

University of Crete

Computer Science Department

ClassMATE: Classroom Multiplatform Augmented Technology

Environment

by

ASTERIOS LEONIDIS

MASTER’S THESIS

Heraklion, September 2010

ii

iii

University Of Crete

Computer Science Department

ClassMATE

Classroom Multiplatform Augmented Technology Environment

by

ASTERIOS LEONIDIS

A thesis submitted in partial fulfillment of the

requirements for the degree of

Master of Science

Author: ___

Leonidis Asterios, Department Of Computer Science

Board of enquiry:

Supervisor ___

Constantine Stephanidis, Professor

Member ___

Anthony Savidis, Associate Professor

Member ___

Dimitris Plexousakis, Professor

Approved by: ___

Panos Trahanias, Professor

Chairman of the Graduate Studies Committee

Heraklion, September 2010

iv

Abstract
The evolution of Information Technology (IT) for more than three decades has drastically

affected the way users interact with personal computers and increased their expectations

from technology. Towards this objective, researchers developed novel concepts to provide

content-rich invisible computing applications, eventually leading to the emergence of the

Ambient Intelligence paradigm. Ambient Intelligence is a vision of the future which offers

great opportunities to enrich everyday activities (e.g., on the road, at home, at work, etc.).

Considering that ICT (Information and Communication Technologies) has been proven to

play an important role in education, this thesis investigates the promising potentials of AmI

in the education domain.

The notion of Smart Classroom has been around already for a few years. In a Smart

Classroom, conventional classroom activities are enhanced with the use of pervasive and

mobile computing. However, the majority of the current approaches towards the realization

of the Smart Classroom addresses various issues unilaterally either from the technological or

the educational perspective, neglecting the main objective of supporting the student during

the learning process. The ClassMATE system reported in this thesis aims to provide

numerous essential educational-related facilities both for the student and for the teacher.

ClassMATE, in collaboration with the PUPIL system, incarnates a functional prototype of the

envisioned Ambient Intelligence Classroom (in the context of ICS-FORTH AmI Programme).

ClassMATE constitutes the backbone infrastructure of the Ambient Intelligence Classroom

system, aiming to provide “intelligent” facilities to enhance the educational process. These

facilities include: (i) a context-aware classroom orchestration process based on information

gathered through ambient environment monitoring, (ii) a mechanism to address

heterogeneous interoperability of AmI services and devices, (iii) a synchronous and

asynchronous communication scheme, (iv) a user profiling and (v) a content classification

mechanism in order to deliver personalized content based on the context of use and the

actual needs of every individual learner.

The thesis discusses the overall ClassMATE architecture and presents in details the

implementation of the above mentioned mechanisms.

v

Περίληψη
Η εξέλιξη της κοινωνίας της πληροφορίας κατά την διάρκεια των τελευταίων δεκαετιών έχει

επηρεάσει δραστικά τον τρόπο με τον οποίο οι χρήστες αλληλεπιδρούν με τους

υπολογιστές, καθώς και τις προσδοκίες τους από την τεχνολογία. Στοχεύοντας την

ικανοποίηση των χρηστών, δημιουργήθηκαν νέες καινοτόμες ιδέες για ευφυή συστήματα

παροχής πλούσιου διαδραστικού περιεχόμενου μέσω του «αόρατου» υπολογιστή. Οι

τάσεις αυτές αποτελούν τον πρόδρομο για καινοτόμα περιβάλλοντα διάχυτης νοημοσύνης.

Η διάχυτη νοημοσύνη οραματίζεται την απλοποίηση, διευκόλυνση και επέκταση των

ανθρώπινων καθημερινών δραστηριοτήτων, για παράδειγμα στον δρόμο, στο σπίτι και στην

εργασία, όπου η πρόσβαση σε πληροφορίες θα είναι διαρκής και απεριόριστη. Γνωρίζοντας

ότι η τεχνολογία παίζει ένα σημαντικό ρόλο στον τομέα της εκπαίδευσης, αυτή η εργασία

εξετάζει τις δυνατότητες και τους νέους ορίζοντες που ανοίγονται από ένα εκπαιδευτικό

περιβάλλον διάχυτης νοημοσύνης.

Η έννοια της “έξυπνης” τάξης εμφανίστηκε τα τελευταία χρόνια και αναφέρεται σε ένα

τεχνολογικά επαυξημένο εκπαιδευτικό περιβάλλον. Στην “έξυπνη” τάξη, οι συμβατικές

εκπαιδευτικές δραστηριότητες υποστηρίζονται από διάχυτες και φορητές υπολογιστικές

συσκευές. Ωστόσο, στην πλειοψηφία τους οι υπάρχουσες προσεγγίσεις προσπαθούν να

αντιμετωπίσουν μονομερώς διάφορα εκπαιδευτικά ζητήματα, εξετάζοντάς τα είτε από

τεχνολογικής είτε από εκπαιδευτικής σκοπιάς, και δεν προσφέρουν ολοκληρωμένες λύσεις

για την υποστήριξη του μαθητή καθ’όλη την διάρκεια της μάθησης. Το σύστημα ClassMATE,

που αναπτύχθηκε στο πλαίσιο αυτής της εργασίας, στοχεύει να υποστηρίξει τις

δραστηριότητες μαθητών και καθηγητών, προσφέροντας καθοδήγηση και υποστήριξη σε

όλα τα στάδια της εκπαιδευτικής διαδικασίας. Το ClassMATE, σε συνεργασία με το σύστημα

PUPIL, ενσαρκώνει ένα πρωτότυπο της οραματιζόμενης Τάξης Διάχυτης Νοημοσύνης (στα

πλαίσια του προγράματος AmI Programme του ICS-FORTH).

Το ClassMATE αποτελεί την ραχοκοκκαλιά της Τάξης Διάχυτης Νοημοσύνης και την

εμπλουτίζει με “έξυπνους” μηχανισμούς, με στόχο την υποστήριξη και διευκόλυνση των

εκπαιδευτικών δραστηριοτήτων. Συγκεκριμένα, παρέχει τα εξής: (α) έναν “ψηφιακό”

συντονιστή της τάξης, οι αποφάσεις του οποίου προσαρμόζονται στις εκάστοτε συνθήκες

του περιβάλλοντος χρήσης, (β) έναν επεκτάσιμο μηχανισμό που επιτρέπει την υποστήριξη

ποικίλων υπηρεσιών και συσκευών που δύναται να υπάρξουν σε περιβάλλοντα διάχυτης

νοημοσύνης, (γ) ένα δίκτυο “σύγχρονης” και “ασύγχρονης” επικοινωνίας, (δ) ένα σύστημα

διαχείρισης δυναμικά δημιουργούμενων προφίλ μαθητών, και τέλος (ε) έναν αυτόματο

vi

μηχανισμό κατηγοριοποίησης του εκπαιδευτικού περιεχομένου που επιτρέπει την

προσωποποιημένη παροχή και παρουσίαση του ώστε να καλύψει τις τρέχουσες ανάγκες

του εκάστοτε μαθητή και πλαισίου χρήσης.

Αυτή η εργασία παρουσιάζει την αρχιτεκτονική του ClassMATE, και εμβαθύνει στις

λεπτομέρειες υλοποίησης των μηχανισμών που αναφέρθηκαν παραπάνω.

vii

Ευχαριστίες (Acknowledgements)
Πρωτίστως θα ήθελα να ευχαριστήσω τον επόπτη της μεταπτυχιακής μου εργασίας, Καθ.

Κωνσταντίνο Στεφανίδη, για την συνεχή καθοδήγηση και υποστήριξη που μου προσέφερε

τα τελευταία σχεδόν τέσσερα χρόνια στο πλαίσιο της συνεργασίας μου με το Εργαστήριο

Αλληλεπίδρασης Ανθρώπου-Υπολογιστή του Ινστιτούτου Πληροφορικής του Ιδρύματος

Τεχνολογίας και Έρευνας. Μέσω αυτής της συνεργασίας θεμελίωσα τις γνώσεις μου στο

συγκεκριμένο τομέα και εξελίχθηκα στην επιστήμη των υπολογιστών, θέτοντας στόχο σε

ερευνητικά αποτελέσματα υψηλής ποιότητας.

Εν συνεχεία θα ήθελα να ευχαριστήσω θερμά τη Μαργαρίτα Αντόνα, τη Σταυρούλα Ντοά

και τον Γιώργο Μαργέτη για την συμβολή τους στην εκπόνηση της εργασίας μου καθώς

εκτός από τις πολύτιμες συμβουλές και την βοήθεια τους, δημιούργησαν ένα εξαιρετικό

περιβάλλον συνεργασίας, στο οποίο απέδωσα το μέγιστο των δυνατοτήτων μου για να

πραγματοποιηθεί αυτή η εργασία. Για όλα αυτά, αλλά και για την προσωπική

συμπαράσταση που μου προσέφεραν, τους είμαι ευγνώμων.

Επιπλέον, θα ήθελα να ευχαριστήσω τους φίλους μου Έφη, Γιάννη Λ. , Χρύσα και Γιάννη Δ.

που μου συμπαραστάθηκαν κατά την διάρκεια της εκπόνησης της μεταπτυχιακής μου

εργασίας προσφέροντας μου τις απαραίτητες στιγμές ηρεμίας όταν τις είχα ανάγκη.

Ιδιαίτερα, θα ήθελα να ευχαριστήσω την Μαρία, καθώς η παρουσία της στην ζωή μου, μου

έδωσε την απαραίτητη ώθηση για να κυνηγήσω τις προσδοκίες μου και η αμέριστη

συμπαράσταση της σε όλες τις φάσεις της παρούσης εργασίας ήταν καθοριστική για την

ολοκλήρωση της.

Τέλος, το μεγαλύτερο ευχαριστώ το οφείλω στους γονείς μου Δημήτρη και Αναστασία

καθώς και στον αδερφό μου Βασίλη, οι οποίοι παρά την απόσταση που μας χώριζε, με

στήριζαν και με εμψύχωναν καθημερινά. Η αγάπη τους και η κατανόηση τους με βοήθησαν

κατά τη διάρκεια των σπουδών μου και ελπίζω αυτή η εργασία να αποτελεί μια μικρή

«ανταμοιβή» για τις θυσίες που έκαναν για μένα.

viii

To my parents

Demetres and Anastasia

ix

Table of Contents

ABSTRACT ...IV

ΠΕΡΙΛΗΨΗ ...V

ΕΥΧΑΡΙΣΤΙΕΣ (ACKNOWLEDGEMENTS) ... VII

LIST OF FIGURES .. XI

LIST OF TABLES ... XII

1 INTRODUCTION ... 1

1.1 AMBIENT INTELLIGENCE .. 1

1.2 THE SMART CLASSROOM ... 1

1.3 OBJECTIVES OF THE CLASSMATE SYSTEM ... 2

1.4 OVERVIEW OF CLASSMATE ... 4

1.5 STRUCTURE OF THIS THESIS .. 5

2 RELATED WORK ... 6

2.1 AMBIENT ENVIRONMENTS ... 6

2.2 TOWARDS A TECHNOLOGICALLY-AUGMENTED CLASSROOM .. 8

2.3 ADAPTIVE HYPERMEDIA .. 11

3 THE CLASSMATE APPROACH .. 14

3.1 THE CLASSMATE ARCHITECTURE.. 15

4 AMBIENT ENVIRONMENT MANAGEMENT ... 18

4.1 THE CONTEXT MANAGER .. 18

4.1.1 Platform Expert ... 19

4.1.1.1 Service Factory Interface .. 22

4.1.1.2 Service Info & Factory Entries .. 23

4.1.1.3 Service Factory Registry ... 25

4.1.1.4 Configuration files (Platform.xml, Global Service Definitions.xml) .. 26

4.1.2 ClassMATE Events ... 28

4.1.2.1 Base Event Args .. 30

4.1.2.2 Abstract Event producer .. 31

4.1.2.3 Event Proxy .. 32

4.1.2.4 Event Registry .. 34

4.1.2.5 ClassMATE Message Events ... 36

4.1.2.6 ClassMATE Commands ... 36

4.1.3 Artifact Director .. 46

4.1.3.1 Mime Command Handler ... 48

4.1.4 Class Orchestrator .. 49

4.1.4.1 Security Manager ... 49

4.1.5 Application Launcher .. 50

4.1.5.1 Application Registry ... 51

4.1.5.2 Mimetype - Application Map ... 52

4.1.6 State Serialization ... 53

4.1.6.1 Resource Format Pair ... 54

4.1.6.2 State Class .. 55

4.1.6.3 State Manager .. 56

4.1.7 Initialization Process ... 57

4.1.8 Migration Process ... 58

x

4.2 DEVICE MANAGER ... 59

4.2.1 Towards a universal Multitouch solution.. 59

4.2.2 Book Localizer ... 62

5 CONTENT PERSONALIZATION .. 63

5.1 USER PROFILE ... 63

5.2 DATASPACE .. 67

5.2.1 Related technologies overview ... 67

5.2.1.1 Learning Object Metadata (LOM) .. 67

5.2.1.2 Sparql ... 68

5.2.1.3 SemWeb ... 68

5.2.2 Metadata .. 69

5.2.2.1 LOM Types ... 70

5.2.2.2 LOM Metadata Structure & LOM Entry .. 71

5.2.3 Resource Reference Format .. 72

5.2.3.1 HotSpot .. 73

5.2.3.2 Multimedia ... 75

5.2.3.3 Hint... 76

5.2.4 Content Classification and Personalized Delivery ... 76

5.2.4.1 Taxonomies Overview .. 77

5.2.4.2 Taxonomies Installation ... 78

5.2.4.3 Content Collection Mechanism .. 79

5.2.4.4 Content Classification .. 82

5.2.5 Data Repository .. 83

5.2.5.1 File Manager .. 83

5.2.5.2 Content Population .. 84

6 CONCLUSIONS AND FUTURE WORK ... 85

6.1 SUMMARY .. 85

6.2 CONCLUSION ... 86

6.3 FUTURE WORK .. 87

7 BIBLIOGRAPHY .. 88

APPENDIX A ... 91

xi

List of figures
FIGURE 1: THE ENVISIONED SMART CLASSROOM ... 3

FIGURE 2: THE ENVISIONED ARCHITECTURE OF THE SMART CLASSROOM SYSTEM .. 17

FIGURE 3: CONTEXT MANAGER ARCHITECTURE DIAGRAM ... 18

FIGURE 4: INTERFACE-BASED ABSTRACT SERVICE FACTORY APPROACH ... 21

FIGURE 5: PLATFORM EXPERT’S METHOD TO CONCRETE SERVICE OBJECTS ... 22

FIGURE 6: ABSTRACT FACTORY DESIGN PATTERN .. 23

FIGURE 7: PROCESS TO INSTANTIATE A CONCRETE SERVICE OBJECT .. 24

FIGURE 8: SAMPLE USAGE OF THE SERVICE RESOLUTION MECHANISM ... 25

FIGURE 9: GENERIC SEND EVENT METHOD ... 31

FIGURE 10: THE PROXY DESIGN PATTERN .. 32

FIGURE 11: THE EVENT PROXY RATIONALE ... 34

FIGURE 12: EVENT DISTRIBUTION MECHANISM... 36

FIGURE 13: CLASSMATE COMMAND TYPE HIERARCHY .. 38

FIGURE 14: SENDER AND RECEIVE MAP OF COMMAND EVENTS ... 38

FIGURE 15: CLASSMATE COMMAND JOURNEY ... 46

FIGURE 16: MIME COMMAND HANDLING PROCESS ... 51

FIGURE 17: APPLICATION’S STATE SERIALIZATION PROCESS ... 54

FIGURE 18: PLATFORM INITIALIZATION PROCESS .. 57

FIGURE 19: APPLICATION MIGRATION PROCESS .. 58

FIGURE 20: WINDOWS 7 SENDS MESSAGES FROM MULTITOUCH HARDWARE TO AN APPLICATION 60

FIGURE 21: WINDOWS 7 MANIPULATION OVERIEW .. 61

FIGURE 22: PHYSICAL COURSE BOOK LOCALIZATION PROCESS .. 62

FIGURE 23: AUTOMATIC CONTENT DISCOVERY PROCESS ... 66

FIGURE 24: THE LOM DATATYPE ... 71

FIGURE 25: LEARNING OBJECT METADATA (LOM) SPECIFICATION ... 72

FIGURE 26: SEMWEB BRIDGE BETWEEN RDF DATA AND A RELATIONAL DATABASE .. 78

FIGURE 27: A SAMPLE QUERY FAMILY THAT DISCOVERS RELATED IMAGES.. 81

xii

List of tables
TABLE 1: THE SMART CLASSROOM INTENDED FOR THE ICS-FORTH AMBIENT PROGRAMME 14

1

1 Introduction

1.1 Ambient Intelligence
Information technology has been evolving for more than three decades from the

introduction of the first personal computer in the late 70’s until the dominant World Wide

Web paradigm in the early 00’s. This continuous evolution affected the way users interact

with personal computers and increased their expectations for innovative breakthrough

technologies, causing the intrinsic potentials of the IT to steadily unveil. People nowadays

are hooked on connectivity – they want access to information anytime from anywhere and

the latest trends in IT industry indicates a path towards embedding communication facilities

into devices of everyday use starting from the mobile phones to TV sets, while even more

will definitely emerge.

Towards this objective, researchers developed novel concepts, techniques and tools to

provide content-rich invisible computing. This led to the emergence of a novel domain in ICT

(Information and Communication Technologies), opening up new horizons, namely Ambient

Intelligence. Ambient Intelligence is a vision of the future information society stemming

from the convergence of ubiquitous computing, ubiquitous communication and intelligent

user-friendly interfaces.

Ambient Intelligence offers great opportunities to support social development, enrich

everyday activities and dramatically change the way of life; for instance, on the road critical

information can be delivered easily and in real-time, whereas at home an ambient

environment delivers seamless, on-demand content in any room, while also facilitating

interconnection between homes. Considering that ICT has been proven to play an important

role in education by increasing students’ access to information, enriching the learning

environment, allowing students’ active learning and collaboration and enhancing their

motivation to learn [1], education could not oversee the promising potentials of Ambient

Intelligence.

