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Abstract

In this bachelor thesis we are going to review a paper published by Miguel S. Costa,
Vasco Goncalves, João Penedone with the tittle conformal Regge theory. Firstly we
introduce some fundamental concepts of Regge theory from non-relativistic scattering in
quantum mechanics. Then we review some preliminaries of conformal field theory and
present some useful relations necessary for the following text. In addition to that, we
review a very important tool for studying conformal regge theory, which is the Mellin
amplitude. Furthermore, we are investigating the correlation of Mellin amplitudes with
operator product expansion and present a very similar approach with conformal partial
waves. With these tools we develop the conformal Regge theory for the four-point
function. The ultimate goal of conformal Regge theory is to make prediction for OPE
coefficients. In this text we are focusing on N = 4 supersymmetric Yang Mills theory
in the large N-limit when the theory is weak coupled. More specific, we predict OPE
coefficients in leading order.
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1 Introduction

The main goal of this review is to showcase the usage of conformal Regge theory, but
before we move on the actual development we should have some kind of understanding
of what these words mean.

For starters, Regge theory is a technique to study high energy scattering. It was
firstly developed by Tullio Regge in 1959, when he was studying scattering from Coulomb
potential. Before quantum chromodynamics (QCD), Regge theory was very important
for organizing the phenomenology of hardons. The foundations of this theory are mainly
the S-matrix theory and several techniques from complex analysis. As we will see in the
Regge theory review section the most important tools are namely, the pole structure of
the S-matrix, the Regge trajectory and the Sommerfeld-Watson transformation of the
scattering amplitude.

On the other hand we have the conformal part. It refers to conformal field the-
ory (CFT). This is a quantum field theory (QFT), which invariant under conformal
transformations. In particular this means that our theory is a scale-invariant theory,
meaning that you can expand/shrink the underlying spacetime without changing the
theory. In addition to that our theory, well being a QFT, possesses Poincare symmetry.
CFT has important applications to condensed matter physics, for example when a sys-
tem is undergoing a continuous phase transitions (critical points), statistical mechanics,
quantum statistical mechanics and string theory. Also, CFT’s described QFT’s in ultra-
violet and infrared scales. An example of a CFT is N = 4 supersymmetric Yang Mills
theory (SYM), which will be explored in section 6. Probably one of the most interest-
ing features of a CFT are the conformal correlation functions, which due to conformal
transformations are constrained to a certain form as we will see in section 3.

In conformal Regge theory we are going to incorporate the tools for Regge theory
in a CFT. In particular, we are going to use these tools to predict operator product
expansion (OPE) coefficients. Being more specific, our theory will be developed around
four-point functions, but the main idea is very useful. This is because calculating OPE
coefficients is in general a difficult task and requires explicitly solving the theory.1.

The main ingredient for developing conformal Regge theory are the Mellin ampli-
tudes. Mellin amplitudes were firstly introduced by Mack [16] and they are essential
for our theory. In general, Mellin amplitudes are associated with the n-point functions
through Mellin transformation in Mellin space. In addition to that for our case where
n = 4, we explore through conformal block expansion the pole structure of the Mellin
amplitudes and find that these poles are associated with operators appearing in the
OPE expansion between the scalars O1O2 and O3O4. This fact allow us to find a useful
expansion for the conformal block. Then we introduce another expansion very similar
to conformal block expansion, the conformal partial wave expansion, which will be the
main tool for our task.

After that, we develop conformal Regge theory for the four point correlation function

1For a QFT, calculating a correlation function in pertubation theory requires all possible Wick con-
tractions, which for even small powers in the interaction terms, is a difficult task to achieve.
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in the Regge limit. More specific, we will focus on the leading Regge trajectory. which
contains operators with twist equal to two. Then we use it to predict OPE coefficients
of the four point correlation function in the N=4 SYM when it is weak coupled with
interactions. We do this by considering as external operators single trace operators and
restrict our prediction around the free theory and spin J = 1. We find the coefficients by
using past works about anomalous dimensions together with the results from conformal
Regge. The result matches the result from the expression of OPE coefficients calculated
directly from the actual free theory.

So at the end of day conformal Regge theory is a technique for calculating OPE
coefficients much easier than calculate them from actual theory and hopefully this review
provide us a way to showcase that.

2 Regge Theory Review

In this section we are going to introduce Regge theory from the prospective of non-
relativistic scattering and consider an application to Coulomb scattering. Regge theory
is the study of the analytic properties of scattering amplitudes as a function of angular
momentum, where the angular momentum is not restricted to be an integer multiple of
ℏ but is allowed to take any complex value. The non-relativistic theory was developed
by Tullio Regge in 1959. Through this section we are going to work with natural units
and it is mostly based at [6] and [7].

2.1 Scattering Amplitudes

In physics, when we studying particle scattering one of the most important quantity to
calculate is the cross section σ. This quantity measures the probability of particles to
be scattered from a localized potential and it has units of area.

To understand this better, consider an incident particle beam with energy E arriving
near the scattering center. A part of this beam is going to be scattered at some angle,
thus the incident beam within the area dσ is going to be scattered at some solid angle
dΩ. When dσ gets bigger then dΩ gets too. In that sense we define the differential cross
section D(θ) = dσ

dΩ and the cross section is given by:

σ =
∫
D(θ)dΩ (2.1)

The particle beam is a quantum mechanical object, therefore the spatial wavefunction
must satisfies the time-independent Schrondinger equation. For a spherical symmetric
potential V (r) the angular part is2 ∼ Pl(cosθ) and our radial part R(r) must be deter-
mined from the radial Schrondinger equation:

−1
2
d2u
dr2

+ [V (r) + 1
2
l(l+1)
r2

]u = Eu (2.2)

u(r) = rR(r) (2.3)

2l is the quantum number of the angular momentum, with l ∈ N.
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Now we let the incident beam fixed at the z-direction, thus at r → ∞ the incident
wavefunction is ψinc ∼ eikz, where k2 = 2E. The scattered beam is going to be scattered
at some angle θ due to spherical symmetry and at r → ∞ the scattered wavefunction3

is ψsc ∼ f(θ) e
ikr

r . Add these two wavefunctions and we obtain the total wavefunction:

ψ(r, θ) ∼ eikz + f(θ) e
ikr

r , r → ∞ (2.4)

Figure 1: Incoming and outgoing waves as r → ∞

f(θ) accounts the amount of the scattered wave and we call it scattering ampli-
tude. From the discussion about the cross section it should be clear that:

D(θ) = |f(θ)|2 (2.5)

2.2 Partial Wave analysis and S-matrix

Our main goal when we studying scattering is to calculate (2.5). To do this requires
to solve the Schrondiger equation and this tasks turns out to be very hard or even
impossible to do. For this reason we develop other ways to approach this task. One of
them is the partial wave analysis.

As we saw at (2.4) f(θ) depends only from θ. This suggests that we can expand this
function as series of Legendre polynomials Pl(cosθ), which form a complete orthogonal
set on [−1, 1] and satisfy the orthogonality relation ⟨l|m⟩ = δmn

2
2l+1 . The expansion

goes as:

f(θ) =
∞∑
l=0

al(k)Pl(cosθ) (2.6)

Where al(k) is the partial wave-l amplitude and depends from the energy through k.
For a given potential V (r) we want to calculate al(k).

First let’s calculate it for the incoming free particle wavepacket. The expansion goes
as:

3The 1
r
behavior is fixed from the Schrondiger equation.
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eik·z = eikrcosθ =
∞∑
l=0

bl(k, r)Pl(cosθ) ⇒

eikrcosθPl(cosθ)sinθ =
∞∑
l′=0

bl′(k, r)Pl′(cosθ)Pl(cosθ)sinθ ⇒

π∫
0

eikrcosθPl(cosθ)sinθdθ =
π∫
0

∞∑
l′=0

bl′(k, r)Pl′(cosθ)Pl(cosθ)sinθdθ ⇒4

1∫
−1

Pl(x)e
ikrxdx =

∞∑
l′=0

δll′
2

2l+1bl′(k, r) ⇒

bl(k, r) =
2l+1
2

1∫
−1

Pl(x)e
ikrxdx (2.7)

To evaluate (2.7) simply consider that Pl(1) = 1 and Pl(−x) = (−1)lPl(x), so after
integrating by parts and consider that r → ∞, we obtain:

bl(k, r) =
2l+1
2

1
ikr [e

ikr − e−i(kr−lπ)] = il(2l+1)
kr sin(kr − lπ/2) (2.7)

Thus by using (2.7) the partial wave expansion of the free particle is:

eikz = 1
2ikr

∞∑
l=0

(2l + 1)[eikr − e−i(kr−lπ)]Pl(cosθ) (2.8)

Now let’s turn the potential on. As r → ∞ we expect the radial wavefunction to be
phase shifted compared with the radial wavefunction of the incoming particle. In that
sense the radial part is:

R(r) ∼ cl
1
krsin(kr − lπ/2 + δl(k)) (2.9)

Where δl(k) is the phase shift.
The total wavefunction now is:

ψ(r, θ) ∼ 1
2ikr

∞∑
l=0

cl[e
i(kr−lπ/2+δl) − e−i(kr−lπ/2+δl)]Pl(cosθ) (2.10)

Compare the coefficient of e−ikr in (2.10) with the one from (2.8) and we get:

cl = (2l + 1)ei(lπ/2+δl) (2.11)

Thus we get for (2.10):

ψ(r, θ) ∼ 1
2ikr

∞∑
l=0

(2l + 1)[ei(kr+2δl) − e−i(kr−π/2)]Pl(cosθ) =

1
2ikr

∞∑
l=0

(2l + 1)[ei(kr+2δl) − e−i(kr−π/2) + eikr − eikr]Pl(cosθ) =

4Let x = cosθ
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1
2ikr

∞∑
l=0

(2l + 1)[eikr − e−i(kr−lπ)]Pl(cosθ) +
∞∑
l=0

(2l + 1) e
2iδl−1
2ik Pl(cosθ)

eikr

r ==

eikz +
∞∑
l=0

(2l + 1) e
2iδl−1
2ik Pl(cosθ)

eikr

r = eikz +
∞∑
l=0

(2l + 1)eiδlsinδlPl(cosθ)
eikr

r

(2.12)

We call the phase factor e2iδl of outgoing wave S-matrix and denote it as Sl(k). Compare
(2.12) with (2.4) and we obtain:

f(θ) = 1
k

∞∑
l=0

(2l + 1)eiδlsinδlPl(cosθ) (2.13)

We continue with (2.1), (2.5) and we obtain:

σ =
∫
|
∞∑
l=0

(2l + 1)eiδlsinδlPl(cosθ)|2dΩ =∫ ∞∑
l,m

(2l + 1)(2m+ 1)Pl(cosθ)Pm(cosθ)ei(δl−δm)sinδlsinδmdΩ =

4π
k2

∞∑
l=0

(2l + 1)sin2δl =
∞∑
l=0

σl (2.14)

Where σl is called partial cross section.
The partial cross section can have many behaviors as a function of energy. When the

phase shift passes through π/2 it appears a sharp peak against a smooth background.
Thus, for specific energies around E ≈ Eres, then δl = π/2 and we write it as:

δl = arctan[ Γ/2
Eres−E ] (2.15)

Where Γ is a constant which depends on the energy.
We can use the relation sin2(arctan(x)) = x2

1+x2 with (2.14) to show that σl takes
the form:

σl =
4π
k2
(2l + 1)

(
Γ/2

Eres−E
)2

1+(
Γ/2

Eres−E
)2

= 4π
k2
(2l + 1) (Γ/2)2

(Eres−E)2+(Γ/2)2
(2.16)

This form of σl around E ≈ Eres is called Breit-Wigner form. When σmax
l = 4π

k2
(2l + 1)

we say that we have resonance and E = Eres.
It is more useful to study resonances form the S-matrix perspective. Near resonance

S-matrix takes the form:

Sl(k) = e2iδl = eiδl/e−iδl = cosδl+isinδl
cosδl−isinδl

= 1+itanδl
1−itanδl

= 1+i(Γ/2)/(Eres−E)
1−i(Γ/2)/(Eres−E ⇒

Sl(k) =
E−Eres−iΓ/2
E−Eres+iΓ/2 (2.17)

If we analytically continue the wavefunction to complex energy, then the energy E =
Eres − iΓ/2 corresponds to a pole of the S-matrix (2.16). Moreover for energy k2 > 0 at
r → ∞ we have:
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R(r) ∼ 1
r (Ae

ikr +Be−ikr)

Compare it with (2.12) and we get:

Sl(k) ∼ A
B (2.18)

We can define the S-matrix for any complex k and first we solve the radial equation
for complex k. Then at the limit r → ∞ we simply compute the ratio of the outgoing
and incoming wave amplitudes, as we saw at (2.18). If k = iκ then the energy is
E = −κ2/2 < 0 and the radial equation is:

R(r) ∼ 1
r (Ae

−κr +Beκr)

If k is such that B = 0, it also means that Sl(iκ) = ∞ and we have a bound state.
Thus, we found a way to characterize the bound states, they are poles of the S-matrix.
Bound states can be characterized as poles of the S-matrix on the negative real axis in
complex energy plane. This means resonances, which are poles near the positive real axis
are some kind of bound state. This occurs for E = Eres − iΓ/2, and the time evolution
of the state e−iEt = e−iEreste−Γt/2. From this understand that the particle has lifetime
of order 1/Γ, so this kind of pole describes some kind of semi-bound state with energy
Eres. If Γ is large, then the particle is short-lived and it is unstable, but if Γ is small
then the particle is long-lived and more stable.

2.3 Complex Angular Momentum and Regge Trajectories

From quantum mechanics we know that angular momentum since it is a quantum num-
ber, it can take specific values. But when we study equations like (2.2) l, that is the
quantum number of angular momentum, it’s just a parameter of the equation and there
is no reason to have specific values from a mathematical prospective.

That is what Tullio Regge did in 1959 when he studied non-relativistic scattering
by Coulomb potential. In particular he let l to take complex values. Before we jump
to Coulomb potential, let’s study (2.2) in more general way for l ∈ C and study the
problem in the notion of the complex angular momentum plane. We write (2.2) as:

−d2u
dr2

+ [2V (r) + l(l+1)
r2

− 2E]u = 0 ⇒ −d2u
dr2

+ [U(r) + l(l+1)
r2

− k2]u = 0 (2.19)

Where U(r) = 2V (r).

For r → 0 we have u(r) ∼ ra and (2.19) gives:

−a(a− 1)ra−2 + l(l + 1)ra−2 + U(r)ra − k2ra ∼ [−a(a− 1) + l(l + 1)]ra−2 = 0

Thus a = −l or a = l+1 and we want the second solution to dominate because we want
the solution at 0 to be regular.

On the other hand at r → ∞ we are looking for a purely outgoing wave:

u(r) ∼ eikr (2.20)

8



The total wavefunction is given by (2.12), if we ignore the angular part, then we write
it above the threshold (k2 > 0) as:

u(r) ∼ (2l+1)
2ir eiπl/2[e−iπl/2e2iδleikr − eiπ/2e−ikr] ⇒

u(r) ∼ Nl[e
−i(kr−lπ/2) − Sei(kr−πl/2)] (2.21)

We define the total wavefunction, up to a normalization factor Nl in terms of the S-
matrix. At a pole of S the second term becomes infinity large and the result is purely
outgoing wave.
Bellow the threshold (k2 < 0 ⇒ k = i|k|), (2.21) becomes:

u(r) ∼ Nl[e
|k|r+iπl/2 − Se−|k|r−iπl/2] (2.22)

For the case of (2.22), poles of S yield a bound state. Also below threshold we can have
a bound state for k = −i|k|, since it gives k2 < 0. The radial equation (2.21) becomes:

u(r) ∼ Nl[e
−|k|r+iπl/2 − Se+|k|r−iπl/2] (2.23)

(2.23) tells us that a bound state is provided by a 0 of S. (2.19) is invariant under
transformations k → −k, thus both zero and a pole occur. Therefore, the S-matrix for
l = 0 has a pole as a function of the energy, in general a family of bound states with
l ∈ N is represented by a family of energy poles of S.

