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Abstract

The amount of software systems’ source code today practically explodes.
Commercial software systems such as games consist of hundreds of thousands lines
of code. The main challenge of developing such systems is connected with
maintainability and extensibility issues. The software engineering of such systems
focuses on the design level, where the use of advanced programming techniques is

mandatory.

Model-Driven Engineering (MDE) is an advanced programming technique based
on model reuse and evolution. In general, MDE involves tools, models, processes,
methods and algorithms addressing the demanding problem of (semi-)automated
generation of source code. On the one hand the involved tools improve the
deployment of MDE; on the other hand they cause several problems. One of the
most challenging problems is the maintenance issue inherent in model-driven code
generators. The problem appears in the development life cycle. In particular, the
auto-generated source code is altered and supplemented manually by developers to
complete the developing project. The manually-written source code is overwritten
by the code re-generation caused by the generative MDE tool. Additionally, while
MDE is a widely used software engineering approach it is typically practiced
separately from the rest of the development process that takes place within an
Integrated Development Environment (IDE). Therefore, there are numerous MDE
tools included as plugins of some IDEs, however a large number of them cannot be

properly incorporated.

In this thesis, we propose an alternative approach for MDE, using an advanced
programming feature; metaprogramming, which is supported by several languages.
Our approach is based on the following principles: (i) the MDE tool is invoked as part
of the metaprogram evaluation; (ii) instead of generating code, the MDE tool
generates source fragments as abstract syntax trees (ASTs); (iii) the generated source

fragments are directly inserted into the main program source through generator



macros of the metaprogram; and (iv) the resulting program that incorporates both
model code and custom application code can be normally compiled to produce the
final application.

We have carried out the proposed approach in the Delta programming language,
which supports compile-time metaprogramming. Finally, we have deployed enough

case studies to test the validity and the effectiveness of our approach.



BEATIQMENH OAHTOYMENH AMO MONTEAA ANAMNTY=H AOMIZMIKOY
ME FENNHTPIEZ KQAIKA NMOY EQAPMOZONTAI MNMPIN TH METAIAQTTIZH

Mepiinym

To péyeBog Tou Mnyaiou KWK TwWV CUCTNUATWY AOYLOULKOU CHUEPO aUEAVETOL
€KOETIKA. TA EUMOPLIKA CUCTAKATA AOYLOUIKOU OTwG Ta matyvidia anoteAovvtal ano
EKATOVTASECG XINASEG YPAUMES KWSLKA. To Kupiwg MPOPANUA TNG avATUENG EVOG
OUOTNHATOG TETOLOG KALLOKOG OUVOEETOL e BEpata ouvtpNnoNng Kal eméktaonc. H
TeXxvoloyla avamtuéng TETOLWY CUOTNUATWY ETUKEVIPWVETAL KUPLWG OTO OXESLOOTLKO
eninedo, OmMOU n XpPNon TPONYUEVWV TIPOYPAUUATIOTIKWY TEXVIKWV KPILVETAL

anapaitntn.

H avamrtuén Aoylopikol odnyolpevn amd povtéda (Model-Driven Engineering,
MDE) eival plo Tponyuévn TPOYPAUUATIOTIKY TEXVIKA n omoia PBaociletal otn
Snuoupyla, emavaypnolpomoinon kot €€€A€En HovtéAwv. Tevikd, to MDE
eTukaAeital epyaleia, povtéAa, Olepyoaoieg, pebBodoug kalL aAyoplBuoug mou
OVTIHETWITI{OUV TO AmaALTNTIKO MPOPANUA TNG (NUi-) auTtdpaTNG apaywyng mnyaiou
Kwdka. Ao Tn Ula TIAEUPA N Xpnolpomnoinon epyaleiwv BeAtiwvel Tnv edpapuoyn
Tou MDE, amod tv GAAn Opw¢ mpokaAouvtal apketa mpoBAnuata. Eva amnd ta mo
coBapd mpoPAnuata adopd BEpata cuvtipnong mou Bplokovtal eyyevwg ot
epyaleia mapaywyns kwdika mou Paocilovtal oe poviéda. To mpoBAnua autd
eudaviletal katd TNV SLAPKELA TOU KUKAOU avATttuéng AoyLopLKOU. ZUYKEKPLUEVA, O
OUTOMOTO  TIOPOYOUEVOG TINYOLOC KWOLKOG TPOTOMOLEITOL KOl OCUUTTANPWVETOL
KATAAANAQ OO TOUG TIPOYPAUUATIOTEG WOTE Vo OAOKANPpwOEL To umo avamntuén €pyo.
O nnyaiog kKwdkag mou mpootiBeTal pe To XEPL Xavetal otav avadnuoupynbel o
OUTOMOTA TIOPAYOUEVOC TtNyoaiog KWoLKag amo éva povtého. Mapolo mou to MDE
Xpnolpomoleital eupéws w¢g pebodoloyia kataokeung Aoylouikol, ouvnBwg eival
OTTOUOVWHEVO amod tnv urtoAounn Stadkaoio mou AapBavel xwpa o€ OAOKANPWHUEVA

nieptBarlovrta avantuéng (IDE). Napdtt untdpxouv MDE epyaleia mou StatiBevral wg



EMEKTAOEL Ot Kamoiwa IDE, wotoco €&vag Heyahog aplBuoc amod autd Oev

EVOWUOTWVOVTAL EMAPKWG.

e aut) TNV epyacia, TPOTEIVOUUE MLl EVAANOKTLKA Tpoogyylon yw MDE,
XPNOLLOTIOLWVTAC €VA TIPONYMEVO XOPAKTNPLOTIKO, TOV UETO-TIPOYPAUUATIONO, O
omolog umootnpiletal and apKETEG YAWOOEG Mpoypappatiopol. H mpocéyylon pag
elval Baolopévn ot akolouBeg apxéc: (i) to MDE epyaleio emikaAeital oav PEPOC
TNG AMOTIUNONG TOU UETA-TIPOYPAppatog, (i) avtl va mapaxBel mnyaiog kwdikag, To
MDE epyaleio Snuoupyet TuRpata kwdika otnv popdn abnpnUEVWY CUVTAKTIKWV
S6évipwv (AST), (iii) ta Snuoupynuéva TUAHATA KWOLKA €L0AYOVTOL AUECA OTO
KUPLWC mnyaio mpoypappa HECW HOKPOEVIOAWV TOU HETA-TIPOYPAUUATOG, Kal (iv) To
TIPOYPOLULOL TIOU TIPOKUTITEL EVOWHUATWVEL TOV QUTOUATO TTOPOYOUEVO KWELKAL LE TOV
eTUMAE0V KWOIKA TNG EPOPUOYNG KAl UETAYAWTTIETAL KAVOVIKA WOTE va TapaxOel n
TeAkn edbapuoyn.

Exoupe  epopUOCEL TNV TPOTEWOUEVN  TPOCEYYIOn OtV  yAwooo
Tmpoypappotiopoy Delta, n omoia umootnpilel UETO-TPOYPAUUATIONO KOTA TN
petayAwttion (compile-time metaprogramming). TEAOG, €XOUHE aVATTTUEEL OPKETA
oevapLa XPNONG WOTE va €AEYEOUUE TNV EYKUPOTNTA KOL TNV QTOTEAECUATIKOTNTO

TNG TPOCEYYLONG HOG.
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Chapter 1

Introduction

1.1 Model-Driven Engineering

Model-Driven Engineering (MDE) [1] is an approach in software development
which focuses on creating and exploiting domain models. These models include
abstract representations of the knowledge and activities that govern a particular
application domain, rather than on the computing or algorithmic concepts. The
general philosophy of MDE rents its roots to Model-Driven-Architecture (MDA) of
the Object Management Group [2], emphasizing accelerated (rapid) application

development together with model-oriented reuse and evolution.

The core idea of Model-Driven Engineering is depicted in Figure 1. Using the MDE tools
Platform Independent (PI) Models are constructed. Then, it is possible to capitalize on PI
models, use them to automatically derive Platform-Specific (PS) models through
transformation engines and ultimately utilize code generators to automatically produce the
source code corresponding to the modeled entities. The auto-generated source code can
then be extended or linked with custom application code to deliver the final application.

During the development life cycle PI Models can be edited. In this case, the PS

Models have to be re-constructed with the use of transformation engines and the

20



auto-generated source code has to be re-generated in order to update the changes.
Moreover, PS Models can be edited in the development life cycle. In this case, the
auto-generated source code has to be regenerated in order to transfer the changes
from model to source. In addition, the Pl models can be kept updated by appropriate
Transformation engines during the development life cycle. In general, it is necessary
to keep all levels of model abstraction updated so as to have the ability to extend

any of them during development life.

Transformation
MDE tools o . > Code Generators
engines

(“orvodes Yed  (eswoses }—

" Aoolicatic

pplication code

Generated [
Source Code
~
code updates

A

Figure 1. The core idea of Model-Driven Engineering

Additionally, apart from model to model and model to text transformations there
are text to model transformations. In particular, during the development life cycle
the auto-generated source code is extended. The model which generates it is not
updated according to the extensions of the source code. So, appropriate tools are
used to create models from the source code (i.e. Model-Driven reverse Engineering).
A lot of difficulties appear in this process and it is not always feasible to succeed.
There is an example for general purpose MDE tools in literature like Papyrus [22] and
Modelio [26] which support full development life cycle and are described in the next
chapter.

In general, model-driven engineering (MDE) involves tools, models, processes,
methods and algorithms addressing the demanding problem of design-first system
engineering. An important authoring requirement for such tools is to involve notions

and concerns inherent in the design domain. In this context, either general-purpose
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notations are adopted in software modeling, or mission-specific models are offered
for very specific tasks. Then, target implementations are derived, usually with
various intermediate transitions from the abstract to the final implementation
domain. This discipline is outlined under Figure 2, showing the specialization from

abstractions to instances as a transformation process.

deployment domain
/—/%

transformation domain —_
Generators
Editors Transformers m
Executors Behavior
abstraction domain

implementation domain

tags are read to
regain model
—
® Model g
Reconstructor

Y 1

i ® —— N
Modeling | 22\ < T > j Code m E>
Framework Generator

after custom user
updates and extensions

tags embedded as
commented-out code or
as custom annotations

Figure 2. Top: high-level overview of model-driven processes outlining the general tool roles and respective input
/ output links; Bottom: Architecture of generative model-driven tools: (1) interactive model editing; (2) code
generation from models; and (3) tags inserted in the generated source code to carry model information and
enable model reconstruction.

Additionally, there are two categories of model driven tools distinguished by the
way their outcomes can be deployed: generative tools, producing source code, and
executors, offering custom runtimes which instantiate the behavior of their input
models. On the one hand, the former concerns tools supporting a modeling-all-the-
way discipline, with emphasis shifted in eliminating the need for manually written
source code. On the other hand, the latter relates to tools which automate the
engineering of various demanding system features, however, still relying on hand-
written source code to complete a fully-fledged system. We consider both universes
to be equally valuable and useful in the model-driven tool arena, however in this
thesis we focus on generative model-driven tools, and improve them so as to

address a maintenance issue they cause.
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Furthermore, the auto-generated source code can then be extended or linked
with custom application code to deliver the final application. While MDE is a widely
used software engineering approach it is typically practiced separately from the rest
of the development process (Figure 3). An MDE tool is used to create a model and
generate its corresponding source code while that code is then incorporated into an
integrated development environment (IDE) for further processing and linking with
the remaining application code. In this sense, MDE requires third party tools that

cannot always be properly integrated in the deployed IDE.

Code MDE
MDE Tool (_)<M°del > Generator deployment

|Generated Codel
Development
Application Translator

= Process

Figure 3. Separation between MDE deployment and the remaining development process.

So, we mainly focus on the maintenance issue we address in our work and also
dealing with bringing the MDE deployment as close as possible to the actual

application development.

1.2 Multistage Languages

Generally, metaprogramming relates to functions which generate code, i.e.
programs producing other programs, while metaprogramming languages take the
task of code generation and support it as a first-class language feature. This is a sort
of reification of the language code generator enabling programmers to write code
which generates extra source code. When available as a macro system before
compilation, the method is known as compile-time metaprogramming [3].

Alternatively, if offered during runtime — usually built on top of the language
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reflection mechanism — it is called runtime metaprogramming. We focus on compile-
time metaprogramming as it is more powerful than its runtime case. In this context,
code generating macros are functions manipulating code in the form of ASTs, and
are evaluated by a separate stage preceding normal compilation. Then, they are
substituted in the source text by the code they actually produce. Due to the
introduction of an extra stage, and because macros may generate further macros,
thus requiring extra staging, such languages are also called multistage languages [4]
[5]. In our work we use Delta [6], a recent publicly available dynamic object-object
language along with its compile-time metaprogramming extension [7]. Popular
meta-languages include Lisp [8], Scheme [9], MacroML [10], MetaOCaml [11],
Metalua [12] and Converge [13].

In the Delta language, meta-code involves meta definitions and inline directives
(i.e., code generation), prefixed with the & and ! symbols respectively. In particular,
inline directives accept an expression returning an AST and are the only way to insert

extra code into the main program.

initial extracted updated
main program staged code main program
defs; defs, defs;
& defs, $ inline AST-expr, ¢ defs,
defs; defsg inserted AST-expr 4
inline AST-expr
I( AST-expr,) Prs defss
defs; defs,
& defs; inserted AST-expr g
defs, ' , '
first stage evaluates the staged code and
I(AST-exprg)

updates the initial program

Figure 4 Evaluation of generative macros with an extra stage.

As shown in Figure 4, during the first stage the compiler: (i) collects all scattered
meta-code into a single metaprogram; (ii) evaluates the program while internally

recording the output of the inline calls; and (iii) removes all meta-code from the
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initial program and replaces inline directives by the code they actually produced. For

example, consider the following Delta code.

using wx;
&ast = ui::load ast ("<some ast path>");

! (ast); < code generation (inline) directive

The first line is normal code, a typical directive to import the wxWidgets GUI
library. But the next two lines are meta-code, distinguished by & and ! prefixes. The
second line loads an AST from a file, assume the loaded AST to be the one of Figure 5.
The third line inserts the code implied by this AST into the main program. As a result,

after the first stage, and before normal compilation, the main program is:

using wx;

frm = wx::frame construct(nil, "ID ANY", "frame");
frm.setsize(wx::size construct (450, 304));

txt = wx::textctrl construct (frm, "text");

_______

[WX: textct rI_construct] E

—

___________________ ]
= wx::textctrl_ construct(

frm, "text");

frm = wx::frame_construct(nil,
"ID_ANY", "frame"); ]
frm.setsize (wx::size_construct
(450, 304));

Figure 5 Example of an abstract syntax tree for three statements using the wx widgets library: (i) left: creating a
frame widget; (ii) middle: setting its size; and (iii) right: creating a text widget.

