more we move away, the probability of B-locus lineages
escaping the sweep is increasing. As we go backwards in time the frequency of A2
decreases from 1 down to 1 / (2N) which means that for the B-locus alleles that are
linked to A2, the rates of coalescence will increase as x(t) decreases since it depends
on 1 / x(t). As a result we can conclude that coalescent events occur at higher rates in
the presence of a sweep than they do in its absence producing short trees whereas in
neutrality we have short branches that get longer as we move closely to the MRCA.
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1.4 Demography in selective sweep detection

In chapter 1.2, we discussed signatures that are strong indicators of a selective sweep
which can be generated by the fixation of a favoured allele, coalescent rates and re-
combination events. Nevertheless, we should take into account that demographic
events can generate similar patterns of polymorphisms that resemble the signatures
of genetic hitchhiking. For example, let’s assume a population of large effective size
that experienced a severe bottleneck (decrease of the population size) that its an-
cestral state was also of large population size. As we mentioned above, since the
coalescent rate is inversely proportional to the size, the probability of observing a
larger number of coalescent events in a short period of time is increased although in
cases where the bottleneck is not so severe,lineages can escape the bottleneck, tak-
ing them more time to coalesce. In a recombining chromosome, genomic regions
that have witnessed a massive amount of coalescent events during the bottleneck
phase may alternate with genomic regions with lineages that have escaped the bot-
tleneck phase which subsequently means that we observe similar SNP patterns to
those generated by as selective sweep making the detection process impractical be-
cause of large false positive rates. In order to minimise these rates, the methods
we described above, take advantage of the fact that while the effects of a selective
sweep is observed only to small regions close to the selection site, neutral demo-
graphic changes generate genome-wide patterns. Initially, they estimate an average,
genome-wide SFS calling it background SFS followed by detecting regions that fit
the selection model but not the background SFS. This approach assumes that SFS
does not variate in a recombining genome which according to Becquet (2003) (24)
is not the case. Instead he showed that a bottleneck in the presence of recombina-
tion results in increased heterogeneity in variability patterns along a chromosome,
reminiscent of the effects of selection. There is a need, therefore, to understand se-
lective sweep models in the presence of demographic changes. Such models have
not been developed yet, mainly due to the mathematical challenges of the problem.
In addition, neutral demographic models of natural populations may be composed
of multiple populations that exchange migrants. The implementation of a general
model that will model selective sweeps in the presence of demographic changes is
therefore extremely challenging.

In this manuscript, we describe an alternative approach, in which the likelihood
of a selection model in the presence of past demographic changes is approximated
by simulations and kernel density estimation functions. With these simulations, we
hope to extract models of selection that best describe populations that have been
strongly affected by both natural selection and past demographic events.
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Chapter 2

Methods

The basic concept of this project is to create a tool that can facilitate the detection of
positive selection in populations that have experienced demographic changes. For
this purpose, we use the general concept of the aforementioned Composite Like-
lihood Ratio but, instead of applying mathematical equations as the previous ap-
proaches, we perform simulations in order to extract specific allelic frequencies pat-
terns. Based on a simulation with specific demographic and selection parameters,
we then calculate the probability of the occurrence of an allelic class based on its
distance from a candidate selective region and with those probabilities we perform
the CLR test in samples under consideration. Based on the results, we need to deter-
mine whether our sample has been under the influence of positive selection or not.
We describe the method in detail, in the following sections.

