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Abstract 

The amount of software systems’ source code today practically explodes. 

Commercial software systems such as games consist of hundreds of thousands lines 

of code. The main challenge of developing such systems is connected with 

maintainability and extensibility issues. The software engineering of such systems 

focuses on the design level, where the use of advanced programming techniques is 

mandatory. 

Model-Driven Engineering (MDE) is an advanced programming technique based 

on model reuse and evolution. In general, MDE involves tools, models, processes, 

methods and algorithms addressing the demanding problem of (semi-)automated 

generation of source code. On the one hand the involved tools improve the 

deployment of MDE; on the other hand they cause several problems. One of the 

most challenging problems is the maintenance issue inherent in model-driven code 

generators. The problem appears in the development life cycle. In particular, the 

auto-generated source code is altered and supplemented manually by developers to 

complete the developing project. The manually-written source code is overwritten 

by the code re-generation caused by the generative MDE tool. Additionally, while 

MDE is a widely used software engineering approach it is typically practiced 

separately from the rest of the development process that takes place within an 

Integrated Development Environment (IDE). Therefore, there are numerous MDE 

tools included as plugins of some IDEs, however a large number of them cannot be 

properly incorporated. 

In this thesis, we propose an alternative approach for MDE, using an advanced 

programming feature; metaprogramming, which is supported by several languages. 

Our approach is based on the following principles: (i) the MDE tool is invoked as part 

of the metaprogram evaluation; (ii) instead of generating code, the MDE tool 

generates source fragments as abstract syntax trees (ASTs); (iii) the generated source 

fragments are directly inserted into the main program source through generator 
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macros of the metaprogram; and (iv) the resulting program that incorporates both 

model code and custom application code can be normally compiled to produce the 

final application. 

We have carried out the proposed approach in the Delta programming language, 

which supports compile-time metaprogramming. Finally, we have deployed enough 

case studies to test the validity and the effectiveness of our approach. 
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ΒΕΛΤΙΩΜΕΝΗ ΟΔΗΓΟΥΜΕΝΗ ΑΠΟ ΜΟΝΤΕΛΑ ΑΝΑΠΤΥΞΗ ΛΟΓΙΣΜΙΚΟΥ 

ΜΕ ΓΕΝΝΗΤΡΙΕΣ ΚΩΔΙΚΑ ΠΟΥ ΕΦΑΡΜΟΖΟΝΤΑΙ ΠΡΙΝ ΤΗ ΜΕΤΑΓΛΩΤΤΙΣΗ 

Περίληψη 

Το μέγεθος του πηγαίου κώδικα των συστημάτων λογισμικού σήμερα αυξάνεται 

εκθετικά. Τα εμπορικά συστήματα λογισμικού όπως τα παιχνίδια αποτελούνται από 

εκατοντάδες χιλιάδες γραμμές κώδικα. Το κυρίως πρόβλημα της ανάπτυξης ενός 

συστήματος τέτοιας κλίμακας συνδέεται με θέματα συντήρησης και επέκτασης. Η 

τεχνολογία ανάπτυξης τέτοιων συστημάτων επικεντρώνεται κυρίως στο σχεδιαστικό 

επίπεδο, όπου η χρήση προηγμένων προγραμματιστικών τεχνικών κρίνεται 

απαραίτητη. 

Η ανάπτυξη λογισμικού οδηγούμενη από μοντέλα (Model-Driven Engineering, 

MDE) είναι μία προηγμένη προγραμματιστική τεχνική η οποία βασίζεται στη 

δημιουργία, επαναχρησιμοποίηση και εξέλιξη μοντέλων. Γενικά, το MDE 

επικαλείται εργαλεία, μοντέλα, διεργασίες, μεθόδους και αλγόριθμους που 

αντιμετωπίζουν το απαιτητικό πρόβλημα της (ημί-) αυτόματης παραγωγής πηγαίου 

κώδικα. Από τη μια πλευρά η χρησιμοποίηση εργαλείων βελτιώνει την εφαρμογή 

του MDE, από την άλλη όμως προκαλούνται αρκετά προβλήματα. Ένα από τα πιο 

σοβαρά προβλήματα αφορά θέματα συντήρησης που βρίσκονται εγγενώς στα 

εργαλεία παραγωγής κώδικα που βασίζονται σε μοντέλα. Το πρόβλημα αυτό 

εμφανίζεται κατά την διάρκεια του κύκλου ανάπτυξης λογισμικού. Συγκεκριμένα, ο 

αυτόματα παραγόμενος πηγαίος κώδικας τροποποιείται και συμπληρώνεται 

κατάλληλα από τους προγραμματιστές ώστε να ολοκληρωθεί το υπό ανάπτυξη έργο. 

Ο πηγαίος κώδικας που προστίθεται με το χέρι χάνεται όταν ξαναδημιουργηθεί ο 

αυτόματα παραγόμενος πηγαίος κώδικας από ένα μοντέλο. Παρόλο που το MDE 

χρησιμοποιείται ευρέως ως μεθοδολογία κατασκευής λογισμικού, συνήθως είναι 

απομονωμένο από την υπόλοιπη διαδικασία που λαμβάνει χώρα σε ολοκληρωμένα 

περιβάλλοντα ανάπτυξης (IDE). Παρότι υπάρχουν MDE εργαλεία που διατίθενται ως 
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επεκτάσεις σε κάποια IDE, ωστόσο ένας μεγάλος αριθμός από αυτά δεν 

ενσωματώνονται επαρκώς. 

Σε αυτή την εργασία, προτείνουμε μια εναλλακτική προσέγγιση για MDE, 

χρησιμοποιώντας ένα προηγμένο χαρακτηριστικό, τον μετα-προγραμματισμό, ο 

οποίος υποστηρίζεται από αρκετές γλώσσες προγραμματισμού. Η προσέγγιση μας 

είναι βασισμένη στις ακόλουθες αρχές: (i) το MDE εργαλείο επικαλείται σαν μέρος 

της αποτίμησης του μετα-προγράμματος, (ii) αντί να παραχθεί πηγαίος κώδικας, το 

MDE εργαλείο δημιουργεί τμήματα κώδικα στην μορφή αφηρημένων συντακτικών 

δέντρων (AST), (iii) τα δημιουργημένα τμήματα κώδικα εισάγονται άμεσα στο 

κυρίως πηγαίο πρόγραμμα μέσω μακροεντολών του μετα-προγράμματος, και (iv) το 

πρόγραμμα που προκύπτει ενσωματώνει τον αυτόματα παραγόμενο κώδικα με τον 

επιπλέον κώδικα της εφαρμογής και μεταγλωττίζεται κανονικά ώστε να παραχθεί η 

τελική εφαρμογή. 

Έχουμε εφαρμόσει την προτεινόμενη προσέγγιση στην γλώσσα 

προγραμματισμού Delta, η οποία υποστηρίζει μετα-προγραμματισμό κατά τη 

μεταγλώττιση (compile-time metaprogramming). Τέλος, έχουμε αναπτύξει αρκετά 

σενάρια χρήσης ώστε να ελέγξουμε την εγκυρότητα και την αποτελεσματικότητα 

της προσέγγισής μας. 
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Chapter 1 

Introduction 

1.1 Model-Driven Engineering 

 

Model-Driven Engineering (MDE) [1] is an approach in software development 

which focuses on creating and exploiting domain models. These models include 

abstract representations of the knowledge and activities that govern a particular 

application domain, rather than on the computing or algorithmic concepts. The 

general philosophy of MDE rents its roots to Model-Driven-Architecture (MDA) of 

the Object Management Group [2], emphasizing accelerated (rapid) application 

development together with model-oriented reuse and evolution. 

The core idea of Model-Driven Engineering is depicted in Figure 1. Using the MDE tools 

Platform Independent (PI) Models are constructed. Then, it is possible to capitalize on PI 

models, use them to automatically derive Platform-Specific (PS) models through 

transformation engines and ultimately utilize code generators to automatically produce the 

source code corresponding to the modeled entities. The auto-generated source code can 

then be extended or linked with custom application code to deliver the final application. 

During the development life cycle PI Models can be edited. In this case, the PS 

Models have to be re-constructed with the use of transformation engines and the 
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auto-generated source code has to be re-generated in order to update the changes. 

Moreover, PS Models can be edited in the development life cycle. In this case, the 

auto-generated source code has to be regenerated in order to transfer the changes 

from model to source. In addition, the PI models can be kept updated by appropriate 

Transformation engines during the development life cycle. In general, it is necessary 

to keep all levels of model abstraction updated so as to have the ability to extend 

any of them during development life. 

 

Figure 1. The core idea of Model-Driven Engineering 

Additionally, apart from model to model and model to text transformations there 

are text to model transformations. In particular, during the development life cycle 

the auto-generated source code is extended. The model which generates it is not 

updated according to the extensions of the source code. So, appropriate tools are 

used to create models from the source code (i.e. Model-Driven reverse Engineering). 

A lot of difficulties appear in this process and it is not always feasible to succeed. 

There is an example for general purpose MDE tools in literature like Papyrus [22] and 

Modelio [26] which support full development life cycle and are described in the next 

chapter. 

In general, model-driven engineering (MDE) involves tools, models, processes, 

methods and algorithms addressing the demanding problem of design-first system 

engineering. An important authoring requirement for such tools is to involve notions 

and concerns inherent in the design domain. In this context, either general-purpose 
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notations are adopted in software modeling, or mission-specific models are offered 

for very specific tasks. Then, target implementations are derived, usually with 

various intermediate transitions from the abstract to the final implementation 

domain. This discipline is outlined under Figure 2, showing the specialization from 

abstractions to instances as a transformation process. 

 

Figure 2. Top: high-level overview of model-driven processes outlining the general tool roles and respective input 
/ output links; Bottom: Architecture of generative model-driven tools: (1) interactive model editing; (2) code 
generation from models; and (3) tags inserted in the generated source code to carry model information and 
enable model reconstruction. 

Additionally, there are two categories of model driven tools distinguished by the 

way their outcomes can be deployed: generative tools, producing source code, and 

executors, offering custom runtimes which instantiate the behavior of their input 

models. On the one hand, the former concerns tools supporting a modeling-all-the-

way discipline, with emphasis shifted in eliminating the need for manually written 

source code. On the other hand, the latter relates to tools which automate the 

engineering of various demanding system features, however, still relying on hand-

written source code to complete a fully-fledged system. We consider both universes 

to be equally valuable and useful in the model-driven tool arena, however in this 

thesis we focus on generative model-driven tools, and improve them so as to 

address a maintenance issue they cause. 
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Furthermore, the auto-generated source code can then be extended or linked 

with custom application code to deliver the final application. While MDE is a widely 

used software engineering approach it is typically practiced separately from the rest 

of the development process (Figure 3). An MDE tool is used to create a model and 

generate its corresponding source code while that code is then incorporated into an 

integrated development environment (IDE) for further processing and linking with 

the remaining application code. In this sense, MDE requires third party tools that 

cannot always be properly integrated in the deployed IDE. 

 

Figure 3. Separation between MDE deployment and the remaining development process. 

So, we mainly focus on the maintenance issue we address in our work and also 

dealing with bringing the MDE deployment as close as possible to the actual 

application development. 

1.2 Multistage Languages 

Generally, metaprogramming relates to functions which generate code, i.e. 

programs producing other programs, while metaprogramming languages take the 

task of code generation and support it as a first-class language feature. This is a sort 

of reification of the language code generator enabling programmers to write code 

which generates extra source code. When available as a macro system before 

compilation, the method is known as compile-time metaprogramming [3]. 

Alternatively, if offered during runtime – usually built on top of the language 
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reflection mechanism – it is called runtime metaprogramming. We focus on compile-

time metaprogramming as it is more powerful than its runtime case. In this context, 

code generating macros are functions manipulating code in the form of ASTs, and 

are evaluated by a separate stage preceding normal compilation. Then, they are 

substituted in the source text by the code they actually produce. Due to the 

introduction of an extra stage, and because macros may generate further macros, 

thus requiring extra staging, such languages are also called multistage languages [4]  

[5]. In our work we use Delta [6], a recent publicly available dynamic object-object 

language along with its compile-time metaprogramming extension [7]. Popular 

meta-languages include Lisp [8], Scheme [9], MacroML [10], MetaOCaml [11], 

MetaLua [12] and Converge [13]. 

 

 

In the Delta language, meta-code involves meta definitions and inline directives 

(i.e., code generation), prefixed with the & and ! symbols respectively. In particular, 

inline directives accept an expression returning an AST and are the only way to insert 

extra code into the main program. 

 

 

Figure 4 Evaluation of generative macros with an extra stage. 

 

As shown in Figure 4, during the first stage the compiler: (i) collects all scattered 

meta-code into a single metaprogram; (ii) evaluates the program while internally 
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initial program and replaces inline directives by the code they actually produced. For 

example, consider the following Delta code. 