1.2 The Smart Classroom
The notion of smart classrooms became prevalent in the past decade [42]. Smart classroom

is used as an umbrella term, implicating that classroom activities are enhanced with the use

of pervasive and mobile computing, sensor networks, artificial intelligence, robotics,

multimedia computing, middleware and agent-based software [11] to modernize students’

experience and fully exploit the existing infrastructures (e.g., online resources of educational

content). Following the rationale of augmented technology in the educational environments,

2

new means of interaction - such as interactive whiteboards, touch screens and tablet PCs -

have gained popularity and have become a major tool in the educational process, allowing

more natural interaction and restoring the past luster of the school when students were

excited about their education. For the Smart Classroom to be acceptable to its users, it

should be defined with educational concerns in mind, where the technology should enhance

the quality of education without increasing its complexity or introducing technology-

oriented burdens. In general, it should be reliable and controllable, but nevertheless

adaptive to students’ habits and changing contexts. Smart classrooms, via their technological

enhancement, may support one or more of the following capabilities: video and audio

capturing in classroom [33], automatic environment adaptation according to the context of

use, such as lowering the lights for a presentation [12], lecture capturing enhanced with the

instructor’s annotations, information sharing between class members or even a tele-

education experience similar to a real classroom experience [24]. The main objectives of the

Smart Classroom are primarily to support the students during the learning process and

facilitate its administration by the teachers. Therefore, the anticipated capabilities extend

beyond simple automation of repetitive tasks and inclusion of e-learning services available in

numerous platforms.

1.3 Objectives of the ClassMATE system
The ClassMATE system reported in this thesis aims to provide the following facilities in the

context of the Ambient Intelligence classroom:

• For the Student

o Direct access to unlimited educational content

o Dedicated personal area to store educational material (e.g. submitted

assignments, lecture notes, etc.)

o Educational applications accessible not only during school hours, but at any

time through the supported personal devices (PDAs / Smartphones, and

Netbooks, etc.)

o Personalized content and study guidelines delivery, semantically discovered

according to each individual student’s needs

o Progress monitoring and detailed record keeping

o Collaboration among classmates

o Active participation in the teaching process

o Automation of repetitive everyday tasks

o Flexible workspace environments

• For the Teacher

o Lecture preparatio

o Statistics of class progress

o Real-time student monitoring

o Automation of everyday tasks

An example of Ambient Intelligence Classroom is currently under development in the

context of the ICS-FORTH AmI Programme. The ClassMATE system, presented in this thesis,

in collaboration with the PUPIL system

prototype (Fig. 1), consisting

the SmartDesk, the AmIBoard, the SmartBoard and a common portable computer.

The PUPIL system acts as the front

the design of usable educational applications

equips classroom artifacts with flexible workspaces and enables

among them, (iii) support reusability of common interface patterns

specific design decisions and (iv) f

platforms as the single version automatically transforms to the current context to ensure

optimal display.

3

Lecture preparation assistant

Statistics of class progress

time student monitoring

Automation of everyday tasks

An example of Ambient Intelligence Classroom is currently under development in the

FORTH AmI Programme. The ClassMATE system, presented in this thesis,

in collaboration with the PUPIL system [22] incarnates the initial concept into a functional

ing of five different platform prototypes (artifacts): the AmIDesk,

the SmartDesk, the AmIBoard, the SmartBoard and a common portable computer.

Figure 1: The Envisioned Smart Classroom

The PUPIL system acts as the front-end of the overall platform. In brief PUPIL: (i)

le educational applications though a library of “intelligent” widgets, (ii)

equips classroom artifacts with flexible workspaces and enables application migration

reusability of common interface patterns and m

and (iv) free designers from building the same interface for various

as the single version automatically transforms to the current context to ensure

An example of Ambient Intelligence Classroom is currently under development in the

FORTH AmI Programme. The ClassMATE system, presented in this thesis,

incarnates the initial concept into a functional

(artifacts): the AmIDesk,

the SmartDesk, the AmIBoard, the SmartBoard and a common portable computer.

end of the overall platform. In brief PUPIL: (i) promotes

though a library of “intelligent” widgets, (ii)

application migration

and minimize artifact

ree designers from building the same interface for various

as the single version automatically transforms to the current context to ensure

4

The ClassMATE system reported in this thesis constitutes the backbone infrastructure that

aims to provide a set of “intelligent” facilities to enhance the educational process. The key

feature that differentiates ClassMATE from similar architectures is the education-centric

approach that has been adopted during its design. In more details, ClassMATE monitors the

ambient environment and makes context-aware decisions to assist (i) the student in

conducting learning activities, by simplifying everyday tasks and providing personalized

content according to individual needs, and (ii) the teacher with administrative issues by

automating common activities. Summarizing, ClassMATE aims to provide a robust and open

ubiquitous computing framework suitable for a school environment that:

• provides a context aware classroom orchestration based on information coming from

the ambient environment

• addresses heterogeneous interoperability of AmI services and devices

• facilitates synchronous and asynchronous communication

• supports user profiling and behavioral patterns discovery

• encapsulates content classification and support content discovery and filtering

1.4 Overview of ClassMATE
To achieve the above objectives, ClassMATE introduces various modules enclosed either in

the (i) Ambient Environment Manager or in the (ii) Content Personalization Manager. The

Ambient Environment Manager encloses the two modules that monitor the environment

and enable contextual awareness the Context and the Device Manager. The Context

Manager includes: (i) the Platform Expert that operate as an abstraction layer of that

multiplatform environment that provides access to the wide-variety of platform-specific

functions in a platform-independent manner, (ii) the ClassMATE Event System that defines a

hierarchy with specialized event types forming the ClassMATE event type system and

implements the essential mechanisms for their distribution, (iii) the Artifact Director that is a

context aware module that orchestrates each artifact, (iv) the Class Orchestrator that

controls every aspect of the classroom in a high-level, (v) the Application Launcher that

bridges the ClassMATE with the PUPIL system by instructing the applications opening, (vi)

the State Serialization Manager that manages application’s state serialization and

deserialization, and finally (vii) the Migration Processor that facilitates the application

migration from the current local artifact to a remote node. The Device Manager includes: (i)

the Multitouch Device Manager that enables multitouch interaction schemes and (ii) the

Book Localizer that determines current context of use (e.g. currently studied course).

5

The Content Personalization Manager encloses the two modules charged with the delivery

of personalized education content based on the current needs of the individual learner, the

User Profile and the Data Space Manager. The User Profile collects personal data associated

with a specific user (both static and dynamic) and the Data Space Manager which provides

an abstraction layer between the applications and the physical storage layer and

encapsulates a filtering mechanism for personalized content delivery based on user needs

and preferences (available through the User Profile).

1.5 Structure of this thesis
The rest of the thesis is structured as follows:

• Chapter Two (2) presents a brief overview of related work

• Chapter Three (3) presents the ClassMATE approach towards delivering a ubiquitous

computing framework for the AmI Classroom

• Chapter Four (4) describes the architecture and the technical details of the Ambient

Environment Manager

• Chapter Five (5) presents the Educational Content Manager and in particular the

content classification and the personalization mechanisms

• Chapter Six (6) describes in brief a real-life scenario supported by the ClassMATE

system

• Chapter Seven (7) summarizes the conclusions of this thesis and outlines the future

steps.

6

2 Related Work

2.1 Ambient Environments
As highlighted in [4] it is part of the ten-year vision of the Ministries of Education in Europe,

in response to a changing information society, to promote ambient schooling, and create a

schooling environment ‘surrounding’ the pupil in a non-intrusive way to address the issue of

‘disconnection’ between ICT use in and out of schools, with pupils being increasingly critical

of the former. In short, the author points out that as fundamental issues related to the re-

organization of learning is not addressed properly, the future of e-learning for schools in the

Information Society is under question. Assche argues that schools have equipped some of

their classrooms with computers, however their use remains limited, while through ambient

schooling, via the appropriate use of advanced technologies, pupils will be supported as they

continue to learn not only in formal institutions, but in the home, libraries, museums and

the wider community as well. The envisioned system, the schoolGRID, can be seen as a

further evolution of learning object brokerage systems including functionality related to: (i)

learning content management and exchange, (ii) learning communities and (iii) school

management. Finally, the envisioned system incorporates on-the-fly tailoring facilities with

regard to the personal learning style, preferences, competencies, dynamic learner profile, or

learning needs of the pupils.

Lin, Kratcoski and Swan, in [24], conducted a case study on a third grade class to explore the

use of ubiquitous tools during a science unit on forces and motion. Their study documented

the ways in which children could construct knowledge and create representations of their

learning when afforded ready access to a variety of digital devices, and explored the

implications of ubiquitous computing environments on student collaboration and situated

learning. Situated learning asserts learning is connected to real situations in which

knowledge is created and used. For that be achieved, a ubiquitous environment was

selected to present knowledge in an authentic context and support social interaction and

collaboration. The outcome of that study suggested that the use of ubiquitous computing

tools within a situated learning approach facilitated the students’ attainment of curricular

content, technology skills, and collaboration skills.

Both [4] and [24] highlighted the need for a smart classroom environment. According to

ISTAG [20], a ‘key enabling technology’ for a successful implementation of the AmI

landscape is the presence of middleware systems that act as the main coordinator of the

heterogeneous and distributed services of an ambient intelligent environment. Nowadays, a

7

plethora of such systems exist, providing the necessary functionality for the structured

communication between the various AmI environments’ components. As mentioned in [15],

the essential requirements that an AmI middleware should address are: heterogeneity

integration, synchronous and asynchronous communication, resilience, security and ease of

use. Moreover, a successful AmI middleware should provide all the necessary monitoring

and control facilities of the diverse ubiquitous computing artifacts which interoperate in an

AmI environment, thus supporting a context aware orchestration strategy.

The AMIGO project ([21], [2]) developed a middleware that dynamically integrates

heterogeneous systems to achieve interoperability between services and devices in

intelligent home networks. The AMIGO architecture consists of a base middleware

component, a programming and deployment framework and a series of legacy services

named ‘Intelligent User Services’. The base middleware component ensures the secure and

robust interoperability of the heterogeneous service platforms that an AmI environment

may host, providing also a generic mechanism for their semantic description of functional,

non-functional and architectural features. The programming and deployment framework

enables the developers to implement ad-hoc AMIGO-aware distributed services, allowing

them to choose among two programming languages alternatives, .NET C# and Java. The

Intelligent User Services on the one hand constitute the legacy services layer of the AMIGO

architecture that provides users with basic functionality to interact with the intelligent

environment. On the other hand, such services are responsible for compositing multiple

information sources and disseminating context-related information. Finally, any available

information is encoded into a user profile and exploited towards environment’s adaptation

based on the user's state and context changes.

Bandelloni and Patemo [5] suggested a system that provides users immersed in a

multiplatform environment with the possibility of interacting with an application while freely

moving from one device to another. Their work supported platform-aware runtime

migration for Web applications that allowed users to change device and continue their

interaction from the same point. A migration server takes into account the runtime state of

an application and adapts its interface to best fit the target platform. For migration to be

achieved, the user interface is encoded in an abstract interface description to facilitate

transformation. In addition to total migration where the client interface migrates totally

from a device to the other, they propose that partial migration and synergistic access can be

achieved through their platform. In partial migration the client interface is divided into the

8

control and the presentation segments whilst the control segment remains on the current

device and the presentation one migrates to the other device; in the synergistic access,

named mixed migration, the client interface is split into several parts, concerning both

control and presentation and different parts are distributed over two or more devices.

The Voyager development framework [32] supports the implementation of ambient

dialogues, i.e., dynamically distributed user Interfaces, which exploit, on-the-fly, the wireless

devices available at a given point in time. The primary motivation of Voyager is based on the

vision that the future computing platforms will not constitute monolithic ‘‘all-power-in-one’’

devices, but will likely support open interconnectivity, enabling users to combine the

facilities offered by distinct devices on-the-fly. Physically distributed devices may be either

wearable or available within the ambient infrastructure (either stationary or mobile), and

may be connected via a wireless communication link for easier deployment. Operationally,

each such device will play a specific role by exposing different processing capabilities or

functions, such as character display, pointing, graphics, audio playback, speech synthesis,

storage, network access, etc. From the hardware point of view, such devices may be wrist

watches, earphones, public displays, home appliances, office equipment, car electronics,

sunglasses, ATMs, etc. The Voyager implementation focuses on device discovery and registry

architecture, device-embedded software implementation, ambient dialogue style and

corresponding software toolkit development, and a method for dynamic interface

adaptation, ensuring dialogue state persistence.

2.2 Towards a technologically-augmented Classroom

In [7] Bravo, Hervas and Chariva propose a context-aware identification mechanism to

support implicit user interaction. They argue that, as in recent years many research efforts

aimed at obtaining simple and natural interaction with of computers, the same vision

emerge for the Ubiquitous Computing, where the computer is distributed in a series of

devices with reduced functionality, spread over the user’s environment and communicating

wirelessly. The RFID technology is used to implicitly provide input to the system and to offer

natural interaction, as a smart label carried by the student / teacher is the only requirement

for the identification and contextual services acquisition. This contextual identification

allows users to obtain services from the environment with ease (e.g., visualization of

course’s presentations, proposed and solved assignments, etc.). The key feature of their

work resides in the contextual awareness categorized in identity (which are his preferences),

9

location (is s/he standing near the board), time (which are the scheduled tasks) and task

(what is s/he doing right now).

Breuer et al. [8] aimed to synthesize two lines of development that have been dealt with

independently so far: (i) the development and evaluation of educational technologies to

support problem-oriented and collaborative learning activities inside and outside of the

classroom, and (ii) interaction design patterns as a means to document and generate design

knowledge. They propose both a software framework to enhance classroom interaction

through interactive whiteboards, multiple clients with pen-tablets and PDAs, and a basic

layout of a pattern language for formal and informal learning environments. The proposed

software orchestrates various hardware artifacts (e.g., Interactive Whiteboard application,

access from multiple pen-tablets) in order to support collaboration, while the overall

approach was illustrated using an interaction design pattern language for learning

environments, aiming to document and optimize existing solutions and patterns, but also to

employ them in order to generate new design knowledge.

The work conducted by Paredes et al. in [31] aimed to bring the Information and

Communication Technologies into the traditional classroom. They argue that collaboration

and Ubiquitous Computing paradigms would benefit to that direction if only they were put

together into the educational environment; to demonstrate their objectives, they

developed as a study case a system for language learning, in particular English as a Foreign

Language (EFL). The AULA system was intended to improve communication abilities in a

learning environment in order to achieve the necessary skills to develop a project in group

by writing reports in a collaborative task. The learning task to be developed was writing a

text (an essay, a report, a news article, etc.) in a collaborative way, since this is a usual

activity in many contexts in real life. The system facilitates the structuring of the information

resulting from the brainstorming process into the so-called aspects. Aspects and ideas are

blocks of partial information, which constitute the initial document’s framework on top of

which the students contributed their work. Any contributions made are stored in a

persistent way, thus supporting the student before, during and after the class.

Soh, Khandaker and Jiang proposed I-MINDS (Intelligent Multiagent Infrastructure for

Distributed Systems in Education) [35], a system that provides a computer-supported

collaborative learning (CSCL) infrastructure and environment for learners in synchronous

learning and classroom management applications for instructors, for large classroom or

distance education situations. Three agent types that provide educational-related facilities

10

existed: the teacher, the student and the group agent. The teacher agent facilitates

instructor’s interaction with students, classroom’s management and performance

monitoring. The student and the group monitoring agents supports a number collaborative

learning mechanisms and both individual and group monitoring to evaluate performance. I-

MINDS had been deployed and evaluated in a real-time environment, and the results have

shown that such a system could be used to support student cooperative learning activities,

and also as a testbed to collect instructional or pedagogical data for better understanding of

student collaborative learning.

In Yau et al. [43] a Smart Classroom is proposed to increase the level and the quality of

collaboration between college students and the instructor, since group formation to solve

problems or develop projects are typical tasks in such environments. Every student is

equipped with a situation-aware PDA, while the PDAs dynamically form mobile ad hoc

networks for group meetings. Each PDA monitors its situation (locations of PDAs, noise,

light, and mobility) and uses situations to trigger communication activity among the students

and the instructor for group discussion and automatic distribution of presentation materials.

In addition to educational material exchange, the PDAs support various educational-related

tasks, such as electronic submission of exercises or questions, exams preparation,

distribution and collection, etc. Finally, the proposed middleware is claimed to effectively

address situation-awareness and ad hoc group communication for pervasive computing, by

providing development and runtime support to the application software.

Baton [23] is the heart of the Smart Classroom [34] developed by Lin et al. It is a service

management system to explicitly resolve the particular issues stemming from smart spaces

while coordinating agents (delegating smart things in smart spaces). Baton is designed as a

complement to coordination approaches in multi-agent systems with a focus on mechanisms

for service discovery, service composition, request arbitration and dependency

maintenance. Services are described in the OWL-S language, which makes the processes of

service discovery and composition more accurate and efficient, while request collisions are

modeled as linear programming problems that facilitate easier resolution and minimize

service dependencies. Finally, the process of fulfilling a request is handled as a transaction,

and a two-phase commit algorithm is utilized to assure its atomicity. The Smart Classroom

[34] that is built on top of Baton mainly focuses on tele-education and distance learning,

where every participant (remote or local) has the same view, thus the teacher can instruct

the remote students just like teaching face-to-face in a conventional classroom.

11

2.3 Adaptive Hypermedia
In addition to “intelligent” objects and context-aware systems, the domain of education

highly benefits from content filtering mechanisms that aim to deliver content tailored to the

needs of the current learner. As Brusilovsky and Millan state [9], various adaptive web

systems incorporate user models to adapt the systems’ behavior to individual users; the user

model represents the information about a user and is essential to support the adaptation

functionality of the systems. According to the authors adaptive web systems had

investigated a range of approaches to user modeling, and the majority of them use feature-

based approach to represent and model information about the users, while the once

stereotype-based approach has lost dominance. The most popular features modeled and

used by adaptive web systems are user knowledge, interests, goals, background, individual

traits, and context of work, while each individual adaptive system typically uses a subset of

this list. They conclude, among others, that convergence has begun to blur the boundaries

between different classes of adaptive web systems, and that an effective adaptation

learning algorithm would be able to process each user’s interactive behavior information

and simultaneously update the structure of the model.

