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Preface

The thesis main inspiration is the research on physical problems that occur in our daily lives. In par-
ticular, I am really interested in wave propagation in ocean acoustics, as its theory is applied to many
environmental problems, a vast majority of which are inverse problems. My interest in this thesis, is the
examination of a particular inverse problem, with the help of Convolutional Neural Networks techniques
that are increasingly used in every day applications. There are no prerequisites for one to understand the
work that its done, as I try to explain almost every concept from scratch. Nevertheless, I suggest that the
reader is a little bit familiar with the concept of ocean acoustics modeling theory and the main function-
ality of the structure of Neural Networks, in order to have a more pleasant reading of the thesis.
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Περίληψη

Κύριος στόχος της διπλωματικής εργασίας είναι η μελέτη της εφαρμογής ενός ΣυνελικτικούΝευρωνικού
Δικτύου για την εκτίμηση των καμπυλών διασποράς που χαρακτηρίζουν το φασματογράφημα ενός
ακουστικού σήματος που καταγράφεται σε έναν θαλάσσιο κυματοδηγό. Οι καμπύλες διασποράς αποτελούν
δεδομένα εισόδου για μια κατηγορία αντίστροφων προβλημάτων στην υποβρύχια ακουστική, τα οποία
αντιμετωπίζονται χρησιμοποιώντας την ανάλυση στο χώρο χρόνου-συχνότητας ενός καταγεγραμμένου
σήματος. Για να κάνω μια συνοπτική παρουσίαση της δουλειάς μου, η διατριβή ξεκινά με μια σύντομη
παρουσίαση της κυματικής θεωρίας με ειδική αναφορά στη μοντελοποίηση μιας ευρυζώνιας πηγής. Το
Κεφάλαιο 2 είναι αφιερωμένο στον μετασχηματισμό Fourier καθώς είναι και το κύριο εργαλείο για την
επεξεργασία σήματος. Το φασματόγραμμα παρουσιάζεται σε αυτό το κεφάλαιο. Καθώς οι εφαρμογές
που εξετάζονται στη διατριβή σχετίζονται με αντίστροφα προβλήματα, μια εισαγωγή στη θεωρία των
αντίστροφων προβλημάτων παρουσιάζεται στοΚεφάλαιο 3. ΣτοΚεφάλαιο 4, παρουσιάζονται τα βασικά
χαρακτηριστικά ενός Συνελικτικού Νευρωνικού Δικτύου (CNN) που είναι το κύριο εργαλείο που
χρησιμοποιείται για την εξαγωγή πληροφοριών για τις καμπύλες διασποράς. Τέλος, το Κεφάλαιο 5
παρουσιάζει μια δοκιμή, σχετικά με την εφαρμογή τουCNN, σε ένα προσομοιωμένο υποβρύχιο ακουστικό
σήμα, το οποίο έχει τη μορφή σημάτων που χρησιμοποιούνται σε εφαρμογές ακουστικής τομογραφίας
ή αναγνώρισης πυθμένα. Τα συμπεράσματα της μελέτης μου παρουσιάζονται στο τελευταίο κεφάλαιο.
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Abstract

The main goal of the thesis is to study the application of a Convolutional Neural Network for the estima-
tion of the dispersion curves that characterize the spectrogram of an acoustic signal recorded in an ocean
waveguide. Dispersion curves are input data for a class of inverse problems in underwater acoustics
which are treated using the time frequency analysis of a recorded signal. To make a concise presentation
of my work, the thesis starts with a brief presentation of wave theory with a special reference to modeling
a broadband source. Chapter 2 is devoted to Fourier transform as it is the main tool for signal processing
in my work. The spectrogram is introduced in this chapter. As the applications considered in the thesis
are related to inverse problems, an introduction to the theory of inverse problems is is presented in Chap-
ter 3. In Chapter 4, the basic features of a Convolutional Neural Network (CNN), which is the main tool
used to extract the information on the dispersion curves, are presented. Finally Chapter 5 presents a test
case on the application of the CNN in a simulated underwater acoustic signal, which is of the form of
signals used in applications of ocean acoustic tomography or seabed classification. The conclusions of
my study are presented in the final chapter.
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CHAPTER1

Wave Theory on Ocean Acoustics

1.1 Forward Problem

The goal of a forward problem in ocean acoustics is to solve the acoustic wave equation in a waveguide.
A typical vertical slice of the environment is shown in figure 1.1:

Figure 1.1: A vertical slice of a typical oceanic waveguide [0,∞)×[0,∞) ( obtained from the thesis of
Savinas Antoulinaki : Statistical characterization of signals using wavelet packets)

In the environment shown in figure 1.1 the layers defining the domain of propagation are three.The
first one is water of thickness D, with density ρw and characterized by an acoustic velocity profile, that
depends only on depth z, c(z).The second is a fluid sediment of thickness h with density ρb and acoustic
velocity profile cb(z) and the third one is a semi-infinite fluid substrate with density ρsb and acoustic
velocity profile csb. We consider a monochromatic source at depth z0 and the receiver of the signal at
depth zr and range r from the source. Note that this is an example of an oceanic waveguide, of the form
used in this thesis. More general environments with complicated boundary interfaces and/or involving
elastic domains are outside the scope of this work.

1



2 CHAPTER 1. WAVE THEORY ON OCEAN ACOUSTICS

1.2 The acoustic wave equation and boundary conditions

1.2.1 General Coordinates

The goal of an acoustic propagation problem is to calculate the acoustic field (pressure P) as a function
of position and time when an acoustic source of known characteristics emits an acoustic signal in the
environment. The linearized acoustic wave equation for the acoustic pressure is given by:

∇2P (x, t)− 1

ρ(x)
∇ρ(x) · ∇P (x, t)− 1

c2
∂2P (x, t)

∂t2
= −S(x, x0, t) (1.1)

where c is the sound velocity at the corresponding domain which in general and for range-independent
environments which are the class of environments studied here, c = c(x) and ρ(x) is the density of the
acoustic medium.

The acoustic source to be considered here is point harmonic of the form:

S(x, x0, t) = Aδ(x− x0)e−iωt (1.2)

Note that ρ(x) comes from Euler’s Equation from fluid mechanics[2]

Applying variable separation P(x,t) = p(x)e−iωt, (1.1) we obtain the non-homogeneous Helmholtz equa-
tion:

∇2p(x)− 1

ρ(x)
∇ρ(x) · ∇p(x) + k2(x)p(x) = −δ(x− x0)1 (1.3)

1.2.2 Cylindrical Coordinates

The Helmholtz equation in underwater acoustics is typically solved in cylindrical coordinates. Let’s
transform theHelmholtz equation (1.3) to cylindrical coordinates. Assuming ρ(x) = ρ(z) and c(x) = c(z)
which is a realistic assumption in horizontally stratified media we get:

1

r

∂

∂r
(r
∂p(r, z)

∂r
)+

1

r2
∂2p(r, z)

∂ϕ2
+
∂2p(r, z)

∂z2
− 1

ρ(z)

dρ(z)

dz

∂p(r, z)

∂z
+k(z)2p(r, z) = −1

r
δ(r−r0)δ(ϕ−ϕ0)δ(z−z0)

(1.4)
Note that this assumption is consistent with the description of the waveguide presented in the previous
paragraph2. In addition, we are going to deal with the case that p does not depend on angle ϕ, that is we
have axially symmetric environment. Assuming that the source is at r0 = 0 one can show that (1.4) can
be written as:

∂2p(r, z)

∂r2
+

1

r

∂p(r, z)

∂r
+

∂2p(r, z)

∂z2
− 1

ρ(z)

dρ(z)

dz

∂p(r, z)

∂z
+k(z)2p(r, z) = − 1

2πr
δ(r)δ(z−z0) (1.5)

1.2.3 Boundary conditions

In order to determine a unique solution of the acoustic problem, we should set boundary conditions based
on the physics that we encounter on our range-independent environment. First, we assume that we do
not have perturbation of the sound on the surface, that is the pressure at height zero is equal to zero.
Furthermore, in order to preserve the physical convex structure between each layer and that they do not
separate, we have to ensure that our function p(r, z) is continuous on the interfaces as well as the vertical
component of the velocity of sound particles. We also consider that no energy returns from infinity,
r → ∞ (Sommerfeld condition) and that for large depths, z → ∞, the pressure tends to zero. Finally,

1For simplicity we choose A = 1
2Note that until (1.3) we have not used this assumption



1.3. NORMAL MODE THEORY 3

we set constant density for each layer. The mathematical formulation of the previous, considering the
symbοlization:

ρ(z) =


ρ1, if 0 ≤ z ≤ D

ρ2, if D < z ≤ D + h

ρ3, if z > D + h

p(r, z) =


p(1)(r, z), if 0 ≤ z ≤ D

p(2)(r, z), if D < z ≤ D + h

p(3)(r, z), if z > D + h

is the following:
p(1)(r, 0) = 0 (1.6)

lim
z→D−

p(1)(r, z) = lim
z→D+

p(2)(r, z) (1.7)

lim
z→D−

1

ρ1

∂p(1)(r, z)

∂z
= lim

z→D+

1

ρ2

∂p(2)(r, z)