Such code is only transient, and exists inside the compiler temporarily during the
first compilation stage. It is shown here for clarity. After this first stage, the resulting
source text constitutes the input to the normal compilation phase, as if it was

originally written this way by the programmer.
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In this example, the generated code implicitly depends on the manually written
code requiring that it imports the wxWidgets library to allow its usage in the
generated code. In a more elaborate case, the code to be inserted will be associated
with metadata specifying any such dependencies and thus allowing them to be
generated as well. For instance, the first line of the above example could have been

generated by the following code.

! (load deps()); €< loads AST of ‘using wx;’

Such metadata can provide a more structured usage of the loaded ASTs enabling
establishing standardized interfaces between the generated code segments and the

rest of the code. For example consider the following code:

&data=load metadata ("<path>");

! (load_ast (data.dependencies)) ;

..other normal program dependencies here..
! (load ast(data.definitions));

..other normal program definitions here..
! (load ast(data.main code));

..other normal program program code here..
function £ (! (load ast(data.f args)))

{
! (load ast(data.f body));

}

The loaded metadata are expected to identify the ASTs for any dependencies,
definitions and main code so that they are loaded and incorporated in the final code.
This also provides a clear interface for manually inserted code that may depend on
generated code segments and thus should be placed after the corresponding
generative directive. Finally, the granularity of the generated code and the allowed
generative directive locations are not limited to top-level code segments, but
includes multiple forms and locations. For instance, the above code loads an AST
containing a list of statements in order to generate the body of a function. Overall,
the AST representation and the code generation scheme offer considerable flexibility,
allowing programmers select how fine-grained or coarse grained the source code
fragments should be based on the deployment scenario.

The previous examples show only the creation and inlining of an AST value.

However, metaprograms typically operate on AST values, adding, removing or
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transforming nodes they contain. For example, consider that we wanted to generate
the above code but replacing the last assignment with a print statement. To achieve

this, we would have to obtain and manipulate the children of the root stmts node:

&ast = ui::load ast ("<some ast path>");

&children = ast.get children(); <-get children from stmts
&children.removelast (); < drop last statement
&children.insertLast (<<std::print ("<Hello");>>); < replace it

!'(ast); < generate the transformed code

The notation <<..>> is not a conceptual symbolism, but actual Delta syntax
relating to a meta-language construct known as quasi-quoting. Essentially, it is a
compile time operator that converts the surrounded raw source-text to its
respective AST representation. For instance <<1+2>> is equivalent to the AST of the

expression 1+2, not merely the character string ‘1+2’.

1.3 Problem Definition

MDE tools cannot optimally address all required features of an application at the
software engineering level. As a result, custom source code amendments and
modifications are always anticipated. Even if advanced methods are deployed to
modularize and decouple the generated code from the rest of the application code,
one can never exclude that the possibility that interdependencies or custom updates

may appear.

app code app code

generated generated

S
Y Y Y
Initial code isgenerated  application code typically extends generated code is updated (filling
from the model around generated code gaps or using app features)

Figure 6 Common growth of application code around the originally generated code; future custom extensions
and updates eventually lead to bidirectional dependencies.
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The typical lifecycle of the generated code is outlined under Figure 6. As shown, a
dependency is introduced by having the application logic directly refer and deploy
generated components (middle part). But for most languages this is overall
insufficient for effectively linking application and generated code, practically
requiring the generated code to be also manually modified. Typical updates relate to
application functionality importing and invoking, application-specific event handling,
linkage to third-party libraries that are not known to the model-driven tool, code
improvement or refactoring. This situation very quickly results into many
bidirectional dependencies (right part).

The latter maintenance issues are detailed in the typical generative model-driven
process shown in Figure 7. Initially, if the code is not changed, source regeneration
and model reconstruction are well-defined (left, steps 1-4). In other words, the MDE
tool works perfectly for both steps of the processing loop. However, once the
generated code is updated (left, step 5), two problems directly appear. Firstly, tag
editing and misplacing may break model reconstruction (left, steps 6-7), while any
code manually inserted outside the MDE tool causes a model-implementation
conflict. Secondly, source regeneration overwrites all manually introduced updates
(left, steps 8-9). For real-life applications of a considerable scale the latter may lead
to the adoption of the MDE tool only for the first version, or worse, avoiding using an

MDE tool at all.

general purpose mission specific  mission specific 1: models may

% o | MDE | [ MDE | [ MDE | o
enerator M, T00| TOO| Tool interfacing
,4: model elements
5Xt'ré§'ti?n works 1) 2:code
rinitialsource iti
code s extended Mode|1 > < MOdelz MOdeIN<> gi’;'izgzsr:ennts
and updated

andupdated | 3: composition
6,7: tag changes i
involves manual

and custom iti i

! editing to link
updates disable code
model extraction i
— 1 4:repeating

8,9: further epe
regeneration definitions are
. dropped

overwrites 5 A
changes and thus : Con.ormance
to coding

isavoided
Model va standards

Reconstructor requires
refactoring

Figure 7 The primary maintenance issues in the deployment of generative model-driven tools either individually
(left) or collectively (right).
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Maintenance issues also arise when trying to combine the outcome of multiple
MDE tools. When using multiple tools, a single application element may end up
being shared by different models. This means that when the code for each model is
generated, there will be code repetitions for the shared elements (right, steps 1-2).
In this case, the developer has to manually edit the generated sources to drop any
repeated definitions and link the code properly (right, steps 3-4). Furthermore, the
use of different MDE tools implies different code generators and thus different
coding styles and methods present in the generated code. Having all generated
sources conform to specific coding standards inevitably requires manual refactoring

(right, step 5).

1.4 Primary Contributions

Our main contribution is an inversed responsibility model for generator MDE
tools where: (i) the code for implementing model entities becomes available in the
form of ASTs; and (ii) the actual code generation is applied on-demand and in-place
through metaprograms (macros) that are included in the implementation of the
main program and are evaluated at compile-time (i.e. during the build process). This
approach, not only addresses the maintenance issues of traditional generators, but
also sets code manipulation as a first-class concept in the model-driven engineering
and reveals the value of using a metaprogramming language in this context.

Overall, we propose an improved process where the MDE tool outcome is read-
only, decoupled from source code generation, letting the application directly deploy
and manipulate generated code fragments, instead of being built around them. In
this context, we also discuss how AST composition allows combining sources whose
code originates from multiple MDE tools.

Additionally, we explore the option of adopting metaprogramming practices to
allow specifying the deployment of an MDE tool directly in the program source.

Essentially, we propose launching the MDE tool and generating the model code as
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part of the metaprogram. Then the generated code along with the manually edited

source code can be normally compiled to produce the final application.

1.5 Thesis structure

The rest of this work is organized as follows; In Chapter 2, we review most
advanced and popular general-purpose related MDE tools. Chapter 3 follows, which
is the main core of this thesis, where our proposal for an improved model-driven
approach is described. It begins by outlining the steps of the improved model-driven
engineering and then analyzes the ‘key’ steps of the proposed approach in each of
the subsections. Chapter 4 gives a description of the Case Studies, we have carried
out in order to test the proposed MDE approach of our work and assess the
expressive power and its engineering validity. Chapter 5 concludes the work and

identifies issues for further research work.

This work has resulted in the publication of the following paper:

Self Model-Driven Engineering Through Metaprograms, Yannis Lilis, Anthony
Savidis and Yannis Valsamakis, PClI 2013, September 19 - 21 2013,

Thessaloniki, Greece

Through the following link you can download, view and use the deployment
of our approach using specific MDE tools and a specific language which

supports metaprogramming and their Case Studies:

https://app.box.com/mdewithstagedcodegenerators
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Chapter 2

Related Work

In this chapter, we review the most advanced and popular MDE tools. We focus on
each tool which addresses (or not) issues relevant to maintenance which we solve in
this thesis through our approach in order to improve the MDE process. We begin by

reviewing general-purpose MDE tools and then we review specific mission MDE tools.

2.1. General Purpose MDE tools

Acceleo

Acceleo [16] is an open-source code generator from the Eclipse Foundation,
implementing the OMG’s Model-To-Text Language specification. It is independent
from the targeted technology allowing the generation of any textual format using
plugins while it provides an OCL-oriented [17] template-like definition for expressing
custom generators. Acceleo supports incremental generation allowing developers to
regenerate target files without losing any modifications. This is achieved by the use

of explicit [protected] .. [/protected] constructs that are translated into
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tagged comments and mark a code region that will not be overwritten during
regeneration. Nevertheless, any developer intervention on such generated tags may
break regeneration. Furthermore, the placing of such tags requires an a priori
knowledge of the locations requiring manual updates, something not always
available during the design phase. Practically, this means that for each required
update, the developer will have to go to the transformation script, insert a protected
code region, regenerate the code and finally go back to the source to perform the
update. Using our approach, any code updates are performed directly in the source
file while the generated model code, available in a read-only form, is explicitly

deployed on-demand and in-place through metaprogramming.
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Figure 8. Using the EMF tool in Eclipse; Area 1 is the Palette toolbar of the Model constructs; Area 2 is the “action”
area of Models construction; Area 3 is the view/edit the data constructs of the Models; Area 4 is the project
explorer of Eclipse Platform.

EMF tool

The Eclipse Modeling Framework (EMF) [14] is a MDE tool plugin of Eclipse [15]. The
EMF project is a modeling framework and code generation facility for building tools
and other applications based on a structured data model. The model itself is
described using the Ecore meta-model, while the code generation targets Java and

utilizes the annotation @generated to specify the automatically generated code
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segments. By default, all generated code segments include this annotation and are
overwritten upon regeneration. In case the generated code is manually extended,
the @generated annotations should be removed to specify that the annotated
code segments should be maintained and not overwritten upon regeneration.
However, manual extensions cannot be reflected back to the model while model
updates will be discarded for manually extended code. Additionally, misplacing or
forgetting to remove the annotations may result in losing manually written source
code. In the below figure is depicted the EMF tool during construction of a Library

model.
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Figure 9. Using the Actifsource tool in Eclipse Platform; Area 1 is the “action” area of model construction; Area 2
is the Palette toolbar of the Model constructs; in Area 3 you can view/edit the data of constructs of models; Area
4 is the navigation of project tool.

Actifsource

Actifsource [18] is a design and code generator tool focusing on domain-driven
software development. It utilizes a template-based code generation approach

including by default various language generator templates, while allowing new ones
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to be added for any language. Like Acceleo, Actifsource also supports using special
tags to specify protected regions where manually inserted code will not be
overwritten upon regeneration. Again, however, any developer intervention on
these tags will cause maintenance issues when the code is regenerated. In the Figure

9 is depicted the Actifsource during construction of a model.
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Umple

Umple [19] is a modeling tool that tries to reduce the distance between model and
code by introducing UML abstractions directly into a high-level programming
language code. This way, models become just another abstract view of the code and
the need for extracting the model from the code is eliminated as everything in the
model is represented directly in the code. Umple can generate code for languages
like Java and PHP and allows embedding native code or transforming the generated

code through aspect-oriented facilities. Umple’s philosophy for generated code is
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that it should never be edited but treated as a development artifact that can be
thrown away and recreated and thus, there is no issue of round-tripping [20] [21].
Our approach, maintains the separation between model and code while overcoming
the round-trip issue through the in-place deployment of code fragments generated
by the model. In the Figure 10 is depicted the Umple online version during

construction of a model.

Papyrus

Papyrus [22] is an open source UML 2 tool based on Eclipse platform and licensed
under the EPL. It can either be used as a standalone tool or as an Eclipse plug-in.
Papyrus is a model-driven tool offering code generation for a variety of languages. It
supports the full MDE development life cycle allowing both model-to-source and
source-to-model transformations. In order to provide the latter, it parses source files
locating specific code structures (e.g. classes, attributes, operations, etc.) in order to
regenerate the model, while treating any additional code they include as metadata.
This full MDE development life cycle means that in order to manually add source
code or change the auto-generated source code deliverable files during
development, there is the option to regenerate an updated model of application
development. This is an important step towards resolving the maintenance issues;
however, it cannot be applied in case the generated code originates from multiple
models. Additionally, such a reverse engineering policy is valid for general purpose
MDE tools but cannot be deployed for mission specific tools. For example, in case of
MDE tools for user-interface code generation, like GrafiXML [23] or GuiBuilder [24],
it is practically impossible to recognize the widget elements by parsing manually
written source code [25]. Our methodology can be deployed for both general-
purpose and mission-specific tools, while still addressing the maintenance issues. In

the Figure 11 is depicted the Papyrus during construction of a model.
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Modelio

Modelio [26] is an open source modeling environment based on Eclipse. Although

Modelio is based on an Eclipse RCP, it is a standalone application, not an Eclipse plug-in.

However, Modelio is frequently used in conjunction with Eclipse; both work on the same

source code organization. Similarly to papyrus, it offers code generation for a variety of
languages and supports the full MDE development cycle thus allowing both model-
to-source and source-to-model transformations. For the latter, they parse source
files locating specific code structures (e.g. Classes, Attributes, Operations etc.) in
order to regenerate the model, while treating any additional code they include as
metadata - as Papyrus does. In the Figure 12 is depicted the Modelio during

construction of a model.
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Figure 12. Using the Modelio tool; Area 1 is the “action” area of model construction; Area 2 is the toolbar of the
Model constructs.

Altova UModel

Altova UModel [27] is a commercial UML modeling software tool from Altova.
UModel can be integrated with Eclipse and Visual Studio as a plug-in. UModel
supports UML 2 diagram types and adds a unique diagram for modeling XML
Schemas in UML. UModel also supports SysML [28] for embedded system developers,
and business process modeling (BPMN notation) [29] for enterprise analysts.
UModel includes code engineering functionality including code generation in Java,
CH#, and Visual Basic programming language. UModel supports model interchange
with other UML tools through the XMl standard, integrating with revision control
systems. It also supports reverse engineering of existing applications, and round-trip
engineering. In other words, it supports the full MDE development life cycle allowing
both model-to-source and source-to-model transformations as the Papyrus and
Modelio support. In the Figure 13 is depicted the Altova UModel during construction

of a model.
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Figure 13. Using the Altova UModel; Area 1 is the “action” area of model construction; Area 2 is the toolbar of
the Model constructs; in Area 3 you can view/edit the data of constructs of models; in Area 4 you can see the
Diagram model tree view.

Enterprise Architect

Enterprise Architect [30] is a visual modeling and design tool based on OMG UML
from Sparx System. Enterprise Architect supports the design and construction of
software systems. It also supports modeling business processes and modeling
industry based domains. Enterprise Architect supports code generation in numerous
languages like Action Script, C, C#, C++, Java etc. Similar to the aforementioned three
tools, it supports the full MDE development life-cycle allowing both model-to-source
and source-to-model transformations. This tool, as the previous ones, parses source
files locating specific code structures (e.g. classes, attributes, operations, etc.) in
order to regenerate the model, while treating any additional code they include as
metadata. Despite being an indispensable commercial MDE tool employed by

several software companies, it still fails to solve the maintenance issue of the specific
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mission MDE tool (e.g. GUI builder). In the Figure 14 is depicted the Altova UModel

during construction of a model.
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Figure 14. Using the Enterprise Architect; Area 1 is the “action” area of model construction; Area 2 is the toolbar
of the Model constructs; in Area 3 is the project navigation of the tool.

