

IMPROVED MODEL-DRIVEN ENGINEERING

WITH STAGED CODE GENERATORS

Yannis Valsamakis

Thesis submitted in partial fulfillment of the requirements for the
Masters’ of Science degree in Computer Science

University of Crete
School of Sciences and Engineering

Computer Science Department
Voutes, Heraklion, GR-70013, Greece

Thesis Advisor: Prof. Anthony Savidis

1

2

University Of Crete
Computer Science Department

IMPROVED MODEL-DRIVEN ENGINEERING

WITH STAGED CODE GENERATORS

Thesis submitted by
Yannis Valsamakis

in partial fulfillment of the requirements for the
Masters’ of Science degree in Computer Science

THESIS APPROVAL

 Author: ___

 Yannis Valsamakis, Department Of Computer Science

Committee approvals: ___

Anthony Savidis
Professor, Thesis Supervisor

Yannis Tzitzikas
 Assistant Professor, Committee Member

Irini Fundulaki
Principal Researcher of ICS-FORTH, Committee Member

Department approval: ___

Angelos Bilas
Professor, Director of Graduate Studies

Heraklion, October 2013

3

4

Abstract

The amount of software systems’ source code today practically explodes.

Commercial software systems such as games consist of hundreds of thousands lines

of code. The main challenge of developing such systems is connected with

maintainability and extensibility issues. The software engineering of such systems

focuses on the design level, where the use of advanced programming techniques is

mandatory.

Model-Driven Engineering (MDE) is an advanced programming technique based

on model reuse and evolution. In general, MDE involves tools, models, processes,

methods and algorithms addressing the demanding problem of (semi-)automated

generation of source code. On the one hand the involved tools improve the

deployment of MDE; on the other hand they cause several problems. One of the

most challenging problems is the maintenance issue inherent in model-driven code

generators. The problem appears in the development life cycle. In particular, the

auto-generated source code is altered and supplemented manually by developers to

complete the developing project. The manually-written source code is overwritten

by the code re-generation caused by the generative MDE tool. Additionally, while

MDE is a widely used software engineering approach it is typically practiced

separately from the rest of the development process that takes place within an

Integrated Development Environment (IDE). Therefore, there are numerous MDE

tools included as plugins of some IDEs, however a large number of them cannot be

properly incorporated.

In this thesis, we propose an alternative approach for MDE, using an advanced

programming feature; metaprogramming, which is supported by several languages.

Our approach is based on the following principles: (i) the MDE tool is invoked as part

of the metaprogram evaluation; (ii) instead of generating code, the MDE tool

generates source fragments as abstract syntax trees (ASTs); (iii) the generated source

fragments are directly inserted into the main program source through generator

5

macros of the metaprogram; and (iv) the resulting program that incorporates both

model code and custom application code can be normally compiled to produce the

final application.

We have carried out the proposed approach in the Delta programming language,

which supports compile-time metaprogramming. Finally, we have deployed enough

case studies to test the validity and the effectiveness of our approach.

6

ΒΕΛΤΙΩΜΕΝΗ ΟΔΗΓΟΥΜΕΝΗ ΑΠΟ ΜΟΝΤΕΛΑ ΑΝΑΠΤΥΞΗ ΛΟΓΙΣΜΙΚΟΥ

ΜΕ ΓΕΝΝΗΤΡΙΕΣ ΚΩΔΙΚΑ ΠΟΥ ΕΦΑΡΜΟΖΟΝΤΑΙ ΠΡΙΝ ΤΗ ΜΕΤΑΓΛΩΤΤΙΣΗ

Περίληψη

Το μέγεθος του πηγαίου κώδικα των συστημάτων λογισμικού σήμερα αυξάνεται

εκθετικά. Τα εμπορικά συστήματα λογισμικού όπως τα παιχνίδια αποτελούνται από

εκατοντάδες χιλιάδες γραμμές κώδικα. Το κυρίως πρόβλημα της ανάπτυξης ενός

συστήματος τέτοιας κλίμακας συνδέεται με θέματα συντήρησης και επέκτασης. Η

τεχνολογία ανάπτυξης τέτοιων συστημάτων επικεντρώνεται κυρίως στο σχεδιαστικό

επίπεδο, όπου η χρήση προηγμένων προγραμματιστικών τεχνικών κρίνεται

απαραίτητη.

Η ανάπτυξη λογισμικού οδηγούμενη από μοντέλα (Model-Driven Engineering,

MDE) είναι μία προηγμένη προγραμματιστική τεχνική η οποία βασίζεται στη

δημιουργία, επαναχρησιμοποίηση και εξέλιξη μοντέλων. Γενικά, το MDE

επικαλείται εργαλεία, μοντέλα, διεργασίες, μεθόδους και αλγόριθμους που

αντιμετωπίζουν το απαιτητικό πρόβλημα της (ημί-) αυτόματης παραγωγής πηγαίου

κώδικα. Από τη μια πλευρά η χρησιμοποίηση εργαλείων βελτιώνει την εφαρμογή

του MDE, από την άλλη όμως προκαλούνται αρκετά προβλήματα. Ένα από τα πιο

σοβαρά προβλήματα αφορά θέματα συντήρησης που βρίσκονται εγγενώς στα

εργαλεία παραγωγής κώδικα που βασίζονται σε μοντέλα. Το πρόβλημα αυτό

εμφανίζεται κατά την διάρκεια του κύκλου ανάπτυξης λογισμικού. Συγκεκριμένα, ο

αυτόματα παραγόμενος πηγαίος κώδικας τροποποιείται και συμπληρώνεται

κατάλληλα από τους προγραμματιστές ώστε να ολοκληρωθεί το υπό ανάπτυξη έργο.

Ο πηγαίος κώδικας που προστίθεται με το χέρι χάνεται όταν ξαναδημιουργηθεί ο

αυτόματα παραγόμενος πηγαίος κώδικας από ένα μοντέλο. Παρόλο που το MDE

χρησιμοποιείται ευρέως ως μεθοδολογία κατασκευής λογισμικού, συνήθως είναι

απομονωμένο από την υπόλοιπη διαδικασία που λαμβάνει χώρα σε ολοκληρωμένα

περιβάλλοντα ανάπτυξης (IDE). Παρότι υπάρχουν MDE εργαλεία που διατίθενται ως

7

επεκτάσεις σε κάποια IDE, ωστόσο ένας μεγάλος αριθμός από αυτά δεν

ενσωματώνονται επαρκώς.

Σε αυτή την εργασία, προτείνουμε μια εναλλακτική προσέγγιση για MDE,

χρησιμοποιώντας ένα προηγμένο χαρακτηριστικό, τον μετα-προγραμματισμό, ο

οποίος υποστηρίζεται από αρκετές γλώσσες προγραμματισμού. Η προσέγγιση μας

είναι βασισμένη στις ακόλουθες αρχές: (i) το MDE εργαλείο επικαλείται σαν μέρος

της αποτίμησης του μετα-προγράμματος, (ii) αντί να παραχθεί πηγαίος κώδικας, το

MDE εργαλείο δημιουργεί τμήματα κώδικα στην μορφή αφηρημένων συντακτικών

δέντρων (AST), (iii) τα δημιουργημένα τμήματα κώδικα εισάγονται άμεσα στο

κυρίως πηγαίο πρόγραμμα μέσω μακροεντολών του μετα-προγράμματος, και (iv) το

πρόγραμμα που προκύπτει ενσωματώνει τον αυτόματα παραγόμενο κώδικα με τον

επιπλέον κώδικα της εφαρμογής και μεταγλωττίζεται κανονικά ώστε να παραχθεί η

τελική εφαρμογή.

Έχουμε εφαρμόσει την προτεινόμενη προσέγγιση στην γλώσσα

προγραμματισμού Delta, η οποία υποστηρίζει μετα-προγραμματισμό κατά τη

μεταγλώττιση (compile-time metaprogramming). Τέλος, έχουμε αναπτύξει αρκετά

σενάρια χρήσης ώστε να ελέγξουμε την εγκυρότητα και την αποτελεσματικότητα

της προσέγγισής μας.

8

Acknowledgements

First of all, I would like to thank my supervisor, professor of the University of

Crete, Anthony Savidis, initially for trusting me and then for his continuous support

and his valuable advice. I would also like to thank Yannis Lilis for his excellent

cooperation and for his continuous support. I am also grateful to the professors

Yannis Tzitzikas and Irini Fundulaki for participating in the supervisory committee. I

would also like to thank the Computer Science Department of Greece for offering a

high level of academic education and the HCI Laboratory of ICS-FORTH for providing

a high-level research environment.

I would also like to thank my friends for supporting me all through this period.

Finally, most of all, I would like to thank my parents Flora and Nikos. I am grateful for

all their love and support. Without them, I would not be the person I am today.

9

Στην οικογένεια μου

10

Contents

Abstract ... 4

Περίληψη ... 6

Acknowledgements ... 8

Contents .. 10

List of Figures ... 13

List of Tables .. 18

1. Introduction ... 20

1.1 Model-Driven Engineering ... 20

1.2 Multistage Languages .. 23

1.3 Problem Definition .. 27

1.4 Primary Contributions ... 29

1.5 Thesis structure ... 30

2. Related Work ... 31

2.1. General Purpose MDE tools ... 31

2.2. Specific Mission MDE tools... 40

3. Improved Process .. 46

3.1 Tool Chain .. 47

3.1.1 Invocation ... 48

3.1.2 Deployment .. 50

3.2 Producing ASTs .. 52

3.3 Transforming ASTs ... 53

3.3.1 Batches - Separate Metaprograms ... 53

3.3.2 Stages - Embedded Metaprograms .. 55

3.3.3 Combining Batches and Stages ... 55

3.4 Unparsing ASTs .. 56

11

4. Case Studies ... 58

4.1 User Interface Builder.. 58

4.1.1 Applying our approach for UIs .. 59

4.1.2 Developing User Interfaces .. 66

4.2 Class Builder .. 71

4.2.1 Applying our approach for Class Hierarchy .. 71

4.2.2 Developing Applications ... 73

4.3 Automatic User Interfaces ... 77

4.3.1 Defining an alternative UI model ... 78

4.3.2 The Auto-generation UIAPI engine ... 82

4.3.3 User-Interface Design Issues .. 84

4.3.4 Developing UI for a Library ... 86

4.4 Combined Deployment.. 89

4.4.1 Developing a paint application ... 90

4.4.2 Developing a library application ... 92

5. Discussion .. 94

5.1 Maintenance .. 94

5.1.1 Addressing maintenance issues so far ... 95

5.1.2 How our approach solves maintenance ... 97

5.2 Tradeoffs of our approach ... 100

5.3 Applicability of our approach .. 101

6. Conclusions and Future Work ... 103

Bibliography ... 106

12

13

List of Figures

Figure 1. The core idea of Model-Driven Engineering ... 21

Figure 2. Top: high-level overview of model-driven processes outlining the general tool roles

and respective input / output links; Bottom: Architecture of generative model-driven tools:

(1) interactive model editing; (2) code generation from models; and (3) tags inserted in the

generated source code to carry model information and enable model reconstruction. 22

Figure 3. Separation between MDE deployment and the remaining development process. . 23

Figure 4 Evaluation of generative macros with an extra stage. .. 24

Figure 5 Example of an abstract syntax tree for three statements using the wx widgets library:

(i) left: creating a frame widget; (ii) middle: setting its size; and (iii) right: creating a text

widget. ... 25

Figure 6 Common growth of application code around the originally generated code; future

custom extensions and updates eventually lead to bidirectional dependencies. 27

Figure 7 The primary maintenance issues in the deployment of generative model-driven

tools either individually (left) or collectively (right). ... 28

Figure 8. Using the EMF tool in Eclipse; Area 1 is the Palette toolbar of the Model constructs;

Area 2 is the “action” area of Models construction; Area 3 is the view/edit the data

constructs of the Models; Area 4 is the project explorer of Eclipse Platform. 32

Figure 9. Using the Actifsource tool in Eclipse Platform; Area 1 is the “action” area of model

construction; Area 2 is the Palette toolbar of the Model constructs; in Area 3 you can

view/edit the data of constructs of models; Area 4 is the navigation of project tool. 33

Figure 10. Using the Umple tool online version; Area 1 is the “action” area of model

construction; Area 2 is the toolbar of Umple; in Area 3 you can view/edit the code that will

be generated. .. 34

Figure 11. Using the Papyrus; Area 1 is the “action” area of model construction; Area 2 is the

Palette toolbar of the Model constructs; in Area 3 you can view/edit the data of constructs

of models; in Area 4,5 you can see in two different ways the outline of the model; Area 6 is

the navigation of project tool. ... 36

Figure 12. Using the Modelio tool; Area 1 is the “action” area of model construction; Area 2

is the toolbar of the Model constructs. ... 37

14

Figure 13. Using the Altova UModel; Area 1 is the “action” area of model construction; Area

2 is the toolbar of the Model constructs; in Area 3 you can view/edit the data of constructs

of models; in Area 4 you can see the Diagram model tree view. ... 38

Figure 14. Using the Enterprise Architect; Area 1 is the “action” area of model construction;

Area 2 is the toolbar of the Model constructs; in Area 3 is the project navigation of the tool.

 ... 39

Figure 15. Using the Apollo tool; Area 1 is the “action” area of model construction; Area 2 is

the Palette toolbar of the Model constructs; in Area 3 you can see the outline of Model’s

diagram; in Area 4 is the project explorer of the Apollo tool. ... 40

Figure 16. Using the wxFormBuilder; Area 1 is the editor of the UI model construction; Area 2

is the widgets toolbar of the UI Model constructs; Area 3 is the view/edit the widgets’

properties-events; in Area 4 is the tree view of the constructed UI Model 41

Figure 17. Using the GrafiXML; Area 1 is the editor of the UI model construction; Area 2 is

the toolbar of the UI Model constructs; Area 3 is the view/edit the properties-events; in Area

4 is the project explorer of the GrafiXML tool. ... 42

Figure 18. Using the Glade; Area 1 is the editor of the UI model construction; Area 2 is the

widgets toolbar of the UI Model constructs; Area 3 is the view/edit the widgets’ properties;

in Area 4 is the tree view of the constructed UI Model. ... 42

Figure 19. Using the wxGlade; Area 1 is the editor of the UI model construction; Area 2 is the

widgets toolbar of the UI Model constructs; Area 3 is the view/edit the widgets’ properties;

in Area 4 is the tree view of the constructed UI Model. ... 43

Figure 20. Using the wxDesigner; Area 1 is the editor of the UI model construction; Area 2 is

the widgets toolbar of the UI Model constructs; Area 3 is a view/edit dialog of widgets

(opening when double click in the widget in the editor); in Area 4 is the tree view of the

constructed UI Model. ... 44

Figure 21. Using the Blend; Area 1 is the editor of the UI model construction; Area 2 is the

toolbar of the UI Model constructs; Area 3 is a view/edit widgets properties; in Area 4 is the

project explorer of the Blend tool. .. 45

Figure 22. Encapsulating the model-driven process directly in the application source through

staged metaprograms. Step 1: Staged code execution macros invoke the MDE tool that

creates the model and converts its corresponding code as ASTs. Step 2: Staged code

generator macros take the ASTs as input and insert the model-driven code into the source

along with custom application code. Step 3: The transformed source is normally translated

or evaluated to produce the final binary of the entire application. 46

15

Figure 23. Invocation of MDE tools in the beginning of build process through staged code. 49

Figure 24. Deployment of MDE tools in the development process .. 51

Figure 25. Running meta-programs which load the binary files of AST; transform and save it

back to the disk. .. 54

Figure 26. In the left part, we can see a form of our approach source code; in the right part

the source code of a classic model-driven process. .. 57

Figure 27. Deployment of approach focusing on User Interface builder. 59

Figure 28. Code generation; in label 1 the application for a pure dialog code with embedded

staged code is outlined; in label 2 there is the result of the build process (i.e. the generated

code which is read-only); in label 3 the pure dialog is depicted. .. 60

Figure 29. Overview of the compile-time MDE deployment through staged

metaprogramming. Actions performed during the metaprogram execution (top right) and

their corresponding source code lines (bottom) are shown with matching numbers 61

Figure 30. Cut UI parts of Calculator in order to transform scientific calculator in a simple

calculator ... 63

Figure 31. Crop the auto-generated frame from Shapes’ toolbar User-Interface. 63

Figure 32. Merge two independent UI code; Calculator and Calendar UIs in one UI

application. .. 64

Figure 33. Create & Insert Shapes’ User-Interface toolbar in the Paint’s application User-

interface. ... 65

Figure 34. Editing the tab’s text “Home” of the Paint’s application User-Interface. 65

Figure 35. Two example scenarios (middle, right) of user-interface source code composition

relying on AST manipulation on top of the original GUI authored with the interface builder

(left); updates on the scenarios are automated and are directly remapped on top of the

original GUI by simple performing recompilation. .. 67

Figure 36. The GUI parent object typically required ... 67

Figure 37. Meta-code to load, manipulate (four labeled steps) and inline the source code for

the modified calculator. .. 68

Figure 38. Examples of the generated interfaces: Left: Original application GUI authored by

the interface builder; Middle: Custom toolbar authored as a separate interface; Right:

Composing the two previous interfaces through AST manipulation. 69

Figure 39. The dialog open at compile-time to handle the models of development 70

Figure 40. Deployment of approach focusing on Class builder ... 71

16

Figure 41. The internal custom model editor launched during compilation case study of

Geometry. .. 72

Figure 42. The internal editor code as an inherent part of the staged metaprogram. 73

Figure 43. Top-left: Ecore model of the target class hierarchy; Top-right: Code structure (AST)

generated by the model; Bottom: Deployment code for loading and converting the model to

AST, performing manual updates through AST editing and inlining the final AST code. The

initial value of the meta-variable ast corresponds to the code structure shown at top-right.74

Figure 44. Supporting quick access to all class hierarchy entities through AST decoration. The

AST shown corresponds to the generated hierarchy of Figure 43, while the highlighted path

ast.Geometry.Circle.area.body was used to insert custom method functionality.

