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Abstract 

The subject of this thesis, is the presentation of the development of a commercial grade 

polarimeter which promises unparalleled accuracy, compared to the ones available in market. 

We present the experimental setup and the results of measurement of chiral optical rotation in 

gases. 

Chiral rotations emerge from the chiral nature of the molecules that make up the samples we 

aim to measure. Being able to accurately determine chiral rotations is of great importance in 

multiple scientific fields such as Physics, Chemistry, Pharmacology and Medicine. 

In the field of Physics, chiral effects can occur due to the weak-interaction which violates 

parity. Moving up, optical activity can emerge due to the chiral structure of most molecules 

that consist of more than a few atoms. Thus measuring chiral rotation can help us determine 

or verify the values of various fundamental and molecular constants. 

In the field of Chemistry and Pharmacology, chiral measurements can help in evaluating 

enantiomeric excess in mixes. This is particularly important in Pharmacology, where the 

presence of an unwanted enantiomer can render medicines toxic, as in the historic example of 

Thalidomide. 

In medicine, measuring the concentration of certain chiral substances in samples such as 

tears, can help with diagnosing multiple conditions such as dry eye. 

Our polarimeter is based on enhancing optical rotation via cavity techniques. It is an 

improved form of Cavity Ringdown Polarimetry refined with birefringence and noise 

quenching techniques, in the form of counter-propagating beams and signal reversal. 

This experimental setup is viable form miniaturization in order to better fit trade standards. 
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Chapter 1: Theory 

1.1 Gaussian beams 

In order to determine the spacio-temporal distribution of the light emitted by a laser, we must 

solve Maxwell’s equations under certain conditions. If we assume propagation in the z-

direction, we can guess the form of the electric field E. This should consist of a slowly 

varying envelope, multiplied by a phase factor. Thus, we can assume that: 

𝐸(𝑥, 𝑦, 𝑧) = 𝐸0𝜓(𝑥, 𝑦, 𝑧)𝑒−𝑖(𝑘𝑧−𝜔𝑡)    (1.1.1) 

We must then plug this formula into the wave equation for electric fields: 

∇2𝑬 −
1

𝑐2

𝜕2𝑬

𝜕𝑡2 = 0    (1.1.2) 

By assuming that the envelope is slowly varying in regard to the phase factor we can omit the 

second derivative of z and thus, get the following equation. 

𝜕2𝜓

𝜕𝑥2 +
𝜕2𝜓

𝜕𝑦2 − 𝑖2𝑘
𝜕𝜓

𝜕𝑧
= 0    (1.1.3) 

By solving this equation, we get E. Getting the magnetic field B is becomes trivial by using 

the fact that: 

𝜵𝑥𝑩 = −
𝜕𝑬

𝜕𝑡
    (1.1.4) 

Solving the aforementioned equations simultaneously we get the so-called Gaussian TEM 

modes, which are given by the following formula: 

TE𝑀𝑚,𝑝(𝒓, 𝑡) = 𝐸𝑚,𝑝𝐻𝑚 (
√2𝑥

𝑤(𝑧)
) 𝐻𝑝 (

√2𝑦

𝑤(𝑧)
)

𝑤0

𝑤(𝑧)
𝑒

−
𝑥2+𝑦2

𝑤2(𝑧) 𝑒
−𝑖[𝑘𝑧−(1+𝑚+𝑝)𝑡𝑎𝑛−1(

𝑧

𝑧0
)]

𝑒
−𝑖

𝑘𝑟2

2𝑅(𝑧)    (1.1.5) 

Where 𝐻𝑖 are the Hermite polynomials of order i, 𝑤0 is known as the beam waist and 

represents the beam diameter at the focus, 𝑤(𝑧) is the beam diameter at any point on the axis 

of propagations and R(z) is the beam curvature. Finally 𝑧0 is a constant called the Rayleigh 

length, which roughly represents the distance from the focus, over which the beam diameter 

remains close to the minimum. The formulas for the aforementioned quantities are the 

following:  

𝑧0 =
𝜋𝑤0

2

𝜆
   (1.1.6) 

𝑅(𝑧) = 𝑧 [1 + (
𝑧0

𝑧
)

2

]    (1.1.7) 

𝑤(𝑧) = 𝑤0√1 + (
𝑧

𝑧0
)

2

    (1.1.8) 
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In order to get a feeling for what these quantities really mean, we can refer to Figure 1 which 

displays the propagation of Gaussian beam in space.   

      

Figure 1: Propagation of a Gaussian beam 

Furthermore, in Figure 2 we display the cross sections of the first few TE𝑀𝑚,𝑝 modes.

 

Figure 2: Cross section of TEM modes 
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1.2 Jones Calculus 

In order to study the polarization of light, we must develop the proper tools which will 

significantly simplify the problem of polarization manipulation and make the expressions 

much less cumberstone. To this end, we employ Jones calculus. We denote the electric field 

as such: 

𝑬 = (
𝐸𝒙(𝑡)

𝐸𝒚(𝑡)
) = (

𝐸0𝑥𝑒−𝑖(𝑘𝑧−𝜔𝑡−𝜑𝑥)

𝐸0𝑦 𝑒−𝑖(𝑘𝑧−𝜔𝑡−𝜑𝑦)) ~ (
𝐸0𝑥𝑒𝑖𝜑𝑥

𝐸0𝑦𝑒𝑖𝜑𝑦
)     (1.2.1) 

We can categorize light into three main categories based on the polarization: 

Linear: 𝑬𝑙𝑖𝑛 = (
𝑎
𝑏

)     (1.2.2) 

Circular: 𝑬𝑐𝑖𝑟 =
1

√2
(

1
±𝑖

)    (1.2.2) 

Elliptical: 𝑬𝑒𝑙𝑙 = (
𝑎

𝑏𝑒𝑖𝜑)    (1.2.3) 

 

Figure 3: Types of polarization from Laser Teaching Center, Stony Brook University 

Each optical element that augments the polarization of light can be described by a 2x2 matrix. 

The matrices for the elements most commonly used are the following: 

Linear polarizer with axis of transmission at angle θ :  

( 𝑐𝑜𝑠2𝜃 𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃
𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃 𝑠𝑖𝑛2𝜃

)    (1.2.5) 

Half wave plate (HWP) with FA at angle θ: 

𝑒−𝑖𝜋/2 (𝑐𝑜𝑠2𝜃 − 𝑠𝑖𝑛2𝜃 2𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃
2𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃 𝑠𝑖𝑛2𝜃 − 𝑐𝑜𝑠2𝜃

)    (1.2.6) 
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Quarter wave plate (QWP) with FA at angle θ: 

𝑒−𝑖𝜋/4 (
𝑐𝑜𝑠2𝜃 + 𝑖𝑠𝑖𝑛2𝜃 (1 − 𝑖)𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃

(1 − 𝑖)𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃 𝑠𝑖𝑛2𝜃 + 𝑖𝑐𝑜𝑠2𝜃
) (1.2.7) 

Rotation of polarization: 

(
𝑐𝑜𝑠𝜃  𝑠𝑖𝑛𝜃

− 𝑠𝑖𝑛𝜃 𝑠𝑖𝑛𝜃
)    (1.2.8) 

Using the above matrices, we can determine the effect, of any assortment of optical elements, 

on the polarization of light. It is as simple, as multiplying the initial field vector by the 

matrices corresponding to optical elements. The result will be the final field vector. 

We must take into account, the fact that we always measure the integrated intensity over the 

surface of our photodetection system (𝐴𝑝) and never the field itself. Thus the signal S is 

given by: 

 𝑆 = ∬ 𝐼 𝑑𝐴
 

𝐴𝑝
= ∬

𝐸+𝐸

2𝜂
 𝑑𝐴

 

𝐴𝑝
   (1.2.9) 

Where η is the impedance of free space η=367.73Ω and “+” denotes the operation of 

Hermitian conjugation. 

One final comment that must be made, is the fact that, Jones calculus applies only to fully 

polarized light. In the case of partially polarized, we must employ the more complex Mueller 

calculus which uses 4x4 matrices. In our case, we deal with light which is very close to being 

100% polarized, and thus stick to Jones calculus. 

 

1.3 Optical Cavities 

An optical cavity is an arrangement of mirrors, within which, the light waves repeat the same 

path multiple times. We employ high reflectivity mirrors in order to maximize the number of 

round trips and to simultaneously have a small leakage of light per round trip which will be 

detected via a photodetector. There are plenty of potential setups for such a cavity. We can 

split these setups into two categories, running and standing cavities. In a standing cavity , the 

light is reflected in such a way, that it traverses each point of the cavity twice per round trip. 

