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Abstract

Since their first application, Genome Wide Association Studies have evolved
significantly and provided useful insight on medical diagnostics. Their main aim
is to establish a connection between a variety of traits such as, human diseases or
protein concentration levels, and the genetic background (usually via point muta-
tions) of a given species. Problems of this type suffer from several issues primarily
caused by high dimensionality (millions of Single Nucleotide Polymorhisms), low
sample size, need of multiple testing correction and taking into account population
structure.

In this thesis, we address current GWAS methodological issues utilizing a fea-
ture selection method, termed generalized Orthogonal Matching Pursuit (gOMP).
gOMP offers a variety of advantageous characteristics such as a) computational
efficiency and scalability to number of features, b) adaptability to any type of
outcome variable (e.g. binary, continuous, time-to-event etc) and c) simplicity in
terms of implementation. gOMP can also be fully integrated into JAD Bio’sTM

automated machine learning pipeline which ensures methodological correctness in
terms of proper model-building procedure and unbiased predictive performance es-
timation. On top of that, we extend gOMP’s functionality by a) parallelizing its
operation feature-wise and b) identifying features that are statistically equivalent
to the already selected ones. Regarding equivalent features, we argue that the pro-
duced multiple solutions are able to capture and correct the underlying population
structure. In order to evaluate gOMP’s performance, we extensively compare it
with QTCAT over a series of simulated datasets. Additionally, we apply gOMP
to real human-disease datasets. As a result, gOMP proves to be a highly effi-
cient method for genomic datasets in terms of performance, retrieval of associated
features and computational cost.





Περίληψη

Από την πρώτη τους εφαρμογή, οι Genome Wide Association (GWA) μελέτες
έχουν παρουσιάσει σημαντική εξέλιξη και έχουν προσφέρει πολύτιμη βοήθεια στη δια-

γνωστική ιατρική. Κύριος στόχος τους αποτελεί η δημιουργία σύνδεσης ανάμεσα σε

ένα σύνολο χαρακτηριστικών όπως ανθρώπινων ασθενειών, ή επίπεδο πρωτεϊνικών

συγκεντρώσεων, και στο γενετικό υπόβαθρο (συνήθως μέσω σημειακών μεταλλάξε-

ων) ενός συγκεκριμένου βιολογικού είδους. Ερωτήματα τέτοιας μορφής είναι συχνά

επιρρεπή σε προβλήματα που προκύπτουν κυρίως από τον υψηλό αριθμό διαστάσεων

(εκατομμύρια καταγεγγραμμένες σημειακές μεταλλάξεις), τον χαμηλό αριθμό δειγ-

μάτων, την ανάγκη για διόρθωση στον έλεγχο πολλαπλών υποθέσεων καθώς και την

ανάγκη να ληφθεί υπόψιν η πληθυσμιακή δομή των δειγμάτων.

Στη συγκεκριμένη διπλωματική εργασία, αντιμετωπίζουμε τα τρέχοντα μεθοδολο-

γικά προβλήματα των GWA αναλύσεων χρησιμοποιώντας μία μέθοδο επιλογής μετα-
βλητών, ονομαζόμενη generalized Orthogonal Matching Pursuit-gOMP. O gOMP
προσφέρει πληθώρα ευνοϊκών χαρακτηριστικών όπως α) υπολογιστική ταχύτητα και

επεκτασιμότητα σε οποιοδήποτε αριθμό μεταβλητών, β) προσαρμοστικότητα σε οποιο-

δήποτε τύπο εξαρτημένης μεταβλητής (π.χ. δυαδική, συνεχής, time-to-event κ.α.) και
γ) απλότητα ως προς την υπολοίησή του. Επίσης, ο gOMP είναι σε θέση να ενσωμα-
τωθεί πλήρως με το αυτοματοποιημένο σύστημα μηχανικής μάθησης JAD Bio’sTM

το οποίο εξασφαλίζει μεθοδολογική ορθότητα σχετικά με τη διαδικασία δημιουργίας

των στατιστικών μοντέλων, καθώς και την αμερόληπτη εκτίμηση της προβλεπτικής

επίδοσης. Επιπροσθέτως, επεκτείνουμε τα τεχνικά χαρακτηριστικά του gOMP μέσω
παραλληλοποίησης της λειτουργίας του ως προς τον αριθμό των μεταβλητών, καθώς

και μέσω της προσθήκης της δυνατότητας εύρεσης πολλαπλών μεταβλητών, στατιστι-

κά ισοδύναμων των ήδη επιλεγμένων. Σχετικά με τις ισοδύναμες υπογραφές, υποστη-

ρίζουμε ότι μέσω αυτών είναι δυνατή η αποτύπωση και η διόρθωση των φαινομένων

που πηγάζουν από την πληθυσμιακή δομή. Ως προς την αξιολόγηση της επίδοσης

του, επιχειρείται μία εκτενής συγκρισή ανάμεσα στο gOMP και στο QTCAT πάνω
σε προσομοιωμένα δεδομένα. Στη συνέχεια, ο gOMP εφαρμόζεται και σε πραγματικά
δεδομένα που αφορούν σε ανθρώπινες ασθένειες. Ως αποτέλεσμα, ο gOMP αποδει-
κνύεται μία ισχυρή μέθοδος ανάλυσης γενομικών δεδομένων όσον αφορά την επίδοση,

την εύρεση των συσχετισμένων με το φαινότυπο μεταβλητών καθώς και ως προς την

υπολογιστική πολυπλοκότητα (χρόνου εκτέλεσης).
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Chapter 1

Introduction

Throughout the history of mankind, predicting events and phenomena has been
intertwined with societies’ welfare and fueling of technological advancements. A
valid prediction springs from meticulous observations, or data gathering, and an
application of a systematic methodology for inferring from these observations.

Hardware improvements regarding processing power and memory efficiency,
along with the development of robust machine learning and applied statistics meth-
ods, have been the cornerstone upon which the emerging scientific field of Data
Analysis has been built.

Biology and socioeconomics are representative fields where each phenomenon
is associated by an enormous, feature-wise, dimensionality, with a great degree
of complexity between feature interactions, rendering them ideal candidates for
machine learning applications.

1.1 Motivation

A common task in supervised machine learning that has been studied for
decades is Feature Selection (FS), also known as variable or attribute selection.
FS can be defined as the identification of a minimal-sized subset of features that
maximally predict an outcome, or target, variable of interest (Pantazis et al.Pantazis et al., 20172017;
Borboudakis and TsamardinosBorboudakis and Tsamardinos, 20172017), in other words, removing irrelevant features
that are not associated with the target variable.

In many scientific fields, especially in bioinformatics, which incorporates ma-
chine learning techniques, FS proves to be significantly helpful in numerous ways;
It can reduce the computing, storing and/or measuring cost of variables, e.g. in
medical diagnostics. Parsimonious predictive models are easier to interpret, concep-
tualize and inspect. In many cases, it leads to more accurate models by removing
the inherent noise in high-dimensional problems, restricting the so called curse of
dimensionality. More importantly, FS is primarily employed for knowledge discov-
ery by retaining the features able to describe the data generation mechanisms; in
causality, FS is often the first step in identifying causal relations among features.

1



2 CHAPTER 1. INTRODUCTION

(Tsamardinos et al.Tsamardinos et al., 20032003). In such domains, it is often the case that multiple,
equivalent solutions to the feature selection problem do exist due to natural fail-
safe mechanisms, thus identification of all the possible feature subsets can provide
a much clearer picture of the problem at hand.

Biological and medical data are mostly comprised by a small sample size and
a considerably large feature size, often called high-dimensional, or "small n - large
p" problems. This characteristic creates 2 main difficulties in analysis:

1. Need for robust statistics, insusceptible to low sample size in terms of infer-
ence ability.

2. Algorithmic techniques that are able to scale up to a such high feature size.

On top of these, any reported predictions or models produced must be accurate,
consistent and as much parsimonious as possible, since controlling Type I errors in
biology is gravely important. To date, the amount of different analysis pipelines is
too large, in terms of combinations of data preprocessing, algorithms used for mod-
elling and tuning of their respective hyper-parameters. The above issues can easily
be tackled by an objective systematic methodology, basically an automated ma-
chine learning pipeline (a main component of this thesis), that ensures correctness
and prevents overfitting.

1.2 Contribution

In this thesis, we utilize a modified, generalized orthogonal matching pursuit
(gOMP) algorithm for feature selection on genomic variant (SNP) data, integrated
with the JAD BioTM automated machine learning pipeline that includes all the
necessary analysis steps, i.e. data preprocessing, tuning of feature selection hyper-
parameters, selection of modelling algorithms and performance bias correction.

gOMP accepts numerous types of target variables, e.g. continuous, binary,
time-to-event to name a few, and scales up to thousands, or millions variables
11. We also extend gOMP to identify multiple solutions to the feature selection
problem. By doing so, we achieve to produce signatures of equal performance and
provide, simultaneously, a population structure correction method.

The above work synthesizes an automated and complete tool for GWA analyses,
able to systematically identify additive effects in high-dimensional data and detect
bibliographically known associations, as well as variants previously unknown to
biology specialists.

1.3 Outline

The rest of the thesis is organized as follows:

1A typical genome-wide dataset contains millions of polymorphisms.
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Chapter 22 surveys existing work on feature selection with population structure
correction methods, when dealing with such high-dimensional problems.

In Chapter 33 we describe analytically the methods used for analyzing genomic
datasets, under two major test categories: with phenotype-simulated data and with
real, human-disease data acquired from European Genome and phenome Archive
(EGA). Regarding tests with simulated data, we empirically evaluate gOMP by
comparing it to a state-of-the-art algorithm, QTCAT, on exactly the same grounds.

In Chapter 44 we present the results produced from simulation and real-dataset
studies, in order to assess our method’s performance end evaluate newly identified
loci.

In Chapter 55 we comment on the results, explore the advantages and disadvan-
tages of both methods and contemplate on future work and directions.
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Chapter 2

Literature Review

As a result to the recent improvements, in terms of decreasing monetary cost
and processing time, in high-throughput genotyping methods, the availability of
polymorphism data has increased dramatically, calling for suitable statistical-analysis
methods. During those years, Genome-Wide-Association-Studies (GWAS) have at-
tracted substantial research interest and become the default analysis method for
such data. GWAS belong to the category of observational studies where an associ-
ation between genetic variants (such as Single Nucleotide Polymorphisms (SNPs)
or insertions-deletions (indels)), identified via genotyping, or sequencing across
the whole genome of a given species, and a phenotypic trait, e.g. disease status
or biochemical concentration levels, is attempted. Below we provide examples of
biological questions answered by genome-wide association studies.

Table 2.1: The role of GWAS SNP arrays in human genetic discoveries, (Visscher et al.Visscher et al.,
20172017)

5



6 CHAPTER 2. LITERATURE REVIEW

2.1 Feature Selection

As discussed in MotivationMotivation, associating genetic variants, such as SNPs, to a
specific phenotypic trait, is practically an FS problem. Not until recently, GWAS
tackled this problem from a univariate association perspective, which is a naive ap-
proach in identifying causative variants, often producing high false-positive rate
(Type I error) (Waldmann et al.Waldmann et al., 20132013). Moreover, univariate associations are
bound to fail when additive effects come into play, i.e. numerous SNPs that jointly
explain the phenotypic variation. This behaviour is often deteriorated due to the
typical size ratio of such datasets, i.e. millions of predictive variables to thousands
of samples, often called as a "small n - large p" problem. As a result, most re-
cent, state-of-the-art, FS methods use a multivariate approach to such biological
problems, correcting individual SNP’s association via conditional information.

Another key characteristic of genome-wide datasets is the inherent popula-
tion structure, i.e. linkage disequilibrium between genomic regions that are phys-
ically unlinked (Klasen et al.Klasen et al., 20162016). Confounding by population structure leads
to correlations between such regions and inflation of corresponding test statistics
(Segura et al.Segura et al., 20122012). Many methods have been proposed to account for such spu-
rious associations that will be discussed briefly in the following subsections.