 ... 75

Figure 45. Meta-code to load, manipulate and inline the source code for the library. 77

Figure 46. List’s User Interface description; at the top there is the description when

dataFlowType is “In” or “InOut”; at the bottom there is the description when dataFlowType

is “Out”. ... 81

Figure 47. String’s User-Interface description; on the left side is the UI when dataFlowType is

“In” or “InOut”; on the right side is the UI when dataFlowType is “Out”. 82

Figure 48. The auto-generation UI engine architecture .. 83

Figure 49. Default embedded metacode using the auto-generation tool we developed 85

Figure 50. User-Interface produced by auto-generation UI engine. 87

Figure 51. Manipulating the auto-generated User-Interface through ASTs transformations. 87

Figure 52. Meta-code to include the specification(model UI), the UIAPI engine and the library

of manipulating UI for AST’s operators in label 1; Meta-code to call the auto UIAPI engine in

label 2; Meta-code to transform the auto-generated AST’s GUI in labels 3,4,5 and inline the

ASTs in order to generate the Library’s application source code in label 6. 88

Figure 53. Deployment of approach focusing on combined deployment; use more than one

MDE tools. ... 89

Figure 54. Meta-code to load, manipulate and inline the source code of all modeled aspects

of our system. The result is a fully functional paint application like that shown on the right of

Figure 38. ... 91

Figure 55. Left: Ecore model of the target class hierarchy; Right: Code structure (AST)

generated by the model .. 93

Figure 56. Using EMF tool to design and implement class Person. ... 95

17

Figure 57. Top: Traditional MDE process where the generated source code files are manually

updated with fill-in and extra code. Bottom: The proposed MDE process where the tool

output is in AST form and the programmer deploys embedded metaprograms to load, fill,

edit source code in the form of ASTs and generate a transient code version that will be

integrated along with the custom application. ... 98

Figure 58. Developing a Person example in our approach and the result of the generated

code in label 4. .. 99

Figure 59. Applying the generative MDE process with runtime staging; the application

composes intermediate or source text and then deploys the language reflection API for

compilation and invocation (JIL stands for Java Intermediate Language, CIL for the Common

Intermediate Language of .NET). The entire runtime conversion, composition and

compilation process is cached – it is only repeated when the ASTs change, i.e. upon

regeneration. ... 102

18

List of Tables

Table 1. Comparing the approaches which deal with maintenance issues 100

19

20

Chapter 1

Introduction

1.1 Model-Driven Engineering

Model-Driven Engineering (MDE) [1] is an approach in software development

which focuses on creating and exploiting domain models. These models include

abstract representations of the knowledge and activities that govern a particular

application domain, rather than on the computing or algorithmic concepts. The

general philosophy of MDE rents its roots to Model-Driven-Architecture (MDA) of

the Object Management Group [2], emphasizing accelerated (rapid) application

development together with model-oriented reuse and evolution.

The core idea of Model-Driven Engineering is depicted in Figure 1. Using the MDE tools

Platform Independent (PI) Models are constructed. Then, it is possible to capitalize on PI

models, use them to automatically derive Platform-Specific (PS) models through

transformation engines and ultimately utilize code generators to automatically produce the

source code corresponding to the modeled entities. The auto-generated source code can

then be extended or linked with custom application code to deliver the final application.

During the development life cycle PI Models can be edited. In this case, the PS

Models have to be re-constructed with the use of transformation engines and the

21

auto-generated source code has to be re-generated in order to update the changes.

Moreover, PS Models can be edited in the development life cycle. In this case, the

auto-generated source code has to be regenerated in order to transfer the changes

from model to source. In addition, the PI models can be kept updated by appropriate

Transformation engines during the development life cycle. In general, it is necessary

to keep all levels of model abstraction updated so as to have the ability to extend

any of them during development life.

Figure 1. The core idea of Model-Driven Engineering

Additionally, apart from model to model and model to text transformations there

are text to model transformations. In particular, during the development life cycle

the auto-generated source code is extended. The model which generates it is not

updated according to the extensions of the source code. So, appropriate tools are

used to create models from the source code (i.e. Model-Driven reverse Engineering).

A lot of difficulties appear in this process and it is not always feasible to succeed.

There is an example for general purpose MDE tools in literature like Papyrus [22] and

Modelio [26] which support full development life cycle and are described in the next

chapter.

In general, model-driven engineering (MDE) involves tools, models, processes,

methods and algorithms addressing the demanding problem of design-first system

engineering. An important authoring requirement for such tools is to involve notions

and concerns inherent in the design domain. In this context, either general-purpose

22

notations are adopted in software modeling, or mission-specific models are offered

for very specific tasks. Then, target implementations are derived, usually with

various intermediate transitions from the abstract to the final implementation

domain. This discipline is outlined under Figure 2, showing the specialization from

abstractions to instances as a transformation process.

Figure 2. Top: high-level overview of model-driven processes outlining the general tool roles and respective input
/ output links; Bottom: Architecture of generative model-driven tools: (1) interactive model editing; (2) code
generation from models; and (3) tags inserted in the generated source code to carry model information and
enable model reconstruction.

Additionally, there are two categories of model driven tools distinguished by the

way their outcomes can be deployed: generative tools, producing source code, and

executors, offering custom runtimes which instantiate the behavior of their input

models. On the one hand, the former concerns tools supporting a modeling-all-the-

way discipline, with emphasis shifted in eliminating the need for manually written

source code. On the other hand, the latter relates to tools which automate the

engineering of various demanding system features, however, still relying on hand-

written source code to complete a fully-fledged system. We consider both universes

to be equally valuable and useful in the model-driven tool arena, however in this

thesis we focus on generative model-driven tools, and improve them so as to

address a maintenance issue they cause.

ModelsEditors Transformers

Generators Code

Executors Behavior
abstraction domain

transformation domain

implementation domain

Instances

deployment domain

after custom user
updates and extensions

Code
Generator Code Code′

Tags
Model

Reconstructor

tags embedded as
commented-out code or
as custom annotations

tags are read to
regain model

Modeling
Framework

1

2

3

Model

23

Furthermore, the auto-generated source code can then be extended or linked

with custom application code to deliver the final application. While MDE is a widely

used software engineering approach it is typically practiced separately from the rest

of the development process (Figure 3). An MDE tool is used to create a model and

generate its corresponding source code while that code is then incorporated into an

integrated development environment (IDE) for further processing and linking with

the remaining application code. In this sense, MDE requires third party tools that

cannot always be properly integrated in the deployed IDE.

Figure 3. Separation between MDE deployment and the remaining development process.

So, we mainly focus on the maintenance issue we address in our work and also

dealing with bringing the MDE deployment as close as possible to the actual

application development.

1.2 Multistage Languages

Generally, metaprogramming relates to functions which generate code, i.e.

programs producing other programs, while metaprogramming languages take the

task of code generation and support it as a first-class language feature. This is a sort

of reification of the language code generator enabling programmers to write code

which generates extra source code. When available as a macro system before

compilation, the method is known as compile-time metaprogramming [3].

Alternatively, if offered during runtime – usually built on top of the language

Model MDE Tool

Custom Code

Code
Generator

Application

Generated Code

Translator

MDE
deployment

Development
process

24

reflection mechanism – it is called runtime metaprogramming. We focus on compile-

time metaprogramming as it is more powerful than its runtime case. In this context,

code generating macros are functions manipulating code in the form of ASTs, and

are evaluated by a separate stage preceding normal compilation. Then, they are

substituted in the source text by the code they actually produce. Due to the

introduction of an extra stage, and because macros may generate further macros,

thus requiring extra staging, such languages are also called multistage languages [4]

[5]. In our work we use Delta [6], a recent publicly available dynamic object-object

language along with its compile-time metaprogramming extension [7]. Popular

meta-languages include Lisp [8], Scheme [9], MacroML [10], MetaOCaml [11],

MetaLua [12] and Converge [13].

In the Delta language, meta-code involves meta definitions and inline directives

(i.e., code generation), prefixed with the & and ! symbols respectively. In particular,

inline directives accept an expression returning an AST and are the only way to insert

extra code into the main program.

Figure 4 Evaluation of generative macros with an extra stage.

As shown in Figure 4, during the first stage the compiler: (i) collects all scattered

meta-code into a single metaprogram; (ii) evaluates the program while internally

recording the output of the inline calls; and (iii) removes all meta-code from the

& defs2

& defs6

!(AST-expr4)

!(AST-expr8)

defs2

inline AST-expr4

defs6

inline AST-expr8

defs1

defs3

defs5

defs7

defs1

defs3

defs5

defs7

inserted AST-expr 4

inserted AST-expr 8

initial
main program

extracted
staged code

updated
main program

first stage evaluates the staged code and
updates the initial program

25

initial program and replaces inline directives by the code they actually produced. For

example, consider the following Delta code.

using wx;

&ast = ui::load_ast ("<some ast path>");

!(ast);  code generation (inline) directive

The first line is normal code, a typical directive to import the wxWidgets GUI

library. But the next two lines are meta-code, distinguished by & and ! prefixes. The

second line loads an AST from a file, assume the loaded AST to be the one of Figure 5.

The third line inserts the code implied by this AST into the main program. As a result,

after the first stage, and before normal compilation, the main program is:

using wx;

frm = wx::frame_construct(nil, "ID_ANY", "frame");

frm.setsize(wx::size_construct(450, 304));

txt = wx::textctrl_construct(frm, "text");

Figure 5 Example of an abstract syntax tree for three statements using the wx widgets library: (i) left: creating a
frame widget; (ii) middle: setting its size; and (iii) right: creating a text widget.

Such code is only transient, and exists inside the compiler temporarily during the

first compilation stage. It is shown here for clarity. After this first stage, the resulting

source text constitutes the input to the normal compilation phase, as if it was

originally written this way by the programmer.

stmts

=

lvalue

frm

call

wx::frame_construct

nil “ID_ANY” “frame”

args

call_method

frm setsize args

call

wx::size_construct

450 304

args

=

lvalue

txt

call

wx::textctrl_construct

frm “text”

args

frm = wx::frame_construct(nil,

"ID_ANY", "frame");

frm.setsize(wx::size_construct

(450, 304));

txt = wx::textctrl_construct(

frm, "text");

26

In this example, the generated code implicitly depends on the manually written

code requiring that it imports the wxWidgets library to allow its usage in the

generated code. In a more elaborate case, the code to be inserted will be associated

with metadata specifying any such dependencies and thus allowing them to be

generated as well. For instance, the first line of the above example could have been

generated by the following code.

!(load_deps());loads AST of ‘using wx;’

Such metadata can provide a more structured usage of the loaded ASTs enabling

establishing standardized interfaces between the generated code segments and the

rest of the code. For example consider the following code:

&data=load_metadata("<path>");

!(load_ast(data.dependencies));

 …other normal program dependencies here…

!(load_ast(data.definitions));

 …other normal program definitions here…

!(load_ast(data.main_code));

 …other normal program program code here…

function f (!(load_ast(data.f_args)))

{

 !(load_ast(data.f_body));

}

The loaded metadata are expected to identify the ASTs for any dependencies,

definitions and main code so that they are loaded and incorporated in the final code.

This also provides a clear interface for manually inserted code that may depend on

generated code segments and thus should be placed after the corresponding

generative directive. Finally, the granularity of the generated code and the allowed

generative directive locations are not limited to top-level code segments, but

includes multiple forms and locations. For instance, the above code loads an AST

containing a list of statements in order to generate the body of a function. Overall,

the AST representation and the code generation scheme offer considerable flexibility,

allowing programmers select how fine-grained or coarse grained the source code

fragments should be based on the deployment scenario.

The previous examples show only the creation and inlining of an AST value.

However, metaprograms typically operate on AST values, adding, removing or

27

transforming nodes they contain. For example, consider that we wanted to generate

the above code but replacing the last assignment with a print statement. To achieve

this, we would have to obtain and manipulate the children of the root stmts node:

&ast = ui::load_ast ("<some ast path>");

&children = ast.get_children();  get children from stmts

&children.removeLast();  drop last statement

&children.insertLast(<<std::print("<Hello");>>);  replace it

!(ast);  generate the transformed code

The notation <<…>> is not a conceptual symbolism, but actual Delta syntax

relating to a meta-language construct known as quasi-quoting. Essentially, it is a

compile time operator that converts the surrounded raw source-text to its

respective AST representation. For instance <<1+2>> is equivalent to the AST of the

expression 1+2, not merely the character string ‘1+2’.

1.3 Problem Definition

MDE tools cannot optimally address all required features of an application at the

software engineering level. As a result, custom source code amendments and

modifications are always anticipated. Even if advanced methods are deployed to

modularize and decouple the generated code from the rest of the application code,

one can never exclude that the possibility that interdependencies or custom updates

may appear.

Figure 6 Common growth of application code around the originally generated code; future custom extensions

and updates eventually lead to bidirectional dependencies.

generated
code

app code

generated
code

app code

code updates

application code typically extends
around generated code

generated code is updated (filling
gaps or using app features)

generated
code

Initial code is generated
from the model

28

The typical lifecycle of the generated code is outlined under Figure 6. As shown, a

dependency is introduced by having the application logic directly refer and deploy

generated components (middle part). But for most languages this is overall

insufficient for effectively linking application and generated code, practically

requiring the generated code to be also manually modified. Typical updates relate to

application functionality importing and invoking, application-specific event handling,

linkage to third-party libraries that are not known to the model-driven tool, code

improvement or refactoring. This situation very quickly results into many

bidirectional dependencies (right part).