Heilman et al. proposed an intelligent tutoring system called REAP [16] that provided reader-

specific lexical practice for improved reading comprehension. Towards such goal, REAP

offered individualized practice to students by presenting authentic and appropriate reading

materials selected automatically from the web. To address the various challenges emerged

from using authentic material (e.g., technical documentation, sensitive topics, use of slang)

recommendations by ELI (English Learning Institute) were adopted and appropriate filtering

mechanisms were developed. The REAP system is claimed to satisfy a number of criteria in

order to gain acceptance into the classroom at the English Language Institute of the

University of Pittsburgh.

In [10], Conlan et al. proposed a multi-model approach to the dynamic composition and

delivery of personalized learning utilizing reusable learning objects. The aim was to enhance

the educational impact of eLearning courses, while still optimizing the return on investment,

by facilitating the personalization and repurposing of learning objects across multiple related

courses. Considering that courses typically differ in various aspects (ethos, learning goals,)

and learners have different motivations, prior knowledge and learning styles, the adopted

approach foresee a clear separation of content, learner and narrative models, and offers an

adaptive metadata driven engine that composes, at runtime, tailored educational

experiences across a single content base to the learner’s requirements.

12

Vassileva and Bontchev in [37] argue that modern adaptive hypermedia systems try to select

content that best fits to the model of a given learner, based on various forms of system

adaptation through mechanisms that rely on setting weights for content pages. They

proposed a self-adaptive navigation mechanism based on concepts used for the definition of

a polymorphic learner model (e.g., learning style, goals, prior knowledge, etc). These

concepts are used for indexing the working paths towards content pages but not the pages

themselves, while tests that measure users’ satisfaction at certain control points dynamically

update the weight of navigation path, thus supporting the adaptation engine’s decisions

regarding the most suitable path for a given learner model.

Nowadays, we witness a steadily increasing research interest in smart environments;

everyday things become “intelligent” modules and the surrounding environment

incorporates context-aware software to facilitate interaction with the users. The domain of

education observes closely these technological trends with two mainstream approaches

aiming to develop the smart classroom. The first mainly focus on incarnating an intelligent

environment by integrating technologically advanced objects in the conventional classroom

(e.g. interactive whiteboards, portable computers and mobile devices) [7], [8], incorporating

software solutions that automatically distribute electronically the available educational

material (e.g., presentation, exercises, grades, etc.) [[43][35][23]] and facilitating

collaboration and flexible use from various terminals [ref migration]. The latter approach

aims to support distance learning either online (i.e., tele-education) or offline (i.e., e-

learning). As presented in [43], the main objective of tele-education approaches is to

facilitate remote interaction and leaning as if the learner was physically present in the

classroom. Concerning the offline learning, the e-learning platforms studied diverge from

the current practices where content is structured in uncorrelated courses by introducing

content correlation and real time progress monitoring that facilitate personalization to

individual learners’ needs, based on the actual learner’s needs instead of high-level theoretic

models.

The role of intelligent ubiquitous technology in the classroom and in education in general is

still far from being maturely understood, and systematic approaches to supporting students

and the teachers throughout the educational process are necessary. ClassMATE aims to

combine the best of both worlds, smart environments and e-learning platforms, by

introducing a pervasive ecosystem that assists in a non-obstructive way the students during

learning activities both at school and at home. Moreover, through automating common

13

teachers’ activities (e.g., material distribution, homework collection, progress monitoring),

ClassMATE permits the teacher to undistractedly focus on the teaching process. ClassMATE,

similarly to [2], [43], [24], is built on top of a middleware infrastructure to facilitate dynamic

service discovery, supports collaborative tasks [8], [31], [35], stateful application migration

[5], service personalization [7] and personalization of semantically discovered content to

each individual learner’s needs. Its main advantage though is that every decision made and

action taken is driven by contextual information (who, when, where, what) towards

facilitating end user interaction (student or teacher).

14

3 The ClassMATE Approach

ClassMATE aims to bridge the gap between the ambient environment and the educational

applications in a transparent manner. It constitutes the backbone of the ambient classroom

that enables applications to exploit the information provided by the environment, and

enhances the educational process by automating time-consuming everyday tasks such as

submission deadline notification, student’s activity and progress monitoring, and progress

report. For that to be achieved, ClassMATE is based on a modular architecture. Additionally,

it supports various artifacts in the envisioned classroom. For instance, the Smart classroom

intended for the ICS-FORTH Ambient Programme consists of five different platform

prototypes (artifacts): the AmIDesk [3], the SmartDesk, the AmIBoard, the SmartBoard and a

common portable computer.

Artifact Characteristics Resolution
Screen

Diagonal
Intended Use

AmIDesk
Vision-based touch-enabled

device
1600x600 27’’ student’s desk

SmartDesk Touch screen device 1440x900 19’’ student’s desk

AmIBoard
Vision-based touch-enabled

device
1920x1200 81’’ classroom board

SmartBoard
Touch sensitive interactive

whiteboard
1024x768 77’’ classroom board

Netbook Common Netbook 1024x600 10.1’’
both classroom and

home

Table 1: The Smart Classroom intended for the ICS-FORTH Ambient Programme

The ClassMATE architecture addresses the needs for a robust and open ubiquitous

computing framework in the school environment, as well as fundamental issues such as

heterogeneous interoperability of AmI services, synchronous and asynchronous

communication, resilience, security, context aware orchestration and ease of use in the

intelligent classroom of the future. The key feature of the ClassMATE’s architecture, that

differentiates it from similar architectures, is the education-centric approach that has been

adopted during its design. In more details, ClassMATE aims to provide a set of “intelligent”

facilities to enhance the educational process. Therefore, the offered services were defined

taking into consideration the needs of students and teachers both during school-hours and

when studying at home. In particular, ClassMATE facilitates student’s learning activities by

simplifying everyday tasks such as submission deadline notification, update of educational

material, and by providing personalized content that fits the specific needs of every

individual learner. On the other hand, ClassMATE assists the teaching process by

15

automating common teachers’ activities (e.g., material distribution, homework collection,

progress monitoring), thus permitting the teacher to better focus on the educational process

3.1 The ClassMATE Architecture

The ClassMATE’s core consists of four major components layered in parallel: the Device

Manager, the Data Space, the User Profile and the Security Manager, glued together via the

fifth major component, the Context Manager. A number of Utility modules, placed in

parallel, offer auxiliary services and functionality. These five major components also define

the “hooks” where additional functional modules could be integrated into the system to

extend the available functionality.

The Context Manager is the orchestration component of the ClassMATE’s architecture. It

monitors the ambient environment and makes context-aware decisions.. In more details, the

Context Manager is responsible for making the decisions for every process workflow in the

classroom’s environment, and controlling the operation and collaboration of ClassMATE’s

services and applications to address users’ needs at any specific time frame. To this purpose,

the Context Manager applies appropriate reasoning strategies to user-, service-, application-

related data, in the classroom environment. Besides this general orchestration provided by

the Context Manager, every AmI artifact in the classroom operates under the orchestration

of a local Artifact Director, which is responsible for its robust operation. The Artifact

Director, at any time, keeps track of what is currently running (applications or services) on

the artifact, and according to the Context Manager’s directions they initiate, stop or suspend

the processes running on the artifact.

The Device Manager offers a generic mechanism for heterogeneous devices manipulation

by any ClassMATE enabled application. Every AmI artifact (e.g., interactive board, smart

desk, etc.) that belongs to the classroom environment accommodates a local Device

Manager agent that handles input/output devices and supports their interaction with any

application in the ClassMATE cloud. Both remote and local devices are supported

transparently by the system, as the interaction is orchestrated by the Context Manager and

transported through the Events Layer.

The role of the Data Space is threefold: a) it implements a centralized content repository,

providing transparent content access and management by any ClassMATE application and

service, as if it was a local resource, b) it encapsulates a content classification mechanism,

based on IEEE’s LOM specification [18], providing the necessary content-related rationale to

data mining procedures, and c) it encapsulates a sophisticated filtering mechanism for

16

personalized content delivery. For the latter to be accomplished, the Data Space strongly

collaborates with the User Profile to collect the essential static or dynamic user

characteristics.

The User Profile implements the classroom’s users (students and teachers) behavior

monitoring and evaluation, in order to provide user related metadata to the ClassMATE’s

services and applications. According to the IEEE’s Learning Technology Systems Architecture

(LTSA) [17], as illustrated Fig. 2, the User Profile represents a learners’ record repository,

which keeps track of every individual student’s learning status and behavior data.

Additionally, the User Profile accommodates the knowledge learning resources library of

students’ behavior patterns, dynamically gathered via their activity monitoring. Data

gathered by the User Profile service, through an iterative monitoring and evaluation process,

constitutes the main feedback for the Context Manager, so that a learner’s centric rational is

applied for content delivery and interaction control, thus providing adaptation to individual

student’s needs.

The Security Manager is responsible for the authorization management of the intelligent

classroom’s stakeholders (users and applications). It is based on a set of dynamically

updated access lists, which define the rules that a user or an application must follow. The

Security service is in continuous communication with the Context Manager, updating its

access lists according to the current needs of the educational process. For instance, when

the teacher requires the complete students’ attention on the whiteboard, the Context

Manager advises the Security service to suspend any interaction with other classroom’s AmI

artifacts (e.g., smart desks), thus students will not be distracted by the interaction with other

devices.

Figure 2: The Envisioned Architecture of the Smart Classroom System

In terms of intercommunication, ClassMATE relies on a generic services interoperability

platform, named FAMINE (FORTH’s AMI Network Environment), which has been

implemented in the context of the ICS

necessary functionality for the intercommunication and interoperability of heterogeneous

services hosted in an AmI Environment. It encapsulates mechanisms for service discovery

event driven communication, remote procedure calls, etc., supporting a plethora of

programming languages and frameworks, i.e., .NET langua

ANCI C++, etc.

17

The Envisioned Architecture of the Smart Classroom System

In terms of intercommunication, ClassMATE relies on a generic services interoperability

platform, named FAMINE (FORTH’s AMI Network Environment), which has been

implemented in the context of the ICS-FORTH AmI Programme. FAMINE provides the

necessary functionality for the intercommunication and interoperability of heterogeneous

services hosted in an AmI Environment. It encapsulates mechanisms for service discovery

event driven communication, remote procedure calls, etc., supporting a plethora of

programming languages and frameworks, i.e., .NET languages family, Java, Active Script,

In terms of intercommunication, ClassMATE relies on a generic services interoperability

platform, named FAMINE (FORTH’s AMI Network Environment), which has been

. FAMINE provides the

necessary functionality for the intercommunication and interoperability of heterogeneous

services hosted in an AmI Environment. It encapsulates mechanisms for service discovery,

event driven communication, remote procedure calls, etc., supporting a plethora of

ges family, Java, Active Script,

4 Ambient Environment Management

The envisioned Classroom is surrounded by an intelligent environment that ClassMATE aims

to fully exploit through the Context and the Device Manager. The Content Manager

encapsulates mechanisms to identify environment’s characteristics and facilities, disc

and manage the available services and orchestrate the applications running on the

contained artifacts. The Device Manager aims to offer a

heterogeneous devices manipulation

collaboration with the Content Manager identifies the active devices and makes them

available for use.

4.1 The Context Manager

The Context Manager consists of seven modules

achieve context-awareness.

of platform-specific functions in a platform

System implements the essential mechanisms for

orchestrates each artifact, the Class Orche

Application Launcher instruct

manages application’s state serialization and deserialization, and finally the Migration

Processor facilitates the application migration.

Figure

18

Ambient Environment Management

The envisioned Classroom is surrounded by an intelligent environment that ClassMATE aims

to fully exploit through the Context and the Device Manager. The Content Manager

encapsulates mechanisms to identify environment’s characteristics and facilities, disc

and manage the available services and orchestrate the applications running on the

contained artifacts. The Device Manager aims to offer a generic mechanism for

manipulation by any ClassMATE-enabled application

ion with the Content Manager identifies the active devices and makes them

The Context Manager

The Context Manager consists of seven modules, as depicted in Fig 3, which interoperate to

awareness. The Platform Expert operate provides access to the wide

specific functions in a platform-independent manner, the ClassMATE Event

System implements the essential mechanisms for event distribution, the Artifact Director

, the Class Orchestrator controls every aspect of the classroom the

Application Launcher instructs the applications opening, the State Serialization Manager

manages application’s state serialization and deserialization, and finally the Migration

application migration.

Figure 3: Context Manager Architecture Diagram

The envisioned Classroom is surrounded by an intelligent environment that ClassMATE aims

to fully exploit through the Context and the Device Manager. The Content Manager

encapsulates mechanisms to identify environment’s characteristics and facilities, discover

and manage the available services and orchestrate the applications running on the

generic mechanism for

enabled application; thus in

ion with the Content Manager identifies the active devices and makes them

which interoperate to

te provides access to the wide-variety

, the ClassMATE Event

, the Artifact Director

strator controls every aspect of the classroom the

the applications opening, the State Serialization Manager

manages application’s state serialization and deserialization, and finally the Migration

19

4.1.1 Platform Expert

In the envisioned technology-augmented classroom various platforms may exist. Due to the

diversity of services provided by each artifact, the ClassMATE system was designed to

operate as an abstraction layer that provides access to the wide-variety of platform-specific

functions in a platform-independent manner; for instance, the Smart classroom intended for

the FORTH Ambient Programme, consists of five different platform artifacts. Therefore, the

Platform Expert module was introduced. The Platform Expert’s concept is based on similar

well-established abstraction layers incorporated in the majority of the modern operating

systems and was implemented following the Singleton design pattern. The Singleton pattern

[14] ensures that a class has only one instance and that the instance is easily accessible. A

global variable makes an object accessible, but it doesn't avoid instantiating multiple

objects. A better solution is to make the class itself responsible for keeping track of its sole

instance. The class can ensure that no other instance can be created (by intercepting

requests to create new objects), and can provide a way to access the instance.

Every application depends on a well-defined set of services to operate properly. If the host

platform does not implement the complete set, then the application would either execute

poorly or would have to dynamically adapt its logic, using defensive programming

techniques, to address such lack. Nevertheless, if the host platform offers supplementary

services to substitute the missing ones, then the application would work properly as long as

the core functionality remains the same.

Based on the above observation, ClassMATE adopts an Interface-based approach to ensure

that every platform (i.e., ClassMATE enabled device) will support a minimum set of

ClassMATE’s core services. For each core service an API is defined that describes precisely its

operations, while a concrete implementation is provided by each specific platform to ensure

portability; these classes that implement the same API constitute a service family. An

application programming interface (API) is an interface implemented by a software program

which enables it to interact with other software. It facilitates interaction between different

software programs similar to the way the user interface facilitates interaction between

humans and computers. An API is implemented by applications, libraries, and operating

systems to determine their vocabularies and calling conventions, and is used to access their

services. It may include specifications for routines, data structures, object classes, and

protocols used to communicate between the consumer and the implementer of the API.

20

Following the Abstract data types (ADT) programming paradigm, every application operates

independently of the platform that is running on, since it does not have to know the

concrete instance that offers a particular service, but only use the appropriate API exposed

by that service family (as depicted in Fig. 4). ADTs are purely theoretical entities, used

(among other things) to simplify the description of abstract algorithms, to classify and

evaluate data structures, and to formally describe the type systems of programming

languages. However, an ADT may be implemented by specific data types or data structures,

in many ways and in many programming languages; or described in a formal specification

language. ADTs are often implemented as modules: the module's interface declares

procedures that correspond to the ADT operations, sometimes with comments that describe

the constraints. This information hiding strategy allows the implementation of the module to

be changed without disturbing the client programs. The notion of abstract data types is

related to the concept of data abstraction, important in object-oriented programming and

design by contract methodologies for software development. The following example

illustrates the advantages of the Interface-based approach: any application designed for

touch interaction that uses the ClassMATE’s Touch Interface would operate flawlessly both

when running on the vision-based touch-sensitive AmIDesk [3] and the touch screen of the

SmartDesk.

Another additional advantage that derives from the interface-based approach is that despite

the system’s distributed nature, the locality of the required services does not affect the

applications’ logic. One service could run locally on the same host, or remotely on another

host, or even inside the ambient environment, and the interested application will access the

exposed operations through the ClassMATE-exposed interface, as if the concrete service

provider was a simple source-level object. The Platform Expert, in cooperation with the

ClassMATE core, encapsulates the necessary logic to transparently handle the

intercommunication needs between the local and the remote node(s). An example scenario,

enabled by ClassMATE’s distributed services, concerns the ClassBook Reader application,

which displays an electronic version of a physical course book augmented with hotspot areas

that the student can select to search for relevant content (e.g. an image to see relevant

multimedia) or launch an exercise application (e.g., a multiple choice exercise). It uses the

book localization service to determine which page should be displayed. When running on

the AmI- and Smart- Desk artifacts of the technologically-augmented classroom, the in-

artifact (local) service identify the page on the physical course book using the front-facing

camera and notify the reader application, while when running on a student’s laptop at home

a remote book localization service can determine the appropriate page range, even the

exact page, based on tomorrow’s lecture schedule. In both cases, the Classbook R

application displays the appropriate page without being aware of the concrete instance that

defined it or its locality.

Figure 4

The interface-based approach for each

application’s portability. The modules that support dynamic service installation and platform

configuration through external files, according to the requirement of service modularity, will

be described in the next sections.

21

a remote book localization service can determine the appropriate page range, even the

exact page, based on tomorrow’s lecture schedule. In both cases, the Classbook R

application displays the appropriate page without being aware of the concrete instance that

4: Interface-based Abstract Service Factory approach

based approach for each service family satisfies the requirement of

application’s portability. The modules that support dynamic service installation and platform

configuration through external files, according to the requirement of service modularity, will

t sections.

a remote book localization service can determine the appropriate page range, even the

exact page, based on tomorrow’s lecture schedule. In both cases, the Classbook Reader

application displays the appropriate page without being aware of the concrete instance that

service family satisfies the requirement of

application’s portability. The modules that support dynamic service installation and platform

configuration through external files, according to the requirement of service modularity, will

Figure 5:

4.1.1.1 Service Factory Interface

To be portable across different platforms, an application should not hard

for a particular platform. Instantiating platform

application discourages later modifications.