Finally, to date, the vast majority of literature handles these analyses from a
linear model-fitting perspective, since an exhaustive search of all possible combina-
tions of non-linear relationships between such a large number of predictor variables,
is prohibitive. Due to linear interpretations, identification of single SNPs that are
associated non-linearly, e.g. quadratically, cosine etc, with the phenotype, is not
possible, especially when epistatic phenomena (interaction between SNPs) produce
the corresponding phenotype.

2.1.1 Weak Population Structure

LASSO
In the presence of weak population structure, e.g. arabidopsis thaliana plants

of one race, there is no need in accounting for linkage disequilibrium between
non-neighboring genomic regions. Under this context, Least Absolute Shrinkage &
Selection Operator (LASSO) (TibshiraniTibshirani, 19961996) is perhaps the most popular and
cited algorithm for feature selection. LASSO belongs to the category of penal-
ized regression algorithms, where the calculations of the multivariate regression
model’s coefficients and feature selection are carried out simultaneously. This is
accomplished by imposing a penalty on the sum of predictor variables’ coefficients
formulating a minimization problem:

β̂0, β̂ = argmin

[ n∑
i=1

(
yi − β0 −

p∑
j=1

βjXij

)2

+ λ

p∑
j=1

∣∣βj∣∣] (2.1)

The first term of the above equation calculates the coefficient values, while the
second term is an l1 − norm penalized least-squares criterion, wherein penalty, or
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regularization, parameter λ controls the amount of shrinkage imposed on coeffi-
cients’ values 11.

Ridge Regression
On the other hand, Ridge Regression (RR) (Hoerl and KennardHoerl and Kennard, 19701970), calcu-

lates the regression coefficients through an l2−norm penalized least-squares crite-
rion: λ

∑p
j=1 β

2
j . RR deals with the shortcomings of LASSO when predictor vari-

ables are correlated, i.e. correlated predictor variables borrow strength from each
other (Waldmann et al.Waldmann et al., 20132013), something that is often the case in a genome-wide
dataset with or without strong population structure (linkage between neighboring
SNPs or LD between distant regions, respectively).

Elastic Net
In practice, a hybrid method that incorporates LASSO and RR, termed Elastic

Net (EN), has proven to minimize the drawbacks and maximize the advantages of
both methods at the cost of tuning more parameters:

β̂0, β̂ = argmin

{
n∑
i=1

(
yi − β0 −

p∑
j=1

βjXij

)2

+ λ

p∑
j=1

[
(1− α)β2j + α|βj |

]}
(2.2)

Here, α represents the weighted penalty from each method, e.g. α = 0 results in
pure Ridge Regression, while alpha = 1 in pure LASSO.

Orthogonal Matching Pursuit
Orthogonal Matching Pursuit (OMP) (Pati et al.Pati et al., 19931993) is a greedy forward-

search algorithm behaving similarly to the forward regression method. OMP bases
its selection strategy on correlation between predictor variables and consecutive
model-fitting residuals. Specifically, once a variable is selected, the next one is
determined by the maximum correlation of a predictor variable and the residuals
of the previous fitted model, i.e the correlation after removing the effect of all the
previously selected variables. OMP and LASSO share theoretical properties and
due to the fact that they are both residual-based algorithms (substantially low
number of fitted regression models) renders them computationally highly efficient
feature selection methods.

2.1.2 Strong Population Structure

In the presence of strong population structure, some methods have been devel-
oped that try to reverse the effect of such spurious correlations and identify the
truly associated with the phenotype variables. Perhaps the most popular and sim-
ple solution that has been shown to perform well in plants, animals and humans,
comes from the application of Linear Mixed Models (LMM). LMMs are ideally used

1Through this penalty criterion, the coefficients of non-informative independent variables are
shrunk towards zero, thus performing feature selection by discarding such features.
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when data structure is hierarchically organized, e.g. different measurements from
distinct groups. In this case, distinct groups are reflected by SNP sets that explain
the relatedness in population groups (population structure). A simple linear mixed
model is expressed as:

y = Xβ + Zu+ ε (2.3)

where,

• X, n× p data matrix of n samples and p predictors,

• β, p× 1 fixed-effects regression coefficients,

• Z, n× k design matrix of k random effects (distinct groups) and

• u, k × 1 random-effects regression coefficients.

Segura et al.Segura et al. (20122012) proposed a multivariate Linear Mixed Model approach for
analyzing GWA datasets, termed Multi-locus Mixed Model (MLMM), claiming su-
perior performance over univariate linear and univariate mixed model approaches,
while they thoroughly tested it on simulated and real (arabidopsis thaliana and hu-
man) data. In forward phase, MLMM includes features behaving much like forward
stepwise regression, and approximates the genetic (design matrix) and error vari-
ance at each inclusion step. During backward phase, features that are most likely
falsely identified as causative, are removed, resulting in a typical forward-backward
stepwise with mixed-effects regression algorithm.

Waldmann et al.Waldmann et al. (20132013) utilized a different population structure correction strat-
egy based on spectral graph theory. According to this techinque, a number of the
most informative eigenvectors from the genomic variants is used as fixed covari-
ates prior to initializing a feature selection procedure. In their work they exten-
sively studied Elastic Net and tuned the regularization parameter λ along with
the weight parameter α across a 10− fold cross validation, on simulated and real
datasets. Regarding a specific simulated dataset, QTLMAS 2010, they tested how
their proposed methodology performed with and without the population structure
correction, summarized below:
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Table 2.2: Results from the analysis of the simulated QTLMAS 2010 workshop data with
and without correction for population structure (using eigenvectors from spectral graph
analyses). The simulated pedigree consists of 3226 individuals from 5 generations. The
continuous trait was controlled by 37 QTLs that had 364 SNPs with r2 > 0.1. The
stopping criteria for λ were obtained as the average of ten 10− fold cross validation runs
at minimum MSE plus 1 standard error. The values of the elastic net (EN) refers to the
penalty weight α (e.g., EN005 is elastic net with α = 0.05). FDR refers to the SNPs
selected by the single marker regression local false discovery rate method, (Visscher et al.Visscher et al.,
20172017)

Klasen et al.Klasen et al. (20162016) proposed Quantitative Trait Cluster Assosiation Test (QT-
CAT), an alternative method for population structure correction: initially, a hier-
archical clustering based on the pairwise correlations between all markers is per-
formed and since testing for all markers is computationally expensive, an approx-
imate greedy method is implemented instead. Next, this generated hierarchical
structure is used in the association with the phenotype testing procedure. Starting
from the tree’s root, where all variants (covariates) are joined, the algorithm moves
to deeper sub-clusters only if the inference testing yields statistically significant re-
sults. In many cases, the algorithm will return before reaching a leaf, i.e. before
a single-marker (SNP) is tested. Finally, the samples are randomly split into 2
disjoint groups, B times where, from group I the most representative covariates
are extracted via LASSO 22 and tested for significance on group II. In our work,
we chose QTCAT to be compared to our proposed method generalized Orthogo-
nal Matching Pursuit (gOMP), due to several important reasons such as, dataset
and code availability, methodologically correct simulation strategy, accounting for
population structure and superiority over linear mixed models.

2.2 Multiple Feature Selection

To date, most of feature selection methods, return a single subset of predic-
tive features. Lagani et al.Lagani et al. (20172017) state that "it is often the case that multiple
feature subsets are approximately equally predictive for a given task". This is es-
pecially true in biology, where natural selection recruits redundancy as a "backup
plan" to shocks and adverse events. The SES algorithm (Tsamardinos et al.Tsamardinos et al., 20122012;
Lagani et al.Lagani et al., 20172017) belongs to the class of constraint-based, feature selection al-
gorithms (Tsamardinos et al.Tsamardinos et al., 20062006), a class of algorithms that ground their root

2Penalty parameter λ is tuned through a 10-fold cross-validation.
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in the theory of Causal Analysis (Spirtes et al.Spirtes et al., 20002000). Constraint-based algo-
rithms have recently proven to be able to retrieve highly predictive signatures
(Aliferis et al.Aliferis et al., 20102010). From an algorithmic point of view, given a data set D
defined over a set of n variables / predictors V and a target variable T (a.k.a. out-
come), constraint-based feature selection methods repetitively apply a statistical
test of conditional independence in order to identify the subset of variables that can
not be made independent by the outcome given any other subset of variables in V .
We denote with ind(X,T |W ) any statistical test able to provide a p value pXT.W
for assessing the null hypothesis that the variables X and T are conditionally in-
dependent given a set of variables W . Depending on the nature of the variables
involved in the test (e.g., categorical, continuous, censored) the most appropriate
conditional independence test must be chosen. Finally, it is worthwhile to note that
under some additional assumptions, constraint-based methods have the interesting
property of uncovering (part of) the causal mechanism that produced the data at
hand. The SES algorithm implements an additional heuristic in order to retrieve
multiple sets of features that are equally predictive.

In our work, we borrow SES properties and adjust them to a residual-based
algorithm, OMP. On top of that, we argue that multiple solutions in genomic
datasets are closely related to LD and population structure, thus through this
modification we achieve simultaneously a 3-part goal:

• Feature selection.

• Account for population structure.

• Identification of equally predictive signatures.



Chapter 3

Methods

In this section we will describe in detail the statistical and machine learning
methods used throughout the analyses of this work, as well as the design for the
experimental validation through simulated datasets.

In order to produce a predictive final model and evaluate its performance ro-
bustly, we utilize a fully automated supervised machine learning protocol, named
JAD (Just Add Data). Under this protocol a complete analysis is carried out,
ensuring that tasks such as data preprocessing, feature selection, model selection
and performance estimation avoid common methodological errors and the pitfalls
of overfitting (Borboudakis et al.Borboudakis et al., 20172017; Orfanoudaki et al.Orfanoudaki et al., 20172017).

With regards to feature selection we utilize the generalized Orthogonal Mathcing
Pursuit algorithm (Tsagris et al.Tsagris et al.), a variant of Orthogonal Matching Pursuit, which
is scalable to high-dimensional problems, where this is the case with genome-wide
SNP datasets. On top of that, we propose a method for statistically equivalent
features discovery, similar to (Tsamardinos et al.Tsamardinos et al., 20122012; Lagani et al.Lagani et al., 20172017).

For the experimental validation subsection, a simulation method identical to
(Klasen et al.Klasen et al., 20162016) is used in order to generate continuous target variables for a
given genotypic dataset acquired from easyGWASeasyGWAS platform (Grimm et al.Grimm et al., 20172017).
This serves as a two-fold evaluation procedure:

• Establish a ground truth in terms of maximum predictive performance (re-
flected by heritability) and selected features associated with the phenotype.

• Comparison with the published feature selection method, QTCAT, in terms
of predictive performance, SNP discovery and computational time.

3.1 Tools

3.1.1 Just Add Data (JAD) protocol

Every data analysis needs a suitable protocol implementation in order to pro-
duce generalizable, accurate results. For the purposes of simulated and real datasets

11

https://easygwas.ethz.ch/


12 CHAPTER 3. METHODS

analyses, we relied heavily on JAD BioTM philosophy, a trademark of Gnosis DAGnosis DA.
Between the dataset input and the results interpretation lie numerous steps of data
handling along with the suitable algorithms and their hyper-parameters. JAD
BioTM deals with all the in-between steps in an automated manner, ensuring
methodological correctness (unbiased performance estimation and avoidance of
overfitting). The main steps of this protocol along with some corresponding al-
gorithms are listed below in sequential order:

1. Data Partitioning

• hold-Out

• k-Fold

• Stratified variants of the above

2. Data Preprocessing

• Standardization

• Imputation

3. Feature Selection

• SES

• gOMP

4. Modelling Algorithms (modellers)

• Support Vector Machines (SVM)

• Random Forests (RF)

5. Performance Estimation

• Bootstrap Bias Corrected Cross Validation (BBC-CV)

Table 3.1: Data handling steps

1) Data Partitioning

Partitioning the dataset in disjoint sets is vital for the learning procedure,
model selection and estimation of performance on unseen data. For model selec-
tion, dataset is randomly split in 211 according to any of the methods described
below, where one part acts as a training set for every configuration and each per-
formance is calculated on the remaining set. Through this procedure, the best
performing model is acquired. For performance estimation, the same reasoning

1Usually, a stratification of the splits, based on target’s distribution, is used.

http://www.gnosisda.gr/
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Figure 3.1: Flowchart of JAD Bio
TM

automated pipeline

can be applied in reporting the generalized performance on unseen data. In or-
der to avoid methodological errors, a simultaneous model selection and perfor-
mance estimation is required. One way to achieve this is by extending the par-
titioning to 3 disjoint sets, known as Train-Validation-Test protocol (see more at
5) Model Selection & Performance Estimation5) Model Selection & Performance Estimation). Below we describe the two main
partitioning methods depending on sample size.