The latter maintenance issues are detailed in the typical generative model-driven

process shown in Figure 7. Initially, if the code is not changed, source regeneration

and model reconstruction are well-defined (left, steps 1-4). In other words, the MDE

tool works perfectly for both steps of the processing loop. However, once the

generated code is updated (left, step 5), two problems directly appear. Firstly, tag

editing and misplacing may break model reconstruction (left, steps 6-7), while any

code manually inserted outside the MDE tool causes a model-implementation

conflict. Secondly, source regeneration overwrites all manually introduced updates

(left, steps 8-9). For real-life applications of a considerable scale the latter may lead

to the adoption of the MDE tool only for the first version, or worse, avoiding using an

MDE tool at all.

Figure 7 The primary maintenance issues in the deployment of generative model-driven tools either individually

(left) or collectively (right).

1,2: initial source
code is generated
3,4: model
extraction works
5: initial source
code s extended
and updated
6,7: tag changes
and custom
updates disable
model extraction
8,9: further
regeneration
overwrites
changes and thus
is avoided

Code

Code′

Code
Generator

Model
Reconstructor

5

6

92 



Model

1

4

3

7

8





MDE
Tool1

MDE
ToolN

mission specific

MDE
Tool2

mission specificgeneral purpose

Model1 Model2 ModelN

Code1 Code2 CodeN

Code1 Code2 CodeN

3

 

4 4

55

3: composition
involves manual
editing to link
code

4: repeating
definitions are
dropped

5: conformance
to coding
standards
requires
refactoring

1: models may
overlap on
shared or
interfacing
elements

2: code
repetitions on
shared elements

1

2

29

Maintenance issues also arise when trying to combine the outcome of multiple

MDE tools. When using multiple tools, a single application element may end up

being shared by different models. This means that when the code for each model is

generated, there will be code repetitions for the shared elements (right, steps 1-2).

In this case, the developer has to manually edit the generated sources to drop any

repeated definitions and link the code properly (right, steps 3-4). Furthermore, the

use of different MDE tools implies different code generators and thus different

coding styles and methods present in the generated code. Having all generated

sources conform to specific coding standards inevitably requires manual refactoring

(right, step 5).

1.4 Primary Contributions

Our main contribution is an inversed responsibility model for generator MDE

tools where: (i) the code for implementing model entities becomes available in the

form of ASTs; and (ii) the actual code generation is applied on-demand and in-place

through metaprograms (macros) that are included in the implementation of the

main program and are evaluated at compile-time (i.e. during the build process). This

approach, not only addresses the maintenance issues of traditional generators, but

also sets code manipulation as a first-class concept in the model-driven engineering

and reveals the value of using a metaprogramming language in this context.

Overall, we propose an improved process where the MDE tool outcome is read-

only, decoupled from source code generation, letting the application directly deploy

and manipulate generated code fragments, instead of being built around them. In

this context, we also discuss how AST composition allows combining sources whose

code originates from multiple MDE tools.

Additionally, we explore the option of adopting metaprogramming practices to

allow specifying the deployment of an MDE tool directly in the program source.

Essentially, we propose launching the MDE tool and generating the model code as

30

part of the metaprogram. Then the generated code along with the manually edited

source code can be normally compiled to produce the final application.

1.5 Thesis structure

The rest of this work is organized as follows; In Chapter 2, we review most

advanced and popular general-purpose related MDE tools. Chapter 3 follows, which

is the main core of this thesis, where our proposal for an improved model-driven

approach is described. It begins by outlining the steps of the improved model-driven

engineering and then analyzes the ‘key’ steps of the proposed approach in each of

the subsections. Chapter 4 gives a description of the Case Studies, we have carried

out in order to test the proposed MDE approach of our work and assess the

expressive power and its engineering validity. Chapter 5 concludes the work and

identifies issues for further research work.

This work has resulted in the publication of the following paper:

Self Model-Driven Engineering Through Metaprograms, Yannis Lilis, Anthony

Savidis and Yannis Valsamakis, PCI 2013, September 19 - 21 2013,

Thessaloniki, Greece

Through the following link you can download, view and use the deployment

of our approach using specific MDE tools and a specific language which

supports metaprogramming and their Case Studies:

https://app.box.com/mdewithstagedcodegenerators

https://app.box.com/mdewithstagedcodegenerators

31

Chapter 2

Related Work

In this chapter, we review the most advanced and popular MDE tools. We focus on

each tool which addresses (or not) issues relevant to maintenance which we solve in

this thesis through our approach in order to improve the MDE process. We begin by

reviewing general-purpose MDE tools and then we review specific mission MDE tools.

2.1. General Purpose MDE tools

Acceleo

Acceleo [16] is an open-source code generator from the Eclipse Foundation,

implementing the OMG’s Model-To-Text Language specification. It is independent

from the targeted technology allowing the generation of any textual format using

plugins while it provides an OCL-oriented [17] template-like definition for expressing

custom generators. Acceleo supports incremental generation allowing developers to

regenerate target files without losing any modifications. This is achieved by the use

of explicit [protected] … [/protected] constructs that are translated into

32

tagged comments and mark a code region that will not be overwritten during

regeneration. Nevertheless, any developer intervention on such generated tags may

break regeneration. Furthermore, the placing of such tags requires an a priori

knowledge of the locations requiring manual updates, something not always

available during the design phase. Practically, this means that for each required

update, the developer will have to go to the transformation script, insert a protected

code region, regenerate the code and finally go back to the source to perform the

update. Using our approach, any code updates are performed directly in the source

file while the generated model code, available in a read-only form, is explicitly

deployed on-demand and in-place through metaprogramming.

Figure 8. Using the EMF tool in Eclipse; Area 1 is the Palette toolbar of the Model constructs; Area 2 is the “action”
area of Models construction; Area 3 is the view/edit the data constructs of the Models; Area 4 is the project
explorer of Eclipse Platform.

EMF tool

The Eclipse Modeling Framework (EMF) [14] is a MDE tool plugin of Eclipse [15]. The

EMF project is a modeling framework and code generation facility for building tools

and other applications based on a structured data model. The model itself is

described using the Ecore meta-model, while the code generation targets Java and

utilizes the annotation @generated to specify the automatically generated code

33

segments. By default, all generated code segments include this annotation and are

overwritten upon regeneration. In case the generated code is manually extended,

the @generated annotations should be removed to specify that the annotated

code segments should be maintained and not overwritten upon regeneration.

However, manual extensions cannot be reflected back to the model while model

updates will be discarded for manually extended code. Additionally, misplacing or

forgetting to remove the annotations may result in losing manually written source

code. In the below figure is depicted the EMF tool during construction of a Library

model.

Figure 9. Using the Actifsource tool in Eclipse Platform; Area 1 is the “action” area of model construction; Area 2
is the Palette toolbar of the Model constructs; in Area 3 you can view/edit the data of constructs of models; Area
4 is the navigation of project tool.

Actifsource

Actifsource [18] is a design and code generator tool focusing on domain-driven

software development. It utilizes a template-based code generation approach

including by default various language generator templates, while allowing new ones

34

to be added for any language. Like Acceleo, Actifsource also supports using special

tags to specify protected regions where manually inserted code will not be

overwritten upon regeneration. Again, however, any developer intervention on

these tags will cause maintenance issues when the code is regenerated. In the Figure

9 is depicted the Actifsource during construction of a model.

Figure 10. Using the Umple tool online version; Area 1 is the “action” area of model construction; Area 2 is the
toolbar of Umple; in Area 3 you can view/edit the code that will be generated.

Umple

Umple [19] is a modeling tool that tries to reduce the distance between model and

code by introducing UML abstractions directly into a high-level programming

language code. This way, models become just another abstract view of the code and

the need for extracting the model from the code is eliminated as everything in the

model is represented directly in the code. Umple can generate code for languages

like Java and PHP and allows embedding native code or transforming the generated

code through aspect-oriented facilities. Umple’s philosophy for generated code is

35

that it should never be edited but treated as a development artifact that can be

thrown away and recreated and thus, there is no issue of round-tripping [20] [21].

Our approach, maintains the separation between model and code while overcoming

the round-trip issue through the in-place deployment of code fragments generated

by the model. In the Figure 10 is depicted the Umple online version during

construction of a model.

Papyrus

Papyrus [22] is an open source UML 2 tool based on Eclipse platform and licensed

under the EPL. It can either be used as a standalone tool or as an Eclipse plug-in.

Papyrus is a model-driven tool offering code generation for a variety of languages. It

supports the full MDE development life cycle allowing both model-to-source and

source-to-model transformations. In order to provide the latter, it parses source files

locating specific code structures (e.g. classes, attributes, operations, etc.) in order to

regenerate the model, while treating any additional code they include as metadata.

This full MDE development life cycle means that in order to manually add source

code or change the auto-generated source code deliverable files during

development, there is the option to regenerate an updated model of application

development. This is an important step towards resolving the maintenance issues;

however, it cannot be applied in case the generated code originates from multiple

models. Additionally, such a reverse engineering policy is valid for general purpose

MDE tools but cannot be deployed for mission specific tools. For example, in case of

MDE tools for user-interface code generation, like GrafiXML [23] or GuiBuilder [24],

it is practically impossible to recognize the widget elements by parsing manually

written source code [25]. Our methodology can be deployed for both general-

purpose and mission-specific tools, while still addressing the maintenance issues. In

the Figure 11 is depicted the Papyrus during construction of a model.

36

Figure 11. Using the Papyrus; Area 1 is the “action” area of model construction; Area 2 is the Palette toolbar of
the Model constructs; in Area 3 you can view/edit the data of constructs of models; in Area 4,5 you can see in
two different ways the outline of the model; Area 6 is the navigation of project tool.

Modelio

Modelio [26] is an open source modeling environment based on Eclipse. Although

Modelio is based on an Eclipse RCP, it is a standalone application, not an Eclipse plug-in.

However, Modelio is frequently used in conjunction with Eclipse; both work on the same

source code organization. Similarly to papyrus, it offers code generation for a variety of

languages and supports the full MDE development cycle thus allowing both model-

to-source and source-to-model transformations. For the latter, they parse source

files locating specific code structures (e.g. Classes, Attributes, Operations etc.) in

order to regenerate the model, while treating any additional code they include as

metadata - as Papyrus does. In the Figure 12 is depicted the Modelio during

construction of a model.

37

Figure 12. Using the Modelio tool; Area 1 is the “action” area of model construction; Area 2 is the toolbar of the
Model constructs.

Altova UModel

Altova UModel [27] is a commercial UML modeling software tool from Altova.

UModel can be integrated with Eclipse and Visual Studio as a plug-in. UModel

supports UML 2 diagram types and adds a unique diagram for modeling XML

Schemas in UML. UModel also supports SysML [28] for embedded system developers,

and business process modeling (BPMN notation) [29] for enterprise analysts.

UModel includes code engineering functionality including code generation in Java,

C#, and Visual Basic programming language. UModel supports model interchange

with other UML tools through the XMI standard, integrating with revision control

systems. It also supports reverse engineering of existing applications, and round-trip

engineering. In other words, it supports the full MDE development life cycle allowing

both model-to-source and source-to-model transformations as the Papyrus and

Modelio support. In the Figure 13 is depicted the Altova UModel during construction

of a model.

38

Figure 13. Using the Altova UModel; Area 1 is the “action” area of model construction; Area 2 is the toolbar of
the Model constructs; in Area 3 you can view/edit the data of constructs of models; in Area 4 you can see the
Diagram model tree view.

Enterprise Architect

Enterprise Architect [30] is a visual modeling and design tool based on OMG UML

from Sparx System. Enterprise Architect supports the design and construction of

software systems. It also supports modeling business processes and modeling

industry based domains. Enterprise Architect supports code generation in numerous

languages like Action Script, C, C#, C++, Java etc. Similar to the aforementioned three

tools, it supports the full MDE development life-cycle allowing both model-to-source

and source-to-model transformations. This tool, as the previous ones, parses source

files locating specific code structures (e.g. classes, attributes, operations, etc.) in

order to regenerate the model, while treating any additional code they include as

metadata. Despite being an indispensable commercial MDE tool employed by

several software companies, it still fails to solve the maintenance issue of the specific

39

mission MDE tool (e.g. GUI builder). In the Figure 14 is depicted the Altova UModel

during construction of a model.

Figure 14. Using the Enterprise Architect; Area 1 is the “action” area of model construction; Area 2 is the toolbar
of the Model constructs; in Area 3 is the project navigation of the tool.

Apollo

Apollo [31] is a robust and flexible modeling extension to Eclipse created by

Gentleware AG. Apollo is the first UML extension for Eclipse based on GMF [32], EMF

and UML 2, and seamlessly integrates into the IDE. It is available as an RCP stand-

alone tool or as an Eclipse plug-in. It is a model-driven tool offering code generation

only for Java. Apollo gives developers and programmers the ability to dynamically

create and edit models alongside code. That is to say, both model-to-source and

source-to-model transformations are allowed which denotes the support of the full

MDE development life cycle. In the Figure 15 is depicted the Apollo tool during

construction of a model.

40

Figure 15. Using the Apollo tool; Area 1 is the “action” area of model construction; Area 2 is the Palette toolbar of
the Model constructs; in Area 3 you can see the outline of Model’s diagram; in Area 4 is the project explorer of
the Apollo tool.

2.2. Specific Mission MDE tools

On the other hand, apart from the general purpose MDE tools and the class

hierarchy models of UML, there are MDE tools and description modeling languages

which describe a specific purpose of the system under study. As the main category of

specific mission MDE tools, we could mention the User Interface Builders. Some of

the MDE tools of User-Interfaces are briefly described below. None of them cares for

the maintenance issue we address in this thesis.

wxFormBuilder

wxFormBuilder [33] is a popular publicly available interface builder for the wx

widgets cross platform library [34]. This tool offers a typical rapid-application

development cycle with interactive user-interface construction, and outputs

41

interface descriptions into its custom language-neutral format called XRC [47] (XML

Interface Resources). The wxFormBuilder also supports code generation of UI for

languages C++, Python and PHP. In the Figure 16 is depicted the wxFormBuilder

during construction of a model.

Figure 16. Using the wxFormBuilder; Area 1 is the editor of the UI model construction; Area 2 is the widgets
toolbar of the UI Model constructs; Area 3 is the view/edit the widgets’ properties-events; in Area 4 is the tree
view of the constructed UI Model

GrafiXML

GrafiXML is a graphical tool to draw user interfaces. These interfaces could be saved

in several formats, like Java or XHTML, but the principal way is to save them in

UsiXML [35], an XML user interface description. Then, the final user interface is

produced by Rendering or Generative programming. In the Figure 17 is depicted the

GrafiXML during construction of a model.

.

42

Figure 17. Using the GrafiXML; Area 1 is the editor of the UI model construction; Area 2 is the toolbar of the UI
Model constructs; Area 3 is the view/edit the properties-events; in Area 4 is the project explorer of the GrafiXML
tool.

Figure 18. Using the Glade; Area 1 is the editor of the UI model construction; Area 2 is the widgets toolbar of the
UI Model constructs; Area 3 is the view/edit the widgets’ properties; in Area 4 is the tree view of the constructed
UI Model.

43

Glade

Glade [36] is a graphical user interface builder for GTK+ toolkit and the GNOME

desktop environment. Glade saves the user interfaces designed as XML. Then, using

the GtkBuilder [37], Glade XML files can be used in numerous programming

languages including C, C++, C#, Java, Python, Perl and others. In the Figure 18 is

depicted the Glade during construction of a model.

wxGlade

wxGlade [38] is a graphical user interface designer written in Python using the wxPython

[39]. It supports code generation of UI for languages C++, Python, Lisp and Perl.

Additionally, wxGlade could generate the User-Interface in the form of XRC

(wxWidgets’ XML resources). While it is not related to Glade, they are similar in idea

and in their interface. In the Figure 19 is depicted the wxGlade during construction of

a model.