Bellow threshold bound states have radial wavefunctions u(r) ∼ e−|k|r for r → ∞.
This is called bound state condition. This condition defines a whole family of solutions
as the l increases continuously with physicals values of l corresponding to bound states.
We saw that bound states can represented as poles of the S-matrix, so as the energy
E ∈ ℜ varies, these solutions can be represented as the continuous movement of an
l-plane pole of the S-matrix.

We can generalize this to resonance states. Since bound states and resonances are
both poles of the S-matrix, it is only natural unify them in some way. We unify them
as properties of the trajectory function a(E). This function describes the movement of
S-matrix poles in CAM and it can be obtained from the pole structure of the S-matrix.
Therefore, various energies for different complex angular momentum can be described
by the function a(E). This trajectory function is called Regge Trajectory and we can
obtain some useful information about the physical problem by considering the physical
values of angular momentum. Bound states all have negative energies and resonance
states which are poles of the S-matrix when E = Eres − iΓ/2, have positive energies
Re(E) = Eres. For example by taking the physical values for two bound states and one
resonance state we can organize them through one entity in figure 2. All these ideas will
be more clear when we consider the Coulomb scattering example.

Moreover, there is way to find the region of the l-plane poles of the S-matrix. To do
this we conjugate (2.19):

−d2u∗

dr2
+ ( l

∗(l∗+1)
r2

+ U(r)− k2)u∗ = 0 ⇒
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Figure 2: Bound states at E0, E1 and a resonance E2

−ud2u∗

dr2
+ ( l

∗(l∗+1)
r2

+ U(r)− k2)|u|2 = 0 (2.24)

Subtracting (2.24) from (2.19) multiplied by u∗ and we obtain:

−d2u
dr2
u∗ + ud2u∗

dr2
+ ( l(l+1)−l∗(l∗+1)

r2
)|u|2 = 0 ⇒

d
dr (u

du∗

dr − du
dru

∗) + ( l(l+1)−l∗(l∗+1)
r2

)|u|2 = 0 (2.25)

Let l = lR + ilI and l(l+1)− l∗(l∗ +1) = l2R +2ilI lR + lR − l2I + ilI +2ilI − l2R +2ilRlI +
l2I + ilI − lR = 4ilI lR + 2ilI = 2ilI(2lR + 1). (2.25) becomes:

d
dr (u

du∗

dr − du
dru

∗) + 2ilI(2lR + 1) |u|
2

r2
= 0 ⇒

[udu∗

dr − du
dru

∗]∞0 + 2ilI(2lR + 1)
∫∞
0

|u|2
r2
dr = 0 (2.26)

Bellow threshold, u satisfies, u(r) ∼ rl+1 as r → 0 and as r → ∞, u(r) ∼ e−|k|r. Apply
these relations to (2.26) and we obtain:

2lIr
2(lR+1/2) + 2ilI(2lR + 1)

∫∞
0

|u|2
r2
dr = 0

The left term vanishes if lR > −1/2 and the integral part is positive, which means that
ll = 0 for bound states and the S-matrix poles.

Above the threshold it holds true the relation (2.20) and for small r the asymptotic
behavior remains the same. (2.26) gives:

−2ik + 2ilI(2lR + 1)
∫∞
0

|u|2
r2
dr = 0

This implies that lI > 0 .
We conclude that in the notion of complex angular momentum plane, bound states

correspond to S-matrix poles for Re(l) > −1/2 with Im(l) = 0 and resonances corre-
spond to S-matrix poles with Im(l) > 0.
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2.4 Coulomb Scattering

At this point we are going to study scattering for the attractive Coulomb potential. The
potential for this example is V (r) = −1/r. Our first task is to determine the phase-shift
δl. We substitute Coulomb potential with (2.3) to (2.2):

d2R
dr2

+ 2
r
dR
dr + [2E + 2

r −
l(l+1)
r2

]R = 0 (2.27)

We let ρ = 2r/n with n = (−2E)−1/2 and thus dR
dr = dρ

dr
dR
dρ = 2

n
dR
dρ ,

d2R
dr2

= d
dr

dR
dr =

(dρdr )
2 d2R
dρ2

= 4
n2

d2R
dρ2

and (2.27) becomes:

d2R
dρ2

+ 2
ρ
dR
dρ + [−1

4 + n
ρ − l(l+1)

ρ2
]R = 0 (2.28)

The solution of (2.28) at ρ→ 0 is R ∼ ρa, substituting it and we obtain:

a(a−1)ρa−2+2aρa−2− 1
4ρ

a+nρa−1− l(l+1)ρa−2 ∼ [a(a−1)+2a− l(l+1)]ρa−2 = 0 ⇒

a± = ±(2l+1)−1
2

Thus we have regular solution around the origin, R(ρ) ∼ ρl. On the other hand at
ρ→ ∞, (2.28) becomes:

d2R
dr2

− 1
4R = 0 ⇒5 R(ρ) ∼ e−ρ/2

Putting together these solutions so that our total solution has the appropriate asymptotic
forms and we introduce the function y(ρ) such that R(ρ) = e−ρ/2ρly(ρ). Next, we
transform (2.28) with R(ρ) = e−ρ/2ρly(ρ) and:

dR
dρ = ρle−ρ/2 dy

dρ + ρl−1e−ρ/2y(l − ρ/2)

d2R
dρ2

= ρle−ρ/2 d2y
dρ2

+ ρl−1e−ρ/2 dy
dρ(l − ρ/2)+

[ρl−1e−ρ/2 dy
dρ + ρl−2e−ρ/2y(l − 1− ρ/2)](l − ρ/2)− ρl−1e−ρ/2y/2

And we obtain:

ρd2y
dρ + (2l + 2− ρ)dydρ − (l + 1− n)y = 0 (2.29)

This equation has the form of zy′′(z)+(γ−z)y′(z)−ay = 0, which is solved by confluent

hypergeometric function6 y(z) = F (a; γ; z) =
∞∑
j=0

Γ(a+j)Γ(γ)
Γ(a)Γ(γ+j)

zj

j! . Therefore, the equation

(2.29) is solved by:

y(ρ) = F (l + 1− n; 2l + 2; ρ) (2.30)

5The solution eρ/2 is irregular at ρ → ∞
6It exists a second kind of solution y(z) = z1−γF (a − γ + 1, 2 − γ, z), which is singular at 0. It can

be obtain by transforming the original equation with y → z1−γy.
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When we are studying scattering it requires to have energy E > 0 and n = −i(2E)−1/2 =
−i/k., ρ = 2ikr. With (2.30) the radial wavefunction R is known up to a normalization
factor :

Rkl(r) = Ckl(2ikr)
lF (l + 1 + i/k; 2l + 2; 2ikr) (2.31)

For r → ∞, (2.31) has the following asymptotic form:

Rkl(r) =
2
r |Γ(l + 1− i/k)|Re[ e−i(kr−π(l+1)/2+log(kr)/k)

Γ(l+1−i/k) G(l + 1 + i/k, i/k − l,−2ikr)]

(2.32)

Where G has the asymptotic series, G(a, b, z) =
∞∑
n=0

Γ(a+n)Γ(b+n)
Γ(a)Γ(b)

1
n!zn . We keep the first

term of (2.32) and we get:

Rkl(r) ∼ 2
r |Γ(l + 1− i/k)|Re[ e−i(kr−π(l+1)/2+log(kr)/k)

Γ(l+1−i/k) ] =

2
r |Γ(l + 1− i/k)|Re[ e−i(kr−π(l+1)/2+log(kr)/k)

Γ∗(l+1−i/k)Γ(l+1−i/k) Γ∗(l + 1− i/k)] =

2
r

|Γ(l+1−i/k)|
|Γ(l+1−i/k)|2 |Re[e

−i(kr−π(l+1)/2+log(kr)/k)Γ∗(l + 1− i/k)] =

1
Γ(l+1−i/k)

2
rRe[e

−i(kr−π(l+1)/2+log(kr)/k)Γ∗(l + 1− i/k)] (2.33)

We let ξ = kr − πl/2 + log(kr)/k, ϕ = l + 1− i/k and Γ∗(l + 1− i/k) = Re[Γ∗(l + 1−
i/k)] + iIm[Γ∗(l + 1− i/k)] and we write:

Re[ie−iξΓ(ϕ)∗] = sin(ξ)Re[Γ∗(ϕ)]− cos(ξ)Im[Γ∗(ϕ)] =

|Γ∗(ϕ)|[sin(ξ)cos(arctan( Im[Γ∗(ϕ)]
Re[Γ∗(ϕ)] ) + cos(ξ)sin(arctan( Im[Γ∗(ϕ)]

Re[Γ∗(ϕ)] )] =

|Γ∗(ϕ)|[sin(ξ)cos(arctan(arg[Γ∗(ϕ)]) + cos(ξ))sin(arctan(arg[Γ∗(ϕ)])] =

|Γ(ϕ)|sin(ξ + arctan(arg[Γ(ϕ)])) =

|Γ(l + 1− i/k)|sin(ξ + arctan(argΓ(l + 1− i/k)]))

(2.34)

Put (2.34) and (2.33) together and we get:

Rkl(r) ∼ 2
rsin(ξ + arctan[argΓ(l + 1− i/k)])

From this it is clear that the phase shift is:

δl(k) = arg[Γ(l + 1− i/k)] (2.35)
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Now we can calculate the S-matrix with (2.35) and we get7

Sl(k) = e2iδl = eiδl/e−iδl = Γ(l+1−i/k)
Γ(l∗+1+i/k) (2.36)

The poles of the S-matrix are given from gamma matrix in the numerator8. In particular,
Γ(z) has poles at z = 0,−1,−2,−3, .. and thus S-matrix has poles at:

lj + 1− i/k = −j, j = 0, 1, 2, 3, .. (2.37)

These poles are known as Regge poles. And this is means that the Regge trajectory,
since k =

√
2E, is:

aj(E) = −j − 1 + i√
2E

(2.38)

If the energy is varying, we see that if E → −∞, the j-th Regge pole tends to
l = −j − 1. For ϵ > 0 be small, as the energy winds up to −ϵ from −∞, all poles reside
on the real l-axis and move towards to Re(l) = ∞ with Im(l) = 0. If (2.38) is equal to
physical values 0, 1, 2, 3, .. then we obtain Bohr’s atom formula for bound state energies:

Ejl = − 1
2(j+l+1)2

(2.39)

For E → ϵ the j−Regge pole is described from the line Re(l) = −j − 1 and tends to
l = −j − 1 as E → ∞. From this description we can draw Regge trajectory for the
Coulomb potential at complex angular momentum plane in figure 3.

2.5 Regge Representation of the Scattering Amplitudes

Our starting point is (2.13). We want to write it in terms of the S-matrix and we have:

f(θ) = 1
k

∞∑
l=0

(2l + 1)eiδl e
iδl−e−iδl

2i Pl(cosθ) =
1
2ik

∞∑
l=0

(2l + 1)(e2iδl − 1)Pl(cosθ) =

1
2ik

∞∑
l=0

(2l + 1)(Sl − 1)Pl(cosθ) (2.40)

We want to write (2.40) so that the scattering amplitude is equal to a infinity sum of
residues of a contour integral. This conversion is a technique known as Sommerfeld-
Watson transformation.

We define z = l+1/2 and the function F (z) = −πf(z)
cosπz with the assumption that f(z)

is an analytic function in z. This means that F (z) has simple poles for zn = 2n+1
2 with

n = 0, 1, 2, 3, .. . The residues of such poles are:

Re(F (zn), zn) = limz→zn [(z − zn)
−πf(z)

(z−zn)(−πsin(πzn))+.. ] =
f(zn)

sin(πzn)
= (−1)nf(zn)

Thus we have the contour integral:

1
2i

∮ f(z)
cos(πz)dz =

∞∑
n=0

(−1)nf(n+ 1/2) (2.41)
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Figure 3: Regge trajectory moving to the right from j-1 for the attractive Coulomb
potential

Figure 4: Contour in the complex plane

Where the contour can be seen in figure 4.

We want to use (2.41) to perform the Sommerfeld-Watson transformation for our
scattering amplitude (2.40). To do this we assume the S-matrix is analytic function of l
and we have:

7We also use eiarg(z) = z and e−iarg(z) = z∗
8Gamma function is never equal to zero
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1
2ik

∞∑
l=0

(2l+1)(Sl−1)Pl(−cosθ) = 1
2ik

∞∑
l=0

(−1)l(2l+1)(Sl−1)Pl(cosθ) =
∞∑
l=0

(−1)lf(l+1/2)

Thus just as we saw at (2.41), we have the expression:

f(θ) = − 1
2k

∮ z(Sz−1/2−1)Pz−1/2(−cosθ)

cos(πz) dz = 1
2ik

∞∑
l=0

(2l + 1)(Sl − 1)Pl(−cosθ) (2.42)

Since Legendre polynomials are free of poles and by assuming that the integral is well
behaved for |z| → ∞ we can deform the contour so that the new one encloses singularities
of the S-matrix in the first quadrant. Then (2.42) becomes:

f(θ) = − 1
2k

∮ z(Sz−1/2−1)Pz−1/2(−cosθ)

cos(πz) dz − iπ
k

∞∑
n=0

znrn
cosπzn

Pzn−1/2(−cosθ) (2.43)

Where zn and rn are the positions and residues of n-pole respectively. This expres-
sion is known as the Regge representation of the scattering amplitude and it’s very
important. The reason why is that it provide us an alternative way to compute scat-
tering amplitudes which is simpler than calculate the partial wave sums for cases which
S-matrix has finite poles.

3 Conformal Field Theory Preliminaries

In this section we are going to review some useful relations from conformal field theory
that we are going to use later in this text. Although the purpose of this section is to
provide a further understanding to conformal Regge theory, it also provides a nice review
for some preliminaries of the conformal field theory. This section us mostly based on [2]
and [5].

3.1 Conformal Transformation

Conformal field theory is a quantum field theory which is invariant under conformal
transformations. From this statement follows that the flat metric is invariant up to factor
Ω2(x). Consider a conformal transformation in our coordinates x′µx′µ = Ω2(x)xµxµ. This
follows from the fact that if conformal transformations leave our theory invariant then
the inner product changes by a factor Ω2(x). Then by the definition of xµ = ηµνx

ν and
that of the general coordinate transformation we have

x′µx′µ = Ω2(x)xµxµ ⇒

η′αβ
∂x′α

∂xµ
∂x′β

∂xν = ηµνΩ
2(x) (3.1)

We should also note that from the definition of the metric space conformal transfor-
mations leave the angles invariant. In addition to that conformal transformations are
elements of a Lie group which is called conformal group. This group has the following
generators and finite transformations.
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Momentum generator, Pµ = ∂µ, creates spacetime translations aµ, with finite trans-
formation:

x′µ = xµ + aµ. (3.2)

Lorentz generator, Lµν = xµ∂ν − xν∂µ, creates boosts and rotations ωµν , with finite
transformation:

x′µ = e
ωa
b Lb

a
2 xµ (3.3)

Dilation generator, D = xa∂a, creates scale transformations σ, with finite transfor-
mation:

x′µ = eσxµ (3.4)

Special conformal generator Kµ = x2∂µ−2xµx
ν∂ν , creates parameter bµ, with finite

transformation:

x′µ = xµ+x2bµ

1+2bνxν+b2x2 (3.5)

We want to know how scalar operators transform. Dilations are scalings and thus
anything that has dimensions is affected by it. Consider the action in d-dimensions:

S =
∫
dxd∂µO(x)∂µO(x)

From dimensional analysis follows (in natural units) [S] = 0 ⇒ 2[O(x)] + 2 − d =
0 ⇒ [O(x)] = d−2

2 . Also, since ℏ = c = 1 it follows for mass and length units that
[M ] = [L]−1.