 

 

using wx; 

&ast = ui::load_ast ("<some ast path>"); 

!(ast);  code generation (inline) directive 

 

The first line is normal code, a typical directive to import the wxWidgets GUI 

library. But the next two lines are meta-code, distinguished by & and ! prefixes. The 

second line loads an AST from a file, assume the loaded AST to be the one of Figure 5. 

The third line inserts the code implied by this AST into the main program. As a result, 

after the first stage, and before normal compilation, the main program is: 

 

 

using wx; 

frm = wx::frame_construct(nil, "ID_ANY", "frame"); 

frm.setsize(wx::size_construct(450, 304)); 

txt = wx::textctrl_construct(frm, "text"); 

 

 

Figure 5 Example of an abstract syntax tree for three statements using the wx widgets library: (i) left: creating a 
frame widget; (ii) middle: setting its size; and (iii) right: creating a text widget. 

 

Such code is only transient, and exists inside the compiler temporarily during the 

first compilation stage. It is shown here for clarity. After this first stage, the resulting 

source text constitutes the input to the normal compilation phase, as if it was 

originally written this way by the programmer. 

stmts 

= 

lvalue 

frm 

call 

wx::frame_construct 

nil “ID_ANY” “frame” 

args 

call_method 

frm setsize args 

call 

wx::size_construct 

450 304 

args 

= 

lvalue 

txt 

call 

wx::textctrl_construct 

frm “text” 

args 

frm = wx::frame_construct(nil, 

"ID_ANY", "frame"); 

frm.setsize(wx::size_construct

(450, 304)); 

txt = wx::textctrl_construct( 

frm, "text"); 
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In this example, the generated code implicitly depends on the manually written 

code requiring that it imports the wxWidgets library to allow its usage in the 

generated code. In a more elaborate case, the code to be inserted will be associated 

with metadata specifying any such dependencies and thus allowing them to be 

generated as well. For instance, the first line of the above example could have been 

generated by the following code. 

!(load_deps());loads AST of ‘using wx;’ 

Such metadata can provide a more structured usage of the loaded ASTs enabling 

establishing standardized interfaces between the generated code segments and the 

rest of the code. For example consider the following code: 

&data=load_metadata("<path>"); 

!(load_ast(data.dependencies)); 

 …other normal program dependencies here… 

!(load_ast(data.definitions)); 

 …other normal program definitions here… 

!(load_ast(data.main_code)); 

 …other normal program program code here… 

function f (!(load_ast(data.f_args))) 

{ 

 !(load_ast(data.f_body)); 

} 

The loaded metadata are expected to identify the ASTs for any dependencies, 

definitions and main code so that they are loaded and incorporated in the final code. 

This also provides a clear interface for manually inserted code that may depend on 

generated code segments and thus should be placed after the corresponding 

generative directive. Finally, the granularity of the generated code and the allowed 

generative directive locations are not limited to top-level code segments, but 

includes multiple forms and locations. For instance, the above code loads an AST 

containing a list of statements in order to generate the body of a function. Overall, 

the AST representation and the code generation scheme offer considerable flexibility, 

allowing programmers select how fine-grained or coarse grained the source code 

fragments should be based on the deployment scenario. 

The previous examples show only the creation and inlining of an AST value. 

However, metaprograms typically operate on AST values, adding, removing or 
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transforming nodes they contain. For example, consider that we wanted to generate 

the above code but replacing the last assignment with a print statement. To achieve 

this, we would have to obtain and manipulate the children of the root stmts node: 

 
&ast = ui::load_ast ("<some ast path>"); 

&children = ast.get_children();  get children from stmts 

&children.removeLast();  drop last statement 

&children.insertLast(<<std::print("<Hello");>>);  replace it 

!(ast);  generate the transformed code 

 

The notation <<…>> is not a conceptual symbolism, but actual Delta syntax 

relating to a meta-language construct known as quasi-quoting. Essentially, it is a 

compile time operator that converts the surrounded raw source-text to its 

respective AST representation. For instance <<1+2>> is equivalent to the AST of the 

expression 1+2, not merely the character string ‘1+2’. 

1.3 Problem Definition 

MDE tools cannot optimally address all required features of an application at the 

software engineering level. As a result, custom source code amendments and 

modifications are always anticipated. Even if advanced methods are deployed to 

modularize and decouple the generated code from the rest of the application code, 

one can never exclude that the possibility that interdependencies or custom updates 

may appear. 

 
Figure 6 Common growth of application code around the originally generated code; future custom extensions 

and updates eventually lead to bidirectional dependencies. 
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The typical lifecycle of the generated code is outlined under Figure 6. As shown, a 

dependency is introduced by having the application logic directly refer and deploy 

generated components (middle part). But for most languages this is overall 

insufficient for effectively linking application and generated code, practically 

requiring the generated code to be also manually modified. Typical updates relate to 

application functionality importing and invoking, application-specific event handling, 

linkage to third-party libraries that are not known to the model-driven tool, code 

improvement or refactoring. This situation very quickly results into many 

bidirectional dependencies (right part). 

The latter maintenance issues are detailed in the typical generative model-driven 

process shown in Figure 7. Initially, if the code is not changed, source regeneration 

and model reconstruction are well-defined (left, steps 1-4). In other words, the MDE 

tool works perfectly for both steps of the processing loop. However, once the 

generated code is updated (left, step 5), two problems directly appear. Firstly, tag 

editing and misplacing may break model reconstruction (left, steps 6-7), while any 

code manually inserted outside the MDE tool causes a model-implementation 

conflict. Secondly, source regeneration overwrites all manually introduced updates 

(left, steps 8-9). For real-life applications of a considerable scale the latter may lead 

to the adoption of the MDE tool only for the first version, or worse, avoiding using an 

MDE tool at all. 

 

 
Figure 7 The primary maintenance issues in the deployment of generative model-driven tools either individually 

(left) or collectively (right). 
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Maintenance issues also arise when trying to combine the outcome of multiple 

MDE tools. When using multiple tools, a single application element may end up 

being shared by different models. This means that when the code for each model is 

generated, there will be code repetitions for the shared elements (right, steps 1-2). 

In this case, the developer has to manually edit the generated sources to drop any 

repeated definitions and link the code properly (right, steps 3-4). Furthermore, the 

use of different MDE tools implies different code generators and thus different 

coding styles and methods present in the generated code. Having all generated 

sources conform to specific coding standards inevitably requires manual refactoring 

(right, step 5). 

1.4 Primary Contributions 

Our main contribution is an inversed responsibility model for generator MDE 

tools where: (i) the code for implementing model entities becomes available in the 

form of ASTs; and (ii) the actual code generation is applied on-demand and in-place 

through metaprograms (macros) that are included in the implementation of the 

main program and are evaluated at compile-time (i.e. during the build process). This 

approach, not only addresses the maintenance issues of traditional generators, but 

also sets code manipulation as a first-class concept in the model-driven engineering 

and reveals the value of using a metaprogramming language in this context. 

Overall, we propose an improved process where the MDE tool outcome is read-

only, decoupled from source code generation, letting the application directly deploy 

and manipulate generated code fragments, instead of being built around them. In 

this context, we also discuss how AST composition allows combining sources whose 

code originates from multiple MDE tools.  

Additionally, we explore the option of adopting metaprogramming practices to 

allow specifying the deployment of an MDE tool directly in the program source. 

Essentially, we propose launching the MDE tool and generating the model code as 
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part of the metaprogram. Then the generated code along with the manually edited 

source code can be normally compiled to produce the final application. 

1.5 Thesis structure 

The rest of this work is organized as follows; In Chapter 2, we review most 

advanced and popular general-purpose related MDE tools. Chapter 3 follows, which 

is the main core of this thesis, where our proposal for an improved model-driven 

approach is described. It begins by outlining the steps of the improved model-driven 

engineering and then analyzes the ‘key’ steps of the proposed approach in each of 

the subsections. Chapter 4 gives a description of the Case Studies, we have carried 

out in order to test the proposed MDE approach of our work and assess the 

expressive power and its engineering validity. Chapter 5 concludes the work and 

identifies issues for further research work. 

 

This work has resulted in the publication of the following paper: 

Self Model-Driven Engineering Through Metaprograms, Yannis Lilis, Anthony 

Savidis and Yannis Valsamakis, PCI 2013, September 19 - 21 2013, 

Thessaloniki, Greece 

 

Through the following link you can download, view and use the deployment 

of our approach using specific MDE tools and a specific language which 

supports metaprogramming and their Case Studies: 

https://app.box.com/mdewithstagedcodegenerators 

  

https://app.box.com/mdewithstagedcodegenerators
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Chapter 2 

Related Work 

In this chapter, we review the most advanced and popular MDE tools. We focus on 

each tool which addresses (or not) issues relevant to maintenance which we solve in 

this thesis through our approach in order to improve the MDE process. We begin by 

reviewing general-purpose MDE tools and then we review specific mission MDE tools. 

2.1. General Purpose MDE tools 

Acceleo 

Acceleo [16] is an open-source code generator from the Eclipse Foundation, 

implementing the OMG’s Model-To-Text Language specification. It is independent 

from the targeted technology allowing the generation of any textual format using 

plugins while it provides an OCL-oriented [17] template-like definition for expressing 

custom generators. Acceleo supports incremental generation allowing developers to 

regenerate target files without losing any modifications. This is achieved by the use 

of explicit [protected] … [/protected] constructs that are translated into 
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tagged comments and mark a code region that will not be overwritten during 

regeneration. Nevertheless, any developer intervention on such generated tags may 

break regeneration. Furthermore, the placing of such tags requires an a priori 

knowledge of the locations requiring manual updates, something not always 

available during the design phase. Practically, this means that for each required 

update, the developer will have to go to the transformation script, insert a protected 

code region, regenerate the code and finally go back to the source to perform the 

update. Using our approach, any code updates are performed directly in the source 

file while the generated model code, available in a read-only form, is explicitly 

deployed on-demand and in-place through metaprogramming. 

 

Figure 8. Using the EMF tool in Eclipse; Area 1 is the Palette toolbar of the Model constructs; Area 2 is the “action” 
area of Models construction; Area 3 is the view/edit the data constructs of the Models; Area 4 is the project 
explorer of Eclipse Platform. 

EMF tool  

The Eclipse Modeling Framework (EMF) [14] is a MDE tool plugin of Eclipse [15]. The 

EMF project is a modeling framework and code generation facility for building tools 

and other applications based on a structured data model. The model itself is 

described using the Ecore meta-model, while the code generation targets Java and 

utilizes the annotation @generated to specify the automatically generated code 
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segments. By default, all generated code segments include this annotation and are 

overwritten upon regeneration. In case the generated code is manually extended, 

the @generated annotations should be removed to specify that the annotated 

code segments should be maintained and not overwritten upon regeneration. 

However, manual extensions cannot be reflected back to the model while model 

updates will be discarded for manually extended code. Additionally, misplacing or 

forgetting to remove the annotations may result in losing manually written source 

code. In the below figure is depicted the EMF tool during construction of a Library 

model. 

 

Figure 9. Using the Actifsource tool in Eclipse Platform; Area 1 is the “action” area of model construction; Area 2 
is the Palette toolbar of the Model constructs; in Area 3 you can view/edit the data of constructs of models; Area 
4 is the navigation of project tool. 

Actifsource 

Actifsource [18] is a design and code generator tool focusing on domain-driven 

software development. It utilizes a template-based code generation approach 

including by default various language generator templates, while allowing new ones 
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to be added for any language. Like Acceleo, Actifsource also supports using special 

tags to specify protected regions where manually inserted code will not be 

overwritten upon regeneration. Again, however, any developer intervention on 

these tags will cause maintenance issues when the code is regenerated. In the Figure 

9 is depicted the Actifsource during construction of a model. 

 

Figure 10. Using the Umple tool online version; Area 1 is the “action” area of model construction; Area 2 is the 
toolbar of Umple; in Area 3 you can view/edit the code that will be generated. 

Umple 

Umple [19] is a modeling tool that tries to reduce the distance between model and 

code by introducing UML abstractions directly into a high-level programming 

language code. This way, models become just another abstract view of the code and 

the need for extracting the model from the code is eliminated as everything in the 

model is represented directly in the code. Umple can generate code for languages 

like Java and PHP and allows embedding native code or transforming the generated 

code through aspect-oriented facilities. Umple’s philosophy for generated code is 
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that it should never be edited but treated as a development artifact that can be 

thrown away and recreated and thus, there is no issue of round-tripping [20] [21]. 

Our approach, maintains the separation between model and code while overcoming 

the round-trip issue through the in-place deployment of code fragments generated 

by the model. In the Figure 10 is depicted the Umple online version during 

construction of a model. 

Papyrus 

Papyrus [22] is an open source UML 2 tool based on Eclipse platform and licensed 

under the EPL. It can either be used as a standalone tool or as an Eclipse plug-in. 