Figure 19. Using the wxGlade; Area 1 is the editor of the UI model construction; Area 2 is the widgets toolbar of
the UI Model constructs; Area 3 is the view/edit the widgets’ properties; in Area 4 is the tree view of the
constructed UI Model.

44

wxDesigner

wxDesigner [40] is a dialog editor and RAD tool for the wxWidgets C++ library. It

supports code generation of UIs for languages C++, C#, Python and Perl. wxDesigner

could also produce XRC model. In the Figure 20 is depicted the wxDesigner during

construction of a model.

Figure 20. Using the wxDesigner; Area 1 is the editor of the UI model construction; Area 2 is the widgets toolbar
of the UI Model constructs; Area 3 is a view/edit dialog of widgets (opening when double click in the widget in
the editor); in Area 4 is the tree view of the constructed UI Model.

Blend

Blend [41] is a User Interface design tool developed by Microsoft for creating

applications’ graphical interfaces for desktop and web. It is an interactive, WYSIWYG

front-end for designing XAML [42] -based interfaces. In the Figure 21 is depicted the

Blend during construction of a model.

45

Figure 21. Using the Blend; Area 1 is the editor of the UI model construction; Area 2 is the toolbar of the UI
Model constructs; Area 3 is a view/edit widgets properties; in Area 4 is the project explorer of the Blend tool.

Additionally, there are MDE approaches for networks. For example, the Analysing

Wireless Sensor Networks [43] in which there is the WSN Modeling Languages and

then code generation using Acceleo which we described above and which does not

solve the maintenance issues. There is also the MDE approach that provides

resources to non-specialists in parallel programming to implement their applications

[44]. In particular, it provides code generation from UML/MARTE to openCL. In this

case, a description language is used too and uses the Acceleo for the code

generation similar to the approach of the Network described previously.

46

Chapter 3

Improved Process

In this chapter we are going to describe the improved process of Model-driven

engineering using metaprogramming. The proposed methodology, illustrated in

Figure 22, consists of 3 main steps.

Figure 22. Encapsulating the model-driven process directly in the application source through staged
metaprograms. Step 1: Staged code execution macros invoke the MDE tool that creates the model and converts
its corresponding code as ASTs. Step 2: Staged code generator macros take the ASTs as input and insert the
model-driven code into the source along with custom application code. Step 3: The transformed source is
normally translated or evaluated to produce the final binary of the entire application.

47

Firstly, the staged code contains execution macros responsible to externally

launch the MDE tool (Step 1). Then, we deploy a converter to turn the model entities

into source code fragments stored in AST form. Afterwards, we manipulate the ASTs

in order for them to be ready for deployment. The generated ASTs are then loaded

by the staged code generator macros and insert the model-related code into the

source along with custom application code (Step 2). Finally, the transformed source

resulting from the staged code evaluation is normally translated or evaluated to

produce the binary image of the entire application (Step 3).

In the following subsections, we continue with the analytic description of the

steps of the proposed MDE process.

3.1 Tool Chain

In general, the first step of the Model-driven Engineering development is to create

one or more models. Then, it continues with model-to-model transformations,

simultaneously decreasing the abstractions of the models and approximating the

real system. Afterwards, the model to code transformation is applied and the

developer completes the system that needs to be finalized with manually written

source code. In the development’s life cycle, it is very common to decide changes for

one or more models of the system under study. In this case the whole process

described above needs to be repeated. All this development life cycle demands the

use of MDE tools, in order to handle the models conveniently and effectively. In our

work, we focus on MDE tools generating source code, either entirely or partially. So,

in this section we will go on to describe the invocation of MDE tools and the

deployment in our approach.

48

3.1.1 Invocation

The Model Driven process begins with the invocation of MDE tools in order to

construct a model which describes the application. The invocation of this MDE tool

can be done by employing two different ways:

The first way is the invocation of an external MDE tool to construct the model,

produce the correspondent auto-generated source code. Then the IDE is opened in

order to handle the auto-generated source code and also develop the manually-

written code. As discussed previously, it is common to edit the model and

regenerate the source code numerous times in the development life cycle. This

shows us that it is not really effective to use an external tool in combination with the

IDE during development.

The second way provided, is the invocation of MDE tools included as plugins in

the IDE. In the one hand, this solves the inconvenience of the use of an external MDE

tool but on the other hand reduces the choices of MDE tools used in development.

We now proceed to describe an alternative path in the invocation-use of MDE tools,

focusing on bringing the MDE deployment as close as possible to the actual

application development.

Invoking MDE tools through metaprograms

The use of generative MDE tools typically involves first launching the tool,

secondly loading or creating a model, then performing any necessary modifications

on it and finally generating its corresponding code that will be used as a basis for the

entire application development. The target of this entire process is always to obtain

the generated code: the MDE tool is typically not launched again unless the model

needs to be updated, while any model updates result in code regeneration. In the

latter case, the final application code also needs to be rebuilt to reflect the latest

model changes.

49

Since eventually the desired effect is to link the latest model code with custom

application code, it is possible to invert the MDE tool deployment as follows;

whenever the application is to be (re)compiled, if any changes need to be performed

on the model, we launch the tool, perform the necessary updates, regenerate the

code and finally compile it along with the remaining application code. This

observation has led us to the idea of utilizing staged metaprogramming as a method

for orchestrating the MDE deployment directly through the original program source.

The staged code contains execution macros responsible for launching the MDE

tool. Once the tool is launched, the developer may normally interact with the model,

updating it as needed. Then, the process continues with the model-to-text

transformation based on the updated model. Afterwards, the compilation of the

system continues normally.

Figure 23. Invocation of MDE tools in the beginning of build process through staged code.

As illustrated in Figure 23, the development life cycle begins with the

development of the correspondent staged code with execution macros in order to

invoke the MDE tool during the compilation process. Then, in the first compilation of

the main program the MDE tool(s) are invoked in order to construct the model(s) of

the application under study. Afterwards, in case any changes need to be performed

on the model(s), we launch the MDE tool(s) during the compilation of the application.

50

The advantage of this process is that it provides the ability to invoke any MDE

tool externally just with the correspondent execution macros of the tool during

compilation of the system. In other words, there is freedom to conveniently use

during development time whichever MDE tool we need for the development of a

system and not be based on specific MDE tools that may be included as plugins in

IDE. On the other hand we have to note that to invoke an external MDE tool

developers must be knowledgeable of the relevant system-call command of the

staged code which can run the correspondent MDE tool which will simultaneously

launch the chosen model. Certain tools lack this type of system-call commands.

There are for example tools that only provide available commands to load their

project file and not the model (e.g. wxFormBuilder which is used for case studies).

Using staged metaprogramming for the invocation of an external MDE tool, gave

us the additional idea of an alternative way to update models without the need for

external MDE tools. This approach focuses on implementing the model editor as an

inherent part of the metaprogram i.e. without launching any external applications.

This way we bring the MDE deployment to the actual application closer than

previous approaches we discussed above. Of course, such a custom editor need not

be implemented from scratch but may reuse any model editing library implemented

in the same language. Using this approach we may take advantage of executing in

the same address space and also store the generated data in a metaprogram

variable that can be later used directly in the generator macros, thus removing the

need for reloading the data from storage. Additionally we have to note that, the

implemented model editors can be used from the beginning of the model-driven

process in order to construct the model(s) of application. They only need to run

them separately us a program inside from IDE.

3.1.2 Deployment

After using the generative MDE tools in order to construct the model, the next

step is the auto-generation of the correspondent source code. This auto-generated

51

deliverable has to be adapted in order to complete the development of application.

In case developers create one model for development, they have to use the auto-

generated deliverable created by model and combine it with their hand written

source code in order to complete the application’s source code.

 In general, during the development process it is common to use more than one

model-driven (MDE) tool to construct a single application. Each MDE tool is used to

construct one or more models (Step 1 in Figure 24). Source code fragments are

produced for each of these models by correspondent code generators. Afterwards,

developers have to combine these source codes in order to complete the

development process (Step 2, 3 in Figure 24).

Figure 24. Deployment of MDE tools in the development process

During the development process, there are a lot of times when there is a need to

edit models (Step 1 in Figure 24). These models can be edited in order to complete

the development or to change something in the developing system repeatedly until

the end of its development. Each updated model demands the regeneration of its

correspondent source code. The maintenance issue is now a problem not only

between the developer’s code and the auto-generated code, but also between the

auto-generated source codes. In other words, developers have to repeat Step 2 and

52

Step 3 that is depicted in Figure 24, for each updated model of the developing

system and all auto-generated codes that have dependencies from it in auto-

generated sources. Instead of this approach, we propose the use of

metaprogramming as we mentioned previously in the introduction of this chapter. In

other words, we develop programs (staged code) which manage all the auto-

generated deliverables. Firstly, programs load the model and produce the auto-

generated deliverable with appropriate converters. Then, programs edit/extend the

deliverables and finally inline whole or parts of the deliverables between the source

code of the custom application.

3.2 Producing ASTs

In general the Model Driven Engineering tools get a model as input, or construct

a model and deliver other models or source code. In other words model to model

and model to text transformations are applied. The last step of this process would be

a model to text transformation. Before the model to text transformation happens for

the last time we need to update the models and repeat the transformations while

any manually written source code has been added in the auto-generated source

code. So, the primary motivation for our work has been the serious source code

maintenance issue inherent in the deployment of generative MDE tools.

Although we needed to avoid this problem, in the mean time we wished to retain

all powerful features of generative MDE tools. Thus we started thinking of an

alternative path, in which: (i) the MDE tool output would somehow remain invariant,

that is in a not-editable form; and (ii) the source code of the application could still

grow and evolve in an unconstrained manner around it. This led us to the idea of

bringing staging into the pipeline.

In particular, with staged model driven generation the MDE process is improved

as follows: Initially, the model-driven tools generate code in the form of language-

specific ASTs. Apart from code, the ASTs can also incorporate any special code

53

annotations, like those required by various Java frameworks. ASTs are essentially

read-only data, meaning the result of the code generation remains unchanged and

thus the code-to model reconstruction path is unnecessary.

3.3 Transforming ASTs

Using MDE generative tools which produce source code from model(s),

developers have to complete and transform the auto-generated code in order to

finalize the system under construction. In our case, we produce AST instead of

source code as mentioned in the previous section. This means we have to handle the

ASTs in order to transform their contents which are a tree representation of the

abstract syntactic structure of source code written in a programming language. The

generator macros may contain any application-specific composition or editing logic.

Practically, this means that it is possible to perform any code transformation on a

source fragment before inserting it in the final source. There are two different places

these transformations could be deployed. The first place is in one or more separate

programs. This way is described in section 3.3.1. The second place is in the source

code of the development application with embedded staged metacode. This way is

described in section 3.3.2.

3.3.1 Batches - Separate Metaprograms

In our approach, it is proposed that the MDE generative tools produce ASTs -

instead of source code - which are saved in the form of binary files. In the

development’s life cycle, the auto-generated deliverable(s) needs a lot of changes

and additions of source code in order to complete a software system. In our case, we

can separate the changes or additions by specific programs (e.g. write a program in a

script to add the event connections to a User-Interface AST). In other words, after

54

the model to AST transformation, AST to AST transformations are deployed.

Separate programs are run which load the AST from a binary file, deploy the

transformations and save it in a binary file as depicted in Figure 25.

Following this approach, we gain the flexibility and reusability of the

transformations of AST, and additionally the maintenance problem does not

reappear. In case developers decide to change or add to a metaprogram then they

do not need to run the whole sequence of metaprograms from the beginning. They

only need to run the altered metaprogram and those following it. In other words, if

we had changed the Metaprogram2 as it is depicted on Figure 25 we would not have

to run the Metaprogram1.

Figure 25. Running meta-programs which load the binary files of AST; transform and save it back to the disk.

Using this approach, it is easier to reuse the metaprogram AST transformations

for different ASTs and to debug these programs’ correctness. These AST to AST

transformations are in the one hand language dependent and on the other hand it

approximates the source code of the system without necessarily being part of the

application development. In other words, we could deploy separately the process of

55

editing the auto-generated deliverable of generative MDE tools from the

development process.

3.3.2 Stages - Embedded Metaprograms

Additionally, one other place to transform the auto-generated AST is in the

source code of the system under construction with embedded metaprograms. In

these metaprograms has again to load the ASTs and then deploy the transformations.

When the compilation of the system under construction starts the metaprograms

first build and then runs during compile time, as result, loads the ASTs and executes

their transformations. In case of run-time metaprogramming, firstly is built total

source code and meta-code. Then, during run-time first execute all the meta-code

and runs the system after that.

Choosing this approach in the one hand, all the transformations will be done in

the build process of application development and there is no need to save binary

files in the disk as all the AST’s transformations save in the memory of the program

at compile-time; on the other hand there is no segmentation of the AST

transformations to check their correctness and there is no reusability of the meta-

code in case you want to reuse the meta-code for other ASTs.

3.3.3 Combining Batches and Stages

Finally we have to note that there is no restriction in using both Batches and

Staged AST transformations. We could develop separate programs in order to deploy

AST to AST transformations and then develop embedded metaprograms in order to

deploy other transformations. The latter could possibly be more specific AST

transformations for the development of an application. Additionally, separate

programs could be added as meta third-party libraries in the application and called in

56

the embedded metaprograms in order to do the transformations in one entire

process.

3.4 Unparsing ASTs

After AST to AST transformations have completed, as next step and last of

proposed approach we have to generate the source code from ASTs. In order to do

this, we have to add embedded metaprogram which begins by loading the auto-

generated AST (this needs in case used only batches for the AST transformations).

Then, we have to add embedded metaprograms in order to place the auto-

generated deliverable in the manually written source code. This is based on the

operators of metaprogramming which are offered by the used language. Embedded

metaprograms can be placed everywhere among the source code. Consequently,

parts of ASTs could be placed anywhere in the manually written source code.

The compilation result of the staged code incorporates the source code inserted

by AST with the manually written source and constitutes the final source code of the

application as shown in Figure 22. The final source code is created during the end of

the compile time process for the staged source code. The final source code is the

combination of the manually written source code and the auto-generated source

code, and is read-only. Finally, after the staged evaluation has produced the final

source code, the process continues with the normal translation (compile-time

staging) or evaluation (runtime-staging). In case of the run-time metaprogramming,

the staged code is run first and then the system source code. In this case too, there

are no maintenance issues.

This way of generating source code from ASTs changes the model-driven process

of generative MDE tools. During the refined model-driven process with an inverted

responsibility through staging, programmers deploy generator macros to insert

generated code on-demand and in-place without affecting the originally produced

ASTs by the MDE tools (see left part of Figure 26). This substitutes the process of

57

transforming the auto-generated source code files in order to complete the

application development (see right side of Figure 26).

Figure 26. In the left part, we can see a form of our approach source code; in the right part the source code of a
classic model-driven process.

This approach may look more difficult than the classic approach but as we

discussed in a previous section the only thing we have to do in order to write source

code in the form of AST is to add << … >>. In the next chapter we deploy this

proposed approach and its effectiveness will be clearer.

58

Chapter 4

Case Studies

To test the proposed MDE approach of our work and assess the expressive power

and its engineering validity, we applied several case studies. In this chapter we

described them by separating them in four different categories. Each of these

categories is a case that could arise in the development of a system. In the first

section, we describe cases in which we have to develop an application using a tool to

construct a model of the User-Interface. In the second, we outline the case to

construct a class hierarchy model for an application. Afterwards, we describe an

alternative way to define a model by specifications to auto-generate a User-Interface

application in respect of our approach. Finally, in the last section we describe the

case of using more than one model to construct a single application.