2.1 Data Generation

The first step of our tool is the creation of a specific data set with similar mutation, re-
combination and demographic parameters as the sample under consideration. There
are several tools cited in the literature that can accurately estimate all the above pa-
rameters. (add some literature if possible BOTTLENECK, GENEPOP etc) To gen-
erate our data, we used the mssel, an extension of ms (25), a Monte Carlo computer
program written in C, that generates samples drawn from a population evolving
according to a Wright-Fisher neutral model. The program assumes an infinite-sites
model of mutation, and allows recombination, gene conversion, symmetric migra-
tion among sub-populations, and a variety of demographic histories. For each sam-
ple, the program generates a random genealogical history of a segment of a chromo-
some. Conditional on the genealogy of a sample, mutations are randomly placed on
the genealogy according to the usual assumption that the number of mutations on a
branch is Poisson distributed with mean given by the product of the mutation rate
and the branch length. The times between nodes in the genealogy are approximated
by continuous (exponential) distributions. For the analysis we constructed specific
scenarios where each bottleneck model is characterized by a reduction in population
size at some point in time and a recovery to the original population size (backwards
in time) and for each demographic model we generated 1000 datasets. The mutation
parameter of all models was set to 4Nµ = 2000 and selection is supposed to act in
the middle of the region. We also constructed neutral data sets with the same pa-
rameters in order to evaluate our method and estimate true and false positive rates.
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2.2 Selective Sweep Model

After obtaining the simulated data set under selection, the next step is to calculate
the probabilities of the allelic classes Xi (i = 1,2,...,N-1) given its distance (D) from the
selected loci (P(Xi|D). This conditional probability can be described mathematically
by Bayes theorem and can be stated as the following equation:

P(Xi|D) =
P(D|Xi)P(Xi)

P(D)

where P(D|Xi) is the probability to observe specifically the allelic class Xi D units
away from the selection site, P(Xi) is the probability of the class independently of
its location and P(D) is the probability of observing any allelic class in the specific
location and can be further analysed as

P(D) = P(D|X1)P(X1) + P(D|X2)P(X2) + ... + P(D|XN−1)P(XN−1)

All the components of Bayes’ theorem can be inferred from the simulated data
set where for each allelic class we obtain the positions of their occurrences and their
total frequencies (SFS). Each position is transformed based on its distance from the
selection site. If we find n occurrences of an allelic class, let (D1, D2, ...Dn) be the
sampled distances drawn from some distribution with an unknown density . This
probability density function (PDF) can later be used to specify the probability of any
given variable falling within a particular range of values and is given by the inte-
gral of this variable’s PDF over that range. Since the distribution of allelic positions
is not known, we use a kernel density estimation (KDE) approach which is a non
parametric way to estimate the PDF of a random variable. A KDE for the function f
is

fh(x) =
1
n

n

∑
i=1

Kh(x− xi) =
1

nh

n

∑
i=1

K(
x− xi

h
)

where K is a non negative function called the kernel and h is a smoothing param-
eter called bandwidth. The selection of kernel has limited impact on optimal PDF
estimation so for the purposes of this study, we use the Gaussian kernel which is
defined as

K(x) = 2π−
1
2 e−

1
2 x2

and the Epenchinkov kernel which is defined as

K(x) =
3
4
(1− x2)

The bandwidth of the kernel can strongly influence the estimate obtained from a
KDE, this is why bandwidth selection is a crucial step of the process. In most kernel
density estimations, the bandwidth is being computed by Silverman’s rule of thumb
approximations where:

h = σ̂n−
1
5

if a Gaussian kernel is used and

h = 2.34σ̂n−
1
5
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for the Epenchinkov kernel, where σ̂ is the standard deviation of the sample and
n is the sample size. After estimating the PDF of the distances of all allelic classes
and the site frequency spectrum, we can calculate the conditional probability from
Bayes’s Law that best describes a data set that is influenced by both selection and
bottleneck as well.

2.3 Analysis in two dimensions

For the next part, we wanted to incorporated the signature of LD into our model. The
novelty of our method is that instead of using each allelic class independently as 1,
2, ... N-1, we consider the occurrence of two consecutive SNP’s as an single allelic
class. By creating N(N−1)

2 − 1 unique allelic pairs we calculated their frequencies and
referred them as 2D-SFS (1 - 1, 1 - 2, ..., (N - 1) - (N - 1)). The distance of these pairs
was the distance of the closest SNP to the candidate selection site. Afterwards, for
each pair of SNP’s we followed the same procedure as described before, estimating
their probability densities function.