We define now the dilation weight ∆ to be equal to the mass dimension. Therefore,
for the scalar operator O(x), ∆ = d−2

2 .
Under dilation transformation x′µ = eσxµ = λxµ, then since [M ] = [L]−1 we have:

O′(x′) = λ−∆O(x)

This can be generalized for any conformal transformation. Moreover, for any scalar
primary operator it holds true:

O′(x′) = Ω−∆(x)O(x) (3.6)

If we insert dilation transformation (3.4) into (3.1) we obtain:

η′abδ
a
µδ

b
νe

−2σ = Ω2ηµν ⇒ Ω = eσ

Thus O(x) transforms under dilation:

O′(x′) = e−∆σO(x) (3.7)

For translation transformation (3.2) it’s easy to show from (3.1) that:

O′(x′) = O(x) (3.8)
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For the case of inversions x′µ = xµ

x2 , since
∂x′µ

∂xν = 1
x2 (δ

µ
ν −2xµxν

x2 ) we can use (3.1) to show
that Ω(x) = 1

x2 and thus:

O′(x′) = 1
x2∆O(x) (3.9)

We consider the infinitesimal version of (3.6) for a general conformal transformation.
Infinitesimally, the general conformal transformation is x′µ = xµ + ξµ and Ω−∆ = 1 −
k(x)∆, where k(x) and ξ are functions of xµ associated with conformal transformations.
So (3.6) becomes

O′(x′) = O(x+ ξ) ≈ O′(x) + ξµ∂µO(x) = O(x)−∆k(x)O(x) ⇒

δO(x) = O′(x)−O(x) = −∆k(x)O(x)− ξµ∂µO(x) (3.10)

It can be shown from the infinitesimal version of (3.1) that:

ξµ(x) = αµ + ω ν
µ xν + σxµ + bµx

2 − 2b · xxµ (3.11)

k(x) = σ − 2b · x (3.12)

So far we have discuss only scalars operators, but there are also operators with indices.
The infinitesimal version transformation of an operator with one index is:

δOa(x) = −∆k(x)Oa(x)− ξµ∂µOa(x) + ρµν(Sν
µ)

b
a Ob(x) (3.13)

ρµν = ωµ
ν + 2(bµxν − xµbν) (3.14)

Sν
µ is a matrix of the appropriate Lorentz representation.

3.2 Conformal Correlation Functions

The key objects in a CFT are local operators and the key data defining a CFT are the
correlation functions. If we obtain these functions then we have solved the theory. So
far we have seen conformal symmetries. These symmetries can constrain correlation
functions and give us their form without solving the actual theory. We are going to
review some cases without showing the calculations from the constrains.

a) 2-point functions are fixed up to a normalization. The special conformal trans-
formation constrains the two point function to be non-zero for equal weight operators,
thus for scalar operators we have:

⟨O∆1(x)O∆2(y)⟩ = C12

|x−y|2∆1
(3.15)

b) 3-point functions are fixed up to a constant, thus for scalars:

⟨O1(x1)O2(x2)O3(x3)⟩ = C123

|x12|∆1+∆2−∆3 |x23|∆2+∆3−∆1 |x13|∆1+∆3−∆2
(3.16)
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Where xij = xi − xj .

c) 4-point functions can not be fixed by conformal symmetry and there is a limited
number of constrains we can put on the system. The result for scalars is:

⟨O1(x1)O2(x2)O3(x3)O4(x4)⟩ = f(u, v)
∏4

i<j |xij |
∆1+..∆4

3
−∆i−∆j (3.17)

Where u = (x12)2(x34)2

(x13)2(x24)2
v = (x14)2(x23)2

(x13)2(x24)2
are the cross ratios and f(u, v) is a general function

of u, v.

So far we have consider only correlation functions with scalar operators, but it is
possible to have spin operators which are tensors. The simplest of them the 2-point
function of spin-1 operators with the same weight ∆:

⟨Oµ(x)Oν(y)⟩ = CJ
Iµν(x−y)
(x−y)2∆

(3.18)

With Iµν(x) = ηµν−2
xµxν

x2 and CJ it’s a constant. Iµν its an orthogonal matrix associated

with inversions as ∂x′µ

∂xν = 1
x2 (δ

µ
ν − 2xµxν

x2 ) = 1
x2 I

µ
ν as we saw from deriving (3.9). We

can check this definition for a Lorentz transformation. For such transformation (3.13)
with (3.14) give us the familiar infinitesimal Lorentz transformation, so we conclude
that O′

µ(x
′) = Λ ν

µ Oν(x). On the other hand, I ′µν(x
′) = Λ a

µ Λ b
ν ηab − 2Λ a

µ Λ b
ν

xaxb
x2 =

Λ a
µ Λ b

ν Iab(x). With that in mind (3.18) for y = 0 gives:

⟨O′
µ(x

′)O′
ν(0)⟩ = Λ a

µ Λ b
ν ⟨Oa(x)Ob(0)⟩ = CJ

I′µν(x
′)

(x)2∆
= Λ a

µ Λ b
ν CJ

Iab(x)
(x)2∆

Thus the RHS and LHS agree.

The form of (3.18) can be generalized to l spin operators which are represented from
traceless symmetric tensors that it:

⟨Oµ1..µl
(x)Oν1..νl(0)⟩ = CJ(

Iµ1ν1 ..Iµlνl
x2∆ − traces) (3.19)

Where ”traces” are terms associated with δµiµj and δνiνj . We want such terms, since Iµν
has mixed indices from the 2 tensors and we mention that we are interesting in traceless
tensors (that’s it Oµ1..µiµi..µl

= 0).

3.3 Operation Product Expansion and Conformal Blocks

As we mention above conformal constrains are not enough to fix higher point functions.
In CFT, we can write the product of two local operators as a sum of local primary
operators. This is called operator product expansion (OPE) and it’s a very useful tool.
So, the product of two operators O1(x1), O2(x2) can be written as:

O1(x1)O2(x2) =
∑

k C12k,µ1..µJk
(x12, ∂2)O

µ1..µJk
k (x2) (3.20)
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Where C12k,µ1..µJk
is an operator which is a power series in ∂2 and generates descendants9.

For the operators O
µ1..µJk
k inside the OPE with mass dimension ∆k and Jk we label them

with their twist, which is ∆k − Jk.

Consider the 4 point-function:

⟨O1(x1)O2(x2)O3(x3)O4(x4)⟩

And we take OPE between O1O2 and O3O4:

⟨O1(x1)O2(x2)O3(x3)O4(x4)⟩ =∑
k,k′

C12k,µ1..µJk
(x12, ∂2)C34k′,ν1..νJk

(x34, ∂4) ⟨O
µ1..µJk
k (x2)O

′ν1..νJk
k′ (x4)⟩ =

∑
k

C12kC34kGJk,∆k
(x1, x2, x3, x4)

(3.21)

Where in the last step we have diagonalize the 2-point function thus we get terms for
O = O′. C12kC34k are the leading coefficients from the power series we saw above and
GJk,∆k

(x1, x2, x3, x4) is called conformal block.

3.4 Radial Quantization and State-Operator Correspondence

When we first encounter quantum field theory we proceed with canonical quantization
where we quantize on equal time slicing. In CFT it’s useful to quantize on equal radial
slices. This process is called radial quantization.

Consider an Euclidean CFT on aD-dimensional cylinder. This CFT hasD−1 spatial
dimensions and 1 time dimensions. To understand this better consider the metric of this
space for D = 2:

Figure 5: D = 2 cylinder

9Descendants are operators that can written as a total derivative. An example of them is ∂µO(x)
with mass dimension ∆ + 1.

19



ds2 = −dt2 + dn2 ⇒ ds2 = dτ2 + dn2 (3.22)

Where in the last step we wick rotate the time variable (τ = −it). From this we see that
the time τ runs from the bottom of cylinder (infinity past) to the top of the cylinder
(infinity future) and the one spatial variable runs across the cylinder surface for a given
τ . Thus a spatial slice is a circular slice of the cylinder which is parameterized by the
unit vector n.

Consider the coordinate transformation:

τ → r = eτ (3.23)

dr = eτdτ = rdτ (3.24)

The metric (3.22) according to (3.23) and (3.24) becomes:

ds2 = dr2

r2
+ dn2 = 1

r2
(dr2 + r2dn2)︸ ︷︷ ︸

”flat space metric”

Thus transformation has scaled the metric by an overall factor. This means that it exists
a conformal transformation such that, Cylinder → Flat space. The infinity past on the
bottom of the cylinder is mapped at the origins of the flat space as for the infinity future
on the top of the cylinder is mapped at the infinity radius circle of the flat space.

Figure 6: flat space map

In a CFT, there is a 1-1 correspondence between states and local operators. This is
called state-operator correspondence. In this text is important to us to understand
better the state ⇒ local operator correspondence, so in the following we are going to
motivate it.

Our first encounter with quantum mechanics, the states that we consider are equiv-
alent to the Schrondinger wavefunction ψ(x, t0) in a particular time t0. This state is
defined across a spatial side. The intial state ψI(x) is defined at t0 → −∞, but in
quantum field theories we have wavefunctionals rather than wavefunctions. Thus for the
intial state rather than x we have ϕ(x) if we are talking about a scalar field theory and
ψI = ψI [ϕ(x)]. When we go to radial quantization the limit t0 → −∞ in the intial state
becomes r → 0. Therefore, ψI is a function of ϕ(0), ∂µϕ(0), ∂µ∂νϕ(0).. all local at 0 and
we see that for a given state we can obtain a local operator, by taking infinity dilation
backwards, that is is shrink it down to the origins.
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Thus we can obtain a local operator at the origin for a given state. We label our
states by their corresponding operator at the origins:

|O⟩ = O(0) |0⟩

We said that |O⟩ is dual to the operator O. In this sense we say that the vacuum is dual
to identity:

|0⟩ = |1⟩

3.5 Conformal Blocks in the Dolan-Osborn coordinates

We already introduced the conformal block GJ,∆ of the 4-point function in the text. In
this subsection we introduce the Dolan-Osborn coordinates and a useful expansion for
the conformal block.

We start from (3.17) and we consider operators of the same weight ∆ for simplicity:

⟨O(x1)O(x2)O(x3)O(x4)⟩ = f(u, v) |x24|
−2∆
3 |x14|

−2∆
3

|x12|
2∆
3 |x34|

2∆
3 |x13|

2∆
3 |x23|

2∆
3

= g(u, v) 1
(x2

12)
∆(x2

34)
∆

(3.25)

Where g(u, v) is a function of conformally invariant cross ratios. We can decompose
g(u, v) in terms of conformal blocks GO(u, v) of the primary operators O appearing in
OPE. Since all four operators have the same weight we write:

g(u, v) =
∑

O C
2
OGO(u, v) (3.26)

At this point we introduce the Dolan-Osborn coordinates:

u = zz̄, v = (1− z)(1− z̄) (3.27)

The conformal blocks now are parametrized by the complex variable z and (3.8) allow
us to set x1 = 0, x3 = (1, 0, .., 0, 0), x4 → ∞. At this point we are working on the z-
plane, we can use the radial quantization by using the inverse transformation of (3.23),
which is τ = log(r). The operators at x1 = 0 and x4 → ∞ are mapped at the bottom
and top of cylinder respectively and by using the state-operator correspondence we have
O(x1 = 0) |1⟩ = |O⟩ and ⟨O| = ⟨1|O(x4 → ∞). Also, τ3 = log(r3) = log(1) = 0 and
τ2 = log|z|. Therefore we write (3.25) as:

⟨O|O(0, n3)O(τ2, n2) |O⟩ (3.28)

The units vectors ni don’t change under the transformation and we can think them
as the unit vector θ̂ in our familiar 2 dimensional plane (r, θ) when we refer to the d-
dimensional Euclidean plane. In that sense, since x3 = (1, 0, 0, 0.., 0) and x2 = z it holds
true that:

n2 · n3 = cosθ, θ = argz (3.29)
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We are moving on by inserting a complete basis energy eigenstates on d−1-dimensional
sphere of the d-dimensional cylinder10 to (3.27). Thus if we ignore the leading term of
(3.25) we get:

g(u, v) =
∑

E ⟨O|O(0, n3) |E⟩ ⟨E|O(τ2, n2) |O⟩ =∑
E ⟨O|O(0, n3) |E⟩ ⟨E| e−iHtO(0, n2) |O⟩ =∑
E ⟨O|O(0, n3) |E⟩ ⟨E| eHτO(0, n2) |O⟩ =∑

E e
Eτ2 ⟨O|O(0, n3) |E⟩ ⟨E|O(0, n2) |O⟩ =

∑
E ⟨O|O(0, n3) |E⟩ ⟨E| eHτO(0, n2) |O⟩ ⇒

g(u, v) =
∑

E |z|E ⟨O|O(0, n3) |E⟩ ⟨E|O(0, n2) |O⟩ (3.30)

The energy states |E⟩ are in 1-1 correspondence with the local operators appearing in
OPE. Every state will come in a multiplet of SO(d) and it turns out that only the
symmetric traceless tensors with j ≥ 0 survive, since antisymmetric tensors can not be
contracted by a single vector n. Therefore the element ⟨E|O(0, n2) |O⟩ is:

⟨E,µ1..µJ |O(0, n2) |O⟩ ≈ nµ1
2 ..n

µJ
2 − traces

And (3.30) is approximately:

(nµ1
2 ..n

µJ
2 − traces)(nµ1

3 ..n
µJ
3 − traces) ≈ Cν

J (n2 · n3) = Cν
J (cosθ) (3.31)

Where ν = d/2−1 and Cν
J are the Gegenbauer polynomials and for d = 3 (ν = 1/2) they

are the Legendre polynomials PJ(cosθ). Gegenbauer polynomials can be viewed as d-
dimensional Legendre polynomials, thus we understand their appearance, since Legendre
polynomials are appearing in amplitudes when we study scattering.

We put together (3.30) with (3.31) and we obtain:

g(u, v) ≈
∑

|z|ECν
J (cosθ) (3.32)

Consider the primary operator O of dimension ∆ and l occurring in the OPE between
2 operators, then if the sum is restricted to its conformal multiplet it must match the
conformal block at (3.26). The conformal multiplet has descendants of integer spaced
dimension ∆ + n with spins at level n taking values:

J = l + n, l + n− 2, ..max(J − n, J + n mod 2) (3.33)

Thus the conformal block must have the following expansion:

G∆,J(u, v) ≈
∑∞

n=0 |z|∆+n
∑

J
Cν

J (cosθ)

Cν
J (1)

(3.34)

where we have used the Gengebauer normalization factor:

Cν
J = (2ν)J

J ! (3.35)
10For example in d = 3 where our familiar cylinder ”lives”, these eigenstates are ”living” on the equal

radius circles of the cylinder.
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4 Mellin Amplitudes

In this section we are going to introduce Mellin amplitudes and some of them prop-
erties. These amplitudes are very useful for the analogy between scattering amplitudes
and conformal correlation functions. In quantum mechanics and quantum field theory
we learn that states can be expressed over momentum or position space and so probabil-
ity amplitudes can be calculated in terms of momentum or position. In the same sense
Mellin amplitudes are expressed in Mellin space, which is characterized by the variables
δij .