∂z
(1.8)

lim
z→(D+h)−

p(2)(r, z) = lim
z→(D+h)+

p(3)(r, z) (1.9)

lim
z→(D+h)−

1

ρ2

∂p(2)(r, z)

∂z
= lim

z→(D+h)+

1

ρ3

∂p(3)(r, z)

∂z
(1.10)

lim
r→∞

√
r
∂p(r, z)

∂r
− ik(z)p(r, z) = 0 (1.11)

lim
z→∞

p(3)(r, z) = 0 (1.12)

1.3 Normal Mode Theory

1.3.1 Representation Theorem

Let us consider the homogeneous form of (1.5).By performing separation of variables p(r, z) = Φ(r)u(z)
we obtain the system of ordinal differential equations:

d2Φ(r)

dr
+

1

r

dΦ(r)

dr
+ λΦ(r) = 0 (1.13)

d

dz

(
1

ρ(z)

du(z)

dz

)
+

(
k2(z)

ρ(z)
− λ

ρ(z)

)
u(z) = 0 (1.14)

where λ is the separation constant, u(z):[0,∞) with:

u(z) =


u(1)(z), if 0 ≤ z ≤ D

u(2)(z), if D < z ≤ D + h

u(3)(z), if z > D + h

and

k(z) =


k1(z) =

ω
c1(z)

, if 0 ≤ z ≤ D

k2(z) =
ω

c2(z)
, if D < z ≤ D + h

k3(z) =
ω
c3
, if z > D + h

The functions u(z) are called eigenfunctions or modes, λ the eigenvalues and k(z) is the wave number.
Note that we have to assume that the velocity in the seabed is constant in terms of depth, because the
domain is semi-infinite.
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The equation (1.14) describes a singular Sturm-Liouville problem, defined in the infinite domain. Com-
bining (1.14) with the following conditions, we define the depth problem:

u(1)(0) = 0 (1.15)

lim
z→D−

u(1)(z) = lim
z→D+

u(2)(z) (1.16)

lim
z→D−

1

ρ1

∂u(1)(z)

∂z
= lim

z→D+

1

ρ2

∂u(2)(z)

∂z
(1.17)

lim
z→(D+h)−

u(2)(z) = lim
z→(D+h)+

u(3)(z) (1.18)

lim
z→(D+h)−

1

ρ2

∂u(2)(z)

∂z
= lim

z→(D+h)+

1

ρ3

∂u(3)(z)

∂z
(1.19)

lim
z→∞

u(3)(z) = 0 (1.20)

We state the following theorem for a singular Sturm-Liouville problem:

Theorem 1. (Representation Theorem) Let {un(z)}Nn=1, {u(z, λ), λ∈S } the set of eigenfunctions that
correspond to the discreet and continuous eigenvalues spectrum respectively , of a Sturm-Liouville prob-
lem defined in an interval [a,∞).Then every continuous function f that satisfy the boundary conditions
of this problem and has piecewise continuous derivative in the interval [a,∞), is approximated from:

f(z) =

N∑
n=1

Anun(z) +

∫
S
b(λ)u(z, λ)dλ (1.21)

where An∈R, n=1,...,N and b:S→R a function.

In our case, according to (1), we can describe pressure through the formula:

p(r, z) =
N∑

n=1

An(r)un(z) +

∫
S
b(r;λ)u(z, λ)dλ (1.22)

since it is a continuous function of z in [0,∞), has piecewise continuous derivative and satisfies the
boundary conditions. It is important to mention that the second term refers to the energy loss in the
seabed and does not contribute to the acoustic field away from the source. So we can omit this term:

p(r, z) ≈
N∑

n=1

An(r)un(z), r ≫ 1

k(z)
(1.23)

Each term in the sum {An(r)un(z)}Nn=1 is called mode. The equation (1.14) can be written as a system
of equations:

d2u
(∗)
n (z)

dz2
+ (k2(z)− λ)u(∗)n (z) = 0 (1.24)

One can see that, the equation (*)=3 can be solved analytically. That does not hold,however , for the
cases (*) = 1,2 ,since the wave number (and so the sound velocity) depends on depth. Nevertheless, this
does not prevent us to expand the pressure with normal mode series. To find the eigenvalues, we should
solve an equation in the form f(λ) = 0 (characteristic equation of the waveguide)numerically, taking
into consideration that the eigenvalues must satisfy:

ω2

c23
< λn <

ω2

min{c21,min, c22,min}
(1.25)
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Figure 1.2: Possible sketch of f(λ) (obtained from [17])

1.3.2 Representation of the solution

As we saw, due to the fact that the domain is not bounded for large depths, calculations show that the
discreet spectrum constitutes only finite number of eigenvalues ( and thusmodes, which are called normal
modes).Reminding that we want to calculate the pressure far away from the source, we write:

p(r, z) =

N∑
n=1

An(r)un(z) (1.26)

Substituting (1.26) to (1.5) and using the properties of Dirac and orthogonality of modes, we get:

d2An(r)

dr2
+

1

r

dAn(r)

dr
+ λnAn(r) = −

1

2πr

1

ρ(z0)
δ(r)un(z0) (1.27)

Since the source is set to be in the water (first layer), ρ(z0) = ρ1 and un(z0) = u
(1)
n (z0) and so (1.27)

can be rewritten as:

d2

dr2

[
ρ1

u
(1)
n (z0)

An(r)

]
+

1

r

d

dr

[
ρ1

u
(1)
n (z0)

An(r)

]
+ λn

[
ρ1

u
(1)
n (z0)

An(r)

]
= − 1

2πr
δ(r) (1.28)

The function ρ1

u
(1)
n (z0)

An(r) is the Green function of (1.28) and it can be shown that is equal to:

ρ1

u
(1)
n (z0)

An(r) =
i

4
H

(1)
0 (

√
λnr) (1.29)

where H(1)
0 (
√
λnr) is the Hankel function of the first kind and zero order. We use the asymptotic form

of Hankel function H(1)
0 (r) for long distances (r≫ 1) which is given by the formula:

H
(1)
0 (r)~

√
2

πr
ei(r−

π
4 ), r ≫ 1 (1.30)

So, (1.26) can be written as:

p(r, z) =
i

4ρ1

N∑
n=1

H
(1)
0 (

√
λnr)u

(1)
n (z0)un(z) (1.31)

or equivalently

p(r, z) =
i

4ρ1

N∑
n=1

u(1)n (z0)un(z)

√
2

π
√
λnr

ei(
√
λnr−π/4)[17] (1.32)

Note that the computation of the eigenfunctions is, usually, done numerically unless the sound velocity
is constant and we have analytical solution.

It is important to mention that, in reality the pressure does not only depend on r and z.In fact, pressure
depends also on source depth z0 and angular frequency ω which connects directly with the eigenvalues
through the module of the wavenumber. That is pressure on the frequency domain can be written as:
p = p(r, z; z0;ω)[6]
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1.4 Broadband source

1.4.1 Broadband source and its acoustic field

Now, we are going to describe another case of acoustic excitation. Suppose, that it emits a signal consist-
ing of different frequencies[18]. Thus we will consider a source excitation function of the form S (ω).
In our work we will consider a source with a Gaussian distribution in the frequency domain:

S(ω) = e
−π(ω−ω0)

(∆ω)2 (1.33)

where ω0 is the central frequency and∆ω is the semi-width of the distribution.

Figure 1.3: An example of Guassian Source (obtained from [17])

How can we calculate acoustic pressure that is created from this kind of source? We use the ex-
pression of p(r, z; z0,ω) that is created from a harmonic source. Namely, we calculate the acoustic field
p(r, z; z0,ω) across all the frequencies emitted from the source by uniformly discretizing the frequency
spectrum [ω0-∆ω

2 ,ω0+∆ω
2 ]. When we calculate the acoustic field, we assume that we have an harmonic

source with unit amplitude for every discreetised frequency ωi in the previous interval. Then, we mul-
tiply the result with the source distribution on the corresponding frequency ωi, based on filter theory.3.
Summing up, the acoustic field produced by a source that follows a Gaussian distribution in the frequency
field is:

P(r, z, z0;ω) = p(r, z, z0;ω)S(ω) (1.34)

If one would like to find the function s(t), which describes the signal in the time domain, can use inverse
discreet Fourier transform:

s(t) = F−1{P(r, z, z0;ω)} (1.35)

which is will give us:
s(t) = P(r, z, z0; t) (1.36)

1.4.2 Group Velocity

We shall introduce the context of group velocity. When energy is transferred from range of frequencies
and the acoustic signal is not harmonic, then every mode has its own rate of energy transfer. As a result,
one can observe mode separation with time, as a signal propagates in the waveguide. We are going
to define the group velocity which is unique for every mode and represents the variation of angular
frequency with respect to the horizontal direction of propagation and also the energy transport velocity

3See Convolution theorem
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of a particular mode in the waveguide . Suppose that we have a signal in the frequency domain s (ω)
caused by a narrow band-source , then in time domain the signal carried by the nth mode is:

s (t) =

∫ ω+ϵ

ω−ϵ
s (ω) e−i[ωt−κn(ω)r]dω (1.37)

For a small time the wave will propagate at horizontal distance dr = vndt. For the signal to be unchanged
over the time interval dt all components of the integral must stay in phase. Which means that dω dt −
dκn (ω) dr = 0. Combining the previous two equations we get:

vn(ω) =
dω

dκn
4 (1.38)

where n denotes the mode number.