In a running cavity the light always changes direction after each reflection in such a way, that 

it traverses each point only once per round trip. In order to make this more clear we can refer 

to Figure 3. 

 

 

 

 



 

9 
 

a)                                                                  b) 

  

    

Figure 4: a)Two mirror standing cavity, b)Bow-tie running cavity 

The need for optical cavities emerged historically, when people attempted to measure the 

absorption of light, from samples with very low absorbance. When we attempt to measure 

such low absorptions through conventional single pass methods, the change in signal 

amplitude can be so insignificant that it’s undetectable by a photodetector. We shall now 

demonstrate how, a cavity can bring forth a solution to this problem. 

Suppose we have a four-mirror bowtie cavity with the mirror reflectivities being 𝑅1, 𝑅2, 𝑅3 

and 𝑅4. Furthermore, suppose the light enters the cavity through the mirror 𝑀1 and that we 

have set a photodetection system after the mirror 𝑀4, with the corresponding reflectivities. If 

we fire a pulse at the cavity, we will end up with a pulse of initial intensity 𝐼0 inside the 

cavity. At each mirror, there is a leakage of light, due to the reflectivity not being unity. At 

then 𝑛𝑡ℎ round trip, the light inside the cavity, will be: 

𝐼𝑛 = (𝑅1𝑅2𝑅3𝑅4)𝑛𝐼0 = 𝑆𝑛𝐼0 = 𝑆𝐼𝑛−1    (1.3.1)     

Next up we define, 𝜏𝑟𝑡 as the time, that the pulse needs to make a round trip in the cavity. 

The cavities we work with, have typical lengths of a couple of meters, making 𝜏𝑟𝑡 ~ ns. The 

above formula is discrete, but we can make it continuous by substituting n with  𝑛 =
𝑡

𝜏𝑟𝑡
. 

Thus, we get: 

𝐼(𝑡) = 𝑆𝐼(𝑡 − 𝜏𝑟𝑡)    (1.3.2) 

Which can then be Taylor expanded intro: 

𝑑𝐼

𝑑𝑡
= −

1−𝑆

𝜏𝑟𝑡
𝐼 = −

1

𝜏𝑅𝐷
𝐼     (1.3.3) 

The solution of this differential equation is simply a decaying exponential.  

𝐼(𝑡)=𝐼0𝑒
−

𝑡

𝜏𝑅𝐷    (1.3.4) 
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The light escaping the cavity through 𝑀4 is I(t) multiplied by the corresponding 

transmissivity 𝑇4 

We have also defined the key quantity 𝜏𝑅𝐷, which will be called ringdown time. If we now 

add a sample into the cavity, of absorbance α, then equations 3.1 and 3.3 become: 

𝐼𝑛 = (𝑅1𝑅2𝑅3𝑅4𝑎)𝑛𝐼0 = 𝑆′𝑛𝐼0 = 𝑆′𝐼𝑛−1    (1.3.5) 

𝑑𝐼

𝑑𝑡
= −

1−𝑆 
′

𝜏𝑟𝑡
𝐼 = −

1

𝜏𝑅𝐷
′ 𝐼      (1.3.6) 

As we can see, a difference in absorbance, leads to different ringdown times, the differences 

of which are much easier to measure. We can finally determine the absorbance α as: 

𝑎 =
1−𝜏𝑟𝑡/𝜏𝑅𝐷

′

1−𝜏𝑟𝑡/𝜏𝑅𝐷
      (1.3.7) 

In figure 4 we show two such signals: 

 

Figure 5: Two ringdown signals with different ringdown times 

 

In our case, the samples not only absorb light, but also rotate its polarization by angle φ per 

pass. In order to observe the polarization rotation, we place a linear polarizer between 𝑀4 and 

the photodetector. Thus the light intensity reaching the photodetector becomes: 

𝐼(𝑡) = 𝑇4𝐼0𝑒−𝑡/𝜏𝑅𝐷co𝑠2 (𝜑
𝑡

𝜏𝑟𝑡
) = 𝑇4𝐼0𝑒−𝑡/𝜏𝑅𝐷 co𝑠2(𝜔𝑡)    (1.3.8) 

Signals of this form are displayed in Figure 5 
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Figure 6: Rigndown signal with optical rotation 

In order to determine the optical rotation, we must deduce the angular frequency from the fit 

of this signal. The problem is, that for small rotation angles, such as the ones we aim to 

measure, the beating will be so slow, that the signal will have died out before we have had the 

chance to observe any maxima or minima, making our fits unreliable. We tackle this problem 

further below. 

 

1.4 Mode Matching 

In order for a cavity to work, it must be properly mode-matched. Up to this point we have 

ignored the fact that due to the Gaussian nature of light, the beam tends get broader, 

especially if the length it traverses gets much larger than the Rayleigh length. In a cavity such 

as the ones that we use, we aim to have more than a hundred rounds trips, making the beam 

path, kilometer long. We would expect that after a few round trips, the beam waist would 

become larger than the mirrors themselves and thus escape. In order to avoid this, we must 

mode-match our setup. That is, the radius of curvature of the beam must match the curvature 

must match the radius of curvature at the mirrors. 

This is achieved in two stages. We first choose proper lenses at proper distances before the 

cavity, so as to make sure that the curvature of the beam matches the curvature of the input 

coupler at the point where they meet. In our case the input coupler is flat, therefore the beam 

waist must coincide with the coupler position. Then, inside the cavity, we use a mix of flat 

and spherical mirrors in order to always match the radius of curvature. 

The mathematical handling of this problems makes use of the ABCD law. Some details are 

due. Supposing a geometrical optics, a light wave  can be described by a 2-vector containing 

its position and inclination. Thus: 

𝑬 = (
𝑟
𝑟′)    (1.4.1) 
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The effect of each optical element can be described with as 2x2 matrix. We will need the 

matrices for reflection by mirror and free space propagation. Some straightforward 

geometrical manipulations yield: 

𝑀 = (
1 0

−2/𝑅 1
)    (1.4.2) 

𝑃 = (
1 𝑑
0 1

)    (1.4.3) 

Thus if the radius of curvature of the mirrors are {𝑅𝑖} and the length of the cavity arms are 𝑑1 

an 𝑑2, then the matrix describing a round trip around the cavity is: 

𝐿 = 𝑀(𝑅1)𝑃(𝑑1)𝑀(𝑅2)𝑃(𝑑2)𝑀(𝑅3)𝑃(𝑑1)𝑀(𝑅4)𝑃(𝑑2) = (
𝐴 𝐵
𝐶 𝐷

)    (1.4.3) 

We can act with this matrix on the input ray, and find its position and inclination after one (or 

more if we act again) round trip. In order to have a repetitive path, the following condition 

must hold true: 

𝐿𝐸 = 𝐸    (1.4.4) 

In reality we deal with Gaussian beams, therefore curvature and beam diameter must be also 

taken into account. We define the complex beam parameter q: 

1

𝑞
=

1

𝑅
− 𝑖

𝜆

𝜋𝑤2    (1.4.5) 

The ABCD law states that if we have an initial beam of 𝑞1, that traverses through a bunch of 

optics, the final complex beam parameter 𝑞2 will be given by: 

1

𝑞2
=

𝐶+𝐷/𝑞1

𝐴+𝐵/𝑞1
    (1.4.5) 

In order for our cavity to be mode matched, the complex beam parameter must remain the 

same, i.e. 𝑞2 = 𝑞1 which yields the following conditions (taking into account that L must be 

unitary): 

𝐶𝑞2 + (𝐷 − 𝐴)𝑞 − 𝐵 = 0    (1.4.6) 

𝐴𝐷 − 𝐵𝐶 = 1    (1.4.7) 

This system of equations is overdefined, and thus can be satisfied by multiple sets of 

parameters A,B,C and D, thus there are multiple mirror and distance setups that guarantee 

mode-mathcing. 

Of course, despite our best efforts, it is impossible to have perfect mode matching. In order to 

have a perfect mode matching, the cavity must be matched for all TE𝑀𝑚,𝑝 modes. Best case 

scenario, we are able perfectly-ish match for the first few low lying TEM modes. The light 

emitted by the laser is of the form: 
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𝐸 = 𝑇𝐸𝑀00 + 휀 ∑ 𝑇𝐸𝑀𝑚,𝑝
 
𝑚,𝑝≠0     (1.4.8) 

with 휀 ≪ 1. If we have perfectly matched just the lowest mode, then the TE𝑀0,0 component 

will remain invariant after each round trip, whereas the rest of the modes will diverge after 

just a few round trips. This gives rise  to what we call modal beating, which stains our 

signals. This can be seen in Figure: 

 

Figure 7: Signal with mode beating 

The first two peaks occur due to modal beating. This problem will be tackled later on when 

we talk about data analysis. 