• hold-Out: Split the dataset in 2 disjoint sets of arbitrary size, e.g. 20%−80%
or 50%− 50%. A very simple partitioning method, particularly effective for
large sample sizes.
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• k-Fold: Split the dataset in k disjoint datasets of equal sample size. Re-
peatedly one set at a time acts as a validation set, while the union of the
remaining k− 1 sets, acts as a training set. k-Fold, or cross-validation (CV),
can also be used for performance estimation by calculating the mean value
of the performance achieved from every best model in k loops. This how-
ever will produce an optimistically biased estimation of the performance on
unseen data, since validation and training sets are not disjoint as a whole22.
Effective for small to medium sample sizes.

Stratification: When predicting a continuous or categorical target variable,
value and class distribution respectively, should be taken into account. Through
stratification we ensure that at any partitioning, train and test sets are represented
by samples with similar distributions (can be applied in any partitioning method).

2) Data Preprocessing
Depending on the dataset type and/or the algorithms used in the pipeline, a

preprocessing must be carried out, e.g.:

• Standardization: Basically a z-score33 transformation, particularly impor-
tant when variables have varying magnitude, e.g. height in cm and ratios
between 0 and 1. Geometric algorithms such as kNN for modelling, or gOMP
for feature selection could collapse if features are not standardized.

• Imputation: When dealing with real datasets, missing values is often the
case. Excluding samples or variables that have at least one missing value
could result in a particularly shrunk dataset with no statistical power. In-
ferring these values helps to overcome this problem, while common practices
for imputation include, mean value, median etc.

3) Feature Selection
In section 2.12.1 the benefits and necessity of feature selection were thoroughly

discussed. Here we refer the reader to the appropriate subsections which analyze
the algorithms SESSES (mainly used in JAD) and OMP along with its proposed
variant gOMPgOMP.

2For example during any loop, the 1
k−1

of training samples would have been, at some point,
members of a test set.

3 x−µ
σ

, where x a value of a variable of a specific sample, µ the mean value of a variable across
the samples and σ the standard deviation.
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4) Modelling Algorithms (modellers)

• SVM: Support Vector Machines (Boser et al.Boser et al., 19921992) can be used on classifi-
cation or regression tasks. For classification, SVMs create a hyperplane that
discriminates the 2 classes best. Imposing a penalty to a margin hyper-
parameter (intuitively, the maximum distance allowed between 2 classes)
gives control on overfitting and generalization. SVMs, through the use of
kernel functions, can also handle non linear relations by transfering the data
to higher dimensions.

• RF: Random Forests (BreimanBreiman, 20012001) extend the idea of Decision Trees
(DT) by repeatedly fitting trees using sampling with replacement (bootstrap
aggregation) and as an ensemble method it averages the predictions or a
majority voting takes place for regression or classification tasks respectively.
This technique reduces performance variance without increasing bias, lacking
however DT’s interpretability.

5) Model Selection & Performance Estimation
Main goals of machine learning are the identification of the best configuration

(sequence of statistical and algorithmic methods used, along with their hyper-
parameters) in terms of predictive performance, as well as the accurate estimation
of this performance on unseen data. In model selection, the identification of high-
performing models is often called tuning and it refers to the algorithms used along
with the specific corresponding hyper-parameters. These hyper-parameters affect
the extent to which the algorithms are able to detect patterns in the data, the
trade-off between overfitting and generalization, as well as the bias-variance trade-
off (figure 3.23.2), to name a few. Here, model in Model Selection should not be
confused with a modelling algorithm, as it refers to the collection of algorithms
used in learning procedure for a given partitioning. For example, one model,
or configuration, could be: imputation with median value → standardization →
gOMP with ∆BIC = 6 → SVM with linear kernel, cost = 0.1.

As discussed briefly in 1)1), a suitable data partitioning scheme is vital for model
selection and performance estimation. In case of small or medium sample sizes,
Train-Validation-Test protocol and CV will produce a biased performance estima-
tion. To overcome this one could employ the Nested Cross Validation protocol,
where an inner and an outer CV is utilized; First, the dataset D is partitioned
into kouter stratified folds (i = 1 : kouter), while each D \ Di set is partitioned
into kinner stratified folds (j = 1 : kinner). Model selection is performed in every
ith iteration on kinner folds and the performance of the best model is calculated.
Next, performance estimation is calculated from the kouter best-performing mod-
els. This protocol produces unbiased estimation, but since it is computationally
expensive, it is unsuitable for large sample sizes. JAD BioTM employs a bias-
correction method (Tsamardinos et al.Tsamardinos et al., 2018b2018b), rendering outer Cross-Validation
unnecessary. The method is described below.
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Figure 3.2: Prediction error as a function of model complexity. Blue line represents the
variance-model complexity dependance, while the red line the bias. Dotted vertical line
depicts the optimized bias-variance trade-off in terms of minimum total error.(sourcesource)

• BBC-CV: By the end of a Cross Validation training protocol, all predic-
tion performances of the k disjoint validation sets are pooled together in a
matrix Π of N rows (number of samples) and M columns (number of con-
figurations)44. By sampling with replacement (bootstraping) N rows of Π ,
the best configuration is chosen and its performance is calculated on the out-
of-sample predictions; that is, on samples that were not sampled during the
bootstrap55. The above procedure is repeated B times (approximately ×100)
and the average corrected performance is calculated. This method underes-
timates performance, meaning that reported performance will be on average
smaller than the actual on a test set. Moreover, the reported performance
will have smaller bias and variance, similar to source, but with substantially
smaller computational overhead, as no new models are fitted or trained dur-
ing this method (Tsamardinos et al.Tsamardinos et al., 2018b2018b).

3.1.2 Generalized Orthogonal Matching Pursuit algorithm

In the established version of the OMP algorithm (section 2.1.2), the norm-based
stopping criterion is arbitrarily chosen and cannot be accurately defined without
multiple runs and manual evaluation. On the other hand, gOMP, makes use of the
Bayesian Information Criterion (BIC), which is preferred due to its flexibility and

4Each column contains the performance of jth configuration or model across all samples.
5On average, the bootstrapped set will contain 63.2% of the original samples, while the rest

36.8% will be random copies of them.

http://scott.fortmann-roe.com/docs/BiasVariance.html
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the ability to quantify the model’s fit quality objectively. Regarding flexibility, "use
of this stopping criterion, generalizes OMP’s functionality on accepting numerous
types of outcome variables, including multi-class, survival, left censored, counts and
proportions to name a few, thus being able to handle various regression models"
(Tsagris et al.Tsagris et al.). On Algorithm 1Algorithm 1 we provide the pseudocode of gOMP.

Forward Phase
Since OMP belongs to the category of residual-based algorithms, a z-score

transformation is vital at the begining of the algorithm, as a preprocessing step.
In order to select the first variable, a null model is fitted and its residuals66 and
null BIC are calculated. Next the correlation between all variables and the resid-
uals is computed and the variable with the maximum absolute77 correlation is cho-
sen. Once the first selected variable is defined, the algorithm enters an iterative
procedure; Every time a new variable is chosen for possible inclusion (candidate
variable), the model including the candidate variable is fitted and current residuals
and BIC are calculated. If the decrease in BIC between the current model and
the previous model (without the candidate feature) is above a predefined threshold
value, the variable is selected permanently, otherwise the process stops, excluding
the currently selected variable. When a variable is permanently added to the se-
lected variables set, the correlation between current residuals and all the remaining
variables is updated. Again, the variable with the maximum absolute correlation
enters the candidate set and the process begins a new iteration.

Backward Phase
When no new variable can enter the selected variables set, the algorithm can

stop. In order to check for false positive variables a backward step is implemented.
Given a set of selected variables, we start by removing one variable at a time and
calculate the corresponding BIC score. Lower BIC score, corresponds to mod-
els that performed better even though a variable was removed. If the difference
between the full model’s BIC and the lowest BIC of a model with one removed
variable is below a certain threshold, then this variable can be discarded indeed.
The process continues until no further variable can be removed.

The above backward method, uses the same ∆BIC threshold for selection and
discard of false positive variables. Alternatively, ZhangZhang (20082008) proposed a modified
backward method based on a varying ∆BIC threshold; During Forward Phase,
∆BIC that allowed each variable to enter the selected variables set is stored. This
data structure helps to keep the contribution of each selected variable to the full
model, as well as the sequence in which each variable has entered the set.

6The residuals of a null model are basically the difference between the target variable y and
its mean value ȳ.

7A high negative correlation between a variable and the residuals indicates reversely propor-
tional relation.
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Algorithm 1 gOMP
Input: Target variable y, n× p data matrix X, a selection threshold value tolS
and an equivalent threshold value αequiv.

Output: A list of selected features S and a list of sets of equivalent features E.

Forward Phase
S = Ø// Set of selected features

E = Ø// List of sets of equivalent features

F = 1 : p // Set of remaining variables to be considered for inclusion

// Initialization step

X = zscore(X) // Standardize data

[residuals,BIC0] = fit(y, Ø) // Calculate residuals & BIC for null model

// Calculate r for each remaining variable against the residuals

r = corr(residuals,X(:, F ))
s∗ = arg max

j∈F
(|rj |) // Select variable that maximizes absolute r

// Update

S = S ∪ s∗
F = F \ s∗

// Main Loop

while R 6= Ø do
[E,F ] = equivalentSearch(residuals, s∗, F,X, αequiv)
F = F \ Es∗ // Update remaining variables

[residuals,BIC1] = fit(y,S) // Calculate residuals & BIC for current model.

∆BIC = BIC0 −BIC1

if ∆BIC < tolS then
S = S \ s∗
break

end if

// Calculate r for each remaining variable against the residuals

r = corr(residuals,X(:, F ))
s∗ = arg max(|rj |)

j∈F
// Select variable that maximizes absolute r

// Update

S = S ∪ s∗
F = F \ s∗
BIC0 = BIC1

end while
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Algorithm 1 gOMP (cont’d)

Backward Phase
// Set difference in BIC to infinity

∆BIC =∞
// Initialize removed variable

v∗ = Ø

while ∆BIC > tol do
S = S \ v∗
BICS = BICfull // BIC of full model (every variable selected so far)

for v ∈ S do
S′ = S \ v
BICv = BICS′ // BIC when v removed

end for

// Find variable which minimizes BIC, if removed

v∗ = arg min
v∈S

(BIC)

BIC∗ = min(BIC)

// Calculate BIC difference

∆BIC = BICS −BIC∗
end while

During Backward Phase, tolerance value changes to the corresponding ∆BICi mul-
tiplied by 0.5, that is, half the ∆BICi score achieved at ith iteration, when variable
i entered the set.

Caching

In a machine learning pipeline, it is often desired to tune the tolerance (se-
lection) hyper-parameter of gOMP in order to obtain the best-performing set of
variables. Storing of ∆BIC data structure contributes to the substantial reduction
of computational overhead of consequent runs of the algorithm (different values
of ∆BIC). Since gOMP includes the candidate features in descending order of
∆BIC, only one run of the algorithm, with the minimum desired tolerance, is
required; In a consecutive run, we retain only the variables up to which the first
occurrence of a ∆BIC lower than the current threshold is met. In figure 3.33.3 we
present a graphical representation of ∆BIC caching structure.