In this analysis we are not going to be restricted by a proper definition of Mellin
space, but we are going to start from the Mellin transformation of the n-point function:

An(x1, ..xn) =
∫
[dδ]Mn(δij)

n∏
i<j

(xij)
−2δijΓ(δij) (4.1)

Where xij = (xi − xj) and [dδ] = dδ12dδ13..
2πi2πi.. . Mn(δij) is the Mellin amplitude and for

n = 4 it’s associate with the connected part of the correlation functions. The integration
for each dδij runs parallel to the imaginary axis in the complex plane and they are in

total n(n−3)
2 of them which are independent. In analogy we can think δij as the kinematic

invariant pi ·pj in an n-particle scattering and ∆i as the masses of these particles. When
we consider this we can derive from momentum conservation:∑

j pj = 0 ⇒
∑

j pi · pj = 0 ⇒
∑

j δij = 0 (4.2)

Then if we consider Einstein’s dispersion relation we have:

p2i = −∆i ⇒ δii = −∆i (4.3)

Also, its clear from (4.2) and (4.3) that the total number of independent dδij are n(n−
3)/2. For example, take n = 4, (4.2) gives δi1+ δi2+ δi3+ δi4 = 0, then for i=1 and with
(4.3) it is −∆1 + δ12 + δ13 + δ14 = 0. From this we see that only 2 can be independent.

We can use the definition of δij from (4.3) to relate them with the Mandelstam
variables t, s for the case n = 4:

t = −(p1+p2)
2 = −(p3+p4)

2 = −p21−p22−2p1p2 = ∆1+∆2−2δ12 = ∆3+∆4−2δ34 ⇒

t = ∆1 +∆2 − 2δ12 = ∆3 +∆4 − 2δ34 (4.4)

s = −(p1+p3)
2 = −(p2+p4)

2 = −p21−p23−2p1p3 = ∆1+∆3−2δ13 = ∆2+∆4 = 2δ24 ⇒

s′ = s−∆1 −∆4 = −(p1 + p3)
2 −∆1 −∆4 = ∆3 −∆4 − 2δ13 = ∆2 −∆1 − 2δ24

s′ = ∆2 −∆1 − 2δ24 = ∆3 −∆4 − 2δ13 (4.5)

Where s′ is the shifted Mandelstam variable, which is more convenient. As we continue
we simply let s′ ⇒ s.

We can expand (3.17):
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A(x1, x2, x3, x4) =

f(u, v) |x24|
−2∆2−2∆4+∆3+∆1

3 |x14|
−2∆4−2∆1+∆3+∆2

3

|x12|
2∆1+2∆2−∆3−∆4

3 |x34|
2∆3+2∆4−∆1−∆2

3 |x13|
2∆1+2∆3−∆2−∆4

3 |x23|
2∆2+2∆3−∆1−∆4

3

⇒

A(x1, x2, x3, x4) = A(u, v) 1

(x2
12)

∆1+∆2
2 (x2

34)
∆3+∆4

2

(
x2
24

x2
14
)
∆1−∆2

2 (
x2
14

x2
13
)
∆3−∆4

2 (4.6)

Where A(u, v) is the reduced correlator A, which is a complicate function of u, v and its
current form will not bother us.

We want to find the Mellin transformation of A(u, v). To do this we expand (4.1)
for n = 4. First we focus on the product term:∏4

i<j(xij)
−2δijΓ(δij) =

Γ(δ14)(x
2
14)

−δ14Γ(δ24)(x
2
24)

−δ24Γ(δ34)(x
2
34)

−δ34Γ(δ13)(x
2
13)

−δ13Γ(δ23)(x
2
23)

−δ23Γ(δ12)(x
2
12)

−δ12

(4.7)

From (4.4) (4,5) we get:

δ12 =
∆1+∆2−t

2

δ13 =
∆3−∆4−s

2 = ∆34−s
2

δ34 =
∆3+∆4−t

2

δ24 =
∆2−∆1−s

2 = −∆12−s
2

(4.8)

We combine them as (4.4)+(4.5) and use also (4.2),(4.3) to obtain:

t+ s = ∆1 +∆2 +∆3 −∆4 − 2δ12 − 2δ13 = 2δ12 + 2δ13 + 2δ23 − 2δ12 − 2δ13 = 2δ23
⇒ δ23 =

t+s
2 (4.9)

We can obtain also by (4.9)/2+∆12 −∆34 with (4.2),(4.3):

t+ s+∆12 −∆34 = 2δ23 +∆1 −∆2 −∆3 +∆4 = 2δ23 + 2δ14 − 2δ23 = 2δ14
⇒ δ14 =

t+s+∆12−∆34
2 (4.10)

Now consider the integration measure
∫
[dδ] for n = 4. We want to transform it from δij

to s and t . To do this we differentiate (4.4) (4.5) and we get:

dδ12dδ13 = dtds/4
⇒

∫
[dδ] =

∫
dtds

16(πi)2
=

∫
dtds
(4πi)2

(4.11)

Put together (4.6), (4.7), (4.8), (4.9), (4.10), (4.11), and we have:

A(u, v) 1

(x2
12)

∆1+∆2
2 (x2

34)
∆3+∆4

2

(
x2
24

x2
14
)
∆1−∆2

2 (
x2
14

x2
13
)
∆3−∆4

2 =∫ i∞
−i∞

dtds
(4πi)2

Γ( t+s
2 )Γ( t+s+∆12−∆34

2 )Γ(−∆12−s
2 )Γ(∆3+∆4−t

2 )Γ(∆1+∆2−t
2 )Γ(∆34−s

2 )(x214)
− t+s

2

(x214)
∆34−∆12

2 (x224)
∆12
2 (x224)

s
2 (x234)

t
2 (x234)

−∆34
2 (x213)

−∆34
2 (x213)

s
2 (x212)

t
2 (x212)

−−∆1+∆2
2 (x223)

− t+s
2 M(s, t) ⇒
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A(u, v) =∫ i∞
−i∞M(s, t) dtds

(4πi)2
Γ( t+s

2 )Γ( t+s+∆12−∆34
2 )Γ(−∆12−s

2 )Γ(∆3+∆4−t
2 )Γ(∆1+∆2−t

2 )Γ(∆34−s
2 )

(x2
14x

2
23)

− t+s
2

(x2
13x

2
24)

− s
2

(x2
12x

2
34)

t
2

(x2
13x

2
24)

t
2 (x2

13x
2
24)

− t
2
⇒

A(u, v) =
∫ +i∞
−i∞

dtds
(4πi)2

M(s, t)u
t
2 v−

s+t
2

Γ( t+s
2 )Γ( t+s+∆12−∆34

2 )Γ(−∆12−s
2 )Γ(∆3+∆4−t

2 )Γ(∆1+∆2−t
2 )Γ(∆34−s

2 ) (4.12)

Note that the integration contours should be placed such that the infinity series of
poles produced from each Gamma function to stays to one side of contour. This also
holds true and for the pole structure of M(s, t). This representation for the reduced
correlation function is called Mellin space representation.

4.1 Operator Product Expansion

In this section we are going to use the operator product expansion (3.16) to investigate
the analytic structure of Mellin amplitudes.

We want to find the leading behavior of the OPE. To do this we set in (3.16) x2 = 0
and we expand the power series C12k,µ1..µJk

(x, ∂2). We get:

O1(x)O2(0) =
∑
k

a12k[bµ1..µJk
+ cxµ∂µ + dxµxν∂µ∂ν + ..]O

µ1..µJk
k (0) =∑

k a12k[bµ1..µJk
O

µ1..µJk
k (0) + descendants] (4.13)

Where a12k and the b are the leading coefficients that we want to determine. To de-
termine a12k we are going to use dimensional analysis. The left side has mass dimen-
sions ∆1 + ∆2, as for the right side mass dimensions are [a12k] − Jk + ∆k

11. From

this it is clear that bµ1..µJk
must be dimensionless, thus bµ1..µJk

=
xµ1 ..xµJk

(x2)
Jk
2

and then

[a12k] +∆k = ∆1 +∆2 ⇒ [a12k] = −∆k +∆1 +∆2. Therefore, a12k = C12k

(x2)
∆1+∆2−∆k

2

and

(4.13) becomes:

O1(x)O2(0) =
∑
k

C12k

(x2)
∆1+∆2−∆k

2

[
xµ1 ..xµJk

(x2)
Jk
2

O
µ1..µJk
k (0) + descendants] (4.14)

We normalize all operators to have 2-points functions such that (3.14) becomes:

⟨Oµ1..µJOν1..νJ ⟩ = 1
J !

∑
perm,σ

Iµ1νσ(1)
IµJνσ(J)

(x2)∆
− traces (4.15)

In order to find the analytic structure, we continue with OPE of the reduced correlation
function (4.6) as we proceed with (3.21):

A(u, v) =
∑
k

C12kC34kG∆k,Jk(u, v) (4.16)

11∆k is the mass dimension of Oµ1..µJk .
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We want to find the pole structure of M(s, t). Consider (3.20), we can set x2 = 0,
since operators are invariant under translations (3.8) and we get:

O1(x1)O2(0) =
∑
k

C12k,µ1..µJk
(x1, ∂2)O

ν1..νJk
k (0) =∑

k

∞∑
m=0

Cµ1..µm

k,ν1..νJk
(x1, 0)∂µ1 ..∂µmO

ν1..νJk
k (0)

(4.17)

Then we perform a dilation and according to (3.4) and (3.7), (4.17) becomes:

O1(e
−σx1)O2(0) =

∑
k

∞∑
m=0

e−σ(∆k+m)+σ(∆1+∆2)Cµ1..µm

k,ν1..νJk
(x1, 0)∂µ1 ..∂µmO

ν1..νJk
k (0)

(4.18)

where the term eσ(∆1+∆2) comes from the leading term shown at (4.16). Thus, we write
the 4-point function according to (4.18):

⟨O1(e
−σx1)O2(0)O3(x3)O4(x4)⟩ =

∑
k

∞∑
m=0

e−σ(∆k+m)+σ(∆1+∆2)Cµ1..µm

k,ν1..νJk
(x1, 0) ⟨∂µ1 ..∂µmO

ν1..νJk
k (0)O3(x3)O4(x4)⟩ =

∑
k

∞∑
m=0

e−σ(∆k+m)+σ(∆1+∆2)Fk,m(x1, 0, x3, x4)

(4.19)

Now we rescale Mellin transformation (4.1) of the 4-point function with x′i = e−σxi for
i ≤ 2:

i∞∫
−i∞

[dδ]M(δij)
4∏

i<j
Γ(δij)(x

′
12)

−2δ12
4∏

i≤2<j
(x′ij)

−2δij
4∏

2<i<j
(x2ij)

−δij =

i∞∫
−i∞

[dδ]M(δij)e
2σδ12

4∏
i<j

Γ(δij)(x12)
−2δ12

4∏
i≤2<j

(x2j − e−σ2xi · xj + e−2σx2i )
−δij

4∏
2<i<j

(x2ij)
−δij =

i∞∫
−i∞

[dδ]M(δij)e
2σδ12

4∏
i<j

Γ(δij)(x12)
−2δ12

∞∑
q=0

e−qσQq(x1, x2, x3, x4)(x34)
−2δ34

(4.20)
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In the last line we simply used the Taylor expansion for the product term
4∏

i≤2<j
(x2j − e−σ2xi ·xj + e−2σx2i )

−δij and Qq is a polynomial of degree q in xi for i = 1, 2.

Next we match (4.20) with (4.19) and we get:

i∞∫
−i∞

[dδ]M(δij)e
2σδ12

4∏
i<j

Γ(δij)(x12)
−2δ12

∞∑
q=0

e−qσQq(x1, x2, x3, x4)(x34)
−2δ34 =

∑
k

∞∑
m=0

e−σ(∆k+m)+σ(∆1+∆2)Fk,m(x1, 0, x3, x4)

(4.21)

The right side contains all residues produced by the integral from the left side, but it
does not exist a pole structure in the integral side so that we get these residues. For
q = Jk we get contribution of a spin l operator, therefore we conclude that M(δij) must
have poles at 2δ12 − Jk = ∆1 +∆2 −∆k −m⇒ t = ∆k − Jk +m and the pole structure
of the Mellin amplitude is:

M(s, t) ≈
∑
k

∞∑
m=0

1
t−∆k+Jk−m (4.22)

We can write (4.21) by using (4.16) and (4.6) as:

i∞∫
−i∞

[dδ]M(δij)e
2σδ12

4∏
i<j

Γ(δij)(x12)
−2δ12

∞∑
q=0

e−qσQq(x1, x2, x3, x4)(x34)
−2δ34 =

∑
k

∞∑
m=0

e−σ(∆k+m)+σ(∆1+∆2)Fk,m(x1, 0, x3, x4) =

1

(x2
12)

∆1+∆2
2 (x2

34)
∆3+∆4

2

(
x2
24

x2
14
)
∆1−∆2

2 (
x2
14

x2
13
)
∆3−∆4

2
∑
k

C12kC34kG∆k,Jk(u, v)

We can use this to determineM(s, t) even further. The last line contains coefficients C12k

and C34k, therefore they must originate from M(δij). Also, since Fk,m ≈ Cµ1..µm

k,ν1..νJ
(x1, 0)

and Cµ1..µm

k,ν1..νJ
(x1, 0) is a polynomial we concludeM(δij) must contain polynomialsQJ,m(s),

where J is the degree of the polynomials. These are residues of M(s, t) from the t-plane
and they must be a function of s, so that the integration in s will give Cµ1..µm

k,ν1..νJ
(x1, 0).Thus,

we conclude (4.22) must be:

M(s, t) ≈
∑
k

∞∑
m=0

C12kC34kQJ,m(s)
t−∆k+Jk−m (4.23)

It’s convenient to write QJk,m(s) as:

QJk,m(s) = − 2Γ(∆k+Jk)(∆k−1)Jk

4JkΓ(
∆k+Jk+∆12

2
)Γ(

∆k+Jk−∆12
2

)Γ(
∆k+Jk+∆34

2
)Γ(

∆k+Jk−∆34
2

)

Q̃Jk,m(s)

m!(∆k−h+1)mΓ(
∆1+∆2−∆k+Jk

2
−m)Γ(

∆3+∆4−∆k+Jk
2

−m)
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(4.24)

Where we used the Pochhammer symbol, (a)Jk = Γ(a+Jk)
Γ(a) and h = d/2.