Papyrus is a model-driven tool offering code generation for a variety of languages. It 

supports the full MDE development life cycle allowing both model-to-source and 

source-to-model transformations. In order to provide the latter, it parses source files 

locating specific code structures (e.g. classes, attributes, operations, etc.) in order to 

regenerate the model, while treating any additional code they include as metadata. 

This full MDE development life cycle means that in order to manually add source 

code or change the auto-generated source code deliverable files during 

development, there is the option to regenerate an updated model of application 

development. This is an important step towards resolving the maintenance issues; 

however, it cannot be applied in case the generated code originates from multiple 

models. Additionally, such a reverse engineering policy is valid for general purpose 

MDE tools but cannot be deployed for mission specific tools. For example, in case of 

MDE tools for user-interface code generation, like GrafiXML [23] or GuiBuilder [24], 

it is practically impossible to recognize the widget elements by parsing manually 

written source code [25]. Our methodology can be deployed for both general-

purpose and mission-specific tools, while still addressing the maintenance issues. In 

the Figure 11 is depicted the Papyrus during construction of a model. 
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Figure 11. Using the Papyrus; Area 1 is the “action” area of model construction; Area 2 is the Palette toolbar of 
the Model constructs; in Area 3 you can view/edit the data of constructs of models; in Area 4,5 you can see in 
two different ways the outline of the model; Area 6 is the navigation of project tool. 

Modelio 

Modelio [26] is an open source modeling environment based on Eclipse. Although 

Modelio is based on an Eclipse RCP, it is a standalone application, not an Eclipse plug-in. 

However, Modelio is frequently used in conjunction with Eclipse; both work on the same 

source code organization. Similarly to papyrus, it offers code generation for a variety of 

languages and supports the full MDE development cycle thus allowing both model-

to-source and source-to-model transformations. For the latter, they parse source 

files locating specific code structures (e.g. Classes, Attributes, Operations etc.) in 

order to regenerate the model, while treating any additional code they include as 

metadata - as Papyrus does. In the Figure 12 is depicted the Modelio during 

construction of a model. 
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Figure 12. Using the Modelio tool; Area 1 is the “action” area of model construction; Area 2 is the toolbar of the 
Model constructs. 

Altova UModel 

Altova UModel [27] is a commercial UML modeling software tool from Altova. 

UModel can be integrated with Eclipse and Visual Studio as a plug-in. UModel 

supports UML 2 diagram types and adds a unique diagram for modeling XML 

Schemas in UML. UModel also supports SysML [28] for embedded system developers, 

and business process modeling (BPMN notation) [29] for enterprise analysts. 

UModel includes code engineering functionality including code generation in Java, 

C#, and Visual Basic programming language. UModel supports model interchange 

with other UML tools through the XMI standard, integrating with revision control 

systems. It also supports reverse engineering of existing applications, and round-trip 

engineering. In other words, it supports the full MDE development life cycle allowing 

both model-to-source and source-to-model transformations as the Papyrus and 

Modelio support. In the Figure 13 is depicted the Altova UModel during construction 

of a model. 
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Figure 13. Using the Altova UModel; Area 1 is the “action” area of model construction; Area 2 is the toolbar of 
the Model constructs; in Area 3 you can view/edit the data of constructs of models; in Area 4 you can see the 
Diagram model tree view. 

Enterprise Architect 

Enterprise Architect [30] is a visual modeling and design tool based on OMG UML 

from Sparx System. Enterprise Architect supports the design and construction of 

software systems. It also supports modeling business processes and modeling 

industry based domains. Enterprise Architect supports code generation in numerous 

languages like Action Script, C, C#, C++, Java etc. Similar to the aforementioned three 

tools, it supports the full MDE development life-cycle allowing both model-to-source 

and source-to-model transformations. This tool, as the previous ones, parses source 

files locating specific code structures (e.g. classes, attributes, operations, etc.) in 

order to regenerate the model, while treating any additional code they include as 

metadata. Despite being an indispensable commercial MDE tool employed by 

several software companies, it still fails to solve the maintenance issue of the specific 
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mission MDE tool (e.g. GUI builder). In the Figure 14 is depicted the Altova UModel 

during construction of a model. 

 

Figure 14. Using the Enterprise Architect; Area 1 is the “action” area of model construction; Area 2 is the toolbar 
of the Model constructs; in Area 3 is the project navigation of the tool. 

Apollo 

Apollo [31] is a robust and flexible modeling extension to Eclipse created by 

Gentleware AG. Apollo is the first UML extension for Eclipse based on GMF [32], EMF 

and UML 2, and seamlessly integrates into the IDE. It is available as an RCP stand-

alone tool or as an Eclipse plug-in. It is a model-driven tool offering code generation 

only for Java. Apollo gives developers and programmers the ability to dynamically 

create and edit models alongside code. That is to say, both model-to-source and 

source-to-model transformations are allowed which denotes the support of the full 

MDE development life cycle. In the Figure 15 is depicted the Apollo tool during 

construction of a model. 
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Figure 15. Using the Apollo tool; Area 1 is the “action” area of model construction; Area 2 is the Palette toolbar of 
the Model constructs; in Area 3 you can see the outline of Model’s diagram; in Area 4 is the project explorer of 
the Apollo tool. 

2.2. Specific Mission MDE tools 

On the other hand, apart from the general purpose MDE tools and the class 

hierarchy models of UML, there are MDE tools and description modeling languages 

which describe a specific purpose of the system under study. As the main category of 

specific mission MDE tools, we could mention the User Interface Builders. Some of 

the MDE tools of User-Interfaces are briefly described below. None of them cares for 

the maintenance issue we address in this thesis. 

wxFormBuilder 

wxFormBuilder [33] is a popular publicly available interface builder for the wx 

widgets cross platform library [34]. This tool offers a typical rapid-application 

development cycle with interactive user-interface construction, and outputs 
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interface descriptions into its custom language-neutral format called XRC [47] (XML 

Interface Resources). The wxFormBuilder also supports code generation of UI for 

languages C++, Python and PHP. In the Figure 16 is depicted the wxFormBuilder 

during construction of a model. 

 

Figure 16. Using the wxFormBuilder; Area 1 is the editor of the UI model construction; Area 2 is the widgets 
toolbar of the UI Model constructs; Area 3 is the view/edit the widgets’ properties-events; in Area 4 is the tree 
view of the constructed UI Model 

GrafiXML 

GrafiXML is a graphical tool to draw user interfaces. These interfaces could be saved 

in several formats, like Java or XHTML, but the principal way is to save them in 

UsiXML [35], an XML user interface description. Then, the final user interface is 

produced by Rendering or Generative programming. In the Figure 17 is depicted the 

GrafiXML during construction of a model. 

. 
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Figure 17. Using the GrafiXML; Area 1 is the editor of the UI model construction; Area 2 is the toolbar of the UI 
Model constructs; Area 3 is the view/edit the properties-events; in Area 4 is the project explorer of the GrafiXML 
tool. 

 

Figure 18. Using the Glade; Area 1 is the editor of the UI model construction; Area 2 is the widgets toolbar of the 
UI Model constructs; Area 3 is the view/edit the widgets’ properties; in Area 4 is the tree view of the constructed 
UI Model. 
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Glade 

Glade [36] is a graphical user interface builder for GTK+ toolkit and the GNOME 

desktop environment. Glade saves the user interfaces designed as XML. Then, using 

the GtkBuilder [37], Glade XML files can be used in numerous programming 

languages including C, C++, C#, Java, Python, Perl and others. In the Figure 18 is 

depicted the Glade during construction of a model. 

wxGlade 

wxGlade [38] is a graphical user interface designer written in Python using the wxPython 

[39]. It supports code generation of UI for languages C++, Python, Lisp and Perl. 

Additionally, wxGlade could generate the User-Interface in the form of XRC 

(wxWidgets’ XML resources). While it is not related to Glade, they are similar in idea 

and in their interface. In the Figure 19 is depicted the wxGlade during construction of 

a model. 

 

Figure 19. Using the wxGlade; Area 1 is the editor of the UI model construction; Area 2 is the widgets toolbar of 
the UI Model constructs; Area 3 is the view/edit the widgets’ properties; in Area 4 is the tree view of the 
constructed UI Model. 
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wxDesigner 

wxDesigner [40] is a dialog editor and RAD tool for the wxWidgets C++ library. It 

supports code generation of UIs for languages C++, C#, Python and Perl. wxDesigner 

could also produce XRC model. In the Figure 20 is depicted the wxDesigner during 

construction of a model. 

 

Figure 20. Using the wxDesigner; Area 1 is the editor of the UI model construction; Area 2 is the widgets toolbar 
of the UI Model constructs; Area 3 is a view/edit dialog of widgets (opening when double click in the widget in 
the editor); in Area 4 is the tree view of the constructed UI Model. 

Blend 

Blend [41] is a User Interface design tool developed by Microsoft for creating 

applications’ graphical interfaces for desktop and web. It is an interactive, WYSIWYG 

front-end for designing XAML [42] -based interfaces. In the Figure 21 is depicted the 

Blend during construction of a model. 
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Figure 21. Using the Blend; Area 1 is the editor of the UI model construction; Area 2 is the toolbar of the UI 
Model constructs; Area 3 is a view/edit widgets properties; in Area 4 is the project explorer of the Blend tool. 

Additionally, there are MDE approaches for networks. For example, the Analysing 

Wireless Sensor Networks [43] in which there is the WSN Modeling Languages and 

then code generation using Acceleo which we described above and which does not 

solve the maintenance issues. There is also the MDE approach that provides 

resources to non-specialists in parallel programming to implement their applications 

[44]. In particular, it provides code generation from UML/MARTE to openCL. In this 

case, a description language is used too and uses the Acceleo for the code 

generation similar to the approach of the Network described previously. 
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Chapter 3 

Improved Process 

In this chapter we are going to describe the improved process of Model-driven 

engineering using metaprogramming. The proposed methodology, illustrated in 

Figure 22, consists of 3 main steps.  

 

 

Figure 22. Encapsulating the model-driven process directly in the application source through staged 
metaprograms. Step 1: Staged code execution macros invoke the MDE tool that creates the model and converts 
its corresponding code as ASTs. Step 2: Staged code generator macros take the ASTs as input and insert the 
model-driven code into the source along with custom application code. Step 3: The transformed source is 
normally translated or evaluated to produce the final binary of the entire application. 
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Firstly, the staged code contains execution macros responsible to externally 

launch the MDE tool (Step 1). Then, we deploy a converter to turn the model entities 

into source code fragments stored in AST form. Afterwards, we manipulate the ASTs 

in order for them to be ready for deployment. The generated ASTs are then loaded 

by the staged code generator macros and insert the model-related code into the 

source along with custom application code (Step 2). Finally, the transformed source 

resulting from the staged code evaluation is normally translated or evaluated to 

produce the binary image of the entire application (Step 3). 

In the following subsections, we continue with the analytic description of the 

steps of the proposed MDE process. 

 

3.1 Tool Chain 

In general, the first step of the Model-driven Engineering development is to create 

one or more models. Then, it continues with model-to-model transformations, 

simultaneously decreasing the abstractions of the models and approximating the 

real system. Afterwards, the model to code transformation is applied and the 

developer completes the system that needs to be finalized with manually written 

source code. In the development’s life cycle, it is very common to decide changes for 

one or more models of the system under study. In this case the whole process 

described above needs to be repeated. All this development life cycle demands the 

use of MDE tools, in order to handle the models conveniently and effectively. In our 

work, we focus on MDE tools generating source code, either entirely or partially. So, 

in this section we will go on to describe the invocation of MDE tools and the 

deployment in our approach. 
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3.1.1 Invocation 

 

The Model Driven process begins with the invocation of MDE tools in order to 

construct a model which describes the application. The invocation of this MDE tool 

can be done by employing two different ways: 

The first way is the invocation of an external MDE tool to construct the model, 

produce the correspondent auto-generated source code. Then the IDE is opened in 

order to handle the auto-generated source code and also develop the manually-

written code. As discussed previously, it is common to edit the model and 

regenerate the source code numerous times in the development life cycle. This 

shows us that it is not really effective to use an external tool in combination with the 

IDE during development. 

The second way provided, is the invocation of MDE tools included as plugins in 

the IDE. In the one hand, this solves the inconvenience of the use of an external MDE 

tool but on the other hand reduces the choices of MDE tools used in development. 

We now proceed to describe an alternative path in the invocation-use of MDE tools, 

focusing on bringing the MDE deployment as close as possible to the actual 

application development. 