“S1”, having in mind a particular platform “P1” (e.g.

“S1”, will immediately constitute the application stationery as when launched in another

platform “P2” which provides “S2” as an alternative to “S1” the application will not work

properly. This issue can be addressed by

interface “SF1_Interface” which exposes the necessary operations, and every artifact should

provide a concrete implementation of that interface. The application developer, at the

source level, will request a concrete object that implements “SF1_In

ClassMATE core will instantiate the appropriate object for. For that to be achieved the

Abstract Factory design pattern

createProduct operation, which when invoked

that family (Fig. 5, Fig. 6). Subsequently, clients do no hard

instead they call the createProduct operat

remain independent of the prevailing platform

they are using.

22

: Platform Expert’s method to concrete service objects

Service Factory Interface

To be portable across different platforms, an application should not hard-

nstantiating platform-specific classes of services throughout the

later modifications. For instance, explicitly declaring the service

“S1”, having in mind a particular platform “P1” (e.g., the SmartDesk artifact) that provides

will immediately constitute the application stationery as when launched in another

platform “P2” which provides “S2” as an alternative to “S1” the application will not work

can be addressed by defining a services family “SF1” that def

interface “SF1_Interface” which exposes the necessary operations, and every artifact should

provide a concrete implementation of that interface. The application developer, at the

source level, will request a concrete object that implements “SF1_Interface” and the

ClassMATE core will instantiate the appropriate object for. For that to be achieved the

Abstract Factory design pattern [14] is applied; the Service Factory interface

createProduct operation, which when invoked returns a new service object

. Subsequently, clients do no hard-code the desired services;

instead they call the createProduct operation to obtain service instances

remain independent of the prevailing platform as they are not aware of the

-code its services

specific classes of services throughout the

For instance, explicitly declaring the service

the SmartDesk artifact) that provides

will immediately constitute the application stationery as when launched in another

platform “P2” which provides “S2” as an alternative to “S1” the application will not work

defining a services family “SF1” that defines the

interface “SF1_Interface” which exposes the necessary operations, and every artifact should

provide a concrete implementation of that interface. The application developer, at the

terface” and the

ClassMATE core will instantiate the appropriate object for. For that to be achieved the

interface declares the

returns a new service object that belongs to

code the desired services;

to obtain service instances. Thus clients

they are not aware of the concrete classes

23

Figure 6: Abstract Factory Design Pattern

 Every services’ family that requests integration with the ClassMATE system should

implement the ServiceFactoryInterface and provide a concrete implementation of the

createProduct method to return a new service object for every platform. The createProduct

method when invoked accepts three parameter arguments: Name, Locality and

RemoteContextName. Name indicates which service should be instantiated, Locality

determines the context where the desired service will run (i.e., locally or remotely), and

finally, RemoteContextName is applicable only for remote services and indicates the node

that hosts the desired service.

4.1.1.2 Service Info & Factory Entries

The Service Info class is a utility class that stores data regarding the available services on the

current platform (i.e., Name, Locality and RemoteContextName). During the platform’s

initialization, the Platform Expert module instantiates a new ServiceInfo object for each

supported service contained in the configuration, populates it with the retrieved values and

adds it to the available services list.

The ServiceFactoryEntry, as implied by its name, stores data regarding the factories of

supported services. Each entry contains: the literal representation of the service’s full name,

the factory instance that will be used to create the concrete objects and a list of ServiceInfo

elements enumerating the supported services of this service family in the current platform.

The Platform Expert module populates the list of available factories when loading the

current platform configuration. The service’s name is encoded in the configuration file, but

the factory instance is not explicitly defined. The class that implements the ServiceFactory

interface is implicitly defined by the service’s name, and the ClassMATE system

automatically loads that class using the .NET reflection mechanism and in particular the

Activator.CreateInstance operation. The pattern used to discover the factory class is a

proprietary protocol, where the factory class should be named as ServiceType

for a service named “ClassMATE.Core.ServiceA” the system will lookup for a class that

implements the ServiceFactoryInterface named “ClassMATE.Core.ServiceAFactory”).

Figure

At runtime, the Service Factory Entry list is solely used by the Service Factory Registry during

the service resolution process. Since the createProduct method is a key method of the

ClassMATE’s system, its performance should be optimal; thus,

list is always kept in the main memory to ensure fast access time. When a client application

requests a specific service type, the Service Factory Registry retrieves the respective factory

entry, invokes the createProduct metho

the appropriate arguments, and finally collects all the concrete instances into a list that is

24

automatically loads that class using the .NET reflection mechanism and in particular the

operation. The pattern used to discover the factory class is a

proprietary protocol, where the factory class should be named as ServiceType

for a service named “ClassMATE.Core.ServiceA” the system will lookup for a class that

implements the ServiceFactoryInterface named “ClassMATE.Core.ServiceAFactory”).

Figure 7: Process to instantiate a concrete service object

At runtime, the Service Factory Entry list is solely used by the Service Factory Registry during

the service resolution process. Since the createProduct method is a key method of the

ClassMATE’s system, its performance should be optimal; thus, the frequently used Factory

list is always kept in the main memory to ensure fast access time. When a client application

requests a specific service type, the Service Factory Registry retrieves the respective factory

entry, invokes the createProduct method using the contained ServiceInfo entries to supply

the appropriate arguments, and finally collects all the concrete instances into a list that is

automatically loads that class using the .NET reflection mechanism and in particular the

operation. The pattern used to discover the factory class is a

proprietary protocol, where the factory class should be named as ServiceTypeXFactory (e.g.,

for a service named “ClassMATE.Core.ServiceA” the system will lookup for a class that

implements the ServiceFactoryInterface named “ClassMATE.Core.ServiceAFactory”).

At runtime, the Service Factory Entry list is solely used by the Service Factory Registry during

the service resolution process. Since the createProduct method is a key method of the

the frequently used Factory

list is always kept in the main memory to ensure fast access time. When a client application

requests a specific service type, the Service Factory Registry retrieves the respective factory

d using the contained ServiceInfo entries to supply

the appropriate arguments, and finally collects all the concrete instances into a list that is

returned to the client application

type requested by the application and supported on the current platform.

4.1.1.3 Service Factory Registry

The Service Factory Registry maintains a one

service name(s) that it exposes, while a single library can expose more than one service

types. The map is populated during platform’s initialization with the services described in

the platform’s configuration. The key feature is that ev

same interface also offers a factory class that instantiate the concrete service objects. The

full name of the exposed interface was selected to be the association key in that map, as the

client applications only know the exposed interface type and they are completely unaware

of the internal factory pattern used to create the concrete objects.

Taking into consideration client’s objectives when resolving a service through the Service

Factory Registry, the approach sel

errors taking advantage of the compiler’s runtime checks. The “resolve” method is

implemented as a Generic method, having as a method

type that the client would like to use. The type argument purpose is twofold: on the one

hand it implicitly provides the

anything else, and on the other hand it eliminates the need for explicit cast of the returned

values (Fig. 9).

Figure 8

25

returned to the client application (Fig. 8). The objects contained in such list offer the service

ted by the application and supported on the current platform.

Service Factory Registry

The Service Factory Registry maintains a one-way associative map between

service name(s) that it exposes, while a single library can expose more than one service

types. The map is populated during platform’s initialization with the services described in

configuration. The key feature is that every family of services that exposes the

same interface also offers a factory class that instantiate the concrete service objects. The

osed interface was selected to be the association key in that map, as the

w the exposed interface type and they are completely unaware

ttern used to create the concrete objects.

Taking into consideration client’s objectives when resolving a service through the Service

Factory Registry, the approach selected is not only straightforward to use but also minimizes

errors taking advantage of the compiler’s runtime checks. The “resolve” method is

implemented as a Generic method, having as a method-specific type argument the interface

d like to use. The type argument purpose is twofold: on the one

hand it implicitly provides the lookup key, thus the caller (client) does not have to specify

anything else, and on the other hand it eliminates the need for explicit cast of the returned

8: Sample usage of the service resolution mechanism

. The objects contained in such list offer the service

 a library and the

service name(s) that it exposes, while a single library can expose more than one service

types. The map is populated during platform’s initialization with the services described in

ery family of services that exposes the

same interface also offers a factory class that instantiate the concrete service objects. The

osed interface was selected to be the association key in that map, as the

w the exposed interface type and they are completely unaware

Taking into consideration client’s objectives when resolving a service through the Service

not only straightforward to use but also minimizes

errors taking advantage of the compiler’s runtime checks. The “resolve” method is

specific type argument the interface

d like to use. The type argument purpose is twofold: on the one

thus the caller (client) does not have to specify

anything else, and on the other hand it eliminates the need for explicit cast of the returned

26

When the “resolve” method is invoked with a type parameter T, the Service Factory Registry

extracts the literal representation of that type T and resolves the Service Factory Entry that

exposes that service. Using the .NET reflection mechanism, the createProduct method of the

respective factory instance is invoked to create the appropriate objects. Since more than

one providers might offer the same service T, the Service Factory Registry stores each

individual object in a temporal list, and upon completion returns it to the caller (client).

Another feature that is natively supported by the Service Factory Registry in cooperation

with the Service Factory Interface is distributed service’s locality. The platfom’s

configuration encodes location-related information (locality type and remote host) and the

service-specific factory instance with respect to these attributes will create the necessary

products. Both a local and a remote provider might as well offer the same service T but the

client will never tell the difference between them.

Portability was one of the key objectives when designing the service resolution method.

Since each Service Platform Registry will use the respective configuration to load the

available services and the client will not have to modify anything, portability is ensured.

Every application that wished to use a particular service is not aware of the concrete

instance that offers it, instead it is only aware of the interface that describes the

functionality of that service. Finally, the only special case that needs exceptional handling is

when no suitable service is available and the client must implement a failsafe mechanism to

address that issue; this is actually part of the client’s application logic.

4.1.1.4 Configuration files (Platform.xml, Global Service Definitions.xml)

The Global Service Definitions configuration file holds the global list of the services available

in the ClassMATE system independently of the platform, along with the library files that

contain them. The data are encoded in an XML format and the library file is shared among

the classroom artifacts; however, it is locally stored to minimize network traffic and optimize

loading time. This external configuration facilitates the introduction of a new service, as by

simply adding a new entry in the configuration the service will be automatically loaded in

the ClassMATE system. When the new service becomes available for the applications to use,

the only prerequisite is to obtain the interface that exposes its functionality. The structure of

the Global Service Configuration file is as follows:

<ClassmateServices>

<Service>

 <Type> The Service’s Interface full name goes here </Type>

27

 <Lib> Path to the service’s libraryThe library’s name goes here (including the .dll

extension) </Lib>

</Service>

<Service>

 More service definitions go here

</Service>

</ClassmateServices>

The Platform configuration file is also encoded in XML format, and is used by the Platform

Expert to determine which services are supported in the current platform (artifact). Apart

from the services, it also contains general artifact information like name, screen resolution,

etc., useful both by the ClassMATE core and by various ClassMATE-enabled modules (e.g.,

the Window Manager, the ICS Widget Library, etc.). This file is unique to each artifact, as the

supported services and artifacts characteristics differ.

The key feature though is not the configuration of the supported services per se, but the

definition of service families that follow the factory design pattern and offer a class to

transparently create the alternative concrete implementations of a service T interface.

<Platform>

<Info>

 <Name> Artifact’s Name goes here </Name>

 <Resolution>

 <Width> Horizontal Resolution (e.g. 1600) </Width>

 <Height> Vertical Resolution (e.g. 800) </Height>

 </Resolution>

 Other characteristics go here

</Info>

<Type>

 <Name>

 The Service’s Interface full name (as defined in the Global Service

Definitions)

 </Name>

 <Service>

 <Name> IdentifierThe name as defined in the Global Service Definitions

</Name>

 <Locality> LOCAL | REMOTE </Locality>

 <RemoteCxtName> The name of the remote node </RemoteCxtName>

 </Service>

 <Service>

 More service definitions go here

 </Service>

</Type>

<Type>

 More service type definitions go here

</Type>

28

</Platform>

The Platform Configuration contains a complete description of the platform and being

external facilitates the maintenance and upgrade process. The removal of an unsupported

service can be achieved by simply removing the appropriate service element, while the

addition of a new one under an existing service family is accomplished by simply adding the

new child element in the appropriate section. On the other hand, the addition of an entirely

new service family (interface type) is a two-step process. The first step is to declare the

service in the Global Services Definitions, and the second step is to add a new service type

element in the supported platforms’ configuration that internally contains the concrete

classes implementing that service.

4.1.2 ClassMATE Events

Coupling was first defined as “the measure of the strength of association established by a

connection from one module to another” by Stevens, Myers and Constantine [13]. As the

definition implies, coupling is inevitable in almost any software system, however it can be

significantly minimized through careful system design and confined among the simplest

components while the complex ones remain completely decoupled [13].

Two major coupling types exist: static and dynamic. In static coupling, if class A is coupled to

class B, then class B should be available during class’s A compilation for that to be successful.

Moreover, if class B changes, then class A should also change to be compilable again. In

dynamic coupling, if class A is coupled to class B, then class B should only be available during

runtime, while class A individually compiles successfully. Since class B does not have to be

present at compile time, any changes do not break the compilation of class A.

Among these types of coupling, the static one appears to be more problematic, in the sense

that compile-time dependencies are essential. However, these dependencies make static

coupling safer than dynamic, as the compiler makes the necessary type checking. On the

other hand, dynamic coupling does not have any compile-time dependencies but any

coupling related errors would only show up during runtime, thus hindering the debugging

process.

Apart from the aforementioned coupling types, three orthogonal coupling flavors can be

identified: Logic, Type and Signature coupling. Logic coupling is the most abstract and the

least desirable of the three, as it means that two classes share information or make

29

assumption about each other (i.e., class A contains an algorithm that is related to an

algorithm contained in class B or classes A and B contains a literal value that is used for the

same conceptual purpose). Type coupling is the most recognizable form, and arises when a

class A directly uses a type defined in another class B. Finally, Signature coupling occurs only

at run time and has the potential to decouple classes from each other (i.e., C++ function

pointers or C# delegates, as long as the method’s signature is compatible then the caller

does not know the receiving end of the call the callee).

In general, in terms of development cost, system scalability and maintenance, dynamic

coupling accompanied by Signature coupling is an optimal choice, especially in a fully

dynamic system such as ClassMATE.

The issue arises therefore to identify a programming paradigm / tool / methodology that can

offer the desired features. Such a programming paradigm is event-based programming. An

event is a detectable condition that can trigger a notification, while a notification is an

event-triggered signal sent to a run-time–defined recipient. A software system is said to be

event-based if its parts interact primarily using event notifications [13]. An event-based

system not only reduces the overall complexity, making design, development, testing and

maintenance easier, but most importantly reduces the coupling of the system as the

modules do not have to be aware of each other but only to “listen” and correspond to the

appropriate events. Since extensibility is one of the main ClassMATE objectives, and since

high coupling discourages extensibility, it was designed and implemented as an event-based

system to reduce coupling to the minimum.

An event is the detection of a condition that sends a notification (“fires the event”) to the

interested parties to trigger their reaction. The node that detects the condition is known as

the event publisher, the event source or simply the sender, while the receiving end of the

event is the event subscriber or listener or event handler or simply the receiver. From the

above becomes clear that for an event to be “fired” at least one subscriber is required. The

process of establishing a valid set of receiver is called subscription or registration [13].

Finally, during registration a well-known list of publishers is necessary for the receivers in

order to register themselves appropriately.

ClassMATE’s event mechanism is implemented on top of .Net built-in Event Mechanism and

extends it to offer the necessary functionality. Following the .NET Framework approach,

stating that if the event handler requires state information, the application must derive a

30

class from the EventArgs class to hold the data, a hierarchy with specialized event types

derived from general ones was defined, forming the ClassMATE event type system [13].

Subsequently, a set of core event types, named ClassMATE commands, were defined:

AppCmd, MigrateCmd, MimeCmd, UpdateCmd. Their exact objectives and internal

mechanics will be described in more details later on.

During receiver registration, as mentioned above, the list of the publishers should be known.

However, in ClassMATE this is not possible, since the list of publishers could be modified at

any time. As a result, the need emerged for a dynamic and scalable solution. A variant of the

Proxy design pattern [14] based on events was selected. The pattern’s intention “Define a

one-to-many dependency between objects so that when one object changes state, all its

dependents are notified and updated automatically” [14] fits perfectly the needs of

ClassMATE. The Proxy Design Pattern is used when an object, called the Proxy, is interested

in knowing about events that occur in another object, called the subject. The Proxy tells the

subject which events it is interested in. When the subject detects one of these events, it

sends an event notification to the Proxy, often by calling one of the Proxy’s methods. A

subject can theoretically have any number of Proxies.

Utilizing the Proxy pattern, any interested party does not need to know the exact producer

of an event, but only register a callback method (by delegating) to a specific event type.

When an event of this type occurs, the Proxy pattern ensures that every registered callback

will be invoked.

4.1.2.1 Base Event Args

Event-related data make ClassMATE events useful, and since the .NET EventArgs class does

not contain event data, ClassMATE defined its own base class from which every ClassMATE

event will derive from, the BaseEventArgs. This class obviously derives from the .NET

EventArgs class to ensure seamless integration with the .NET framework, and introduces two

quite important attributes, common to all ClassMATE events, the event Sender and the

event identifier. Since multiple event handlers can be triggered by the same event, each

handler determines whether an event was intentionally received and should be handled or it

should be discarded by checking if this handler is interested to events coming from the

particular Sender.

4.1.2.2 Abstract Event producer

An Event Producer could be considered as

public API and fires (produces) events. Setting aside the event type, every event producer

must offer the same functionality. That API exposes the methods that facilitate (i) new

subscribers’ addition, (ii) existing subs

registered delegates.