In (3.34) it has been shown that the conformal block of the 4-point function has a
useful expansion in terms of Gegenbauer polynomials. This expansion can viewed as
partial wave expansion in d dimensions, where the familiar Legendre polynomials are
the Gegenbauer polynomials. The expansion is:

G∆k,Jk(u, v) ≈
∑∞

n=0 |z|∆+n
∑

j

Ch−1
j (cosθ)

Ch−1
j (1)

(4.25)

With u = zz̄, v = (1− z)(1− z̄) and z is a complex number with argz = θ. Ch−1
j (x) is

the Gegenbauer polynomial with Ch−1
j (1) =

(2h−2)j
j! being the Gegenbauer normalization

factor. The leading term from (4.25) is given for n = 0:

G∆k,Jk(u, v) ≈ |z|∆k Jk!
(2h−2)Jk

Ch−1
Jk

(cosθ) = |z|∆k Jk!
2Jk (h−1)Jk

Ch−1
Jk

(cosθ) (4.26)

In the limit u→ 0 and v → 1, we write |z| =
√
u and v = 1− z− z̄+u ≈ 1− z− z̄ ⇒

v − 1 = −z − z̄ ⇒ (v − 1)/(2
√
u) = −(z + z̄)/2|z| = −cosθ, thus (4.26) becomes12

G∆k,Jk(u, v) ≈ u
∆k
2

Jk!
2Jk (h−1)Jk

Ch−1
Jk

(− v−1
2
√
u
) = (−1)Jku

∆k
2

Jk!
2Jk (h−1)Jk

Ch−1
Jk

( v−1
2
√
u
) ⇒

G∆k,Jk(u, v) ≈ u
∆k
2

Jk!
2Jk (h−1)Jk

Ch−1
Jk

( v−1
2
√
u
) (4.27)

With (4.27) we can show that m is limited to even numbers. We let the poles
τ = ∆k − Jk +m. It should be clear that these poles are lying on the real positive axis
and with a proper contour we can calculate the complex integral by using the residues
theorem13

∑
k

∞∑
m=0

∫ i∞
−i∞

dt
(4πi)2

C12kC34kQJk,m(s)

t−τ u
t
2 v−

t
2Γ( t+s

2 )Γ( t+s+∆12−∆34
2 )Γ(∆3+∆4−t

2 )Γ(∆1+∆2−t
2 ) ∼

−2πi
∑
k

∞∑
m=0

1
(4πi)2

C12kC34ku
∆k−Jk+m

2 ∼

∑
k

∞∑
m=0

C12kC34ku
∆k−Jk+m

2 (4.28)

On the other hand this expression is equal to (4.16), which in the limit u→ 0 and v → 1
it becomes with (4.27)

12We also use that Ca
n(−x) = (−1)nCa

n(x), since Ca
n(x) have generating function 1

(1−2xt+t2)a
=∑∞

n=0 C
a
n(x)t

n. More information can be found at: https://en.wikipedia.org/wiki/Gegenbauer poly-
nomials

13We calculate the complex integral without taking into account the poles in gamma functions. We
are going to explain the reason behind it in section 6 .
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A(u, v) ∼
∑
k

C12kC34ku
∆k/2Ch−1

Jk
( v−1
2
√
u
)

And by using the expression of the Gegenbauer polynomials

Ch−1
Jk

( v−1
2
√
u
) ∼

[Jk/2]∑
n=0

(v − 1)J−2n(u)−
J
2
+n ∼

[Jk/2]∑
n=0

(u)−
Jk
2
+n

we obtain then

A(u, v) ∼
∑
k

[J/2]∑
n=0

C12kC34ku
∆k−Jk

2
+n

(4.29)

Thus by equating (4.29) and (4.28) we have m = 2n.

Now we are going to use (4.23) to study the polynomials QJk,m. We focus on the
integral of the t-variable from (4.12). By letting the poles τ = ∆k − Jk + 2m. We
calculate again the complex integral by using the residues theorem:

∑
k

∞∑
m=0

∫ i∞
−i∞

dt
(4πi)2

C12kC34kQJk,m(s)

t−τ u
t
2 v−

t
2Γ( t+s

2 )Γ( t+s+∆12−∆34
2 )Γ(∆3+∆4−t

2 )Γ(∆1+∆2−t
2 ) =

−2πi
∑
k

∞∑
m=0

1
(4πi)2

C12kC34kQJk,m(s)uτ/2v−τ/2Γ( τ+s
2 )Γ( τ+s+∆12−∆34

2 )Γ(∆3+∆4−τ
2 )Γ(∆1+∆2−τ

2 )

substituting (4.24) we get:

1
8πi

∑
k

∞∑
m=0

2Γ(∆k+Jk)(∆k−1)Jk

4JΓ(
∆k+Jk+∆12

2
)Γ(

∆k+Jk−∆12
2

)Γ(
∆k+Jk+∆34

2
)Γ(

∆k+Jk−∆34
2

)
C12kC34k

Q̃Jk,m(s)uτ/2v−τ/2

m!(∆k−h+1)m

(4.30)

Then we consider the integral of the s-variable from (4.12) and substituting (4.30):∑
k

∞∑
m=0

2Γ(∆k+Jk)(∆k−1)Jk

4JkΓ(
∆k+Jk+∆12

2
)Γ(

∆k+Jk−∆12
2

)Γ(
∆k+Jk+∆34

2
)Γ(

∆k+Jk−∆34
2

)
C12kC34ku

τ/2

i∞∫
−i∞

ds
8πiv

− τ+s
2

Q̃Jk,m(s)

m!(∆k−h+1)m
Γ( τ+s

2 )Γ( τ+s+∆12−∆34
2 )Γ(∆34−s

2 )Γ(−∆12−s
2 )

(4.31)

(4.31) is equal to (4.12), but we saw that A(u, v) can be written in terms of the conformal
blocks in (4.16), thus by equating (4.31) with (4.16) we get:∑

k

∞∑
m=0

2Γ(∆k+J)(∆k−1)Jk

4JkΓ(
∆k+Jk+∆12

2
)Γ(

∆k+Jk−∆12
2

)Γ(
∆k+Jk+∆34

2
)Γ(

∆k+Jk−∆34
2

)
C12kC34ku

τ/2
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i∞∫
−i∞

ds
8πiv

− τ+s
2

Q̃Jk,m(s)

m!(∆k−h+1)m
Γ( τ+s

2 )Γ( τ+s+∆12−∆34
2 )Γ(∆34−s

2 )Γ(−∆12−s
2 ) =

∑
k

C12kC34kG∆k,Jk(u, v)

This implies that the conformal block G∆k,Jk(u, v) can be expressed as:

G∆k,Jk(u, v) =
∞∑

m=0

2Γ(∆k+Jk)(∆k−1)Jk

4JkΓ(
∆k+Jk+∆12

2
)Γ(

∆k+Jk−∆12
2

)Γ(
∆k+Jk+∆34

2
)Γ(

∆k+Jk−∆34
2

)
uτ/2

i∞∫
−i∞

ds
8πiv

− τ+s
2

Q̃Jk,m(s)

m!(∆k−h+1)m
Γ( τ+s

2 )Γ( τ+s+∆12−∆34
2 )Γ(∆34−s

2 )Γ(−∆12−s
2 ) =

u
∆k−Jk

2

∞∑
m=0

um
2Γ(∆k+Jk)(∆k−1)Jk

4JkΓ(
∆k+Jk+∆12

2
)Γ(

∆k+Jk−∆12
2

)Γ(
∆k+Jk+∆34

2
)Γ(

∆k+Jk−∆34
2

)

i∞∫
−i∞

ds
8πiv

− τ+s
2

Q̃Jk,m(s)

m!(∆k−h+1)m
Γ( τ+s

2 )Γ( τ+s+∆12−∆34
2 )Γ(∆34−s

2 )Γ(−∆12−s
2 ) ⇒

G∆k,Jk(u, v) = u
∆k−Jk

2

∞∑
m=0

umgm,k(v) (4.32)

gm,k(v) =
2Γ(∆k+Jk)(∆k−1)Jk

4JkΓ(
∆k+Jk+∆12

2
)Γ(

∆k+Jk−∆12
2

)Γ(
∆k+Jk+∆34

2
)Γ(

∆k+Jk−∆34
2

)

i∞∫
−i∞

ds
8πiv

− τ+s
2

Q̃Jk,m(s)

m!(∆k−h+1)m
Γ( τ+s

2 )Γ( τ+s+∆12−∆34
2 )Γ(∆34−s

2 )Γ(−∆12−s
2 )

(4.33)

The first term g0,k(v) of (4.32) can be expressed in terms of hypergeometric function:

g0,k(v) = (v−1
2 )Jk2F1(

∆k+Jk−∆12
2 , ∆k+Jk+∆34

2 ,∆k + Jk, 1− v) (4.34)

Next we expand (4.34) as powers of 1 − v. To do this we use the series 1

v
τ+s
2

=

∞∑
n=0

Γ( τ+s
2

+n)

Γ( τ+s
2

)

(1−v)n

n! and the series of the hypergeometric function

2F1(
∆k+Jk−∆12

2 , ∆k+Jk+∆34
2 ,∆k + Jk, 1 − v) =

∞∑
n=0

(
∆k+Jk−∆12

2
)n(

∆k+Jk+∆34
2

)n
(∆k+Jk)n

(1−v)n

n! , so

(4.32) with (4.33) gives:

(1−v
−2 )

Jk
∞∑
n=0

Γ(
∆k+Jk−∆12

2
+n)Γ(

∆k+Jk+∆34
2

+n)Γ(∆k+Jk)

Γ(
∆k+Jk−∆12

2
)Γ(

∆k+Jk+∆34
2

)Γ(∆k+Jk+n)

(1−v)n

n! =

2Γ(∆k+Jk)(∆k−1)Jk

4JkΓ(
∆k+Jk+∆12

2
)Γ(

∆k+Jk−∆12
2

)Γ(
∆k+Jk+∆34

2
)Γ(

∆k+Jk−∆34
2

)
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i∞∫
−i∞

ds
8πi

∞∑
n=0

Γ( τ+s
2

+n)

Γ( τ+s
2

)

(1−v)n

n! Q̃Jk,0(s)Γ(
τ+s
2 )Γ( τ+s+∆12−∆34

2 )Γ(∆34−s
2 )Γ(−∆12−s

2 ) ⇒

(−2)Jk(1− v)Jk
Γ(

∆k+Jk−∆12
2

+n)Γ(
∆k+Jk+∆34

2
+n)

Γ(∆k+Jk+n)

Γ(
∆k+Jk+∆12

2
)Γ(

∆k+Jk−∆34
2

)

(∆k−1)Jk
=

i∞∫
−i∞

ds
4πiQ̃Jk,0(s)Γ(

τ+s
2 + n)Γ( τ+s+∆12−∆34

2 )Γ(∆34−s
2 )Γ(−∆12−s

2 ) ⇒

(−2)Jkn!Γ(
∆k+Jk−∆12

2
+n)Γ(

∆k+Jk+∆34
2

+n)

(n−Jk)!Γ(∆k+n)

Γ(
∆k+Jk+∆12

2
)Γ(

∆k+Jk−∆34
2

)

(∆k−1)Jk
=

i∞∫
−i∞

ds
4πiQ̃Jk,0(s)Γ(

τ+s
2 + n)Γ( τ+s+∆12−∆34

2 )Γ(∆34−s
2 )Γ(−∆12−s

2 )

(4.35)

For n < Jk the left hand side vanishes14, so we get:

0 =
i∞∫

−i∞

ds
4πiQ̃Jk,0(s)Γ(

τ+s
2 + n)Γ( τ+s+∆12−∆34

2 )Γ(∆34−s
2 )Γ(−∆12−s

2 )

We take a linear combinations of this equation for n < J , we conclude that it defines
an inner product under which Q̃Jk,0(s) is orthogonal to all polynomials of s with degree
less than Jk. This means that the polynomials Q̃Jk,0(s) satisfy:

0 =
i∞∫

−i∞

ds
4πi

∞∑
n=0

[Q̃Jk,0(s)cn(
τ+s
2 )n]Γ(

τ+s
2 )Γ( τ+s+∆12−∆34

2 )Γ(∆34−s
2 )Γ(−∆12−s

2 ) ⇒

δJkJ ′
k
≈

i∞∫
−i∞

ds
4πi [Q̃Jk,0(s)Q̃J ′

k,0
(s)]Γ( τ+s

2 )Γ( τ+s+∆12−∆34
2 )Γ(∆34−s

2 )Γ(−∆12−s
2 ) (4.36)

If we let s = −2ix ⇒ ds = −2idx and a = ∆34/2, b = −∆12/2, c = τ/2, d = τ+∆12−∆34
2 ,

(4.36) becomes:

δJk,J ′
k
≈

∞∫
−∞

dx
2π Q̃Jk,0(x)Q̃J ′

k,0
(x)Γ(a+ ix)Γ(b+ ix)Γ(c− ix)Γ(d− ix)

This normalization can be fixed by imposing (4.30) for any n ≥ J . This orthogonality
expression is satisfied by the continuous Hanh polynomials15. This suggests us to write
QJk,0(s) polynomials as:

QJk,0(s) ∼ 3F2(−Jk, Jk + τ − 1, ∆34−s
2 , τ+∆12

2 , ∆34+τ
2 , 1) (4.37)

14n− Jk is an integer number since n and Jk are, thus if n− Jk < 0 then (n− Jk)! is infinity and the
LHS vanishes.

15https : //en.wikipedia.org/wiki/ContinuousHahnpolynomials
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For the s→ ∞ we can find a boundary condition for QJk,0(s) from
16 (4.37):

QJk,0(s) ≈
∑∞

Jk=0(
∆34−s

2 )Jk → sJk +O(sJk−1) (4.38)

In [8], it has been shown the conformal block satisfies the differential equation:

DG∆k,Jk = 1
2C∆k,JkG∆k,Jk (4.39)

where,

D = (1− u− v) ∂
∂v (v

∂
∂v + ∆34−∆12

2 + u ∂
∂u(2u

∂
∂u − d)−

(1 + u− v)(u ∂
∂u + v ∂

∂v − ∆12
2 )(u ∂

∂u + v ∂
∂v + ∆34

2 )

and

C∆k,Jk = ∆k(∆k − d) + Jk(Jk + d+ 2)

(4.40)

These equations can be obtained from the eigenvalue problems of the Casimir operators
of the conformal group, where the operators Ol

∆ with spin l and dimension ∆ and its
descendants are the eigenvectors of such operators.

Then if we use (4.39) with (4.40) and substitute (4.32) with (4.33), we obtain a
recursion relation for the QJk,m:

(Ds−λJk)QJk,m(s) = 4m(h−∆k−m)(2QJk,m−QJk,m(s)−QJk,m−1(s+2)−QJk,m−1(s))

(4.41)

Where,

DsQ(s) = (s+ τ +∆12 −∆34)[(s+ τ)Q(s+ 2)− 2sQ(s)] + (s+∆12)(s−∆34)Q(s− 2)

and

λJk = 4J2
k + 4Jk(τ − 1) + (τ +∆12)(τ −∆34)

(4.42)

(4.41) suggests that (4.38) becomes:

QJk,m(s) → sJk +O(sJk−1) (4.43)

This follows from the that the LHS (4.41) is automatically a polynomial of degree (J−1),
if we assume that QJk,m(s) is a polynomial of degree J . Imposing the same condition to
RHS implies that QJk,m(s) and QJk,m−1(s) have the same leading behavior.

When we calculate the contour integral (4.12), we only consider poles from the Mellin
amplitude. These poles are associated with specific operator’s twist. But, we see that
it also have poles from Gamma functions. These are associated with operator’s twist,
which will not bother us. This matter will be explained in the section 6.

16We use: 3F2(a, b, c, d, e, 1) =
∑∞

n=0
(a)n(b)n(c)n

(d)n(e)n

1
n!
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4.2 Conformal Partial Waves

Our next step to derive Regge theory for conformal fields is the partial wave expansion.