4.1 User Interface Builder

As we mentioned in section 3.1.2 we can deploy our approach for a separate tool or

with a combination of tools. In the next subsection, we describe the deployment of

the approach, focusing on User Interfaces. Additionally, to test our approach and

assess its expressive power and engineering validity, we have carried out case

59

studies which are described in section 4.1.2. In particular, we have developed a full-

scale scientific calculator application, a paint basic application and finally we

developed the Self MDE deployment (part of our MDE approach). We continue with

the description of the User-Interface deployment of our approach and then following

with the case studies.

4.1.1 Applying our approach for UIs

In the beginning, we deployed our approach focusing in User Interface Builder as

it is outlined in Figure 27. We had to use a specific interface builder which delivers a

specific User Interface Description Language [46] (UIDL) model. So we have adopted

a WYSIWYG tool, the wxFormBuilder [33], a popular publicly available interface

builder for the wx widgets cross-platform library. This tool offers a typical rapid-

application development cycle with interactive user-interface construction, and

outputs interface descriptions into its custom language-neutral format called XRC

(XML Interface Resources). Then, using wxFormBuilder we construct application and

get as output the correspondent XRC model. To convert XRC to the Delta language

ASTs, we developed an appropriate converter. Then, using the metaprogramming

features of the Delta language, we import and manipulate the application ASTs, and

also add extra interactive features and behavior to it, besides the ones introduced

merely with the wxFormBuilder.

Figure 27. Deployment of approach focusing on User Interface builder.

60

So, by designing the simple dialog which is depicted in label 3 of Figure 28 and

developing the source code which is outlined in label 2 of Figure 28, we have the

resulting read-only source code which is depicted in label 3 of Figure 28 when the

built process finishes.

Figure 28. Code generation; in label 1 the application for a pure dialog code with embedded staged code is
outlined; in label 2 there is the result of the build process (i.e. the generated code which is read-only); in label 3
the pure dialog is depicted.

Invoking UI Builder through a metaprogram

Additionally, using the metaprogramming features of the Delta language, the

wxFormBuilder was launched directly from the meta-code during compilation to

allow interactive editing of the user interface. The entire process is illustrated in

Figure 29. In particular, during the compilation of the target application, e.g. a Paint

application, we assemble and compile the stage metaprogram, i.e. Paint_stage_1.

61

Figure 29. Overview of the compile-time MDE deployment through staged metaprogramming. Actions performed
during the metaprogram execution (top right) and their corresponding source code lines (bottom) are shown
with matching numbers

Then, during the metaprogram execution, the call to std::fileexecute launches

the wxFormBuilder with the specified model as input (step 1). The metaprogram

execution will suspend until the call to std::fileexecute returns, something that

occurs only after closing the launched application. When the interactive editing is

completed, the XRC model is saved, the wxFormBuilder is closed and the

metaprogram resumes execution by loading the updated model and converting it to

AST (step 2). The latter is then inserted into the program source through a generator

directive (step 3) and the transformed main program, i.e. Paint_stage_1_result, is

normally compiled to produce the final application.

generator macro
updates original
source with
model code

on exit
save xrc
model

XRC model

Model
AST

load xrc and
convert to ast

fileexecute
launches

wxFormBuilder

1

2

3

execute
meta-
program

&modelProjectPath = "/models/paint.fbp"; //wxFormBuilder project

&std::fileexecute("start wxFormBuilder" + modelProjectPath);

&modelProject = xml::load(modelProjectPath);

&model = load_xrc(modelProject.path); //loads Paint.xrc

&ast = Converter::xrc2ast(model);

!(ast);

1

2

3

62

Manipulating User Interface Code as ASTs

The goal of our case studies in User Interface Builder category is dual: (a) to show

that the maintenance is effectively eliminated; and (ii) to demonstrate the huge

expressive power of metaprogramming for flexible interface code composition. In

this context, as part of the case study, we have identified and deployed a number of

operations on ASTs to assist in code composition when implementing user-interface

metaprograms. The notion of user-interface code is not limited to user interface

construction logic, such as creating widgets and setting their visible and layout

properties. It actually concerns the full range of dialogue management requirements,

including event management and all types of dynamic interface updates. For

instance, composition may well concern scenarios were event management code is

injected within a user-interface construction code snippet.

Next we continue by enumerating and briefly discussing the manipulation

operators. A few automations for easier user interface code composition were

provided on insertion, such as renaming of local variables in case of conflicts at the

new context, and automatic relinking of widgets to the container produced by the

most previous code fragment.

Clone

Concerns cases where a copy of the source code for a user interface component is

required. Typically, alone this operation is rarely needed, thus it is anticipated to be

followed by radical changes of the user-interface code with operations such as

merge, insert and modify.

Cut

Addresses the need to extrapolate the code snippet of an entire user-interface

component, and is expected to be followed by appropriate merge or insert

operations.

63

Figure 30. Cut UI parts of Calculator in order to transform scientific calculator in a simple calculator

Crop

It is required when the source code creating some outer parts (i.e. containers) of

user-interface components is not needed. In our case we deployed the operator to

drop the containing frame window that is by default inserted by the wx Form Builder

on all projects.

Figure 31. Crop the auto-generated frame from Shapes’ toolbar User-Interface.

Create

It reflects the necessity to introduce extra custom user-interface source code in the

form of AST, to be actually combined with the parts produced by the MDE tool. In

our case we created functions which name begin with the prefix “createast_” and

continues with the correspondent name of widget as name of create function. Each

function constructs the correspondent widget’s AST. So, developers have the ability

to use these functions instead of wx-widgets when they construct user-interfaces

with the proposed approach. Each function gets the analogous inputs which usually

the widget constructor includes and maybe AST internal body (e.g. panel, sizers etc.)

64

to insert the AST of children in their body. Finally, returns the appropriate AST.

Additionally, widgets’ AST can be produced without use of these functions. Using the

quazi-quotes (<<>>) the widget’s AST can be produced. A typical example of Create is

in the Figure 33. As it is depicted, firstly it is created Shapes’ UI toolbar in the

appropriate AST Code and then Shapes’ UI toolbar is inserted in the Paint’s

application UI.

Merge

It is a combined composition action on ASTs and is introduced to enable mixing of

independent interface code snippets under a common parent. Usually, such

components are either authored independently in the modeling process, or they

may constitute the outcome of earlier cut operations. A typical example of Merge is

depicted in the below figure.

Figure 32. Merge two independent UI code; Calculator and Calendar UIs in one UI application.

Insert

It allows (re)linking of an existing user-interface code fragment inside another one.

Practically, this action is the dynamic form of all manual editing actions that user

interface programmers would have to apply in order to insert custom code inside the

generated code. It is anticipated as the most frequent editing operation on ASTs. A

typical example of Insert is in the below figure. As it is depicted, in the paint

application is added a toolbar with Shapes.

65

Figure 33. Create & Insert Shapes’ User-Interface toolbar in the Paint’s application User-interface.

Modify

It reflects the need to algorithmically apply localized changes on the AST, such as:

renaming variables and functions, changing argument ordering, changing invocation

styles, etc. Although expected to introduce small scale changes, it can be very useful

to keep the generated code synced with newer versions of widget libraries when the

MDE tool is not yet up-to-date.

Figure 34. Editing the tab’s text “Home” of the Paint’s application User-Interface.

66

4.1.2 Developing User Interfaces

Scientific Calculator

Using the deployment for User Interfaces of our approach (4.1.1), we have

carried out several Case Studies. In this Section we describe the case study of a full

scale scientific calculator.

In the beginning, we constructed an XRC model of a calculator application using

the wxFormBuilder. The latter was actually practiced in alternative ways, such as

with single authoring project or alternatively with multiple independent projects.

This way we could also assert the compositional flexibility of our proposed approach

in combining independently authored interfaces under a single coherent interactive

system. To convert XRC to the Delta language ASTs we used the appropriate

converter we developed. Then, using the metaprogramming features of the Delta

language, we imported and manipulated the calculator ASTs, and also added extra

interactive features and behavior to it, besides the ones introduced merely with the

wxFormBuilder.

In-between this process we reloaded the visual models invoking the

wxFormBuilder from IDE at compile-time with the staged meta-code we added in the

application’s source code and regenerated the XRC files many times, to test that no

maintenance issues arise by this cycle.

We continue discussing the case study not only regarding the methodological

details, but also elaborating on a few important practicing patterns that emerged in

the process.

We elaborate on the way composition on user-interface code through ASTs has

been applied in the context of our case study. It should be noted that, although at

some points it may look like the effect can be also accomplished by typical runtime

composition at the level of widgets, in general it is not. In particular, not all widget

libraries offer runtime name-based registries for widgets, neither all of them

67

facilitate the runtime registration of event handlers in the form of typical method

invocations.

Figure 35. Two example scenarios (middle, right) of user-interface source code composition relying on AST
manipulation on top of the original GUI authored with the interface builder (left); updates on the scenarios are
automated and are directly remapped on top of the original GUI by simple performing recompilation.

In other words, if linkage is required between interaction objects that are

constructed by the generated interface code to custom event handlers provided by

the application, then it may the case that the only option is making such code

fragments coexist at the same source context.

In our case study, the initial source code corresponding to the outcome of the

wxFormBuilder has the following structure (pseudo code, many details removed),

and creates the calculator instance shown at the left part of Figure 35:

Figure 36. The GUI parent object typically required

In Figure 36 is depicted the GUI parent object typically required, while line

numbering is used only to help in our explanations. Now, we need to perform the

following changes: (1) drop the code producing the outer frame (line 1); (2) insert

code for event handling implementing calculations on the numeric and function

buttons (after lines 4 and 6); (3) crop the numeric and functions panel (lines 3 and 5);

and (4) introduce a tab-box were to insert the cropped code fragments for the

68

calculator numeric and the functions pad. In all these cases we also rely on the

automatic relinking of the parent objects offered by the insertion operator, as

mentioned earlier.

Figure 37. Meta-code to load, manipulate (four labeled steps) and inline the source code for the modified
calculator.

The meta-code implementing these four composition steps is outlined under

Figure 37, with many details removed for clarity. Also, the actual conversion from

XRC to ASTs is cached and is applied only when an internally produced and stored

AST file is older than the supplied XRC file. There is code in Figure 37 appearing with

a form << some code >>. This is not a conceptual symbolism, but is syntax relating to

meta-language construct known as quasi-quoting. Essentially, it is a compile-time

operator that converts the surrounded raw source-text to its respective AST

representation. For instance <<1+2>> is equivalent to the AST of the expression 1+2,

not merely the character string ‘1+2’. This is useful when one needs to combine in-

place an explicitly written source code snippet with other code fragments that are

available directly as AST values. In our example, we quasi-quote the source text

producing the numeric and function tab entries (middle of step 4 in Figure 37) and

compose them via Tree::Insert with the ASTs earlier extracted from the calculator

code.

69

Paint basic

We used the wxFormBuilder once again and we constructed a simple graphics

painting application. The latter was actually practiced in alternative ways, such as

with single authoring project or alternatively with multiple independent projects (i.e.

multiple XRC models). This way we could also assert the compositional flexibility of

our proposed approach in combining independently authored interfaces under a

single system. To convert XRC to the Delta language ASTs we used the XRC to Delta

AST converter we developed, following the proposed approach. Then, using the

metaprogramming features of the Delta language, we imported and manipulated the

application ASTs, and also added extra interactive features and behavior to it,

besides the ones introduced merely with the wxFormBuilder. In-between this

process we reloaded the visual models invoking the wxFormBuilder from IDE at

compile-time with the staged meta-code and we added in the application’s source

code regenerating the XRC files many times, to test that no maintenance issues arise

by this cycle.

Figure 38. Examples of the generated interfaces: Left: Original application GUI authored by the interface builder;
Middle: Custom toolbar authored as a separate interface; Right: Composing the two previous interfaces through
AST manipulation.

We used the identified manipulation operators described in above subsection

titled as Manipulating User-Interface Code as ASTs and we implemented several

composition scenarios. Figure 38 illustrates one of the implemented user-interface

composition scenarios based on two separate interface descriptions. The toolbar of

the second interface is initially retrieved by cropping its top level frame, and is then

70

inserted directly in the top level frame of the paint application. Finally, the combined

interface is produced by inlining the transformed paint application AST.

Self MDE deployment’s dialog

One more opportunity for a case study in User Interface Builder was provided by

the development of the self MDE deployment of our approach described in 3.1.1.

We developed the simple application dialog which is depicted in Figure 39. We used

the wxFormBuilder to construct the XRC model of the dialog and we converted the

XRC model to AST with the developed converter. Then, using the metaprogramming

features of the Delta language, we imported and manipulated the Model Editing AST,

and also added extra interactive features and behavior to it. In particular, we added

three events for the buttons and one for the choice of the model in order to launch

or edit it.

Figure 39. The dialog open at compile-time to handle the models of development

In between this process, using the metaprogramming features of the Delta

language, the wxFormBuilder was launched directly from the meta-code during

compilation to allow interactive editing of the user interface. We repeated loading of

the visual model and regenerating of the XRC file numerous times, so as to test that

no maintenance issues arise by this cycle.

71

4.2 Class Builder

In this section we describe the deployment of the approach, focusing in Class

Hierarchy. Additionally, to test our approach and assess its expressive power and

engineering validity, we have carried out case studies. In particular, we have

developed Geometry application described in section 4.2.2 and a Library application

described in section 4.2.3. We continue with the description of the Class-Hierarchy

deployment of our approach and then following the case studies.

4.2.1 Applying our approach for Class Hierarchy

Following the proposed approach we deployed it for Class Builder as it is outlined

in Figure 40. We used the Eclipse Modeling Framework to model a class hierarchy for

the development of an application. The model is created through the Ecore meta-

model and its specification is generated in XMI format. Then, to convert XMI to Delta

language ASTs we built an appropriate converter we implemented for the demands

of this case study that parses the XMI data and maps the model entities to

corresponding Delta code structures.

Figure 40. Deployment of approach focusing on Class builder

72

Again during the process, we reloaded the model and regenerated the XMI

specification to verify that no maintenance issues were introduced in the

development process.

Additionally, for this scenario, the MDE tool deployment was implemented using

two different approaches. The first one again involved launching an external tool to

update the model, in this case the Eclipse Ecore model editor. The second one

focused on implementing the model editor as an inherent part of the metaprogram,

i.e. without launching any external applications. Of course, such a custom editor

need not be implemented from scratch but may reuse any model editing library

implemented in the same language.

Figure 41. The internal custom model editor launched during compilation case study of Geometry.

Towards this direction, we implemented a simple GUI (see Figure 40) offering an

editable tree control to specify the class hierarchy, effectively emulating the Ecore

model editor functionality. Using this approach we may take advantage of executing

in the same address space and also store the generated ASTs in a metaprogram

variable that can be later used directly in the generator macros, thus removing the

need for reloading the AST data from storage.

Figure 42 illustrates the metaprogram used to implement the second case, while

for the first case the deployment code closely resembles that shown in Figure 29, but

with the invocation of the MDE tool targeting the Eclipse model editor.

73

Figure 42. The internal editor code as an inherent part of the staged metaprogram.

4.2.2 Developing Applications

Geometry

In the beginning, we used the Eclipse Modeling Framework to model a class

hierarchy for the development of a simple Geometry. The hierarchy contained the

abstract notion of shapes, as well as concrete drawable shapes like points, lines,

circles, etc. The model was created through the Ecore meta-model and its

specification was generated in XMI format. Then, we converted the XMI model to

Delta language ASTs using the appropriate converter we built.

In the Figure 43 is depicted the model, the generated code structure (shown as

code, but is in fact in AST form) as well as the deployment code required to inline the

code AST in-place with the normal program code. Again during the process, we

reloaded the model and regenerated the XMI specification to verify that no

maintenance issues were introduced in the development process.

74

For the method implementations of the modeled classes we practiced two

alternative methods. The first one involved specifying the method bodies directly in

the model through the use of special EAnnotation elements (Figure 43 top-left,

highlighted). The second one did not involve any model editing, but relied on

obtaining the generated AST and inserting the method bodies directly into it as part

of the staged code evaluation (Figure 43 bottom, 2nd statement). This approach may

seem more difficult to adopt, but in fact it is easy to develop and offers several

advantages over the first one.