To ensure that all event producers will implement that fundamental API, the

AbstractEventProducer class was defined to accumulate those common tasks. It is

implemented as Generic class to support any Even

BaseCmdEventArgs and encapsulate operations that are not specific to a particular data

type, and declared as abstract to permit the declaration of the abstract method “isLocal“

with no implementation that should be overridden by an

aware Event Producer should derive from this class and must provide implementation for all

abstract methods. The “isLocal“ method differentiates a Local from a Remote Event

producer, and is mainly utilized by the Event Regi

Finally, each Event Producer can enhance the base class with event

long as the main interface remains unchanged.

Finally, the key feature of the Abstract Event Producer is the EventHandler del

contains, which will be called upon the occurrence of some "event". The delegate can have

one or more associated methods that will be called when your code indicates that the event

has occurred. Since direct access to this member is limited,

defined that takes the Custom Typed Event as a parameter and distributes it through that

delegate to the subscribers (Fig. 10)

31

Abstract Event producer

An Event Producer could be considered as a special-purpose service that exposes a

API and fires (produces) events. Setting aside the event type, every event producer

must offer the same functionality. That API exposes the methods that facilitate (i) new

subscribers’ addition, (ii) existing subscribers’ removal, and (iii) invocation of the currently

To ensure that all event producers will implement that fundamental API, the

AbstractEventProducer class was defined to accumulate those common tasks. It is

c class to support any Event type that derived from

BaseCmdEventArgs and encapsulate operations that are not specific to a particular data

type, and declared as abstract to permit the declaration of the abstract method “isLocal“

with no implementation that should be overridden by any derived class. Every ClassMATE

aware Event Producer should derive from this class and must provide implementation for all

abstract methods. The “isLocal“ method differentiates a Local from a Remote Event

and is mainly utilized by the Event Registry during event broadcast process.

Finally, each Event Producer can enhance the base class with event-specific functionality, as

long as the main interface remains unchanged.

Finally, the key feature of the Abstract Event Producer is the EventHandler del

which will be called upon the occurrence of some "event". The delegate can have

one or more associated methods that will be called when your code indicates that the event

has occurred. Since direct access to this member is limited, the OnEvent method was

defined that takes the Custom Typed Event as a parameter and distributes it through that

(Fig. 10).

Figure 9: Generic Send Event method

purpose service that exposes a certain

API and fires (produces) events. Setting aside the event type, every event producer

must offer the same functionality. That API exposes the methods that facilitate (i) new

invocation of the currently

To ensure that all event producers will implement that fundamental API, the

AbstractEventProducer class was defined to accumulate those common tasks. It is

t type that derived from

BaseCmdEventArgs and encapsulate operations that are not specific to a particular data

type, and declared as abstract to permit the declaration of the abstract method “isLocal“

y derived class. Every ClassMATE-

aware Event Producer should derive from this class and must provide implementation for all

abstract methods. The “isLocal“ method differentiates a Local from a Remote Event

stry during event broadcast process.

specific functionality, as

Finally, the key feature of the Abstract Event Producer is the EventHandler delegate that it

which will be called upon the occurrence of some "event". The delegate can have

one or more associated methods that will be called when your code indicates that the event

the OnEvent method was

defined that takes the Custom Typed Event as a parameter and distributes it through that

32

4.1.2.3 Event Proxy

ClassMATE, in addition to dynamic service registration, supports application and service

migration from one node to another at run time. Migration refers either to the UI or the

application logic or both. Concerning the event handling mechanism, even though the above

cases suffer from different problems, the main common difficulty is that every event

producer(s) and receiver(s) change during migration. As a result, the application/service

should be aware of the migration process and keep track of all the event producers that it

uses, so as to update them if they change their content after initialization (during execution).

Pure event producers do not have to know anything about context or migration, since they

only produce events and the receivers are responsible for successfully receiving them (not

such a good practice). However, event producers that are dependent on other event

producers, so they are actual event receivers, should follow the same approach.

Figure 10: The Proxy Design Pattern

This is not compatible with the modular nature and ease of use of ClassMATE. Since

ClassMATE is responsible for launching / suspending services in any ClassMATE node, then

clearly it should be responsible for a transparent migration process. Migration if examined

closely amounts to suspending the application / service at some node, save its state, transfer

the state to the new location and resume the same application / service with the saved state

at another remote node. The state transition will be examined in more details in the

StateSerialization API.

The state itself characterizes the application, however the rest of the services / application

present in the classroom ecosystem do not need to know anything about the state, as they

are only interested in the event produced. For handlers to be installed, the producer should

be implicitly known as an AbstractEventProducer of the event type A. Even so, when the

33

producer instance alters, the abstraction is invalid. The new AbstractEventProducer should

be registered and the handlers re-subscribed. To automate and transparently handle this

process, the EventProxy class was defined to minimize the necessary boiler plate code.

The EventProxy (Fig. 11) was implemented as a Generic class that allows the definition of

type-safe data structures, without committing to actual data types, and facilitate reuse of

data processing algorithms without duplicating type-specific code. Internally it maintains

two lists, the handlers’ delegates and the producers list. The handlers list contains all the

event delegates registered for a certain type of event and that must be invoked when the

event occur. Apparently, this list is not used for invoking the delegates, but for keeping track

of the installed handlers, so as to re-subscribe them if a migration occurs. The producers list

contains all the AbstractEventProducers, registered in the ClassMATE, that produce events

of type T. ClassMATE supports dynamic service registration through the PlatformExpert and

ServiceRegistry modules. To enable integration with ClassMATE, every event type T must be

accompanied by a module that implements the ServiceFactoryInterface and creates the

respective AbstractEventProducer for that event type.

When the migration process is complete, the Event Proxy is notified to update its’

invalidated list of producers and re-subscribe the handlers to the new producers, so as to be

notified when an event occurs. This process is completely transparent to the handlers since

they would never know the exact producer so they will also not know that the producer has

changed. They are only aware of a particular event type and they have only offered one

method to be invoked when an event of that type occurred. The process of adding a new

delegate is accomplished through the EventRegistry module that will be described next.

The Event Proxy also contains a SendEvent method that broadcast the event to the

registered subscribes. For that to be achieved, Event Proxy iterates the list of current

AbstractEventProducers and invokes their OnEvent method (as defined in the

AbstractEventProducer base class), and as a result the event distributes. It is important to

note that at before the invocation any migrated producers had been re-initialized and as a

result the list is updated (Fig. 12).

4.1.2.4 Event Registry

The EventRegistry module is the sole entry point for the various applications and services to

the ClassMATE’s event mechanism. Both the handlers’ subscription and events’ distribution

processes are accomplished through that point, and considering that a unique instance of it

should exist in the same artifact, the Singleton design pattern

implementation.

The subscription process is performed by the AddHandler and RemoveHandler exposed to

the Event Registry API. Every ClassMATE

notifications for events should subscribe the relevant delegate to be invoked by the

producer when the event condition is satisfied.

method and is similar to a C++ function pointer. Once

behaves exactly like that method. The delegate method can be used like any other method,

with parameters and a return value.

which consists of the return type and paramet

makes it possible to programmatically change method calls, and also plug new code into

existing classes. As long as the delegate's signature is known, it can be assigned its own

delegated method.

As the above suggests, an event handler class should implement a method that matches the

delegate signature for the desired event. Despite that such a programming practice would

not compromise scalability

perplex maintainability. If a single delegate signature changes, then all the relevant handlers

should update their implementation to comply with the new specifications. ClassMATE,

aiming to enforce uniformity, utilizes the default EventHandler de

facility of the Microsoft’s .Net Framework. The default EventHandler is a predefined

34

Figure 11: The Event Proxy Rationale

The EventRegistry module is the sole entry point for the various applications and services to

e ClassMATE’s event mechanism. Both the handlers’ subscription and events’ distribution

processes are accomplished through that point, and considering that a unique instance of it

should exist in the same artifact, the Singleton design pattern [14]

The subscription process is performed by the AddHandler and RemoveHandler exposed to

the Event Registry API. Every ClassMATE-enabled application or service that desires

notifications for events should subscribe the relevant delegate to be invoked by the

producer when the event condition is satisfied. A delegate is a type that references a

method and is similar to a C++ function pointer. Once a delegate is assigned a method, it

behaves exactly like that method. The delegate method can be used like any other method,

with parameters and a return value. Any method that matches the delegate's signature,

which consists of the return type and parameters, can be assigned to the delegate. This

possible to programmatically change method calls, and also plug new code into

existing classes. As long as the delegate's signature is known, it can be assigned its own

As the above suggests, an event handler class should implement a method that matches the

delegate signature for the desired event. Despite that such a programming practice would

not compromise scalability -as each event type will define its own signature

perplex maintainability. If a single delegate signature changes, then all the relevant handlers

should update their implementation to comply with the new specifications. ClassMATE,

aiming to enforce uniformity, utilizes the default EventHandler delegate offered as a built

facility of the Microsoft’s .Net Framework. The default EventHandler is a predefined

The EventRegistry module is the sole entry point for the various applications and services to

e ClassMATE’s event mechanism. Both the handlers’ subscription and events’ distribution

processes are accomplished through that point, and considering that a unique instance of it

 is used for its

The subscription process is performed by the AddHandler and RemoveHandler exposed to

ation or service that desires

notifications for events should subscribe the relevant delegate to be invoked by the

A delegate is a type that references a

a delegate is assigned a method, it

behaves exactly like that method. The delegate method can be used like any other method,

Any method that matches the delegate's signature,

ers, can be assigned to the delegate. This

possible to programmatically change method calls, and also plug new code into

existing classes. As long as the delegate's signature is known, it can be assigned its own

As the above suggests, an event handler class should implement a method that matches the

delegate signature for the desired event. Despite that such a programming practice would

as each event type will define its own signature- it would

perplex maintainability. If a single delegate signature changes, then all the relevant handlers

should update their implementation to comply with the new specifications. ClassMATE,

legate offered as a built-in

facility of the Microsoft’s .Net Framework. The default EventHandler is a predefined

35

delegate that specifically represents an event handler method for an event that does not

generate data. Since ClassMATE’s events hold data, the Generic version of that delegate is

used, the EventHandler<TEventArgs> delegate class, where the Generic type parameter is

substituted by the appropriate subclass of the Base Command Event Arguments.

The standard signature of an event handler delegate defines a method that does not return

a value, whose first parameter is of type Object and refers to the instance that raises the

event, and whose second parameter is derived from type EventArgs and holds the event

data. If the event does not generate event data, the second parameter is simply an instance

of EventArgs. Otherwise, the second parameter is a custom type derived from EventArgs and

supplies any fields or properties needed to hold the event data.

Despite the fact that the Event Registy does not use Generics at all, the AddHandler and

RemoveHandler methods were implemented using method-specific Generic type

parameters [26]. The different event types are stored in a Dispatch Table that maps an event

type with an Event Proxy. When any of the Add or Remove Handler methods is invoked

specialized with a particular event type, the event type is the key that indexes the

appropriate Event Proxy that has to either subscribe or unsubscribe the provided delegate

from its active subscribes list. The event distribution mechanism works in a similar manner.

When the SendEvent method is invoked with the specialized event type, the Event Registry

locates the appropriate Event Proxy and delegates the distribution process to it by invoking

the Proxy’s SendEvent method that notifies event’s subscribers (Fig. 13). The

aforementioned process highlights the importance of the Event Proxy class, as neither the

subscribers nor the Event Registry are concerned with any migration-related activity,

because the migration logic is encapsulated in each Event Proxy instance.

4.1.2.5 ClassMATE Message Events

The ClassMATE Message Event is a primitive event type that is exchanged between either

local or remote nodes. It derives from the BaseEventArguments and ex

Receiver, the RemoteContextName and the Message

intended recipient of that message, t

infrastructure to facilitate the artifacts communication and dispat

node and finally the Message attribute contains the actu

For the Message Event to be successfully dispatched a conditional delivery is necessary; thus

the EventRegistry checks the RemoteContextName

be dispatched locally, otherwise it s

delivery.

4.1.2.6 ClassMATE Commands

4.1.2.6.1 Base and RemoteBase CommandEventArgs

The ClassMATE Command Events are divided into two major categories: the intra

local and the inter-artifact or remote events.

same artifact since they are raised and handled by differ

process; consider the Multimedia Application, used to display multimedia content (i.e.

images and videos) that receives an

Application. The inter-artifact events, on the other hand, “travel” between the various

36

Figure 12: Event Distribution Mechanism

MATE Message Events

The ClassMATE Message Event is a primitive event type that is exchanged between either

t derives from the BaseEventArguments and extends it by adding the

Receiver, the RemoteContextName and the Message attribute. The Receiver denotes the

intended recipient of that message, the RemoteContextName is used by the FAMiNE

infrastructure to facilitate the artifacts communication and dispatch the event to the proper

node and finally the Message attribute contains the actual message that must be exchanged.

For the Message Event to be successfully dispatched a conditional delivery is necessary; thus

the EventRegistry checks the RemoteContextName, and if it is empty, then the event should

be dispatched locally, otherwise it should be forwarded to the FAMiNE infrastructure for

ClassMATE Commands

Base and RemoteBase CommandEventArgs

The ClassMATE Command Events are divided into two major categories: the intra

artifact or remote events. The intra-artifact events “travel” within the

ince they are raised and handled by different threads of the same local

; consider the Multimedia Application, used to display multimedia content (i.e.

images and videos) that receives an event from the SmartDesk ClassBook Reader

artifact events, on the other hand, “travel” between the various

The ClassMATE Message Event is a primitive event type that is exchanged between either

tends it by adding the

The Receiver denotes the

he RemoteContextName is used by the FAMiNE

ch the event to the proper

al message that must be exchanged.

For the Message Event to be successfully dispatched a conditional delivery is necessary; thus

then the event should

hould be forwarded to the FAMiNE infrastructure for

The ClassMATE Command Events are divided into two major categories: the intra-artifact or

s “travel” within the

threads of the same local

; consider the Multimedia Application, used to display multimedia content (i.e.,

ClassBook Reader

artifact events, on the other hand, “travel” between the various

37

classroom artifacts (e.g., from the AmIDesk Multimedia Application to the SmartBoard

Multimedia Application, etc.) since they are raised from a thread of the local process and

handled by a thread of a remote process in another artifact. The following scenarios

illustrate an intra- and an inter- artifact event. An intra-artifact event occurs when the

BookLocalizer service of the AmIDesk detects the current physical book page and instructs

(by raising a local event) the AmIDesk Window Manager to display that page in the

Classroom Book application. On the other hand, an inter-artifact event could occur when the

student selects the migration of the Multiple Choice Exercise Application from the AmIDesk

to the SmartBoard, and the ClassMATE instance of the AmIDesk communicates with the

remote Window Manager of the SmartBoard to initiate and execute the migration process.

ClassMATE in order to support both intra- and inter- artifact events introduced the

BaseCommandEventArgument and the RemoteBaseCommandEventArgument classes

respectively.

The BaseCommandEventArgument is primarily a ClassMATE event, thus it derives from the

BaseEventArguments and extends it by adding the Receiver attribute. Since multiple event

handlers can be triggered by the same event, each handler determines whether an event

was intentionally received and should be handled or it should be discarded by checking the

Receiver attribute.

The RemoteBaseCommandEventArgs extends the BaseCommandEventArguments by adding

the LocalContextName and the RemoteContextName attributes. The RemoteContextName is

used by the FAMiNE infrastructure to facilitate the artifacts communication and dispatch the

event to the proper node, while the LocalContextName is used by the remote handler to

cross-check the validity of the received command. The following example highlights the

usage of these attributes. A student instructs the migration of the local Multimedia

Application to the SmartBoard without prior teacher’s permission. The

RemoteBaseCommandEventArguments attributes populates as follows: “StudentDeskId” as

the LocalContextName and “SmartBoard” as the RemoteContextName. Upon receipt, the

SmartBoard’s handler checks if the LocalContextName is permitted to execute the migration

command through the Security Manager. If the desk identified by the “StudentDeskId” does

not have the necessary privileges, the command will be discarded and no action will be

taken.

4.1.2.6.2 Command Types and Objectives

Based on ClassMATE’s requirements, the possible commands were categorized un

following domains (Fig. 14): Application, Update, Mime and Migrate. This categorization’s

role is twofold. On the one hand, fro

hierarchy disambiguates the purpose of each type and facilitates the overall design process,

as every application designer has to deal with the

other hand, from a technical

is preferred over a more naïve approach where all the available commands form a complex

union type and every instance

than two events, thus it does not have to know redundant information regarding the other

types and to check during runtime if the event is of the correct type. Finally, using different

event types, ClassMATE eliminates flooding of the communication channel due to

broadcasting every event to every subscriber (even those that are not interested in that

particular event, not known at that time), but it implements a more sophisticated

mechanism, where only the interested parties get notified

locality and the rationale of the various ClassMATE command types are described in more

details in the next sections.

Figure

Figure

38

Command Types and Objectives

Based on ClassMATE’s requirements, the possible commands were categorized un

: Application, Update, Mime and Migrate. This categorization’s

role is twofold. On the one hand, from a conceptual point of view, such a comma

archy disambiguates the purpose of each type and facilitates the overall design process,

as every application designer has to deal with the a subset of system events only. On the

other hand, from a technical point of view, this command type system based on

is preferred over a more naïve approach where all the available commands form a complex

union type and every instance declares its type. Moreover, every handler is interested in less

ents, thus it does not have to know redundant information regarding the other

types and to check during runtime if the event is of the correct type. Finally, using different

event types, ClassMATE eliminates flooding of the communication channel due to

adcasting every event to every subscriber (even those that are not interested in that

particular event, not known at that time), but it implements a more sophisticated

mechanism, where only the interested parties get notified (Fig. 15). The objective, the

locality and the rationale of the various ClassMATE command types are described in more

Figure 13: ClassMATE Command Type Hierarchy

Figure 14: Sender and Receive Map of Command Events

Based on ClassMATE’s requirements, the possible commands were categorized under the

: Application, Update, Mime and Migrate. This categorization’s

m a conceptual point of view, such a command

archy disambiguates the purpose of each type and facilitates the overall design process,

events only. On the

point of view, this command type system based on subclassing

is preferred over a more naïve approach where all the available commands form a complex

declares its type. Moreover, every handler is interested in less

ents, thus it does not have to know redundant information regarding the other

types and to check during runtime if the event is of the correct type. Finally, using different

event types, ClassMATE eliminates flooding of the communication channel due to

adcasting every event to every subscriber (even those that are not interested in that

particular event, not known at that time), but it implements a more sophisticated

. The objective, the

locality and the rationale of the various ClassMATE command types are described in more

39

4.1.2.6.2.1 Application Command

The application command, as implied by its name, aims to change the internal state of an

application. The receiver is always a ClassMATE-enabled application and the sender is always

the only component aware of any application instances, the Window Manager [22]. Since

both parties reside locally in the same artifact, the Application Command derives from the

BaseCommandEventArgs and introduces two additional parameters: the ApplicationName

and the Argument.