In the Regge theory review we saw that we can expand the scattering amplitude as
an infinity sum of Legendre polynomials, since the scattering problem had a spherical
symmetric potential. But, in the case of non-spherical symmetric potentials the sum
contains spherical harmonics instead of Legendre polynomials. When we first encounter
a group theory course we learn about the SO(3) group and that it has discrete repre-
sentations, contracted by the spherical harmonics. The conformal group on the other
hand has both discrete and continuous representations. Moreover, conformal blocks are
representations of the conformal group and it turns out there is an expansion just like
the expansion we saw for the non-relativistic scattering, but this time the expansion hold
true for the reduced correlation function introduced at (4.6). The expansion is:

A(u, v) = 2
∞∑
J=0

∫∞
−∞ b(ν2)κν,JGh+iν,J(u, v)dν (4.44)

We write the normalization constant as:

κν,J = iν
2πKh+iν,J

(4.45)

We can write (4.44) as:

A(u, v) = 2
∞∑
J=0

∫∞
−∞ b(ν2)κν,JGh+iν,J(u, v)dν =

∞∑
J=0

∫∞
−∞ b(ν2)κν,JGh+iν,J(u, v)dν +

∞∑
J=0

∫∞
−∞ b(ν2)κ−ν,JGh−iν,J(u, v)dν =

∞∑
J=0

∫∞
−∞ b(ν2)[κν,JGh+iν,J(u, v) + κ−ν,JGh−iν,J(u, v)]dν ⇒

A(u, v) =
∞∑
J=0

∫∞
−∞ dνb(ν2)Fν,J(u, v) (4.46)

with

Fν,J(u, v) = κν,JGh+iν,J(u, v) + κ−ν,JGh−iν,J(u, v) (4.47)

We derived (4.46) by using κ−ν,J = −κν,J .
(4.47) is written in position space and we saw at (4.12) that we can write A(u, v) in

the Mellin space. Fν,J(u, v) can be expressed in the same representation, in particular
we can write in terms of a single conformal partial wave Mν,J(s, t), just like we wrote
A(u, v) in terms of the Mellin amplitude. Thus, we got:

Fν,J(u, v) =
+i∞∫
−i∞

dtds
(4πi)2

Mν,J(s, t)u
t
2 v−

s+t
2 Γ( t+s

2 )Γ( t+s+∆12−∆34
2 )

Γ(−∆12−s
2 )Γ(∆3+∆4−t

2 )Γ(∆1+∆2−t
2 )Γ(∆34−s

2 ) (4.48)
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Putting together (4.48) with (4.46) (4.12) and we obtain:

+i∞∫
−i∞

dtds
(4πi)2

M(s, t)u
t
2 v−

s+t
2 Γ( t+s

2 )Γ( t+s+∆12−∆34
2 )Γ(−∆12−s

2 )Γ(∆3+∆4−t
2 )Γ(∆1+∆2−t

2 )Γ(∆34−s
2 ) =

∞∑
J=0

∞∫
−∞

dνb(ν2)
+i∞∫
−i∞

dtds
(4πi)2

Mν,J(s, t)u
t
2 v−

s+t
2 Γ( t+s

2 )Γ( t+s+∆12−∆34
2 )Γ(−∆12−s

2 )

Γ(∆3+∆4−t
2 )Γ(∆1+∆2−t

2 )Γ(∆34−s
2 ) ⇒

M(s, t) =
∞∑
J=0

∞∫
−∞

dνb(ν2)Mν,J(s, t) (4.49)

(4.49) is called partial wave expansion of the Mellin amplitude. Partial waves can be
expressed in terms of Mack polynomials :

Mν,J(s, t) = ων,J(t)Pν,J(s, t) (4.50)

With:

ων,J(t) =
Γ(

∆1+∆2+J+iν−h
2

)Γ(
∆3+∆4+J+iν−h

2
)Γ(

∆1+∆2+J−iν−h
2

)Γ(
∆3+∆4+J−iν−h

2
)

8πΓ(iν)Γ(−iν)

Γ(h+iν−J−t
2

)Γ(h−iν−J−t
2

)

Γ(
∆1+∆2−t

2
)Γ(

∆3+∆4−t
2

)

(4.51)

In (A.6) we have shown that the leading term of Pν,J in s is sJ , therefore we normalized
the polynomials as Pν,J(s, t) = sJ +O(sJ−1).

We can fix Kν,J by calculating the complex integral (4.48) at the poles t = h± iν −
J + 2m (m integer ), which are obtained from (4.51). Then compare it through (4.47)
with the general expression of the conformal block at (4.32). The expression is17

K∆,J = Γ(∆+J)Γ(∆−h+1)(∆−1)J

4J−1Γ(
∆+J+∆12

2
)Γ(

∆+J−∆12
2

)Γ(
∆+J+∆34

2
)Γ(

∆+J−∆34
2

)
1

Γ(
∆1+∆2−∆+J

2
)Γ(

∆3+∆4−∆+J
2

)Γ(
∆1+∆2−∆+J−d

2
)Γ(

∆3+∆4−∆+J−d
2

)

(4.52)

At this point we are going to investigate the pole structure of the partial waves in
the ν variable. To do this we are going to compare two representations of the Mellin
amplitude at the Regge limit s→ ∞ and t fixed. We have seen so far the representation
(4.49) with the partial waves and (4.16) with the conformal blocks.

Moreover when we were discussing the conformal block representation we saw that
the Mellin amplitude takes the form (4.23) and at the Regge limit it becomes with the
usage of (4.43):

17We should also note that to obtain this expression it is necessary to use the expression (A7), because
it allows us to match Mack polynomials with the polynomials Q̃J,m(s)
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M(s, t) ≈
∑
k

C12kC34k

∞∑
m=0

sJkf(t) 1
t−∆k+Jk−2m (4.53)

fk(t) = −
∑
m=0

2Γ(∆k+Jk)(∆k−1)Jk

4JkΓ(
∆k+Jk+∆12

2
)Γ(

∆k+Jk−∆12
2

)Γ(
∆k+Jk+∆34

2
)Γ(

∆k+Jk−∆34
2

)

1

m!(∆k−h+1)mΓ(
∆1+∆2−∆k+Jk

2
−m)Γ(

∆3+∆4−∆k+Jk
2

−m)

1
t−∆k+Jk−2m

(4.54)

In [10] can be found an integral representation for fk(t):

fk(t) = K∆k,J

∫
dν

ων,Jk
(t)

(∆k−h)2+ν2
(4.55)

Thus, we write (4.53) as:

M(s, t) ≈
∑
k

C12kC34ks
JkK∆k,Jk

∫
dν

ων,Jk
(t)

(∆k−h)2+ν2
(4.56)

On the other hand in the Regge limit, (4.49) becomes with the usage of (A.6) :

M(s, t) ≈
∞∑
k=0

∞∫
−∞

dνbJk(ν
2)sJkων,Jk(t) (4.57)

Compare (4.56) with (4.57) and it suggests that bJ(ν
2) has the following form:

bJ(ν
2) ≈ C12kC34k

K∆,J

ν2+(∆−h)2
(4.58)

Therefore we found the pole structure of the partial waves in ν.

5 Conformal Regge Theory

We are now ready to derive Regge theory for the Mellin amplitudes. For simplicity we
focus on the case ∆12 = ∆34 = 0. It’s convenient to let z = 1+ 2s

t ⇒ s = zt−1
2 , thus the

Mack polynomials become Pν,J(
z(t−1)

2 , t) and we define:

Pν,J(z, t) = Pν,J(
t(z−1)

2 , t) (5.1)

As we explained in (A.6), we have the leading behavior Pν,J(s, t) ≈ sJ , therefore for
J being integer we have the property:

Pν,J(−z, t) = (−1)JPν,J(z, t) (5.2)

When we were studying Regge theory for non-relativistic scattering we analytic con-
tinue the scattering amplitude to complex values of l. Moreover, we saw that we can
express the scattering amplitude as a contour integral in the complex plane through
Sommerfeld-Watson transformation. We are going to do the same for the Mellin ampli-
tude with the usage of the partial wave expansion just like the non-relativistic scattering.
To do this we are going to analytic continue the partial amplitudes bJ(ν

2) to complex
values of J . So we start from (4.49) and we write the sum in terms of even (+) and odd
(-) J ′s.
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M(s, t) =M+(s, t) +M−(s, t) =

∞∑
Jeven

∫∞
−∞ dνb+J (ν

2)ων,J(t)Pν,J(z, t) +
∞∑

Jodd

∫∞
−∞ dνb−J (ν

2)ων,J(t)Pν,J(z, t) (5.3)

To perform Sommerfeld-Watson transformation we are going to use the fact that:∮
dJ ′

2πi
πF (J ′)
sin(πJ ′) = 2πi

∞∑
J=0

(J−J ′)
2πi

πF (J)
(−1)J (J−J ′)

=
∞∑
J=0

F (J)
(−1)Jπ

=
∞∑

Jeven

F (J)−
∞∑

Jodd

F (J) (5.4)

Where F (J ′) is an analytic function in J ′ and the contour integral is such it is picking
poles of the function 1

sinπJ at J ∈ N .

We can write (5.3) by using (5.4) and (5.2) as:

M(s, t) =
∞∑

Jeven

∫∞
−∞ dνb+J (ν

2)ων,J(t)
Pν,J (z,t)+Pν,J (z,t)

2 +
∞∑

Jodd

∫∞
−∞ dνb−J (ν

2)ων,J(t)
Pν,J (z,t)+Pν,J (z,t)

2 =

∞∑
Jeven

∫∞
−∞ dνb+J (ν

2)ων,J(t)
Pν,J (−z,t)+Pν,J (z,t)

2 −
∞∑

Jodd

∫∞
−∞ dνb−J (ν

2)ων,J(t)
Pν,J (−z,t)−Pν,J (z,t)

2 =

∫∞
−∞ dν

∮
dJ
2πi

π
2sin(πJ)b

+
J (ν

2)ων,J(t)[Pν,J(−z, t) + Pν,J(z, t)]+∫∞
−∞ dν

∮
dJ
2πi

π
2sin(πJ)b

−
J (ν

2)ων,J(t)[Pν,J(−z, t)− Pν,J(z, t)]

Therefore we conclude that:

M±(s, t) =
∫∞
−∞ dν

∮
dJ
2πi

π
2sin(πJ)b

±
J (ν

2)ων,J(t)[Pν,J(−z, t)± Pν,J(z, t)] (5.5)

This is the Regge representation of the Mellin amplitude. Just like scattering amplitude
in the non-relativistic case we can deform the contour to pick up poles from the partial
wave bJ(ν

2). In particular we are interesting in poles associated with the leading Regge
trajectory ∆(J) for J = 2, 4, ... These are the operators of lowest dimension for each
even spin. One of the main tools in Regge theory was the Regge trajectory which we saw
contains bound and resonance states. One the other hand, in conformal Regge theory
the Regge trajectory ∆(J) contains operators twist in the OPE. The expressions in this
section derived at the Regge limit, which corresponds to the leading Regge Trajectory.
That is the trajectory with operators of twist 2. So in the leading Regge trajectory
physical operators are with ∆ = 4 J = 2, ∆ = 6 J = 4 etc. The first one actually
corresponds to the energy momentum tensor.

We continue with the pole structure of the partial waves in ν. For even spins (4.58)
gives

b+J (ν
2) ≈ C12kC34k

K∆(J),J

ν2+(∆(J)−h)2
= r(J)

ν2+(∆(J)−h)2
(5.6)
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After analytic continuation in J this pole structure in ν becomes in J . Moreover
j(ν) is the inverse function of ∆(J) defined by

ν2 + (∆(j(ν))− h)2 = 0 (5.7)

We expand (5.6) in J near j(ν) as

b+J (ν
2)[2(∆(j(ν))− h)d∆(j(ν))

dJ ] ≈ r(j(ν))

By taking the derivative of (5.7) with respect the ν and we have

ν + (∆(j(ν))− h)d∆dν = 0 ⇒

ν + (∆(j(ν))− h)d∆dJ
1

j′(ν) = 0 ⇒

d∆(j(ν))
dJ = − νj′(ν)

∆(j(ν))−h

With this expression we obtain

b+J (ν
2)[2(∆(j(ν))− h) νj′(ν)

∆(j(ν))−h ] ≈ −r(j(ν))

b+J (ν
2) ≈ − j′(ν)r(j(ν))

2ν(J−j(ν))

(5.8)

The function j(ν) is called Reggeon spin and is defined from the equation (5.7). Since
the analytic continuation is in J it means that we have also analytic continue the OPE
coefficients, which it is the key feature in conformal Regge theory.

The contribution of this pole in (5.5) for ′+′ is:∫∞
−∞ dν

∮
dJ
2πi

π
2sin(πJ) [−

j′(ν)r(j(ν))
2ν(J−j(ν)) ]ων,J(t)[Pν,J(−z, t) + Pν,J(z, t)] =

−
∫∞
−∞ dν2πi 1

2πi
π

2sin(πj(ν)) [−
j′(ν)r(j(ν))

2ν ]ων,j(ν)(t)[Pν,j(ν)(−z, t) + Pν,j(ν)(z, t)]∫∞
−∞ dν π

2sin(πj(ν))
j′(ν)r(j(ν))

2ν ων,j(ν)(t)[Pν,j(ν)(−z, t) + Pν,j(ν)(z, t)]

(5.9)

In the Regge limit s→ ∞, (5.9) becomes:∫∞
−∞ dν π

4sin(πj(ν))
j′(ν)r(j(ν))

ν ων,j(ν)(t)[(−s)j(ν) + sj(ν)] =
∫
dνβ(ν)ων,j(ν)(t)

(−s)j(ν)+sj(ν)

sin(πj(ν)) ⇒

M(s, t) ≈
∫
dνβ(ν)ων,j(ν)(t)

(−s)j(ν)+sj(ν)

sin(πj(ν)) (5.10)

β(ν) = πj′(ν)r(j(ν))
4ν = πj′(ν)

4ν Kh±iνC12j(ν)C34j(ν) (5.11)
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Figure 7: Regge Theory vs Conformal Regge Theory

To obtain (5.9) we used (A.6) and the residues (4.10) are written at ∆ = h ± iν, since
for these values of ∆, (5.7) is satisfied.

The equations (5.10) and (5.11) are main results of this review. In particular we are
going to use (5.11) to derive non-trivial results about the OPE coefficients.