Figure 43. Top-left: Ecore model of the target class hierarchy; Top-right: Code structure (AST) generated by the
model; Bottom: Deployment code for loading and converting the model to AST, performing manual updates
through AST editing and inlining the final AST code. The initial value of the meta-variable ast corresponds to the
code structure shown at top-right.

When inserting the code directly in the model, the code is entered as raw text

and thus lacks any programming facilities. Additionally, code overview is severely

restricted, as the model view truncates the annotated text and full code inspection is

only allowed for a single selected EAnnotation. Of course, there is no direct notion of

parameterization or reuse; the only option short of code repetition is to explicitly

introduce new model methods, implement their code through a new EAnnotation

and then use their corresponding invocations where needed, again as raw text

75

placed in other EAnnotations. In any case, inputting source code in separated text

areas is far from a productive development method.

Figure 44. Supporting quick access to all class hierarchy entities through AST decoration. The AST shown
corresponds to the generated hierarchy of Figure 43, while the highlighted path
ast.Geometry.Circle.area.body was used to insert custom method functionality.

Regarding the second approach, creating or inserting code through

metaprogramming is achieved through additional syntax (quasi-quotes) directly at

code editing level. This means that the developer may utilize all typically offered

code facilities like syntax highlighting, auto-completion, refactoring tools, etc.

Additionally, different code segments (ASTs) corresponding to related methods or

classes may be placed in the same source location as would be the case if the entire

class was manually written by the developer, thus supporting the typical source code

overview. Finally, since ASTs are actually metaprogram data, they are subject to

standard software engineering practices like parameterization, encapsulation,

modular composition, etc. The main issue related to programmatically extending the

originally generated AST is that we need to traverse the AST to locate the nodes to

be extended and therefore requires knowledge of the code generation scheme

76

utilized to form the particular AST structure as well as internal AST information. To

relieve the developer from having to know such details, we utilized an AST

decoration process to allow direct navigation across AST nodes using the named

entities of the class hierarchy (see Figure 44). This way, knowledge of the model

entities and a simple tree manipulation API are sufficient for a developer to

introduce elaborate AST extensions.

During the development of this Case study, we deployed the compile-time

invocation of MDE tools in two different ways as we discussed in the previous

section in order to examine the convenience and effectiveness of this type of launch

an MDE tool during compilation.

Library basic

Once again, we used the Eclipse Modeling Framework to model a class hierarchy

for the development of a simple Library application. The hierarchy involved the

notion of a library in which Books (EClass), bookType (EEnum), Dictionaries (EClass),

Magazines (EClass), Writers (EClass), PublishingHouses (EClass) etc are included. The

model was created through the Ecore meta-model and its specification was

generated in XMI format. Then, we converted the XMI model to Delta language ASTs

using the appropriate converter we built. The call of this converter is depicted in

label 2 of Figure 45.

For the method implementations of the modeled classes we used the second

method of the previous two discussed in the case of Geometry, which relies on

obtaining the generated AST and inserting the method bodies directly into it as part

of the staged code evaluation as depicted in labels 3, 4 of Figure 45.

Then, we developed pure functionality for the library application, with details

removed for clarity. We created instances of writers, books and then an instance of a

library with a list of books as outlined in label 5 of Figure 45. Finally, we searched for

the books published in 2009 and they are in the Library as depicted in label 6 of

Figure 45.

77

Figure 45. Meta-code to load, manipulate and inline the source code for the library.

Again during the development process of the case study, we reloaded the model

and regenerated the XMI specification to verify that no maintenance issues were

introduced in the development process. Additionally, we added staged code in order

to invoke the MDE tool at compile-time with the correspondent XMI model in order

to launch it.

4.3 Automatic User Interfaces

An alternative way to construct User-Interfaces instead of using a WYSIWYG tool is

the automatic generation source code by specification. In some way, the latter is the

model which describes the User-Interface. The automatic UI generation tool gets this

specification as input and either creates the UI and runs the application, i.e. in the

78

case of executors or creates the correspondent UI source code of the application and

then source code is manually completed in order to finalize the system under study.

The latter is the kind that we focus on in this thesis and it also causes the

maintenance problem similar to the WYSIWYG tools we discussed previously.

In this case study, we developed a system which gets a specification of annotated

APIs as input and delivers an AST according to our approach, instead of source code.

The goal of this case study was dual: (a) to research an alternative way for Model-

Driven Engineering of User-Interface; and (b) to deploy it in our approach. We

continue with the description of the specification with annotated APIs of User-

Interfaces. Then, we briefly analyze the system which produces the AST. Afterwards,

we describe a pure user interface of a library application we built using this approach.

4.3.1 Defining an alternative UI model

In User-Interfaces, it is common to define models using MDE tools and save them

in the form of User Interface Description Languages (UIDL). An alternative model

that can be defined, is the specification annotated APIs. We have adopted the

annotated user interface APIs based on lectures of the computer science department

of the University of Crete, Development of Intelligent User-Interfaces and Games

[45]. In general, when the construction of a software system begins, the operations

that the system will eventually support are defined. So, a UI model could be a

specification which includes the operations of the system under construction. In our

case the Specification (model UI) is defined by Operation, Signature, Parameter,

returnValue, func, dataFlowType, typeInfo. Each of these model’s constructs are

described below.

Operation

One Operation can be defined as a User Interface or a non-User Interface operation.

Each operation consists of the signature and the func.

79

Signature

The operation’s signature consists of the name, the parameters and the returnValue

which gets a value when the reference function (func) is fired by the user. The name

of the operation’s signature must be unique in a defined specification.

Parameter

Each parameter consists of the name, the dataFlowType and the typeInfo. It models

the constituents of one operation. The parameter’s name must be unique in the

operation.

returnValue

It refers to the result of the function call of the operation’s ref (func). It contains the

name and the typeInfo of the return value. When the application starts returnValue’s

value is empty.

func

The func includes the refs of the operation’s functions which the user defines for the

system’s operation. These functions are callback and are fired during use of the

application.

dataFlowType

The dataFlowType is the type of parameter or result data. The possible values are

“In”, “Out” and “InOut”. “In” refers to data passed to the Operation’s callback

function (func). “Out” refers to data coming from the Operation’s callback function

(func). “InOut” refers to data passed and coming from the Operation’s callback

function (func).

80

typeInfo

It describes the type of operation’s parameter or returnValue. It can be a basic type

(String, Boolean, Integer and Void) or defined type that is described by a Table. For

example a String is described by this table [@type : "String"]. The defined

types are described by a Table, but the contents vary. The available defined types

are Struct, List, Vector, Array, Enumeration and Union. These types are described by

the following tables:

Struct
[

@type : "Struct",

@userDefClassId : <String>,

@members :

[

 [

@name : <String>,

@typeInfo : <basic type> | <user-defined type>

],

...
],

]

List/Vector
[

@type : "List"/”Vector”,
@userDefClassId : <String>,
@elementTypeInfo : <basic type> | <user-defined type>

]

Array
[

@type : "Array",
@userDefClassId : <String>,
@elementTypeInfo : <basic type> | <user-defined type>
@length : <Number>

]

Enumeration
[

@type : "Enumeration",
@userDefClassId : <String>,
@members :
[

 [@name : <String>],
 ...

]
]

81

Union
[

@type : "Union",
@userDefClassId : <String>,
@members :
[

 [
@name : <String>,
@typeInfo : <basic type> | <user-defined type>

],
 ...

]
]

Each of the types defined above can be described with correspondent User-

Interfaces. An example of the basic types’ String correspondent User-Interface is

depicted in Figure 46. An example of the description of the List type is depicted in

Figure 45.

Figure 46. List’s User Interface description; at the top there is the description when dataFlowType is “In” or
“InOut”; at the bottom there is the description when dataFlowType is “Out”.

82

Figure 47. String’s User-Interface description; on the left side is the UI when dataFlowType is “In” or “InOut”; on
the right side is the UI when dataFlowType is “Out”.

A definition example of a calculator operation is,

calcFuncSpec = [

 @signature : [

 @name : "calc",

 @returnValue : [

 @name : "result",

 @typeInfo : intTypeInfo

],

 @parameters : [

 [@name : "operand_1",

 @typeInfo : intTypeInfo,

 @dataFlowType : "In"],

 [@name : "operand_2",

 @typeInfo : intTypeInfo,

 @dataFlowType : "In"]

]

],

 @func : [

 @ref : "UserFuncsEvt::calcFunc"

]

];

The specification (model UI) is defined in a script source file in which there is a

function GetAPISpec which returns the API specification object.

4.3.2 The Auto-generation UIAPI engine

In order to create the User-Interface and the API from the UIAPI specification

model which is described above, we developed an appropriate engine. This engine

gets the UIAPI specification model as input and translates it according to the theory

of lectures of the University of Crete ‘Development of Intelligent User Interfaces and

83

Games’ lesson [45] in the correspondent Delta Language AST instead of source code

in respect to our approach.

The Auto-generation UI engine is composed as depicted in Figure 48 by the

following main parts; the UIAPISpecValidator, the UIBuilderCore, the RulesMap and

the MicroUIsBuilder which are briefly described below.

Figure 48. The auto-generation UI engine architecture

The UIAPISpecValidator is the first step of the engine. It handles the validation

check of the model given as input to ensure it was appropriate. In case the model is

not valid, the engine gives the appropriate error message for the model and

terminates.

The UIBuilderCore is the main part (core) of the engine. It constructs the main

frame’s User-Interface and then uses the operations described in the specification

(model) in order to construct their UI and API. Finally, it returns the object with the

ASTs result of the engine.

The RulesMap is also an important part of the engine which is responsible for the

theory of lesson lecture [45] in order to create the UI for the parameters and the

return value of the operation.

84

The MicroUIsBuilder is the builder for each of the types that could be defined in

the specification. It is called by the RulesMap in order to create parts or whole UIs of

the parameters and the return value.

4.3.3 User-Interface Design Issues

As it can easily be perceived, the User-Interface created by this auto-generation

tool is predefined for each of the UIs and its design is sometimes far from the

desired design of the application graphical user-Interface. The accuracy of the User-

Interface design for an application is very important, so we have to address this issue

in this case. There are two approaches to solving this problem without causing

troubles in the maintenance issue we address.

The first way to fix the design issue is to enrich the specification model in order

to define the design of the User-Interface of the application under study. In the one

hand, the new specification model demands the extension of the auto-generation UI

API engine in order to create the correspondent UI source code for each model. On

the other hand, the more enriched the specification model is the more difficult it will

be to define the specification script correctly. In order to define this type of models

effectively, an appropriate visualization software tool will be needed in which the

user will create the model (script) automatically. This work has not been done in the

thesis and it is subject to future work.

The second way to address the issue of the design of the GUI is to get the current

result of the auto-generation engine UI and API AST. Then, using the Manipulating

Interface Code as ASTs which we discussed previously, we could transform the

produced AST in order to edit the User-Interface of the application under study. In

the one hand, this solves the problem of the design accuracy of the User-Interface

although one or more changes to the API’s AST will be needed because of the

dependencies between the two auto generated ASTs (UI & API) from the engine. The

API’s AST transformations need to be done in case of UI changes like replacing a

85

widget and are not needed in case of setting data in a widget or changing its position

in the application frame. This means that although the double transformations of the

UI AST and API AST are not so easy, the cases in which they are really needed are

infinitesimal. So this is the approach we use in the following application of a Library

in order to edit its User-Interface.

Figure 49. Default embedded metacode using the auto-generation tool we developed

In order to use the auto-generation tool need to write the metacode as it is

outlined in Figure 49. Developers have to include the UIBuilder as embedded

metaprogram in the program under study in order to use the auto-generation engine.

Additionally, they have to include the specification script (model). Then developers

include a call to the auto-generation engine as an embedded metaprogram in order

to create the ASTs. Afterwards, they write the transformations for the User-Interface

and the API ASTs. This MDE process is the same as previously described. The only

change is the way of construction of the model in which the user has to write in a

script in order to construct it. We can easily try the self-deployment of the

Specification and change it at compile time before the evaluation of the specification.

In this case though there is no point in intervening because the model is a script in

the form of source code and can be edited from IDE at development time. The self-

deployment could be done in case we had built the visualization tool we discussed

above.

86

4.3.4 Developing UI for a Library

To test this approach and examine the effectiveness and engineering validity we

have carried out a case study. We developed a pure library application. We defined

four operations for the library. The view, search, rent and let a book operation of a

library. We created the model defining four different operations:

viewBooksOfCategory, searchABook, rentABook, returnArentedBook.

 The viewBooksOfCategory describes the operation in which users choose the

category of a book, and can view the books there are in Library. It is a UI

operation in the specification model.

 The searchABook describes the operation in which the user searches for a

specific book giving title/writer’s name/year/type of the book. It is a UI

operation in the specification model.

 The rentAbook describes the operation in which the user rents book(s) from

the library

 The returnArentedBook describes the operation in which the user returns to

the library rented book(s).

All these operations are UI operations and none of them are non-UI operations. For

each of them, we described the parameters, the return value and the ref function

operation.

Then, we converted the specification to ASTs using the auto-generation engine

we developed. We get two ASTs as result; the first is the API and second is the User-

Interface of the application as it is depicted in the Figure 51.

87

Figure 50. User-Interface produced by auto-generation UI engine.

Figure 51. Manipulating the auto-generated User-Interface through ASTs transformations.

Afterwards, we edit the default auto-generated AST of User-Interface using the

Manipulating User-Interface Code as ASTs operators we described in previous section as

it is depicted in the Figure 51 in order to adapt the auto-generated UI for the Library

application. The meta-code implementing the transformations for the UI of the

Book_Search is outlined in the Figure 52, with many details removed for clarity.

Firstly, we include the specification of library (UI model), the UIAPI engine and the

88

library of manipulating User-Interface operators (see step 1 of Figure 52). Then, we

changed the default title “UIAPI” with title “Library Application” and the background

color of the frame (see step 3 of Figure 52). Then, we removed the inactivated

button which is unnecessary in current UI and changed the textctrl titled

“Search_Parameters” with more specific title “Searching for a book…” (see step 4 of

Figure 52) and the positions of the textboxes in the sizers (see step 5 of Figure 52).

Afterwards, we inline the ASTs between the custom source code of the Library

application (see step 6 of Figure 52). Finally, we complete the reference functions of

the operations by pure source code to add their functionality.

Figure 52. Meta-code to include the specification(model UI), the UIAPI engine and the library of manipulating UI
for AST’s operators in label 1; Meta-code to call the auto UIAPI engine in label 2; Meta-code to transform the
auto-generated AST’s GUI in labels 3,4,5 and inline the ASTs in order to generate the Library’s application source
code in label 6.

89

4.4 Combined Deployment

In general, during the development process it is common to use more than one

model-driven (MDE) tool to construct a single application. Each MDE tool is used to

construct one or more models. As well in our approach, we can use one or more

MDE tools. For each of the XML models that constitute the deliverables of model-

driven tools will be converted in ASTs by appropriate converters (we have to build a

converter for each different modeling language). Then, developers have to handle

the produced ASTs once by transforming them and inlining ASTs or parts of them in

appropriate positions of source code according to general approach for code

manipulation and insertion using ASTs is the one earlier described in section

Multistage Languages and relates to compile-time metaprogramming languages,

involving two stages that are also depicted under Figure 53: meta-code evaluation

(stage 1), and normal compilation (stage 2).

Figure 53. Deployment of approach focusing on combined deployment; use more than one MDE tools.

We continue with the presentation of the case studies, using more than one MDE

tools for a single application. In particular, we have carried out two case studies. The

first case study is the Paint in which we used the wxFormBuilder and the EMF tool. In

the second case study we developed a Library application in which we used the EMF

tool and the Automatic User-Interfaces we described in section 4.3.