Statistically equivalent features

As discussed in section 2.2.1, SES is a powerful method for statistically equiva-
lent feature discovery. In order to extend gOMP functionality, we applied a similar
strategy to the equivalence problem, addressed by the equivalentSearchequivalentSearch function.
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Figure 3.3: ∆BIC caching structure for tolerance hyper-parameters of 1 and 3. Each box
contains the corresponding BIC score when a variable is considered for inclusion. First,
gOMP runs with tolS = 1 and 7 features are selected, while 8th variable is discarded.
Next, for tolS = 3 we retain only the 4 first features of the first run.

After a candidate feature for inclusion (s∗) is defined, the partial correlations be-
tween the residuals, r and interchangeably variable s∗ and the remaining variables
F , are calculated like below:

• Calculate all partial correlation between r and Fi ∈ F , given s∗: ρ̂Fi(r, Fi|s∗)

• Calculate all partial correlation between r and s∗, given Fi ∈ F : ρ̂s∗(r, s
∗|Fi)

• Compute the p-values of zero-correlation hypothesis for both partial correla-
tion vectors.

• Identify as equivalent features those that both p-values are above an equiva-
lency threshold, aequiv.

Algorithm 2 equivalentSearch
Input: Residual vector residuals of previous fitting model, currently selected
variable s∗, remaining variables R, n× p data matrix X, list of sets of equivalent
features E and an equivalent threshold value αequiv.

Output: List of sets of equivalent features E and remaining variables R.

Xs∗ // Data vector of currently selected variable.

XR // Data matrix of remaining variables.

//Calculate partial correlations

pvC1 = pcorr (residuals,XR|Xs∗) // p-value vector conditioned on selected variable.

pvC2 = pcorr (residuals,Xs∗ |XR) // p-value vector conditioned on remaining variables.

Es∗ = (pvC1 ∧ pvC2) > αequiv // Assign equivalences for s∗.

R = R \ Es∗ // Update remaining variables
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Distributed version

GWAS analysis is by default a high-dimensional problem, where the dataset
consists of hundred of thousands, or even millions, of variables, here SNPs. Most
conventional feature selection methods are unable to handle that kind of memory
overload and processing requirements. Even if the computations are carried out
in a high-performance-computing (HPC ) cluster, the fact that parallelization is
not exploited, renders these methods inefficient for that kind of analyses. Here
we propose a distributed version of gOMP scalable to high-dimensional datasets,
operating exactly as gOMP and producing identical results.

Parallelization of gOMP stems from the fact that at every iteration of the
algorithm, the most correlated with the residuals variable enters the candidate
set. This selection criterion allows the segmentation of the dataset feature-wise
by running gOMP in C seperate chunks, storing the most correlated variable in
each chunk and selecting the one with the highest correlation coefficient across
all chunks. The number of chunks, C, and the sequence of chunk processing is
independent of the final selected variables, thus parallelization is only limited by
each computing unit’s resources (in fact a high-dimensional problem, e.g. with
2 × 103 samples and 106 features, is solvable in an ordinary home-PC). Below we
present the pseudocode for distributed gOMP.

Algorithm 3 Distributed gOMP
Input: Target variable y, n× p data matrix X, a selection threshold value tolS ,
equivalent threshold value αequiv, and number of chunks C.

Output: A list of selected features S and a list of sets of equivalent features E.

// Forward Phase

S = Ø// Set of selected features

F = 1 : p // Set of remaining variables to be considered for inclusion

E = Ø// List of sets of equivalent features

while S changes do
r // List of correlation coefficient vectors

for i = 1 : C do // Parallelization

if 1st run then
Fi = 1 : pi // Set of remaining variables for current chunk

// Initialization step

Xi = zscore(Xi) // Standardize data

[residualsi, BICi1] = fit(y, Ø) // Calculate residuals & BIC for null model

// Calculate r for each remaining variable against the residuals

ri = corr(residualsi,Xi(:, Fi))
s∗i = arg max

j∈Fi
(|rij |) // Select variable that maximizes absolute ri
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Algorithm 3 Distributed gOMP (cont’d)

else
Fi = Fi \ S ∪ E
Ei = equivalentSearch(residualsi, s

∗, Fi,Xi, αequiv)

[residualsi, BICi1] = fit(y, S) // Calculate residuals & BIC for current model

∆BIC = BIC0 −BIC1

if ∆BIC < tolS then
S = S \ s∗
break

end if

// Calculate r for each remaining variable against the residuals

ri = corr(residualsi,Xi(:, Fi))
s∗i = arg max

j∈Fi
(|rij |) // Select variable that maximizes absolute ri

end if
end for

// Update

C∗ = arg max
i∈C

(ri.) // Select chunk that maximizes r

s∗ = s∗C∗ // Choose best variable across chunks

S = S ∪ s∗

E =
⋃
i∈C

Ei // Unify equivalences

BIC0 = BICC∗1
end while
// Backward Phase // Set difference in BIC to infinity

∆BIC =∞
// Initialize removed variable

v∗ = Ø

while ∆BIC > tol do
S = S \ v∗
BICS = BICfull // BIC of full model (every variable selected so far)

for v ∈ S do
S′ = S \ v
BICv = BICS′ // BIC when v removed

end for

// Find variable which minimizes BIC, if removed

v∗ = arg min
v∈S

(BIC)

BIC∗ = min(BIC)

// Calculate BIC difference

∆BIC = BICS −BIC∗
end while
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3.2 Experimental Evaluation

In this section we describe the experimental setup used for evaluating the gOMP
feature selection method through simulation studies and real datasets. Specifically
in simulated datasets, subsection 3.2.13.2.1, we compare gOMP against QTCAT on
exactly the same background: simulated phenotype, sample splitting for training
and testing, modelling algorithms, to name a few. In subsection 3.2.23.2.2, we utilize
gOMP for SNP discovery and evaluate their predictive performance on real, human-
disease datasets.

3.2.1 Simulated Datasets

As mentioned before, the simulation procedure which generates the phenotype
is identical to (Klasen et al.Klasen et al., 20162016). Here, we will highlight the key points of the
simulation strategy, as well as the comparison protocol for gOMP and QTCAT.

The dataset used is acquired from the easyGWAS platform, available herehere and
it consists of 1,307 genotyped samples of the species Arabidopsis thaliana. The sim-
ulation strategy exploits the real genetic profile of the samples in order to account
for the underlying complicated mechanisms, such as heritability, in sets of pop-
ulations. Alternatively, one could simulate the genotype as well, but that would
require using models of mutation rate, crossover, etc, or even defining gene-rich
regions, in order to produce realistic genetic profiles. Using real, genotyped data,
overcomes this barrier and is only limited by the maximum number of samples
used, in this case 1,307 which is statistically adequate. In Table 3.2Table 3.2 we provide
basic information on this dataset.

Species Arabidopsis thaliana
Dataset Name AtPolyDB (call method 75, Horton et al.)
Dataset Build TAIR9

# Samples 1,307
# Chromosomes 5

# SNPs 214,051
# SNPs in Gene Regions 28,496

Dataset Homozygous Yes

Table 3.2: Simulation dataset overview

Firstly, a SNP "pool" is created from these SNPs that belong to previously
known gene regions. This is to ensure that selected SNPs originate from areas
that could affect the phenotype in a biologically realistic way. Next, probabilities
dictated by a statistical distribution, are assigned on each SNP position, using
Gaussian (normal), or gamma88 probability density function. Given a probability

8For example, if gamma pdf is used, neighboring SNPs of a specific region have higher proba-
bility to be chosen as associative.

https://easygwas.ethz.ch/data/public/dataset/view/1/
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Create SNP pool

Choose SNP
position distribution

Draw SNPs

Assign coefficients

Define noise
parameter

Calculate phenotype

Figure 3.4: Simulation flowchart

distribution, a predefined number of SNPs is drawn randomly acting as indepen-
dent variables affecting the phenotype (dependent variable). The linear model’s
coefficient for each associative selected SNP is chosen at random from a Gaus-
sian distribution. Finally, in order to avoid producing a deterministic phenotype
relationship, a statistical noise parameter is added which simulates a random en-
viromental effect and reflects the heritability of a set of SNPs. The magnitude of
the noise parameter is such that it tends to match the unexplained variance of the
linear model. In other words, the coefficient of determination, R2 of this linear
model, approaches the user-defined parameter, h2. The simulated phenotype is
continuous, resulting in a regression problem. In figure 3.1figure 3.1 we present a flowchart
of the simulation strategy.

In order to provide a fair comparison between gOMP and QTCAT (as feature
selection methods), a common pipeline is set up. This is performed in terms of 1)
parameters in simulation scenarios, 2) splitting of samples in train-validation-test
sets, as well as in 3) modelling algorithms and their hyper-parameters. Regarding
feature selection hyper-parameters, gOMP and QTCAT require only one; 4)
a selection threshold. As discussed previously, gOMP and QTCAT use ∆BIC
and p − value respectively, thus a consistent transformation between these two
is required. Below we provide further insight on these aspects of the automated
simulation pipeline.
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1. Simulation Scenarios
For phenotype simulation, 3 parameters are required; 1) SNP position dis-
tribution (Gaussian or gamma), 2) Number of associated SNPs and 3) heri-
tability, h2 parameter. For the purposes of this evaluation, we concluded on
4 scenarios based on the aforementioned parameters:

• Distribution: Gaussian, Number of SNPs: 20, h2: 0.7

• Distribution: Gamma, Number of SNPs: 20, h2: 0.7

• Distribution: Gaussian, Number of SNPs: 50, h2: 0.7

• Distribution: Gaussian, Number of SNPs: 150, h2: 0.4

Each scenario is repeated 50 times, producing 50 different phenotypes and
sets of associated SNPs, creating enough simulation instances for statistical
evaluation.

2. Sample splitting
As discussed in Model Selection & Performance EstimationModel Selection & Performance Estimation, a common tac-
tic in machine learning regarding model selection and performance estimation
is splitting the dataset in 3 disjoint sets for training, validation and testing
on unseen data. Here, for each repetition and scenario, we choose to hold
out a percentage of 10% of the samples which will be used to test the final
model produced by the automated pipeline. Furthermore, a 50% of the re-
maining samples will be used for training (feature selection and modelling),
while the rest 50% will be used to estimate the performance of the training
procedure. Each feature selection algorithm, gOMP and QTCAT will be
trained, validated and finally tested on exactly the same sample splits.

3. Selection threshold
Both feature selection methods incorporate a parameter which controls the
number of features selected. QTCAT uses a p-value, where higher values
indicate larger signature size and less control over false positive features. On
the other hand, gOMP uses ∆BIC, the relative drop of BIC scores of two
successive statistical models. Here, larger values of ∆BIC correspond to
stricter selection criteria, thus p-value and ∆BIC are reversely proportional.
Generally, BIC form is given by:

BIC = −2ln(L̂) + k · ln(n) (3.1)

where L̂ the maximized value of the likelihood function of the model, while
for regression tasks:

BIC = n · ln(
2π ·

∑
ei

n
) + n+ k · ln(n) (3.2)

where:
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• n: Number of samples.

• ei: The residuals per sample of current model.

• k: Difference in number of independent variables in comparing models99.

Residuals cannot be known beforehand, so this type of BIC obstructs the
determination of threshold parameters for gOMP, however when sample size
is sufficiently large BIC can be rewritten as:

BIC = X2
1−α,df + k · ln(n) (3.3)

and for df = 1 the formula reduces to:

BIC = X2
1−α,1 + ln(n) (3.4)

where X2
1−α,1 the statistic of a chi-square distribution with 1− α confidence

level and 1 degree of freedom. This formula depends only on sample size and
a predefined significance level, allowing a direct comparison with QTCAT.
For the purposes of these scenarios we used 10 p-values logarithmically spaced
between the range 10−6 and 0.8 (as in BorboudakisBorboudakis (20182018)) for QTCAT and
the corresponding BIC values for gOMP.