An application command though is not issued by the Window Manager, but by the

ClassMATE core. Such commands are mainly triggered by ambient environment factors and

the core encapsulates them into expressive packages. Since the core does not have direct

access to the applications, the Window Manager becomes the middleman for their delivery.

However, the Window Manager might receive an application command because it is a

ClassMATE-enabled application too, as long as it has registered the appropriate delegate

(i.e., disable desk interaction as the teacher requires full attention to the board).

Multiple handlers may receive the same event simultaneously. The ApplicationName

attribute is used to determine whether this command refers to the current handler and

should be executed, or it should be discarded without modifying the handler’s state. The

argument encodes the actual command for execution. To address the encoding issue, a

straightforward but extensible application-independent protocol was defined, including the

most commonly used commands. The built-in commands are:

• OPEN--FilePath: Open the file indicated by the provided complete path

• STATE--StateId: Restore the state indicated by the state identifier (used during

migration)

• TERMINATE--Apps, where Apps contains a list of comma-separated application

names or the keyword ALL: Terminate the denoted applications

• DISABLE--Apps, where Apps contains a list of comma-separated application names

or the keyword ALL: Disable the user interaction with the denoted applications

• FOCUS--AppName: Bring the denoted application to the front

Multiple applications can accept and decode the same command, but the interpretation and

reaction will be application-specific. For instance, both the Multimedia Viewer and the

Classbook Reader applications can decode the command “Open--FileName.xml”, but each

one will react appropriately. Since the ClassMATE core is the only issuer of every application

command, any protocol modifications (i.e., a new ambient event triggers an already defined

40

action) or additions (i.e., a new ambient event introduces a new command) affect only the

core’s command generator module and the respective handlers’ delegate method.

An indicative example that illustrates the usage of the application command type is the

following: when a student opens the physical book to a particular page, the ClassMATE core

identifies that page and launches the Classbook Reader application to display its electronic

copy.

4.1.2.6.2.2 Update Application Command

The ClassMATE core uses the Window Manager as the middleman to distribute commands

to the applications. The Update Application Command wraps a list of Application commands

in a single package which the Window Manager later propagates to the receivers in the form

of single Application Commands. The Update Application Command resides in the local

artifact as the route of this event is always from the core to the Window Manager. Thus, it

extends the BaseCommandEventArgs class and appends the dynamic list of Application

Commands attribute.

To ensure that all the contained commands are delivered successfully to their recipients

with zero losses, when an Update Application Command is received, the Window Manager

examines every Application Command, launches the application pointed by the AppName

attribute if inactive, and when notified that the application launched successfully,

propagates the command for execution.

Returning to the aforementioned book example, from the point of view of the Window

Manager, it can be formulated as follows: the ClassMATE core creates an Application

Command, packages it into an Update Application Command and propagates it to the

Window Manager. If the Classbook Reader application is not active, the Window Manager

launches it and then propagates the command; otherwise, it simply propagates the

command. ClassMATE in cooperation with the Window Manager (through the Update

Application Commands) controls the applications and performs the overall classroom’s

orchestration.

4.1.2.6.2.3 UpdateMe and UpdateMeRemote Application Commands

During migration the state of an application is transferred from the local to a remote

artifact, but the “new” application executes in an isolated standalone mode. Nevertheless,

many cases exist in an ambient environment where the parent application should be able to

control the migrated one, and vice versa. Instead of re-implementing a remote desktop

protocol, ClassMATE offers a more sophisticated solution where only the necessary data are

41

transmitted to synchronize the remote state. For that to be achieved, the parent application,

being aware that a migrated instance exists, digests any local events and transmits them

when necessary. However, since no direct communication channel exists between them, the

only available route is through the ClassMATE core, which encapsulates the transmission

process.

The UpdateMe Application Command is exchanged between an application instance and the

ClassMATE core, thus it derives from the BaseCommandEventArgs and packages two

additional attributes, the AppName and the Argument. The UpdateMe and the Application

Command seemingly appear the same in terms of enclosed data; however, the involved

parties differ and most importantly, the Argument contained in an UpdateMe command is

encoded in a proprietary, application-specific, protocol which only that particular application

can handle. An application is able to use one of the predefined system protocols (e.g., the

Application Command Protocol described above) to transfer messages to its remote instance

as long as the protocol is suitable for its needs. When the ClassMATE core receives such a

command, it firstly consults the Security Manager and the Classroom Orchestrator to

validate sender’s privileges and if that requirement is met, the command is wrapped into an

UpdateMeRemote Application Command and marked as ready for transmission.

The UpdateMeRemote Application Command is the carrier of every UpdateMe command

from one artifact to another. The transmission channel is a combination of .NET Events and

FAMiNE proprietary format, while the necessary marshaling and unmarshaling processes are

completely transparent to the receiver. Every UpdateMeRemote Application Command

derives from the RemoteBaseCommandEventArgs, since the local and remote context

attributes define the involved network nodes, and adds a single attribute, the UpdateMe

command to be transmitted.

Upon receipt, the remote ClassMATE instance maps the UpdateMe Application Command

into an Application Command. No sophisticated logic is needed, as the command attributes

were appropriately filled by the parent application which initially generated it. The

translation into an Application Command ensures that no additional handlers should be

registered for that particular command type, since the already registered Application

Command handler will receive and handle it by incorporating the appropriate logic. The

generated Application Command is eventually delivered to the target application wrapped in

an Update Application Command handled by the respective Window Manager.

42

The following example illustrates the use of the UpdateMe and UpdateMeRemote

Application Commands. The teacher asks one of the students to continue his Multiple Choice

Exercise at the AmIBoard. From that point forward, every action on the desk artifact (i.e.,

multiple question answer) is locally handled, and only the digested outcome is packaged and

transmitted by the desk’s ClassMATE instance to the board’s ClassMATE instance.

4.1.2.6.2.4 Mime Command

Through the ClassMATE core, the ambient classroom may launch various educational

applications. However, every application can launch other applications either directly or

indirectly, to enhance the educational process and facilitate students’ study through their

collaboration. In shell-based approaches, well-established practices to address application

intercommunication, the parent application launches a virtual shell and executes a set of

commands with the appropriate initialization parameters to launch another application. The

shell-based approach is particularly suited for systems that host a great variety of

applications (i.e., a complete OS), however, in the ClassMATE’s case, it would most likely

compromise its clearness, as every application instead of complying with a common scheme,

would arbitrarily define its own proprietary scheme and the other applications should

incorporate specific logic for each one. Besides, ClassMATE’s educational objectives require

a preprocessing step to authorize on the one hand the application launch and on the other

hand ensure personalized content delivery based on context-related reasoning. To highlight

the added value of the above, consider the following example: the student selects to launch

the Multimedia Application in order to play a specific video, but ClassMATE collects also

other educational material (images, words, exercises, etc.) related to that particular video

and proposes them to the student.

For that to be achieved an intermediate layer was introduced, that orchestrates the launch

process and relieves the application from handling the reasoning process, i.e., communicate

with the respective modules and provide the relevant data to facilitate mining. The most

appropriate host of such module is the ClassMATE core, as it not only orchestrates the

overall classroom, but is also in direct communication with other key modules such as the

DataSpace and the Security Manager. ClassMATE uses a variant of the Mailcap invocation

scheme [6] that modern Operating Systems use to associate specific applications with

specific mime types, and when an application has to launch a new application it should only

notify the core and supply the appropriate mime.

43

An Internet media type, originally called a MIME type after MIME (Multipurpose Internet

Mail Extensions) and sometimes a Content-type after the name of a header in several

protocols whose value is such a type, is a two-part identifier for file formats on the Internet.

MIME is short for Multipurpose Internet Mail Extensions and it was defined in 1992 by the

Internet Engineering Task Force (IETF). MIME is a specification for formatting non-ASCII

messages so that they can be sent over the Internet. Many e-mail clients now support

MIME, which enables them to send and receive graphics, audio, and video files via the

Internet mail system. There are many predefined MIME types, such as GIF graphics files and

PostScript files. It is also possible to define your own MIME types.

The application communicates with ClassMATE through a special command type, the Mime

Command. This command is exchanged between local modules, thus it derives from the

BaseCommandEventArgs and two essential attributes to fulfill its objective: the Mime type

and Resource Identifier. The Mime type belongs to the commonly known mime types and

the identifier is used as reference for searching relative content.

The key feature is that the ClassMATE core supplies the necessary data (i.e., mime types and

identifiers) for every interactive resource and the application simply packages them in a

Mime Command when triggered by the user. ClassMATE when it receives a MIME

Command, initially resolves the application that can handle that mime type (i.e., png images)

and then requests from the DataSpace module to search for related content. Upon

successful discovery, the DataSpace stores the locations of the discovered data in a file and

returns its path to ClassMATE. The generated file is structured in a mime-specific format

which can be read by the applications able to handle that particular mime type. The

ClassMATE core firstly packages the application’s name and the file path in an Application

Command, then wraps the Application Command in an Update Application Command and

finally dispatches it to the Window Manager to arrange application’s launch. Through a

Mime Command an application can not only launch another application, but also

dynamically modify its content if already launched.

An indicative scenario that illustrates the described process is the following: the student

interacts with the Classbook Reader and selects an image contained in the course book

asking for relative content. The Classbook Reader constructs a Mime Command, populates

the Mime type attribute with the image’s type value (e.g., “image/png”) and the

ResourceIdentifier with the URI of that particular image, and sends the command to the

ClassMATE. Upon receipt, ClassMATE resolves the Multimedia Application and asks from the

44

DataSpace to discover related content. As soon as the relative content is successfully

gathered, the ClassMATE notifies the Window Manager to launch the Multimedia

Application and dictate its content population based on the discovered data. Ultimately, the

student will be able to interact with the Multimedia Application and browse those images.

4.1.2.6.2.5 Migrate and MigrateRemote Commands

Many educational methods are based on collaborative learning. For that to be achieved in a

traditional classroom, the teacher should firstly spend some time copying the relevant data

at the blackboard and then start lecturing. On the other hand, students do not care for the

actual lecture but they are trying to copy the contents of the board to their notebooks to

study them later. Moreover, traditional means discourage collaboration in interactive media

(i.e., videos, images, games etc.) as their rendering to a blackboard is an extremely complex

task if not impossible. In the technology-augmented classroom, native support is offered to

the concept of collaborative education with minimum software overhead and no additional

hardware cost. Finally, since the content is stored in a redistributable digital format, the

students do not have to copy anything, but can concentrate on the lecture.

The Window Manager [22], in close cooperation with ClassMATE, makes the whole process

completely transparent to the rest of the system, using Migrate Commands. A Migrate

Commands due to its local exchange derives from the BaseCommandEventArgs and the two

added attributes are: the ApplicationName, MigrationContext and the State Identifier. The

ApplicationName apparently defines the application that should migrate, the

MigrationContext defines the remote node where the application should launch at, and

finally the StateId is used by the remote application, when launched, to restore its state

through the StateManager module.

For application migration to be achieved, the application’s current state must be transferred

and resumed to the other side. The StateManager maintains a map structure indexed by the

StateId which associates an application with its saved state data and, in cooperation with the

DataSpace, transfers and restores that state in the remote node. The migration process will

be described in more details in later on.

Every user can transfer his work anywhere in the classroom (usually at the classboard) with a

single gesture through the Pie Menu [22]. The Window Manager identifies the gesture,

resolves the focused application and initiates the migration process. Initially, the Window

Manager requests from the StateManager to store the application’s state and return its

unique id and then instantiates, populates and propagates a Migrate Command to the

45

ClassMATE. The local ClassMATE instance, upon receiving the Migration Command, confirms

authorization privileges with the Security Manager and the Global Classroom Orchestrator. If

successfully authorized, the saved state (indexed by the stateId) is copied into a temporal

network repository for retrieval by the remote ClassMATE instance. ClassMATE has no

control over the state data, but it simply manages the state transfer from one node to the

other. Finally, a RemoteMigrate Command is instantiated and dispatched, through FAMiNE,

to the appropriate remote node as indicated by the MigrationContext attribute.

Similar to the UpdateMeRemote Command, the MigrateRemote Command is the carrier of

every Migrate Command from one artifact to another. Every MigrateRemote Command

derives from the RemoteBaseCommandEventArgs since the local and remote context

attributes define the involved network nodes, and adds a single attribute, the Update

Application Command that holds an Application Command populated appropriately with

data digested from the Migrate Command (i.e., application’s name and STATE--StateId).

Upon receipt, the local ClassMATE core lays the groundwork for a successful migration. For

that to be achieved, the ClassMATE core copies locally the state data stored at the temporal

network repository pointed by the “StateId” encoded in the contained Application

Command. As soon as the copy process completes, the Update Application Command is

forwarded without any further processing to the local Window Manager to launch the

relevant application. On successful initialization, the application will receive an Application

Command that instructs its state restoration and will use the supplied identifier to load the

appropriate one from the StateManager module.

The aforementioned example, where the teacher asks one of his students to continue his

Multiple Choice Exercise at the AmIBoard, presupposes that the migration process for the

Multiple Choice Exercise Application is successfully completed and that the application

migrates with its state from the student’s AmIDesk to the AmIBoard.

4.1.3 Artifact Director

The Artifact Director is the context aware module that orchestrates each artifact. Since

a sole instance of such module should

used for its implementation. The decisions made and action taken can be either artifact

oriented, independent of the rest of the classroom, or global guidelines coming from the

Class Orchestrator. In add

communication with the other ClassMATE core modules (i.e., Security Manager, Data Space,

Device Manager, etc.). The communication with the Class Orchestrator ensures

situations concerning the overall classroom e

environmental stimulations

responsible, will be taken into consideration when managing the operation workflow and

the collaboration among the a

Context awareness is the key feature that facilitates the “smart” decision making process,

since the Artifact Director and Class Orchestrator

attributes, both static and dynamic, to make the respective decision. “Smart” decisions

based on static attributes could include the termination of applications unrelated with the

current course or automatic homewo

46

Figure 15: ClassMATE Command journey

Director is the context aware module that orchestrates each artifact. Since

module should exist per artifact, the Singleton design pattern was

used for its implementation. The decisions made and action taken can be either artifact

oriented, independent of the rest of the classroom, or global guidelines coming from the

Class Orchestrator. In addition to the Class Orchestrator, the director is in direct

communication with the other ClassMATE core modules (i.e., Security Manager, Data Space,

Device Manager, etc.). The communication with the Class Orchestrator ensures

situations concerning the overall classroom ecosystem (e.g. the latest teacher’s directives or

environmental stimulations) and not only the artifact, for which the specific director is

will be taken into consideration when managing the operation workflow and

the collaboration among the available services (i.e., initiation, suspension or termination).

Context awareness is the key feature that facilitates the “smart” decision making process,

Artifact Director and Class Orchestrator should take into account current context

attributes, both static and dynamic, to make the respective decision. “Smart” decisions

based on static attributes could include the termination of applications unrelated with the

current course or automatic homework submission, while decisions based on dynamic

Director is the context aware module that orchestrates each artifact. Since only

the Singleton design pattern was

used for its implementation. The decisions made and action taken can be either artifact-

oriented, independent of the rest of the classroom, or global guidelines coming from the

Orchestrator, the director is in direct

communication with the other ClassMATE core modules (i.e., Security Manager, Data Space,

Device Manager, etc.). The communication with the Class Orchestrator ensures that

the latest teacher’s directives or

) and not only the artifact, for which the specific director is

will be taken into consideration when managing the operation workflow and

vailable services (i.e., initiation, suspension or termination).

Context awareness is the key feature that facilitates the “smart” decision making process,

should take into account current context

attributes, both static and dynamic, to make the respective decision. “Smart” decisions

based on static attributes could include the termination of applications unrelated with the

rk submission, while decisions based on dynamic

47

attributes might include access restriction to the help system (i.e., the Dictionary

application) during examinations or disabling interaction with every application when the

teacher requires the students’ full attention to the board. The low-level subsystems should

communicate with the Security Manager and the Global Orchestrator to make these

decisions.

In addition to being the artifacts’ orchestrator, the Artifact Director constitutes a bridge

between the internal native FAMiNE services, such as the BookLocalizer or the

MigrationManager, and the ClassMATE-enabled applications. Any events fired by a native

FAMiNE service are first wrapped into ClassMATE events and then distributed to the rest of

the system.

The migration and remote synchronization processes are handled by the Artifact Director in

cooperation with the State Manager and the DataSpace module. When notified by the local

Window Manager that an application should migrate, the Director saves the current state of

that application in a temporal network repository and notifies the remote Director about

that location. The remote director copies that state locally and notifies the Window

Manager to launch the indicated application and use the copied data to restore its state. A

similar approach is followed during the synchronization process, however for that to be

achieved every Director maintains a map that associates every migrated application with a

remote node name to dispatch the appropriate commands.

Regarding the Artifact Director’s workload, it is engaged in heavy tasks either during

initialization where communication channels with the rest core components should be

established or when an event occurs and the director should handle it. The director’s action

to events can be marked as either proactive, when the Artifact Director tries to take some

precaution measures (i.e., disable user interaction for the artifact when a test examination is

about to begin), or reactive when the Artifact Director responds to a stimulating event (i.e.,

when the student initiates the migration process).