2.4 Composite Likelihood Ratio Test

Although we have already mentioned the fundamentals of a CLR test, we will de-
scribe it in this section in accordance with the way we perform it in a sample. In this
study, we have two hypotheses: samples are under selection indicating signatures
of selective sweeping or samples are under neutrality referred as L0 and L1 respec-
tively. Let’s assume a data set with n individuals. At first we need to remove all
monomorphic sites. Next, depending on the dimension, we calculate the site fre-
quency spectrum in 1D or 2D, where it denotes the frequencies of the neutral model.
For the sweep model we estimate the probability density function from a simulation
file the same way we described in a previous section, thus obtaining the probabilities
of the selection model. If our data set has X polymorphic sites, we randomly select
possible selection sites and perform the CLR in a small fraction of the genome con-
taining xl from the left side and xr SNP’s. We transform the positions of these SNP’s
in accordance with the distance from the candidate selection site and then perform
the CLR test where:

CLR =
∏xl

i=1 P(i|selection)∏xr
j=1 P(j|selection)

∏xl
i=1 P(i|neutrality)∏xr

j=1 P(j|neutrality)

where P(·|selection) is the probability of a site under selection derived from the
simulation data set and P(·|neutrality) is the probability of a site under neutrality
which is derived from the SFS of the sample. Since the product of numbers less than
1 can be extremely small, we estimate the logarithm of the CLR test, transforming
the above equation to

log(CLR) =
∑xl

i=1 log(P(i|selection)) + ∑xr
j=1 log(P(j|selection))

∑xl
i=1 log(P(i|neutrality)) + ∑xr

j=1 log(P(j|neutrality))

The length of the fraction is a very crucial parameter for our calculations, because
it gives information for the strength of selection. That being the case, for each can-
didate region, we also check various length parameters that maximize the CLR. The
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region with the highest value of the CLR is considered the best candidate selection
site.

2.5 SweeD-Sim

Althouh the initial method was implemented in Python the promising outcome from
our results has led us to implement the entire procedure into a fully functioning soft-
ware tool in C, called SweeD-Sim.SweeD-Sim is more time efficient and can create
simulation and obtain the probabilities faster than Python. With SweeD-Sim, the
user can test if his sample contains regions that have been under selection , using
patterns of simulated data. More specifically, the user can specify the demographic
parameters of his samples, and then SweeD-Sim will create a simulated data set,
obtain the probabilities under selective sweep with kernel density estimation and
perform the CLR test for a number of candidate loci across the genome. SweeD-Sim
maximizes the log likelihood depending on the distance from the selection site, thus
determining the length of the selective sweep. With the grid parameter, SweeD-Sim
takes a specified number of candidate regions for which computes their CLR results.
The region with the highest CLR is returned, among with the scores of every other
region as well.

2.6 Specificity and Sensitivity Analysis

After the implementation of our method, we wanted to determine whether our tool
can efficiently manage to distinguish samples under selection and samples under
neutrality with the same bottleneck history. For this purpose, we used the ms and
mssel simulation tools to create test samples for the evaluation. We examined the
results in two ways. First, we wanted to record if in the selection data, where we
specified the selection site, the SweeD-Sim tool could accurately predict this specific
loci. Next, we wanted to record the specificity and sensitivity of our method. For this
purpose we constructed a receiver operating characteristic (ROC) curve, a graphical
plot that illustrates the diagnostic ability of a binary classifier system (here Neutral-
ity and Selection) as its discrimination threshold is varied. The ROC curve is created
by plotting the true positive rate (TPR) meaning that samples are under selection
and SweeD-Sim defined them under selection as well, against the false positive rate
(FPR) at various threshold settings. The true-positive rate is also known as sensitiv-
ity where the false-positive rate can be calculated as 1− specificity. Moreover, we
can calculate the area under the curve (AUC) from the ROC curve, which represents
the probability that our method will rank a random sample under selection more
highly than a random sample under neutrality. In general, an area of 1 represents a
perfect test; an area of .5 represents a worthless test. A scientific guide for classifying
the accuracy of a test is usually the following:

.90-1 = excellent (A) .80-.90 = good (B) .70-.80 = fair (C) .60-.70 = poor (D) .50-.60
= fail (F)