Figure 1.4: Wavenumber and its components (obtained from [17])

A method that approximates the group velocity well is based on perturbation theory[6]:

1

vn(ω0)
=

dκn
dω

∣∣∣∣
ω0

=
ω

κn,0

∫ Z

0

u2n,0(z)

ρ(z)c2(z)
dz (1.39)

where is the lower bound of the waveguide boundary ( in our case it is ∞ ), un,0(z) is the nth class
eigenfunction calculated at frequency ω0 and κn,0 is the horizontal component of the wave number cal-
culated at frequency ω0. Note, that this approximation works really well when the source emits a narrow
band signal. That is, when all frequencies are close to the central frequency ω0, which represents the
velocity of energy propagation of the signal in the waveguide. Another approximation, which was used
in our problem, is to calculate group velocities through derivative approximation, namely:

vn =
(ω +∆ω)− ω

κn (ω +∆ω)− κn (ω)
(1.40)

Note, that one has to choose ∆ω carefully, because large ∆ω gives inaccurate results and using small
∆ω round-off error can corrupt the answer. Lastly, we note that we should not confuse group velocity
with the concept of phase velocity, which represents the horizontal velocity of a particular phase in the
plane-wave representation of a mode and is given by the formula vp,n = ω

κn

4Check that| κ⃗n|=
√
λn from equation (1.24)
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Figure 1.5: Wave propagation in time domain. The shape that is noted with red lines, propagates with
Group Velocity (obtained from [17])



CHAPTER2

Signal Processing and Analysis

In the previous chapter we formulated normal mode theory using monochromatic signals. The insertion
of a broadband source in our theory, adds the need to use Fourier transform. Firstly, we will introduce
the types of Fourier transforms that are going to be used:

• Fast Fourier Transform (FFT)

• Short Time Fourier Transform (STFT)

2.1 Fast Fourier Transform

Discrete Time-Frequency Fourier Transform (DFT )pair F [k]←→ f [n] is given by :

F [k] =
1

N

N−1∑
n=0

f [n] e−ink(2π/N) (2.1)

and the inverse :

f [n] =
N−1∑
k=0

F [ k] eink(2π/N) (2.2)

where T is the transform period and N is the number of samples of the given signal[10]. In the context
of Fast Fourier Transform we symbolize wN = ei(2π/N) and we simplify the notation:

F [k] =
1

N

N−1∑
n=0

f [n]w−nk
N (2.3)

f [n] =

N−1∑
k=0

F [ k]wnk
N (2.4)

The reasonwe use FFT is that reduces the complexity of computing theDFT fromO
(
N2

)
toO(N log2N).

It is a smart way to compute the DFT and the difference in speed is significant, especially for a long sam-
pled signal.Typically, to utilize the speed of FFT algorithm we manually choose the sample number N to
be a power of 2 (1024, 2048, 4096 etc). The interested reader can see in details the algorithm of FFT in the
bibliography.[3] Briefly, the FFT can be described as following: Let the array [F [0], F [2], ..., F [N−1]]T

9
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be the Fourier coefficients and [f [0], f [2], ..., f [N − 1]]T the sampled signal, the equation (2.3) can be
written as matrix multiplication:[14]

F [0]
F [2]
...
...

F [N − 1]

 =
1

N


1 1 1 · · · 1

1 w1
N w2

N · · · wN−1
N

1 w2
N w4

N · · · w
2(N−1)
N

...
...

... . . . ...
1 wN−1

N w
2(N−1)
N · · · w

(N−1)(N−1)
N




f [0]
f [2]
...
...

f [N − 1]

 (2.5)

or equivalently: 
F [0]
F [2]
...
...

F [N − 1]

 =
1√
N

WN


f [0]
f [2]
...
...

f [N − 1]

 (2.6)

where the N × N matrix WN = 1√
N
[w(k−1)(j−1)]1≤i,j≤N is the Fourier matrix . Executing the ma-

trix multiplications, we would need N2. By rearranging the elements of the matrices we can achieve
the desired result only with Nlog2N multiplications. Namely we can decompose the previous matrix
multiplication as:

F =
1√
N

WNf =
1

N

[
IN/2 DN/2

IN/2 −DN/2

] [
WN/2 O

O WN/2

] [
odd− even
permutation

]
f (2.7)

=

[
IN/2 DN/2

IN/2 −DN/2

] [
WN/2 O

O WN/2

] [
f [even]
f [odd]

]
where I is the identity matrix andD a diagonal matrix. The indexN/2 of the top matrixDN/2 denotes
that it contains the elements w1

N , ..., w
N/2
N . Matrix WN/2 contains the elements of a Fourier matrix

given byN/2 samples. The permutation matrix groups the elements of array f into elements with even
and odd index. By doing this decomposition repeatedly, we can keep reducing the dimensions of theW
blocks up to 2×2 matrices, simply by rearranging the odd and even indexed elements of the sampled
function in each step. We notice that, each time the dimension is reduced by a factor of 2. This is why
we like to choose the number of samples to be a power of 2, when we want to use FFT.

It is also important to note, that one has to be careful when chooses the number of samples, given the
maximum frequency of the bandwidth. Not every number (that is a power of two) is appropriate for.
This happens because, the sample frequency determines if we can retrieve the signal in the time domain
after using the Fourier transform. We can choose N using the following theorem:

Theorem 2. (Sampling Theorem) A bandlimited signal withF (ω)1 for |ω|>ωmax can be fully represented
by its samples, provided the sampling frequency ωs equals or exceeds twice the highest signal frequency
ωmax, that is ωs>2ωmax.

Applying the theorem we have:

ωs

2
> ωmax ⇐⇒

Ndω

2
> ωmax ⇐⇒ N > 2

ωmax

dω
(2.8)

where dω is the step frequency of the frequency domain partition. The time interval T=2π
ωs
= π
ωmax

is called
the Nyquist interval and 2ωmax is the Nyquist frequency. In other words, theorem (2) indicate how fast
we should do our sampling. If we do not sample as the theorem says, then when we return to the time

1In our problem, the F (ω) of theorem 2 is S (ω)
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domain we will get an artifact of the original signal. This phenomenon is called aliasing. When we
do not follow the inequality of the theorem, we say the we have undersampled the signal. Aliasing can
be noticed also in the frequency domain, where the graph that appears periodically with frequency ωs,
overlaps with the next and the previous ones appeared.

Figure 2.1: Aliasing Effect: The original signal is the blue curve and the dots are the sample that we
have taken. The red signal is the result of the aliasing effect. (obtained from the World Wide Web)

2.2 Short Time Fourier Transform

The use of FFT, and in general of DFT, is significant in many applications, however a main drawback
is that it provides only one picture that ”averages” the frequency components across the whole duration
of the signal. We know what frequency components are present but we do not know when. To gain the
advantage of knowing the frequency in addition with time domain, we use STFT (Gabor transform)[11].
The idea is to consider small segments of the signal ,which are called frames ,and then we apply a DFT
for each frame. One can visualize the STFT process from the following sketch:

Figure 2.2: Visualizing STFT (obtained from the World Wide Web)

To derive the STFT coefficients we use windowing. In other words, we apply a window function
to a signal. The signal after this process is symbolized as fg[n] = f [n]g [n], where g [n] is the window
function and f [n] the original signal. A typical example of a window function is Hann window with the
following formula: g [n] = 0.5− 0.5 cos( 2πn

M−1), n = 0, ...,M whereM ≤ N is the window size.
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Figure 2.3: Hann window with M = 256 (obtained from the World Wide Web)

As we can see the window size is the number of samples we apply windowing to. Nevertheless,
we should consider another parameter with called frame size, which is the amount of samples that we
consider when we segment the signal for the FT. Usually those quantities are the same, but if we decide
for example that frame size is greater than window sizewhat happens is that we apply the FT to the whole
frame and the windowing occurs only on the window size number of samples. The remaining samples,
which are the difference between the frame size and the window size, are going to give zero contribution.
Another parameter that we use in STFT is hop size, which is the amount of samples we slice to the right,
when we change frame. So, in many cases, hop size leads to overlapping frames which prevents spectral
leakage due to possible discontinuities that are caused from the windowing.

Figure 2.4: Visualization of Hop Size (obtained from the World Wide Web)

The mathematical formulation for STFT is:

S [m, k] =

L−1∑
n=0

f [n] g [n−mH] e−ink(2π/L) (2.9)

which represents the Fourier coefficient for the kth frequency at the mth frame of length L < N using
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hop size H. Note that frame size, window size and hop size are powers of two.

It holds: ωmin ≤ ω(k) ≤ ωmax, where the interval [ ωmin, ωmax ] is partitioned using step frequency
dω: ω(i+1) = ω(i) + dω.

It is important to mention the Time-Frequency trade of, namely to find the golden intersection between
frequency and time resolution we have to lower or increase frame size. This is not an easy task, because
by increasing frame size we increase frequency and lower time resolution and vice versa.