One last thing to consider when building the cavity, is the fact that due to the pulsed nature of 

the laser we use, we must avoid self-coherences. Thus the round trip time of the pulse must 

be at least two times larger than its Full Width at Half Maximum (FWHM). 

 

1.5 Circular Birefringence 

Circular birefringence is the phenomenon of a material having different refractive indices for 

the right hand polarization (r.h.p.) and the left hand polarization (l.h.p.). Let ‘s call these 

indices 𝑛+ and 𝑛− correspondingly and examine their effect on linearly polarized light. We 

shall choose light polarized on the x-axis, therefore: 

𝑬𝑖𝑛 = (
1
0

)     (1.5.1) 

In order to observe the effect of circular birefringence, we must analyze the linear 

polarization into a linear combination of r.h.p and l.h.p. using the fact that: 

𝑬𝑟ℎ𝑝 =
1

√2
(

1
−𝑖

) ,  𝑬𝑙ℎ𝑝 =
1

√2
(

1
𝑖

)    (1.5.2) 
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We get: 

𝑬𝑖𝑛 =
1

√2
(𝑬𝑟ℎ𝑝 + 𝑬𝑙ℎ𝑝)    (1.5.3) 

After propagating in a circularly birefrigent medium with length d, each field component 

picks up a phase: 

𝑬𝑜𝑢𝑡 =
1

√2
(𝑬𝑟ℎ𝑝𝑒𝑖𝑘𝑛+𝑑 + 𝑬𝑙ℎ𝑝𝑒𝑖𝑘𝑛−𝑑) =

1

2
( 𝑒𝑖𝑘𝑛+𝑑 + 𝑒𝑖𝑘𝑛−𝑑

−𝑖𝑒𝑖𝑘𝑛+𝑑 + 𝑖𝑒𝑖𝑘𝑛−𝑑
)  = 𝑒𝑖𝑘(𝑛++𝑛−)𝑑 (

𝑐𝑜𝑠 [
𝑘(𝑛+−𝑛−)

𝑑
]

𝑠𝑖𝑛 [
𝑘(𝑛+−𝑛−)

𝑑
]
)    (1.5.4) 

Therefore the output field, is the input field rotated by 𝜃 =
𝑘(𝑛+−𝑛−)

𝑑
.  

Thus the effect of circular birefringence on linearly polarized light, is an optical rotation 

proportional to the difference of the refractive indices. The rotations we aim to measure are a 

product of circular birefringence, the source of which will be examined further below. 

Having seen the effect of circular birefringence we can prescribe a Jones matrix to any 

circularly birefringent material: 

𝑀𝑐𝑏 = 𝑒−𝑎𝑑 (
𝑐𝑜𝑠 [

𝑘(𝑛+−𝑛−)

𝑑
] −𝑠𝑖𝑛 [

𝑘(𝑛+−𝑛−)

𝑑
]

𝑠𝑖𝑛 [
𝑘(𝑛+−𝑛−)

𝑑
] 𝑐𝑜𝑠 [

𝑘(𝑛+−𝑛−)

𝑑
]

)    (1.5.5) 

With this matrix in hand, it determining the effect of circular birefringence on any potential 

polarization becomes trivial. We have added an exponentially decaying factor in order to 

account for any potential light absorption, but it will usually be set to unity. 

 

1.6 Linear Birefringence 

Linear birefringence is an effect similar to the circular one, with the main difference being 

that, there now exist two perpendicular axes with different refractive indices. Let’s suppose 

that the fast axis coincides with the horizontal axis and the slow axis with the perpendicular 

one. The refractive indices are 𝑛1 and 𝑛2 respectively. 

Suppose that our initial field has linear polarization at angle θ with respect to the horizontal 

axis: 

𝑬𝑖𝑛 = (
𝑐𝑜𝑠𝜃
𝑠𝑖𝑛𝜃

)    (1.6.1) 

We must analyze the polarization into the fast and slow axis components: 

𝑬𝑖𝑛 = (
𝑐𝑜𝑠𝜃
𝑠𝑖𝑛𝜃

) = 𝑐𝑜𝑠𝜃𝜠1 + 𝑠𝑖𝑛𝜃𝑬2    (1.6.2) 

After the light, traverses distance d over a linearly birefringent medium, each component 

picks up a phase, thus: 
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𝑬𝑜𝑢𝑡 = 𝑐𝑜𝑠𝜃𝜠1𝑒𝑖𝑘𝑛1𝑑 + 𝑠𝑖𝑛𝜃𝑬2𝑒𝑖𝑘𝑛2𝑑 = 𝑒𝑖𝑘𝑛1𝑑 (
𝑐𝑜𝑠𝜃

𝑠𝑖𝑛𝜃𝑒𝑖𝑘(𝑛2−𝑛1)𝑑) ~ (
𝑐𝑜𝑠𝜃

𝑠𝑖𝑛𝜃𝑒𝑖𝜑)    (1.6.3) 

Therefore linear birefringence transforms light with linear polarization to light with elliptical 

polarization. It is important to note that if the initial polarization coincides with either the fast 

or the slow axis, then one of the components of 𝑬𝑜𝑢𝑡 vanishes and the polarization remains 

linear. 

We can prescribe a Jones matrix to linearly birefringent media: 

𝑀𝑙𝑏 = 𝑒−𝑎𝑑 (𝑒𝑖𝑘𝑛1𝑑 0
0 𝑒𝑖𝑘𝑛2𝑑

)    (1.6.4) 

Same as before we multiply by an exponentially decaying factor in order to account for 

potential absorption. In order to get the Jones matrix for arbitrary fast and slow axis, we have 

make a similarity transformation with rotation matrices, that is: 

𝑀𝑙𝑏(𝜃) = 𝑅(−𝜃)𝑀𝑙𝑏𝑅(𝜃)     (1.6.5) 

In Figure 8 we can see the effect of both kinds of birefringence, on an initially linearly 

polarized field. 

 

Figure 8: a)Effect of circular birefringence, b)effect of linear birefringence. Image extracted from Ultrafast 

light-induced dynamics of spins and lattice in iron oxides, Alexandra M Kalashnikova 

 

1.7 Sources of birefringence 

Firstly, the cavity we use, consists of four mirrors, thus any one of them can be out of the 

plane defined by the rest of them. This non planarity gives rise to optical rotation due to 

circular birefringence. 

https://www.researchgate.net/publication/254877783_Ultrafast_light-induced_dynamics_of_spins_and_lattice_in_iron_oxides
https://www.researchgate.net/publication/254877783_Ultrafast_light-induced_dynamics_of_spins_and_lattice_in_iron_oxides
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Figure 9: Non planar bowtie cavity. Image extracted from Chiral cavity ring down polarimetry: Chirality and 

magnetometry measurements using signal reversals, Lykourgkos Bougas et al. 

The rotation angle per pass is: 

𝑠𝑖𝑛𝛼𝑐 = 2
−𝑙+√𝑙2+𝑤2

𝑤
𝑡𝑎𝑛−1(ℎ/𝑙)    (1.7.1) 

Another source of birefringence, is the angle at which the light is reflected on each mirror. 

According to Fresnel equations, whenever the angle of incidence exceeds the critical angle, 

then linear birefringence is introduced. In our case, the optics we use are multi-layered which 

leads to birefringence at even smaller angles. Empirically, whenever lights gets reflected at 

angles greater than a few degrees, a great amount of birefringence is introduced. Thus a 

certain amount of care must be taken when designing the cavity, so that the angles of 

incidence remain low, roughly less than 5𝑜 . 

Perhaps the main source of birefringence in our case, is a Ce𝐹3 crystal that we use in order to 

achieve Faraday rotations (described further below). Whenever the light, traverses this crystal 

following a path that is not parallel to the axis of the crystal, the light picks up enormous 

amounts of linear birefringence, and thus great care must be taken when setting up the light 

path. 

Finally birefringence can be introduced due to external fluctuations that perturb the cavity 

itself in random ways, which can range from dust molecules in the light path, to vibrations 

due to people walking or talking nearby the cavity. 