By recalling our results from the Regge theory review we can actually see the corre-
spondences between Regge theory and conformal Regge in figure 7

It also exists a position space version of (5.9), which is going to useful later on. To
obtain it we start from (4.12), and work at the Regge limit. First, we perform the
rotation:

v−
(s+t)

2 → (e2iπv)−
(s+t)

2 = e−iπ(s+t)v−
(s+t)

2 (5.12)

Next, we let s = ix and we work at x → ∞. (4.12) becomes for ∆12 = ∆34 = 0 with
(5.12) :

A(u, v) =
+i∞∫
−i∞

dt
∞∫

−∞

idx
(4πi)2

M(ix, t)u
t
2 e−iπ(s+t)v−

(s+t)
2

Γ( t+ix
2 )Γ( t+ix

2 )Γ(−ix
2 )Γ(2∆3−t

2 )Γ(2∆1−t
2 )Γ(−ix

2 ) (5.13)

We can use the approximation at x→ ∞

Γ(a+ ix2 )Γ(b− ix2 ) ≈ 2πeiπ(a−b)/2(x2 )
a+b−1e−πx/2

To write for the case of a = t/2 and b = 0

[Γ( t+ix
2 )Γ(−ix2 )]

2 ≈ 4π2eiπt/2(x2 )
t−2e−πx

And (5.13) becomes
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A(u, v) ≈
+i∞∫
−i∞

dt
∞∫

−∞

idx
(4πi)2

M(ix, t)u
t
2 e−iπ(ix+t)v−

(ix+t)
2

4π2eiπt/2(x2 )
t−2e−πxΓ(2∆3−t

2 )Γ(2∆1−t
2 ) ⇒

A(u, v) ≈
+i∞∫
−i∞

dt
4iΓ(

2∆3−t
2 )Γ(2∆1−t

2 )ut/2v−t/2e−iπt/2
∞∫

−∞
dxM(ix, t)(x2 )

t−2v−ix/2 (5.14)

At this point we introduce the variables

u = σ2 and v = (1− σeρ)(1− σe−ρ) ≈ 1− 2σcosh(ρ) (5.15)

such that the Regge limit corresponds to σ → 0 and ρ fixed. In this limit (5.7) becomes

A(u, v) ≈
+i∞∫
−i∞

dt
4iΓ(

2∆3−t
2 )Γ(2∆1−t

2 )(σ2)t/2

(1− 2σcosh(ρ))−t/2e−iπt/2
∞∫

−∞
dxM(ix, t)(x2 )

t−2(1− 2σcosh(ρ))−ix/2 ⇒

A(u, v) ≈
+i∞∫
−i∞

dt
4iΓ(

2∆3−t
2 )Γ(2∆1−t

2 )(σ2)t/2

(1− 2σcosh(ρ))−t/2e−iπt/2
∞∫

−∞
dxM(ix, t)(x2 )

t−2e−ix
2
ln(1−2σcosh(ρ)) ≈

+i∞∫
−i∞

dt
4iΓ(

2∆3−t
2 )Γ(2∆1−t

2 )(σ)te−iπt/2
∞∫

−∞
dxM(ix, t)(x2 )

t−2eixσcosh(ρ)

(5.16)

Where in the last we used the approximation ln(1− x) ≈ −x and that σ → 0.
On the other hand we write (5.3) for s = ix and we get:

M(s, t) ≈
∫
dνβ(ν)ων,j(ν)(t)x

j(ν) (−i)j(ν)+(i)j(ν)

sin(πj(ν)) =

∫
dνβ(ν)ων,j(ν)(t)x

j(ν) (e
−iπ/2)j(ν)+(eiπ/2)j(ν)

sin(πj(ν)) =

∫
dνβ(ν)ων,j(ν)(t)x

j(ν) 2cos(πj(ν)/2)
sin(πj(ν)) =

∫
dνβ(ν)ων,j(ν)(t)x

j(ν) 2cos(πj(ν)/2)
πj(ν)/2cos(πj(ν)/2)sin(πj(ν)/2) =∫

dνβ(ν)ων,j(ν)(t)
xj(ν)

sin(πj(ν)/2)

(5.17)

Putting together (5.17) and (5.16)
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+i∞∫
−i∞

dt
4iΓ(

2∆3−t
2 )Γ(2∆1−t

2 )(σ)te−iπt/2
∞∫

−∞
dx

∫
dνβ(ν)ων,j(ν)(t)

xj(ν)

sin(πj(ν)/2)(
x
2 )

t−2eixσcosh(ρ)

The integral in x is

I = 1
2t−2

+∞∫
−∞

eixσcoshρxj(ν)+t−2dx

By letting x′ = −ixσcoshρ⇒ dx = idx′

σcoshρ , a = j(ν)+t−1 and noting that the amplitude

A is controlled by the large s behavior, then18

I = 2
(−i)j(ν)+t−22t

i
σcoshρ(σcoshρ)j(ν)+t−2

+∞∫
0

e−x′
x′a−1dx′ =

I = 2
(−ij(ν)+t−2)2t

i
σcoshρ(σcoshρ)j(ν)+t−2Γ(j(ν) + t− 1) (5.18)

Then put together (5.18), (5.17) with some algebra and we obtain

A ≈ −πi
∫
dνβ(ν) eiπj(ν)/2

sin(
πj(ν)

2
)
σ1−j(ν)2j(ν)

i∞∫
−i∞

dt
2πiΓ(

2∆1−t
2 )Γ(2∆3−t

2 ) Γ(j(ν)+t−1)

(2coshρ)j(ν)+t−1ων,j(ν)(t)

(5.19)

The harmonic functions Ωiν(ρ) have the following integral representation on 2h − 1-
dimensional hyperbolic space

Ωiν(ρ) =
∫

dz
2πi

Γ(z)Γ(h+iν−z−1
2

)Γ(h−iν−z−1
2

)

8πhΓ(iν)Γ(−iν)
(2coshρ)−z (5.20)

Also we let

γ(ν) = Γ(2∆1+j+iν−h
2 )Γ(2∆3+j+iν−h

2 ) (5.21)

And at the end with (5.21), (5.20), (5.19) becomes

A(σ, ρ) ≈ −2πi
∫
dνβ(ν)π

h−1eiπj(ν)/2

sin(
πj(ν)

2
)
σ1−j(ν)2j(ν)−1γ(ν)γ(−ν)Ωiν(ρ) ⇒

A(σ, ρ) ≈
∫
dνa(ν)σ1−j(ν)Ωiν(ρ) (5.22)

with

a(ν) = −πh−1eiπj(ν)/2

sin(
πj(ν)

2
)

2j(ν)−1γ(ν)γ(−ν)β(ν) (5.23)

And we obtained the final expression (5.22) for position space of the amplitude A.

18This means that the lowest value of interval is a number e > 0 which at the limit σ → 0 corresponds
with it being 0
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6 Application to N=4 Supersymmetric Yang–Mills

In this section we are going to use the Conformal Regge theory to find the OPE co-
efficients in the operator product expansion between O1O2 and O3O4 for a 4-point
correlation function of a CFT. The CFT that we are going to study is the N = 4
Supersymmetric Yang Mills theory and thus d = 2h = 4.

This particular theory describes a universe containing boson and fermion fields which
are related by 4 supersymmetries, which are the the kind of symmetries that relate bosons
and fermions. This is what the N = 4 Sypersymmetric stands for. The Yang Mills part
stands for a class of theories known as gauge theories, based on a specific group and they
can be thought as a generalized version of electromagnetism19. Another example of a
gauge theory is the quantum chromodynamics20, which is a SU(3) Yang Mills theory.
Moreover, this field theory contains 6 real scalar fields, 4 complex Weyl fermions and
gauge field Aµ with coupling constant gYM . We should note that gYM has no restrictions
on its value.

In such theories the boson field or the fermion field are contained in the adjoint
representation, which for the SU(N) group are N ×N complex matrices made from the
structure constants of the Lie algebra. In addition to this the physical operators in these
theories are invariant under gauge transformations and the simplest way to contract
those is to multiply the matrices that were mentioned above and calculate their trace.
The traces are of course invariant under transformations and are suitable for physical
operators. These are the single trace operators. We can go even further and multiply
these traces and obtain multi-trace operators.

In particular, we are going to study N = 4 SYM in the large-N limit21, where we
are interesting in the leading planar diagrams in the OPE expansion. These diagrams
are multiplied by 1/N2. As external operators22 we will consider single trace operators.

In section 4 was mentioned that we consider Mellin poles for the complex integration
in (4.12). These poles are associated with the twist of single trace operators. On the
other hand, Gamma function poles are associated with double trace operators. In the
large N-limit correlation functions with double trace operators in the OPE are coming
as subleading powers of 1/N2 and the leading correlation functions contain single trace
operators, which account for the planar part of the four point correlation function.

When the interaction is on and consider weak coupling, the OPE coefficients ap-
pearing in Regge trajectory are associated with twist two operators and they are linear
combinations of

tr(Fµν1Dν2 ..DνJ−1F
µ
νJ ), tr(ϕABDν2 ..DνJϕ

AB), tr(ψ̄ADν1 ..DνJ−1ΓµJψ
A)

Where F is the generalized field strength tensor in the Yang Mills theory, D is the
covariant derivative, ϕ is the complex scalar field, ψ is the spinor field and Γ is associated

19Electromagnetism is based on the U(1) group, where gauge transformations are originated from.
20Quantum Chromodynamics is the theory of the strong nuclear force and N = 3 stands for the total

number of colour charges (Red, Blue, Green).
21More information can found at the appendix B .
22These are the operators that we will insert at the correlation function.
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with gamma matrices. The first operator is associated with the gauge field, the second
with the complex scalar fields and the third with the fermion fields.

6.1 Weak Coupling

In our application we will consider N=4 SYM in weak coupling, where the shape of Regge
trajectory changes from the one in the free theory as we see in figure 8. This is because
when interaction is on the dimensions are shifted due to anomalous dimensions23.
More specific in the free theory operators twist in the leading Regge trajectory satisfy
∆− J = 2, but in the interacting theory they satisfy ∆− J > 2.

Figure 8: Regge Trajectory ∆(J). The dotted lines represent the trajectory in the free
theory (g = 0, ∆ − J = 2). The other line represents the trajectory in weak coupling
(g << 1, ∆ − J > 2). The blue points on the other hand represent physical operators
with ∆ > 0 and J even, with lowest operator with ∆ = 4, J = 2 being the energy
momentum tensor. All operators in the trajectory start around the free theory value
J = 1.

Now in this part we are going to present some useful expressions associated with
anomalous dimension when the theory is weak coupled. The expressions are based on
previous works and we are going to apply them around the free theory value J = 1. The
reason why choose this particular value of J lies on the properties of scattering in the
Regge limit for Yang-Mills theories.

The anomalous dimensions of the operators in the leading Regge trajectory is a
function of the spin and the ’t Hooft coupling. In particular, there is an expansion for
weak coupling:

γ(J) = ∆(J)− J − 2 =
∞∑
n=1

g2nγn(J) (6.1)

23More information about anomalous dimensions can be found at the appendix C .
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Where the coupling g is related to the ’t Hooft coupling λ = g2YMN by

g2 = λ
16π2 (6.2)

In general the anomalous dimensions γn are very difficult to calculate. The first two
terms in the expansion are

γ1 = 8S1(x)

γ2 = −32(S3(x) + S−3(x)) + 64S−2,1(x)− 64(S1(x)S2(x) + S1(x)S−2(x))

(6.3)

Where x = J − 2 and the functions S are harmonics sums defined by

Sa1,a2,..,an(x) =
x∑

y=1

(sign(a1))y

y|a1|
Sa2,..,an(y) (6.4)

Starting from the trivial seed S(y) = 1. The weak expansion of the function ∆(J) is
around the free theory which corresponds for g = 0 and the dimension is ∆(J) = J + 2.

We saw at section 5 that the function ∆(J) defines the Reggeon spin j(ν) from (5.7)
and since h = d

2 = 2 (5.7) gives

ν2 + (∆(j(ν))− 2)2 = 0 ⇒

∆(j(ν)) = 2± iν (6.5)

In [12], it is explained that the Reggeon spin can be also be computed directly from the
Regge limit of the four point correlation function. At weak coupling, there are methods
that provide us an expansion around the free theory value j = 1. In [13] the function
j(ν) is known up to next to leading order

j(ν) = 1 + 4g2(χ(ν) + g2δ(ν)) +O(g6) (6.6)

With

χ(ν) = 2Ψ(1)−Ψ(1+iν
2 )−Ψ(1−iν

2 ), (6.7)

δ(ν) = 4χ′′(ν) + 6ζ(3)− 2ζ(2)χ(ν)− 2Φ(1+iν
2 )− 2Φ(1−iν

2 ) (6.8)

where Ψ(x) = d(lnΓ(x))
dx is the Digamma function and Φ(x) is given by

Φ(x) = 1
2

∞∑
k=0

Ψ′( k+2
2

)−Ψ′( k+1
2

)

k+x (6.9)

Also there is another expression of j(ν), which is

j(ν) = 1 +
∞∑
n=1

g2n[Fn(
1−iν
2 ) + Fn(

−1−iν
2 )] (6.10)
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where

F1(x) = −4S1(x) (6.11)

As we saw from (6.7) ∆(J) and j(ν) are basically the inverse of each other, but as
explained in [14] their perturbative expansions contain different information. Therefore,
we say that the process of inverting the functions does not commute with perturbation
theory.

Now let’s consider the limit g2 → 0 and j → 1 with j−1
g2

fixed, then (6.10) with (6.11)
give

j(ν)−1
−4g2

= S1(
iν−1
2 ) + S1(

−iν−1
2 ) (6.12)

We can calculate S1(x) from (6.4) and we obtain S1(x) =
x∑

y=1

1
y = Hx. Hx is the

harmonic number which is related with digamma function as Ψ(x + 1) − Ψ(1) = Hx

. Thus, S1(x) = Ψ(x + 1) − Ψ(1). It is easy to see that Ψ(x) has the same poles
as the gamma function, therefore the RHS in (6.12) has poles at ±iν = −2n − 1 for
n = 0, 1, 2, 3, .. . For n = 0 we have ±iν = −1 and we can expand around iν = 1 just
like in [14]. We obtain

j(ν)−1
−4g2

= 2
iν−1 − 2

∞∑
k=1

ζ(2k + 1)( iν−1
2 )2k ⇒ (6.13)

y = 2
x − 2

∞∑
k=1

ζ(2k + 1)(x2 )
2k (6.14)

We write (6.5) for ’+’ as ∆(J) − 3 = iν − 1 = x. Therefore by finding the first order
terms of the inverse function of (6.14), just like in [14], we obtain

x = 2( 1y ) + 0( 1y )
2 + 0( 1y )

3 − 4ζ(3)( 1y )
4 + ..⇒

∆(J)− 3 = 2(−4g2

J−1 ) + 0(−4g2

J−1 )
2 + 0(−4g2

J−1 )
3 − 4ζ(3)(−4g2

J−1 )
4 + .. (6.15)

The expression (6.15) it’s useful for the prediction of the leading singularities of the
anomalous dimension function around J = 1 at all orders in perturbation theory. In the
next section we will follow a similar procedure to study the behavior of OPE coefficients.

6.2 OPE Coefficients-Leading Order Predictions

In the conformal Regge theory section we saw that we can find the OPE coefficients from
the residues r(j(ν)). We should remind that we are considering OPE coefficients with
operators normalized as (4.15). After the analytic continuation of the OPE coefficients
in J we have for the case ∆12 = ∆34 = 0, C2(J) → C2(j(ν)) = C11j(ν)C33j(ν).