Apollo

Apollo [31] is a robust and flexible modeling extension to Eclipse created by
Gentleware AG. Apollo is the first UML extension for Eclipse based on GMF [32], EMF
and UML 2, and seamlessly integrates into the IDE. It is available as an RCP stand-
alone tool or as an Eclipse plug-in. It is a model-driven tool offering code generation
only for Java. Apollo gives developers and programmers the ability to dynamically
create and edit models alongside code. That is to say, both model-to-source and
source-to-model transformations are allowed which denotes the support of the full
MDE development life cycle. In the Figure 15 is depicted the Apollo tool during

construction of a model.
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Figure 15. Using the Apollo tool; Area 1 is the “action” area of model construction; Area 2 is the Palette toolbar of

the Model constructs; in Area 3 you can see the outline of Model’s diagram; in Area 4 is the project explorer of
the Apollo tool.

2.2. Specific Mission MDE tools

On the other hand, apart from the general purpose MDE tools and the class
hierarchy models of UML, there are MDE tools and description modeling languages
which describe a specific purpose of the system under study. As the main category of
specific mission MDE tools, we could mention the User Interface Builders. Some of

the MDE tools of User-Interfaces are briefly described below. None of them cares for

the maintenance issue we address in this thesis.

wxFormBuilder

wxFormBuilder [33] is a popular publicly available interface builder for the wx
widgets cross platform library [34]. This tool offers a typical rapid-application

development cycle with interactive user-interface construction, and outputs
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interface descriptions into its custom language-neutral format called XRC [47] (XML
Interface Resources). The wxFormBuilder also supports code generation of Ul for

languages C++, Python and PHP. In the Figure 16 is depicted the wxFormBuilder

during construction of a model.
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Figure 16. Using the wxFormBuilder; Area 1 is the editor of the Ul model construction; Area 2 is the widgets
toolbar of the Ul Model constructs; Area 3 is the view/edit the widgets’ properties-events; in Area 4 is the tree
view of the constructed Ul Model

GrafiXML

GrafiXML is a graphical tool to draw user interfaces. These interfaces could be saved
in several formats, like Java or XHTML, but the principal way is to save them in
UsiXML [35], an XML user interface description. Then, the final user interface is
produced by Rendering or Generative programming. In the Figure 17 is depicted the

GrafiXML during construction of a model.
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Figure 17. Using the GrafiXML; Area 1 is the editor of the Ul model construction; Area 2 is the toolbar of the Ul

Model constructs; Area 3 is the view/edit the properties-events; in Area 4 is the project explorer of the GrafiXML
tool.
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Figure 18. Using the Glade; Area 1 is the editor of the Ul model construction; Area 2 is the widgets toolbar of the

Ul Model constructs; Area 3 is the view/edit the widgets’ properties; in Area 4 is the tree view of the constructed
Ul Model.
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Glade

Glade [36] is a graphical user interface builder for GTK+ toolkit and the GNOME
desktop environment. Glade saves the user interfaces designed as XML. Then, using
the GtkBuilder [37], Glade XML files can be used in numerous programming
languages including C, C++, C#, Java, Python, Perl and others. In the Figure 18 is

depicted the Glade during construction of a model.

wxGlade

wxGlade [38] is a graphical user interface designer written in Python using the wxPython
[39]. It supports code generation of Ul for languages C++, Python, Lisp and Perl.
Additionally, wxGlade could generate the User-Interface in the form of XRC
(wxWidgets’ XML resources). While it is not related to Glade, they are similar in idea

and in their interface. In the Figure 19 is depicted the wxGlade during construction of

a model.
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Figure 19. Using the wxGlade; Area 1 is the editor of the Ul model construction; Area 2 is the widgets toolbar of
the Ul Model constructs; Area 3 is the view/edit the widgets’ properties; in Area 4 is the tree view of the
constructed Ul Model.
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wxDesigner

wxDesigner [40] is a dialog editor and RAD tool for the wxWidgets C++ library. It
supports code generation of Uls for languages C++, C#, Python and Perl. wxDesigner
could also produce XRC model. In the Figure 20 is depicted the wxDesigner during

construction of a model.
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Figure 20. Using the wxDesigner; Area 1 is the editor of the Ul model construction; Area 2 is the widgets toolbar
of the Ul Model constructs; Area 3 is a view/edit dialog of widgets (opening when double click in the widget in
the editor); in Area 4 is the tree view of the constructed Ul Model.

Blend

Blend [41] is a User Interface design tool developed by Microsoft for creating
applications’ graphical interfaces for desktop and web. It is an interactive, WYSIWYG
front-end for designing XAML [42] -based interfaces. In the Figure 21 is depicted the

Blend during construction of a model.
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Figure 21. Using the Blend; Area 1 is the editor of the Ul model construction; Area 2 is the toolbar of the Ul
Model constructs; Area 3 is a view/edit widgets properties; in Area 4 is the project explorer of the Blend tool.

Additionally, there are MDE approaches for networks. For example, the Analysing
Wireless Sensor Networks [43] in which there is the WSN Modeling Languages and
then code generation using Acceleo which we described above and which does not
solve the maintenance issues. There is also the MDE approach that provides
resources to non-specialists in parallel programming to implement their applications
[44]. In particular, it provides code generation from UML/MARTE to openCL. In this
case, a description language is used too and uses the Acceleo for the code

generation similar to the approach of the Network described previously.
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Chapter 3

Improved Process

In this chapter we are going to describe the improved process of Model-driven
engineering using metaprogramming. The proposed methodology, illustrated in

Figure 22, consists of 3 main steps.
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Figure 22. Encapsulating the model-driven process directly in the application source through staged
metaprograms. Step 1: Staged code execution macros invoke the MDE tool that creates the model and converts
its corresponding code as ASTs. Step 2: Staged code generator macros take the ASTs as input and insert the
model-driven code into the source along with custom application code. Step 3: The transformed source is
normally translated or evaluated to produce the final binary of the entire application.
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Firstly, the staged code contains execution macros responsible to externally
launch the MDE tool (Step 1). Then, we deploy a converter to turn the model entities
into source code fragments stored in AST form. Afterwards, we manipulate the ASTs
in order for them to be ready for deployment. The generated ASTs are then loaded
by the staged code generator macros and insert the model-related code into the
source along with custom application code (Step 2). Finally, the transformed source
resulting from the staged code evaluation is normally translated or evaluated to

produce the binary image of the entire application (Step 3).

In the following subsections, we continue with the analytic description of the

steps of the proposed MDE process.

3.1 Tool Chain

In general, the first step of the Model-driven Engineering development is to create
one or more models. Then, it continues with model-to-model transformations,
simultaneously decreasing the abstractions of the models and approximating the
real system. Afterwards, the model to code transformation is applied and the
developer completes the system that needs to be finalized with manually written
source code. In the development’s life cycle, it is very common to decide changes for
one or more models of the system under study. In this case the whole process
described above needs to be repeated. All this development life cycle demands the
use of MDE tools, in order to handle the models conveniently and effectively. In our
work, we focus on MDE tools generating source code, either entirely or partially. So,
in this section we will go on to describe the invocation of MDE tools and the

deployment in our approach.
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3.1.1 Invocation

The Model Driven process begins with the invocation of MDE tools in order to
construct a model which describes the application. The invocation of this MDE tool

can be done by employing two different ways:

The first way is the invocation of an external MDE tool to construct the model,
produce the correspondent auto-generated source code. Then the IDE is opened in
order to handle the auto-generated source code and also develop the manually-
written code. As discussed previously, it is common to edit the model and
regenerate the source code numerous times in the development life cycle. This
shows us that it is not really effective to use an external tool in combination with the

IDE during development.

The second way provided, is the invocation of MDE tools included as plugins in
the IDE. In the one hand, this solves the inconvenience of the use of an external MDE
tool but on the other hand reduces the choices of MDE tools used in development.
We now proceed to describe an alternative path in the invocation-use of MDE tools,
focusing on bringing the MDE deployment as close as possible to the actual

application development.

Invoking MDE tools through metaprograms

The use of generative MDE tools typically involves first launching the tool,
secondly loading or creating a model, then performing any necessary modifications
on it and finally generating its corresponding code that will be used as a basis for the
entire application development. The target of this entire process is always to obtain
the generated code: the MDE tool is typically not launched again unless the model
needs to be updated, while any model updates result in code regeneration. In the
latter case, the final application code also needs to be rebuilt to reflect the latest

model changes.
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Since eventually the desired effect is to link the latest model code with custom
application code, it is possible to invert the MDE tool deployment as follows;
whenever the application is to be (re)compiled, if any changes need to be performed
on the model, we launch the tool, perform the necessary updates, regenerate the
code and finally compile it along with the remaining application code. This
observation has led us to the idea of utilizing staged metaprogramming as a method

for orchestrating the MDE deployment directly through the original program source.

The staged code contains execution macros responsible for launching the MDE
tool. Once the tool is launched, the developer may normally interact with the model,
updating it as needed. Then, the process continues with the model-to-text
transformation based on the updated model. Afterwards, the compilation of the

system continues normally.

Original application source with

execution and generator stoged code Construct/
——— T onstru
E ;“;j_{;;‘; """ | launch Edit
i tagedCode 1L 5! MDEtool
! (execution macros) :
Custom App
Source Code
]
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' (generatormacros) | L
Custom App
e execute metaprogra

Figure 23. Invocation of MDE tools in the beginning of build process through staged code.

As illustrated in Figure 23, the development life cycle begins with the
development of the correspondent staged code with execution macros in order to
invoke the MDE tool during the compilation process. Then, in the first compilation of
the main program the MDE tool(s) are invoked in order to construct the model(s) of
the application under study. Afterwards, in case any changes need to be performed

on the model(s), we launch the MDE tool(s) during the compilation of the application.
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The advantage of this process is that it provides the ability to invoke any MDE
tool externally just with the correspondent execution macros of the tool during
compilation of the system. In other words, there is freedom to conveniently use
during development time whichever MDE tool we need for the development of a
system and not be based on specific MDE tools that may be included as plugins in
IDE. On the other hand we have to note that to invoke an external MDE tool
developers must be knowledgeable of the relevant system-call command of the
staged code which can run the correspondent MDE tool which will simultaneously
launch the chosen model. Certain tools lack this type of system-call commands.
There are for example tools that only provide available commands to load their

project file and not the model (e.g. wxFormBuilder which is used for case studies).

Using staged metaprogramming for the invocation of an external MDE tool, gave
us the additional idea of an alternative way to update models without the need for
external MDE tools. This approach focuses on implementing the model editor as an
inherent part of the metaprogram i.e. without launching any external applications.
This way we bring the MDE deployment to the actual application closer than
previous approaches we discussed above. Of course, such a custom editor need not
be implemented from scratch but may reuse any model editing library implemented
in the same language. Using this approach we may take advantage of executing in
the same address space and also store the generated data in a metaprogram
variable that can be later used directly in the generator macros, thus removing the
need for reloading the data from storage. Additionally we have to note that, the
implemented model editors can be used from the beginning of the model-driven
process in order to construct the model(s) of application. They only need to run

them separately us a program inside from IDE.

3.1.2 Deployment

After using the generative MDE tools in order to construct the model, the next

step is the auto-generation of the correspondent source code. This auto-generated
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deliverable has to be adapted in order to complete the development of application.
In case developers create one model for development, they have to use the auto-
generated deliverable created by model and combine it with their hand written

source code in order to complete the application’s source code.

In general, during the development process it is common to use more than one
model-driven (MDE) tool to construct a single application. Each MDE tool is used to
construct one or more models (Step 1 in Figure 24). Source code fragments are
produced for each of these models by correspondent code generators. Afterwards,
developers have to combine these source codes in order to complete the

development process (Step 2, 3 in Figure 24).

Figure 24. Deployment of MDE tools in the development process

During the development process, there are a lot of times when there is a need to
edit models (Step 1 in Figure 24). These models can be edited in order to complete
the development or to change something in the developing system repeatedly until
the end of its development. Each updated model demands the regeneration of its
correspondent source code. The maintenance issue is now a problem not only
between the developer’s code and the auto-generated code, but also between the

auto-generated source codes. In other words, developers have to repeat Step 2 and
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Step 3 that is depicted in Figure 24, for each updated model of the developing
system and all auto-generated codes that have dependencies from it in auto-
generated sources. Instead of this approach, we propose the use of
metaprogramming as we mentioned previously in the introduction of this chapter. In
other words, we develop programs (staged code) which manage all the auto-
generated deliverables. Firstly, programs load the model and produce the auto-
generated deliverable with appropriate converters. Then, programs edit/extend the
deliverables and finally inline whole or parts of the deliverables between the source

code of the custom application.

3.2 Producing ASTs

In general the Model Driven Engineering tools get a model as input, or construct
a model and deliver other models or source code. In other words model to model
and model to text transformations are applied. The last step of this process would be
a model to text transformation. Before the model to text transformation happens for
the last time we need to update the models and repeat the transformations while
any manually written source code has been added in the auto-generated source
code. So, the primary motivation for our work has been the serious source code

maintenance issue inherent in the deployment of generative MDE tools.

Although we needed to avoid this problem, in the mean time we wished to retain
all powerful features of generative MDE tools. Thus we started thinking of an
alternative path, in which: (i) the MDE tool output would somehow remain invariant,
that is in a not-editable form; and (ii) the source code of the application could still
grow and evolve in an unconstrained manner around it. This led us to the idea of

bringing staging into the pipeline.

In particular, with staged model driven generation the MDE process is improved
as follows: Initially, the model-driven tools generate code in the form of language-

specific ASTs. Apart from code, the ASTs can also incorporate any special code
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annotations, like those required by various Java frameworks. ASTs are essentially
read-only data, meaning the result of the code generation remains unchanged and

thus the code-to model reconstruction path is unnecessary.

3.3 Transforming ASTs

Using MDE generative tools which produce source code from model(s),
developers have to complete and transform the auto-generated code in order to
finalize the system under construction. In our case, we produce AST instead of
source code as mentioned in the previous section. This means we have to handle the
ASTs in order to transform their contents which are a tree representation of the
abstract syntactic structure of source code written in a programming language. The
generator macros may contain any application-specific composition or editing logic.
Practically, this means that it is possible to perform any code transformation on a
source fragment before inserting it in the final source. There are two different places
these transformations could be deployed. The first place is in one or more separate
programs. This way is described in section 3.3.1. The second place is in the source
code of the development application with embedded staged metacode. This way is

described in section 3.3.2.