 

Invoking MDE tools through metaprograms 

The use of generative MDE tools typically involves first launching the tool, 

secondly loading or creating a model, then performing any necessary modifications 

on it and finally generating its corresponding code that will be used as a basis for the 

entire application development. The target of this entire process is always to obtain 

the generated code: the MDE tool is typically not launched again unless the model 

needs to be updated, while any model updates result in code regeneration. In the 

latter case, the final application code also needs to be rebuilt to reflect the latest 

model changes. 
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Since eventually the desired effect is to link the latest model code with custom 

application code, it is possible to invert the MDE tool deployment as follows; 

whenever the application is to be (re)compiled, if any changes need to be performed 

on the model, we launch the tool, perform the necessary updates, regenerate the 

code and finally compile it along with the remaining application code. This 

observation has led us to the idea of utilizing staged metaprogramming as a method 

for orchestrating the MDE deployment directly through the original program source. 

The staged code contains execution macros responsible for launching the MDE 

tool. Once the tool is launched, the developer may normally interact with the model, 

updating it as needed. Then, the process continues with the model-to-text 

transformation based on the updated model. Afterwards, the compilation of the 

system continues normally. 

 

Figure 23. Invocation of MDE tools in the beginning of build process through staged code. 

As illustrated in Figure 23, the development life cycle begins with the 

development of the correspondent staged code with execution macros in order to 

invoke the MDE tool during the compilation process. Then, in the first compilation of 

the main program the MDE tool(s) are invoked in order to construct the model(s) of 

the application under study. Afterwards, in case any changes need to be performed 

on the model(s), we launch the MDE tool(s) during the compilation of the application. 
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The advantage of this process is that it provides the ability to invoke any MDE 

tool externally just with the correspondent execution macros of the tool during 

compilation of the system. In other words, there is freedom to conveniently use 

during development time whichever MDE tool we need for the development of a 

system and not be based on specific MDE tools that may be included as plugins in 

IDE. On the other hand we have to note that to invoke an external MDE tool 

developers must be knowledgeable of the relevant system-call command of the 

staged code which can run the correspondent MDE tool which will simultaneously 

launch the chosen model. Certain tools lack this type of system-call commands. 

There are for example tools that only provide available commands to load their 

project file and not the model (e.g. wxFormBuilder which is used for case studies). 

Using staged metaprogramming for the invocation of an external MDE tool, gave 

us the additional idea of an alternative way to update models without the need for 

external MDE tools. This approach focuses on implementing the model editor as an 

inherent part of the metaprogram i.e. without launching any external applications. 

This way we bring the MDE deployment to the actual application closer than 

previous approaches we discussed above. Of course, such a custom editor need not 

be implemented from scratch but may reuse any model editing library implemented 

in the same language. Using this approach we may take advantage of executing in 

the same address space and also store the generated data in a metaprogram 

variable that can be later used directly in the generator macros, thus removing the 

need for reloading the data from storage. Additionally we have to note that, the 

implemented model editors can be used from the beginning of the model-driven 

process in order to construct the model(s) of application. They only need to run 

them separately us a program inside from IDE. 

 

3.1.2 Deployment 

 

After using the generative MDE tools in order to construct the model, the next 

step is the auto-generation of the correspondent source code. This auto-generated 
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deliverable has to be adapted in order to complete the development of application.  

In case developers create one model for development, they have to use the auto-

generated deliverable created by model and combine it with their hand written 

source code in order to complete the application’s source code. 

 In general, during the development process it is common to use more than one 

model-driven (MDE) tool to construct a single application. Each MDE tool is used to 

construct one or more models (Step 1 in Figure 24). Source code fragments are 

produced for each of these models by correspondent code generators. Afterwards, 

developers have to combine these source codes in order to complete the 

development process (Step 2, 3 in Figure 24). 

 

Figure 24. Deployment of MDE tools in the development process 

During the development process, there are a lot of times when there is a need to 

edit models (Step 1 in Figure 24). These models can be edited in order to complete 

the development or to change something in the developing system repeatedly until 

the end of its development. Each updated model demands the regeneration of its 

correspondent source code. The maintenance issue is now a problem not only 

between the developer’s code and the auto-generated code, but also between the 

auto-generated source codes. In other words, developers have to repeat Step 2 and 
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Step 3 that is depicted in Figure 24, for each updated model of the developing 

system and all auto-generated codes that have dependencies from it in auto-

generated sources. Instead of this approach, we propose the use of 

metaprogramming as we mentioned previously in the introduction of this chapter. In 

other words, we develop programs (staged code) which manage all the auto-

generated deliverables. Firstly, programs load the model and produce the auto-

generated deliverable with appropriate converters. Then, programs edit/extend the 

deliverables and finally inline whole or parts of the deliverables between the source 

code of the custom application. 

3.2 Producing ASTs 

In general the Model Driven Engineering tools get a model as input, or construct 

a model and deliver other models or source code. In other words model to model 

and model to text transformations are applied. The last step of this process would be 

a model to text transformation. Before the model to text transformation happens for 

the last time we need to update the models and repeat the transformations while 

any manually written source code has been added in the auto-generated source 

code.  So, the primary motivation for our work has been the serious source code 

maintenance issue inherent in the deployment of generative MDE tools. 

Although we needed to avoid this problem, in the mean time we wished to retain 

all powerful features of generative MDE tools. Thus we started thinking of an 

alternative path, in which: (i) the MDE tool output would somehow remain invariant, 

that is in a not-editable form; and (ii) the source code of the application could still 

grow and evolve in an unconstrained manner around it. This led us to the idea of 

bringing staging into the pipeline. 

In particular, with staged model driven generation the MDE process is improved 

as follows: Initially, the model-driven tools generate code in the form of language-

specific ASTs. Apart from code, the ASTs can also incorporate any special code 
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annotations, like those required by various Java frameworks. ASTs are essentially 

read-only data, meaning the result of the code generation remains unchanged and 

thus the code-to model reconstruction path is unnecessary. 

3.3 Transforming ASTs 

Using MDE generative tools which produce source code from model(s), 

developers have to complete and transform the auto-generated code in order to 

finalize the system under construction. In our case, we produce AST instead of 

source code as mentioned in the previous section. This means we have to handle the 

ASTs in order to transform their contents which are a tree representation of the 

abstract syntactic structure of source code written in a programming language. The 

generator macros may contain any application-specific composition or editing logic. 

Practically, this means that it is possible to perform any code transformation on a 

source fragment before inserting it in the final source. There are two different places 

these transformations could be deployed. The first place is in one or more separate 

programs. This way is described in section 3.3.1. The second place is in the source 

code of the development application with embedded staged metacode. This way is 

described in section 3.3.2. 

  

3.3.1 Batches - Separate Metaprograms 

 

In our approach, it is proposed that the MDE generative tools produce ASTs - 

instead of source code - which are saved in the form of binary files. In the 

development’s life cycle, the auto-generated deliverable(s) needs a lot of changes 

and additions of source code in order to complete a software system. In our case, we 

can separate the changes or additions by specific programs (e.g. write a program in a 

script to add the event connections to a User-Interface AST). In other words, after 
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the model to AST transformation, AST to AST transformations are deployed. 

Separate programs are run which load the AST from a binary file, deploy the 

transformations and save it in a binary file as depicted in Figure 25. 

Following this approach, we gain the flexibility and reusability of the 

transformations of AST, and additionally the maintenance problem does not 

reappear. In case developers decide to change or add to a metaprogram then they 

do not need to run the whole sequence of metaprograms from the beginning. They 

only need to run the altered metaprogram and those following it. In other words, if 

we had changed the Metaprogram2 as it is depicted on Figure 25  we would not have 

to run the Metaprogram1. 

 

 

Figure 25. Running meta-programs which load the binary files of AST; transform and save it back to the disk. 

Using this approach, it is easier to reuse the metaprogram AST transformations 

for different ASTs and to debug these programs’ correctness. These AST to AST 

transformations are in the one hand language dependent and on the other hand it 

approximates the source code of the system without necessarily being part of the 

application development. In other words, we could deploy separately the process of 
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editing the auto-generated deliverable of generative MDE tools from the 

development process. 

 

3.3.2 Stages - Embedded Metaprograms 

 

Additionally, one other place to transform the auto-generated AST is in the 

source code of the system under construction with embedded metaprograms. In 

these metaprograms has again to load the ASTs and then deploy the transformations. 

When the compilation of the system under construction starts the metaprograms 

first build and then runs during compile time, as result, loads the ASTs and executes 

their transformations. In case of run-time metaprogramming, firstly is built total 

source code and meta-code. Then, during run-time first execute all the meta-code 

and runs the system after that. 

Choosing this approach in the one hand, all the transformations will be done in 

the build process of application development and there is no need to save binary 

files in the disk as all the AST’s transformations save in the memory of the program 

at compile-time; on the other hand there is no segmentation of the AST 

transformations to check their correctness and there is no reusability of the meta-

code in case you want to reuse the meta-code for other ASTs. 

 

3.3.3 Combining Batches and Stages 

 

Finally we have to note that there is no restriction in using both Batches and 

Staged AST transformations. We could develop separate programs in order to deploy 

AST to AST transformations and then develop embedded metaprograms in order to 

deploy other transformations. The latter could possibly be more specific AST 

transformations for the development of an application.  Additionally, separate 

programs could be added as meta third-party libraries in the application and called in 
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the embedded metaprograms in order to do the transformations in one entire 

process. 

3.4 Unparsing ASTs 

After AST to AST transformations have completed, as next step and last of 

proposed approach we have to generate the source code from ASTs. In order to do 

this, we have to add embedded metaprogram which begins by loading the auto-

generated AST (this needs in case used only batches for the AST transformations). 

Then, we have to add embedded metaprograms in order to place the auto-

generated deliverable in the manually written source code. This is based on the 

operators of metaprogramming which are offered by the used language. Embedded 

metaprograms can be placed everywhere among the source code. Consequently, 

parts of ASTs could be placed anywhere in the manually written source code. 

The compilation result of the staged code incorporates the source code inserted 

by AST with the manually written source and constitutes the final source code of the 

application as shown in Figure 22. The final source code is created during the end of 

the compile time process for the staged source code. The final source code is the 

combination of the manually written source code and the auto-generated source 

code, and is read-only. Finally, after the staged evaluation has produced the final 

source code, the process continues with the normal translation (compile-time 

staging) or evaluation (runtime-staging). In case of the run-time metaprogramming, 

the staged code is run first and then the system source code. In this case too, there 

are no maintenance issues. 

This way of generating source code from ASTs changes the model-driven process 

of generative MDE tools.  During the refined model-driven process with an inverted 

responsibility through staging, programmers deploy generator macros to insert 

generated code on-demand and in-place without affecting the originally produced 

ASTs by the MDE tools (see left part of Figure 26). This substitutes the process of 
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transforming the auto-generated source code files in order to complete the 

application development (see right side of Figure 26). 

 
Figure 26. In the left part, we can see a form of our approach source code; in the right part the source code of a 
classic model-driven process. 

This approach may look more difficult than the classic approach but as we 

discussed in a previous section the only thing we have to do in order to write source 

code in the form of AST is to add << … >>. In the next chapter we deploy this 

proposed approach and its effectiveness will be clearer.  
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Chapter 4 

Case Studies 

To test the proposed MDE approach of our work and assess the expressive power 

and its engineering validity, we applied several case studies. In this chapter we 

described them by separating them in four different categories. Each of these 

categories is a case that could arise in the development of a system. In the first 

section, we describe cases in which we have to develop an application using a tool to 

construct a model of the User-Interface. In the second, we outline the case to 

construct a class hierarchy model for an application. Afterwards, we describe an 

alternative way to define a model by specifications to auto-generate a User-Interface 

application in respect of our approach. Finally, in the last section we describe the 

case of using more than one model to construct a single application. 

4.1 User Interface Builder 

As we mentioned in section 3.1.2 we can deploy our approach for a separate tool or 

with a combination of tools. In the next subsection, we describe the deployment of 

the approach, focusing on User Interfaces. Additionally, to test our approach and 

assess its expressive power and engineering validity, we have carried out case 
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studies which are described in section 4.1.2. In particular, we have developed a full-

scale scientific calculator application, a paint basic application and finally we 

developed the Self MDE deployment (part of our MDE approach). We continue with 

the description of the User-Interface deployment of our approach and then following 

with the case studies. 

 

4.1.1 Applying our approach for UIs 

 

In the beginning, we deployed our approach focusing in User Interface Builder as 

it is outlined in Figure 27. We had to use a specific interface builder which delivers a 

specific User Interface Description Language [46] (UIDL) model. So we have adopted 

a WYSIWYG tool, the wxFormBuilder [33], a popular publicly available interface 

builder for the wx widgets cross-platform library. This tool offers a typical rapid-

application development cycle with interactive user-interface construction, and 

outputs interface descriptions into its custom language-neutral format called XRC 

(XML Interface Resources). Then, using wxFormBuilder we construct application and 

get as output the correspondent XRC model. To convert XRC to the Delta language 

ASTs, we developed an appropriate converter. Then, using the metaprogramming 

features of the Delta language, we import and manipulate the application ASTs, and 

also add extra interactive features and behavior to it, besides the ones introduced 

merely with the wxFormBuilder. 