In free theory we can compute the OPE coefficient C(J) of the leading Regge tra-
jectory in the OPE between two protected scalar operators of the form O1 = tr(ϕ12ϕ

12),
where ϕ12 is a complex scalar field of SYM. The result is obtained directly from the
theory in the large N-limit and it can be found in [3]. We have
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C2(J) = 1
N2

21+JJ(J−1)Γ2(J+1)
(4J2−1)Γ(2J+1)

+O(g2) (6.16)

We can expand (6.16) around J = 1 to obtain

C2(J) = 1
N2

21+JJ(J−1)Γ2(J+1)
(4J2−1)Γ(2J+1)

+O(g2) ≈ J−1
N2 [42(

1
3 − 8

9(J − 1))] +O(g2) ⇒

C2(J) = J−1
N2 (23 +O(J − 1)) +O(g2) (6.17)

Next we are going to take look at the Regge residue r(j(ν)). In [12] the Regge residue
in the position space a(ν) firstly introduced at (5.23) was shown to be

a(ν) = i
16π5g4tanh(πν

2
)

νcosh2(πν
2
)

+O(g6) (6.18)

Then by compare it with our result (5.23) and using the expressions (5.11) with (6.6),
we obtain the following expression for r(j(ν))

r(j(ν)) = −28πg2

N2

tanh(πν
2
)

χ′(ν)(1+ν2)2
+O(g4) (6.19)

For weak coupling around J = 1, J−1
g2

is fixed, thus it is clear that (6.19) computes the

behavior of the function r(j(ν)) around J − 1, since it starts as g2 ∼ J − 1. The same
holds true for the equation of (6.17), which was directly computed in free theory. This
is true, since r(J)) and C2(J) are related as we saw at (5.6). For J = j(ν) (5.6) gives

r(j(ν)) = C2(j(ν))K∆(j(ν)),j(ν) (6.20)

The equation (6.20) can be used to compute the OPE coefficients from the Regge residue
in the region J − 1 ∼ g2. Moreover, we are going to reproduce the free theory result
(6.17)

To do we are going to follow an analogous procedure with the one described for the
anomalous dimensions at the weak limit section. First, from (6.17) we conclude that the
continuation of the OPE coefficients C(J) in the region where g2 ∼ J − 1 admits the
following general perturbative expansion

C2(J) = (J − 1)a( g2

J−1) +O(g4) (6.21)

Where a(x) is some function that we will soon determine. For J = j(ν) (6.21) becomes
with (6.6) at order g2

C2(j(ν)) = (j(ν)− 1)a( g2

j(ν)−1) +O(g4) = (1 + 4g2χ(ν)− 1)a( g2

1+4g2χ(ν)−1
) +O(g4) ⇒

C2(j(ν)) = 4g2χ(ν)a( 1
4χ(ν)) +O(g4) (6.22)

Then with (6.20) and (6.19), (6.22) gives

C2(j(ν)) = 4g2χ(ν)a( 1
4χ(ν))) = − 1

K∆(j(ν)),j(ν)

28πg2

N2

tanh(πν
2
)

χ′(ν)(1+ν2)2
⇒
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a( 1
χ(ν)) = − 1

K∆(j(ν)),j(ν)

26π
N2

tanh(πν
2
)

χ(ν)χ′(ν)(1+ν2)2
(6.23)

We want a prediction for the OPE coefficients around J = 1 so that the function a(x)
can be expanded as

a(x) = 1
N2 (a0 + a1x+ a2x

2 + ....) (6.24)

With x = g2

(J−1) being small. This procedure is analogous with the one we demonstrate

at weak coupling section. In (6.13) we expand around iν = 1, to obtain an expression

for j(ν)−1
−4g2

in terms of powers of iν − 1, which lead us at the end to an expansion of
anomalous dimension function at leading orders. This time, around iν = ±1 we notice
(6.23) is 0, since χ(ν) has poles at iν = ±(2n+1) for n = 0, 1, 2, 3. This fact tell that an
expansion like (6.24) around the origin, it is possible. With the usage of (6.15) we can
expand (6.23) in terms of x. After directly computing the leading coefficients of (6.24)
we find

a0 =
2
3 , a1 =

64
9 , a2 =

32
27(61− 3π2) (6.25)

The free theory prediction a0 = 2/3 is in agreement with (6.17). This fact showcase us
that our formulas of conformal Regge theory work.

Conclusion

In the last section of this review which was the application to N=4 SYM, we tested our
formulas and saw that reproduce the same results with that of the usual perturbative
calculations in a QFT. This fact showcase that the general idea of incorporating tools
from Regge theory to a CFT is great alternative for finding OPE coefficients. The main
goal of this project was to show the general idea behind of Regge theory and conformal
Regge theory, which is highlighted in figure 7.
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A Mack Polynomials

In this section of the appendix we are going to study Mack polynomials and some of
their properties. Mack polynomials are given by the series:

Pν,J(s, t) =
[J/2]∑
r=0

aJ,r
2J+2r(h+iν−J−t

2
)r(

h−iν−J−t
2

)r(J−2r)!

(h+iν−1)J (h−iν−1)J∑∑
kij=J−2r

(−1)k13+k24
∏
(ij)

(δij)kij
kij !

4∏
n=1

(an)J−r−
∑
j
kjn (A.1)

The label (ij) run over four possibilities (13), (14), (23) and (24). As for δij ‘s, they are
given by (4.8).

The variables (an) are given by

a1 = 1− h+iν+J+∆12
2 , a2 = 1− h+iν+J−∆12

2

a3 = 1− h−iν+J+∆34
2 , a4 = 1− h−iν+J−∆34

2

(A.2)

Mack polynomials have a particular leading behavior in s. For r = 0, (A.1) becomes:

Pν,J ∼ J !
(h+iν−1)J (h−iν−1)J

∑∑
kij=J

∏
(ij)

(δij)kij
kij !

4∏
n=1

(an)J−
∑
j
kjn ⇒

Pν,J ≈ J !
(h+iν−1)J (h−iν−1)J

sJ
∑∑
kij=J

∏
(ij)

1
kij !

4∏
n=1

(an)J−
∑
j
kjn

(A.3)

In the last we have approximate (δij)kij ≈ sJ by using (4.8) and use the fact that∑
kij = J from24 (A.1). We calculate the term:∑∑

kij=J

∏
(ij)

1
kij !

4∏
n=1

(an)J−
∑
j
kjn =∑∑

kij=J

1
k14!k13!k24!k23!

(a1)J−
∑

j kj1
(a2)J−

∑
j kj2

(a3)J−
∑

j kj3
(a4)J−

∑
j kj4

(A.4)

We let q1 = J − k13 − k14, q3 = J − k13 − k23 and the only dummy variables of the

first sum at (A.3) are q1, q3 and k13. Thus,
∑∑
kij=J

=
J∑

q1=0

J∑
q3=0

J−q1∑
k13=0

. We use
∑
kij =

J ⇒ k13 + k23 + k14 + k24 = J to write k14 = J − q1 − k13, k23 = J − q3 − k13,
k24 = q1+ q3−J +k13. Also we write the Pochhammer indices in (A.3) as J −

∑
j kj1 =

J−k13−k14 = q1, J−
∑

j kj2 = J−k23−k24 = k13+k14 = J−q1, J−
∑

j kj3 =
J − k13 − k23 = q3, J −

∑
j kj4 = J − k14 − k24 = k13 + k23 = J − q3. With that in

mind (A.4) becomes25

24For r = 0.

25In the last line we use the expression (a+ b)n =
n∑

k=0

n!
k!(n−k)!

(a)n−k(b)k

https://en.wikipedia.org/wiki/Falling and rising factorials
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J∑
q1=0

J∑
q3=0

J−q1∑
k13=0

1
(J−q1−k13)!k13!(q1+q3−J+k13)!(J−q3−k13)!

(a1)q1(a2)q1−J(a3)q3(a4)J−q3 ⇒

J !
J∑

q1=0

J∑
q3=0

(a1)q1 (a2)q1−J (a3)q3 (a4)J−q3
(q1)!(J−q1)!(q3)!(J−q3)!

= (a1+a2)J (a3+a4)J
J ! (A.5)

With (A.5), (A.3) becomes:

Pν,J ≈ J !
(h+iν−J−1)J (h−iν−J−1)J

sJ (a1+a2)J (a3+a4)J
J ! ⇒

Pν,J(s, t) ≈ sJ (A.6)

Since ai‘s in (A.2) haven‘t dependence from s.

A very useful property of the Mack polynomials for a t = ∆− J + 2m is:

Pi(∆−h),J(s,∆− J + 2m) = Q̃J,m(s) (A.7)

B Large N-limit

In this section we are going to introduce the large N-limit and its usage in the correlation
functions in Yang-Mills theories, which is extended to N = 4 SYM.

Yang-Mills theories like QCD in four dimensions have no dimensionless parameters.
In fact the only dimensionless parameter associated with the dimensionful is ΛQCD,
which is only the only mass scale in these theories. From this follows that there is not
an obvious perturbation expansion. But if our theory is based for example on SU(N),
there is an additional parameter N, which is an integer. Our hope is that as N → ∞, our
theory is simplified and that it exists a perturbation expansion in terms of the parameter
N . This is the so called large N-limit.

In an asymptotically free theory, like a pure Yang Mills theory, it natural to scale
the coupling gYM as N → ∞, so that ΛQCD remains constant. This means λ ≡ g2YMN
is fixed as N → ∞ and this limit is called ’t Hooft limit.

The same behavior is valid even if the theory includes matter fields in the adjoint
representation, as long as the theory is asymptotically free. Let’s focus on a general
theory which has some fields Φa

i , where a is an index in the adjoint representation of
SU(N) and i is some label of the field, for example spin, flavor, etc. . In Yang-Mills
theory the 3-point vertices of all these fields are proportional to gYM , and the 4-point
functions to g2YM . We assume that this statement also holds true for our general theory.
With that in mind the langragian of this theory has the form

L ∼ Tr(dΦidΦi) + gYMc
ijkTr(ΦiΦjΦk) + g2YMd

ijklTr(ΦiΦjΦkΦl) (B.1)

Where d is the exterior derivative, cijk and dijkl are SU(N) invariant. We continue by
rescaling the fields by Φ̃i = gYMΦi and (B.1) becomes

L ∼ 1
g2Y M

[Tr(dΦ̃i
˜dΦi) + cijkTr(Φ̃iΦ̃jΦ̃k) + dijklTr(Φ̃iΦ̃jΦ̃kΦ̃l)] (B.2)
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And the coefficient in front of the whole lagrangian is 1/g2YM = N/λ.

The question that we want to answer is what happen to the correlation functions in
the large N limit? Clearly at this limit the langragian (B.2) diverges, but this is not the
case since at this limit the fields Φi also goes to infinity. The Feynman diagrams of our
theory are written in a different notation called double line notation and the interaction
vertices are all consistent with this. In these diagrams an adjoint field Φi is represented
as direct product of a fundamental and an anti-fundmental field. We should note that
our theory based on SU(N) is slightly different than a theory based on U(N), where
this direct product of fundamental and anti-fundmental field takes place. This due to
the existence of a small mixing term which makes the expansion more complicated, but
it involves terms which are only subleading in the large N-limit.

Let us consider vacuum diagrams26, in these diagrams the double lines may cross
each others, but others do not. The last of them are called planar diagrams. It turns
out that in the ’t Hooft limit the coefficients of these diagrams are proportional to

NV−E+FλE−V = NχλE−V

Where V are vertices, E are propagators and F are the loops of vacuum diagram. These
are all related by the quantity χ = V − E + F known as Euler character. For example
the first diagram in figure 9, which we identify it as planar in the double line notation
χ = 2 − 3 + 3 = 2. The second on the other hand has χ = 4 − 6 + 2 = 0. Thus the
planar diagram is proportional to N2 and the other is proportional to N0. From this we
see that the leading contribution comes from planar diagrams, while other diagrams will
be suppressed by powers of 1/N2

Actually this kind of approach holds true for any product of gauge invariant fields

⟨
n∏

j=1
Gj⟩, such that eachGj cannot be written as a product of two gauge-invariant fields27.

We can study such correlation function by adding to the action S → S +N
∑
gjGj and

then if W is the sum of connected vacuum diagrams with the new action then

⟨
n∏

j=1
Gj⟩ = (iN)−n[ ∂nW∏n

j=1 ∂gj
]gj=0

These diagrams follow the same analysis we had for vacuum diagrams above. Thus the
leading contribution to n-point function in ’t Hooft limit will come from planar diagrams
with n additional will come, leading to

⟨
∏n

j=1Gj⟩ ∝ N2−n (B.3)

For example the two point functions comes out to be normalized, as for the three-point
functions are proportional to 1/N.

26Feynman diagrams with no external legs, which shift the vacuum of the free field theory.
27For example, Gj can be of the form 1

N
Tr(

∏
i Φi)
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Figure 9: An example of some vacuum diagrams. Some diagrams in a field theory
with adjoint fields in the standard representation (on the left) and in the double line
representation (on the right). The dashed lines are propagators for the adjoint fields,
the small circles represent interaction vertices

C Anomalous Dimensions

In a QFT when we want to find out the scaling dimensions we simply looking at the
Langrangian of the theory and perform dimensional analysis. But, when interactions
turned on something interesting happens. Due to quantum corrections the dimensions
of the correlation functions are shifted from the dimensions of the free field theory and
the method of dimensional analysis fails. This shifting of the dimensions is known as
anomalous dimensions.

For example, consider a free field theory in 3+1 dimensions described by the action S.
Now let’s turn the interaction on, so that Langragian is now S+g

∫
d4xΦ(x), with g being

a dimensionless coupling constant and Φ(x) a scalar operator with scaling dimension 4.
We want to examine the two point correlation function ⟨O1(y)O2(z)⟩g. In this new
interacting theory, with O1 and O2 having scaling dimensions ∆1 and ∆2 respectively.
We can calculate it with perturbations for g << 1 and the first two terms are

⟨O1(y)O2(z)⟩g ≈ ⟨O1(y)O2(z)⟩+ ig
∫
dx4 ⟨O1(y)O2(z)Φ(x)⟩ =

1
|y−z|2∆1

+ ig
∫
d4x C123

|y−z|2∆1−4|z−x|4|y−x|4

(C.1)

Let’s focus on the integral

I = 1
[(y−z)2]∆1−2

∫
d4x C123

[(x−z)2]2[(x−y)2]2
(C.2)
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Let x = x+ z, w = y − z and (C.2) becomes

I = 1
[(w)2]∆1−2

∫
d4x C123

[(x)2]2[(x−w)2]2
(C.3)

It is clear that the integral (C.3) diverges at 0 and w. We should investigate the behaviors
of the integral near these values and disconnect them from the integral and the remain
part should be well defined. Thus near 0 we have

I = 1
[(w)2]∆1−2

∫
d4x C123

[(x)2]2[(w)2]2

I = 1
|w|2∆1

∫
d4xC123

x4 (C.4)

In four dimensional spherical coordinates d4x = r3drdΩ3 the integral (C.4) becomes

I = 1
|w|2∆1

C123

∫
dΩ3

∫
Λ

dr 1r (C.5)

The three dimensional integral with the solid angle is simple a finite number A > 0. The
behavior of the integral at Λ → 0+ on the other hand is

I = − 1
|w|2∆1

C123Aln(Λ) =
1

|y−z|2∆1
[−C ln(Λ)]

The same kind of behavior can be obtained near w. Next, we can isolate this behavior
from the total integral and write it as

I = 1
|y−z|2∆1

[−C ln(Λ)]+finite number (C.6)

Now suppose that at order g the two point function in the interactive theory has its
dimension 2∆1 shifted by δ∆ << 1

|y − z|−2∆1−δ∆ = |y − z|−2∆1 |y − z|−δ∆ =

|y − z|−2∆1e−δ∆ln(|y−z|) ≈ |y − z|−2∆1 [1− δ∆ ln(|y − z|)]

(C.7)

By comparing (C.6) and (C.7), it is clear that the values near 0 and w that diverge the
integral are responsible for the dimensional shift of the two point function at order g
in the interactive theory. Furthermore, with a more careful approach we can find the
dimensional shift and this is the anomalous dimension at order g. In general we want to
find the anomalous dimension at any order, but this process is rather difficult even for
small orders.
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