3.3.1 Batches - Separate Metaprograms

In our approach, it is proposed that the MDE generative tools produce ASTs -
instead of source code - which are saved in the form of binary files. In the
development’s life cycle, the auto-generated deliverable(s) needs a lot of changes
and additions of source code in order to complete a software system. In our case, we
can separate the changes or additions by specific programs (e.g. write a program in a

script to add the event connections to a User-Interface AST). In other words, after
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the model to AST transformation, AST to AST transformations are deployed.
Separate programs are run which load the AST from a binary file, deploy the

transformations and save it in a binary file as depicted in Figure 25.

Following this approach, we gain the flexibility and reusability of the
transformations of AST, and additionally the maintenance problem does not
reappear. In case developers decide to change or add to a metaprogram then they
do not need to run the whole sequence of metaprograms from the beginning. They
only need to run the altered metaprogram and those following it. In other words, if
we had changed the Metaprogram? as it is depicted on Figure 25 we would not have

to run the Metaprograml.

MDE tool

Converter | L DR j
\\_program:

Meta-
program:

Figure 25. Running meta-programs which load the binary files of AST; transform and save it back to the disk.

Using this approach, it is easier to reuse the metaprogram AST transformations
for different ASTs and to debug these programs’ correctness. These AST to AST
transformations are in the one hand language dependent and on the other hand it
approximates the source code of the system without necessarily being part of the

application development. In other words, we could deploy separately the process of
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editing the auto-generated deliverable of generative MDE tools from the

development process.

3.3.2 Stages - Embedded Metaprograms

Additionally, one other place to transform the auto-generated AST is in the
source code of the system under construction with embedded metaprograms. In
these metaprograms has again to load the ASTs and then deploy the transformations.
When the compilation of the system under construction starts the metaprograms
first build and then runs during compile time, as result, loads the ASTs and executes
their transformations. In case of run-time metaprogramming, firstly is built total
source code and meta-code. Then, during run-time first execute all the meta-code

and runs the system after that.

Choosing this approach in the one hand, all the transformations will be done in
the build process of application development and there is no need to save binary
files in the disk as all the AST’s transformations save in the memory of the program
at compile-time; on the other hand there is no segmentation of the AST
transformations to check their correctness and there is no reusability of the meta-

code in case you want to reuse the meta-code for other ASTs.

3.3.3 Combining Batches and Stages

Finally we have to note that there is no restriction in using both Batches and
Staged AST transformations. We could develop separate programs in order to deploy
AST to AST transformations and then develop embedded metaprograms in order to
deploy other transformations. The latter could possibly be more specific AST
transformations for the development of an application. Additionally, separate

programs could be added as meta third-party libraries in the application and called in
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the embedded metaprograms in order to do the transformations in one entire

process.

3.4 Unparsing ASTs

After AST to AST transformations have completed, as next step and last of
proposed approach we have to generate the source code from ASTs. In order to do
this, we have to add embedded metaprogram which begins by loading the auto-
generated AST (this needs in case used only batches for the AST transformations).
Then, we have to add embedded metaprograms in order to place the auto-
generated deliverable in the manually written source code. This is based on the
operators of metaprogramming which are offered by the used language. Embedded
metaprograms can be placed everywhere among the source code. Consequently,

parts of ASTs could be placed anywhere in the manually written source code.

The compilation result of the staged code incorporates the source code inserted
by AST with the manually written source and constitutes the final source code of the
application as shown in Figure 22. The final source code is created during the end of
the compile time process for the staged source code. The final source code is the
combination of the manually written source code and the auto-generated source
code, and is read-only. Finally, after the staged evaluation has produced the final
source code, the process continues with the normal translation (compile-time
staging) or evaluation (runtime-staging). In case of the run-time metaprogramming,
the staged code is run first and then the system source code. In this case too, there
are no maintenance issues.

This way of generating source code from ASTs changes the model-driven process
of generative MDE tools. During the refined model-driven process with an inverted
responsibility through staging, programmers deploy generator macros to insert
generated code on-demand and in-place without affecting the originally produced

ASTs by the MDE tools (see left part of Figure 26). This substitutes the process of
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transforming the auto-generated source code files in order to complete the

application development (see right side of Figure 26).

Manually written code could be place here.... Auto-generated source code exists here...
&ast = nil;

Manually written code could be place here....
&{
ast = loadAst(...); Auto-generated source code exists here...

Transforming AST staged code could be place

here Manually written code could be place here....

} Auto-generated source code exists here...
Manually written code could be place here....

I (ast.a); [/ place here part or entire of AST Manually written code could be place here....
Manually written code could be place here.... .

| i | Auto-generated source code exists here...
: (ast.b}; // place here part or entire of AS

Figure 26. In the left part, we can see a form of our approach source code; in the right part the source code of a
classic model-driven process.

This approach may look more difficult than the classic approach but as we
discussed in a previous section the only thing we have to do in order to write source
code in the form of AST is to add << .. >>. In the next chapter we deploy this

proposed approach and its effectiveness will be clearer.
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Chapter 4

Case Studies

To test the proposed MDE approach of our work and assess the expressive power
and its engineering validity, we applied several case studies. In this chapter we
described them by separating them in four different categories. Each of these
categories is a case that could arise in the development of a system. In the first
section, we describe cases in which we have to develop an application using a tool to
construct a model of the User-Interface. In the second, we outline the case to
construct a class hierarchy model for an application. Afterwards, we describe an
alternative way to define a model by specifications to auto-generate a User-Interface
application in respect of our approach. Finally, in the last section we describe the

case of using more than one model to construct a single application.

4.1 User Interface Builder

As we mentioned in section 3.1.2 we can deploy our approach for a separate tool or
with a combination of tools. In the next subsection, we describe the deployment of
the approach, focusing on User Interfaces. Additionally, to test our approach and

assess its expressive power and engineering validity, we have carried out case
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studies which are described in section 4.1.2. In particular, we have developed a full-
scale scientific calculator application, a paint basic application and finally we
developed the Self MDE deployment (part of our MDE approach). We continue with
the description of the User-Interface deployment of our approach and then following

with the case studies.

4.1.1 Applying our approach for Uls

In the beginning, we deployed our approach focusing in User Interface Builder as
it is outlined in Figure 27. We had to use a specific interface builder which delivers a
specific User Interface Description Language [46] (UIDL) model. So we have adopted
a WYSIWYG tool, the wxFormBuilder [33], a popular publicly available interface
builder for the wx widgets cross-platform library. This tool offers a typical rapid-
application development cycle with interactive user-interface construction, and
outputs interface descriptions into its custom language-neutral format called XRC
(XML Interface Resources). Then, using wxFormBuilder we construct application and
get as output the correspondent XRC model. To convert XRC to the Delta language
ASTs, we developed an appropriate converter. Then, using the metaprogramming
features of the Delta language, we import and manipulate the application ASTs, and
also add extra interactive features and behavior to it, besides the ones introduced

merely with the wxFormBuilder.

Original application source with

Transformed source
after staged code evaluation st )

execution and generator staged code|  Stage 1 age
Custom App c Custom App c
WX —

. Source Code 23 Source Code 9

FormBuilder | ‘g' g ‘g’

Staged Code i_) wm R Inserted i _ T
(generatormacros) ! LE % Model-DrivenCode | N E é F———— "

c

XRC To AST Custom App '8 E Custom App Zo o
Converter ; Source Code % [ Source Code ki Compilation

-~ ] % 5 ! E output
T i Staged Code | 9 Inserted 1 @
XRC model {independent language) (generator macros) = & > Model-Driven Code | (=
to Delta ASTs (depedent language) | | ________________. T P

Generator macros are auto-rnatr'caHy replaced by their output in
the source text and normal compilation / evaluation is performed

Figure 27. Deployment of approach focusing on User Interface builder.
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So, by designing the simple dialog which is depicted in label 3 of Figure 28 and
developing the source code which is outlined in label 2 of Figure 28, we have the
resulting read-only source code which is depicted in label 3 of Figure 28 when the

built process finishes.

|using wx; sast = xrcZast (“puredialog.®XRC") ;

llEunction GUIWidgets() {... }|(—‘— using wx;
function onNo () {...}

kl (ast.definitions) ;

function on¥es() {...} function onNo () {...}
unction CreateGui (guicbj) { ‘\\\\k function on¥Yes() {...}
function CreateFrame(guicbj) { L

! (ast.gui); o
wx::app start(CreateGUI);

local pureFrm =

wx: :frame construct (guiobj.window,
"ID_ANY",

"Pure dialog");

data.frame = pureFrm;
function CreateBoxsizer (data) {
local boxsizerl = wx::boxsizer construct("HORIZONTAL");

function createButtonNo (data) {
local buttonNo = wx::button construct (data.frame, "No");

return buttonNo; o
H
createButtonNo (data) ;
function createButtonYes (data) {

local buttonYes = wx::button_construct(data.frame, "Yes");

return button¥Yes;

H
createButton¥Yes (data) ;
return boxsizer;

H

CreateBoxsizer (data) ;

return pureFrm;

H

local frame = CreateFrame (guicbkj); frame.show();

Wx::app start(CreateGui) ;

Figure 28. Code generation; in label 1 the application for a pure dialog code with embedded staged code is
outlined; in label 2 there is the result of the build process (i.e. the generated code which is read-only); in label 3
the pure dialog is depicted.

Invoking Ul Builder through a metaprogram

Additionally, using the metaprogramming features of the Delta language, the
wxFormBuilder was launched directly from the meta-code during compilation to
allow interactive editing of the user interface. The entire process is illustrated in
Figure 29. In particular, during the compilation of the target application, e.g. a Paint

application, we assemble and compile the stage metaprogram, i.e. Paint_stage 1.
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=[] Paint.dproj

models bes -
» Run oflleexecute - onexit
Shapes.xrc
Paint.ecore | ¥ Debug launches - savexrc
wxFormBuilder e model

v CEE
o

Clean
« | n

Y

3 Remove
‘/”5 Properties

= — =
| E> XRC model

- load xrc and
G convert to ast

=-£-] Paint.d proj

=] Paint.dproj maodels —
mm::ls execute S:Tr:ﬂteesi:e <:| Model
.ﬂpES.Xr( meta- p X t‘ AST
Pa!nt.ecnre program ; ) :;n HrC egenerator macro
Paint.xrc & ﬁ a'"P asc y updates original
I — . D AR Eiefagry | souwcewt
i Peint stage Tdse T m S Fans stage Lresitdsc 1 - model code
< [ | » 4 1 | »
smodelProjectPath = "/models/paint.fbp"; //wxFormBuilder project

&std::fileexecute ("start wxFormBuilder" + modelProjectPath);
smodelProject = xml::load (modelProjectPath) ;

smodel = load_xrc(modelProject.path); //loads Paint.xrc
&ast = Converter::xrc2ast (model);
! (ast);

Figure 29. Overview of the compile-time MDE deployment through staged metaprogramming. Actions performed
during the metaprogram execution (top right) and their corresponding source code lines (bottom) are shown
with matching numbers

Then, during the metaprogram execution, the call to std::fileexecute launches
the wxFormBuilder with the specified model as input (step 1). The metaprogram
execution will suspend until the call to std::fileexecute returns, something that
occurs only after closing the launched application. When the interactive editing is
completed, the XRC model is saved, the wxFormBuilder is closed and the
metaprogram resumes execution by loading the updated model and converting it to
AST (step 2). The latter is then inserted into the program source through a generator
directive (step 3) and the transformed main program, i.e. Paint_stage_1 result, is

normally compiled to produce the final application.
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Manipulating User Interface Code as ASTs

The goal of our case studies in User Interface Builder category is dual: (a) to show
that the maintenance is effectively eliminated; and (ii) to demonstrate the huge
expressive power of metaprogramming for flexible interface code composition. In
this context, as part of the case study, we have identified and deployed a number of
operations on ASTs to assist in code composition when implementing user-interface
metaprograms. The notion of user-interface code is not limited to user interface
construction logic, such as creating widgets and setting their visible and layout
properties. It actually concerns the full range of dialogue management requirements,
including event management and all types of dynamic interface updates. For
instance, composition may well concern scenarios were event management code is
injected within a user-interface construction code snippet.

Next we continue by enumerating and briefly discussing the manipulation
operators. A few automations for easier user interface code composition were
provided on insertion, such as renaming of local variables in case of conflicts at the
new context, and automatic relinking of widgets to the container produced by the

most previous code fragment.

Clone

Concerns cases where a copy of the source code for a user interface component is
required. Typically, alone this operation is rarely needed, thus it is anticipated to be
followed by radical changes of the user-interface code with operations such as

merge, insert and modify.

Cut

Addresses the need to extrapolate the code snippet of an entire user-interface
component, and is expected to be followed by appropriate merge or insert

operations.
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Figure 30. Cut Ul parts of Calculator in order to transform scientific calculator in a simple calculator

Crop

It is required when the source code creating some outer parts (i.e. containers) of
user-interface components is not needed. In our case we deployed the operator to
drop the containing frame window that is by default inserted by the wx Form Builder

on all projects.

N\ OOd
OLGAN
2 010]=,

Shapes

4

Figure 31. Crop the auto-generated frame from Shapes’ toolbar User-Interface.

Create

It reflects the necessity to introduce extra custom user-interface source code in the
form of AST, to be actually combined with the parts produced by the MDE tool. In
our case we created functions which name begin with the prefix “createast_” and
continues with the correspondent name of widget as name of create function. Each
function constructs the correspondent widget’s AST. So, developers have the ability
to use these functions instead of wx-widgets when they construct user-interfaces
with the proposed approach. Each function gets the analogous inputs which usually

the widget constructor includes and maybe AST internal body (e.g. panel, sizers etc.)
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to insert the AST of children in their body. Finally, returns the appropriate AST.
Additionally, widgets’ AST can be produced without use of these functions. Using the
quazi-quotes (<<>>) the widget’s AST can be produced. A typical example of Create is
in the Figure 33. As it is depicted, firstly it is created Shapes’ Ul toolbar in the
appropriate AST Code and then Shapes’ Ul toolbar is inserted in the Paint’s

application Ul.

Merge

It is a combined composition action on ASTs and is introduced to enable mixing of
independent interface code snippets under a common parent. Usually, such
components are either authored independently in the modeling process, or they
may constitute the outcome of earlier cut operations. A typical example of Merge is

depicted in the below figure.

o —

[ View Edt Melp Dllhwﬂl!-— Fie Edf Vew Help

| 0 ity dadl ¥ et z “I p
e e e, ;
— ., aoooo T | 255568416 | o :
EDOnD o0 o o | (S M
I_IiILIJJ;Ia_jJﬂ : i ||.m_5~|: ]_-—| ‘=|:i LI:
O KO b | mo =] 2] w| 2] o] | 1] =13
_IﬁJLJJJ_'J_J_J JEY T N Y Y |
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Figure 32. Merge two independent Ul code; Calculator and Calendar Uls in one Ul application.