90

4.4.1 Developing a paint application

Using the wxFormBuilder we constructed a simple Paint application. The XRC model

which delivered by wxFormBuilder is the first of three models built for development

of Paint. Then, using again the wxFormBuilder we constructed one toolbar as it is

depicted in the Figure 38. Finally, we use the model delivered for shapes class

hierarchy of previous case study. The latter was changed and extended to be

appropriate for Paint application.

Our case study focused on obtaining the code generated by the previously

discussed methods and combining it along with the custom application logic to

implement a fully functional paint application. It is important to note, that although

a simple concatenation of the generated sources caused no direct compilation

conflicts, it was far from sufficient for deriving a fully-functional application.

In fact, multiple manual updates were necessary involving both generated

components and requiring bidirectional dependencies. Firstly, the event handling

code required knowledge of the separately generated implementation classes. Then,

certain methods of the class hierarchy like draw required invoking UI-related

operations. However, the class hierarchy model was unaware of the deployed UI

library, meaning that such information could not be available in the model and

would thus have to be explicitly expressed as a manual extension in the generated

sources. Finally, we needed to combine the generated code with the custom

application logic. The meta-code implementing the above functionality is outlined

under Figure 54, with details removed for clarity.

Initially, the XRC interface definitions for both the basic paint application UI and

the shapes toolbar extension are loaded and converted to AST. Similarly, the XMI

model definition for the shape toolset class hierarchy is also loaded and converted to

AST (step 1). Actually, all such ASTs are cached and the conversion is only applied

when the internally produced and stored AST file is older than the supplied model

file.

91

Figure 54. Meta-code to load, manipulate and inline the source code of all modeled aspects of our system. The
result is a fully functional paint application like that shown on the right of Figure 38.

Then, the interface definitions are combined to generate the final application

interface (step 2). In particular, the top level frame of the shapes toolbar is dropped

and the remaining interface component (i.e. a panel) is inserted in the frame of the

paint application before the canvas. With the visual representation ready, the next

step involves implementing the various methods of the class hierarchy (step 3). This

is achieved by creating and inserting AST values in the method bodies as discussed in

the previous section. Notice that the quasi-quoted code can directly link to UI

elements. The next step is the generation of the event handling code (step 4). As

shown, we can specify event handling code directly as an AST, while the code itself

may refer to objects related to the shape toolset class hierarchy. Finally, once all

appropriate transformations and extensions have been performed on the ASTs, they

can be inlined to the final program at some source location (step 5). The AST of the

class hierarchy should be inlined first so as to be available in the subsequent UI code

that utilizes it. The code of the class hierarchy also requires the GUI toolkit

functionality; however it is already visible through the import directive present in the

first line.

92

Specifically for the user-interface code, it should be noted that it may have been

possible to accomplish the same result using typical runtime composition at the level

of widgets. However, such an approach cannot be deployed in general, as there are

widget libraries that offer no support for name-based registries for widgets, or

runtime registration of event handlers in the form of typical method invocations. In

such cases, if an object constructed by the generated interface code needs to be

linked to custom event handlers provided by the application, then making such code

fragments coexist at the same source context may sometimes be the only solution.

4.4.2 Developing a library application

In this case study, we used the EMF tool and the auto-generation which is

described in section 4.3. Our purpose for this case study is to examine whether the

combination of more than one model, although constructed in a different way

(specification by writing source code in a script and Ecore by using the EMF in

Eclipse), that it does not affect the maintenance issue. In particular we used two of

the models we constructed for the previous case studies. Firstly, the EMF model we

built in the Library basic (see Figure 55). We changed the pure source code of the

Library object creation from the previous case study by adding source code which

parses xml file in order to load the Library data and source code to save back the

Library data to xml file. In other words, we built a simple database for Library

application.

Then, we used the specification (model) which was defined in the Automatic User

Interfaces in Library UI example. We replaced the functionality source code of the

reference functions of the operations we developed in the previous case study with

source code which uses the functionality we developed in the part previously

described above for the class hierarchy. Again during the process, we reloaded the

models and regenerated the XMI specification and the UIAPI specification to verify

that no maintenance issues were introduced in the development process.

93

Figure 55. Left: Ecore model of the target class hierarchy; Right: Code structure (AST) generated by the model

94

Chapter 5

Discussion

In this chapter, we further analyze the problem of maintenance issues by giving a

simple example and using traditional generative MDE tools as well as our approach

in order to compare them. Then, we discuss the tradeoffs using our approach and

finally we describe the applicability of our approach in programming languages.

5.1 Maintenance

We designed a model of the Person class by using a modeling tool which does

not deal with maintenance issues. Person includes the attribute “name” and the

method “naming” which sets name in Person. We generate the source code from

the model using a code generator. Then, in order to complete the implementation

source code of Person we complete the body of method naming. In case we decide

to extend or edit the model later, we have to re-generate the source code from the

model. The manually written source code in method naming will be lost so we have

to re-complete it. In this simple case we just have to copy this fragment of source

code before regeneration and then paste it in the updated source code. In a real

application development, we design many classes. So, we have to keep old sources’

95

version and after the regeneration of the source code from the model we have to

place the source fragments in the generated source code. This is a very tedious and

inefficient process which can cause a lot of issues (e.g. wrong mapping of source

fragments in the auto-generated source code).

5.1.1 Addressing maintenance issues so far

In general, the attempts are distinguished in two approaches. The first approach

is with the use of annotations within the source code and the second is the support

of the full cycle development. We continue describing these two approaches through

the example we discussed previously.

Using annotations

Using the aforementioned example, we model the Person class with the attribute

“name” and the method “naming”. Then we create the appropriate code generator

(i.e. *.genmodel) from the eclipse modeling framework in order to generate the

source code from the model. The source code includes annotations in its comments

as it is depicted in Figure 56.

Figure 56. Using EMF tool to design and implement class Person.

/**

* @generated */

public class Person {
/**

* @generated */

protected String name = "";
/**

* @generated */

public void naming(String newname) {
// TODO: implement this method
// Ensure that you remove @generated or
// mark it @generated NOT

throw new UnsupportedOperationException();
}

}

name = newname;

@generated NOT

Manually written
source code

96

Then, we complete the method “naming” and replace the annotation

@generated with the annotation @generated NOT. In case we would like to

extend the Person model and regenerate the source code, the manually written

source code will not be replaced. In particular, code generator parse the generated

file and look for the annotations @generated NOT in order not to re-create these

fragments. If we put aside the additional developers’ tedious responsibility of choosing

which source fragments to re-generate or not by using annotations, the maintenance

issues seem to be solved. In case we consider a different model update involving

modifications for already implemented functions, when for example changing the

called method “naming” with the name “setName,” the generator parses the file

again. This time, the file does not include the method “setName” and the generator

cannot map this method with the previously generated method “naming”. However

there is no knowledge that “naming” and “setName” are identical. So, the code

generator produces a new method called “setName” with an empty body and keeps

the method “naming” with the manually written source code. One way to avoid this

problem is to rename the method “naming” in the generated source code to

“setName” before editing the model. Then, during the process of the source code

regeneration, the code generator maps the method name and does not generate an

extra method called “setName” with an empty body. However, in case we edit the

model by adding an extra argument in method “setName”, original functions

versions are maintained but the regeneration process introduces a duplicate method

skeleton with an updated prototype. The programmer should then manually move

the implementations from the original bodies to the matching new ones, drop the

old entries and finally specify that the new functions contain user code by removing

their @generated annotation. Clearly, for multiple model updates or a large number

of modeled entities this is a tedious and error-prone process.

Using full cycle development

The second approach tries to resolve the maintenance issues supporting full cycle

development. In particular, the model-driven process begins, as previously, with the

97

model construction of the Person class. Then, the correspondent source code is

generated by an appropriate code generator. Afterwards, the body of the method

called “naming” is completed. Then, in case we would like to edit or extend the

model, the source code is transformed by a Model Reconstructor in order to update

the model according to the source code. In other words, the source code is parsed in

order to identify its constructs and generate the correspondent model (i.e. Model

Driven Reverse engineering). Of course, there are parts of the source code that

cannot be identified (e.g. the source code of the body of a method). These parts are

kept in the model as metadata. When developers finish with the model changes and

the source code is regenerated, the previously manually written source code has

been maintained since it has passed from the previous source code to the new

source code via the model. This approach perfectly solves the maintenance issue for

general purpose MDE tools as applied for instance to Papyrus and Modelio. It cannot

however be deployed in case of specific mission tools. For example, in case of

generative MDE tools for user-interface code generation, like GrafiXML [23] or

GuiBuilder [24], it is practically impossible to recognize the widget elements by

parsing manually written source code [25].

5.1.2 How our approach solves maintenance

All the attempts to solve the maintenance in general follow the logic of generating

the source code and extending it in order to complete the development process as it

is depicted at the top of Figure 57. Then, in case the model needs to be edited or

extended during development, these approaches seek ways to shun this problem.

Although, there is improvement in this way, it does not seem to be sufficient to solve

the maintenance issue completely and efficiently.

Thus we started thinking of an alternative path, in which the MDE tool output

would somehow remain invariant, that is in a not-editable form and the source code

of the application could still grow and evolve in an unconstrained manner around it

98

as it is depicted in the bottom of Figure 57. In this scenario, the code to model

reconstruction path is unnecessary. We will continue with the description of the

previously discussed example using our approach.

Figure 57. Top: Traditional MDE process where the generated source code files are manually updated with fill-in
and extra code. Bottom: The proposed MDE process where the tool output is in AST form and the programmer
deploys embedded metaprograms to load, fill, edit source code in the form of ASTs and generate a transient code
version that will be integrated along with the custom application.

Using a modeling tool we design the Person class which includes the attribute

“name” and the method “naming”. Then, we use an appropriate AST generator in

order to generate the correspondent AST. We develop the staged code in order to

load the AST of Person model code (see label 1 of Figure 58), fill the body of “naming”

method (see label 2 of the Figure 58) and generate the model source code around

the rest source code of application during translation (see label 1 of the Figure 58).

Afterwards, the compilation process begins and the evaluation result of the staged

code is depicted in label 4 of Figure 58.

During the development process, in case we decide to extend the model Person

and add for example the attribute “height”, the only thing we need to do is to use

the AST generator in order to update the AST of Person. Then, we have to repeat the

compilation process in order to regenerate the model source code around the rest

application source code.

99

Figure 58. Developing a Person example in our approach and the result of the generated code in label 4.

In case we decide to edit the Person model and rename the method called

“naming” to “setName”, the AST generator will be used in order to update the AST of

Person and repeat the compilation which will not succeed this time. As it is depicted

in label 2 of Figure 58, &person.naming.body, the user data of the updated

AST does not include the index naming. In particular, the index “naming” has been

replaced with “setName”.

So, the staged code &person.naming.body has to be replaced with

&person.setName.body. On the one hand, the compilation process will not

succeed; on the other hand, the source code will not be destroyed as in the first

approach described previously. The advantage in this case is that developers view

the appropriate messages from the compiler (errors messages during compilation)

concerning what goes wrong in the developed staged code. Using our approach,

such a model update requires no further actions and is handled as before: the

updated model is loaded in AST form and then the function implementations are

inserted where needed through AST manipulation without being affected by the

newly introduced argument. Practically, the metaprogram specifies the logic for

integrating custom application code directly within the model code, so as long as the

model structure matches this insertion logic, no model updates break the

regeneration process. In the following table we outline the methods which address

maintenance and the case of working efficiently or not:

100

 Approaches
 Cases Annotations

Full cycle
development

Staged Code
Generators

Adding new constructs in
a model

Yes Yes Yes

Editing constructs of a
model (e.g. renaming a

method)

No
(before the model
editing, the code

needs editing)

Yes Yes

Adding new elements in
constructs of a model (e.g.
adding an argument in a

function)

No Yes Yes

User-Interface Code
Generation

N/A No Yes

Using multiple models in
single development

N/A N/A Yes

Table 1. Comparing the approaches which deal with maintenance issues

5.2 Tradeoffs of our approach

Our approach overcomes the maintenance issues of generative MDE tools;

however its deployment naturally involves some tradeoffs.

Firstly, it requires applying an advanced programming technique such as

metaprogramming in an already demanding field like MDE, potentially leading to

increased system complexity. For instance, creating and manipulating ASTs to

perform code updates is arguably harder than manually editing the corresponding

source code segments. Nevertheless, the use of quasi-quotes enables creating ASTs

just like writing normal code, while AST manipulation can be simplified with better

support for AST traversal (e.g. the name decoration process discussed earlier) along

with a simple tree editing library.

Another issue concerns the transformation of the MDE tool output into an AST

and requires a separate converter per deployment language as well as per model

format. For instance, in our test cases we had to build two converters (one for XRC

and another for XMI) to support the two modeling tools we used. Moreover, if we

101

wanted to use our approach in another language we would have to create similar

converters generating ASTs for that language. In a setup with varying languages and

diverse model formats this arguably introduces an overhead in the MDE process.

However, a single converter may be used for developing multiple applications that

share a development language and a model format thus reducing the amortized

effort required for a particular application. The effort required for such a converter is

proportional to the complexity of the target model specification. Typically, it should

be similar to creating a model-to-code transformation but with the output being the

source code AST instead of the source code text. For MDE tools that already provide

model-to-code transformations in the deployment language, an alternative requiring

significantly less effort is to first use the transformation to get the generated sources,

parse them into ASTs and finally manipulate them as needed (e.g. remove code

segments not directly relevant to the modeled entities) to be ready for deployment.

Additionally, it is possible to further reduce the effort required to implement a

converter for a specific format across different languages. The converter may have a

language-independent core handling the target format and utilize multiple language-

dependent back-end plugins to support the various deployment languages. In this

sense, all common converter functionality is only written once, thus minimizing the

overhead of supporting additional languages.

5.3 Applicability of our approach

Not all popular languages support staging, even though there are a few third

party extensions such as Metaphor [48] and Mint [49]. In this context, one may

deploy the reflection mechanism of languages like C# or Java to practice a similar

source code management and generation pipeline as the one discussed in this thesis.

This option is detailed under Figure 59, showing that the language compiler and the

dynamic class loading and method invocation facilities (i.e. reflection API) are

directly deployed. The entire process starting the conversion from ASTs to

intermediate representations (very flexible, suggested), or alternatively to source

text (more rigid, not suggested), should be explicitly implemented as it is not

102

automated by the languages. However, it is cached, meaning it is not repeated

during execution, but applied once per AST version.

Figure 59. Applying the generative MDE process with runtime staging; the application composes intermediate or
source text and then deploys the language reflection API for compilation and invocation (JIL stands for Java
Intermediate Language, CIL for the Common Intermediate Language of .NET). The entire runtime conversion,
composition and compilation process is cached – it is only repeated when the ASTs change, i.e. upon
regeneration.

The oval of Figure 59 labeled as composition parameters represents the need for

performing custom mixing between the automatically generated source code and

the manually inserted code, something that is apparent in the presence of Composer

as an integral part of the application. This is similar to AST composition alternatives,

although at the intermediate representation level, and is very critical to ensure that

maximum code mixing freedom is provided to developers.

Application

Composer

Composition
Parameters

language reflection API

ASTs Converter
Intermediate
or Source Text

cached conversion: applied only if ASTs are more
recent from the produced intermediate / source codes

Intermediate: CIL,JIL, etc.
Source: C#, Java, etc.

Involves definitions that
may refer to app code

Binary
Loading and
Invocation

Compilation Text

Code composition approach is an
integral part of the application logic

103

Chapter 6

Conclusions and Future Work

Currently, model-driven engineering represents a domain of powerful

development tools facilitating the modeling of systems and supporting the

transformation process from abstract to concrete models, eventually down to the

physical platform level. Generative MDE tools support the production of concrete

application implementations directly at the source code level. Such a facility is

overall very helpful, powerful and flexible for software development. However, it

also causes maintenance issues once extensions and updates are manually

introduced over the initially generated model code or when trying to combine

sources coming from multiple MDE tools.