2.7 Comparison with SweeD

For the last part of this analysis, we scanned the same samples under selection and
neutrality with SweeD in order to distinguish where our method can outperform
SweeD in data sets where demography strongly affects the distribution of SNP’s. As
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we mentioned in the introduction, SweeD uses a mathematical equation to compute
the CLR test and is Since SweeD uses the one dimensional SFS, the results in this
comparison have only incorporated the 1D analysis .
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Chapter 3

Results

3.1 Site Frequency Spectrum Patterns

For the first part of our analysis we wanted to check the frequencies of allelic classes
in our simulated data in different bottleneck scenarios. The results can be shown in
Figure 3.1. As expected, in the scenario of the mild bottleneck, as we move closer
to the selection site, frequencies of the outer classes tend to be increased, a result of
recombination and selective sweep. In the case of the bottleneck scenario with ex-
treme severity we see very strange patterns and the neutral model has no difference
to the selection one.

FIGURE (3.1) Site Frequency Spectrum of different Bottleneck Sce-
narios of samples under neutrality and under selection. Both neutral
and selection samples have similar patterns, while loci closer to selec-

tion tends to show a preference to low and high allelic classes.

More over, the SFS of both neutral and selection models share similar patterns,
thus confirming that probabilities for the neutral model on the CLR test can be esti-
mated from the data set.
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3.2 Composite Likelihood Ratios in Different Bottleneck Sce-
narios

We performed our implementation to both neutral and selection samples with the
same demographic parameters in one and two dimension respectively. For this part
we performed the CLR test to data set with mild bottleneck (Model 1), moderate to
severe bottleneck(Models 24, 36) and a data set with severe bottleneck (Model 60) for
a specific number of SNP’s surrounding the candidate selection loci. In the following
figure, we demonstrate the results in the form of boxplots in figure 3.2.

FIGURE (3.2) Boxplots of CLR test results in loci of specific length
in 1D and 2D in 150 samples.

For the models of mild and moderate bottlenecks we have a clear differentiation
in both 1D and 2D for selection and neutrality with a really small overlap. For the
model of severe bottleneck the approach in 1D also shows difference in selection and
neutrality while in 2D we have some overlap between the two states. The ability of
our method to predict the state of a sample can be shown in the ROC curves in Figure
3.3.

The area under the curve of each sample can be shown in the table 3.1. Unfortu-
nately, since the calculation for the 2D model is quite time consuming, the number
of samples for these estimation is small (150 samples) which can maybe lead to the
under performance of the 2D approach. In this first approach, we do not have any
maximization of the likelihood, thus making the distinguish between neutral and
selection data more clear. The fact that all our test are above 60% is an indicator that
our method can be used for detection of selective sweeping.

3.3 Evaluating Performance of SweeD-Sim compared with
SweeD

In this section we demonstrate the results of SweeD-Sim and SweeD in data sets
with moderate bottleneck (Model 20), moderate to severe bottleneck(Models 24, 36)
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FIGURE (3.3) ROC curves in different bottleneck scenarios in 1D
and 2D in 150 samples

and severe bottleneck (Model 60). Both tools maximize the logarithm of CLR in
accordance with the distance from the candidate selection site. The results of both
SweeD and SweeD-Sim are examined in two ways. At first, since in our data sets we
know the exact location of selection, we compare the CLR of the region closer to the
selection. For the neutral data, we take the result of the same region, although since
their is no selection, we select this specific region for purposes of comparison. The
distribution of the results can be show in Figure 3.4 and their ROC curves and AUC
percentages in Figure 3.5 and Τable 3.2 respectively.

For the second part we extracted the maximum log likelihood regardless of the
position. The distribution of the results can be show in Figure 3.6 and their ROC
curves and AUC percentages in Figure 3.7 and Table 3.3 respectively.