4. Modellers
From the modelling algorithms discussed in 3.1.13.1.1, we will use only Random
Forests for the simulation analysis, since we are interested more in a relative
comparison between the two feature selection methods and an exhaustive
search of the universally best modelling method is not of grave importance.
For the same reason, along with computational time speedup, we limit the
number of hyper-parameters of RFs to:

• minLeafSize: [5, 10]

• numPredictorsToSample: [0.5, 1, 1.5]

producing a total of 6 modelling configurations.

Taking all the above into account, in a single repetition and simulation sce-
nario, a total number of 60 (10 FS configurations × 6 modelling configurations)
configurations will be trained for each of the feature selection methods.

3.2.2 Real Datasets

Simulation studies help to prove, or at least provide insight, in gOMP’s theo-
retical properties, which will be used to rely on when analyzing real data without

9When calculating ∆BIC, only one extra variable is examined for inclusion, thus if a previous
model consists of p independent variables, the current one will have p + 1, resulting in df =
(p+ 1) − p = 1.
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knowledge of the underlying mechanism that generates the phenotype (retrieval of
causative SNPs).

For the purposes of Real-data analyses we downloaded several disease (case)
datasets from European Genome-phenome ArchiveEuropean Genome-phenome Archive. Specifically, control datasets
where downloaded seperately and each analysis consists of a triple merging between
2 different control datasets and 1 case dataset. We also provide one additional case-
control dataset from an online data-analysis challenge (DREAMDREAM challenge). Below
we present the datasets used:

Name Code Platform Samples Status

58C EGAD00000000022 Illumina 1.2M 3,000 control

NBS EGAD00000000024 Illumina 1.2M 3,000 control

Ulcerative
Colitis

EGAD00000000025 Affymetrix 6.0 2,869 case

Parkinson’s EGAD00000000057 Illumina 610K Quad 1,705 case
Multiple
Sclerosis

EGAD00000000120 Human670 -
QuadCustom v1

11,375 case

Psoriasis EGAD00010000124 Illumina 670K -
Illuminus

2,622 case

Ankylosing
Spondylitis

EGAD00010000150 Illumina 670K -
Illuminus

2,005 case

Schizophrenia EGAD00010000262 Affyemtrix 6.0 -
CHIAMO

3,019 case

Pharmacoge-
nomic

Response to
Statins

EGAD00010000282 Affymetrix 6.0 -
CHIAMO

4,134 case

Barretts
Oesophagus

EGAD00010000506 Illumina 670K -
Illuminus

1,091 case

Reumatoid
Arthritis

DREAM challenge Batches from several
platforms

2,022 case & control

Table 3.3: Real datasets overview

For each genotypic dataset we filtered out SNPs and samples that had missing
values over 5%, in that order. The remaining missing values were imputed through
replacement of the most frequent, column-wise or row-wise respectively, value. At
this point we have to highlight that no additional filter has been applied, i.e.
discard of SNPs with minor-allele frequency below a certain threshold, or SNPs
that deviate from Hardy-Weinberg equilibrium. Finally, we chose to split each
dataset in 2 disjoint sample sets and apply the aforementioned pipeline in each
split independently, while the remaining set should act as a test set. On top of
that, we repeated each sample-splitting scheme a total of 3 times.

https://www.ebi.ac.uk/ega/home
https://www.synapse.org/#!Synapse:syn3280809/wiki/194736
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3.3 Performance of Multiple Solutions

In paragraph Statistically equivalent featuresStatistically equivalent features and in Algorithm equivalentSearchequivalentSearch
we explained the strategy on identifying equivalent features to already selected
ones. This procedure produces a list of equivalent features on each member of the
reference signature, visualized below in figure 3.53.5:

{f 5, f 2, f 16, f 9}

{[
f 5

f 25

f 10
] , [ f 2 ] , [ f 16

f 100
] , [ f 9 ]}

Reference Signature

Multiple Solutions

Figure 3.5: An arbitrary example of multiple solutions data structure. fi entries denote
the ith feature of a given dataset, while each reference signature’s feature equivalent list
of features, appears in the respective position of Multiple Solutions’ data structure.

Although, equivalent features for each selected variable are computed through a
meticulous process, formulating alternative signatures could, theoretically, produce
inconsistencies in terms of predictive performance. Since, statistical error resides
in every determination of equivalent features for a specific variable of the reference
signature, this error is propagated and magnified when formulating alternative
signatures comprised by many equivalent features.

In order to assess equivalent combinations of equivalent features, we use a
further post-processing filtering of every possible such combination. To do so, we
propose a test statistic suitable for comparing the performances between equivalent
signatures and the reference one. Below we describe this method.

3.3.1 Proposed Equivalence test-statistic

Quang H. VuongQuang H. Vuong (19891989) proposed a suitable variance test for model selection,
i.e testing statistical models that fit the data equally well, based on the variance
of the log likelihood-ratio between both models, which is zero under the null hy-
pothesis. Similarly, BorboudakisBorboudakis (20182018) extended this idea to testing performance
equivalence using permutation-based techniques. In any case, the values of the
sample-sets used for the equivalence test can be the actual performance or loss
metric produced by the reference and the alternative signature computed for each
sample, e.g. deviance for logistic regression, or mean-squared error for regression.
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Here, we formulate a test statistic inspired by both studies, defined as:

tequiv =
1

n

n∑
i=1

ln

(
Lrefi
Lalti

)
(3.5)

where:

• n: Number of samples.

• Lrefi , Lalti : The loss metric for each sample in reference and alternative sig-
nature respectively.

Under the null hypothesis, this test-statistic will be zero, meaning that signa-
tures are identical in terms of predictive performance, while due to log-ratio, we
expect it to be distributed symmetrically. In order to determine the theoretical
distribution of the statistic, we permute B times, e.g. 1000, the nominator and de-
nominator of the log-ratio on a randomly selected number of samples and calculate
the corresponding statistic, P . The above procedure results in BtPi values of the
underlying distribution. The p-value of the observed statistic, Tobs is extracted by
calculating the number of times that |Tobs| > |tPi|, for i = 1 : B. The resulting
distribution is indeed symmetrical as shown below.

Figure 3.6: Distribution of proposed statistic acquired from sign permutations. I) Failure
of rejection of the null hypothesis of equivalent signatures, II) Rejection of null hypothesis.
Figure I depicts the statistic of a signature produced through simulation studies, while
figure II, when “contaminating" signature I with random features.
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3.4 Population Structure

In any GWA study population structure, i.e. correlation due to linkage disequi-
librium between causative loci and physically unlinked regions, is one of the most
frequent root causes of falsely associated SNPs with the phenotype. Klasen et al.Klasen et al.
(20162016) demonstrated that QTCAT is insusceptible to such structure by applying
their method to a dataset with inherent strong population structure (Horton et al.Horton et al.).
On top of that, their method performed better in comparison with Linear Mixed
Models (LMM) that take into account each population’s variance and is the default
solution to such problems.

In order to assess gOMP’s ability of filtering out, or disregarding such features,
we use a specific strategy which tries to evaluate if a selection bias occurs during
gOMP’s run. This strategy is as follows:

1. Perform a Principal Component Analysis on the same dataset used in simu-
lations studies (strong population structure) and project the samples on the
first two eigenvectors with the larger eigenvalues1010.

2. Use gaussian mixture models to define the 2 most representative hyper-
population clusters (A and B). These two clusters will be comprised by
populations that are most relative with each other internally, and most dif-
ferentiated externally.

3. Implement a double Train-Validation-Test protocol, where at first population
cluster A serves as the Train−V alidation set while population cluster B as
the Test set. Next, cluster A and B exchange set properties.

4. Calculate performance in terms of prediction and selected features for each
protocol.

5. Repeat 3 − 4 steps in order to create enough statistical samples of perfor-
mance.

Theoretically, any feature selection that is insusceptible to population structure
will yield similar results, within a statistical interval, in terms of prediction perfor-
mance and selected variables on both population clusters. In any case, accurate, or
underestimated performance estimation is of outmost importance, i.e. prediction
model and performance do not break down when testing on unseen data.

10Magnitude of eigenvalues is equivalent to explained variance of principal components, i.e.
SSEi = EigenV aluei∑p

n=1 EigenV alue
.
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Results

In this section we evaluate gOMP performance on simulated datasets and
on real human-disease datasets acquired from EGA. Every analysis uses JAD
Bio’sTM automated machine learning pipeline. In section 4.14.1 we present the sim-
ulation studies along with the comparison of gOMP with QTCAT. In section 4.24.2
the results of SNP discovery on real datasets are presented.

4.1 Simulated Datasets

In section 3.2.13.2.1 we described in detail the simulation strategy that will be fol-
lowed. All genotypic variation across Arabidopsis thaliana samples remains identi-
cal (SNP values are exactly as genotyped), where only the phenotype affected by a
group of SNPs is simulated. The presentation of the results on simulated datasets
is organized as follows: In section 4.1.14.1.1 we provide an extensive comparison be-
tween gOMP and QTCAT. Comparison metrics include predictive performance,
True Positive Rate(TPR) against False Discovery Rate(FDR), as well as compu-
tational time for each method. In section 4.1.24.1.2 we evaluate the effect of population
structure on gOMP experimentally, while trying to quantify selection bias across
different populations. Finally, in 4.1.3 we test the null hypothesis of the equiva-
lency between the reported multiple signatures and the reference signature using a
suitable test statistic.

4.1.1 gOMP - QTCAT comparison

Quantitative Trait Association Test (QTCAT ) was considered as the most suit-
able feature selection method for comparison with gOMP since it fulfilled several
criteria:

• Dataset availability.

• Open source code, available in GitHubGitHub, with reproducible test cases.

• Methodologically correct simulation strategy.

31

https://github.com/QTCAT
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• Insusceptibility to population structure.

• Superiority over regression with Linear Mixed Models.

• Easy integration with JAD Bio’sTM pipeline.

As discussed in Simulation scenariosSimulation scenarios, 3 parameters are required for any scenario;
1) SNP position distribution (Gaussian or gamma), 2) Number of associated SNPs
and 3) heritability, h2 parameter. Below we will present the 4 different scenarios
chosen for gOMP-QTCAT comparison.

In order to produce enough paired samples (performances for gOMP and QT-
CAT ), we repeat each scenario 50 times, i.e. 50 different simulated phenotypes.
During any repeat we calculate the R2 value achieved when regressing the ground
truth SNPs on the phenotype. Consequently, we subtract this value from the cor-
responding R2 achieved by each feature selection method, resulting in a relative
performance metric11. By plotting the distribution of these relative performances,
models that performed better will lie near the zero value of y−axis (maximum−
performance,MxP line), while the worst ones will reside around −h2. The
value of −h2 is the minimum theoretical performance (minimum− theoretical −
performance,MnTP line) that any model can achieve prior to simulation of the
phenotype. In practice after the simulation occurs, since h2 is a statistical parame-
ter, the minimum actual performance (minimum−actual−performance,MnAP
line) will vary around this parameter. Models that performed above the MxP
line indicate that they identified SNPs which are associated with the random in-
dependent noise dictated by h2 parameter and this is a statistical artifact which
should not be taken into account. On the other hand, performance of models lower
than the MnAP line translates to identification of SNPs that systematically pre-
dict worse than the mean value of phenotype does22. When dealing with methods of
similar performance, an important aspect is the variance of corresponding distribu-
tions, i.e methods that produce models of low variance in performance are always
preferred due to their consistency. A final comparison metric is the calculation
of the p-value of the paired t-test, i.e. when testing the null hypothesis of equal
performances between gOMP and QTCAT method.