2.3 Spectrogram

The main reason applying SFT is to visualize sound, which as we will see, plays significant role in
signal processing. The visualization of sound is given by the spectrogram ( time-frequency domain
representation) that uses :

Y [m, k] = |S [m, k] |2 (2.10)

which is a matrix with dimensions frequency bins×frames 2 and components the squared module of the
correspondingmth and kth Fourier coefficient. It describes the way the energy levels vary in a specific
time stamp and denotes the energy density of f [n] in a time-frequency neighbourhood.The visualization
is accomplished through a heat-up process.

Figure 2.5: Spectrogram example on logarithmic scale

2.4 Dispersion Curves

Dispersion curves describe the acoustic dispersion phenomenon, that is the procedure when a sound
wave, which is emitted from a broadband source, separates into wave packets that propagate through a
material (in this case the waveguide), at different velocities (group velocities). They describe the non-
linear relation of the angular frequency with the wavenumber of the moden, with slope equal to the group
velocity[13]. That is, the separation into wave packets, is measured by the rate of change of the group
velocity, which as we mentioned before is a function of frequency. The non-linear relationship is given
by the characteristic equation of the waveguide if we solve in terms of ω. One dispersion curve can be
plotted by calculating the group velocity and the corresponding arrival time that is given from the formula
R
vn
, whereR is the receiver range from the source and vn is the group velocity on the nth eigenvalue. An

important observation is that the cut-off frequency, meaning the frequency that is the lowest possible that
allows propagation phenomenon, can be found by searching the point where the dispersion curve stops.
As we study higher order of modes, we observe higher cut-off frequency bounds, that is higher order
modes arrive later. Another important observation is that in many cases, the dispersion curves have a
returning behaviour[6], due to the fact that the group velocity has local extrema at a certain frequencies,

2frequency bins = framesize
2

+1 and frames = samples−framesize
hopsize

+ 1
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which in time-domain solutions give rise to the so-called Airy phase forming the tail of a transient modal
arrival.

Figure 2.6: Spectrogram example on logarithmic scale with its Dispersion Curves

The details about the characteristics of the environment of the example above, are shown in the
following table3:

Parameters describing the marine
environment
Water depth (D) 200 m
Sediment thickness (h) 30 m
Source range (R) 100000 m
Central frequency (fc) 30 Hz
Bandwidth frequency (∆f ) 30 Hz
Source/receiver depth (z0, zr) 60 m
Sound velocity profile in the water
(cw(z))
cw(0) 1505 m/sec
cw(40) 1500 m/sec
cw(60) 1497 m/sec
cw(150) 1507 m/sec
cw(200) 1510 m/sec
Water density (ρw) 1000 kg/m3

Sound velocity profile in the sediment
(cb(z))
cb(200) 1650 m/sec
cb(230) 1700 m/sec
Sediment density (ρb) 1700 kg/m3

Sound velocity in the seabed (cb)
1800 m/sec
Seabed density (ρsb) 2000 kg/m3

Table 2.1: Describing the Environment of the example

3The spectrograms and the parameters of the example was taken from the thesis of Savinas Antoulinaki : Statistical char-
acterization of signals using wavelet packets



CHAPTER3

Inverse Problem Theory

3.1 Forward and Inverse Problem

In mathematical modeling, we call a problem forward when we are asked to determine quantities, usually
in the form of a function, when the parameters and the equation or equations that condition the problem
are known. On the other hand in an inverse problem, we are asked to determine the parameters of a phys-
ical phenomenon or mathematical problem when the measurements, which might describe the values of
a function, are known. The measurements, in the inverse problem terminology, are called data and the
unknowns, as we saw, model parameters. Both of them, can be continuous quantities or discrete. In
the latter case, we use the term: discrete inverse problem. In our project, we are focused on a discrete
inverse problem.

Forward Problem:

Model Parameters −→ Model −→ Prediction of Data

Inverse Problem:

Data −→ Model −→ Estimates of Model Parameters

3.2 Discrete Inverse Problem Formulation

Assuming that both data andmodel parameters take discrete values, we define the vectord=[d1, d2, ..., dN ]T

that represents all the measurements and m=[m1,m2, ...,mM ]T that represents all the parameters to be
found. In the general case, the formula that connects d withm is:

fj(d,m) = 0, j = 1, ..., L (3.1)

or more compactly:

f(d,m) = 0 (3.2)

We have to add that, inmany cases d andmmight be represented as random variables, due to uncertainties
that may arise from the nature of the problem.
In the following subsections we will name some frequent cases of inverse problems:

15
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3.2.1 Implicit Linear Form

The function f is linear in both data and model parameters and thus can be written the form of a
L× (M +N) matrix:

f(d,m) = 0 = F
[

d
m

]
(3.3)

however they are not separable.

3.2.2 Explicit Form

The function f is linear only in respect of data and thus we can separate d and m. There are L = N
equations:

f(d,m) = 0 = d− g (m) (3.4)

3.2.3 Explicit Linear Form

In this case data and model parameters are separable and function g is linear. As above, L = N and also
we define a matrix G with dimensions N ×M :

f(d,m) = 0 = d−Gm (3.5)

In every previous case, one can not be sure that there exists a unique solution m. In fact there could be
zero to infinite solutions, however since our interests are in physical applications we know that solutions
exist. Our goal in that kind of problems is to find appropriate approximations of the model parametersm.

Note, that since model parameters are going to be approximated, depending on the way of process-
ing the problem that is set, would be wise to consider them as random variables. Furthermore, in most
studies ,where measurements are involved, there are errors in the measurements for multiple reasons
such as inaccurate tools. So, in these cases on could also assume that the known vector d is a random
variable. It is clear that in inverse problems there many ways of approaching them and usually the correct
methodology is determined by trial-error technique.

3.3 Nonlinear Inverse Problems

In the previous section, we indirectly covered some of a vast amount of inverse problems. The nonlinear
inverse problems. Namely, they could have the form d − g(m) = 0 , f(d,m) = 0. Nevertheless, the
problem that we are trying to formulate, may not be possible to be written in such a closed form, as we
will see in the description of the inverse problem that we are trying to solve.

3.3.1 Parameterizations

In any inverse problem, especially nonlinear, it is important to choose the appropriate variables to rep-
resent our data (measurements), parameters and the model that connects the previous two. An appro-
priate parameterization will not only satisfactorily connect d and m, but will also simplify the solu-
tion procedure. An illustration of the importance of the parameterization is the following: consider
the problem of fitting a line with data points (1,1), (2,2), (3,3), (4,5). Then, considering the pairs
(z, d) we get the line d = −0.5 + 1.3z. whereas if we regard them as (d′, z′) then least squares give
d′ = 0.309+ 0.743z′ ⇐⇒ z′ = −0.416+ 1.345d′. These two line have slopes (m1) and intercept (m2)
that differ by∼20%. One should also be cautious on the usage of change of variables in order to solve the
problem more easily. In general, we might not want find the parameters themselves, but their estimates1
for example mean value or maximum likelihood point. Estimates are not invariant under changes of the

1Here we suppose that m are random variables
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parameterization. So, ifm andm′ are two different parameterizations we want to avoid a procedure like:
distribution for m→ estimate of m→ estimate of m′ and prefer: distribution for m→ distribution of
m′→ estimate ofm′, which however usually involves more complicated mathematics.

3.3.2 Inverse Problems and Optimization

The main goal, when one encounters a nonlinear inverse problem is to find the minimum (or maximum)
of an objective function. That is, we use optimizationmethods to solve the inverse problem. For example,
one might need to find the maximum likelihood point of a distribution P (x) and as result try optimize
P (x). In the next sections we add more information about optimization theory. We have to note that in
some cases, although it does not always work, it is sufficient to linearize the model. As we mentioned
above, this should be done with caution, because linearizing frequently means changing parameteriza-
tion. Another way to linearize the problem is to take the Taylor expansion of the model and ignore terms
of second order and higher.

3.3.3 Convergence and Uniqueness

In nonlinear inverse problems there is no simple way to determine if they have a unique solution that, as
we mentioned before, it minimizes (or maximizes) an objective function. In many cases, it has more than
one minima (or maxima) which not only does not imply uniqueness, but it also might slow or eliminate
the convergence of our method. In some problems when we start with an initial value near the extremum
can guarantee convergence[9]. In practice the main problem one has to deal with is not the existence of
multiple extrema, but the plethora of saddle points that occur due to the wave-like form of the objective
function. This occurs to a great extent when the dimension of the unknown parameters vector is high. In
this case, one should implement more clever optimizationmethods, we cite some of them in the appendix.

Figure 3.1: Objective Function example (obtained from the World Wide Web)

3.4 Inverse Problems in Underwater Acoustics

This work is associated with a class of inverse problems in underwater acoustics which use as input data,
characteristics of an acoustic signal emitted from a known source to recover parameters of the marine
environment. These parameters are typically the sound speed profile in the water column and/or the
geoacoustic parameters of the sea-bed. The model associating the features of the acoustic signal with the
environmental parameters has been implicitly presented in the first chapter of this work.