The Artifact Director is also responsible for handling any ClassMATE Commands sent to the

ClassMATE core by the various applications or services. Thus, the set of handler operations

that implement the necessary logic for each Command type are registered during the

Director’s initialization. The complex commands, like the MIME or Migrate commands, are

delegated to internal command-specific sub-modules following a modular approach where

48

the logic is distributed into several concrete modules, facilitating scalability and code

readability.

The Artifact Director though could “suggest” some more-interesting applications (i.e.,

pending exercises close to deadline, or applications with related content).

Finally, the Artifact Director through monitoring the overall artifact logs every student’s

action and facilitates the user profiling process. The student-related data are maintained by

the Data Space component, and in particular the User Profile module, and used to facilitate

the data mining process. The exploitation of these data will be described in more details in

chapter five.

4.1.3.1 Mime Command Handler

The mime Command Handler is an internal subsystem of the Artifact Director that handles

all the MIME commands by launching the suitable applications with the appropriate data.

The invocation of the appropriate operation is achieved through a dispatch table that

associates the known mime types with delegate methods to handle them. Every delegate

method takes a single argument, the MimeCommandEventArgs (as received by the issuer

application) which contains all the necessary information. A dispatch table is a table of

pointers to functions or methods. The use of such a table is a common technique when

implementing late binding in object-oriented programming.

The Mime Command Handler, being an internal part of the Artifact Director, has direct

access to the various ClassMATE core components (i.e., Data Space, Security Manager, etc.)

to accomplish its tasks. When a Mime command is received, the Mime Command handler

based on the supplied mime type invokes the appropriate delegate to handle it. The

delegate will firstly resolve the most suitable application, and then request relevant content

from the DataSpace component based on the MIME command’s supplied argument. When

the mining process completes, the Mime Command Handler will notify the Launcher to

schedule the initiation of the resolved application to display the discovered content

described in the automatically generated resource file.

The application’s selection is accomplished using a special purposed map, the Mime Map. It

is important to note that the Mime Command Handler does not take any precautions

regarding the application’s ability to load and interpret the resource file, as it is taken for

granted that an application that can handle a particular type is also aware of the file’s format

containing the data to be displayed.

49

4.1.4 Class Orchestrator

The Class Orchestrator is the head of the classroom; it can be compared to the CEO of the

classroom as it controls every aspect of the system. The control is performed in a high level

and the Artifact Directors are responsible to apply its directions. For the decisions to be

made, the Class Orchestrator monitors the environment and reacts to events of common

interest. Orchestrator’s decisions can affect either an individual or a group of artifacts; for

instance, if the Orchestrator realizes that an examination is about to start, an instruction

should be distributed declaring that every assistive application should suspend during

examination time. On the contrary, if the Orchestrator realizes that the teacher yielded the

floor to a student, then an instruction should be sent directly to the artifact that hosts that

particular student, declaring that this student is authorized to interact with the class board.

The environmental monitoring and the communication needs between the Class

Orchestrator and the Artifact Directors is accomplished directly through the FAMiNE

middleware. In addition to the environment monitoring, the Class Orchestrator utilizes the

class timetable and the detailed course schedule to infer decisions regarding global actions

(e.g., exercises delivery or submission, examination date and time), while the Artifact

Directors feed the Orchestrator with data regarding individual students (e.g., ongoing

assignment score).

A modular approach was used for the Class Orchestrator implementation; the Interface-

based mechanism is used to resolve the available services that monitor the environment,

while the Security Manager is a special-purposed module which the Orchestrator uses to

delegate access-related requests for handling.

4.1.4.1 Security Manager

Every attempt to launch an application or migrate from the local to a remote node is

authenticated by the ClassMATE’s authentication and authorization module, the Security

Manager. Nevertheless, the decisions regarding any access rights are made by the Class

Orchestrator as it performs classroom administration and monitoring, however they are no

longer disseminated by the Orchestrator as the Security Manager intercepts and handles any

access-related requests.

The Security Manager utilizes both static data from the Course-Applications registry and the

dynamic decisions made by the Class Orchestrator as part of the context monitoring (e.g.,

disable hints applications during examinations) respectively. To optimize that process the

50

Security Manager maintains a local cache of previously made decisions, thus not having to

query Orchestrator all the time and simultaneously “listens” for events coming from the

Orchestrator to alter these decisions. The Course-Applications Registry is a configuration file

that associates a particular course with a list of applications related to it. That registry is

used during school hours to ensure that the students will always interact with course-related

applications without being occupied with other courses or even worse wasting time

entertaining applications. During break or out-of-school-hours, the students are permitted

to interact with any of the installed applications.

An LDAP [40] approach is used to accommodate multiple rights lists, as for every application

and artifact two lists exist, the groups’ and the users’ list, containing the authorized user

groups and individual users respectively. In addition to these detailed lists, a few wildcard

flags are used to handle special cases. Special cases occur due to context-related triggers

and affect the access to an application or even an artifact. For example, consider the

following cases, where access should be disabled on the one hand to the Multimedia

Application when solving an exercise to avoid distraction, and on the other hand to the

entire artifact to draw student’s attention to the board. In the first case the

MultimediaAccess flag turns from “LIST” to “NONE”, where LIST denotes that the

appropriate list contains the authorized users and NONE disables access completely; in the

second case, the DeskAccess turns to “FALSE” to completely disable interaction with the

entire Desk artifact. These flags are prioritized during the decision making process to take

advantage of compiler’s short-circuit evaluation and optimize the overall performance.

4.1.5 Application Launcher

The Application Launcher is the core module that bridges ClassMATE with the PUPIL system

[22], by instructing application opening (Fig. 17). The Launcher cannot actually launch an

application as every ClassMATE-enabled application is hosted inside the PUPIL’s

environment, in particular the artifact’s Window Manager, but it generates the appropriate

commands (i.e., Update Application Command) that when handled by the Window Manager,

will eventually result in application(s) launching.

An application can be launched either directly by the Artifact Director as a response to a

native FAMiNE (context-oriented) event, or indirectly by its Mime Handler delegate when

handling a Mime Command fired by an application. In both cases, for an application to be

launched the ClassMATE should incorporate mechanisms to both resolve from the installed

applications the preferred one(s)

that the essential security-related requirements are me

Regarding its implementation, three main reasons

design pattern: (i) facilitate control monitoring by issuing every single launch command from

the same object, (ii) ensure that all the commands will be issued in order, and (iii) simplify

the Launcher’s invocation process by either Artifact Director or the Mime Command

Handler.

4.1.5.1 Application Registry

To simplify the installation process of new applications and

an external application configuration was introduced

installed, the respective entry must be present in the applications configuration. The

application entry stores information regarding the application’s name and icon, the loader

class that constitutes the entry point

contains the executable code (DLL library).

<ClassmateApplications>

<Application>

 <Name> The Service’s Interface full name

 <Loader> Loader’s full name

 <Icon> Path to the application’s icon

 <Lib> Path to the application’s library (including the .dll extension)

 <Mime> Mime Type

 <RelatedCourses>

 <Course>CourseName1

 <Course>CourseName2

 </RelatedCourses>

</ Application>

<Application>

 More application definitions go here

</Application>

</ClassmateApplications>

The configuration is loaded at start

where every installed application is listed. The repetitive loading ensures that the map will

51

applications the preferred one(s), either by name or by mime type association

related requirements are met.

Figure 16: MIME Command Handling Process

Regarding its implementation, three main reasons led to the selection of the Singleton

design pattern: (i) facilitate control monitoring by issuing every single launch command from

the same object, (ii) ensure that all the commands will be issued in order, and (iii) simplify

e Launcher’s invocation process by either Artifact Director or the Mime Command

Application Registry

To simplify the installation process of new applications and ensure the system’s scalability

an external application configuration was introduced. For an application to be successfully

installed, the respective entry must be present in the applications configuration. The

application entry stores information regarding the application’s name and icon, the loader

class that constitutes the entry point to the constructor and the path to the binary file that

contains the executable code (DLL library).

The Service’s Interface full name </Name>

Loader’s full name </Loader >

Path to the application’s icon </Icon>

Path to the application’s library (including the .dll extension)

Mime Type </Mime>

<RelatedCourses>

CourseName1</Course>

CourseName2</Course>

/RelatedCourses>

More application definitions go here

The configuration is loaded at start-up and the contained entries are converted into a map

where every installed application is listed. The repetitive loading ensures that the map will

either by name or by mime type association, and ensure

the selection of the Singleton [14]

design pattern: (i) facilitate control monitoring by issuing every single launch command from

the same object, (ii) ensure that all the commands will be issued in order, and (iii) simplify

e Launcher’s invocation process by either Artifact Director or the Mime Command

system’s scalability,

. For an application to be successfully

installed, the respective entry must be present in the applications configuration. The

application entry stores information regarding the application’s name and icon, the loader

to the constructor and the path to the binary file that

Path to the application’s library (including the .dll extension) </Lib>

up and the contained entries are converted into a map

where every installed application is listed. The repetitive loading ensures that the map will

52

always be up-to-date. Whenever an application must be launched, this map provides the

necessary parameters to the Application Command’s issuer to generate a valid command,

suitable for the Window Manager. In most cases the application registry is not used

individually, but in combination with the Mimetype – Application Registry that will be

described later.

4.1.5.2 Mimetype - Application Map

In addition to the installed applications registry, an associative dictionary exists to map the

system’s available mime types with the applications able to handle them. Apparently, every

mapped application must belong to the currently installed applications.

Two alternative approaches exist regarding the storage of the mime types: either in the

Applications’ Configuration file or in an external configuration file. If mime types are stored

in every application’s configuration, a conflict might arise at runtime as more than one

application could be able to handle the same mime type. On the contrary, if they are stored

in an external configuration file, the conflict issue would be resolved; however, support for

multiple applications handling the same mime type would be eliminated as well. A hybrid

solution was the most preferable, as it combines the best of both worlds. Every application

declares at installation time the mime types it can handle, and the Mime Map would store

only the “preferred” one (as most modern Operating Systems do). Whenever a conflict

occurs, context-aware reasoning is applied to select the application that can both handle

that particular mime type and belong to the current course-related application list as well. If

no match is found, then the user is prompted to select the preferred application from a list

of available choices. Eventually, every pair entry associates a Mime type with a particular

application. The Mime Map is generated during start-up and facilitates dynamic mime

configuration by reflecting any changes made before use. At runtime the Mime Map is used

by the Mime Command Handler to resolve and schedule the launch of the application that

will display the discovered data.

<MimeMap>

<MimePair>

 <MimeTypeName> Mime Type </MimeTypeName>

 <ApplicationName>

 Application’s Name (as defined in ClassmateApplications)

 </ ApplicationName >

</MimePair>

<MimePair>

 More pair definitions go here

</MimePair>

53

</MimeMap>

4.1.6 State Serialization

In computer programming, an application’s state is essentially a snapshot of the measure of

various conditions in the system. In the ClassMATE system, the concept of program’s state is

the building block used to realize fundamental ambient services: (i) suspend the

application’s state based on context-related conditions (e.g., suspend the Dictionary

Application when taking an essay exam) and restore it later, (ii) store a temporal snapshot of

the application’s state and use it as a bookmark to jump back to that state (e.g., pin an

interesting image displayed in the Multimedia Application to the Clipboard [22] to simplify

return) and (iii) empower migration to another context by saving the application’s current

state and restore it at a remote node.

For that to be achieved in all three cases, the application’s state should be stored in an

efficient and easily programmable manner. In computer science, in the context of data

storage and transmission, serialization is the process of encoding objects and the objects

reachable from them, while protecting their private and transient data, into a stream of

bytes so that it can be stored in a file or memory, supporting the complementary

reconstruction of the object graph from that stream. Serialization among others provides a

more convenient method of persisting objects than writing their properties to a text file on

disk, and re-assembling them by reading this back in [30]. The only precondition is that if a

serialized object contains internally other objects, then that object should also be

serializable. All the mainstream programming languages offer a built in serialization

mechanism in the form of an API, though any class may implement its own external

encoding format and become solely responsible for its proper serialization and

deserialization. ClassMATE is based on such approach, and in order to simplify the

integration process offers its own proprietary Serialization Interface built on top of the

native .NET Serialization Interface, which every ClassMATE-enabled application should

implement to save/restore its state in a uniform manner.

Figure

Considering that every state

adopted during implementation to ensure universal application. The Serialization API

two simple methods: (i) the SaveState and (ii) the LoadState, both implemented using

Generics. The SaveState method

types, while the LoadState restores the application’s state using the s

the latter case, the supplied types should match the desired ones for the restoration process

to be successful (e.g., if application A attempts to restore its state using data intended for

application B, then the process would result

data or in a runtime memory exception).

4.1.6.1 Resource Format Pair

An application may use multiple

these sources correspond to local data files. These

proprietary application-specific format, as they were created during installation to hold

configuration properties or during runtime to store application related data (e.g.

user preferences, etc.), or in one of th

automatically generated at runtime by ClassMATE components (e.g.

serialization process the first are handled as simple binary files while the latter require

special treatment. This informatio

layer thought the ResourceFormatPair class which associates an existing file with a

reference format (described in chapter five

54

Figure 17: Application’s State Serialization Process

state object is application-dependent, an abstract approach was

adopted during implementation to ensure universal application. The Serialization API

two simple methods: (i) the SaveState and (ii) the LoadState, both implemented using

method simply serializes the supplied arguments regardless of their

types, while the LoadState restores the application’s state using the supplied arguments. In

the latter case, the supplied types should match the desired ones for the restoration process

if application A attempts to restore its state using data intended for

application B, then the process would result either in a corrupted memory stack with invalid

data or in a runtime memory exception).

Resource Format Pair

may use multiple sources to get data from; in the ClassMATE system though,

these sources correspond to local data files. These files can be encoded either in a

specific format, as they were created during installation to hold

configuration properties or during runtime to store application related data (e.g.

user preferences, etc.), or in one of the predefined system formats as they were

automatically generated at runtime by ClassMATE components (e.g., DataSpace). During the

serialization process the first are handled as simple binary files while the latter require

special treatment. This information regarding file variations are preserved in the persistent

layer thought the ResourceFormatPair class which associates an existing file with a

described in chapter five).

an abstract approach was

adopted during implementation to ensure universal application. The Serialization API defines

two simple methods: (i) the SaveState and (ii) the LoadState, both implemented using

simply serializes the supplied arguments regardless of their

upplied arguments. In

the latter case, the supplied types should match the desired ones for the restoration process

if application A attempts to restore its state using data intended for

either in a corrupted memory stack with invalid

in the ClassMATE system though,

files can be encoded either in a

specific format, as they were created during installation to hold

configuration properties or during runtime to store application related data (e.g., history,

e predefined system formats as they were

DataSpace). During the

serialization process the first are handled as simple binary files while the latter require

n regarding file variations are preserved in the persistent

layer thought the ResourceFormatPair class which associates an existing file with a resource

55

Serialization is a bidirectional process towards and from the file system. During serialization

phase every data file, application-specific or not, is treated as a simple binary file and is

stored in the appropriate location. During the deserialization phase though, the application-

generated files are treated differently from the system-generated ones. In the first case, the

system being unaware of the proprietary format cannot customize the data contained in

those files, thus it simply loads them from the persistent layer to the main memory; in the

latter case, a format-specific process is invoked to revalidate the contained data. As an

example, consider the case where the Multimedia Application migrates from an AmIDesk to

the AmIBoard; the system-generated file that describes the images to be displayed include

desk-specific file paths, thus the Multimedia-specific delegate must replace them with valid

board-specific paths.

4.1.6.2 State Class

The state of each application is determined by a number of attributes maintained by that

particular application. In such cases, serialization is achieved by storing the state-related

data in an auxiliary class and then save that class the file system; when loaded back the

extracted data are used for state’s restoration. ClassMATE’s Serialization mechanism

extends the aforementioned process in order to operate independently of any internal

structures by introducing an abstract utility class, the State class, that package the state-

related data. The State class implements the .NET Serialization interface to be

(de)serializable and maintains the following attributes: (i) the name of the application whose

state is encoded in the current instance, (ii) the AppData, a parameterized type object to

store the application’s auxiliary class, and (iii) a collection of ResourceFormatPairs where the

external data files used by the application are described. For the state’s (de)serialization to

be successful, all the contained objects should also implement the .NET Serialization

interface. The ClassMATE Serialization mechanism does not modify at any point the state

object as the application is solely responsible for its valid population; ClassMATE only cares

about its intact transfer to the storage repository.

The State object is instantiated by the application when the SaveState method is invoked,

populated with the appropriate data and forwarded to the StateManager to associate it with

a unique identifier and write it to the file system. Likewise, when the LoadState is invoked, a

state object is supplied as the argument encoding the state data and the application uses it

to restore its state; to facilitate that process, the State class provides a parameterized

method that returns the AppData object casted in the application’s specific type.

56

4.1.6.3 State Manager

The State Manager contains the low-level routines that communicate with the file system

during the serialization and deserialization process respectively. To ensure that a single

instance will handle any serialization-related request the Singleton [14] design pattern was

used for its implementation.

For Serialization to be achieved, the State Manager uses both the built-in .NET Serialization

components and the ClassMATE’s File Manager. The .NET components (i.e., FileStream and

BinaryFormatters [25]) expose operations to read and write binary files, while the File

Manager provides the file descriptors by transparently querying the classroom’s data

repository. The State Manager is a stateless component as instead of maintaining any data in

its memory, it stores every state object in a binary format in the repository. In the repository

a particular segment is reserved to host the state objects, and a string-based protocol is used

as the indexing scheme. Every serialized state object generates its own folder and is

identified by and unique id that includes: (i) the application’s name, (ii) the artifact’s

identifier, and (iii) a timestamp of the creation date. The protocol not only ensures that the

same application can serialize (and deserialize) its’ state multiple times, but also eliminates

overlaps between states created from the same application on different artifacts.