Regarding solely the identification of ground truth SNPs’ performance, we store
every reported signature across all repeats and every selection threshold. We re-
mind that for QTCAT we used 10 p-values logarithmically spaced between 10−6

and 0.8, while for gOMP the equivalent ∆BIC scores ranging from 31 to 7.13
respectively. Next, we calculated the true positive rate, (TPR) and false discovery
rate, (FDR); TPR is the amount of correctly identified SNPs to the amount of
ground truth SNPs, while FDR is the amount of false positive SNPs divided by

1We note that we use the value of the best configuration reported from the machine learning
pipeline.

2Negative values of R2 can occur indeed. From the formula: R2 = 1 −
∑

i(yi−ŷi)
2∑

i(yi−ȳ)2
this is

apparent when predicted value ŷi is systematically further from ȳ.
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the amount of selected SNPs. A perfect identification of the ground truth SNPs
will score TPR = 1 and FDR = 0, while the reverse is true for the worst identifi-
cation case. Reasonably, in any feature selection method, an increase in TPR will
be accompanied by an increase in FDR, resulting again in a bias-variance trade-off
equivalent for feature selection. Below we present the performance plots regarding
prediction accuracy and ground truth SNPs identification for each scenario.
Scenario 1: Gamma - 20 - 0.7

I)

II)

Figure 4.1: I) Relative performance distributions across 50 repeats for gOMP (light-
blue) and QTCAT (red) at SCENARIO 1. Highlighted horizontal lines are maximum
Performance (MxP line), minimum theoretical performance (MnTP line) and minimum
average performance (MnAP line). The p-value of the paired t-test (null hypothesis of
equal mean performances) is contained inside the colored box, while its color corresponds
to the feature selection method with the higher average performance. II) Average TPR
and FDR scores across 10 selection thresholds for gOMP, QTCAT and gOMP-MS (gOMP
including the equivalent signatures or multiple solutions). The most frequent selection
threshold of the best configuration is circled in dotted line, while circle radius is inversely
proportional to this frequency.
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Scenario 2: Gaussian - 20 - 0.7

I)

II)

Figure 4.2: I) Relative performance distributions across 50 repeats for gOMP (light-
blue) and QTCAT (red) at SCENARIO 2. Highlighted horizontal lines are MxP line,
MnTP line and MnAP line. The p-value of the paired t-test (null hypothesis of equal
mean performances) is contained inside the colored box, while its color corresponds to the
feature selection method with the higher average performance. II) Average TPR and FDR
scores across 10 selection thresholds for gOMP, QTCAT and gOMP-MS (gOMP including
the equivalent signatures or multiple solutions). The most frequent selection threshold of
the best configuration is circled in dotted line, while circle radius is inversely proportional
to this frequency.



4.1. SIMULATED DATASETS 35

Scenario 3: Gaussian - 50 - 0.7

I)

II)

Figure 4.3: I) Relative performance distributions across 50 repeats for gOMP (light-
blue) and QTCAT (red) at SCENARIO 3. Highlighted horizontal lines are maximum
Performance (MxP line), minimum theoretical performance (MnTP line) and minimum
average performance (MnAP line). The p-value of the paired t-test (null hypothesis of
equal performance) is inside the box, while its color corresponds to the feature selection
method with the higher mean performance. II) Average TPR and FDR scores across 10
selection thresholds for gOMP, QTCAT and gOMP-MS (gOMP including the multiple
solutions). The most frequent selection threshold of the best configuration is circled in
dotted line, while circle radius is inversely proportional to this frequency.
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Scenario 4: Gaussian - 150 - 0.4

I)

II)

Figure 4.4: I) Relative performance distributions across 50 repeats for gOMP (light-
blue) and QTCAT (red) at SCENARIO 4. Highlighted horizontal lines are maximum
Performance (MxP line), minimum theoretical performance (MnTP line) and minimum
average performance (MnAP line). The p-value of the paired t-test (null hypothesis of
equal performance) is inside the box, while its color corresponds to the feature selection
method with the higher mean performance. II) Average TPR and FDR scores across 10
selection thresholds for gOMP, QTCAT and gOMP-MS (gOMP including the multiple
solutions). The most frequent selection threshold of the best configuration is circled in
dotted line, while circle radius is inversely proportional to this frequency.

Regarding predictive performance, gOMP’s reference signature produces mod-
els that are statistically significantly more accurate than the corresponding models
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of QTCAT, across all 4 simulation scenarios. More importantly, gOMP’s distri-
bution of predictive performance, acquired from these 50 repeats, is of smaller
variance (distributions with tighter bounds), which is an indicative characteristic
of a consistent model-producing methodology.

With respect to ground-truth signature retrieval, gOMP always detects more
true positive features (higher TPR), regardless of the 10 different selection thresh-
old values. This is the case for all 4 scenarios, deducing that gOMP’s selection
strategy is more efficient. As for falsely identified SNPs (FDR), in Scenario 1Scenario 1
(gamma− 20− 0.7 ) gOMP achieves lower FDR for the most qualified (most fre-
quent hyper-parameter value used in best model) selection threshold. The above is
also true for Scenario 2Scenario 2 (gaussian−20−0.7 ). However, in Scenario 3Scenario 3 (gaussian−
50−0.7 ), most frequent selection threshold produces higher FDR values, for gOMP
compared to QTCAT. Finally, concerning Scenario 4Scenario 4 (gaussian−150−0.4 ), both
methods perform poorly, probably due to highly noisy data influenced by low her-
itability.

Computational Time

Another aspect of a feature selection algorithm’s efficiency, apart from pre-
dictive performance and associated features’ retrieval, is computational time. In
computer science, big O notation (O ∼), or time complexity, is used to character-
ize algorithms according to their computational time, or memory requirements as
a function of input parameters, p. In feature selection, the parameters p usually
consist of sample size N , dimensionality size (number of features) F and number of
selected features S. Generally, a linear O(p) is ideal, i.e. O(kN), O(kF ) or O(kS),
whereas quadratic, or higher, O(p) indicates a rather computationally inefficient
algorithm.

For the purposes of this thesis, we examined time complexity of gOMP and
QTCAT in terms of sample and dimensionality size (O ∼ f(N,F )) on a prede-
fined simulation dataset with the following simulation parameters: distribution
= gamma, number of SNPs = 20 and heritability = 0.7. Since the simulation
occurs only for the phenotype, the maximum sample and dimensionality size are
initially limited to the corresponding size of the original dataset, that is 1, 307 sam-
ples and 214, 051 features. Nonetheless, QTCAT requires a substantial amount of
computational time to complete when feature size is maximum, approximately 6h
for 1, 307× 214, 051 dataset. For this reason we constrained feature size to a range
of 10% to 60%, while sample size to a range of 10% to 100%.

To conclude, we have to note thatQTCAT is implemented inRTM , while gOMP
inMatlab R2016bTM , thus a comparison in absolute differences in computational
time is not of interest, rather than the degree and coefficients of each polynomial
function of time complexity (O(p)). All simulations and runs were performed in a
machine with 4.2GHz processors (Inter(R)TM i7-7700) and 32GB of RAM, running
on a 64bit Windows 10

TM operating system.
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Figure 4.5: Computational time comparison between QTCAT and gOMP. Figure I depicts
computational time, for each feature selection method, as a function of relative sample
size (100% corresponds to 1, 307 samples) for 4 different relative feature sizes (100% corre-
sponds to 214, 051 SNPs). Figure II depicts computational time as a function of relative
feature size for 4 different relative sample sizes.

In terms of time complexity, gOMP is evidently more efficient regardless of sam-
ple or feature size. As figure 4.4I4.4I suggests, gOMP’s computational time is invariant
of sample size, i.e constant value dependent only on feature size, while QTCAT’s
is linearly dependent, with increasing slope as feature size gets larger. Regarding
feature size (figure 4.4II4.4II), both methods have linearly dependent computational
time, however again, the corresponding slopes are larger for QTCAT.

Since gOMP and QTCAT are implemented in different programming languages
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(MATLAB and R respectively), the absolute time differences between these meth-
ods should not be taken into account, rather than the differences between the
respective derivatives, which capture the inherent big − O notation of each algo-
rithm.

4.1.2 Effect of population structure

Horton et al.Horton et al. genotyped 1, 307 world-wide accessions of the plant arabidopsis
thaliana and were able to detect and describe the global pattern of genetic variation
for this species. This localized genetic variation, or population structure is apparent
and shown below in figure 4.64.6, where the first 2 principal components are extracted
from a PCA and each sample is colored based on geographical region.

Figure 4.6: Inherent population structure in arabidopsis thaliana dataset

In section 3.43.4 we discussed an empirical solution in determining the effect of
population structure generally on feature selection. We remind that we initiate
by clustering the populations into 2 major hyper-groups with maximum differen-
tiation between them. The null hypothesis states that, when training a feature
selection method on cluster A, the performance estimation for this method will be
statistically equal compared to the actual performance on unseen, test data, i.e
on cluster B and vice versa. The above statement follows that population struc-
ture plays no role in selecting the true, associative with the phenotype, features.
Inarguably, training sample size strongly affects the selection procedure, leading to
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FS 324 Fennoscandia (Norway, Sweden & Finland)
FR 222 France
UK 187 British Isles

NW-E 129 North-West Europe (Belgium, Netherlands, Denmark, Germany & Poland)
AH 165 Austria-Hungary (Austria, Czech Republic & Romania)
IB 30 Iberia (Portugal & Spain)

ER 35
Eastern-Range
(Estonia, Lithuania, Belarus, Ukraine, Georgia, Azerbaijan, Russia, Tajikistan,
Kashmir & Kazakhstan)

SC 22 South-Central Europe (Switzerland & Italy)
AM 190 Americas (Canada & United States)

Other 3 –

Table 4.1: Population characteristics of arabidopsis thaliana by geographical region

statistically significant differences in performance estimation and test performance,
but this will not pose any problem, if and only if, training procedure systemati-
cally underestimates the actual performance on unseen data, i.e. feature selection
method identifies its inherent weakness due to low sample size, but over-performs
when tested on data of larger sample size (under-promise, over-deliver).
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Figure 4.7: Clustering of populations in 2 major hyper-groups

After the clustering is performed, sample sizes for each hyper-group are: cluster
A= 933 samples and cluster B= 374 samples (figure 4.54.5). For the purposes of this
experiment we used the phenotypes produced by gamma - 20 - 0.7 simulation
scenario, across 40 repeats (for computational-time reasons). For every repeat we
used 2 different training sets, cluster A and cluster B, while testing was applied
on cluster B and cluster A respectively. For each training procedure we used,
again, 10 ∆BIC values and 6 combinations of Random Forest hyper-parameters,
resulting in 60 configurations per training set (120 total). On figure 4.64.6 we present
the performance comparison between training set (estimation) and test set (actual)
for the 2 train-test scenarios.
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I)

II)

Figure 4.8: Performance distributions across 40 repeats between training set and test set.
On the left lies the actual performance on the test set. On the right lies the estimated
performance from the training set. Again, inside the box lies the p-value of the paired
t-test of the null hypothesis that mean performances are equal and the background is
colored accordingly to the distribution with the larger average performance. I) Training
set: Cluster A (933 samples), Test set: Cluster B (374 samples). Estimated performance
is slightly higher but with statistically insignificant difference. II) Training set: Cluster
B (374 samples), Test set: Cluster A (933 samples). Estimated performance is lower with
statistically significant difference, i.e training procedure systematically under-estimates
the actual performance.
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In figure 4.7I4.7I we notice that when the pipeline is trained with the larger hyper-
population (933 samples), performance estimation is not statistically significantly
different when testing the best reported model on a hyper-population with the
higher possible genotypic variation. This evidences that the produced model is un-
affected by population structure. On the other hand, when the pipeline is trained
with the smaller hyper-population (374 samples, figure 4.7II4.7II), estimated perfor-
mance is statistically significantly lower than the actual one, meaning that the
pipeline systematically underestimates the performance on unseen data. This be-
haviour is attributed mostly on the low sample size of the second hyper-population
set. Nevertheless, underestimation of performance is preferable over an optimistic
estimation, in the context of prognostic expectations.