 

Figure 27. Deployment of approach focusing on User Interface builder. 



60 

So, by designing the simple dialog which is depicted in label 3 of Figure 28 and 

developing the source code which is outlined in label 2 of Figure 28, we have the 

resulting read-only source code which is depicted in label 3 of Figure 28 when the 

built process finishes. 

 
Figure 28. Code generation; in label 1 the application for a pure dialog code with embedded staged code is 
outlined; in label 2 there is the result of the build process (i.e. the generated code which is read-only); in label 3 
the pure dialog is depicted. 

Invoking UI Builder through a metaprogram 

Additionally, using the metaprogramming features of the Delta language, the 

wxFormBuilder was launched directly from the meta-code during compilation to 

allow interactive editing of the user interface. The entire process is illustrated in 

Figure 29. In particular, during the compilation of the target application, e.g. a Paint 

application, we assemble and compile the stage metaprogram, i.e. Paint_stage_1.  
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Figure 29. Overview of the compile-time MDE deployment through staged metaprogramming. Actions performed 
during the metaprogram execution (top right) and their corresponding source code lines (bottom) are shown 
with matching numbers 

Then, during the metaprogram execution, the call to std::fileexecute launches 

the wxFormBuilder with the specified model as input (step 1). The metaprogram 

execution will suspend until the call to std::fileexecute returns, something that 

occurs only after closing the launched application. When the interactive editing is 

completed, the XRC model is saved, the wxFormBuilder is closed and the 

metaprogram resumes execution by loading the updated model and converting it to 

AST (step 2). The latter is then inserted into the program source through a generator 

directive (step 3) and the transformed main program, i.e. Paint_stage_1_result, is 

normally compiled to produce the final application. 
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Manipulating User Interface Code as ASTs 

The goal of our case studies in User Interface Builder category is dual: (a) to show 

that the maintenance is effectively eliminated; and (ii) to demonstrate the huge 

expressive power of metaprogramming for flexible interface code composition. In 

this context, as part of the case study, we have identified and deployed a number of 

operations on ASTs to assist in code composition when implementing user-interface 

metaprograms. The notion of user-interface code is not limited to user interface 

construction logic, such as creating widgets and setting their visible and layout 

properties. It actually concerns the full range of dialogue management requirements, 

including event management and all types of dynamic interface updates. For 

instance, composition may well concern scenarios were event management code is 

injected within a user-interface construction code snippet. 

Next we continue by enumerating and briefly discussing the manipulation 

operators. A few automations for easier user interface code composition were 

provided on insertion, such as renaming of local variables in case of conflicts at the 

new context, and automatic relinking of widgets to the container produced by the 

most previous code fragment. 

Clone 

Concerns cases where a copy of the source code for a user interface component is 

required. Typically, alone this operation is rarely needed, thus it is anticipated to be 

followed by radical changes of the user-interface code with operations such as 

merge, insert and modify. 

Cut 

Addresses the need to extrapolate the code snippet of an entire user-interface 

component, and is expected to be followed by appropriate merge or insert 

operations. 
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Figure 30. Cut UI parts of Calculator in order to transform scientific calculator in a simple calculator  

Crop 

It is required when the source code creating some outer parts (i.e. containers) of 

user-interface components is not needed. In our case we deployed the operator to 

drop the containing frame window that is by default inserted by the wx Form Builder 

on all projects. 

 

Figure 31. Crop the auto-generated frame from Shapes’ toolbar User-Interface. 

Create 

It reflects the necessity to introduce extra custom user-interface source code in the 

form of AST, to be actually combined with the parts produced by the MDE tool. In 

our case we created functions which name begin with the prefix “createast_” and 

continues with the correspondent name of widget as name of create function. Each 

function constructs the correspondent widget’s AST. So, developers have the ability 

to use these functions instead of wx-widgets when they construct user-interfaces 

with the proposed approach. Each function gets the analogous inputs which usually 

the widget constructor includes and maybe AST internal body (e.g. panel, sizers etc.) 
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to insert the AST of children in their body. Finally, returns the appropriate AST. 

Additionally, widgets’ AST can be produced without use of these functions. Using the 

quazi-quotes (<<>>) the widget’s AST can be produced. A typical example of Create is 

in the Figure 33. As it is depicted, firstly it is created Shapes’ UI toolbar in the 

appropriate AST Code and then Shapes’ UI toolbar is inserted in the Paint’s 

application UI. 

Merge 

It is a combined composition action on ASTs and is introduced to enable mixing of 

independent interface code snippets under a common parent. Usually, such 

components are either authored independently in the modeling process, or they 

may constitute the outcome of earlier cut operations. A typical example of Merge is 

depicted in the below figure. 

 

Figure 32. Merge two independent UI code; Calculator and Calendar UIs in one UI application. 

Insert 

It allows (re)linking of an existing user-interface code fragment inside another one. 

Practically, this action is the dynamic form of all manual editing actions that user 

interface programmers would have to apply in order to insert custom code inside the 

generated code. It is anticipated as the most frequent editing operation on ASTs. A 

typical example of Insert is in the below figure. As it is depicted, in the paint 

application is added a toolbar with Shapes. 
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Figure 33. Create & Insert Shapes’ User-Interface toolbar in the Paint’s application User-interface. 

Modify 

It reflects the need to algorithmically apply localized changes on the AST, such as: 

renaming variables and functions, changing argument ordering, changing invocation 

styles, etc. Although expected to introduce small scale changes, it can be very useful 

to keep the generated code synced with newer versions of widget libraries when the 

MDE tool is not yet up-to-date. 

 

Figure 34. Editing the tab’s text “Home” of the Paint’s application User-Interface. 
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4.1.2 Developing User Interfaces 

  

Scientific Calculator 

Using the deployment for User Interfaces of our approach (4.1.1), we have 

carried out several Case Studies. In this Section we describe the case study of a full 

scale scientific calculator. 

In the beginning, we constructed an XRC model of a calculator application using 

the wxFormBuilder. The latter was actually practiced in alternative ways, such as 

with single authoring project or alternatively with multiple independent projects. 

This way we could also assert the compositional flexibility of our proposed approach 

in combining independently authored interfaces under a single coherent interactive 

system. To convert XRC to the Delta language ASTs we used the appropriate 

converter we developed. Then, using the metaprogramming features of the Delta 

language, we imported and manipulated the calculator ASTs, and also added extra 

interactive features and behavior to it, besides the ones introduced merely with the 

wxFormBuilder. 

In-between this process we reloaded the visual models invoking the 

wxFormBuilder from IDE at compile-time with the staged meta-code we added in the 

application’s source code and regenerated the XRC files many times, to test that no 

maintenance issues arise by this cycle. 

We continue discussing the case study not only regarding the methodological 

details, but also elaborating on a few important practicing patterns that emerged in 

the process. 

We elaborate on the way composition on user-interface code through ASTs has 

been applied in the context of our case study. It should be noted that, although at 

some points it may look like the effect can be also accomplished by typical runtime 

composition at the level of widgets, in general it is not. In particular, not all widget 

libraries offer runtime name-based registries for widgets, neither all of them 
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facilitate the runtime registration of event handlers in the form of typical method 

invocations. 

 

Figure 35. Two example scenarios (middle, right) of user-interface source code composition relying on AST 
manipulation on top of the original GUI authored with the interface builder (left); updates on the scenarios are 
automated and are directly remapped on top of the original GUI by simple performing recompilation. 

In other words, if linkage is required between interaction objects that are 

constructed by the generated interface code to custom event handlers provided by 

the application, then it may the case that the only option is making such code 

fragments coexist at the same source context. 

In our case study, the initial source code corresponding to the outcome of the 

wxFormBuilder has the following structure (pseudo code, many details removed), 

and creates the calculator instance shown at the left part of Figure 35: 

 

 

 

Figure 36. The GUI parent object typically required 

 

In Figure 36 is depicted the GUI parent object typically required, while line 

numbering is used only to help in our explanations. Now, we need to perform the 

following changes: (1) drop the code producing the outer frame (line 1); (2) insert 

code for event handling implementing calculations on the numeric and function 

buttons (after lines 4 and 6); (3) crop the numeric and functions panel (lines 3 and 5); 

and (4) introduce a tab-box were to insert the cropped code fragments for the 
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calculator numeric and the functions pad. In all these cases we also rely on the 

automatic relinking of the parent objects offered by the insertion operator, as 

mentioned earlier.  

 

Figure 37. Meta-code to load, manipulate (four labeled steps) and inline the source code for the modified 
calculator. 

The meta-code implementing these four composition steps is outlined under 

Figure 37, with many details removed for clarity. Also, the actual conversion from 

XRC to ASTs is cached and is applied only when an internally produced and stored 

AST file is older than the supplied XRC file. There is code in Figure 37 appearing with 

a form << some code >>. This is not a conceptual symbolism, but is syntax relating to 

meta-language construct known as quasi-quoting. Essentially, it is a compile-time 

operator that converts the surrounded raw source-text to its respective AST 

representation. For instance <<1+2>> is equivalent to the AST of the expression 1+2, 

not merely the character string ‘1+2’. This is useful when one needs to combine in-

place an explicitly written source code snippet with other code fragments that are 

available directly as AST values. In our example, we quasi-quote the source text 

producing the numeric and function tab entries (middle of step 4 in Figure 37) and 

compose them via Tree::Insert with the ASTs earlier extracted from the calculator 

code. 



69 

Paint basic 

We used the wxFormBuilder once again and we constructed a simple graphics 

painting application. The latter was actually practiced in alternative ways, such as 

with single authoring project or alternatively with multiple independent projects (i.e. 

multiple XRC models). This way we could also assert the compositional flexibility of 

our proposed approach in combining independently authored interfaces under a 

single system. To convert XRC to the Delta language ASTs we used the XRC to Delta 

AST converter we developed, following the proposed approach. Then, using the 

metaprogramming features of the Delta language, we imported and manipulated the 

application ASTs, and also added extra interactive features and behavior to it, 

besides the ones introduced merely with the wxFormBuilder. In-between this 

process we reloaded the visual models invoking the wxFormBuilder from IDE at 

compile-time with the staged meta-code and we added in the application’s source 

code regenerating the XRC files many times, to test that no maintenance issues arise 

by this cycle. 

 

Figure 38. Examples of the generated interfaces: Left: Original application GUI authored by the interface builder; 
Middle: Custom toolbar authored as a separate interface; Right: Composing the two previous interfaces through 
AST manipulation. 

We used the identified manipulation operators described in above subsection 

titled as Manipulating User-Interface Code as ASTs and we implemented several 

composition scenarios. Figure 38 illustrates one of the implemented user-interface 

composition scenarios based on two separate interface descriptions. The toolbar of 

the second interface is initially retrieved by cropping its top level frame, and is then 
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inserted directly in the top level frame of the paint application. Finally, the combined 

interface is produced by inlining the transformed paint application AST. 

Self MDE deployment’s dialog 

One more opportunity for a case study in User Interface Builder was provided by 

the development of the self MDE deployment of our approach described in 3.1.1. 

We developed the simple application dialog which is depicted in Figure 39. We used 

the wxFormBuilder to construct the XRC model of the dialog and we converted the 

XRC model to AST with the developed converter. Then, using the metaprogramming 

features of the Delta language, we imported and manipulated the Model Editing AST, 

and also added extra interactive features and behavior to it. In particular, we added 

three events for the buttons and one for the choice of the model in order to launch 

or edit it. 

 

Figure 39. The dialog open at compile-time to handle the models of development 

In between this process, using the metaprogramming features of the Delta 

language, the wxFormBuilder was launched directly from the meta-code during 

compilation to allow interactive editing of the user interface. We repeated loading of 

the visual model and regenerating of the XRC file numerous times, so as to test that 

no maintenance issues arise by this cycle. 

 



71 

4.2 Class Builder 

 

In this section we describe the deployment of the approach, focusing in Class 

Hierarchy. Additionally, to test our approach and assess its expressive power and 

engineering validity, we have carried out case studies. In particular, we have 

developed Geometry application described in section 4.2.2 and a Library application 

described in section 4.2.3. We continue with the description of the Class-Hierarchy 

deployment of our approach and then following the case studies. 

 

4.2.1 Applying our approach for Class Hierarchy 

 

Following the proposed approach we deployed it for Class Builder as it is outlined 

in Figure 40. We used the Eclipse Modeling Framework to model a class hierarchy for 

the development of an application. The model is created through the Ecore meta-

model and its specification is generated in XMI format. Then, to convert XMI to Delta 

language ASTs we built an appropriate converter we implemented for the demands 

of this case study that parses the XMI data and maps the model entities to 

corresponding Delta code structures. 