3.4.1 Inverse Problem: Using dispersion characteristics

Among the different approaches presented in literature exploiting the measurements to define the data
to be used in the formulation of the inverse problem, we will consider those using a single hydrophone
as the reception device and exploiting the mode dispersion quantified through the dispersion curves of a



18 CHAPTER 3. INVERSE PROBLEM THEORY

spectrogram. The dispersion characteristics are unique features of the signal as it has propagated through
the environment and therefore they are directly associatedwith the environmental parameters.The inverse
problem thus defined is non-linear. In order that the dispersion characteristics are used as input data
to the inverse problem, they have to be identified in the measured signal. The identification is based
on the spectrogram and several methods have been reported for the definition of the input data to the
inverse problem, which in most cases are time and frequency values of the dispersion curve associated
with each propagating mode. This association requires that the dispersion curves are recognized in the
measured signal. In summary, the inverse problem can be described by the following statement : Given
the spectrogram of an acoustic signal recorded in the marine environment into consideration, identify the
dispersion curves that describe the energy distribution of the measured signal, and use their mathematical
description in the form of discrete data to estimate the environmental parameters. Due to the nature of
the problem it is solved by some optimization process.

3.4.2 Describing dispersion curves with splines

Our work is devoted to the identification of the dispersion characteristics of the measured signal based
on its spectrogram. We will describe the dispersion curves with cubic splines. Thus, our final goal is
the estimation of the coefficients of the splines representing the dispersion curves of the spectrogram
of the measured signal. These coefficients not only determine the shape of the dispersion curves, but
could also be used as discrete input data in the framework of an inverse problem as described in the
previous sub-section. We will make the reasonable assumption that we have some a-priori information
on the environmental parameters to be recovered and we will use Convolutional Neural Networks ( CNN
) appropriately trained, with synthetic spectrograms and associated dispersion curves, to provide as their
output the spline coefficients of the dispersion curves of the measured signal. Synthetic signals will be
calculated using code mode12 developed byMichael Taroudakis[15] which provides the acoustic field in
the frequency domain for a known acoustic source. The estimation of the coefficients of the dispersion
curves of the measured signal constitute an inversion procedure to be sketched below.

3.4.3 Summary of the Inverse Problem Formulation

The following graph illustrates the procedure of estimating the spline coefficients from the spectrogram:

Figure 3.2: Sketch of the Solution

Note, that CNN represent the model f(d,m) = 0

2Since the signals are synthetic and not real, we chose to not add noise
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Introduction to Neural Networks

In this chapter, we will briefly cover some fundamental ideas of Neural Networks ( NN ) whose key
aspect is that their internal mechanism is not designed by the user: they are learned from data using a
general procedure based on non-linearity. This part of the theory is important for one to understand the
way of solving our problem. In the appendix we will provide some additional references on NN for the
interested reader.

4.1 Neural Networks

The term Neural Network surrounds a great variety of methods and techniques. Usually, one can try to
interpret the structure of the N.N, as the way the neurons of the human brain function. However, it is
useful for the reader to have a more compact understanding of their formulation. A very simple NN can
be seen in the following figure:

Figure 4.1: A simple NN (obtained from the World Wide Web)

A possible definition could be that a NN is a computational model consisting of interconnected arti-
ficial neurons organized into layers, capable of learning from data to make predictions or perform tasks
based on patterns and examples. A N.N consists of nodes and connection between them. It has some
unknown parameters called weights and biases that are multiplied and added to the input values corre-
spondingly. Each edge has weight, each neuron has a bias term and each output is given after using the
composition with a function of a type that is mentioned later. We use them to solve a learning problem,
that consists of finding the optimal combination of weights so that the network function ϕ approximates
a given function f as closely as possible. The function f is given, usually not in closed form but in data
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points that come from some measurements[12]. In other words, the goal is to gain the optimized values
that can fit our data the best way, using a method called Backpropagation which is nothing more than a
practical application of the chain rule for derivatives[8]. The idea is to insert your data in the input nodes
and finally get the desired result in the output nodes, while trying to minimize the error of our prediction,
which can be defined by various functions called Loss or Objective functions.We set a upper bound for
the error (a stopping criterion) that we demand to satisfy, else we stop the algorithm after a number of
iterations called epochs. A typical loss function is the average the sum of the squared residuals (well
known from least squares technique method). The layers of nodes between the input and output nodes
are called hidden layers. We should add that in between the nodes we use a variety of activation functions
that can be reshaped by the parameter values and then by using a linear combination of those, in order to
fit the data into, for example, a curve. They enable the model to process complex data, by introducing
non-linearity. A common example is the ReLu function which is given by the formula f(x) = max(0, x)
and is well used in practice as it typically learns much faster in networks with many layers. It is also
important to add that, due to their architecture that is based on non-linearity, NNs work better than linear
classifiers for problems such as image recognition, as NNs are invariant to position or orientation shift.
Linear classifiers can only divide their input data into two regions and this can accurately happen when
the data are linearly separable, that is they can separated by a hyperplane. For example if two pictures
were conceptually close, in the sense that one is first is a wolf and the latter a dog, a linear classifier
probably could not distinguish between these two.

4.1.1 Neural Network training

Firstly, we shall want to compute parameters that their values are not too ”close”1 so that we eliminate
the chance that the N.N would have a bias giving all the parameters the same value. Furthermore, it is
recommended that the starting (non-optimal) values of the weights are not close to zero. The reason is
that, for example if we are using an activation function like the sigmoid

(
1

1+e−x

)
, it becomes roughly

linear, and hence the neural network converges into an approximately linear model. In addition, the
network usually has many weights and that can lead to overfitting. A way to solve that issue is to add
a regularization to the loss function with a parameter λ, whom most ideal value can be estimated using
cross validation2. In order to have a better running NN, what users usually do, is to standardize all inputs
to have mean zero and standard deviation one. All inputs are equally treated in the regularization process
and we are allowed to choose uniformly the initial weights before training from a, usually, symmetric
interval such as [−0.7, +0.7][5]. An idea one might think of, when constructing a deep learning algorithm
using a plethora of data, is to split our full data set to three different sets: a train set a validation set and
a test set.

Figure 4.2: Data Set Partition (obtained from [1])

Then we try and train the algorithm with different choices of hyperparameters on the training set,
evaluate on the validation set and now pick the set of hyperparameters which performs best in the vali-
dation set. Next, when we are done with the validation and there is nothing else to do, we take the model
with the best performance on the validation set and run in once on completely unseen data, the test set.
The score from the test set is the accuracy of the algorithm. It is really important to keep a strict separation

1One can define ”close” in various ways more compactly
2A well known technique to calculate hyperparameters



4.2. CONVOLUTIONAL NEURAL NETWORKS 21

between then validation and test set. If we only split to train and test set and try training the N.N on the
train set, then apply the trained NN on the test set and choose the method with the best hyperparameters
on the test data will lead to inaccuracy problems, namely the test set will not be representative of how
our method will do to unseen data. It is possible that we would have picked the right hyperparameters
only for the according test set.

4.2 Convolutional Neural Networks

Since in this study we are interested in gaining information from spectrograms, we should also introduce
the concept of Convolutional Neural Networks (CNN), which will be the kind of N.N that we are going
to use. CNNs are designed to process data that come in the form of multiple arrays, such as a picture.

Figure 4.3: A CNN (obtained form [1])

CNNs take as input a picture that is represented as three dimensional matrix, namely it has width,
height and depth that depends on the colors that constitute the picture. Then, we use filters that are
three dimensional matrices with smaller dimensions than the image and we say that we convolve the
image with the corresponding filter. That is, we slide the filter over the image with a step size called
stride and compute the corresponding matrix multiplications3. When stride does not allow the filter to
fit all the image, we usually add additional rows and columns with nulls, which means we increase the
dimensions of the image. This procedure is called zero padding. Mathematically, the filtering operation
performed is a discrete convolution, hence the name. The result is called activation map, which is a ”three
dimensional” matrix of depth one with different size than the original image. It is important to add that,
the intensity of the elements of each filter used, are determined by Backpropagation, as well as the bias
that is added right after the filtering, to each activation map, elementwise. In other words, the weights
in a CNN are the elements of the filters. Sliding many filters on the image, we get a convolutional
layer that consists of as many activation maps as the number of the filters we used and has the same
width and height as every activation map. We can say that, a CNN is a sequence of Convolution Layers,
interspersed with activation functions.[1]

Figure 4.4: Structure of CNN, after each layer the dimension is reduced. (obtained form [1])

Usually we construct CNNs with such a way that the deeper it gets, it recognizes more details about
the input image. This means that in the first layers the network checks really basic patterns and shapes,
for example the first layer recognizes edges and corners, the second detects motifs based on the edges
but independently of the edge position etc. As we move forward in the layers, the CNN recognizes more
complex behavior. The reason is that, we increase the filter size in subsequent layers. It is important to
add that activation functions, also, allow the CNN to capture patterns, edges, textures, and higher-level

3In strict mathematical terms, we take the inner product of the multidimensional arrays.
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features in an image. During the filtering operation, after a couple of layers we apply the pooling which
makes the representations smaller, more manageable, operates over each activation map independently
and it tries to keep only the important information from the image. The pooling layer role is to merge
similar features into one. A widely used technique is called max pooling, that keeps the maximum value
of the image matrix, depending of course on the filter dimensions. This filter, usually does not overlap
itself and its intuition is that max pooling selects the spots where the filter better matched the input
image.[1]

Figure 4.5: Max Pooling example (obtained form [1])

Finally we transform our last οutput to a flattened array, which then goes through a typical NNwhose
output represents ranking of possible outcomes or just values of some quantities the user is interested to
obtain. This NN could contain fully connected layers (dense layers). A fully connected layer connects
every neuron in the input to every neuron in output, while performing linear transformation to the input
data.