Insert

It allows (re)linking of an existing user-interface code fragment inside another one.
Practically, this action is the dynamic form of all manual editing actions that user
interface programmers would have to apply in order to insert custom code inside the
generated code. It is anticipated as the most frequent editing operation on ASTs. A
typical example of Insert is in the below figure. As it is depicted, in the paint

application is added a toolbar with Shapes.
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Figure 33. Create & Insert Shapes’ User-Interface toolbar in the Paint’s application User-interface.

Modify

It reflects the need to algorithmically apply localized changes on the AST, such as:
renaming variables and functions, changing argument ordering, changing invocation
styles, etc. Although expected to introduce small scale changes, it can be very useful
to keep the generated code synced with newer versions of widget libraries when the

MDE tool is not yet up-to-date.
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bty Sf
Select 9 2 Q ‘Brushes
3 33 A (] s ‘ =
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Figure 34. Editing the tab’s text “Home” of the Paint’s application User-Interface.
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4.1.2 Developing User Interfaces

Scientific Calculator

Using the deployment for User Interfaces of our approach (4.1.1), we have
carried out several Case Studies. In this Section we describe the case study of a full
scale scientific calculator.

In the beginning, we constructed an XRC model of a calculator application using
the wxFormBuilder. The latter was actually practiced in alternative ways, such as
with single authoring project or alternatively with multiple independent projects.
This way we could also assert the compositional flexibility of our proposed approach
in combining independently authored interfaces under a single coherent interactive
system. To convert XRC to the Delta language ASTs we used the appropriate
converter we developed. Then, using the metaprogramming features of the Delta
language, we imported and manipulated the calculator ASTs, and also added extra
interactive features and behavior to it, besides the ones introduced merely with the
wxFormBuilder.

In-between this process we reloaded the visual models invoking the
wxFormBuilder from IDE at compile-time with the staged meta-code we added in the
application’s source code and regenerated the XRC files many times, to test that no
maintenance issues arise by this cycle.

We continue discussing the case study not only regarding the methodological
details, but also elaborating on a few important practicing patterns that emerged in
the process.

We elaborate on the way composition on user-interface code through ASTs has
been applied in the context of our case study. It should be noted that, although at
some points it may look like the effect can be also accomplished by typical runtime
composition at the level of widgets, in general it is not. In particular, not all widget

libraries offer runtime name-based registries for widgets, neither all of them
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facilitate the runtime registration of event handlers in the form of typical method

Invocations.
Original scenario: output from builder — ____ SRS e O et e e o oy | BEMINEMENE sCENRTIO RO UL create and inserd
T~ R —— b [ b oy
| 0 -. LT ST IISTTSIT TSI TN i 0 0}
- —— = 256568416 B - o

== =] . . i < M+ w |
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Figure 35. Two example scenarios (middle, right) of user-interface source code composition relying on AST
manipulation on top of the original GUI authored with the interface builder (left); updates on the scenarios are
automated and are directly remapped on top of the original GUI by simple performing recompilation.

In other words, if linkage is required between interaction objects that are
constructed by the generated interface code to custom event handlers provided by
the application, then it may the case that the only option is making such code
fragments coexist at the same source context.

In our case study, the initial source code corresponding to the outcome of the
wxFormBuilder has the following structure (pseudo code, many details removed),

and creates the calculator instance shown at the left part of Figure 35:

1: new main frame m_frame( :null

2: new panel m_panel0 :m_frame0
3: new num panel m panell :m_panel0
4: new mun buttons m_button=i- :m_panell
S: new func panel m panel2 :m_panel0
6: new func buttons m_button<j- :m_panel2

Figure 36. The GUI parent object typically required

In Figure 36 is depicted the GUI parent object typically required, while line
numbering is used only to help in our explanations. Now, we need to perform the
following changes: (1) drop the code producing the outer frame (line 1); (2) insert
code for event handling implementing calculations on the numeric and function
buttons (after lines 4 and 6); (3) crop the numeric and functions panel (lines 3 and 5);

and (4) introduce a tab-box were to insert the cropped code fragments for the
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calculator numeric and the functions pad. In all these cases we also rely on the
automatic relinking of the parent objects offered by the insertion operator, as

mentioned earlier.

e
& calc = nil; < a global meta-code variable, carrving the entire AST of the user-interface code i
g ying !

& { «— an entire block of meta-code begins here !
|

i

S

Tree::Insert| 4— insert an appficatian event handler for = button E
cale, "m_button54", "EVT COMMAND BUTTON CLICKED", :
"CalcApp: :OnEqual” 4 handler function provided by the application i

)i 9

Tree::Insert| “— insert an application event handler for + button
calc, "m_buttoné0", "EVT_COMMAND BUTTON CLICEED",

"CalcApp : :Onadd" « handler function provided by the application

)i

! ...rest of event handlers are inserted here for therest of the caleulator buttons...

E local numbers = Tree::Cut(calc, "m_panell”); <« cutthecode constructing the numertc panel e

! local funcs = Tree::Cut(calc, "m panel2"); <« cutthe code constructing the functions panel {

E local panel = Tree::Get(calc, "m_panelQ"); < getthe codecreating the main calculator panel i

| local tabBox = << code hereto create the tab box >>; <— codeplaced around <<= is automatically converted to AST |

E Tree::Insert(panel, tabBox); ¢ insert the code for the tab-box after the code of the calculator panel i

| local numsTab = << code hereto create the numbers tab EniTy o

E local funcsTab = << code hereto create the functionstab entry > i

E Tree::Insert(numsTab, numbers); ¢ 1insert the code for the numeric panel after the code of its tab entry i

L Tree::Insert(funcsTab, funcs); ¢ insert the code for the functions panel after the code of its tab entry !

| +o.avy other meta or normal code may be freely placed here ...
" V(calc); < 1inline the entire AST carried by calc at this source location

L o e e e

Figure 37. Meta-code to load, manipulate (four labeled steps) and inline the source code for the modified
calculator.

The meta-code implementing these four composition steps is outlined under
Figure 37, with many details removed for clarity. Also, the actual conversion from
XRC to ASTs is cached and is applied only when an internally produced and stored
AST file is older than the supplied XRC file. There is code in Figure 37 appearing with
a form << some code >>. This is not a conceptual symbolism, but is syntax relating to

meta-language construct known as quasi-quoting. Essentially, it is a compile-time
operator that converts the surrounded raw source-text to its respective AST
representation. For instance <<14+2>> is equivalent to the AST of the expression 1+2,
not merely the character string ‘1+2’. This is useful when one needs to combine in-
place an explicitly written source code snippet with other code fragments that are
available directly as AST values. In our example, we quasi-quote the source text
producing the numeric and function tab entries (middle of step 4 in Figure 37) and
compose them via Tree::Insert with the ASTs earlier extracted from the calculator

code.
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Paint basic

We used the wxFormBuilder once again and we constructed a simple graphics
painting application. The latter was actually practiced in alternative ways, such as
with single authoring project or alternatively with multiple independent projects (i.e.
multiple XRC models). This way we could also assert the compositional flexibility of
our proposed approach in combining independently authored interfaces under a
single system. To convert XRC to the Delta language ASTs we used the XRC to Delta
AST converter we developed, following the proposed approach. Then, using the
metaprogramming features of the Delta language, we imported and manipulated the
application ASTs, and also added extra interactive features and behavior to it,
besides the ones introduced merely with the wxFormBuilder. In-between this
process we reloaded the visual models invoking the wxFormBuilder from IDE at
compile-time with the staged meta-code and we added in the application’s source
code regenerating the XRC files many times, to test that no maintenance issues arise

by this cycle.

File Edit Melp
A /] H W EE N HEEEm
7 T Colowr . -

Al m H BN ENE) EEEN
PR | i |

| «u D

Figure 38. Examples of the generated interfaces: Left: Original application GUI authored by the interface builder;
Middle: Custom toolbar authored as a separate interface; Right: Composing the two previous interfaces through
AST manipulation.

We used the identified manipulation operators described in above subsection
titled as Manipulating User-Interface Code as ASTs and we implemented several
composition scenarios. Figure 38 illustrates one of the implemented user-interface
composition scenarios based on two separate interface descriptions. The toolbar of

the second interface is initially retrieved by cropping its top level frame, and is then
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inserted directly in the top level frame of the paint application. Finally, the combined

interface is produced by inlining the transformed paint application AST.

Self MDE deployment’s dialog

One more opportunity for a case study in User Interface Builder was provided by
the development of the self MDE deployment of our approach described in 3.1.1.
We developed the simple application dialog which is depicted in Figure 39. We used
the wxFormBuilder to construct the XRC model of the dialog and we converted the
XRC model to AST with the developed converter. Then, using the metaprogramming
features of the Delta language, we imported and manipulated the Model Editing AST,
and also added extra interactive features and behavior to it. In particular, we added

three events for the buttons and one for the choice of the model in order to launch

or edit it.

y —== al
*  Model Editing E=S1C
[muy .] Echpse EMF . ke ram Files'E
b w f r l QT
| QTN . :
shapesUI | Edtinternaly | | LaunhExternal | | Continue

he— .4

Figure 39. The dialog open at compile-time to handle the models of development

In between this process, using the metaprogramming features of the Delta
language, the wxFormBuilder was launched directly from the meta-code during
compilation to allow interactive editing of the user interface. We repeated loading of
the visual model and regenerating of the XRC file numerous times, so as to test that

no maintenance issues arise by this cycle.
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4.2 Class Builder

In this section we describe the deployment of the approach, focusing in Class
Hierarchy. Additionally, to test our approach and assess its expressive power and
engineering validity, we have carried out case studies. In particular, we have
developed Geometry application described in section 4.2.2 and a Library application
described in section 4.2.3. We continue with the description of the Class-Hierarchy

deployment of our approach and then following the case studies.

4.2.1 Applying our approach for Class Hierarchy

Following the proposed approach we deployed it for Class Builder as it is outlined
in Figure 40. We used the Eclipse Modeling Framework to model a class hierarchy for
the development of an application. The model is created through the Ecore meta-
model and its specification is generated in XMI format. Then, to convert XMl to Delta
language ASTs we built an appropriate converter we implemented for the demands
of this case study that parses the XMI data and maps the model entities to

corresponding Delta code structures.

Criginal application source with

Transformed source
after staged code evaluation|

executr’gﬁgnd ggnerator stoged code|  Stagel - Stage 2
Custom App 5 Custom App c
EMF Source Code = ‘g Source Code %
P |3 G ' 3
Staged Code i_) wm e N Inserted i _ T
(generator macros) | & = Model-Driven Code | E & p—
. i
o -5 spien
XMI To AST Custom App B E Custom App Zo 0
Converter m Source Code % [ Source Code ki Compilation
-~ ] % 5 ! E output
T iy Staged Code ] 9 Inserted ] [l
XM mode| (independent language) | (generator macros) > & ' Model-DrivenCode | =
to Delta ASTs (depedent language) ] i L Vi

Generator macros are auto-matr'caHy replaced by their output in
the source text and normal compilation / evaluation is performed

Figure 40. Deployment of approach focusing on Class builder
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Again during the process, we reloaded the model and regenerated the XMI
specification to verify that no maintenance issues were introduced in the
development process.

Additionally, for this scenario, the MDE tool deployment was implemented using
two different approaches. The first one again involved launching an external tool to
update the model, in this case the Eclipse Ecore model editor. The second one
focused on implementing the model editor as an inherent part of the metaprogram,
i.e. without launching any external applications. Of course, such a custom editor
need not be implemented from scratch but may reuse any model editing library

implemented in the same language.

~ -
51 Tree-Model Editor =), [Rea |

[ File Edit View Help
Geometry
Line
pointl
point2
3 contains
7] distance
3 getBounds
73 intersects
3 intersectsLine
1 setlLine
] Circle
center
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47 area
3 setCircle
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3 intersectsLine
] Triangle
] Rectangle
Rhombus

;

Figure 41. The internal custom model editor launched during compilation case study of Geometry.

Towards this direction, we implemented a simple GUI (see Figure 40) offering an
editable tree control to specify the class hierarchy, effectively emulating the Ecore
model editor functionality. Using this approach we may take advantage of executing
in the same address space and also store the generated ASTs in a metaprogram
variable that can be later used directly in the generator macros, thus removing the
need for reloading the AST data from storage.

Figure 42 illustrates the metaprogram used to implement the second case, while
for the first case the deployment code closely resembles that shown in Figure 29, but

with the invocation of the MDE tool targeting the Eclipse model editor.
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&function LaunchEditor (modelPath){ <ameta-functionavailableduringstaged evaluation; can be put ina library

local frame = wx::frame construct(mnil, "ID_ANY", "Tree-Model Editor"); < create GUI frame
local tree = wx::treectrl construct(frame, "ID ANY", "tree"); <—create model editor tree control
local model = load_xmi(modelPath); « load the X M1 model definition and store to meta-code variable
PopulateTreeFromModelData(tree, model);
function CnSave() { «— event h{mdferformting the updated model

local model = ExtractModelFromTree (tree);

¥xml::store(model, modelPath); «— store the updated model at the sume path thatwe loaded it from
}
frame.connect ("ID_SAVE", OnSave); « register events handlers for menu items and tree control actions

frame.connect("tree", "EVT_COMMAND TREE ITEM ACTIVATED", OnItemActivated);

...any other event handlers are regfstered here...

frame.show();

wx::main_loop(); «— execution is passed to the GUI and will resume only when theeditor is closed
} < thismeans that during model editing staged evaluation is practically stalled

&const modelPath = "./models/Geometry.ecore"; +«— a meta-code variable ho!a‘ingrhepath!o the model

&LaunchEditor (modelPath); — ftmr!iort call executes during stage ev aluation (executor macro) munching the editor

&model = load xmi(modelPath); « load the updated X MI model definition and store to meta-code variable
&ast = Convert::xmiZast (model); +« convert the model to the respectite AST

&ApplyModelExtensions(ast); 4—0P!llﬂ!l(.’.”'\. extend or update the generated model code as needed throughA.S'Tedirfng
...additional normal user code that hasto be placed before the generated model code can be placed here...

| (ast); « inlinethe entire AST value at this source location (generator macro)
...additional normal user code that hasto be placed after the generated model code can be placed here...

Figure 42. The internal editor code as an inherent part of the staged metaprogram.

4.2.2 Developing Applications

Geometry

In the beginning, we used the Eclipse Modeling Framework to model a class
hierarchy for the development of a simple Geometry. The hierarchy contained the
abstract notion of shapes, as well as concrete drawable shapes like points, lines,
circles, etc. The model was created through the Ecore meta-model and its
specification was generated in XMI format. Then, we converted the XMI model to
Delta language ASTs using the appropriate converter we built.

In the Figure 43 is depicted the model, the generated code structure (shown as
code, but is in fact in AST form) as well as the deployment code required to inline the
code AST in-place with the normal program code. Again during the process, we
reloaded the model and regenerated the XMI specification to verify that no

maintenance issues were introduced in the development process.
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For the method implementations of the modeled classes we practiced two
alternative methods. The first one involved specifying the method bodies directly in
the model through the use of special EAnnotation elements (Figure 43 top-left,
highlighted). The second one did not involve any model editing, but relied on
obtaining the generated AST and inserting the method bodies directly into it as part
of the staged code evaluation (Figure 43 bottom, 2nd statement). This approach may
seem more difficult to adopt, but in fact it is easy to develop and offers several

advantages over the first one.