Since it is apparently impossible to fully eliminate all sources of birefringence, we have 

developed a technique based on large Faraday rotations, which minimizes the problems 

caused by it, and is described below 
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1.8 Faraday effect 

The Faraday effect, discovered be Michael Faraday (as the name implies) is a phenomenon 

that couples magnetic fields in materials and light propagating through them, More 

specifically, when light propagates trough a medium and at the same a collinear magnetic 

field is applied, an optical rotation is produced. Suppose that the light propagates through  a 

medium of length d, and that the direction of propagation is along the z-axis. If we apply a 

magnetic field 𝑩(𝑧) = 𝑓(𝑧)�̂� then the Faraday rotation is: 

𝜑𝐹 = ∫ 𝑉𝑓(𝑧)𝑑𝑧
𝑑

0
    (1.8.1) 

Where V is a constant of the material called Verdet constant. Using the semi-classical atomic 

model where electrons are bound to atoms with spring-like forces, H. Becquerel was able to 

derive a formula for the Verdet constant: 

𝑉 =
𝑑𝑛

𝑑𝜆

𝜆

2𝑐2

𝑞

𝑚
    (1.8.2) 

One important thing about Faraday rotation is that, it has non-reciprocal nature. This means 

that the angle of rotation, and more specifically its sign, is independent of the direction of 

propagation of the light, i.e. the rotation has always the same sign in the lab frame. This is 

due to the fact that the  fast and slow phase components, are defined by the applied magnetic 

field, which remains the same, irrespective of the direction of propagation. This becomes 

quite clear in Figure 11: 

 

Figure 10: Non-reciprocity of Faraday effect. Image extracted from 

https://www.fiberoptics4sale.com/blogs/wave-optics/99205446-faraday-effect 

1.9 Chirality 

We shall now change rhythm and talk in more depth about a much more fundamental concept 

in (but certainly not only) physics. We will talk about the concept of chirality, which is in the 

heart of this thesis. 

Chirality is a form of asymmetry prevalent in nature from the smallest to the largest scale. 

The term chiral was introduced by Lord Kelvin, and was used to describe an object that does 

not coincide with its mirror image. The word chiral is derived from the greek word “χειρ” 

meaning hand, since our hands are the most obvious objects that display such asymmetry. 
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Our hands are mirror images of one another, and it takes but a moment to reassure ourselves 

that they indeed cannot coincide. Therefore our hands are chiral. This can be made even more 

obvious in the following Figure: 

 

Figure 11: The chiral nature of hands. Image extracted from Synthesis of enantiomerically pure helical 

aromatics such as NHC ligands and their use in asymmetric catalysis. Manfred Karras 

As mentioned above chirality a characteristic prevalent in all scales of nature. At the smallest 

scale, the fundamental weak nuclear force is itself chiral, since the interactions governed by it 

depend on electron helicity. Moving up, any molecule that contains more than a few atoms, 

tends to be chiral, such an example is 1-chloroethanol shown in Figure 12: 

 

Figure 12: 1-chloroethanol and its mirror image. Image extracted from 

https://glossary.periodni.com/dictionary.php?en=chiral+molecule 

Proceeding to larger scales, we can observe that the phenomenon of life itself is inherently 

chiral, due to the structure of our DNA which forms a chiral helix. Helical patterns are also 

found in multiple plants and oyster shells and so forth. Finally galaxies themselves tend to be 

chiral, with the most obvious example being the spiral galaxies. 

One result of molecular chirality, is molecular optical activity  which we aim to measure. Let 

us see how optical activity emerges from chirality. We follow the derivation presented in the 

book Chiral Analysis, P.A. Polvarapu. 

Suppose we have circularly polarized light. It follows, that the EM field will be described as: 

 



 

19 
 

𝑬± =
𝐸0

√2
(�̂� ∓ 𝑖�̂�)    (1.9.1) 

𝑩± =
𝐵0

√2
(±�̂� + 𝑖�̂�)    (1.9.2) 

“+” corresponds to r.h.p. and “-“ to l.h.p. 

The light traverses, in our case, through a gas, the molecules of which we will describe as a 

two state system, with the states being |𝛹𝑔⟩ and |𝛹𝑒⟩, corresponding to the ground and 

excited state. When an EM field is applied, there occur two main types of transition, electric 

dipole (E1) and magnetic dipole (M1). We denote the dipole moment operators as E1 and M1 

respectively. The expression for these operators are: 

𝑬𝟏 = ∑ 𝑒𝒓𝑖
 
𝒊     (1.9.3) 

𝑴𝟏 = −
𝑒ℏ

2𝑚𝑒𝑐
(𝑳 + 2𝑺)    (1.9.4) 

The E1 transition operator is 𝐻𝐸1 = 𝑬𝟏 ∙ 𝑬 and the Μ1 transition operator is 𝐻𝑀1 = 𝑴𝟏 ∙ 𝑩. 

These two types of transitions obey different selection rules. More specifically E1 transitions 

apply when the transition changes the parity of the wavefunction, i.e. from even to odd or 

from odd to even. On the contrary M1 preserves the parity of the wavefunction, i.e. from 

even to even and from odd to odd. In a achiral molecule, the molecular states are entirely 

separated into even and odd states. Thus any transition is either purely E1 or M1. When this 

applies, the transition amplitudes are the same, independently of the polarization: 

|𝐻𝐸1|2
= |⟨𝛹𝑒|𝑬𝟏 ∙ 𝑬+|𝛹𝑔⟩|

2
= |⟨𝛹𝑒|𝑬𝟏 ∙ 𝑬−|𝛹𝑔⟩|

2
    (1.9.5) 

|𝐻𝑀1|2
= |⟨𝛹𝑒|𝑴𝟏 ∙ 𝑩+|𝛹𝑔⟩|

2
= |⟨𝛹𝑒|𝑴𝟏 ∙ 𝑩−|𝛹𝑔⟩|

2
    (1.9.6) 

In the case of a chiral molecule, the molecular states do not have well defined parity. 

Instead each state is a superposition of an odd and an even state. Therefore the 

transitions themselves are not purely E1 and M1, but a mix of those two. Thus the 

transition operator becomes: 

𝐻± = 𝑬𝟏 ∙ 𝑬± + 𝑴𝟏 ∙ 𝑩±    (1.9.7) 

And the transition amplitude is: 

𝐴±=|⟨𝛹𝑒|𝑬𝟏 ∙ 𝑬± + 𝑴𝟏 ∙ 𝑩±|𝛹𝑔⟩|     (1.9.8) 

By expanding the field terms, we observe that the transition amplitudes vary depending on 

the polarization, that is: 

𝐴+ = |⟨𝛹𝑒|𝑬𝟏 ∙
𝐸0

√2
(𝑥 − 𝑖�̂�) + 𝑴𝟏 ∙

𝐵0

√2
(𝑥 + 𝑖�̂�)|𝛹𝑔⟩| = |⟨𝛹𝑒|

𝐸0

√2
(𝐸1𝑥 − 𝑖𝐸1𝑦) +∙

𝐵0

√2
(𝑀1𝑥 + 𝑖𝑀1𝑦)|𝛹𝑔⟩|=> 

𝐴+ =
𝐸0

√2
[(𝐸1𝑥

𝑒𝑔
+

1

𝑐
𝑀1𝑥

𝑒𝑔) + 𝑖 (−𝐸1𝑦
𝑒𝑔

+
1

𝑐
𝑀1𝑦

𝑒𝑔)]     (1.9.9) 
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𝐴− = |⟨𝛹𝑒|𝑬𝟏 ∙
𝐸0

√2
(𝑥 + 𝑖�̂�) + 𝑴𝟏 ∙

𝐵0

√2
(−𝑥 + 𝑖�̂�)|𝛹𝑔⟩| = |⟨𝛹𝑒|

𝐸0

√2
(𝐸1𝑥 + 𝑖𝐸1𝑦) +

𝐵0

√2
(−𝑀1𝑥 + 𝑖𝑀1𝑦)|𝛹𝑔⟩|=> 

𝐴− =
𝐸0

√2
[(𝐸1𝑥

𝑒𝑔
−

1

𝑐
𝑀1𝑥

𝑒𝑔) + 𝑖 (𝐸1𝑦
𝑒𝑔

+
1

𝑐
𝑀1𝑦

𝑒𝑔)]     (1.9.10) 

Thus the transition probabilities differ for r.h.p. and l.h.p. The normalized difference in 

transition probabilities is: 