There are some formulas that allow us to compute the dimensions of the output layer, after filtering,
in several occasions. Namely, suppose that the image has dimensionsW1 ×H1 ×D1. Now, we set the
following hyperparameters:

• Number of filters : K

• Spatial extent of the filter : F

• Stride : S

• Amount of zero padding : P

After filter application the dimensions are4:

• W2 =
W1−F+2P

S + 1

• H2 =
H1−F+2P

S + 1

• D2 = K

Furthermore, the network gives F × F ×D1 weights per filter and total of F × F ×D1 ×K weights
andK biases.[1]

4The width and height are equally computed by symmetry
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Application

In this chapter we will apply the procedure described in the previous chapters to estimate the coefficients
of the dispersion curves of a simulated recording of an acoustic signal due to Gaussian source.

5.1 The Inverse Problem

We will consider a marine environment with the first layer being water, the second fluid sediment and
the third a semi-infinite fluid substrate. Our goal as presented in previous chapters is to identify the
dispersion curves of a signal recorded in this environment by means of the coefficients of the splines that
approximate their structure. Of course the signal, which in real cases and for the applications we have
in mind, will be used as the tool for the estimation of the unknown environmental parameters, will be
calculated with specific environmental parameters. Therefore, the actual dispersion curves of this signal
will be known and our goal will be the estimation of the spline coefficients that describe these curves.
In realistic applications the actual dispersion curves will not be known and the only tool in our hands for
the estimation of spline coefficients would be the spectrogram of the measured signal.

5.2 Using CNN for Solving the Inverse Problem

The idea of using CNN for this inverse problem is that, in many applications exploiting the dispersion
characteristics of a spectrogram, including those presented in the previous section, we can not compute
the theoretical dispersion curves using the formula from Chapter 2. This happens, because we do not
know the all the characteristics of the environment needed to calculate the dispersion curves. We only
know the depth of the source and the receiver. CNNs can process complex pictures such as those corre-
sponding to the energy dispersion provided by spectrograms and via training, to produce as output results
important characteristics for the dispersion curves which are missing.

5.2.1 Data set creation

As we mentioned in the previous chapter, the mathematical tools that we are going to use are : spec-
trograms and cubic splines. Specifically, since we want the output of the CNN would be the spline
coefficients describing the dispersion curves, the input of the CNN will be a data set that include 1120
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normalized spectrograms1, for computation efficiency, using the formula:

X −min(X)

max(X)−min(X)
(5.1)

that causes X to take values in the interval [0,1]. Symbolizing the CNN as a ”function” F , then the
spectrograms are the ”values” X and we get F (X) = Y , where Y are the spline coefficients. The
way we calculated the real coefficients is the following : For each signal and each mode2, we set 8
specific nodes in the frequency domain, and retrieve via numpy the cubic polynomial coefficients in
each interval that is defined by the nodes. The number 8 was chosen, because a single signal produces
224 coefficients, that is 224 CNN outputs for one signal, which is already a big number, let alone having
a batch of signals. The structure of the Y is a set of matrices with dimensions 8×28, with each row
referring to a specific mode of the signal and each column referring to the number of spline coefficients
in a mode. It is important to add, that over the 1120 signals, we kept the expected value and standard
deviation of each spline coefficient so that we denormalize the output of the CNN as with the usage of
activation functions the outputs tend to be normalized.

5.2.2 Data set partitioning

We split our data set according to paragraph 4.1.1. Namely, we have a train set containing 60% of the
total, a validation set containing 20% and a test set again containing 20%. Each set has its X values
(spectrograms) and Y values (spline coefficient) that are going to be used when we calculate the values
of the loss function. We note that the spline coefficients used are with boundary conditions that demand
the first and second segment at a curve end to be the same polynomial. It is a good default when there is
no information on boundary conditions.

5.2.3 Hyperparameters and algorithms

The hyperparameters used are shown in the following figure:

CNN Hyperparameters
Epochs 1000
Learning rate 10−3

Batch size for training 200
Loss function Mean squared error

Table 5.1: Hyperparameters

The algorithm chosen to optimize the weights and biases of the CNN is Adam. It is a combination of
Stochastic Gradient Descent with acceleration (see Appendix B), which is many cases help to overcome
local extrema or saddle points faster than vanilla Gradient Descent. There was no regularization used in
the algorithm and the optimizer considers all parameter groups together and applies the same optimization
strategy to all of them. In this case, the optimizer will compute a single set of adaptive learning rates and
perform weight updates uniformly across all parameter groups.

5.2.4 CNN Architecture and Formulation

The network architecture consists of the following layers:

The first convolutional layer has 16 output channels, 3×3 kernel size, a stride of 1, and padding of 1.
A max-pooling layer with a 2×2 kernel size and a stride of 2. The second convolutional layer has 32

1We produced 1120 signals, by defining search spaces on specific parameters of a known environment.
2We decided to keep the first 8 modes
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output channels, 3×3 kernel size, a stride of 1, and padding of 1. Three fully connected (linear) layers
with progressively decreasing output sizes. The weights initialization used is the default at pytorch: He
initialization, which is typically implemented in N.Ns where the ReLu activation function is used.

The formulation of the CNN is:

The input is passed through the first convolutional layer followed by a ReLU activation function and
then through max-pooling. Then, passed through the second convolutional layer with ReLU activation
and max-pooling again.The corresponding output is flattened into a vector. Finally, the previous output
is passed through the fully connected layers, which

Figure 5.1: The CNN used

In addition, in the training phase we tried to optimize the weights and biases by trying minimize the
quantity ||cpre− creal||2 or ||ypre− yreal||2. The first means that we want to minimize the error between
the spline coefficients and the latter that we try to minimize the values of the dispersion curves that results
from using the corresponding coefficients. The second way is way more computationally expensive and
in order to run in a reasonable amount of time, one have to use approximately 10 to 20 points in each
interval where we find the y values. The results do differ, but only to the second or third decimal point.
This makes the first attempt more reasonable and efficient. We also tried to make the CNN deeper using
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4 or 5 layers, while using different weight initialization, in order to make more sensitive to details. The
results were worse than the current CNN layering and we observed curve discontinuities not only in the
last but also in the first 3-4 modes.

5.3 Spline Coefficients of the Dispersion Curves

Before presenting our results, let us remember that we rotated the dispersion curvesso that we can apply
the spline formulas. To retrieve the curve we want, we simply rotate again the results from the CNN. The
change of the axes does not influence how dispersion curves characterize the environment. For example
in a following tomography or geoacoustic inversion problem, where the desired resultm are water sound
velocity profile or sea floor characteristics, note that these are invariant to rotations of the corresponding
d (in that case dispersion curves).

5.3.1 Test Case

We consider a problem of sea-bed classification being a typical inverse problem of acoustical oceanog-
raphy. An acoustic source placed as some depth z0 in the sea, emits acoustic signals that are recorded
at some range R and depth z. For the application we have in mind the sound source will be considered
with a gaussian source excitation function. The aim of the inversion procedure is to estimate the sea-
bed properties expressed through the compressional wave velocities and the densities of the sediment
layers. If the dispersion characteristics of the measured signal are to be used for the estimation of these
parameters, the dispersion curves of the measured signal should be identified with good accuracy and
this will be the goal of the inversion procedure described below. Note that the estimation of the sea-bed
parameters is the subject of another inverse problem not considered in this work.

In the test case presented below, we simulate a geoacoustic inversion or seabed classification experi-
ment, where an acoustic (broad-band) source with a Gaussian Source excitation function in the frequency
domain with central frequency fc= 150Hz and bandwidth∆f= 100Hz at depth z0= 10m emits a signal
which is recorded by a hydrophone at depth zr= 30m and range R= 20000m.