 

Figure 40. Deployment of approach focusing on Class builder 
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Again during the process, we reloaded the model and regenerated the XMI 

specification to verify that no maintenance issues were introduced in the 

development process. 

Additionally, for this scenario, the MDE tool deployment was implemented using 

two different approaches. The first one again involved launching an external tool to 

update the model, in this case the Eclipse Ecore model editor. The second one 

focused on implementing the model editor as an inherent part of the metaprogram, 

i.e. without launching any external applications. Of course, such a custom editor 

need not be implemented from scratch but may reuse any model editing library 

implemented in the same language. 

 

Figure 41. The internal custom model editor launched during compilation case study of Geometry. 

Towards this direction, we implemented a simple GUI (see Figure 40) offering an 

editable tree control to specify the class hierarchy, effectively emulating the Ecore 

model editor functionality. Using this approach we may take advantage of executing 

in the same address space and also store the generated ASTs in a metaprogram 

variable that can be later used directly in the generator macros, thus removing the 

need for reloading the AST data from storage. 

Figure 42 illustrates the metaprogram used to implement the second case, while 

for the first case the deployment code closely resembles that shown in Figure 29, but 

with the invocation of the MDE tool targeting the Eclipse model editor. 
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Figure 42. The internal editor code as an inherent part of the staged metaprogram. 

4.2.2 Developing Applications 

Geometry 

In the beginning, we used the Eclipse Modeling Framework to model a class 

hierarchy for the development of a simple Geometry. The hierarchy contained the 

abstract notion of shapes, as well as concrete drawable shapes like points, lines, 

circles, etc. The model was created through the Ecore meta-model and its 

specification was generated in XMI format. Then, we converted the XMI model to 

Delta language ASTs using the appropriate converter we built. 

In the Figure 43 is depicted the model, the generated code structure (shown as 

code, but is in fact in AST form) as well as the deployment code required to inline the 

code AST in-place with the normal program code. Again during the process, we 

reloaded the model and regenerated the XMI specification to verify that no 

maintenance issues were introduced in the development process. 
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For the method implementations of the modeled classes we practiced two 

alternative methods. The first one involved specifying the method bodies directly in 

the model through the use of special EAnnotation elements (Figure 43 top-left, 

highlighted). The second one did not involve any model editing, but relied on 

obtaining the generated AST and inserting the method bodies directly into it as part 

of the staged code evaluation (Figure 43 bottom, 2nd statement). This approach may 

seem more difficult to adopt, but in fact it is easy to develop and offers several 

advantages over the first one. 

 

Figure 43. Top-left: Ecore model of the target class hierarchy; Top-right: Code structure (AST) generated by the 
model; Bottom: Deployment code for loading and converting the model to AST, performing manual updates 
through AST editing and inlining the final AST code. The initial value of the meta-variable ast corresponds to the 
code structure shown at top-right. 

When inserting the code directly in the model, the code is entered as raw text 

and thus lacks any programming facilities. Additionally, code overview is severely 

restricted, as the model view truncates the annotated text and full code inspection is 

only allowed for a single selected EAnnotation. Of course, there is no direct notion of 

parameterization or reuse; the only option short of code repetition is to explicitly 

introduce new model methods, implement their code through a new EAnnotation 

and then use their corresponding invocations where needed, again as raw text 
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placed in other EAnnotations. In any case, inputting source code in separated text 

areas is far from a productive development method. 

 

Figure 44.  Supporting quick access to all class hierarchy entities through AST decoration. The AST shown 
corresponds to the generated hierarchy of Figure 43, while the highlighted path 
ast.Geometry.Circle.area.body was used to insert custom method functionality. 

Regarding the second approach, creating or inserting code through 

metaprogramming is achieved through additional syntax (quasi-quotes) directly at 

code editing level. This means that the developer may utilize all typically offered 

code facilities like syntax highlighting, auto-completion, refactoring tools, etc. 

Additionally, different code segments (ASTs) corresponding to related methods or 

classes may be placed in the same source location as would be the case if the entire 

class was manually written by the developer, thus supporting the typical source code 

overview. Finally, since ASTs are actually metaprogram data, they are subject to 

standard software engineering practices like parameterization, encapsulation, 

modular composition, etc. The main issue related to programmatically extending the 

originally generated AST is that we need to traverse the AST to locate the nodes to 

be extended and therefore requires knowledge of the code generation scheme 
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utilized to form the particular AST structure as well as internal AST information. To 

relieve the developer from having to know such details, we utilized an AST 

decoration process to allow direct navigation across AST nodes using the named 

entities of the class hierarchy (see Figure 44). This way, knowledge of the model 

entities and a simple tree manipulation API are sufficient for a developer to 

introduce elaborate AST extensions. 

During the development of this Case study, we deployed the compile-time 

invocation of MDE tools in two different ways as we discussed in the previous 

section in order to examine the convenience and effectiveness of this type of launch 

an MDE tool during compilation. 

Library basic 

Once again, we used the Eclipse Modeling Framework to model a class hierarchy 

for the development of a simple Library application. The hierarchy involved the 

notion of a library in which Books (EClass), bookType (EEnum), Dictionaries (EClass), 

Magazines (EClass), Writers (EClass), PublishingHouses (EClass) etc are included. The 

model was created through the Ecore meta-model and its specification was 

generated in XMI format. Then, we converted the XMI model to Delta language ASTs 

using the appropriate converter we built. The call of this converter is depicted in 

label 2 of Figure 45. 

For the method implementations of the modeled classes we used the second 

method of the previous two discussed in the case of Geometry, which relies on 

obtaining the generated AST and inserting the method bodies directly into it as part 

of the staged code evaluation as depicted in labels 3, 4 of Figure 45. 

Then, we developed pure functionality for the library application, with details 

removed for clarity. We created instances of writers, books and then an instance of a 

library with a list of books as outlined in label 5 of Figure 45. Finally, we searched for 

the books published in 2009 and they are in the Library as depicted in label 6 of 

Figure 45. 
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Figure 45. Meta-code to load, manipulate and inline the source code for the library. 

Again during the development process of the case study, we reloaded the model 

and regenerated the XMI specification to verify that no maintenance issues were 

introduced in the development process. Additionally, we added staged code in order 

to invoke the MDE tool at compile-time with the correspondent XMI model in order 

to launch it. 

4.3 Automatic User Interfaces 

An alternative way to construct User-Interfaces instead of using a WYSIWYG tool is 

the automatic generation source code by specification. In some way, the latter is the 

model which describes the User-Interface. The automatic UI generation tool gets this 

specification as input and either creates the UI and runs the application, i.e. in the 
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case of executors or creates the correspondent UI source code of the application and 

then source code is manually completed in order to finalize the system under study. 

The latter is the kind that we focus on in this thesis and it also causes the 

maintenance problem similar to the WYSIWYG tools we discussed previously. 

In this case study, we developed a system which gets a specification of annotated 

APIs as input and delivers an AST according to our approach, instead of source code. 

The goal of this case study was dual: (a) to research an alternative way for Model-

Driven Engineering of User-Interface; and (b) to deploy it in our approach. We 

continue with the description of the specification with annotated APIs of User-

Interfaces. Then, we briefly analyze the system which produces the AST. Afterwards, 

we describe a pure user interface of a library application we built using this approach. 

4.3.1 Defining an alternative UI model 

 

In User-Interfaces, it is common to define models using MDE tools and save them 

in the form of User Interface Description Languages (UIDL). An alternative model 

that can be defined, is the specification annotated APIs. We have adopted the 

annotated user interface APIs based on lectures of the computer science department 

of the University of Crete, Development of Intelligent User-Interfaces and Games 

[45]. In general, when the construction of a software system begins, the operations 

that the system will eventually support are defined. So, a UI model could be a 

specification which includes the operations of the system under construction. In our 

case the Specification (model UI) is defined by Operation, Signature, Parameter, 

returnValue, func, dataFlowType, typeInfo. Each of these model’s constructs are 

described below. 

Operation 

One Operation can be defined as a User Interface or a non-User Interface operation. 

Each operation consists of the signature and the func. 
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Signature 

The operation’s signature consists of the name, the parameters and the returnValue 

which gets a value when the reference function (func) is fired by the user. The name 

of the operation’s signature must be unique in a defined specification. 

Parameter 

Each parameter consists of the name, the dataFlowType and the typeInfo. It models 

the constituents of one operation. The parameter’s name must be unique in the 

operation. 

returnValue 

It refers to the result of the function call of the operation’s ref (func). It contains the 

name and the typeInfo of the return value. When the application starts returnValue’s 

value is empty. 

func 

The func includes the refs of the operation’s functions which the user defines for the 

system’s operation. These functions are callback and are fired during use of the 

application. 

dataFlowType 

The dataFlowType is the type of parameter or result data. The possible values are 

“In”, “Out” and “InOut”. “In” refers to data passed to the Operation’s callback 

function (func). “Out” refers to data coming from the Operation’s callback function 

(func). “InOut” refers to data passed and coming from the Operation’s callback 

function (func). 
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typeInfo 

It describes the type of operation’s parameter or returnValue. It can be a basic type 

(String, Boolean, Integer and Void) or defined type that is described by a Table. For 

example a String is described by this table [ @type : "String" ]. The defined 

types are described by a Table, but the contents vary. The available defined types 

are Struct, List, Vector, Array, Enumeration and Union. These types are described by 

the following tables: 

Struct 
[ 

@type : "Struct", 

@userDefClassId : <String>, 

@members : 

[ 

  [ 

@name : <String>, 

@typeInfo : <basic type> | <user-defined type> 

], 

... 
], 

] 

List/Vector 
[ 

@type : "List"/”Vector”, 
@userDefClassId : <String>, 
@elementTypeInfo : <basic type> | <user-defined type> 

] 

Array 
[ 

@type : "Array", 
@userDefClassId : <String>, 
@elementTypeInfo : <basic type> | <user-defined type> 
@length : <Number> 

] 

Enumeration 
[ 

@type : "Enumeration", 
@userDefClassId : <String>, 
@members : 
[ 

  [ @name : <String>], 
  ... 

] 
] 
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Union 
[ 

@type : "Union", 
@userDefClassId : <String>, 
@members : 
[ 

  [ 
@name : <String>, 
@typeInfo : <basic type> | <user-defined type> 

], 
  ... 

] 
] 

 

Each of the types defined above can be described with correspondent User-

Interfaces. An example of the basic types’ String correspondent User-Interface is 

depicted in Figure 46. An example of the description of the List type is depicted in 

Figure 45. 

 

Figure 46. List’s User Interface description; at the top there is the description when dataFlowType is “In” or 
“InOut”; at the bottom there is the description when dataFlowType is “Out”. 
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Figure 47. String’s User-Interface description; on the left side is the UI when dataFlowType is “In” or “InOut”; on 
the right side is the UI when dataFlowType is “Out”. 

A definition example of a calculator operation is, 

calcFuncSpec = [  

    @signature : [  

        @name : "calc", 

        @returnValue : [  

            @name : "result", 

            @typeInfo : intTypeInfo 

        ], 

        @parameters : [  

            [ @name         : "operand_1", 

              @typeInfo     : intTypeInfo, 

              @dataFlowType : "In" ], 

            [ @name         : "operand_2", 

              @typeInfo     : intTypeInfo, 

              @dataFlowType : "In" ] 

        ] 

    ], 

    @func : [ 

        @ref : "UserFuncsEvt::calcFunc" 

    ] 

]; 

 

The specification (model UI) is defined in a script source file in which there is a 

function GetAPISpec which returns the API specification object. 

 

4.3.2 The Auto-generation UIAPI engine 

 

In order to create the User-Interface and the API from the UIAPI specification 

model which is described above, we developed an appropriate engine. This engine 

gets the UIAPI specification model as input and translates it according to the theory 

of lectures of the University of Crete ‘Development of Intelligent User Interfaces and 
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Games’ lesson [45] in the correspondent Delta Language AST instead of source code 

in respect to our approach.  

The Auto-generation UI engine is composed as depicted in Figure 48 by the 

following main parts; the UIAPISpecValidator, the UIBuilderCore, the RulesMap and 

the MicroUIsBuilder which are briefly described below. 

 

Figure 48. The auto-generation UI engine architecture 

 

The UIAPISpecValidator is the first step of the engine. It handles the validation 

check of the model given as input to ensure it was appropriate. In case the model is 

not valid, the engine gives the appropriate error message for the model and 

terminates. 

The UIBuilderCore is the main part (core) of the engine. It constructs the main 

frame’s User-Interface and then uses the operations described in the specification 

(model) in order to construct their UI and API. Finally, it returns the object with the 

ASTs result of the engine. 

The RulesMap is also an important part of the engine which is responsible for the 

theory of lesson lecture [45] in order to create the UI for the parameters and the 

return value of the operation. 
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The MicroUIsBuilder is the builder for each of the types that could be defined in 

the specification. It is called by the RulesMap in order to create parts or whole UIs of 

the parameters and the return value. 