𝛿 =
|𝐴+|2

−|𝐴−|2

|𝐴+|2
+|𝐴−|2 =

2𝐼𝑚[𝐻𝐸1𝐻𝑀1]

|𝐻𝐸1|2
+|𝐻𝑀1|2 ≈ 2𝐼𝑚 [

𝐻𝑀1

𝐻𝐸1
] ≡ 2𝑅     (1.9.11) 

This ratio is a molecular constant that ranges from 10−3 to 10−6. It is known as the 

asymmetry factor, and it ‘s  a measure of “how” chiral a molecule is. The transition 

amplitudes are directly related with the absorption coefficient α(λ). We can use the Kramers-

Kronig relation to derive the refractive indicices: 

𝑛(𝜆) = 1 +
1

2𝜋2 𝑃 ∫
𝑎(𝜆′)

1−(
𝜆′

𝜆
)

2 𝑑𝜆′+∞

0
     (1.9.12) 

We can manipulate this relation to get: 

𝑛 +−𝑛−

𝑛−1
=

|𝐴+|2
−|𝐴−|2

|𝐴|2      (1.9.13) 

Where 𝑛 =
𝑛 +−𝑛−

2
 and |𝐴|2

=
|𝐴+|2

−|𝐴−|2

2
. Thus chirality gives rise to circular birefringence, 

and thus optical rotation. This optical rotation is known as chiral rotation and differs in nature 

to the Faraday rotation. 

Chiral rotation has reciprocal nature, that is the sign of the rotation depends on the direction 

that the light traverses the sample as show in figure 14: 

 

Figure 13: Reciprocal nature of chiral rotation. Image extracted from 

https://www.fiberoptics4sale.com/blogs/wave-optics/99205446-faraday-effect 

The reciprocal nature of this rotation restricts the types of cavities we can use. More 

specifically, we are forced to use running cavities, so that the light always follows the same 

direction when passing through the sample. If we had used a standing cavity, the light would 

https://www.fiberoptics4sale.com/blogs/wave-optics/99205446-faraday-effect
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pass through the sample twice per pass, following opposite direction, and thus the net chiral 

rotation would be zero. 

There are ways to measure chiral rotation using standing cavities, but retarding wave plates 

must be employed, which lower the ringdown time of the signal due to imperfect 

transmitivity, and thus lower our level of certainty in frequency determination. Due to these 

considerations we have chosen to use a bowtie cavity, so that the polarization of the light 

picks up the same angle of rotation per pass without the need for any further optical elements. 

 

1.10 Optical activity variation 

Up to this moment, we have been talking in terms of the chiral rotation angle. This depends 

on multiple factors such as the kind of molecule that produces the rotation, the length of the 

path traversed by the pulse etc. 

In order to avoid these ambiguities, we can define a new measure α called optical activity. 

This is defined using the following relationship 

𝜑𝑐 = 𝑎𝑑𝑐    (1.10.1) 

Where d is the length traversed by the pulse within the optically active medium, and c is the 

concetration of the chiral substance. 

Optical activity is customarily measured in [𝛼] =
𝑑𝑒𝑔𝑟𝑒𝑒𝑠

𝑑𝑚 
𝑔𝑟

𝑚𝑙

. By talking in terms of optical 

activity, we remove the setup specific parameters. Even so, it still is not a constant but has 

dependencies on wavelength and temperature. 

An experimental formula for optical activity is: 

[𝑎]𝜆
𝑇 =

𝐴1
𝑇

𝜆2−𝜆1
2    (1.10.2) 

Where 𝜆1 is some reference wavelength and 𝐴1
𝑇 a parameter with weak temperature 

dependence. Typically the dependence on temperature, accounts only for very slight shifts, in 

optical activity. Even so, it can become important, since we use a specific wavelength laser, 

whereas the room temperature can shift from day to day. 

In the following figures, we can observe the aforementioned dependencies: 
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Figure 14: Wavelength dependence of Optical activity. Image Extracted from Intrinsic Optical Activity and 

Conformational Flexibility: The Role of Size-Dependent Ring Morphology in Model Cycloketones, Priyanka 

Lahiri, et. al 

 

Figure 15: Optical activity dependence vs Temperature for a-pinene for various wavelengths. Image extracted 

from Temperature Dependence of Optical Rotation:  α-Pinene, β-Pinene Pinane, Camphene, Camphor and 

Fenchone, Kenneth B. Wiberg et. al. 
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1.11 a-Pinene vapour pressure and optical activity 

We shall now specifically refer to a-pinene, which is a chemical substance excreted by pine 

trees, especially when they get dents and cuts. This substance gives pine trees their 

characteristic smell. 

Pinene is a chiral substance, whose optical activity we aim to measure. As mentioned before, 

optical activity is a function of both wavelength and temperature. We use the optical activity 

measurements performed by Vaccaro, and interpolate a reasonable curve, so as to 

approximate the optical activity at 532nm, which is the wavelength we operate on.  

 

Figure 16: Optical Activity vs wavelength for a-pinene in room temperature 

The derived optical activity at 532nm is 𝑎 = 61.2 ± 5.2
𝑑𝑒𝑔

𝑑𝑚 
𝑔𝑟

𝑚𝑙

. 

We aim to measure the chiral rotation occurring from a-pinene in the gas phase, therefore we 

need to know the vapour pressure at any given temperature. The formula extracted from 

NIST is: 

𝑃 = 103.92161−
1411.869

𝑇−68.817    (1.11.1) 

Where T is measured in Kelvins and P in bars. This formula is accurate for temperatures 

greater than 23oC. The vapour pressure plot (extracted from NIST) is presented in the 

following figure: 

 

Figure 17: Vapour Pressure vs Temperature for liquid a-pinena 
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Chapter 2: Signal Analysis and Techniques 

2.1 Effects of Linear Birefringence 

Linear birefringence can be quite problematic in a CRDP experiment. The reasoning is 

simple. We want to measure the rotation angle by determining the beating frequency in our 

signals. If the polarization is elliptic, then the analyzer can never extinguish the entirety of the 

light, generating thus the signal troughs. If linear birefringence is present in our data, we are 

forced to make fits with more parameters and more complex forms, sacrificing thus  accuracy 

in the parameter determination. We can demonstrate this by generating signals, with and 

without birefringence and trying to estimate the circular frequency. We also add Gaussian 

noise in most parametesr to make the signal more realistic. In Figure 18 we display three such 

signals with different fitting schemes. 

 

 

Figure 18: a)Signal without lb and fitted with 2.1.1  ,b)Signal with lb and fitted with 2.1.1, 

c)signal with lb and fitted with 2.1.2 

The fitting functions we used are: 

𝛪1 = 𝛢𝑒−
𝑡

𝑡𝑐𝑜𝑠2(2𝜋𝑓𝑡 + 𝜑) + 𝛣     (2.1.1) 

𝛪2 = 𝛢𝑒−
𝑡

𝑡𝑐𝑜𝑠2(2𝜋𝑓𝑡 + 𝜑) + 𝛣𝑒−𝑡/𝜏𝑏 + 𝐶    (2.1.2) 

We ourselves generated the signals, therefore we already know the correct frequency to be 

f=1.2MHz. We can compare this with the fitted frequency for multiple iterations and get: 
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Figure 19: Frequency determination for the cases in Figure 7 

We observe that cases a) and b) yield the correct frequencies, while case c) yield the correct 

frequency with a constant offset, which we are unable to predetermine in a real experiment. 

Therefore cases a) and b) seem equally viable at first glance. Even so, the results of case a) 

have better accuracy as can be seen in Figure 20. 

 

Figure 20: Error in frequency determination in the schemes presented in Figure 7 

It is therefore obvious, that there is great merit to eliminating linear birefringence, since 

scheme a) yields consistently the best results. It is also favorable to eliminate any source of 

circular birefringence (besides the sample), so that we do not measure any form of 

polarization rotation, other than that of the sample. This in practice is nigh impossible, due to 

the reasons presented in chapter 1.7. 
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2.2 Error in frequency determination 

We have made references to the error in the fitted frequency in our signals. We have already 

shown that linear birefringence negatively impacts the level of certainty in frequency 

determination, but this is only one of multiple parameters. If we ignore birefringence, the 

fitted signal is: 

𝛪1 = 𝛢𝑒
−

𝑡

𝜏𝑅𝐷𝑐𝑜𝑠2(2𝜋𝑓𝑡 + 𝜑) + 𝛣    (2.2.1) 

We now examine how the ringdown time and the amplitude of our light affects our estimates. 