In this thesis we propose the exploitation of the metaprogramming language

facilities and suggest an improved model-driven code of practice relying on the

manipulation of source code fragments by clients directly as data in order to cope

with such maintenance issues. In this approach, the generator components of MDE

tools need output Abstract Syntax Trees (ASTs), not source code, while clients should

import and compose ASTs as needed, before eventually performing on-demand and

in-place code generation.

We have also carried out several case studies to experiment and validate the

engineering proposition using a compile-time metaprogramming language, an

104

interface builder, a general purpose modeling tool and automatic user interface.

Overall we were truly impressed by the compositional flexibility which allowed us to

safely and easily manipulate and extend the produced interface and application code

without suffering from maintenance issues. We believe our work reveals the chances

by combining metaprogramming and generative MDE tools.

Nonetheless, it is the first time in Model-Driven Engineering that the use of

metaprogamming is proposed. In this sense, an intriguing future task would be to

further evaluate the proposed approach of MDE. This evaluation needs to be carried

out by multiple users utilizing our approach in the development of applications and

giving us much needed feedback. Hence, we will examine the effectiveness of the

approach in factual circumstances. Moreover, our future plans include an extended

case study in a large real-world application involving various modeling tools and

legacy systems so as to better demonstrate the potential of our approach and assess

its practicability.

Additionally, working for the case study of auto-generation of User Interfaces

with annotated APIs, we came to realize that there are a lot of extensions which

could be added in this approach. Firstly, we intend to include further expressions for

the specifications. The model will evolve to a more expressive form so as to cover

more mundane demands of the User-Interface cases that can occur in the

development of an application. In this direction, we will further add layout

specifications. Layout specifications will be far more effective than just the use of the

manipulating interface code as ASTs operators we identified during the case study of

User Interface Builder. Afterwards, we will move on to develop an appropriate

software visualization tool in order to construct the annotated APIs automatically

through this. Thus models will be more easily constructed and an abstract

representation of this type of models will be provided.

In conclusion, it will be very interesting to research how a hybrid approach could

be viable, using WYSIWYG tools and auto-generation with annotated APIs. The

former has the distinct advantage that you can get explicitly what you have designed

for the User Interface of the application while the latter one constructs User-

105

Interfaces with comparatively more speed but lags in the accuracy of the design. So,

it would be interesting to research whether we could successfully combine the

aforementioned advantages of both in the MDE of User Interfaces.

106

Bibliography

[1] Schmidt, D. C. 2006. Model-driven engineering. Computer-IEEE Computer

Society, 39(2), 25-31. DOI=http://dx.doi.org/10.1109/MC.2006.58.

[2] Object Management Group. 2010. OMG Model Driven Architecture - The

Architecture of Choice for a Changing World. http://www.omg.org/mda/

Accessed 7/2013.

[3] Tratt, L (2005). Compile-time meta-programming in a dynamically typed OO

language. In proceedings of DLS 2005 ACM Symposium on Dynamic

Languages, ACM, 49-63

[4] Sheard, T., Benaissa, Z., Martel, M. 2000. Introduction to multi-stage

programming using MetaML. Technical report, Pacific Software Research

Center, Oregon Graduate Institute.

[5] Taha, W. 2004. A gentle introduction to multi-stage programming. In Domain-

Specific Program Generation, C. Lengauer, D. Batory, C. Consel, and M.

Odersky, Eds. LNCS, vol. 3016, 30-50. Springer, Heidelberg.

[6] Delta Programming Language. 2012. Official site.

http://www.ics.forth.gr/hci/files/plang/Delta/Delta.html,

https://139.91.186.186/svn/sparrow (user: ‘guest’ with empty password).

Accessed online 7/2013.

http://www.omg.org/mda/
http://www.ics.forth.gr/hci/files/plang/Delta/Delta.html
https://139.91.186.186/svn/sparrow

107

[7] Lilis, Y., Savidis, A. (2012). Supporting Compile-Time Debugging and Precise

Error Reporting in Meta-Programs. In proceedings of TOOLS 2012

International Conference on Technology of Object‐Oriented Languages and

Systems (29–31 May), Prague, Czech Republic, Springer LNCS 7304, 155-170

[8] Bawden, A. 1999. Quasiquotation in Lisp. In Proceedings of the Workshop on

Partial Evaluation and Semantics-Based Program Manipulation (San Antonio,

1999), 88–99. University of Aarhus, Dept. of Computer Science. Invited talk.

[9] Dybvig, R. K. 2009. The Scheme Programming Language (fourth edition). The

MIT Press (ISBN 978-0-262-51298-5 / LOC QA76.73.S34D93).

[10] Ganz, S., Sabry, A., Taha, W. (2001). Macros as multi-stage computations:

Type-safe, generative, binding macros in Macro ML. In Proceedings of ICFP

2001 International Conference on Functional Programming, ACM, 74 – 85

[11] MetaOCaml (2003). A compiled, type-safe multi-stage programming language.

http://www.cs.rice.edu/~taha/MetaOCaml/

Accessed online 7/2013.

[12] Fleutot, F. (2007). Metalua Manual.

http://metalua.luaforge.net/metalua-manual.html.

Accessed online 7/2013.

[13] Tratt, L. 2008. Domain specific language implementation via compile-time

metaprogramming, ACM Transactions on Programming Languages and

Systems TOPLAS, 30(6):1-40, October 2008.

[14] The Eclipse Foundation. Eclipse Modeling Framework (EMF) (2008).

http://www.eclipse.org/modeling/emf/

Accessed online 7/2013.

[15] The Eclipse Integrated Development Environment. Official site.

http://www.eclipse.org/

Accessed online 7/2013

http://www.cs.rice.edu/~taha/MetaOCaml/
http://metalua.luaforge.net/metalua-manual.html
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/

108

[16] Obeo (2006) Acceleo: MDA generator

http://www.acceleo.org/pages/home/en

Accessed 7/2013.

[17] Object Management Group. (2012). Object Management Group Object

Constraint Language (OCL). http://www.omg.org/spec/OCL/ISO/19507/PDF/

Accessed online 7/2013.

[18] Actifsource GmbH (2010). Actifsource Code Generator for Eclipse.

http://www.actifsource.com/_downloads/actifsource_code_generator_for_E

clipse_en.pdf

Accessed online 7/2013.

[19] Badreddin, O., Lethbridge, T.C. (2013). Model Oriented Programming:

Bridging the Code-Model Divide. Modeling in Software Engineering, in

conjunction with ICSE 2013.

[20] Antkiewicz, M. (2007). Round-trip engineering using framework-specific

modeling languages. In Companion to the 22nd ACM SIGPLAN conference on

Object-oriented programming systems and applications companion (OOPSLA

'07). ACM, New York, NY, USA, 927-928. DOI =

http://doi.acm.org/10.1145/1297846.1297949

Accessed online 7/2013

[21] Chalabine, M., Kessler, C. (2007). A Formal Framework for Automated Round-

Trip Software Engineering in Static Aspect Weaving and Transformations. In

Proceedings of the 29th international conference on Software Engineering

(ICSE '07). IEEE Computer Society, Washington, DC, USA, 137-146. DOI=

http://dx.doi.org/10.1109/ICSE.2007.7

Accessed online 7/2013

http://www.acceleo.org/pages/home/en
http://www.omg.org/spec/OCL/ISO/19507/PDF/
http://www.actifsource.com/_downloads/actifsource_code_generator_for_Eclipse_en.pdf
http://www.actifsource.com/_downloads/actifsource_code_generator_for_Eclipse_en.pdf
http://doi.acm.org/10.1145/1297846.1297949
http://dx.doi.org/10.1109/ICSE.2007.7

109

[22] Lanusse, A., Tanguy, Y., Espinoza, H., Mraidha, C., Gerard, S., Tessier, P.,

Schnekenburger, R., Dubois, H., Terrier, F. (2009). Papyrus UML: an open

source toolset for MDA. In Proceedings of the Tools and Consultancy Track of

the Fifth European Conference on Model-Driven Architecture Foundations

and Applications (ECMDA-FA 2009). University of Twente. Enschede, The

Netherlands. June 23-26, 2009.

[23] Michotte, B., Vanderdonckt, J. (2008). GrafiXML, a Multi-target User Interface

Builder Based on UsiXML. In Proceedings of ICAS 2008 4th International

Conference on Autonomic and Autonomous Systems, Gosier, Guadeloupe

(March 16-21), IEEE, 15-22.

[24] Sauer, S. Engels, G. (2007). Easy model-driven development of multimedia

user interfaces with GuiBuilder. In Proceedings of the 4th international

conference on Universal access in human computer interaction: coping with

diversity (UAHCI'07), Constantine Stephanidis (Ed.). Springer-Verlag, Berlin,

Heidelberg, 537-546.

[25] Staiger, S. (2007). Static Analysis of Programs with Graphical User Interface.

In Proceedings of 11th European Conference on Software Maintenance and

Reengineering, 2007. CSMR '07. pp.252-264, 21-23 March 2007. doi:

10.1109/CSMR.2007.44

[26] Desfray, P. (2009). Modelio: Globalizing MDA. In Proceedings of the Tools and

Consultancy Track of the Fifth European Conference on Model-Driven

Architecture Foundations and Applications (ECMDA-FA 2009). University of

Twente. Enschede, The Netherlands. June 23-26, 2009.

[27] Altova. 2013. UModel – UML tool for software modeling and application

development. http://www.altova.com/umodel.html

Accessed online 7/2013.

http://www.altova.com/umodel.html

110

[28] Systems Modeling Language SysML v1.3 2012 by OMG. Official site

http://www.omgsysml.org/

Accessed online 7/2013.

[29] Business Process Model and Notation BPMN by OMG. Official site

http://www.bpmn.org/

Accessed online 7/2013.

[30] Sparx Systems. 2000. Enterprise Architect – Visual Modeling Platform.

http://www.sparxsystems.com/products/ea/index.html

Accessed online 7/2013.

[31] Gentleware AG. 2007 Apollo for Eclipse – UML Modeling tool Extension to

Eclipse. http://www.gentleware.com/apollo.html

Accessed online 7/2013.

[32] Graphical Modeling Framework GMF, an Eclipse modeling project

http://wiki.eclipse.org/GMF

Accessed online 7/2013.

[33] wxFormBuilder. 2006. A RAD tool for wx GUIs.

http://sourceforge.net/projects/wxformbuilder/

Accessed online 7/2013.

[34] Wx Widgets. A widget toolkit and tools library for creating GUIs for cross-

platform applications.

http://www.wxwidgets.org/

Accessed online 7/2013

[35] USIXML. USer Interface eXtensible Markup Language

http://www.usixml.org/en/what-is-usixml.html?IDC=236

Accessed online 7/2013

[36] Glade – A User Interface Designer

https://glade.gnome.org/

Accessed online 7/2013

http://www.omgsysml.org/
http://www.bpmn.org/
http://www.sparxsystems.com/products/ea/index.html
http://www.gentleware.com/apollo.html
http://wiki.eclipse.org/GMF
http://sourceforge.net/projects/wxformbuilder/
http://www.wxwidgets.org/
http://www.usixml.org/en/what-is-usixml.html?IDC=236
https://glade.gnome.org/

111

[37] GtkBuilder – Build an interface from an XML UI definition

https://developer.gnome.org/gtk3/stable/GtkBuilder.html

Accessed online 7/2013

[38] wxGlade – A GUI builder for wxWidgets

http://wxglade.sourceforge.net/

Accessed online 7/2013

[39] wxPython - A blending of the wxWidgets C++ class library with the Python

programming language. http://www.wxpython.org/

Accessed online 7/2013

[40] wxDesigner – Dialog editor and RAD tool for wxWidgets

http://www.wxdesigner-software.de/ Accessed online 7/2013

[41] Blend - A user interface design tool.

http://www.microsoft.com/expression/eng/

Accessed online 7/2013

[42] XAML - A declarative markup language.

http://msdn.microsoft.com/en-us/library/ms752059.aspx

Accessed online 7/2013

[43] K. Doddapaneni, E. Ever, O. Gemikonakli, I. Malavolta. (2012). A Model-

Driven Engineering Framework for Architecting and Analysing Wireless

Sensor Networks. SESENA 2012: Zurich, Switzerland Third International

Workshop on, vol., no., pp.1,7, 2-2 June 2012 doi: 10.1109/

SESENA.2012.6225729.

[44] A.W.O. Rodrigues, F. Guyomarc’h, J.-L. Dekeyser. An MDE Approach for

Automatic Code Generation from MARTE to OpenCL. (2011).

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6171148

Accessed online 7/2013

https://developer.gnome.org/gtk3/stable/GtkBuilder.html
http://wxglade.sourceforge.net/
http://www.wxpython.org/
http://www.wxdesigner-software.de/
http://www.microsoft.com/expression/eng/
http://msdn.microsoft.com/en-us/library/ms752059.aspx
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6171148

112

[45] Development of Intelligent User Interfaces and Games.

Lecture of Computer Science Department, University Of Crete. Official site

http://www.csd.uoc.gr/~hy454/slides.html

Accessed online 7/2013.

[46] User Interface Description Language UIDL. Official Website

http://www.uidl.net/

Accessed online 7/2013.

[47] XML Based Resource System (XRC). Official Website

http://docs.wxwidgets.org/trunk/overview_xrc.html

Accessed online 7/2013.

[48] Palmer, Z., Smith, S. F. (2011). Backstage Java: Making a difference in

metaprogramming. In proceedings of OOPSLA 2011 International Conference

on Object Oriented Programming Systems, Languages and Applications, ACM,

939-958.

[49] Westbrook, E., Ricken, M., Inoue, J., Yao, Y., Abdelatif, T., Taha, W. (2010).

Mint: Java multi-stage programming using weak separability. In Proceedings

of the 2010 ACM SIGPLAN conference on Programming language design and

implementation. PLDI '10 ACM, New York, NY, USA, 400-

411.DOI=http://doi.acm.org/10.1145/1806596.1806642.

http://www.csd.uoc.gr/~hy454/slides.html
http://www.uidl.net/
http://docs.wxwidgets.org/trunk/overview_xrc.html

	Abstract
	Περίληψη
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Introduction
	1.1 Model-Driven Engineering
	1.2 Multistage Languages
	1.3 Problem Definition
	1.4 Primary Contributions
	1.5 Thesis structure

	Related Work
	2.1. General Purpose MDE tools
	2.2. Specific Mission MDE tools

	Improved Process
	3.1 Tool Chain
	3.1.1 Invocation
	3.1.2 Deployment

	3.2 Producing ASTs
	3.3 Transforming ASTs
	3.3.1 Batches - Separate Metaprograms
	3.3.2 Stages - Embedded Metaprograms
	3.3.3 Combining Batches and Stages

	3.4 Unparsing ASTs

	Case Studies
	4.1 User Interface Builder
	4.1.1 Applying our approach for UIs
	4.1.2 Developing User Interfaces

	4.2 Class Builder
	4.2.1 Applying our approach for Class Hierarchy
	4.2.2 Developing Applications

	4.3 Automatic User Interfaces
	4.3.1 Defining an alternative UI model
	4.3.2 The Auto-generation UIAPI engine
	4.3.3 User-Interface Design Issues
	4.3.4 Developing UI for a Library

	4.4 Combined Deployment
	4.4.1 Developing a paint application
	4.4.2 Developing a library application

	Discussion
	5.1 Maintenance
	5.1.1 Addressing maintenance issues so far
	5.1.2 How our approach solves maintenance

	5.2 Tradeoffs of our approach
	5.3 Applicability of our approach

	Conclusions and Future Work
	Bibliography