 

4.3.3 User-Interface Design Issues 

 

As it can easily be perceived, the User-Interface created by this auto-generation 

tool is predefined for each of the UIs and its design is sometimes far from the 

desired design of the application graphical user-Interface. The accuracy of the User-

Interface design for an application is very important, so we have to address this issue 

in this case. There are two approaches to solving this problem without causing 

troubles in the maintenance issue we address. 

The first way to fix the design issue is to enrich the specification model in order 

to define the design of the User-Interface of the application under study. In the one 

hand, the new specification model demands the extension of the auto-generation UI 

API engine in order to create the correspondent UI source code for each model. On 

the other hand, the more enriched the specification model is the more difficult it will 

be to define the specification script correctly. In order to define this type of models 

effectively, an appropriate visualization software tool will be needed in which the 

user will create the model (script) automatically. This work has not been done in the 

thesis and it is subject to future work. 

The second way to address the issue of the design of the GUI is to get the current 

result of the auto-generation engine UI and API AST. Then, using the Manipulating 

Interface Code as ASTs which we discussed previously, we could transform the 

produced AST in order to edit the User-Interface of the application under study. In 

the one hand, this solves the problem of the design accuracy of the User-Interface 

although one or more changes to the API’s AST will be needed because of the 

dependencies between the two auto generated ASTs (UI & API) from the engine. The 

API’s AST transformations need to be done in case of UI changes like replacing a 
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widget and are not needed in case of setting data in a widget or changing its position 

in the application frame. This means that although the double transformations of the 

UI AST and API AST are not so easy, the cases in which they are really needed are 

infinitesimal. So this is the approach we use in the following application of a Library 

in order to edit its User-Interface. 

 

 

Figure 49. Default embedded metacode using the auto-generation tool we developed 

In order to use the auto-generation tool need to write the metacode as it is 

outlined in Figure 49. Developers have to include the UIBuilder as embedded 

metaprogram in the program under study in order to use the auto-generation engine. 

Additionally, they have to include the specification script (model). Then developers 

include a call to the auto-generation engine as an embedded metaprogram in order 

to create the ASTs. Afterwards, they write the transformations for the User-Interface 

and the API ASTs. This MDE process is the same as previously described. The only 

change is the way of construction of the model in which the user has to write in a 

script in order to construct it. We can easily try the self-deployment of the 

Specification and change it at compile time before the evaluation of the specification. 

In this case though there is no point in intervening because the model is a script in 

the form of source code and can be edited from IDE at development time. The self-

deployment could be done in case we had built the visualization tool we discussed 

above. 
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4.3.4 Developing UI for a Library 

To test this approach and examine the effectiveness and engineering validity we 

have carried out a case study. We developed a pure library application. We defined 

four operations for the library. The view, search, rent and let a book operation of a 

library. We created the model defining four different operations: 

viewBooksOfCategory, searchABook, rentABook, returnArentedBook. 

 The viewBooksOfCategory describes the operation in which users choose the 

category of a book, and can view the books there are in Library. It is a UI 

operation in the specification model. 

 The searchABook describes the operation in which the user searches for a 

specific book giving title/writer’s name/year/type of the book. It is a UI 

operation in the specification model. 

 The rentAbook describes the operation in which the user rents book(s) from 

the library 

 The returnArentedBook describes the operation in which the user returns to 

the library rented book(s). 

All these operations are UI operations and none of them are non-UI operations. For 

each of them, we described the parameters, the return value and the ref function 

operation.  

Then, we converted the specification to ASTs using the auto-generation engine 

we developed. We get two ASTs as result; the first is the API and second is the User-

Interface of the application as it is depicted in the Figure 51. 
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Figure 50. User-Interface produced by auto-generation UI engine. 

 

 

Figure 51. Manipulating the auto-generated User-Interface through ASTs transformations. 

Afterwards, we edit the default auto-generated AST of User-Interface using the 

Manipulating User-Interface Code as ASTs operators we described in previous section as 

it is depicted in the Figure 51 in order to adapt the auto-generated UI for the Library 

application. The meta-code implementing the transformations for the UI of the 

Book_Search is outlined in the Figure 52, with many details removed for clarity. 

Firstly, we include the specification of library (UI model), the UIAPI engine and the 
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library of manipulating User-Interface operators (see step 1 of Figure 52). Then, we 

changed the default title “UIAPI” with title “Library Application” and the background 

color of the frame (see step 3 of Figure 52). Then, we removed the inactivated 

button which is unnecessary in current UI and changed the textctrl titled 

“Search_Parameters” with more specific title “Searching for a book…” (see step 4 of 

Figure 52) and the positions of the textboxes in the sizers (see step 5 of Figure 52). 

Afterwards, we inline the ASTs between the custom source code of the Library 

application (see step 6 of Figure 52). Finally, we complete the reference functions of 

the operations by pure source code to add their functionality. 

 
Figure 52. Meta-code to include the specification(model UI), the UIAPI engine and the library of manipulating UI 
for AST’s operators in label 1; Meta-code to call the auto UIAPI engine in label 2; Meta-code to transform the 
auto-generated AST’s GUI in labels 3,4,5 and inline the ASTs in order to generate the Library’s application source 
code in label 6. 
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4.4 Combined Deployment 

In general, during the development process it is common to use more than one 

model-driven (MDE) tool to construct a single application. Each MDE tool is used to 

construct one or more models. As well in our approach, we can use one or more 

MDE tools. For each of the XML models that constitute the deliverables of model-

driven tools will be converted in ASTs by appropriate converters (we have to build a 

converter for each different modeling language). Then, developers have to handle 

the produced ASTs once by transforming them and inlining ASTs or parts of them in 

appropriate positions of source code according to general approach for code 

manipulation and insertion using ASTs is the one earlier described in section 

Multistage Languages and relates to compile-time metaprogramming languages, 

involving two stages that are also depicted under Figure 53: meta-code evaluation 

(stage 1), and normal compilation (stage 2). 

 

Figure 53. Deployment of approach focusing on combined deployment; use more than one MDE tools. 

We continue with the presentation of the case studies, using more than one MDE 

tools for a single application. In particular, we have carried out two case studies. The 

first case study is the Paint in which we used the wxFormBuilder and the EMF tool. In 

the second case study we developed a Library application in which we used the EMF 

tool and the Automatic User-Interfaces we described in section 4.3. 
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4.4.1 Developing a paint application 

Using the wxFormBuilder we constructed a simple Paint application. The XRC model 

which delivered by wxFormBuilder is the first of three models built for development 

of Paint. Then, using again the wxFormBuilder we constructed one toolbar as it is 

depicted in the Figure 38. Finally, we use the model delivered for shapes class 

hierarchy of previous case study. The latter was changed and extended to be 

appropriate for Paint application. 

Our case study focused on obtaining the code generated by the previously 

discussed methods and combining it along with the custom application logic to 

implement a fully functional paint application. It is important to note, that although 

a simple concatenation of the generated sources caused no direct compilation 

conflicts, it was far from sufficient for deriving a fully-functional application. 

In fact, multiple manual updates were necessary involving both generated 

components and requiring bidirectional dependencies. Firstly, the event handling 

code required knowledge of the separately generated implementation classes. Then, 

certain methods of the class hierarchy like draw required invoking UI-related 

operations. However, the class hierarchy model was unaware of the deployed UI 

library, meaning that such information could not be available in the model and 

would thus have to be explicitly expressed as a manual extension in the generated 

sources. Finally, we needed to combine the generated code with the custom 

application logic. The meta-code implementing the above functionality is outlined 

under Figure 54, with details removed for clarity. 

Initially, the XRC interface definitions for both the basic paint application UI and 

the shapes toolbar extension are loaded and converted to AST. Similarly, the XMI 

model definition for the shape toolset class hierarchy is also loaded and converted to 

AST (step 1). Actually, all such ASTs are cached and the conversion is only applied 

when the internally produced and stored AST file is older than the supplied model 

file. 
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Figure 54. Meta-code to load, manipulate and inline the source code of all modeled aspects of our system. The 
result is a fully functional paint application like that shown on the right of Figure 38. 

Then, the interface definitions are combined to generate the final application 

interface (step 2). In particular, the top level frame of the shapes toolbar is dropped 

and the remaining interface component (i.e. a panel) is inserted in the frame of the 

paint application before the canvas. With the visual representation ready, the next 

step involves implementing the various methods of the class hierarchy (step 3). This 

is achieved by creating and inserting AST values in the method bodies as discussed in 

the previous section. Notice that the quasi-quoted code can directly link to UI 

elements. The next step is the generation of the event handling code (step 4). As 

shown, we can specify event handling code directly as an AST, while the code itself 

may refer to objects related to the shape toolset class hierarchy. Finally, once all 

appropriate transformations and extensions have been performed on the ASTs, they 

can be inlined to the final program at some source location (step 5). The AST of the 

class hierarchy should be inlined first so as to be available in the subsequent UI code 

that utilizes it. The code of the class hierarchy also requires the GUI toolkit 

functionality; however it is already visible through the import directive present in the 

first line. 
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Specifically for the user-interface code, it should be noted that it may have been 

possible to accomplish the same result using typical runtime composition at the level 

of widgets. However, such an approach cannot be deployed in general, as there are 

widget libraries that offer no support for name-based registries for widgets, or 

runtime registration of event handlers in the form of typical method invocations. In 

such cases, if an object constructed by the generated interface code needs to be 

linked to custom event handlers provided by the application, then making such code 

fragments coexist at the same source context may sometimes be the only solution. 

4.4.2 Developing a library application 

In this case study, we used the EMF tool and the auto-generation which is 

described in section 4.3. Our purpose for this case study is to examine whether the 

combination of more than one model, although constructed in a different way 

(specification by writing source code in a script and Ecore by using the EMF in 

Eclipse), that it does not affect the maintenance issue. In particular we used two of 

the models we constructed for the previous case studies. Firstly, the EMF model we 

built in the Library basic (see Figure 55). We changed the pure source code of the 

Library object creation from the previous case study by adding source code which 

parses xml file in order to load the Library data and source code to save back the 

Library data to xml file. In other words, we built a simple database for Library 

application. 

Then, we used the specification (model) which was defined in the Automatic User 

Interfaces in Library UI example. We replaced the functionality source code of the 

reference functions of the operations we developed in the previous case study with 

source code which uses the functionality we developed in the part previously 

described above for the class hierarchy. Again during the process, we reloaded the 

models and regenerated the XMI specification and the UIAPI specification to verify 

that no maintenance issues were introduced in the development process. 
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Figure 55. Left: Ecore model of the target class hierarchy; Right: Code structure (AST) generated by the model 
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Chapter 5 

Discussion 

In this chapter, we further analyze the problem of maintenance issues by giving a 

simple example and using traditional generative MDE tools as well as our approach 

in order to compare them. Then, we discuss the tradeoffs using our approach and 

finally we describe the applicability of our approach in programming languages. 

5.1 Maintenance 

We designed a model of the Person class by using a modeling tool which does 

not deal with maintenance issues. Person includes the attribute “name” and the 

method “naming” which sets name in Person. We generate the source code from 

the model using a code generator. Then, in order to complete the implementation 

source code of Person we complete the body of method naming. In case we decide 

to extend or edit the model later, we have to re-generate the source code from the 

model. The manually written source code in method naming will be lost so we have 

to re-complete it. In this simple case we just have to copy this fragment of source 

code before regeneration and then paste it in the updated source code. In a real 

application development, we design many classes. So, we have to keep old sources’ 
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version and after the regeneration of the source code from the model we have to 

place the source fragments in the generated source code. This is a very tedious and 

inefficient process which can cause a lot of issues (e.g. wrong mapping of source 

fragments in the auto-generated source code). 

5.1.1 Addressing maintenance issues so far 

In general, the attempts are distinguished in two approaches. The first approach 

is with the use of annotations within the source code and the second is the support 

of the full cycle development. We continue describing these two approaches through 

the example we discussed previously. 

Using annotations 

Using the aforementioned example, we model the Person class with the attribute 

“name” and the method “naming”. Then we create the appropriate code generator 

(i.e. *.genmodel) from the eclipse modeling framework in order to generate the 

source code from the model.  The source code includes annotations in its comments 

as it is depicted in Figure 56. 

 

Figure 56. Using EMF tool to design and implement class Person. 