#) geometry.ecore 33 = 0 function Geometry() {
4 &) platform:/resource/ModelTest/geometry.ecore function Shape(} {..}
4 8 Geometry function Point() {..}
E Shape
E Point -> Shape function Circle() {
B Line-> Shape local circle = [

* RectangleQutCode
E Rectsngle -> Shape
4 [ Circle -> Shape
a4 @ areal): Elnt
4 fiz Code
5 body -> return stdzpi() * @radius * @radius;

Bcenter : Point(),
Bradius : 0O,
method area() {},

method setCircle {circle) {1}

@ containsPoint(Point) : EBoclean 1: . ) _ .
@ intersectsLine(Line) : EBoolean std:: 133?111:’ leircle, Shape()):
@ setCircle{Circle) return circle;

e center: Paint
= radius : Elnt
& DrawingArea [Drawinghrea]

&ast = Converter::xmiZast("geometry.ecore") ;+ lsad X MI model definitions and convertto A3T
&ast.Geometry.Circle.area.body.insert ( € inserting custom functionality for generated methods

<<return std::pi() * Efradins * @Bradins;>> < cede within <<>>is automatically convertedto 45T
)i

ren @Y Elf;'f?? mete or I'HJ?'I'R.E{ f‘lJle' may beﬁeef}'pfuref ;'EE’?E’ aan

! (ast) < inline the entire AST carryving the class hierarchyat this source location

Figure 43. Top-left: Ecore model of the target class hierarchy; Top-right: Code structure (AST) generated by the
model; Bottom: Deployment code for loading and converting the model to AST, performing manual updates
through AST editing and inlining the final AST code. The initial value of the meta-variable ast corresponds to the
code structure shown at top-right.

When inserting the code directly in the model, the code is entered as raw text
and thus lacks any programming facilities. Additionally, code overview is severely
restricted, as the model view truncates the annotated text and full code inspection is
only allowed for a single selected EAnnotation. Of course, there is no direct notion of
parameterization or reuse; the only option short of code repetition is to explicitly
introduce new model methods, implement their code through a new EAnnotation

and then use their corresponding invocations where needed, again as raw text
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placed in other EAnnotations. In any case, inputting source code in separated text

areas is far from a productive development method.
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Figure 44. Supporting quick access to all class hierarchy entities through AST decoration. The AST shown
corresponds to the generated  hierarchy of Figure 43, while the highlighted path
ast.Geometry.Circle.area.body was used to insert custom method functionality.

Regarding the second approach, creating or inserting code through
metaprogramming is achieved through additional syntax (quasi-quotes) directly at
code editing level. This means that the developer may utilize all typically offered
code facilities like syntax highlighting, auto-completion, refactoring tools, etc.
Additionally, different code segments (ASTs) corresponding to related methods or
classes may be placed in the same source location as would be the case if the entire
class was manually written by the developer, thus supporting the typical source code
overview. Finally, since ASTs are actually metaprogram data, they are subject to
standard software engineering practices like parameterization, encapsulation,
modular composition, etc. The main issue related to programmatically extending the
originally generated AST is that we need to traverse the AST to locate the nodes to

be extended and therefore requires knowledge of the code generation scheme
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utilized to form the particular AST structure as well as internal AST information. To
relieve the developer from having to know such details, we utilized an AST
decoration process to allow direct navigation across AST nodes using the named
entities of the class hierarchy (see Figure 44). This way, knowledge of the model
entities and a simple tree manipulation API are sufficient for a developer to
introduce elaborate AST extensions.

During the development of this Case study, we deployed the compile-time
invocation of MDE tools in two different ways as we discussed in the previous
section in order to examine the convenience and effectiveness of this type of launch

an MDE tool during compilation.

Library basic

Once again, we used the Eclipse Modeling Framework to model a class hierarchy
for the development of a simple Library application. The hierarchy involved the
notion of a library in which Books (EClass), bookType (EEnum), Dictionaries (EClass),
Magazines (EClass), Writers (EClass), PublishingHouses (EClass) etc are included. The
model was created through the Ecore meta-model and its specification was
generated in XMI format. Then, we converted the XMI model to Delta language ASTs
using the appropriate converter we built. The call of this converter is depicted in
label 2 of Figure 45.

For the method implementations of the modeled classes we used the second
method of the previous two discussed in the case of Geometry, which relies on
obtaining the generated AST and inserting the method bodies directly into it as part
of the staged code evaluation as depicted in labels 3, 4 of Figure 45.

Then, we developed pure functionality for the library application, with details
removed for clarity. We created instances of writers, books and then an instance of a
library with a list of books as outlined in label 5 of Figure 45. Finally, we searched for
the books published in 2009 and they are in the Library as depicted in label 6 of

Figure 45.
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ilocal method setBook = <<
method setBook (title, bookType..) {

i Btitle = title; “— @titfe 1s one attribute ofthe class Book

E ftype = bookType; « (@typeis one other attribute of the class Book

| e
i ’ :
12>; « codeplaced around=<<>> is automatically converted to AST !
ww-otherasis of methods ot bodies code muy be feely BRere.. - ]

ilibclasses .library.Book.type.push back(method setBook); <« add codemethod in Book class of the G
! « library’s AST
i

'} «— the block of meta-code ends here 6
:...ran}'other meta or normal code may befree{rp!ured’ here...

E! (likClasses) ; « inlinethe entire AST carried by libClasses at this source location
I+ - -ary other meta or normal code may be freely placed here...

Ebookl = library() .Book(); «— create a defuult book instance
'‘Bookl.zetBook ("Inferno™, "mystery thriller™, 2013); <« setdatate the book instance

:...rart}'other meta or normal code may be freely placed here...

E]'_.ibrary = library().Library(); «— create ¢ default library instance
E]'_.ibrary.na.me = "library UCC"; «— set name of the library instance
Library.books.push back(bookl); «— add bookl in the list of library’s books

ne .'ra'rif attier iicta oF Harmal code ﬁ‘f' . Ee‘ﬁ"eé[\"ﬁﬁ&'éd’ B = E
Eforeach (book, Library.books) «— print all the books that are published in 200965

if (book.year =— 2009)
std: :print (book.title, "by", book.writer, "\n"):;

rmeteor_normal code may_ be freely placed_ here.. ___
2 Y

LY OLITer Rl OF TLELL

Figure 45. Meta-code to load, manipulate and inline the source code for the library.

Again during the development process of the case study, we reloaded the model
and regenerated the XMl specification to verify that no maintenance issues were
introduced in the development process. Additionally, we added staged code in order
to invoke the MDE tool at compile-time with the correspondent XMI model in order

to launch it.

4.3 Automatic User Interfaces

An alternative way to construct User-Interfaces instead of using a WYSIWYG tool is
the automatic generation source code by specification. In some way, the latter is the
model which describes the User-Interface. The automatic Ul generation tool gets this

specification as input and either creates the Ul and runs the application, i.e. in the
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case of executors or creates the correspondent Ul source code of the application and
then source code is manually completed in order to finalize the system under study.
The latter is the kind that we focus on in this thesis and it also causes the

maintenance problem similar to the WYSIWYG tools we discussed previously.

In this case study, we developed a system which gets a specification of annotated
APIs as input and delivers an AST according to our approach, instead of source code.
The goal of this case study was dual: (a) to research an alternative way for Model-
Driven Engineering of User-Interface; and (b) to deploy it in our approach. We
continue with the description of the specification with annotated APIs of User-
Interfaces. Then, we briefly analyze the system which produces the AST. Afterwards,

we describe a pure user interface of a library application we built using this approach.

4.3.1 Defining an alternative Ul model

In User-Interfaces, it is common to define models using MDE tools and save them
in the form of User Interface Description Languages (UIDL). An alternative model
that can be defined, is the specification annotated APls. We have adopted the
annotated user interface APIs based on lectures of the computer science department
of the University of Crete, Development of Intelligent User-Interfaces and Games
[45]. In general, when the construction of a software system begins, the operations
that the system will eventually support are defined. So, a Ul model could be a
specification which includes the operations of the system under construction. In our
case the Specification (model Ul) is defined by Operation, Signature, Parameter,
returnValue, func, dataFlowType, typelnfo. Each of these model’s constructs are

described below.

Operation

One Operation can be defined as a User Interface or a non-User Interface operation.

Each operation consists of the signature and the func.
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Signature

The operation’s signature consists of the name, the parameters and the returnValue
which gets a value when the reference function (func) is fired by the user. The name

of the operation’s signature must be unique in a defined specification.

Parameter

Each parameter consists of the name, the dataFlowType and the typelnfo. It models
the constituents of one operation. The parameter’s name must be unique in the

operation.

returnValue

It refers to the result of the function call of the operation’s ref (func). It contains the
name and the typelnfo of the return value. When the application starts returnValue’s

value is empty.

func

The func includes the refs of the operation’s functions which the user defines for the
system’s operation. These functions are callback and are fired during use of the

application.

dataFlowType

The dataFlowType is the type of parameter or result data. The possible values are
“In”, “Out” and “InOut”. “In” refers to data passed to the Operation’s callback
function (func). “Out” refers to data coming from the Operation’s callback function
(func). “InOut” refers to data passed and coming from the Operation’s callback

function (func).
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typelnfo

It describes the type of operation’s parameter or returnValue. It can be a basic type
(String, Boolean, Integer and Void) or defined type that is described by a Table. For
example a String is described by this table [ etype : "sString" ]. The defined
types are described by a Table, but the contents vary. The available defined types
are Struct, List, Vector, Array, Enumeration and Union. These types are described by

the following tables:

Struct

[
@type : "Struct",
@userDefClassId : <String>,
@members :
[
[
@name : <String>,
@typeInfo : <basic type> | <user-defined type>
1,

1y
]

List/Vector
[
@type : "List"/”Vector”,
@userDefClassld : <String>,
@elementTypelnfo : <basic type> | <user-defined type>

Array

@type : "Array",

@userDefClassld : <String>,

@elementTypelnfo : <basic type> | <user-defined type>
@length : <Number>

]

Enumeration

[
@type : "Enumeration”,
@userDefClassld : <String>,
@members :

[

[ @name : <String>],

80



Union

@type : "Union",
@userDefClassld : <String>,
@members :

[

@name : <String>,
@typelnfo : <basic type> | <user-defined type>

Each of the types defined above can be described with correspondent User-
Interfaces. An example of the basic types’ String correspondent User-Interface is
depicted in Figure 46. An example of the description of the List type is depicted in

Figure 45.

string_list

world

world Create

@ (2
1/2

Author

Lewis Carroll

Title

Alice's Adventures in Wonderland
ISBN

XXX -XXXXX

Figure 46. List's User Interface description; at the top there is the description when dataFlowType is “In” or
“InOut”; at the bottom there is the description when dataFlowType is “Out”.
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string1_arg retval

hello world hello world

Figure 47. String’s User-Interface description; on the left side is the Ul when dataFlowType is “In” or “InOut”; on
the right side is the Ul when dataFlowType is “Out”.

A definition example of a calculator operation is,

calcFuncSpec = [
@signature : [
@name : "calc",
@returnValue : [
@name : "result",

@typeInfo : intTypelnfo
1,

@parameters : [

[ @name : "operand 1",
@typeInfo : intTypelnfo,
@dataFlowType : "In" ],

[ @name : "operand 2",
@typeInfo : intTypelnfo,
@dataFlowType : "In" ]

1
1,
@func : [
@ref : "UserFuncsEvt::calcFunc"

]
17

The specification (model Ul) is defined in a script source file in which there is a

function GetAPISpec which returns the API specification object.

4.3.2 The Auto-generation UIAPI engine

In order to create the User-Interface and the API from the UIAPI specification
model which is described above, we developed an appropriate engine. This engine
gets the UIAPI specification model as input and translates it according to the theory

of lectures of the University of Crete ‘Development of Intelligent User Interfaces and
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Games’ lesson [45] in the correspondent Delta Language AST instead of source code

in respect to our approach.

The Auto-generation Ul engine is composed as depicted in Figure 48 by the
following main parts; the UIAPISpecValidator, the UlBuilderCore, the RulesMap and

the MicroUIsBuilder which are briefly described below.

UIAPI[?:EEC I input

UIAPISpec
RulesM
Validator uiesiviap
Y A
UlBuilder v
Auto-generation Ul Core MicroUls
engine Generator

. J

Figure 48. The auto-generation Ul engine architecture

The UIAPISpecValidator is the first step of the engine. It handles the validation
check of the model given as input to ensure it was appropriate. In case the model is
not valid, the engine gives the appropriate error message for the model and

terminates.

The UlBuilderCore is the main part (core) of the engine. It constructs the main
frame’s User-Interface and then uses the operations described in the specification
(model) in order to construct their Ul and API. Finally, it returns the object with the

ASTs result of the engine.

The RulesMap is also an important part of the engine which is responsible for the
theory of lesson lecture [45] in order to create the Ul for the parameters and the

return value of the operation.
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The MicroUlsBuilder is the builder for each of the types that could be defined in
the specification. It is called by the RulesMap in order to create parts or whole Uls of

the parameters and the return value.

4.3.3 User-Interface Design Issues

As it can easily be perceived, the User-Interface created by this auto-generation
tool is predefined for each of the Uls and its design is sometimes far from the
desired design of the application graphical user-Interface. The accuracy of the User-
Interface design for an application is very important, so we have to address this issue
in this case. There are two approaches to solving this problem without causing

troubles in the maintenance issue we address.

The first way to fix the design issue is to enrich the specification model in order
to define the design of the User-Interface of the application under study. In the one
hand, the new specification model demands the extension of the auto-generation Ul
APl engine in order to create the correspondent Ul source code for each model. On
the other hand, the more enriched the specification model is the more difficult it will
be to define the specification script correctly. In order to define this type of models
effectively, an appropriate visualization software tool will be needed in which the
user will create the model (script) automatically. This work has not been done in the
thesis and it is subject to future work.