In order to apply a CNN for the estimation of the spline coefficients, we need a set of environments
to be used at the training face. As already explained we will take into account some a-priori information
on the construction of the sea-bed to define a search space of the 6 environmental parameters, among
which the set of the environments will be considered. For this problem the set of environmental and
operational parameters of the data set that will be used in CNN are presented in Table 5.2. Table 5.2
includes the limits of the sea-bed properties used to define the data set.
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Parameters describing the marine
environment
Water depth (D) 100 m
Sediment thickness (h) 20 m
Source Range (R) 20000 m
Central frequency (fc) 150 Hz
Bandwidth frequency (∆f) 100 Hz
Source/receiver depth (z0, zr)
(10,30) m
Sound velocity profile in the water
(cw(z))
cw(0) 1500 m/sec
cw(20) 1490 m/sec
cw(100) 1510 m/sec
Water density (ρw) 1000 kg/m3

Sound velocity profile in the sediment
(cb(z))
cb(100) ∼ [1600,1800] m/sec
cb(120) Same value as above
Sediment density (ρb) ∼
[1300,1700] kg/m3

Sound velocity in the seabed (csb) ∼
[1600,2000] m/sec
Seabed density (ρsb) ∼ [1600,1900]
kg/m3

Table 5.2: Environments of the Data Set

Using the characteristics of the table, we created 1120 synthetic signals that consist our data set,
which we partitioned as we mentioned before. We will show how the CNN process a random signal
form the test set, which simulates a unknown signal. Specifically, we test the CNN on the first signal of
the test set (the 696th of the starting data set). The environment form which this signal comes from is
the following:

Parameters describing the marine
environment of Test case
Water depth (D) 100 m
Sediment thickness (h) 20 m
Source Range (R) 20000 m
Central frequency (fc) 150 Hz
Bandwidth frequency (∆f) 100 Hz
Source/receiver depth (z0, zr)
(10,30) m
Sound velocity profile in the water
(cw(z))
cw(0) 1500 m/sec
cw(20) 1490 m/sec
cw(100) 1510 m/sec
Water density (ρw) 1000 kg/m3

Sound velocity profile in the sediment
(cb(z))
cb(100) 1647 m/sec
cb(120) 1647 m/sec
Sediment density (ρb) 1620 kg/m3

Sound velocity in the seabed (csb)
1839 m/sec
Seabed density (ρsb) 1738 kg/m3

Table 5.3: Test Case Environment

We can visualize the environment in the next sketch:
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Figure 5.2: Test Case Environment Visualization

After we have passed the training phase, we use the spectrogram of the signal as the input in our
CNN:

(a) Signal of the Test Case (b) Spectrogram of the Test Case

Figure 5.3: Test Case Signal and its Spectrogram

In Figure 5.4 we present the theoretical dispersion curves calculated with mode1 for the test signal
and compare them with the dispersion curves given as output of the CNN:
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(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 4

(e) Mode 5 (f) Mode 6

(g) Mode 7 (h) Mode 8

Figure 5.4: Theoretical Dispersion Curves (Red) vs CNN Dispersion Curves (Colorful)
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We have made visible with different colors the polynomials that are plotted in the 7 different inter-
vals of the partition. We note that C.N.N dispersion curves have maximum frequency, around 200 Hz,
whereas the theoretical around 220Hz. This happens because of the nodes that we have taken to use the
cubic splines. Namely, we used 8 nodes by running over all the available frequencies with step 1283.

We can also see, that the C.N.N does not detect correctly the airy phase area, namely we have dis-
continuities as well as incorrect tracing for the early arrival times. Nevertheless, that does not seem to be
a problem as we do not normally use these extreme areas from dispersion curves to retrieve information
about the environment. As a result, we could just cut off the edges and proceed with the rest of the curves.
We also notice, a similar issue at the first mode, where we might not have discontinuities as in the last
modes, however the CNN curve does not approximate well at high curvature. This difference, does not
influence the final results on the spectrogram, as the arrival times for the first mode are too small. So, as
we will see, they seem compatible in the bigger picture. Now let us plot both kind of dispersion curves
on the spectrogram to compare:

(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 4

Figure 5.5: Theoretical Dispersion Curves (Red) vs CNNDispersion Curves (Colorful) on Spectrograms

CNN curves apply well on the spectrograms. We have similar results for the rest of the signals,as
the different environments the data set is consisted of, have similar characteristics. Note that from the
sixth mode and after, we can cut the values of the dispersion curves for the last interval of the partition
to avoid the problematic points of the Airy phase. As we can see in the last two dispersion curves, we
have satisfying results for frequencies higher than 120 Hz or 140 Hz. That is, by keeping the curve
for frequencies higher than the previous mentioned, we have decent data to use them in the geoacoustic

3The nodes are: [ 90, 106.016, 122.032, 138.048, 154.064, 170.08 , 186.096, 202.112]
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inversion problem.

(a) Mode 5 (b) Mode 6

(c) Mode 7 (d) Mode 8

Figure 5.6: Theoretical Dispersion Curves (Red) vs CNNDispersion Curves (Colorful) on Spectrograms

.





CHAPTER6

Conclusions

Summing up everything that has been stated so far, we initially described the modeling of wave propaga-
tion in ocean acoustics, namely we stated the forward problem. We then described the signal processing
techniques that we used in our application and we did a brief introduction to discreet inverse problems
and neural networks. We finally cited the results given by the convolutional neural network, that we
constructed, and compared them with the theoretical dispersion curves. We observed that, the CNN
curves fit in the right positions in the spectrogram, however we have some discrepancies mainly in the
Airy-phase area. The results of the inverse problem are satisfying in the sense that we can cut pieces from
the last dispersion curves for late arrival times, so that we keep only the segments that give the most ac-
curate information. These dispersion curves can be very useful as data for other inverse problems such
as seabed classification or tomography. In general in real world applications, we can not draw them
theoretically due to lack of information. So, the CNN dispersion curves could be valuable for inversion
problems in ocean acoustics. The CNN used might have a simple structure, however a deeper one seems
to complicate the calculations and produce more inaccurate dispersion curves.

As we mentioned, the data set was created with 1120 signals (1120 different environments) using
certain search spaces for the density and sound velocity in the sediment and substrate. The signals were
basically variations of an original environment. So, in a sense the environments are very similar with each
other. This leads to another approach, where we could make again a data set using 1120 signals, but this
time we could create it using variations of two or three different environments. This could help the CNN
to be more robust and give better results when we test it with unseen data. We could also implement the
loss function of the CNN differently, in order to avoid discontinuities that occur mainly in the Airy-phase.
Specifically the loss function used was the squared difference of spline coefficients: ||cpre− creal||22. We
also tried the squared difference of the actual values of the dispersion curves: ||ypre − yreal||22, but it
was computationally expensive and did not have better results regarding the discontinuities. An idea is
that, since the cubic splines calculate polynomials we can easily compute their derivatives, and since the
function that can be represented via splines, must obey certain criteria like differentiability, we could
additionally use the squared difference of the first and second derivative in a corresponding knot of the
partition, while multiplying them by a constant that will have to be determined via trial and error or cross-
validation. This implementation could solve the discontinuity problem at the knots and have smoother
dispersion curves as the output of the CNN Based on this idea, the loss function would be written as:

||cpre − creal||22 + [ α||ypre − yreal||22 + β||y′pre − y′real||22 + γ||y′′pre − y′′real||22 ]at a particular knot

where α, β and γ are to be determined.
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Figure 6.1: Sketch of a Dispersion Curve in frequency-time domain: We have two intervals [f1, f∗],
[f∗, f2] that correspond to a cubic spline polynomial. The point (f∗, t∗) is the knot of the spline partition
and the derivatives are calculated at this point.

A next step based on the idea of the thesis, is to use the results we got as the data for a seabed classi-
fication or tomography problem. However, the inversion would be interesting to be done via the CNN.
That is, a next challenge is to create a CNN that computes the dispersion curves, when we use a spectro-
gram as input, and then does the inversion. Namely, its output is the marine environment characteristics
that we seek, such as density and sound velocity.
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APPENDIXA

Splines Theory

Definition A.0.1. (Smooth Spline) Let [a,b] ⊂ R, ∆ : a = x0 < x1 < ... < xn = b partition of [a,b]
and m∈N. The elements of (linear) space

Sm(∆) := {s ∈ Cm−1[a, b] : s|[xi,xi+1]
∈ Pm, i = 0, ..., n− 1}

are called (polynomial) splines of degreem (in respect of ∆), where Pm is the space of polynomials of
degreem[16].

A.1 Interpolation with piece-wise linear functions

Let [a,b] ⊂ R, ∆ : a = x0 < x1 < ... < xn = b partition of [a,b] and S1(∆) the corresponding linear
space of splines degree one, namely the space of continuous at [a,b] and piece-wise continuous (in respect
of ∆) linear functions. We define the functions ϕ0, ..., ϕn with the formulas:

ϕ0(x) :=

{
− x−x1

x1−x0
, if x0 ≤ x ≤ x1

0 , otherwise
(A.1)

ϕi(x) :=


x−xi−1

xi−xi−1
, if xi−1 ≤ x ≤ xi

− x−xi+1

xi+1−xi
, if xi ≤ x ≤ xi+1, i = 1, ..., n− 1

0 , otherwise
(A.2)

and

ϕn(x) :=

{
x−xn−1

xn−xn−1
, if xn−1 ≤ x ≤ xn

0 , otherwise
(A.3)

It can be verified that, the set {ϕ0, ..., ϕn} is a base of S1(∆), so this space has dimension n + 1. It is
important that, the support (the smallest closed interval out of which ϕi, i = 0, ..., n are zero) of the base
functions should be small for applications.

For every function f ∈ C[a, b] there is exactly one function s ∈ S1(∆), such that:

s(xi) = f(xi), i = 1, ..., n (A.4)

The function s is given by the formula:

s =
n∑

i=0

f(xi)ϕi (A.5)
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If pi ∈ P1 is the linear polynomial of f interpolation at points xi and xi+1, that is if:

pi(x) = f(xi) +
f(xi+1)− f(xi)

xi+1 − xi
(x− xi) (A.6)

then it holds that s(x) = pi(x) for x ∈ [a, b]. In this case, the interpolation is an entirely local situation,
that is the values of s in [xi, xi+1] depend only on f values at the points xi and xi+1.