/**

* @generated */

public class Person {
/**

* @generated */

protected String name = "";
/**

* @generated */

public void naming(String newname) {
// TODO: implement this method
// Ensure that you remove @generated or
// mark it @generated NOT

throw new UnsupportedOperationException();
}

}

name = newname;

@generated NOT

Manually written 
source code
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Then, we complete the method “naming” and replace the annotation 

@generated with the annotation @generated NOT. In case we would like to 

extend the Person model and regenerate the source code, the manually written 

source code will not be replaced. In particular, code generator parse the generated 

file and look for the annotations @generated NOT in order not to re-create these 

fragments. If we put aside the additional developers’ tedious responsibility of choosing 

which source fragments to re-generate or not by using annotations, the maintenance 

issues seem to be solved. In case we consider a different model update involving 

modifications for already implemented functions, when for example changing the 

called method “naming” with the name “setName,” the generator parses the file 

again. This time, the file does not include the method “setName” and the generator 

cannot map this method with the previously generated method “naming”. However 

there is no knowledge that “naming” and “setName” are identical. So, the code 

generator produces a new method called “setName” with an empty body and keeps 

the method “naming” with the manually written source code. One way to avoid this 

problem is to rename the method “naming” in the generated source code to 

“setName” before editing the model. Then, during the process of the source code 

regeneration, the code generator maps the method name and does not generate an 

extra method called “setName” with an empty body. However, in case we edit the 

model by adding an extra argument in method “setName”, original functions 

versions are maintained but the regeneration process introduces a duplicate method 

skeleton with an updated prototype. The programmer should then manually move 

the implementations from the original bodies to the matching new ones, drop the 

old entries and finally specify that the new functions contain user code by removing 

their @generated annotation. Clearly, for multiple model updates or a large number 

of modeled entities this is a tedious and error-prone process. 

Using full cycle development 

The second approach tries to resolve the maintenance issues supporting full cycle 

development. In particular, the model-driven process begins, as previously, with the 
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model construction of the Person class. Then, the correspondent source code is 

generated by an appropriate code generator. Afterwards, the body of the method 

called “naming” is completed. Then, in case we would like to edit or extend the 

model, the source code is transformed by a Model Reconstructor in order to update 

the model according to the source code. In other words, the source code is parsed in 

order to identify its constructs and generate the correspondent model (i.e. Model 

Driven Reverse engineering). Of course, there are parts of the source code that 

cannot be identified (e.g. the source code of the body of a method). These parts are 

kept in the model as metadata. When developers finish with the model changes and 

the source code is regenerated, the previously manually written source code has 

been maintained since it has passed from the previous source code to the new 

source code via the model. This approach perfectly solves the maintenance issue for 

general purpose MDE tools as applied for instance to Papyrus and Modelio. It cannot 

however be deployed in case of specific mission tools. For example, in case of 

generative MDE tools for user-interface code generation, like GrafiXML [23] or 

GuiBuilder [24], it is practically impossible to recognize the widget elements by 

parsing manually written source code [25]. 

5.1.2 How our approach solves maintenance 

All the attempts to solve the maintenance in general follow the logic of generating 

the source code and extending it in order to complete the development process as it 

is depicted at the top of Figure 57. Then, in case the model needs to be edited or 

extended during development, these approaches seek ways to shun this problem. 

Although, there is improvement in this way, it does not seem to be sufficient to solve 

the maintenance issue completely and efficiently. 

Thus we started thinking of an alternative path, in which the MDE tool output 

would somehow remain invariant, that is in a not-editable form and the source code 

of the application could still grow and evolve in an unconstrained manner around it 



98 

as it is depicted in the bottom of Figure 57. In this scenario, the code to model 

reconstruction path is unnecessary. We will continue with the description of the 

previously discussed example using our approach. 

 

Figure 57. Top: Traditional MDE process where the generated source code files are manually updated with fill-in 
and extra code. Bottom: The proposed MDE process where the tool output is in AST form and the programmer 
deploys embedded metaprograms to load, fill, edit source code in the form of ASTs and generate a transient code 
version that will be integrated along with the custom application. 

Using a modeling tool we design the Person class which includes the attribute 

“name” and the method “naming”. Then, we use an appropriate AST generator in 

order to generate the correspondent AST. We develop the staged code in order to 

load the AST of Person model code (see label 1 of Figure 58), fill the body of “naming” 

method (see label 2 of the Figure 58) and generate the model source code around 

the rest source code of application during translation (see label 1 of the Figure 58). 

Afterwards, the compilation process begins and the evaluation result of the staged 

code is depicted in label 4 of Figure 58. 

During the development process, in case we decide to extend the model Person 

and add for example the attribute “height”, the only thing we need to do is to use 

the AST generator in order to update the AST of Person. Then, we have to repeat the 

compilation process in order to regenerate the model source code around the rest 

application source code. 
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Figure 58. Developing a Person example in our approach and the result of the generated code in label 4. 

In case we decide to edit the Person model and rename the method called 

“naming” to “setName”, the AST generator will be used in order to update the AST of 

Person and repeat the compilation which will not succeed this time. As it is depicted 

in label 2 of Figure 58, &person.naming.body, the user data of the updated 

AST does not include the index naming. In particular, the index “naming” has been 

replaced with “setName”. 

So, the staged code &person.naming.body has to be replaced with 

&person.setName.body. On the one hand, the compilation process will not 

succeed; on the other hand, the source code will not be destroyed as in the first 

approach described previously. The advantage in this case is that developers view 

the appropriate messages from the compiler (errors messages during compilation) 

concerning what goes wrong in the developed staged code. Using our approach, 

such a model update requires no further actions and is handled as before: the 

updated model is loaded in AST form and then the function implementations are 

inserted where needed through AST manipulation without being affected by the 

newly introduced argument. Practically, the metaprogram specifies the logic for 

integrating custom application code directly within the model code, so as long as the 

model structure matches this insertion logic, no model updates break the 

regeneration process. In the following table we outline the methods which address 

maintenance and the case of working efficiently or not: 
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                           Approaches 
      Cases Annotations 

Full cycle 
development 

Staged Code 
Generators 

Adding new constructs in 
a model 

Yes Yes Yes 

Editing constructs of a 
model (e.g. renaming a 

method) 

No  
(before the model 
editing, the code 

needs editing) 

Yes Yes 

Adding new elements in 
constructs of a model (e.g. 
adding an argument in a 

function) 

No Yes Yes 

User-Interface Code 
Generation 

N/A No Yes 

Using multiple models in 
single development 

N/A N/A Yes 

Table 1. Comparing the approaches which deal with maintenance issues 

5.2 Tradeoffs of our approach 

Our approach overcomes the maintenance issues of generative MDE tools; 

however its deployment naturally involves some tradeoffs.  

Firstly, it requires applying an advanced programming technique such as 

metaprogramming in an already demanding field like MDE, potentially leading to 

increased system complexity. For instance, creating and manipulating ASTs to 

perform code updates is arguably harder than manually editing the corresponding 

source code segments. Nevertheless, the use of quasi-quotes enables creating ASTs 

just like writing normal code, while AST manipulation can be simplified with better 

support for AST traversal (e.g. the name decoration process discussed earlier) along 

with a simple tree editing library. 

Another issue concerns the transformation of the MDE tool output into an AST 

and requires a separate converter per deployment language as well as per model 

format. For instance, in our test cases we had to build two converters (one for XRC 

and another for XMI) to support the two modeling tools we used. Moreover, if we 
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wanted to use our approach in another language we would have to create similar 

converters generating ASTs for that language. In a setup with varying languages and 

diverse model formats this arguably introduces an overhead in the MDE process. 

However, a single converter may be used for developing multiple applications that 

share a development language and a model format thus reducing the amortized 

effort required for a particular application. The effort required for such a converter is 

proportional to the complexity of the target model specification. Typically, it should 

be similar to creating a model-to-code transformation but with the output being the 

source code AST instead of the source code text. For MDE tools that already provide 

model-to-code transformations in the deployment language, an alternative requiring 

significantly less effort is to first use the transformation to get the generated sources, 

parse them into ASTs and finally manipulate them as needed (e.g. remove code 

segments not directly relevant to the modeled entities) to be ready for deployment. 

Additionally, it is possible to further reduce the effort required to implement a 

converter for a specific format across different languages. The converter may have a 

language-independent core handling the target format and utilize multiple language-

dependent back-end plugins to support the various deployment languages. In this 

sense, all common converter functionality is only written once, thus minimizing the 

overhead of supporting additional languages. 

5.3 Applicability of our approach 

Not all popular languages support staging, even though there are a few third 

party extensions such as Metaphor [48] and Mint [49]. In this context, one may 

deploy the reflection mechanism of languages like C# or Java to practice a similar 

source code management and generation pipeline as the one discussed in this thesis. 

This option is detailed under Figure 59, showing that the language compiler and the 

dynamic class loading and method invocation facilities (i.e. reflection API) are 

directly deployed. The entire process starting the conversion from ASTs to 

intermediate representations (very flexible, suggested), or alternatively to source 

text (more rigid, not suggested), should be explicitly implemented as it is not 
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automated by the languages. However, it is cached, meaning it is not repeated 

during execution, but applied once per AST version. 

 

Figure 59. Applying the generative MDE process with runtime staging; the application composes intermediate or 
source text and then deploys the language reflection API for compilation and invocation (JIL stands for Java 
Intermediate Language, CIL for the Common Intermediate Language of .NET). The entire runtime conversion, 
composition and compilation process is cached – it is only repeated when the ASTs change, i.e. upon 
regeneration. 

The oval of Figure 59 labeled as composition parameters represents the need for 

performing custom mixing between the automatically generated source code and 

the manually inserted code, something that is apparent in the presence of Composer 

as an integral part of the application. This is similar to AST composition alternatives, 

although at the intermediate representation level, and is very critical to ensure that 

maximum code mixing freedom is provided to developers. 

 

Application

Composer

Composition
Parameters

language reflection API

ASTs Converter
Intermediate
or Source Text

cached conversion: applied only if ASTs are more 
recent from the produced intermediate / source codes 

Intermediate: CIL,JIL, etc.
Source: C#, Java, etc.

Involves definitions that 
may refer to app code

Binary
Loading and
Invocation

Compilation Text

Code composition approach is an 
integral part of the application logic
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Chapter 6 

Conclusions and Future Work 

Currently, model-driven engineering represents a domain of powerful 

development tools facilitating the modeling of systems and supporting the 

transformation process from abstract to concrete models, eventually down to the 

physical platform level. Generative MDE tools support the production of concrete 

application implementations directly at the source code level. Such a facility is 

overall very helpful, powerful and flexible for software development. However, it 

also causes maintenance issues once extensions and updates are manually 

introduced over the initially generated model code or when trying to combine 

sources coming from multiple MDE tools. 

In this thesis we propose the exploitation of the metaprogramming language 

facilities and suggest an improved model-driven code of practice relying on the 

manipulation of source code fragments by clients directly as data in order to cope 

with such maintenance issues. In this approach, the generator components of MDE 

tools need output Abstract Syntax Trees (ASTs), not source code, while clients should 

import and compose ASTs as needed, before eventually performing on-demand and 

in-place code generation.  

We have also carried out several case studies to experiment and validate the 

engineering proposition using a compile-time metaprogramming language, an 
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interface builder, a general purpose modeling tool and automatic user interface. 

Overall we were truly impressed by the compositional flexibility which allowed us to 

safely and easily manipulate and extend the produced interface and application code 

without suffering from maintenance issues. We believe our work reveals the chances 

by combining metaprogramming and generative MDE tools. 

Nonetheless, it is the first time in Model-Driven Engineering that the use of 

metaprogamming is proposed. In this sense, an intriguing future task would be to 

further evaluate the proposed approach of MDE. This evaluation needs to be carried 

out by multiple users utilizing our approach in the development of applications and 

giving us much needed feedback. Hence, we will examine the effectiveness of the 

approach in factual circumstances. Moreover, our future plans include an extended 

case study in a large real-world application involving various modeling tools and 

legacy systems so as to better demonstrate the potential of our approach and assess 

its practicability. 

Additionally, working for the case study of auto-generation of User Interfaces 

with annotated APIs, we came to realize that there are a lot of extensions which 

could be added in this approach. Firstly, we intend to include further expressions for 

the specifications. The model will evolve to a more expressive form so as to cover 

more mundane demands of the User-Interface cases that can occur in the 

development of an application. In this direction, we will further add layout 

specifications. Layout specifications will be far more effective than just the use of the 

manipulating interface code as ASTs operators we identified during the case study of 

User Interface Builder. Afterwards, we will move on to develop an appropriate 

software visualization tool in order to construct the annotated APIs automatically 

through this. Thus models will be more easily constructed and an abstract 

representation of this type of models will be provided. 

In conclusion, it will be very interesting to research how a hybrid approach could 

be viable, using WYSIWYG tools and auto-generation with annotated APIs. The 

former has the distinct advantage that you can get explicitly what you have designed 

for the User Interface of the application while the latter one constructs User-
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Interfaces with comparatively more speed but lags in the accuracy of the design. So, 

it would be interesting to research whether we could successfully combine the 

aforementioned advantages of both in the MDE of User Interfaces. 
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