4.2 Real Datasets

As discussed in section 3.2.23.2.2, we analyzed 9 human-disease datasets, 8 acquired
from EGA and the last from a Dialogue for Reverse Engineering Assessments and
Methods (DREAM) challenge. These high-dimensional datasets fall into the cate-
gory of “small n - large p" problems, where sample size is in the order of thousands,
while feature space in the order of hundreds of thousands. Below an overview of
the finalized datasets is presented, while table 4.34.3 contains a summary of the cor-
responding results. In figures 4.94.9 - 4.184.18 the performance evaluation across all 3
repeats and 2 splits is depicted.

Dataset sample size feature size P(T=case)

Ulcerative
Colitis

8,788 884,760 32.1%

Parkinson’s 7,791 571,685 27.8%
Multiple
Sclerosis

16,969 572,359 62.7%

Psoriasis 8,216 571,711 31,1%
Ankylosing
Spondylitis

7,604 571,469 26.1%

Schizophrenia 9,017 884,755 21.3%
Pharmacogenomic
Response to Statins

10,073 883,851 40.8%

Barrett’s
Oesophagus

7,602 570,638 26.1%

Reumatoid
Arthritis

2,022 1,866,172 21.5%

Table 4.2: Real datasets overview
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Dataset Signature size # Signatures Performance rs Codes

Ulcerative

Colitis
25.333 159.333 0.733 ShowShow

Parkinson’s 1 152.5 0.998 ShowShow

Multiple

Sclerosis
3 1.333 0.952 ShowShow

Psoriasis 1 118 1 ShowShow

Ankylosing Spondylitis 1 125.666 0.999 ShowShow

Schizophrenia 6.833 4.5 0.954 ShowShow

Pharmacogenomic

Response to Statins
1 2.5 0.999 ShowShow

Barretts

Oesophagus
1 123 1 ShowShow

Reumatoid

Arthritis
10.333 10,3907.667 0.506 ShowShow

Table 4.3: Averaged Results on real data. rs Codes refer to the union of selected and
equivalent SNPs across all repeats.
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Figure 4.9: Performance on Ulcerative Colitis. First row of figures depicts the receiving
operating characteristic (ROC) curves for each split (blue and magenta curves), across all
repeats. Second row figure illustrates the estimated performance distributions as calcu-
lated by the bootstrap bias correction (BBC) method, while the yellow line concerns the
actual performance on the test set.
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Figure 4.10: Performance on Parkinson’s disease

Figure 4.11: Performance on Multiple Sclerosis
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Figure 4.12: Performance on Psoriasis

Figure 4.13: Performance on Ankylosing Spondilitis
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Figure 4.14: Performance on Schizophrenia

Figure 4.15: Performance on Pharmacogenomic Response to Statins
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Figure 4.16: Performance on Barretts Oesophagus disease

Figure 4.17: Performance on Reumatoid Arthritis disease
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Excluding analyses for Ulcerative Colitis and especially Reumatoid arthritis,
where the results were inconclusive, i.e. low area under the curve, close to random
guessing, in all remaining datasets performance was exceptionally high. Particu-
larly for datasets such as Parkinson’s, Psoriasis, Ancylosing Spondilitis, Barretts
Oesophagus and Pharmacogenomic Response to Statins the pipeline identified a
unique SNP, with many equivalent SNPs that is highly associated with each cor-
responding phenotype. Especially for Psoriasis and Barretts Oesophagus the rela-
tionship between the causative SNPs and the phenotype is deterministic, meaning
that a single SNP is sufficient for a 100% accurate prediction of disease status.

Finally, we have to note that a high percentage of identified loci concerns ge-
nomic areas of introns. Although introns are not expressed, i.e. do not affect di-
rectly the encoded aminoacid, they play an important role in alternative splicing,
thus affecting the final form of the produced protein. Below we present the results
specifically for Multiple Sclerosis as reported from Ensemble’s Variant Effect PredictorVariant Effect Predictor
tool.

Figure 4.18: Ensemble’s Variant Effect Predictor tool for Multiple Sclerosis SNPs. Intron
variants along with non-coding variants make up to nearly 50% of reported SNPs (6 out
of 12), while average performance of these 12 SNPs approaches 95% AUC.

https://www.ensembl.org/Tools/VEP
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Discussion

In this chapter we will comment on the results in the same order as presented
at the corresponding chapter. Furthermore, we will suggest future work regarding
gOMP’s features and usability.

5.1 gOMP - QTCAT comparison

In section 4.1.14.1.1 we described the comparison strategy and characteristics for
each simulation scenario.

Regarding predictive performance, gOMP outperforms QTCAT in all simula-
tion scenarios, in a remarkably consistent way (proven by corresponding perfor-
mance distributions). Nevertheless, predictive performance by itself cannot suffice
when comparing feature selection methods, since the number of true positive and
false positive features identified by each method are metrics of great importance,
especially for knowledge discovery. For example, a feature selection method can
achieve high performance by selecting many irrelevant features, i.e. features that
are randomly associated with the phenotype, thus resulting in improvement of final
model’s predictive performance by selecting many such features. In our work, we
evaluated gOMP and QTCAT in terms of True Positive Rate and False Discov-
ery Rate, to demonstrate the importance of this trade-off. Again, gOMP selected
systematically more truly associated SNPs than QTCAT, while keeping FDR to
more than acceptable levels. The TPR and FDR values improve further when tak-
ing into account the corresponding equivalent features of the reference signature,
pointing out the importance of multiple solutions.

In terms of time complexity, gOMP proves to be far more efficient than QTCAT,
owing much of its superiority to the residual-based selection strategy. Arguably,
QTCAT allocates high computational load to the initial hierarchical clustering
for all SNPs, while gOMP identifies correlated SNPs only for the selected ones,
forgoing unnecessary operations regarding not associated SNPs. Although one can
argue that the initial clustering should be carried out only once for a given genomic
dataset, this would lead to a methodologically incorrect and biased data analysis,
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i.e. performing cross-validation with a filtering (produced hierarchical tree) based
on all the available samples. Finally, we have to note that QTCAT uses an internal
10−fold cross validation in order to tune the λ regularization parameter for LASSO
selection procedure, thus burdened by additional operations with lower sample size.

Finally, in this thesis we argue that gOMP with multiple solutions accounts for
population structure, thus correcting automatically in presence of such phenom-
ena. In order to provide evidence that this correction is accomplished indeed, we
provide an empirical evaluation presented in section 4.1.24.1.2. In any case, this ex-
perimental study cannot substitute a mathematical formulation which proves that
this procedure accomplishes correction of population structure, conclusively. For
the time being, we rely on this empirical evaluation along with the superiority of
gOMP compared to QTCAT, a method that accounts for population structure.

5.2 Evaluation on Real Datasets

In the majority of the analyses on real data, predictive performance of identified
genomic signatures was exceptionally high. In 5 datasets (Parkinson’s, Psoriasis,
Ankylosing Spondylitis, Pharmacogenomic response to statins and Barretts Oe-
sophagus) the association problem was rather easy, since only one causative SNP,
along with its equivalent SNPs, was able to achieve a nearly perfect prediction of
the disease status. gOMP proved to be a powerful tool even when multiple SNPs
were associated to the phenotype (multivariate problem), thus being able to cap-
ture additive effects, e.g. for Scizophrenia and Multiple Sclerosis. Specifically for
Multiple Sclerosis, despite of high performance, SNP identification was inconsistent
across the 3 repeats (non-overlapping signatures), something that requires further
investigation.

5.3 Future Work

gOMP is able to accept a variety of outcome variables’ types, so further, exten-
sive tests on such types, e.g. multi-class, time-to-event, etc, should be considered to
verify that this flexibility is accompanied by equal performance. On top of that, this
method is able to detect solely linear relationships between features and outcome,
rendering the adaptation of a non-linear feature selection method an important
improvement, especially towards the identification of epistatic phenomena.

Following the work of Tsamardinos et al.Tsamardinos et al. (2018a2018a) with respect to algorithmic
implementation, partitioning of samples and implementing suitable statistical tests
for such a task will contribute greatly to the direction of big data handling.

Nishizaki and BoyleNishizaki and Boyle (20172017) argued about the importance of non-coding SNPs
and the adaptation of suitable analyses pipelines in genetic discovery and trans-
lational research. In our work, we identified many non-coding SNPs, mainly as
introns, that were highly predictive of the phenotype, reinforcing this paper’s ar-
guments.
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Supplementary

SNP IDs

rs10018315 rs10215427 rs10491763 rs1051336 rs10517083 rs1060688 rs10807889

rs10953555 rs11009599 rs11097691 rs11190126 rs11190134 rs11260562 rs1138536

rs11709195 rs11765537 rs11967280 rs12646827 rs12673441 rs13117744 rs13133567

rs13226064 rs133164 rs133204 rs133592 rs1385961 rs1468433 rs1658691

rs16842766 rs16861974 rs16870123 rs16870851 rs16870857 rs16870858 rs16870863

rs16870875 rs16870895 rs16870905 rs16870966 rs16889981 rs16892581 rs16920014

rs16979826 rs17012387 rs17017386 rs17057254 rs17061987 rs17075395 rs17082268

rs17083068 rs17089258 rs17097611 rs17097633 rs17102066 rs17120254 rs17134725

rs17171025 rs17272355 rs17381247 rs17440213 rs17495612 rs17657688 rs17749281

rs1939769 rs2140211 rs2159432 rs2227617 rs2290253 rs2348362 rs2395932

rs2526747 rs2564005 rs2919427 rs295146 rs2999547 rs3024493 rs3024505

rs3135393 rs402914 rs41336649 rs41452148 rs41471147 rs41494046 rs424288

rs4317445 rs4365962 rs4386497 rs4535723 rs4730281 rs4923993 rs6034816

rs6056957 rs615672 rs6670226 rs6677211 rs6786678 rs6828390 rs6851158

rs6940296 rs6949033 rs6974243 rs6987509 rs7061 rs7078219 rs7081330

rs7155496 rs729525 rs7404688 rs7507552 rs7532909 rs7626113 rs7710409

rs7722786 rs7782999 rs7841460 rs7894394 rs7905537 rs8035453 rs881176

rs886774 rs9268852 rs9283487 rs9284246 rs9311374 rs9352947 rs9449595

rs9547956 rs9838138 rs9862002 rs9912428

Table 6.1: Associated SNPs for Ulcerative Colitis
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SNP IDs

rs1001088 rs10052085 rs10067215 rs10072441 rs10132866 rs10166677 rs10241910

rs10249429 rs10264891 rs10432082 rs10433915 rs10873568 rs11044149 rs11061815

rs11192811 rs11502439 rs11591957 rs11833256 rs11838383 rs11910961 rs11981623

rs11992325 rs12019098 rs12116471 rs12156609 rs12372975 rs12401332 rs12461842

rs12498442 rs12516495 rs12579602 rs12605120 rs12620439 rs12643506 rs12766409

rs12775038 rs13017214 rs13053037 rs13153243 rs13230063 rs13294973 rs13437824

rs1354287 rs1596912 rs1672256 rs16886662 rs16935498 rs16940368 rs1704794

rs17113769 rs17168416 rs1720699 rs17595460 rs1793967 rs1807366 rs1832086

rs1905220 rs1906664 rs2110347 rs2148613 rs215109 rs2212048 rs2259315

rs2260188 rs2338241 rs2368805 rs2370866 rs2448507 rs2456599 rs2488217

rs2537367 rs2539177 rs2549598 rs2568287 rs2580567 rs2598648 rs2659792

rs2668863 rs2669384 rs2684146 rs2699830 rs2704135 rs2719476 rs2729227

rs2734415 rs2740001 rs2743476 rs2746702 rs2754683 rs28384110 rs28404871

rs28418883 rs28441383 rs28445367 rs28446843 rs2848213 rs28495424 rs28551470

rs28575733 rs28674911 rs2876845 rs28881575 rs28971843 rs3019831 rs3130676

rs34239705 rs34912894 rs35158069 rs35224109 rs36012344 rs368374 rs3798356

rs3815277 rs3821231 rs385032 rs385248 rs3894703 rs3897248 rs3926475

rs3984089 rs4006953 rs4017124 rs4023483 rs408012 rs4082490 rs4086410

rs4115951 rs4130395 rs4132083 rs4253288 rs4259063 rs4426661 rs456323

rs4636313 rs4756249 rs4876154 rs4978281 rs4983352 rs4983501 rs4988718

rs5758601 rs6053078 rs6061391 rs6414619 rs6531483 rs6709346 rs673211

rs6746716 rs678808 rs6912226 rs6939702 rs6944182 rs6953310 rs7031665

rs7080322 rs7183701 rs7339834 rs7350758 rs7368154 rs7429583 rs7430494

rs7560407 rs7591046 rs7594898 rs7610590 rs7791652 rs7950983 rs7962701

rs7975201 rs8189691 rs9435653 rs9446038 rs9580861 rs9624081 rs9665272

rs9675147 rs9682544 rs9703854 rs9709395 rs9714780 rs9797770 rs9941959

rs9995751

Table 6.2: Associated SNPs for Parkinson’s
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SNP IDs