We once again generate multiple signals, and insert Gaussian noise in all five fitted 

parameters. Each noise has a different characteristic timescale in order to account for the 

following effects.   

The noise in amplitude and phase has a timescale same as the inverse repetition rate of our 

laser, in order to account for laser instability. The constant offset varies significantly over a 

few nanoseconds in order to simulate Johnson noise in our photodetection system. The 

variation in ringdown time is much slower (~100x inverse repetition rate) to account for 

vibrations that affect the mirror positioning. Finally we add a slow noise in frequency to 

simulate changes in Faraday rotation due to both  heating effects from the coil that generates 

the magnetic field and dc current instability from its power supply. 

The parameters that we have some control over, are the light amplitude and ringdown time. 

We can also increase or decrease beating frequency, by changing the dc current via the power 

supply. 

We generate a series of signals with increasing ringdown time, and try to fit the 

aforementioned model. We then gather the error in beating frequency and repeat for a couple 

of different beating frequencies. The results are presented in Figure 21: 

 

 

Figure 21: Error in beating frequency determination vs Ringdown time for various beating frequencies 
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We observe that δf gets better with both ringdown time and beating frequency, although the 

latter improvement becomes insignificant at higher ringdown times. This is quite reasonable 

since in order for the fit to be reliable, there has to be a decent number of peaks and troughs. 

After a sufficient number of peaks and troughs is present in the signal, adding more does not 

introduce any useful information and thus the error remains roughly the same. On the 

contrary increasing ringdown time seems more effective at reducing the uncertainty, due to 

the fact that same as before, more troughs and peaks are present, but also the signal gets more 

clear since variation in 𝜏𝑅𝐷 becomes insignificant. 

We perform the same process, but now instead of repeating over multiple beating 

frequencies, we repeat over multiple amplitudes. The result is straightforward and easy to 

guess. More light equals more information equals better fits. This is shown in Figure 22: 

 

Figure 22: Error in beating frequency determination vs ringdown time for multiple light amplitudes 

The result we draw is simple if not obvious, we must maximise both ringdown time and light 

amplitude in order to improve the accuracy of our instrument. This is not as simple as it may 

at first seem. The reason is, that in order for us to maximise the light amplitude, we must use 

input couplers of lower reflectivity. That in order reduces ringdown time since: 

𝜏𝑅𝐷 =
𝑡𝑟𝑡

1−𝑒−𝑎𝑑 ∏ 𝑅𝑖𝑖
    (2.2.2) 

The optical component with the worst reflectivity (or absorbance) dominates. This is 

displayed in Figure 23: 
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Figure 23: Ringdown time and light amplitude vs input coupler reflectivity 

We have empirically observed that it is preferable to maintain the highest ringdown time 

possible, and work with whatever amplitude remains. 

In order to further improve our accuracy and quench potential sources of noise or 

birefringence we employ a couple of tricks and techniques. More specifically we use pulse 

averaging, magnetic field reversals and two counterpropagating beams. The latter techniques 

will be developed further later on. For the time we will focus on pulse averaging. 

The premise is simple, instead of measuring and analysing signals that occur from a single 

pulse traversing the cavity, we take signals emerging from the statistical average of a 

thousand consecutive pulses (using a high repetition rate pulsed laser). Due to the random 

nature of the noises, the signal tends to get much more clear after just a few averages. In 

Figure 24 we compare the signal from a single pulse vs the signal of the averaging of fifty 

pulses: 

a)                                                                              b) 

 

Figure 24: a) Signal from a single pulse, b) signal from 50 pulses 

The peaks and troughs are much more clear, making thus the fit more reliable. More 

specifically the error in frequency determination drops following a 
1

√𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑢𝑙𝑠𝑒𝑠
 

behaviour.  This is displayed in Figure 25: 
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Figure 25: Error in frequency vs number of pulses averaged 

One final refinement we perform, is to remove the first couple of hundreds nanoseconds from 

the signal, in order to eliminate any noise due to mode beating from the imperfect mode 

matching. Mode beating is apparent in a ringdown signal such as the one in Figure 26: 

 

Figure 26 : Sample signal with mode beating present 

By not including the first few hundred nanoseconds in the analysis, the signal becomes more 

clear and our fits more reliable. This can be done, as long as the ringdown time of the cavity 

is much larger than the time omitted, This is because, according to Figure 22: sacrificing 

ringdown time, also damages our accuracy. Therefore in each case, tests must be performed, 

so as to determine which scheme of analysis is preferable. 
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2.3 Quenching Linear Birefringence 

In our setup, we aim to measure small (order microdegree) chiral rotations. As mentioned 

above, even small amounts of birefringence can be problematic, because instead of measuring 

the rotated component of the polarization that lies on top of the polarizer transmission axis, 

we measure the component due to elliptical polarization. This can be made obvious, if we 

introduce a small amount of linear birefringence in our cavity. Using Jones calculus we can 

get the light polarization after each pass. Suppose our initial polarization is on the x-axis and 

that the Fast Axis of the linear birefringence lies at θ = 45 degrees to the horizontal. Then the 

output field after each pass (ignoring absorption) is: 

𝑬𝑜𝑢𝑡(𝑘) = [𝑀𝑙𝑏(𝜃, 𝛿𝑛)𝑀𝑟𝑜𝑡(𝜑)]𝑘𝜠𝑖𝑛    (2.3.1) 

For comparable chiral rotation and phase retardation, the polarization evolves as shown in 

Figure 27: 

 

 

Figure 27: Time evolution of polarization with linear birefringence 

It is obvious that the projection on the polarization axis is both affected by the rotation itself, 

and the ellipticity, making it impossible to discern which is which. 

In order to quench the effects of ellipticity, we introduce a magneto-optical crystal, and apply 

a parallel magnetic field. This introduces a non-reciprocal Faraday rotation 𝜃𝐹 . We apply a 

strong enough field, so that 𝜃𝐹 ≫ 𝜑𝑐. This shifts the beating frequency to 𝜔 =
𝜃𝐹+𝜑𝑐

𝜏𝑟𝑡
. 

Theoretically, as long as we know 𝜃𝐹  to infinite accuracy, the shift in frequency presents no 
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problem. In reality, due to instabilities of the magnetic field, this is impossible. This problem 

is tackled by using the reversal technique, explained later on. 

By introducing a large Faraday rotation, the output field after each pass becomes: 

𝑬𝑜𝑢𝑡(𝑘) = [𝑀𝑙𝑏(𝜃, 𝛿𝑛)𝑀𝑟𝑜𝑡(𝜑𝑐)𝑀𝑟𝑜𝑡(𝜃𝐹)]𝑘𝜠𝑖𝑛     (2.3.2) 

The time evolution of the field polarization looks like this (𝜃𝐹 = 10𝜑𝑐): 

 

 

Figure 28: Time evolution of polarization with linear birefringence and Faraday rotation 

From the last two figures, it becomes obvious that a large Faraday rotation, indeed quenches 

the effects of linear birefringence. In practices this technique is even more effective, because 

the Faraday rotation angle is ~3-4 orders of magnitude greater than the chiral angle, whereas 

in the figure it is just 28. 

 

2.4 Counterpropagating beams 

In the previous subsection we introduced a technique used to quench linear birefringence. 

This technique had the problem that it also introduced an optical rotation, that cannot be 

perfectly determined, even though we are the ones to generate it. In order to solve this 

problem, we introduce a second counterpropagating beam inside the cavity. This is done by 

utilizing the back-reflection from the input coupler and a carefully placed secondary mirror, 

to drive it back inside the cavity. 
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We shall henceforth call these two beams CW and CCW. The two beams traverse the 

magneto-optical crystal and the chiral sample in opposite directions, Both beams pick up the 

same Faraday optical rotation due to its non-reciprocal nature. On the contrary, they pickup 

the opposite chiral optical rotation, since it is reciprocal in nature. Therefore the polarization 

rotation per pass is: 

𝑎𝑐𝑤 = 𝜃𝐹 + 𝜑𝑐  𝑎𝑛𝑑 𝑎𝑐𝑐𝑤 = 𝜃𝐹 − 𝜑𝑐      (2.4.1) 

Two ringdown signals are generated from each pulse, with the respective beating frequencies 

being: 

𝜔𝑐𝑤 =
𝜃𝐹+𝜑𝑐

𝜏𝑟𝑡
 𝑎𝑛𝑑 𝜔𝑐𝑐𝑤 =

𝜃𝐹−𝜑𝑐

𝜏𝑟𝑡
     (2.4.2) 

By fitting both signals and deriving the beating frequencies we can derive the chiral rotation 

itself. 