Theorem 3. (Error estimation of interpolation with piece-wise linear functions) Let f ∈ C2[a, b], ∆ :
a = x0 < x1 < ... < xn = b partition of [a,b] and s ∈ S1(∆) the interpolation function of f at the
points x1, ..., xn. If hi := xi − xi−1 and:

h := max
1≤i≤n

hi (A.7)

then it holds:
||f − s||∞ ≤

h2

8
||f ′′||∞ (A.8)

A.2 Cubic splines interpolation

Definition A.2.1. (Cubic Splines) Let n ∈ N, h := b−a
n and ∆h : a = x0 < x1 < ... < xn = b a

uniform partition1 of [a,b] with step h, that is xi = a+ ih, i = 0, ..., n. We consider the space S3(∆h),
namely the linear space of functions that are twice differentiable at [a, b] and that are cubic polynomials
in every subinterval of [xi, xi+1] of the partition∆h. These functions are called cubic splines.

The function s is a different cubic polynomial in every subinterval [xi, xi+1], 0 ≤ i ≤ n− 1, so the
construction of s requires 4n coefficients to be found in every subinterval. From:

s(xi) = f(xi), i = 0, ..., n (A.9)

we have n+1 equations.The internal nodes of ∆h are: xi ,i = 1, ...n − 1. We know that s ∈ S3(∆h),
s ∈ C2[a, b], so from the continuity of s, s′ and s′′ at xi, i = 1, ..., n− 1 we have 3n− 3 equations. We
have 4n − 2 in total and we need two more so that we can uniquely define a s ∈ S3(∆h). These two
equations will be determined from the boundary conditions in a and b.

Theorem 4. (Cubic Splines Interpolation) Let f ∈ C1[a, b], n ∈ N, h := b−a
n and ∆h : a = x0 < x1 <

... < xn = b a uniform partition of [a, b] with step h. Then there is exactly one function s ∈ S3(∆h),
such that: 

s(xi) = f(xi), i = 0, ..., n

s′(x0) = f ′(x0)

s′(xn) = f ′(xn)

(A.10)

Theorem 5. (Cubic Splines Interpolation)2 Let f ∈ C2[a, b], n ∈ N, h := b−a
n and∆h : a = x0 < x1 <

... < xn = b a uniform partition of [a, b] with step h. Then there is exactly one function s ∈ S3(∆h),
such that: 

s(xi) = f(xi), i = 0, ..., n

s′′(x0) = f ′′(x0)

s′′(xn) = f ′′(xn)

(A.11)

1For simplification usually we use uniform partition. Generalization for non-uniform partition can be similarly defined
2In the bibliography of numerical analysis one can see more ways to define the values of s′ or s′′ in the boundary
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Theorem 6. (Error estimation of cubic splines interpolation) Let ∆ : a = x0 < x1 < ... < xn = b a
partition of [a, b],

h := max
1≤i≤n

(xi − xi−1), M :=
h

min
1≤i≤n

(xi − xi−1)
(A.12)

f ∈ C4[a, b] and s ∈ S3(∆) a spline that satisfies (A.10). Then, there areCm coefficients,m = 0, 1, 2, 3,
independent of f and h, such that :

||f (m) − s(m)||∞ ≤ Cmh4−m||f (4)||∞ (A.13)

Completely similar estimations hold for spine interpolation with second derivative boundary condi-
tions.





APPENDIXB

Additional information for Neural Networks

B.1 Gradient Descent and its variations

In optimization theory or mathematical programming, the main goal is to minimize (or maximize) a
quantity, a function. There are a lot of different kind of optimization subfields such as convex program-
ming where the objective function is convex, or nonlinear programming where the objective function or
the parameters have nonlinear characteristics. A common method used in a lot of these subfields to find
the minima (mixama) is Gradient Descent (Ascent). We are going to focus on Gradient Descent as in
our problem we search the minima of a loss function.

B.1.1 Gradient Descent

The concept of the following algorithm is to follow the flow of gradient to gradually move to the lowest
point of the graph. As we are getting closer to the minima of the function the step we are making is
getting smaller.

Algorithm 1 Gradient Descent
Require: f(θ): Convex and differentiable objective function with parameters θ
Require: η: Learning rate
Require: θ0: Initial parameter vector
Require: M : Max Iter
Require: ϵ: Step size threshold
Require: η∇θf(θ0): Initial Step size
1: while Step size < ϵ do
2: Step size=η∇θf(θn)
3: θn+1=θn-Step size
4: if Iterations≥M then
5: Break
6: end if
7: end while
8: argmin (f (θ))

θ

←−θN+1

9: return argmin (f (θ))
θ
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Figure B.1: Vanilla Gradient Descent (obtained from the World Wide Web)

B.1.2 Adam Algorithm

This method is based on stochasticity, that is it chooses a random batch of data in each iteration for
computational efficiency and also works with stochastic objective functions. It also uses the idea of
accelerated gradient descent and Nesterov algorithm1 to skip any local extrema or saddle points. Many,
consider this method the best for optimizing an objective function.

Algorithm 2 Adam Algorithm[7]
Require: α: Step size
Require: β1, β2 ∈ [0, 1]: Exponential decaying rates for the moment estimates
Require: f(θ): Stochastic objective function with parameters θ
Require: θ0: Initial parameter vector
1: m0 ←− 0

(
Initialize 1st moment vector

)
2: v0 ←− 0

(
Initialize 2st moment vector

)
3: t←− 0 (Initialize time step )
4: while θt not converged do
5: t←− t+ 1
6: gt ←− ∇θft (θt−1) (Get gradients w.r.t. stochastic objective at time step t)
7: mt ←− β1 ·mt−1 + (1− β1) · gt (Update biased first moment estimate)
8: vt ←− β2 · vt−1 + (1− β2) · g2t (Update biased second raw moment estimate)
9: m̂t ←− mt/

(
1− βt

1

)
(Compute bias-corrected first moment estimate)

10: v̂t ←− vt/
(
1− βt

2

)
(Compute bias-corrected second raw moment estimate)

11: θt ←− θt−1 − α · m̂t/
(√

v̂t + ϵ
)
(Update parameters)

12: end while
13: return θt (Resulting parameters)

B.2 Backpropagation

Backpropagation[12] is a main procedure implemented in NNs, that characterizes their structure and
functionality, but it is based on simple calculus: the chain rule and also gradient descent or its variations.
Its usage is to optimize all the weights and biases simultaneously in the N.N during the training phase.
Conceptually, Backpropagation starts with the last parameter and estimates all the others backwardwise.
Now, we are going to introduce a more compact symbolism for gradient descent in order to describe
Backpropagation algorithm. Let theweights bew and f (w) the loss function. Theweights are initialized
with random values and the variation is done in the direction where the error is reduced or equivalently

1The interested reader can search in the bibliography for more details
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where the gradient tends to zero:
∆w = −η∇wf (w) (B.1)

where η is the learning rate. We will consider, a NN c outputs, nH intermediate neurons, three hidden
layers and d inputs. The weight w(1)

ij symbolizes the weight between the input site i and the hidden unit
j, whereas w(2)

ij the weight between hidden unit i and output unit j[12].

Figure B.2: Scheme of the Neural Network with input x output of hidden layers y and output z (obtained
from [12])

Each of the hidden unit takes the inner product of the input with the corresponding weights, that is

netj =

d∑
i=1

w
(1)
ij xi (B.2)

through the hidden units will give:

yj = F (netj) (B.3)

where F is an activation function. In the same manner we work with the with the outputs of the
hidden layers and the outputs of the NN. Componentwise, B.1 can be written as:

∆wij = −η
∂f (w)
∂wij

(B.4)

Using the chain rule we compute:

∂f (w)
∂wij

=
∂f (w)
∂neti

∂neti
∂wij

= −δi
∂neti
∂wij

(B.5)

where δi is called sensitivity[4], describes how the overall error changes with the unit’s activation
and it is defined as:

δi ≡ −
∂f (w)
∂neti

(B.6)

Now we can show two Backpropagation batch algorithms:
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Algorithm 3 Batch Backpropagation[4]
Require: initialize network topology (# hidden units),w, criterion ϵ, η, r ← 0
1: repeat
2: r ← r + 1
3: m← 0;∆w

(1)
ij ← 0;∆w

(2)
ij ← 0

4: repeat
5: m← m+ 1
6: xm ← select pattern
7: ∆w

(1)
ij ← ∆w

(1)
ij + ηδjxi;∆w

(2)
ij ← ∆w

(2)
ij + ηδjyi

8: untilm = n
9: w

(1)
ij ← w

(1)
ij +∆w

(1)
ij ; w(2)

ij ← w
(2)
ij +∆w

(2)
ij

10: until ∇f(w) < ϵ
11: return w

Algorithm 4 Stochastic Backpropagation[4]
Require: initialize network topology (# hidden units),w, criterion ϵ, η,m← 0
1: repeat
2: m← m+ 1
3: xm ← randomly chosen pattern
4: w

(1)
ij ← w

(1)
ij + ηδjxi; w

(2)
ij ← w

(2)
ij + ηδjyi

5: until ∇f(w) < ϵ
6: return w
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