rs11976716 rs17148284 rs2259315 rs2667265 rs2774141 rs2897356 rs3129860

rs3129941 rs3815675 rs910049 rs9271366 rs9580861

Table 6.3: Associated SNPs for Multiple Sclerosis

SNP IDs

rs10147488 rs10228176 rs10240798 rs10255009 rs10470871 rs10471846 rs10767181

rs10805379 rs11061815 rs11254491 rs11645356 rs11776503 rs11838207 rs11838383

rs11899396 rs11903746 rs11957319 rs12259548 rs12297855 rs12337345 rs12449903

rs12500655 rs12594787 rs12731588 rs12782401 rs12919630 rs12930400 rs13100804

rs13230063 rs13274025 rs13294973 rs152833 rs1610833 rs167442 rs17017303

rs17168416 rs1832086 rs1842121 rs1874595 rs2000096 rs2135088 rs2148613

rs2212048 rs2217766 rs2232060 rs2259315 rs2304890 rs2309232 rs2314169

rs2330200 rs2370866 rs2387513 rs2532400 rs2598648 rs2628811 rs2754683

rs2775733 rs2840054 rs28404871 rs28418883 rs2843247 rs2848213 rs28491656

rs28495424 rs28535255 rs28537431 rs2855977 rs28647952 rs2865600 rs28690750

rs2869237 rs2873745 rs28797870 rs28873202 rs28881575 rs288895 rs28893518

rs28972322 rs2967102 rs34475990 rs34902207 rs34934808 rs35302909 rs35303150

rs35885418 rs3815277 rs3821231 rs3865067 rs3865746 rs3874616 rs3894999

rs3971507 rs3977397 rs3999299 rs4081622 rs4098611 rs4112941 rs4236561

rs4291961 rs4437523 rs446603 rs4523129 rs4593786 rs4726690 rs4866292

rs4988718 rs513556 rs6115614 rs673132 rs6853606 rs6868914 rs694997

rs7156777 rs7227430 rs7260374 rs7303888 rs7429583 rs7433242 rs7560407

rs7950983 rs7975201 rs891491 rs9290539 rs9435653 rs957878 rs9647131

rs9682544 rs9706464 rs9714780 rs9797770

Table 6.4: Associated SNPs for Psoriasis
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SNP IDs

pgxUn0002 rs10132866 rs10145523 rs10228176 rs10229299 rs10241910 rs10414839

rs10433277 rs10433315 rs10434278 rs10471846 rs1059873 rs10770692 rs10805379

rs11061815 rs11072343 rs11248188 rs11528840 rs11534657 rs11731634 rs11790913

rs11849093 rs11903746 rs12069907 rs12091111 rs12297855 rs12374251 rs12461842

rs12517245 rs12594787 rs12631243 rs12775038 rs12819206 rs12919630 rs13017214

rs13100804 rs13294973 rs1553451 rs1672256 rs167442 rs16879725 rs17017303

rs1704794 rs1842121 rs1964498 rs2005023 rs2135088 rs215109 rs2202040

rs220566 rs2212048 rs2259315 rs2260188 rs2265305 rs2314169 rs2370866

rs2456599 rs2457519 rs2486586 rs2530222 rs2539177 rs2568287 rs2580472

rs2580567 rs2632184 rs2667870 rs2729227 rs2753530 rs2774477 rs2810989

rs28364249 rs28441383 rs2848213 rs28495424 rs28551470 rs28587062 rs28674911

rs2869237 rs28770169 rs28797894 rs28893518 rs28972402 rs2925344 rs2960979

rs2964850 rs3019743 rs3116439 rs34239705 rs34370305 rs34759622 rs34902207

rs34912894 rs34934808 rs34957779 rs35010833 rs35427885 rs357706 rs35885418

rs35885593 rs3865741 rs3894997 rs3894999 rs3977397 rs4015127 rs4062120

rs4067651 rs4091033 rs4100614 rs4147617 rs4148460 rs4149320 rs4291961

rs4505257 rs4593786 rs4866292 rs4988718 rs5751678 rs6001168 rs6061391

rs6472976 rs6853606 rs6944182 rs6966163 rs7031665 rs7071703 rs7212038

rs7429583 rs7430494 rs7433242 rs7461038 rs7540001 rs7594898 rs7607534

rs7698124 rs7736236 rs7975201 rs8051706 rs957878 rs9580861 rs9645104

rs9647131 rs9679574 rs9706464 rs9714780 rs9790519 rs9865715

Table 6.5: Associated SNPs for Ankylosing Spondylitis

SNP IDs

rs10134877 rs10200882 rs11851128 rs11899533 rs150914 rs1536688 rs16867128

rs16987153 rs17006636 rs17022585 rs17043520 rs17120254 rs1859790 rs2271041

rs35879674 rs4688732 rs5027299 rs6851158 rs7645943 rs7737972 rs9327934

Table 6.6: Associated SNPs for Schizophrenia



57

SNP IDs

rs16867128 rs5002300 rs6851158

Table 6.7: Associated SNPs for Pharmacogenomic Response to Statins

SNP IDs

rs10067215 rs10076207 rs10240798 rs10241910 rs10433277 rs10470871 rs10781048

rs10789525 rs10936714 rs11044149 rs11061815 rs11128495 rs11134253 rs1142089

rs11490504 rs11614472 rs1176728 rs11903746 rs11903965 rs11910961 rs12104394

rs12240398 rs12263659 rs12346806 rs12500655 rs12517245 rs12593069 rs12625483

rs12674455 rs12761343 rs12774838 rs12782401 rs13100804 rs13230063 rs13294973

rs13306054 rs13388848 rs13397036 rs1484838 rs152833 rs16828211 rs16857472

rs16895084 rs16907584 rs16932534 rs1693963 rs16984404 rs1704794 rs17131473

rs17131513 rs1741053 rs1766096 rs1832086 rs1964498 rs1972986 rs1996503

rs2239671 rs2317807 rs2346809 rs2362618 rs2370866 rs2472595 rs2539177

rs2556002 rs2575741 rs2598648 rs2614422 rs2659792 rs2669979 rs2686971

rs2687152 rs2704134 rs2720777 rs2769116 rs2774477 rs2820132 rs28399468

rs2840054 rs28495424 rs28575733 rs28645720 rs28873202 rs2946650 rs297583

rs3218521 rs34522123 rs34591674 rs34681058 rs34829079 rs34893665 rs34912894

rs35010833 rs35224109 rs35843992 rs35885593 rs3771226 rs3821231 rs3874053

rs3912913 rs4017124 rs4043971 rs4086410 rs4089195 rs4097469 rs4147847

rs4236561 rs4253866 rs4310904 rs4360514 rs4542925 rs4646339 rs4646788

rs4726690 rs4983501 rs5570 rs593120 rs6122060 rs620841 rs6416668

rs6472977 rs6723949 rs7032197 rs7136278 rs7201947 rs7250513 rs7291110

rs7356526 rs7434011 rs7551405 rs7560407 rs7577813 rs7776829 rs7940703

rs7958420 rs8187823 rs8192821 rs8192862 rs9435653 rs9472097 rs9483597

rs9604096 rs9730887 rs9843032 rs9929860 rs9959523

Table 6.8: Associated SNPs for Barretts Oesophagus
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SNP IDs

rs10134246 rs10134344 rs10135705 rs10141936 rs1015024 rs10179370 rs10184186

rs10223138 rs1037690 rs10434638 rs10434639 rs10472138 rs10472140 rs10472652

rs10472653 rs10472660 rs10508543 rs1060740 rs10760337 rs10805815 rs10865554

rs10940743 rs10940744 rs11159423 rs1145586 rs1154929 rs11625030 rs11704577

rs11745355 rs11847376 rs11847499 rs11850024 rs11852146 rs1186981 rs11964028

rs11965182 rs11965221 rs1202314 rs12283 rs12339663 rs12431425 rs12432206

rs12635804 rs12637983 rs12657778 rs12881175 rs12894007 rs13127257 rs13130999

rs13162517 rs13163024 rs13163337 rs13167044 rs13167620 rs13180575 rs13220759

rs1329038 rs13292783 rs13403932 rs13404368 rs13404447 rs13408023 rs1341697

rs1384173 rs1476077 rs1554328 rs1554454 rs1555363 rs1569333 rs16826180

rs16863913 rs16878701 rs16907813 rs16945290 rs16945332 rs16945351 rs16959865

rs16962801 rs17039107 rs17047634 rs17054165 rs17054866 rs17054922 rs17135297

rs17141517 rs17141543 rs17274597 rs17585174 rs17754673 rs1845829 rs1894962

rs1927364 rs1927367 rs2015035 rs2064003 rs2064005 rs2067044 rs2078142

rs217742 rs2178887 rs2182621 rs2205224 rs2220962 rs2221205 rs2270810

rs2270811 rs2272143 rs2401694 rs2430586 rs2703342 rs2887940 rs3024981

rs3024985 rs3129317 rs3777054 rs3794110 rs3803603 rs3822720 rs3829268

rs4234891 rs4241333 rs4280626 rs4296806 rs4397136 rs4405799 rs4418106

rs4432692 rs4455559 rs4470767 rs4470768 rs4509026 rs4515097 rs4558343

rs4576150 rs4594479 rs4621562 rs4637160 rs4645333 rs4676917 rs4677252

rs4677261 rs4677262 rs4677263 rs4677265 rs4677266 rs4691168 rs4691170

rs4748405 rs4748406 rs4748408 rs4748411 rs4748412 rs4750298 rs4767479

rs4814325 rs4814755 rs4814756 rs4814759 rs4823088 rs4854402 rs4854404

rs4854405 rs4854406 rs4866028 rs4866114 rs4866340 rs4899750 rs4959685

rs4959688 rs5000630 rs5007588 rs5997619 rs6035066 rs6045443 rs6045454

rs6045474 rs6081192 rs6081223 rs6136416 rs620590 rs6420918 rs6514907

rs6548267 rs6548268 rs6574529 rs6574532 rs6727076 rs6751638 rs6764873

rs6775343 rs6808382 rs6844945 rs6877027 rs6894312 rs6898404 rs6986186

rs6996562 rs7068684 rs7075270 rs7142797 rs7149937 rs7152418 rs7153010

rs7336772 rs7580145 rs7612030 rs7613484 rs7619189 rs7701168 rs7723606

rs7728809 rs7901640 rs7912011 rs7937602 rs8006733 rs8010423 rs8017083

rs8017997 rs8018470 rs8021467 rs8022661 rs8060282 rs8076439 rs890895

rs911115 rs9292282 rs9308098 rs9323679 rs941681 rs9459275 rs9518737

rs9582585 rs966163 rs9826357 rs9923273 rs993920 rs9942307

Table 6.9: Associated SNPs for Reumatoid Arthritis
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