𝜑𝑐 = (𝜔𝑐𝑤 − 𝜔𝑐𝑐𝑤)𝜏𝑟𝑡/2    (2.4.3) 

The merit of this technique is dual. First and foremost, the signals from two beams which 

traverse the cavity at the same time, experience the same sources of drifts and noises. Thus, 

by having two sets of signals, it is much easier to remove noises which have nanosecond 

timescales. Furthermore if for whatever reason there is a drift in beating frequency, it usually 

tends to be non-reciprocal, and thus the source of drift itself is removed, same as the Faraday 

rotation. Finally, this technique lifts the need to be able to accurately determine the Faraday 

rotation itself. 

 

2.5 Magnetic Reversal 

We employ one final refinement. Once we have collected a sufficient number of consecutive 

pulses, we reverse the direction of the magnetic field, reversing thus the sign of the Faraday 

rotation and repeat. One measurement is complete as soon as we have collected all four 

different signals. We derive four angular frequencies from their fits: 

𝜔𝑐𝑤
+ =

𝜃𝐹+𝜑𝑐

𝜏𝑟𝑡
 𝑎𝑛𝑑 𝜔𝑐𝑐𝑤

+ =
𝜃𝐹−𝜑𝑐

𝜏𝑟𝑡
    (2.5.1) 

𝜔𝑐𝑤
− =

−𝜃𝐹+𝜑𝑐

𝜏𝑟𝑡
 𝑎𝑛𝑑 𝜔𝑐𝑐𝑤

− =
−𝜃𝐹−𝜑𝑐

𝜏𝑟𝑡
    (2.5.2) 

The signs in the exponents are used to differentiate between the two magnetic field 

directions. We can finally derive the chiral rotation: 

𝜑𝑐 =
(|𝜔𝑐𝑤

+ |−|𝜔𝑐𝑐𝑤
+ |)−(|𝜔𝑐𝑤

− |−|𝜔𝑐𝑐𝑤
− |)

4
𝜏𝑟𝑡    (2.5.3) 
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Magnetic field reversal also serves two purposes. Firstly, it helps to remove slowly varying 

noises, since it occurs after every couple of tenths of a second. Secondly it doubles the effect 

of the chiral rotation, since it is present in four signals instead of two.  
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Chapter 3: Experimental Setup and Apparatus 

3.1 Setup 

For all measurements and results presented in this chapter, we used the following setup. The 

cavity consists of two flat AR coated mirrors with reflectivity R=99.999% that act as input 

and output couplers, and two AR coated spherical mirrors  with reflectivity R=99.999% and 

radius of curvature r=1.5m. The cavity round trip path is 𝐿 = 4.08𝑚. We are using a pulsed 

diode laser (RLTMPL-532-500-3-19042759) which produces 5.83ns pulses at a variable 

repetition rate of 1-10kHz, with a power of 554mW 

In order to couple two counterpropagating beams inside the cavity, we used a back reflection 

mirror, so as to drive the initially reflected beam from the input coupler, back inside the 

cavity. Mode matching was achieved, using 2 lenses before the input coupler, and one extra 

lens on the reflection path, in order to correct for the path difference of the back-reflected 

beam. Due to the back-reflection, light from the beam redirects back to the laser, causing 

feedback effects. In order to avoid this, we introduced an in-home made isolator, consisting 

of a permanent cylindrical neodymium magnet and a TGG. The polarizers we used for the 

isolator where two Polarizing Beam Splitters (PBS).  The diverging beam, from the second 

PBS was used in obtaining a trigger. Furthermore a HWP was used in order to extinguish any 

hints of ellipticity and a QWP in order to have minimize isolator light losses. 

Inside the cavity we have placed a 𝑑 = 28𝑐𝑚 gas cell, which serves to house our chiral gas 

sample. The cell is connected to an oil pump which can achieve a vacuum of 10-2-10-3mbar 

after a few minutes of use. In order to produce a Faraday rotation, we have built a multi-layer 

coil which houses a magneto-optic 𝐶𝑒𝐹3 crystal. The coil current is controlled by a DC 

current generator (Delta Electronics), equipped with a relay, which can reverse the current 

direction when commanded by the PC. The coil itself, is connected with a cooling system, 

which circulates a mix of water and ethanol through the casing of the coil. This is done to 

avoid both thermal effects on the crystal and any coil parts melting due to high temperature. 

A schematic of the coil is presented in the next subchapter. 

After the cavity, we have placed two analyzers on the path of the respective beams, with their 

transmission axis, perpendicular to the input polarization. Finally two lenses focus the beam 

onto the photodetector active surface (Thorlabs DET36). The signal is fed to our PC which is 

equipped with a Fast Data Acquisition Card (ADQ14DC-2X-PCIE) developed by Teledyne 

SP and custom recording software developed by Photek. 
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Figure 29: Experimental setup Schematic 

 

Figure 30: Photo of Experimental Setup 
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3.2 In-house made components 

We now proceed to present, the two custom made components that were placed inside the 

cavity. First, we built a 18-layer, 30-turn coil. Between each layer, we placed thermal paste in 

order to effectively disperse heat from the inner layer towards the coolant outside. 

Furthermore electrically non-conductive and thermally conductive tape was place between 

certain layers. The coil was operated on a current of 𝐼 = 12𝐴, producing a field of roughly 

1600G at its center, where the CeF3  crystal was placed. We present, a schematic of the coil 

below. 

 

Figure 31:3D schematic of multi-layer coil 

The cable diameter is 1mm, and there is no spacing between the cables. The generated 

magnetic field is shown in Figure 32: 

 

Figure 32: Colourmap of the magnetic field generated by the coil 
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In order to house the chiral pinene gas, we used a glass cell, with an isolated compartment, in 

which liquid pinene was placed. By submerging this compartment in salt-ice cooling baths, 

we were able to control the vapour pressure. Between the aforementioned compartment and 

the gas chamber itself, we placed a Thermovac so as to be able to measure the gas pressure at 

any moment. The chamber is sealed by using two high reflectivity AR coated windows. In 

the following figures, we can see a photo and a schematic of this glass cell. 

 

Figure 33: Gas cell schematic 

 

Figure 34: Photo of Gas Cell 
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3.3 Process of measurement 

We operate our 532 nm pulsed laser at a repetition rate of 10kHz and duty cycle of 99%. The 

signal was recorded through the use of a PC, equipped with a data acquisition card that 

supported 3 inputs. One is the trigger and the other two, were used to separately record the 

signals from the two counterpropagating beams.  

The data acquisition process was performed by the Ultrachiral software which was developed 

by Photek, specifically for the aforementioned data acquisition card. The software GUI is 

presented in the following figure: 

 

Figure 35: GUI interface 

We observe numerous fields with numerical inputs. We proceed to explain what the fields of 

consequence represent: 

Transfer Buffer Size (TBS): The number of pulses recorded and averaged, before giving the 

command to the relay, to switch the current direction and thus the magnetic field direction. 

The total number of pulses required to perform one complete measurement is 2xTBS 

Windows: The total number of pulses recorded.  This is used in order to perform multiple 

consecutive measurements. 

Samples per window: Number directly proportional to the number of μs during which the 

ringdown of each pulse will be recorded. 

Buffer Window Delay (BWD): The time during which no recording will be performed after 

current reversal. This is done in order to let the magnetic field settle to its stationary value. 

Cut Points: The number of initial points removed from the recorded signal. 
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The rest of the parameters are used as initial guesses for the fitting module of the software. 

This module has not yet been put in use. Finally the software supports a Live Mode which  

displays the signal at any given moment. 

The time needed for a complete measurement, with the parameters typically used is: 

𝜏𝑚𝑒𝑎𝑠 = 2
𝑇𝐵𝑆

𝑅𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒
+ 𝐵𝑊𝐷 + 𝑆𝑜𝑓𝑡𝑤𝑎𝑟𝑒 𝐷𝑒𝑙𝑎𝑦𝑠 ≈ 0.4 − 0.5𝑠    (3.3.1) 

The measurement time which we will henceforth refer to, is the setup specific time i.e., since 

the other contributions are due to outside factors which will in the future be removed. 

𝜏𝑚𝑒𝑎𝑠 = 2
𝑇𝐵𝑆

𝑅𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒
= 0.2𝑠    (3.3.2) 

Finally in order to avoid any thermal effects, we start measurement once ~20 minutes have 

elapsed, after switching on the power supply. 