The second way to address the issue of the design of the GUI is to get the current
result of the auto-generation engine Ul and APl AST. Then, using the Manipulating
Interface Code as ASTs which we discussed previously, we could transform the
produced AST in order to edit the User-Interface of the application under study. In
the one hand, this solves the problem of the design accuracy of the User-Interface
although one or more changes to the API’'s AST will be needed because of the
dependencies between the two auto generated ASTs (Ul & API) from the engine. The

APl’s AST transformations need to be done in case of Ul changes like replacing a
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widget and are not needed in case of setting data in a widget or changing its position
in the application frame. This means that although the double transformations of the
Ul AST and API AST are not so easy, the cases in which they are really needed are
infinitesimal. So this is the approach we use in the following application of a Library

in order to edit its User-Interface.

gusing #UIBuilder;
gusing #UIAPIModel;

gast = nil;
&1
ast = UIBuillder: :RAutoGenUIAPI (UIAPIModel) ;
..0other additions —-transformations of library ast may be freely there..
}
..any other meta or normal code may be freely placed here..
"{ast.gui);
.any other meta or normal code may be freely placed here..
'{ast.api):

Figure 49. Default embedded metacode using the auto-generation tool we developed

In order to use the auto-generation tool need to write the metacode as it is
outlined in Figure 49. Developers have to include the UlBuilder as embedded
metaprogram in the program under study in order to use the auto-generation engine.
Additionally, they have to include the specification script (model). Then developers
include a call to the auto-generation engine as an embedded metaprogram in order
to create the ASTs. Afterwards, they write the transformations for the User-Interface
and the AP| ASTs. This MDE process is the same as previously described. The only
change is the way of construction of the model in which the user has to write in a
script in order to construct it. We can easily try the self-deployment of the
Specification and change it at compile time before the evaluation of the specification.
In this case though there is no point in intervening because the model is a script in
the form of source code and can be edited from IDE at development time. The self-
deployment could be done in case we had built the visualization tool we discussed

above.
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4.3.4 Developing Ul for a Library

To test this approach and examine the effectiveness and engineering validity we
have carried out a case study. We developed a pure library application. We defined
four operations for the library. The view, search, rent and let a book operation of a
library. We created the model defining four different operations:

viewBooksOfCategory, searchABook, rentABook, returnArentedBook.

The viewBooksOfCategory describes the operation in which users choose the
category of a book, and can view the books there are in Library. It is a Ul

operation in the specification model.

e The searchABook describes the operation in which the user searches for a
specific book giving title/writer’'s name/year/type of the book. It is a Ul

operation in the specification model.

e The rentAbook describes the operation in which the user rents book(s) from

the library

e The returnArentedBook describes the operation in which the user returns to

the library rented book(s).

All these operations are Ul operations and none of them are non-Ul operations. For
each of them, we described the parameters, the return value and the ref function
operation.

Then, we converted the specification to ASTs using the auto-generation engine
we developed. We get two ASTs as result; the first is the APl and second is the User-

Interface of the application as it is depicted in the Figure 51.
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Figure 50. User-Interface produced by auto-generation Ul engine.

i R
i " Library Application @Elg

- Book_Search
View_Book

i Rent_Book
. Let_Book

Figure 51. Manipulating the auto-generated User-Interface through ASTs transformations.

Afterwards, we edit the default auto-generated AST of User-Interface using the
Manipulating User-Interface Code as ASTs operators we described in previous section as
it is depicted in the Figure 51 in order to adapt the auto-generated Ul for the Library
application. The meta-code implementing the transformations for the Ul of the
Book_Search is outlined in the Figure 52, with many details removed for clarity.

Firstly, we include the specification of library (Ul model), the UIAPI engine and the
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library of manipulating User-Interface operators (see step 1 of Figure 52). Then, we
changed the default title “UIAPI” with title “Library Application” and the background
color of the frame (see step 3 of Figure 52). Then, we removed the inactivated
button which is unnecessary in current Ul and changed the textctrl titled
“Search_Parameters” with more specific title “Searching for a book...” (see step 4 of
Figure 52) and the positions of the textboxes in the sizers (see step 5 of Figure 52).
Afterwards, we inline the ASTs between the custom source code of the Library
application (see step 6 of Figure 52). Finally, we complete the reference functions of

the operations by pure source code to add their functionality.

using wx; « normal code, directive for importing the wxWidgets GUI toolkit E
et e 1
- . . . i

i& using #libSpec; « meta directive for importing the m_od'ef Ul specification of Library !
'& using #UIAPIEngine; < mete direciive for importing the Ul API Engine &
N |

i& using #UIRST; « meta directive for importing the library script of the manipulating Ul ASTs operators 1:
< o A
i |
i& asts = UIAPIEngine::CreateUIAPI (libSpec); <« call the UL4PIEngine to create the A5Ts :
1 1
| i
i—& { «— an entire block of mefa-code begins here E
// gui ast transformation to change frame’'s title and bgcolour !
\OIAST: : addMethodeall (asts.gui, "UIFrame”, "settitle™, "Library Zpplication"}; 9’
1 1

UIAST:: addMethodeall |
! asts.gui, "UIFrame","setbackgroundcolour™, <<wix:icolour_construct(22, 93, 125)==) ;
:U]'AST::add.]‘-iethodcall[asts.gui, “Book Search", "settitle"”, "Searching for a book."); !
// gui ast transformation to remove useless (in our case) button 0
{UIAST: :remove (asts.gui, "Book Search button selectvaluefromothersource™); i
E'// gul ast transformation to change position of textctrl widget of Aunthor !
local siteml = UIAST::getchild index(asts.gui, "Book Ruthor textctrl"); |
{UIAST: : remove (asts.gui, “Book Ruthor textectrl™); a
EUIAST::insert_after[asts.gui, "Book Author statictext", siteml); E
1
|

«— theblock of meta-code ends here
\...any other meta or normal code may be freely placed here...

E! (ast=.gui) ; « inline the entire AST for the GUI of the library application ei

\...any other meta or normal code may be freely placed here...
M asts.api) ; <« inline the entire A ST for the API of the library application

_______________________________________________________________________________________________________

Figure 52. Meta-code to include the specification(model Ul), the UIAPI engine and the library of manipulating Ul
for AST’s operators in label 1; Meta-code to call the auto UIAPI engine in label 2; Meta-code to transform the
auto-generated AST’s GUI in labels 3,4,5 and inline the ASTs in order to generate the Library’s application source
code in label 6.
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4.4 Combined Deployment

In general, during the development process it is common to use more than one
model-driven (MDE) tool to construct a single application. Each MDE tool is used to
construct one or more models. As well in our approach, we can use one or more
MDE tools. For each of the XML models that constitute the deliverables of model-
driven tools will be converted in ASTs by appropriate converters (we have to build a
converter for each different modeling language). Then, developers have to handle
the produced ASTs once by transforming them and inlining ASTs or parts of them in
appropriate positions of source code according to general approach for code
manipulation and insertion using ASTs is the one earlier described in section
Multistage Languages and relates to compile-time metaprogramming languages,
involving two stages that are also depicted under Figure 53: meta-code evaluation

(stage 1), and normal compilation (stage 2).

Original application source
with generator staged code Stage 1 S 2

nen MDE s uﬁe:— ;?;Sﬁir:;ﬁe?uﬁzzmn
00 00 Source Code —-_g____\

E

Staged Code i Custom App
Model Model am Model (generator macros) | Source Code
1 2 N '
‘L ¢ ‘L Custom App - Inserted
Source Code Model-Driven Code

Converter||Converter| , |Converter

{Generator Macros)
v

Staged Code Evaluation

Normal Translation/Evaluation

1 2 Staged Code i Custom App
= (generator macros) | Source Code
£ i
en Custom App N N Inse!'ted !
Source Code i Model-DrivenCode |
| o o e e e 1
Handle-transform and combine the Just after ‘macro evaluation the language automatically
ASTs replaces them by their output in the source text and
normal compilation / evaluation is performed

Figure 53. Deployment of approach focusing on combined deployment; use more than one MDE tools.

We continue with the presentation of the case studies, using more than one MDE
tools for a single application. In particular, we have carried out two case studies. The
first case study is the Paint in which we used the wxFormBuilder and the EMF tool. In
the second case study we developed a Library application in which we used the EMF

tool and the Automatic User-Interfaces we described in section 4.3.
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4.4.1 Developing a paint application

Using the wxFormBuilder we constructed a simple Paint application. The XRC model
which delivered by wxFormBuilder is the first of three models built for development
of Paint. Then, using again the wxFormBuilder we constructed one toolbar as it is
depicted in the Figure 38. Finally, we use the model delivered for shapes class
hierarchy of previous case study. The latter was changed and extended to be
appropriate for Paint application.

Our case study focused on obtaining the code generated by the previously
discussed methods and combining it along with the custom application logic to
implement a fully functional paint application. It is important to note, that although
a simple concatenation of the generated sources caused no direct compilation
conflicts, it was far from sufficient for deriving a fully-functional application.

In fact, multiple manual updates were necessary involving both generated
components and requiring bidirectional dependencies. Firstly, the event handling
code required knowledge of the separately generated implementation classes. Then,
certain methods of the class hierarchy like draw required invoking Ul-related
operations. However, the class hierarchy model was unaware of the deployed Ul
library, meaning that such information could not be available in the model and
would thus have to be explicitly expressed as a manual extension in the generated
sources. Finally, we needed to combine the generated code with the custom
application logic. The meta-code implementing the above functionality is outlined
under Figure 54, with details removed for clarity.

Initially, the XRC interface definitions for both the basic paint application Ul and
the shapes toolbar extension are loaded and converted to AST. Similarly, the XM
model definition for the shape toolset class hierarchy is also loaded and converted to
AST (step 1). Actually, all such ASTs are cached and the conversion is only applied
when the internally produced and stored AST file is older than the supplied model

file.
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E'J.sing WX normal code, directive for importing the wx Widgets GUI toolkit

i
(_ 1
'& paintUI = nil; «— ameta-code variable, that will store the A3T of the paint application user-interfuce code E
E& shapesUL = nil; «— o meta-code variable, that will store the AST of the shapes toolbar user-interﬁare code E
& classes = nil; «— ameta-code variable, that will store the A3T of the class hierarchy for thetoolset !
el - _anentire block of meta-eode beginshere ;
paintUl = Convert::xrclast("paint.xrc"}; < load XRC interface definitions and convert to respective AST
'shapesUI= Convert::xrc2ast("toolbarShapes.xrc");
iclasses = Convert::xmi2ast("paint.ecozre"); «— load X MI model rt’g)r"initions and convert to respe:'tiae AST
ITree::Crop (shapesUI, "shapes"); < drop theouter frameinserted by the wxFormBuilder ;
\canvas = Tree::Get(paintUI, "canvas"); + get thecode crearing the canvas pfu'rtrpmte{

ETree: :InsertBefore (paintUI, shapesUl,canvas); < insertthe code for the shapes toolbar irte thepaint['l
! — ﬁ'ﬂme,F!acing it b_g,rbre the code _q,r‘the COnves

gl Aoty = S| S Aol

jclasses.Geometry .Circle.draw.body = < insert custom tmplementation for method Circles:draw(de) |
! << dec.drawcircle(Bcenter, @radius); >>; +— de: argument, @center and @radius: circle attributes G
- other shape merhndimpiemmmriom are inserted here as well... |
Tree::Insert{paintUI, ¢ insert an application event handler for circle shape button

"circle™, " EVT_ COMMAND EUT TDN_CLICRED" A

<<Paint.SetSelectedToocl ("shapeCircle™) :>> +« handler code speciﬁect‘ as an A3T; alternativ ely, handler
E} : «— code may be specified as a function given by the application
\...other event handlers are inserted here as well. ..

:} « theblock of meta-code ends here |
I...any other meta or normal code may be freely placed here... e,
Vclasses) ; «— inlinetheentire A3T carried by classes at thissource location |
E...ran}'nrher meta or normal code may be freely placed here... E
1 (paintUI) ; « inlinetheentire AST carried by paintUT at thissource location|
|
|
I

Figure 54. Meta-code to load, manipulate and inline the source code of all modeled aspects of our system. The
result is a fully functional paint application like that shown on the right of Figure 38.

Then, the interface definitions are combined to generate the final application
interface (step 2). In particular, the top level frame of the shapes toolbar is dropped
and the remaining interface component (i.e. a panel) is inserted in the frame of the
paint application before the canvas. With the visual representation ready, the next
step involves implementing the various methods of the class hierarchy (step 3). This
is achieved by creating and inserting AST values in the method bodies as discussed in
the previous section. Notice that the quasi-quoted code can directly link to Ul
elements. The next step is the generation of the event handling code (step 4). As
shown, we can specify event handling code directly as an AST, while the code itself
may refer to objects related to the shape toolset class hierarchy. Finally, once all
appropriate transformations and extensions have been performed on the ASTs, they
can be inlined to the final program at some source location (step 5). The AST of the
class hierarchy should be inlined first so as to be available in the subsequent Ul code
that utilizes it. The code of the class hierarchy also requires the GUI toolkit
functionality; however it is already visible through the import directive present in the

first line.
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Specifically for the user-interface code, it should be noted that it may have been
possible to accomplish the same result using typical runtime composition at the level
of widgets. However, such an approach cannot be deployed in general, as there are
widget libraries that offer no support for name-based registries for widgets, or
runtime registration of event handlers in the form of typical method invocations. In
such cases, if an object constructed by the generated interface code needs to be
linked to custom event handlers provided by the application, then making such code

fragments coexist at the same source context may sometimes be the only solution.

4.4.2 Developing a library application

In this case study, we used the EMF tool and the auto-generation which is
described in section 4.3. Our purpose for this case study is to examine whether the
combination of more than one model, although constructed in a different way
(specification by writing source code in a script and Ecore by using the EMF in
Eclipse), that it does not affect the maintenance issue. In particular we used two of
the models we constructed for the previous case studies. Firstly, the EMF model we
built in the Library basic (see Figure 55). We changed the pure source code of the
Library object creation from the previous case study by adding source code which
parses xml file in order to load the Library data and source code to save back the
Library data to xml file. In other words, we built a simple database for Library
application.

Then, we used the specification (model) which was defined in the Automatic User
Interfaces in Library Ul example. We replaced the functionality source code of the
reference functions of the operations we developed in the previous case study with
source code which uses the functionality we developed in the part previously
described above for the class hierarchy. Again during the process, we reloaded the
models and regenerated the XMl specification and the UIAPI specification to verify

that no maintenance issues were introduced in the development process.
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#) Library.ecore 23. = 0

4| 2 platform:/resource/Libraries/model/Library.ecore
4 8 library
4 [ Book
b = ExtendedMetaData
» F title: String
» § pages:Int
» 5% author: Writer
4 [ Library
> T name:String
> & books: Book
B Writer
» B GuideBookWriter -> Writer
v E SpecialistBookWriter -> Writer

funcrtion library

{

}

function Book
{
recurn |
Britlel.)
Bpages{_)
@author{.}
;-
}
function Library
{
return [

Ename {,_}
Bbooks{
@set (method(books)

[ Bbooks = booka;l)
Bget (method
[ return Ebooks:})

1
}
function Writer{.)
funcrion GuideBookiWriter {.}
function SpecialistBookWriter{.)

Figure 55. Left: Ecore model of the target class hierarchy; Right: Code structure (AST) generated by the model
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Chapter 5

Discussion

In this chapter, we further analyze the problem of maintenance issues by giving a
simple example and using traditional generative MDE tools as well as our approach
in order to compare them. Then, we discuss the tradeoffs using our approach and

finally we describe the applicability of our approach in programming languages.