Although the results of SweeD-Sim’s AUC values are smaller than those of SweeD,
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Area Under the Curve (%)

Model 1D 2D

Model 1 99 99

Model 24 62 60

Model 36 85 85

Model 60 76 67

TABLE (3.1) Percentage of area under the curve for different bottle-
neck models in 1D and 2D. In all cases the 1D approach outperforms

slightly the 2D approach

(A) Boxplot of CLR results of different sce-
narios in the site of selection

(B) Density Plot of CLR results of different
scenarios in the site of selection

FIGURE (3.4) The Boxplot and Density plot of CLR results of differ-
ent scenarios in the site of selection strongly indicate that both tools

can insulate selection from neutrality with a little overlap

Area Under the Curve (%)

Model SweeD SweeD-Sim

Model 20 97 86

Model 24 80 71

Model 36 70 67

Model 60 60 63

TABLE (3.2) Percentage of area under the curve for different bottle-
neck models using SweeD-Sim and SweeD

their differences are not that consequential to declare our tool as not applicable. The
case of the the greater maximum CLR in model 60 in SweeD-Sim, where we have
a severe case of bottleneck, is also a strong indicator that our approach can exhibit
better results in severe demographic scenarios, where preexisting tools fail to distin-
guish neutrality from selection.
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FIGURE (3.5) ROC curves in different bottleneck scenarios with
SweeD (left side) and SweeD-Sim (right side). In model 20, the curve
tends to move away from the y = x line, indicating a strong perfor-
mance from both tools, while in models 36 and 60 the line tends to

reach it indicating a poor performance

Area Under the Curve (%)

Model SweeD SweeD-Sim

Model 20 95 92

Model 24 63 56

Model 36 64 63

Model 60 47 52

TABLE (3.3) Percentage of area under the curve for different bottle-
neck models using SweeD-Sim and SweeD
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(A) Boxplot of maximum CLR results of
different scenarios in the entire loci

(B) Density Plot of maximum CLR results
of different scenarios in the entire loci

FIGURE (3.6) Maximum CLR test results of different scenarios.
While in model 20 the distinguish is strong, the other models have

overlapping CLR values.
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FIGURE (3.7) ROC curves of the maximum CLR alues in different
bottleneck scenarios with SweeD (left side) and SweeD-Sim (right
side). In model 20, the curve tends to move away from the y = x
line, indicating a strong performance from both tools, while in the
other models the line tends to reach it, indicating a poor performance
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Chapter 4

Discussion

Selective sweeps and their well recognized signatures have been heavily utilized for
detecting sites under selection. A variety of tools have been implemented which can
detective sweeps with high confidence if the demographic history of a population is
not very complicated. However, in the case of populations with complex demogra-
phies that share almost identical signatures, the distinguish between sites under se-
lection and sites under neutrality remains a challenging task. In this manuscript we
tried to approximate this issue with the usage of simulation and take advantage of
the non parametric kernel density estimation in order to approach each population
separately, based entirely on its own history, in order to determine if its patterns are
a result of demography, selection, or both.
Regarding the results, our method can successfully recognise patterns of selective
sweeps thus making it quite useful in detecting selection. In cases of mild bottle-
necks SweeD-Sim has a high accuracy, similar to SweeD, a wildly used tool for se-
lective sweep detection. In moderate bottleneck scenarios, SweeD has a higher accu-
racy than SweeD-Sim but their differences in their values are not disparate enough
to discard it. More over, SweeD-Sim seems to have better results in the case of se-
vere bottleneck. Taking into account that this is a primal study which utilizes sim-
ulations instead of mathematical equations, the results are indeed quite promising
and the method can be further explored. First the size of the simulation is still un-
der consideration. In this study we used 1000 simulations but this number is still
under question, whether is it large or small enough to provide the selection model.
In addition, we can take a step further to investigate the strength of this approach
to other demographic scenarios that its patterns differ from the expected signatures
that other tools can detect with high confidence. In the 2D approach our results
show that it needs further investigation in terms of efficient implementation so we
can analyze a larger number of samples and obtain more significant results.
In conclusion, this work provides a new approach to approximate difficult evolu-
tionary processes not mathematically, but with the use of simulations and kernel
density estimators, creating a useful tool for selective sweep detection. We hope
that a further development of this implementation in terms of efficiency will make
it even more accurate in populations with complex patterns, thus providing a tool
that can overcome problems that all mathematical-based tools have faced over the
years.
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