 

3.4 Experimental Results 

We start off by presenting results for consecutive measurements with an empty cavity, i.e. we 

have removed the gas cell itself and kept only the Ce𝐹3 crystal. 

 First, we present the signals for two counterpropagating beams, under both magnetic field 

directions and the corresponding fits performed on them.  These signals are produced by 

averaging the signals of 1000 consecutive pulses. The signals are denoted as CW+, CW-, 

CCW+, CCW-. The exponents refer to the direction of the magnetic field, whereas the bases 

refer to the clockwise and counterclockwise beams inside the cavity. 
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Figure 36: Individual signals and corresponding fits 

We repeat the same process 250 times in order to determine the levels of noise and observe if 

there are any drifts or trends in the beating frequencies. The results are presented in the 

following figure: 

 

Figure 37: Frequencies of consecutive measurements  

We observe that the frequency trend is repeated in all four signals, and thus is removed due to 

the two subtractions (due to magnetic field reversal and counterpopagating beams). Finally 

we  derive the chiral angle itself. 

The chiral angle results from the formula 2.5.3, using the frequencies derived from the 4 fits 

performed on the data, whereas the mean sensitivity is the standard deviation of the number 

of consecutive measurements made in one second, and represents the chiral angle error 𝛿𝜑 of 

a one-second measurement. The error improves proportionally to the inverse square root of 

measurement time as per: 

𝛿𝜑 =
𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠

√#𝑜𝑓 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠
=

𝜎

√𝛥𝑡
𝜏𝑚𝑒𝑎𝑠

⁄
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Figure 38: 50 consecutive one-second chiral angle measurements and the corresponding sensitivity 

We then introduce the gas cell inside the cavity. This results in a drop in ringdown time due 

to light losses from the cell windows, which leads to reduced sensitivity. By submerging the 

compartment containing liquid pinene, into a slush bath, and slowly letting it thermalize, we 

can measure the chiral rotations at various pressures. The pressure is tracked by the 

Thermovac attached to the cell. After each measurement we pump the cell in order to re-

measure the vacuum so as to be subtract any potential drifts. 

The results are presented in the following figure: 

 

Figure 39: Pinene chiral rotations vs pressure 
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The slope is 𝑎𝑝=0.912 
𝑚𝑑𝑒𝑔

𝑚𝑏𝑎𝑟
 which when converted to the usual units for optical activity 

yields: 

𝑎 = 59.54 ± 1.8
𝑑𝑒𝑔

𝑑𝑚 𝑔𝑟/𝑚𝑙
 

Which is in excellent agreement with the interpolated value for 532nm from the Vaccaro 

measurements. Even more importantly, this value was determined, using angles that vary 

between them just a few tens of microdegrees. More specifically the error bar in each 

measurement is 𝜎 = 10 − 20𝜇𝑑𝑒𝑔 

The individual frequencies measured from the 4 signals during the measurement process for a 

random angle were: 

 

Figure 40: Measured frequencies 

We thus observe, that the noise was minimal and no drifts were present. 

Having established the fact that we can measure angles on the order of a few tens of 

microdegrees, we proceed to measure even smaller angles. We use an enantiomeric mix                      

a-(+)-pinene and a-(-)-pinene with the first making up  approximately 70% of the mix and the 

latter 30%. We performed consecutive measurement of vacuum and pinene, with a pressure 

difference of ~2.9mbar. The results are: 

 

Figure 41: Consecutive angle measurements for 70-30 mix  
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By taking the mean and subtracting the two sets of values we get: 

 

Figure 42: Mean angles measured for 70-30 mix 

The angle measured was 𝜑 = 0.86 ± 0.11 𝑚𝑑𝑒𝑔, where the main source of error is our 

uncertainty in the enantiomeric mix percentages. The expected value according to our 

previously measured optical rotation, for a 70-30 mix was 𝜑𝑒𝑥𝑝 = 1.05 ± 0.01𝑚𝑑𝑒𝑔. The 

two values are in good agreement, but a more accurate mixing process should be developed 

in order the further check our accuracy. 

Furthermore a drift is present in the filled gas cell values, which is potentially due to the fact, 

that we did not wait long enough for the pressure to become fully homogeneous inside the 

cell. 

In the future we plan to test our setup on more samples. 

 

3.5 Miniaturization 

We have already established the fact, that our setup provides unparalleled accuracy in optical 

rotation measurements. Modern market polarimeters have sensitivies approximately equal to 

5
𝑚𝑑𝑒𝑔

√𝐻𝑧
 which is roughly 100 times worse than the one we presented. In order to make this 

setup marketable, it has to shrink to a more practical size. 

This presents some difficulties. First and foremost, if we are to use a shorter cavity, the pulse 

width must also be reduced in order to avoid the pulse overlapping with itself. A good rule of 

thumb is: 

𝜏𝑟𝑡 ≳ 2 𝐹𝑊𝐻𝑀    (3.5.1) 
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Furthermore, if we are to reduce the cavity size, great care must be taken to the dimensions of 

objects placed inside the cavity, so as to avoid overlapping with the beam path. This makes it 

nigh impossible to use a strong enough coil to generate a meaningful Faraday rotation, due to 

the fact that the cooling system is bulky and impractical. Yet another problem, is that we have 

to reduce the gas cell size, which leads to a reduction of chiral rotation per pass. 

Considering these problems, we have proceeded to build a similar setup, to the one presented 

in chapter 3.1, with a few tweaks. The miniaturized cavity has arm lengths 𝐿1 = 27𝑐𝑚, 𝐿2 =

7.5𝑐𝑚  netting a round trip path of 𝐿 = 1.1𝑚 and a round trip time of 𝜏𝑟𝑡 = 3.67𝑛𝑠. The 

cavity is presented in Figure 43. 

In order to avoid pulse self-coherence we have used a Microchip Laser, the pulse of which 

has 𝐹𝑊𝐻𝑀 = 1𝑛𝑠, and thus satisfies the condition 3.5.1. The main drawback is the reduced 

laser intensity which comes at the cost of accuracy and the slow repetition rate (1kHz) which 

increases the measurement time to: 

𝜏𝑚𝑒𝑎𝑠 = 2𝑠    (3.5.2) 

In order to be able to achieve a significant magnetic field, we have shifted paradigm, having 

abandoned the coil with the reversible current. Instead, we have used an array of permanent 

neodymium magnets, which are displaced relative to the magneto-optic crystal. The magnets 

have the shape of a hollow cylinder, so as to allow the beam to propagate through them. The 

field reversal is achieved mechanically, through and PC-controlled rotator coupled to the 

array. Whenever we want to reverse the field direction we just have to give the command to 

rotate the array by 360o. The main drawback is that this process requires significantly more 

time, on the order of a couple of seconds. The array we have used is presented in Figure 44: 

 

 

Figure 43: Miniaturized cavity photo 
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Figure 44: Permanent magnet array 

The magnetic field generated in the space between the magnets is mostly co-linear to the 

beam propagation direction and is presented in Figure 45: 

 

Figure 45: Magnetic Field generated by a neodymium array 

We have not had the chance yet to run a full course of measurements in the miniaturized 

cavity, but we have tested the accuracy for the empty cavity. The results are presented in 

Figure 46: 
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Figure 46: Miniaturized empty cavity results 

The sensitivity is ~1
𝑚𝑑𝑒𝑔

√𝐻𝑧
, significantly worse than our previous sensitivity, but still multiple 

times better than that of market polarimeters. 

 

 

3.6 Final Remarks 

We have demonstrated a novel cavity based polarimeter  setup, which exhibits unparalleled 

accuracy. We have presented results of measurements of gas phase samples, which produce 

minimal chiral optical rotations that are nigh undetectable through conventional methods. It is 

important to note the fact that this setup is not restricted to samples in the gas phase, but we 

have also in the past measured liquids with similar results. In the future we plan to attempt to 

measure thin dielectric films, once we have managed to consistently create such films with 

homogeneous enough surfaces. 

In the future we also plan to make significant improvements such as: 

 Employment of better optics 

 New Ce𝐹3 crystal with better coating 

 GUI quality of life improvements 

 Laser with shorter pulses and higher repetition rate and power 

 Quicker and more practical scheme of magnetic reversal 

 New coil with larger magnetic field 

 Isolated cavity 

These improvements will provide us with even better accuracy and faster measurements and 

at the same time increase the stability of our setup reducing the need for occasional 

realignments minimizing drifts and noises 
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