5.1 Maintenance

We designed a model of the Person class by using a modeling tool which does
not deal with maintenance issues. Person includes the attribute “name” and the
method “naming” which sets name in Person. We generate the source code from
the model using a code generator. Then, in order to complete the implementation
source code of Person we complete the body of method naming. In case we decide
to extend or edit the model later, we have to re-generate the source code from the
model. The manually written source code in method naming will be lost so we have
to re-complete it. In this simple case we just have to copy this fragment of source
code before regeneration and then paste it in the updated source code. In a real

application development, we design many classes. So, we have to keep old sources’

94



version and after the regeneration of the source code from the model we have to
place the source fragments in the generated source code. This is a very tedious and
inefficient process which can cause a lot of issues (e.g. wrong mapping of source

fragments in the auto-generated source code).

5.1.1 Addressing maintenance issues so far

In general, the attempts are distinguished in two approaches. The first approach
is with the use of annotations within the source code and the second is the support
of the full cycle development. We continue describing these two approaches through

the example we discussed previously.

Using annotations

Using the aforementioned example, we model the Person class with the attribute
“name” and the method “naming”. Then we create the appropriate code generator
(i.e. *.genmodel) from the eclipse modeling framework in order to generate the
source code from the model. The source code includes annotations in its comments

as it is depicted in Figure 56.

/** #) Person.ecore 53 = O
* @generated */ 4 @ Bample
public class Person { 4 [ Person
VA 4 @ naming(EString)
* @generated */ =% newname : EString
protected String name = ""; o name : EString

/** v
* @generated */ ‘\\\\\\\
public void naming(String newname) {

// TODO: implement this method

// Ensure that you remove @generated or ) @generated NOT

// mark it @generated NOT
throw new UnsupportedOperationException();

Figure 56. Using EMF tool to design and implement class Person.
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Then, we complete the method “naming” and replace the annotation
@generated with the annotation @generated NOT. In case we would like to
extend the Person model and regenerate the source code, the manually written
source code will not be replaced. In particular, code generator parse the generated
file and look for the annotations @generated NOT in order not to re-create these
fragments. If we put aside the additional developers’ tedious responsibility of choosing
which source fragments to re-generate or not by using annotations, the maintenance
issues seem to be solved. In case we consider a different model update involving
modifications for already implemented functions, when for example changing the
called method “naming” with the name “setName,” the generator parses the file
again. This time, the file does not include the method “setName” and the generator
cannot map this method with the previously generated method “naming”. However
there is no knowledge that “naming” and “setName” are identical. So, the code
generator produces a new method called “setName” with an empty body and keeps
the method “naming” with the manually written source code. One way to avoid this
problem is to rename the method “naming” in the generated source code to
“setName” before editing the model. Then, during the process of the source code
regeneration, the code generator maps the method name and does not generate an
extra method called “setName” with an empty body. However, in case we edit the
model by adding an extra argument in method “setName”, original functions
versions are maintained but the regeneration process introduces a duplicate method
skeleton with an updated prototype. The programmer should then manually move
the implementations from the original bodies to the matching new ones, drop the
old entries and finally specify that the new functions contain user code by removing
their @generated annotation. Clearly, for multiple model updates or a large number

of modeled entities this is a tedious and error-prone process.

Using full cycle development

The second approach tries to resolve the maintenance issues supporting full cycle

development. In particular, the model-driven process begins, as previously, with the
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model construction of the Person class. Then, the correspondent source code is
generated by an appropriate code generator. Afterwards, the body of the method
called “naming” is completed. Then, in case we would like to edit or extend the
model, the source code is transformed by a Model Reconstructor in order to update
the model according to the source code. In other words, the source code is parsed in
order to identify its constructs and generate the correspondent model (i.e. Model
Driven Reverse engineering). Of course, there are parts of the source code that
cannot be identified (e.g. the source code of the body of a method). These parts are
kept in the model as metadata. When developers finish with the model changes and
the source code is regenerated, the previously manually written source code has
been maintained since it has passed from the previous source code to the new
source code via the model. This approach perfectly solves the maintenance issue for
general purpose MDE tools as applied for instance to Papyrus and Modelio. It cannot
however be deployed in case of specific mission tools. For example, in case of
generative MDE tools for user-interface code generation, like GrafiXML [23] or
GuiBuilder [24], it is practically impossible to recognize the widget elements by

parsing manually written source code [25].

5.1.2 How our approach solves maintenance

All the attempts to solve the maintenance in general follow the logic of generating
the source code and extending it in order to complete the development process as it
is depicted at the top of Figure 57. Then, in case the model needs to be edited or
extended during development, these approaches seek ways to shun this problem.
Although, there is improvement in this way, it does not seem to be sufficient to solve

the maintenance issue completely and efficiently.

Thus we started thinking of an alternative path, in which the MDE tool output
would somehow remain invariant, that is in a not-editable form and the source code

of the application could still grow and evolve in an unconstrained manner around it
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as it is depicted in the bottom of Figure 57. In this scenario, the code to model
reconstruction path is unnecessary. We will continue with the description of the

previously discussed example using our approach.

source code

Traditional MDE process <keleton manually modified source files
— fill-in code extra code
Model —> >
Generator L7
L —
1;7 -
Proposed MDE process Embedded
metaprograms extra code
AST load
Model >
< Generator | | ASTS 1 —=
L == S
Language specific [CH, \fill-in code though
‘ Java, Delta, MetaML, AST editing
Meta Ocami, etc.) V

source code files with embedded metaprograms
to load, fill, edit and generate model code

Figure 57. Top: Traditional MDE process where the generated source code files are manually updated with fill-in
and extra code. Bottom: The proposed MDE process where the tool output is in AST form and the programmer
deploys embedded metaprograms to load, fill, edit source code in the form of ASTs and generate a transient code
version that will be integrated along with the custom application.

Using a modeling tool we design the Person class which includes the attribute
“name” and the method “naming”. Then, we use an appropriate AST generator in
order to generate the correspondent AST. We develop the staged code in order to
load the AST of Person model code (see label 1 of Figure 58), fill the body of “naming”
method (see label 2 of the Figure 58) and generate the model source code around
the rest source code of application during translation (see label 1 of the Figure 58).
Afterwards, the compilation process begins and the evaluation result of the staged
code is depicted in label 4 of Figure 58.

During the development process, in case we decide to extend the model Person
and add for example the attribute “height”, the only thing we need to do is to use
the AST generator in order to update the AST of Person. Then, we have to repeat the
compilation process in order to regenerate the model source code around the rest

application source code.
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D function Person () {
&person = load_ast("Person.?st"}; return [
@name {...1,
// £ill in method through AST editing method naming (newname)
&person.naming.body.insert =. {
<< @nams = newname; >>; @name = newname;
}
// source or staged code as well 1;
// could be placed here 1 .

// 1insert model source code here

' (person) ; .

// source or staged code as well could be placed here

Figure 58. Developing a Person example in our approach and the result of the generated code in label 4.

In case we decide to edit the Person model and rename the method called
“naming” to “setName”, the AST generator will be used in order to update the AST of
Person and repeat the compilation which will not succeed this time. As it is depicted
in label 2 of Figure 58, &person.naming.body, the user data of the updated
AST does not include the index naming. In particular, the index “naming” has been
replaced with “setName”.

So, the staged code &person.naming.body has to be replaced with
&person.setName.body. On the one hand, the compilation process will not
succeed; on the other hand, the source code will not be destroyed as in the first
approach described previously. The advantage in this case is that developers view
the appropriate messages from the compiler (errors messages during compilation)
concerning what goes wrong in the developed staged code. Using our approach,
such a model update requires no further actions and is handled as before: the
updated model is loaded in AST form and then the function implementations are
inserted where needed through AST manipulation without being affected by the
newly introduced argument. Practically, the metaprogram specifies the logic for
integrating custom application code directly within the model code, so as long as the
model structure matches this insertion logic, no model updates break the
regeneration process. In the following table we outline the methods which address

maintenance and the case of working efficiently or not:
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Approaches . Full cycle | Staged Code
Annotations
Cases development | Generators
Adding new constructs in Ves Yes Yes
amodel
Editing constructs of a No
q (before the model
model (e.g. renaming a editing, the code Yes Yes
method) needs editing)
Adding new elements in
cons?ructs of a model .(e.g. No Yes Yes
adding an argument in a
function)
User-lnterfa_ce Code N/A No Yes
Generation
Usu_lg multiple models in N/A N/A Yes
single development

Table 1. Comparing the approaches which deal with maintenance issues

5.2 Tradeoffs of our approach

Our approach overcomes the maintenance issues of generative MDE tools;
however its deployment naturally involves some tradeoffs.

Firstly, it requires applying an advanced programming technique such as
metaprogramming in an already demanding field like MDE, potentially leading to
increased system complexity. For instance, creating and manipulating ASTs to
perform code updates is arguably harder than manually editing the corresponding
source code segments. Nevertheless, the use of quasi-quotes enables creating ASTs
just like writing normal code, while AST manipulation can be simplified with better
support for AST traversal (e.g. the name decoration process discussed earlier) along
with a simple tree editing library.

Another issue concerns the transformation of the MDE tool output into an AST
and requires a separate converter per deployment language as well as per model
format. For instance, in our test cases we had to build two converters (one for XRC

and another for XMI) to support the two modeling tools we used. Moreover, if we
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wanted to use our approach in another language we would have to create similar
converters generating ASTs for that language. In a setup with varying languages and
diverse model formats this arguably introduces an overhead in the MDE process.
However, a single converter may be used for developing multiple applications that
share a development language and a model format thus reducing the amortized
effort required for a particular application. The effort required for such a converter is
proportional to the complexity of the target model specification. Typically, it should
be similar to creating a model-to-code transformation but with the output being the
source code AST instead of the source code text. For MDE tools that already provide
model-to-code transformations in the deployment language, an alternative requiring
significantly less effort is to first use the transformation to get the generated sources,
parse them into ASTs and finally manipulate them as needed (e.g. remove code
segments not directly relevant to the modeled entities) to be ready for deployment.
Additionally, it is possible to further reduce the effort required to implement a
converter for a specific format across different languages. The converter may have a
language-independent core handling the target format and utilize multiple language-
dependent back-end plugins to support the various deployment languages. In this
sense, all common converter functionality is only written once, thus minimizing the

overhead of supporting additional languages.

5.3 Applicability of our approach

Not all popular languages support staging, even though there are a few third
party extensions such as Metaphor [48] and Mint [49]. In this context, one may
deploy the reflection mechanism of languages like C# or Java to practice a similar
source code management and generation pipeline as the one discussed in this thesis.
This option is detailed under Figure 59, showing that the language compiler and the
dynamic class loading and method invocation facilities (i.e. reflection API) are
directly deployed. The entire process starting the conversion from ASTs to
intermediate representations (very flexible, suggested), or alternatively to source

text (more rigid, not suggested), should be explicitly implemented as it is not
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automated by the languages. However, it is cached, meaning it is not repeated

during execution, but applied once per AST version.

cached conversion: applied only if ASTs are more Intermediate: CIL,JIL, etc.
recent from the produced intermediate / source codes Source: C#, Java, etc.
C —— Int diat \ Involves definitions that
Converter ntermediate > Composer may refer to app code
or Source Textl

--------------------------------------------------------- ! ﬁ Composition
Loading and — -y

| o . Parameters
: ‘ @ Compilation m , L. -
i_Invocation — - | Application |

Code composition approach is an
integral part of the application logic

language reflection API

Figure 59. Applying the generative MDE process with runtime staging; the application composes intermediate or
source text and then deploys the language reflection API for compilation and invocation (JIL stands for Java
Intermediate Language, CIL for the Common Intermediate Language of .NET). The entire runtime conversion,
composition and compilation process is cached — it is only repeated when the ASTs change, i.e. upon
regeneration.

The oval of Figure 59 labeled as composition parameters represents the need for
performing custom mixing between the automatically generated source code and
the manually inserted code, something that is apparent in the presence of Composer
as an integral part of the application. This is similar to AST composition alternatives,
although at the intermediate representation level, and is very critical to ensure that

maximum code mixing freedom is provided to developers.
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Chapter 6

Conclusions and Future Work

Currently, model-driven engineering represents a domain of powerful
development tools facilitating the modeling of systems and supporting the
transformation process from abstract to concrete models, eventually down to the
physical platform level. Generative MDE tools support the production of concrete
application implementations directly at the source code level. Such a facility is
overall very helpful, powerful and flexible for software development. However, it
also causes maintenance issues once extensions and updates are manually
introduced over the initially generated model code or when trying to combine

sources coming from multiple MDE tools.

In this thesis we propose the exploitation of the metaprogramming language
facilities and suggest an improved model-driven code of practice relying on the
manipulation of source code fragments by clients directly as data in order to cope
with such maintenance issues. In this approach, the generator components of MDE
tools need output Abstract Syntax Trees (ASTs), not source code, while clients should
import and compose ASTs as needed, before eventually performing on-demand and

in-place code generation.

We have also carried out several case studies to experiment and validate the

engineering proposition using a compile-time metaprogramming language, an
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interface builder, a general purpose modeling tool and automatic user interface.
Overall we were truly impressed by the compositional flexibility which allowed us to
safely and easily manipulate and extend the produced interface and application code
without suffering from maintenance issues. We believe our work reveals the chances

by combining metaprogramming and generative MDE tools.

Nonetheless, it is the first time in Model-Driven Engineering that the use of
metaprogamming is proposed. In this sense, an intriguing future task would be to
further evaluate the proposed approach of MDE. This evaluation needs to be carried
out by multiple users utilizing our approach in the development of applications and
giving us much needed feedback. Hence, we will examine the effectiveness of the
approach in factual circumstances. Moreover, our future plans include an extended
case study in a large real-world application involving various modeling tools and
legacy systems so as to better demonstrate the potential of our approach and assess

its practicability.

Additionally, working for the case study of auto-generation of User Interfaces
with annotated APIs, we came to realize that there are a lot of extensions which
could be added in this approach. Firstly, we intend to include further expressions for
the specifications. The model will evolve to a more expressive form so as to cover
more mundane demands of the User-Interface cases that can occur in the
development of an application. In this direction, we will further add layout
specifications. Layout specifications will be far more effective than just the use of the
manipulating interface code as ASTs operators we identified during the case study of
User Interface Builder. Afterwards, we will move on to develop an appropriate
software visualization tool in order to construct the annotated APIs automatically
through this. Thus models will be more easily constructed and an abstract

representation of this type of models will be provided.

In conclusion, it will be very interesting to research how a hybrid approach could
be viable, using WYSIWYG tools and auto-generation with annotated APIs. The
former has the distinct advantage that you can get explicitly what you have designed

for the User Interface of the application while the latter one constructs User-
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Interfaces with comparatively more speed but lags in the accuracy of the design. So,
it would be interesting to research whether we could successfully combine the

aforementioned advantages of both in the MDE of User Interfaces.
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