The StateManager public exposes the SaveState and the LoadState that encapsulate the low-

level procedure calls to write and load data from the file system. The SaveState (Fig. 18)

takes as input arguments the state object that must be serialized and a flag that indicates

the Serialization type (Suspension, Pin, Migration) and returns as an output result the unique

StateId to be used during deserialization (similar to a ticket given at the cloakroom when

checking a coat). If Serialization type is either Suspension or Migration, then the state’s

ResourceFormatPair collection is iterated to locate and copy the external files in the state’s

folder in the repository. The LoadState receives the StateId as a single input argument and

upon completion returns the retrieved state object. Its workflow can be decomposed in two

phases: the deserialization and data validation phase. During the deserialization phase, the

StateId points the binary data to be deserialized as a state object in the main memory, while

the second phase ensures that the data contained in external files generated by system

components will be valid. During the validation phase, the state’s ResourceFormatPair

collection is iterated, and for each file whose associated format type belongs to the system-

generated types, the appropriate delegate is invoked to revalidate its contents. The

revalidation process will be described in more details in the “Resource Description Format”

section; in a nutshell it includes from simple string replacements to even binary fi

4.1.7 Initialization Process

The ClassMATE’s modular architecture

actions will be taken to load and prepare the essential modules before use. Considering that

the ClassMATE systems targets

large scale distributed AmI environment),

first to identify the current platform, resolve the respective services, and then launch the

Artifact Director to undertake artifact’s control. ClassMATE’s initialization process resembles

the one followed by every computer, where the system’s Bios (Platform Expert) is initially

launched to setup the environment, and then the OS kernel (Artifact Director) takes

control.

The initialization process (Fig. 19)

events installation, (ii) local services resolution, and (iii) environment’s notification. During

events installation, the Artifact Director

and registers the Command handler delegates to start listening for events addressing the

ClassMATE core, including events from other core component (e.g.

DeviceManager, etc.) and the Class Orche

Director, based on the current platform’s configuration, resolves the artifact

services that provide context

Finally, during the last phase, the Artifact Director notifies the Class Orchestrator, and the

ambient environment in general, that the current artifact was successfully initialized and is

henceforth fully functional.

Upon successful initialization

ClassMATE’s case to the Window Manager, to continue with its normal workflow.

57

revalidation process will be described in more details in the “Resource Description Format”

section; in a nutshell it includes from simple string replacements to even binary fi

Initialization Process

ClassMATE’s modular architecture assumes that during system’s initialization

actions will be taken to load and prepare the essential modules before use. Considering that

the ClassMATE systems targets systems of diverse scales (e.g., from a single notebook to a

large scale distributed AmI environment), the Platform Expert module should be launched

first to identify the current platform, resolve the respective services, and then launch the

tor to undertake artifact’s control. ClassMATE’s initialization process resembles

the one followed by every computer, where the system’s Bios (Platform Expert) is initially

launched to setup the environment, and then the OS kernel (Artifact Director) takes

(Fig. 19) of the Artifact Director module consists of three phases: (i)

installation, (ii) local services resolution, and (iii) environment’s notification. During

Artifact Director immediately initiates the ClassMATE’s event system

and registers the Command handler delegates to start listening for events addressing the

ClassMATE core, including events from other core component (e.g.

DeviceManager, etc.) and the Class Orchestrator. During the second phase, the Artifact

based on the current platform’s configuration, resolves the artifact

services that provide context-related data (e.g., book localization, student’s presence, etc).

phase, the Artifact Director notifies the Class Orchestrator, and the

ambient environment in general, that the current artifact was successfully initialized and is

initialization, the control is passed back to the caller, to continue in

ClassMATE’s case to the Window Manager, to continue with its normal workflow.

Figure 18: Platform initialization process

revalidation process will be described in more details in the “Resource Description Format”

section; in a nutshell it includes from simple string replacements to even binary files copy.

initialization, a series of

actions will be taken to load and prepare the essential modules before use. Considering that

from a single notebook to a

the Platform Expert module should be launched

first to identify the current platform, resolve the respective services, and then launch the

tor to undertake artifact’s control. ClassMATE’s initialization process resembles

the one followed by every computer, where the system’s Bios (Platform Expert) is initially

launched to setup the environment, and then the OS kernel (Artifact Director) takes over

module consists of three phases: (i)

installation, (ii) local services resolution, and (iii) environment’s notification. During

mmediately initiates the ClassMATE’s event system

and registers the Command handler delegates to start listening for events addressing the

ClassMATE core, including events from other core component (e.g., DataSpace,

strator. During the second phase, the Artifact

based on the current platform’s configuration, resolves the artifact-specific

book localization, student’s presence, etc).

phase, the Artifact Director notifies the Class Orchestrator, and the

ambient environment in general, that the current artifact was successfully initialized and is

the caller, to continue in

ClassMATE’s case to the Window Manager, to continue with its normal workflow.

4.1.8 Migration Process

Application’s migration is the

components, and can be decomposed into the

20). During the foundation phase, the local Window Manager identifies the appropriate user

action on the desk and initiates the migration process by requesting from the application on

the foreground to save its state through the State Manager. When save is complete

application returns the unique StateId received by the State Manager to the Local Window

Manager, who creates a Migrate Command with the application’s name, the StateId and the

remote context and forwards it to the Artifact Director. When received by the Artifact

Director invokes a special-purposed internal module, the Migration Command Handler, to

extract the necessary information from the received Migration Command and generate an

Application Command with a “STATE

application will have restore its state. The foundation completes by the transmission of t

generated command to the remote node.

The realization phase starts when the remote Artifact Director receives that command, and

engages by modules running on the remote node only. The Artifact Director after

successfully validating that the command was

not corrupted and the Security Manager approves migration, requests from the State

Manager to transfer locally and revalidate the data pointed by the StateId (the exact process

was described in detail in the S

Finally, the Artifact Director notifies the Window Manager to launch the appropriate

application and forward the Application Command that enforces the application

its saved state and successfully complete migration.

58

the result of collaborative work between both local and remote

can be decomposed into the foundation and the realization phase

. During the foundation phase, the local Window Manager identifies the appropriate user

and initiates the migration process by requesting from the application on

the foreground to save its state through the State Manager. When save is complete

application returns the unique StateId received by the State Manager to the Local Window

er, who creates a Migrate Command with the application’s name, the StateId and the

remote context and forwards it to the Artifact Director. When received by the Artifact

purposed internal module, the Migration Command Handler, to

extract the necessary information from the received Migration Command and generate an

Application Command with a “STATE--StateId” argument, denoting that the remote

application will have restore its state. The foundation completes by the transmission of t

generated command to the remote node.

The realization phase starts when the remote Artifact Director receives that command, and

engages by modules running on the remote node only. The Artifact Director after

successfully validating that the command was received intentionally, the contained data are

not corrupted and the Security Manager approves migration, requests from the State

Manager to transfer locally and revalidate the data pointed by the StateId (the exact process

was described in detail in the State Manager section).

Figure 19: Application Migration Process

Finally, the Artifact Director notifies the Window Manager to launch the appropriate

application and forward the Application Command that enforces the application

its saved state and successfully complete migration.

result of collaborative work between both local and remote

realization phase (Fig.

. During the foundation phase, the local Window Manager identifies the appropriate user

and initiates the migration process by requesting from the application on

the foreground to save its state through the State Manager. When save is completed, the

application returns the unique StateId received by the State Manager to the Local Window

er, who creates a Migrate Command with the application’s name, the StateId and the

remote context and forwards it to the Artifact Director. When received by the Artifact

purposed internal module, the Migration Command Handler, to

extract the necessary information from the received Migration Command and generate an

StateId” argument, denoting that the remote

application will have restore its state. The foundation completes by the transmission of the

The realization phase starts when the remote Artifact Director receives that command, and

engages by modules running on the remote node only. The Artifact Director after

received intentionally, the contained data are

not corrupted and the Security Manager approves migration, requests from the State

Manager to transfer locally and revalidate the data pointed by the StateId (the exact process

Finally, the Artifact Director notifies the Window Manager to launch the appropriate

application and forward the Application Command that enforces the application to restore

59

4.2 Device Manager

The Device Manager offers a generic mechanism for the manipulation of heterogeneous

devices, by any ClassMATE-enabled application. For that to be achieved, the same Interface-

based approach used by the Platform Expert is adopted as well, where every device exposes

its functionality as a service API, completely dissociated from the hardware layer; an artifact

that lacks a particular device can emulate its functionality through software by

implementing the appropriate interface. Therefore, the Device Manager is the sole

extension point where new devices can be added, whereas any ClassMATE-enabled

applications request the appropriate service API from the Platform Expert.

Every artifact accommodates a Device Manager instance which handles the input / output

devices and supports their interaction with any application in the ClassMATE cloud. During

initialization, the Device Manager uses the Service Factory pattern to resolve the services of

the current platform (the factory instance is responsible for instantiating the appropriate

objects); hence, both remote and local devices are transparently supported by the system,

as the interaction is orchestrated by the Class Orchestrator and the communication needs

are handled by the ClassMATE’s Events Layer.

4.2.1 Towards a universal Multitouch solution

The latest trends in human-computer interaction indicate a turn towards multitouch

interaction schemes, especially after the launch of Apple’s Iphone and other several

multitouch-capable tablets and screens. Moreover, the computer’s vision domain

contributes towards the same track, supporting to reproduce multitouch interaction through

vision. The great variation between the protocols used by hardware vendors with those used

by software-based solutions prevents the establishment of a commonly acceptable, yet

scalable Multitouch API. The latter has changed with the advent of Microsoft Windows 7 and

the Windows Touch technology [29] (Fig. 21). Multitouch functionality has been

incorporated as an integral part in the operating system’s core and full support was added to

the application development tools [27]; hence applications can take full advantage of the

native multitouch support by using native APIs. ClassMATE introduces an extensible

mechanism where any hardware- or software- based multitouch system can be

transparently installed, with no modifications either to the application or to the Windowing

System.

60

Figure 20: Windows 7 sends messages from multitouch hardware to an application

The introduction of multitouch interaction established new interaction schemes like the

Multitouch Manipulation. Manipulations can be considered as a superset of gestures. The

difference between manipulations and gestures is best demonstrated through a simple

example. The user can expand an object and at the same time move it using manipulations;

with gestures, only one at a time can be performed. This ability to manipulate an object in

real time makes applications more intuitive to users by enabling a more realistic experience.

The Manipulation APIs are used to simplify transformation operations on objects for touch-

enabled applications. Manipulations are performed in Windows 7 through the manipulations

COM object [28]; without that built-in mechanism, every developer should keep track of

active touch points, calculate numerous metrics and, finally, manually apply the appropriate

transformations.

Manipulations are transparently calculated by each WPF components private manipulation

processor using Windows Touch Messages generated by the driver of the touch-capable

device, as depicted in the following Fig. 22.

61

Figure 21: Windows 7 Manipulation Overiew

In ClassMATE though, the built-in processors cannot directly translate and use ClassMATE’s

Touch events to calculate manipulations. To address that, the ManipulationEnabled API was

introduced to avoid low level driver programming; every application that is manipulation-

enabled should implement it and provide an operation that returns its internal manipulation

processor to the ClassMATE system to inject custom code that can recognize and handle the

custom events. In addition to the ManipulationEnabled API, a number of supplementary

classes, required by the Windows Touch mechanism, were introduced to provide the

necessary functionality.

• The VisionBasedTouchDevice emulates in software a physical custom touch device

and encapsulates touch-related information: (i) the position of the touch, (ii) the

exact time at which the event occurred, and (iii) a flag denoting its type, (i.e.,

TouchDown when a finger touches the screen for the first time, TouchMove when a

finder is moved over the screen without losing contact, and TouchUp when a finger

is drawn away from the screen).

• The TouchInputInterface is the publicly exposed interface that provides Touch

functionality. Its’ key feature is the provided event hook, where applications can

register their own delegates to be invoked when a touch event occurs; the same

technique is following for native WPF touch events as well. The event mechanism

used is the one built-in .NET framework, so as to optimize performance and offer

great user experience.

• Finally, the TouchInputHandler is the Touch system core, as it communicates

with the vision system

events, which when received by

they were generated by a physical touch device. The handling process includes: (i)

the translation of the coordinate system, as the one used by vision differs from that

used by the screen, and (ii) the determination of the event

For that to be achieved, the handler maintains a dictionary of the currently active

contacts, and upon change, identifies the newly added contacts, the contacts that

moved, and those that do not exist anymore and generates the appropr

events.

4.2.2 Book Localizer

The Book Localizer is a local module that resides on every artifact and is charged with

identifying the current book page that the ClassBook Reader Application should display

23). In the technologically-augmented de

the currently open page and notify the Artifact Director to launch, if necessary, and update

the ClassBook Reader appropriately. For the remaining artifacts, that module is emulated

through software as they lack the necessary hardware. In that case the exact page is

selected by combining data from the class timetable retrieved by the Class Orchestrator, the

obligations of the course (i.e.

Orchestrator and finally current student’s profile (already prepared assignments, pending

tasks) by the User Profile.

Figure

62

Finally, the TouchInputHandler is the Touch system core, as it communicates

with the vision system. Its main objective is to translate vision events to Touch

events, which when received by the WPF framework generate the same effect as if

they were generated by a physical touch device. The handling process includes: (i)

the translation of the coordinate system, as the one used by vision differs from that

used by the screen, and (ii) the determination of the event type (up, down move).

For that to be achieved, the handler maintains a dictionary of the currently active

contacts, and upon change, identifies the newly added contacts, the contacts that

moved, and those that do not exist anymore and generates the appropr

The Book Localizer is a local module that resides on every artifact and is charged with

identifying the current book page that the ClassBook Reader Application should display

augmented desk [3], the front-facing camera is utilized to identify

the currently open page and notify the Artifact Director to launch, if necessary, and update

eader appropriately. For the remaining artifacts, that module is emulated

through software as they lack the necessary hardware. In that case the exact page is

selected by combining data from the class timetable retrieved by the Class Orchestrator, the

(i.e., ongoing tasks and assignment deadlines) also from the Class

Orchestrator and finally current student’s profile (already prepared assignments, pending

Figure 22: Physical Course book Localization Process

Finally, the TouchInputHandler is the Touch system core, as it communicates directly

events to Touch

rate the same effect as if

they were generated by a physical touch device. The handling process includes: (i)

the translation of the coordinate system, as the one used by vision differs from that

type (up, down move).

For that to be achieved, the handler maintains a dictionary of the currently active

contacts, and upon change, identifies the newly added contacts, the contacts that

moved, and those that do not exist anymore and generates the appropriate touch

The Book Localizer is a local module that resides on every artifact and is charged with

identifying the current book page that the ClassBook Reader Application should display (Fig.

facing camera is utilized to identify

the currently open page and notify the Artifact Director to launch, if necessary, and update

eader appropriately. For the remaining artifacts, that module is emulated

through software as they lack the necessary hardware. In that case the exact page is

selected by combining data from the class timetable retrieved by the Class Orchestrator, the

ongoing tasks and assignment deadlines) also from the Class

Orchestrator and finally current student’s profile (already prepared assignments, pending

63

5 Content Personalization

One of the key features of the ClassMATE system is the delivery of personalized education

content based on the current needs of the individual learner. For that to be achieved various

modules collaborate. On the one hand, the User Profile provides the user-related

parameters for the content personalization process. In addition to the “common” static

personal data (e.g., name, surname, grade, scores, etc.), dynamic data are collected at

runtime though interaction monitoring and encoded into behavioral models that facilitate

the adaptation of the filtering process. On the other hand, the educational content is

enhanced with metadata that convey information about its educational attributes and the

taxonomies under which is classified, whilst a sophisticated content discovery mechanism

utilizes the available metadata entries to semantically identify educational content suitable

for the current context of use (e.g., course) and the current student. Finally, the content

personalization mechanism is built in a modular way to facilitate: (i) content addition, (ii)

introduction of new classifications schemes or modification of existing ones, and (iii) query

adjustments.

5.1 User Profile

The User profile is a collection of personal data associated to a specific user; therefore a

profile refers to the explicit digital representation of a person's identity and characteristics.

The information contained in the profile can be exploited by systems taking into account the

persons' characteristics and preferences, for instance by adaptive hypermedia systems, to

personalize the human computer interaction. In ClassMATE the user profile is not a passive

structure, as in various computer applications where it simply identifies the valid users of

the system, but is rather an active component that evolves through time, and bridges the

ambient environment with the Data management layer. The User Profile’s main objectives

resemble those of the IMS Learner Information Package [19], where the data model that

describes the characteristics of a learner can be used for:

• Recording and managing learning-related history, goals, and accomplishments

• Engaging a learner in a learning experience

• Discovering learning opportunities for learners

In the ClassMATE system two discrete profiles exist: (i) the teacher’s and (ii) the student’s

profile. The teacher’s profile is not yet fully exploited for educational purposed and mainly

acts solely as a passive personal data repository. The student’s profile on the other hand, is

“fully” utilized by the system both to personalize the content discovery process to the

64

particular educational needs of each individual student, and log commonly used interaction

patterns in order to define a student’s behavioral profile. The behavioral characteristics and

the analysis process will be described in more details in the next section. The student’s

profile is divided into four segments: (i) personal data, (ii) student record, (iii) user

preferences, and (iv) behavioral attributes.

• The personal data, as implied by their name, include personal information such as

full name, date of birth, e-mail address, home address, etc.

• The student record includes detailed grades (oral and written examinations,

projects, etc.) and activity list (pending exercises, scheduled examinations, etc.) for

the ongoing courses, and a complete history of the past years’ records.

• In the user preferences section, the user’s customization options [22] are stored

(e.g., desktop background, windows skins, color themes, etc.)

• Finally, the behavioral attributes section accommodates the knowledge resources

library of students’ behavior patterns, dynamically gathered via their activity

monitoring.

To better understand the behavioral attributes used by the ClassMATE system, consider that

the available educational content is structured under thematic areas (e.g., mathematics,

physics, linguistics, etc.) and every single educational exercise is marked with a type (e.g.,

multiple-choice exercise, fill-in-the-gap exercise, free-text exercise, etc.) and a difficulty tag

(i.e., easy, normal, hard).

The behavioral attributes are categorized into course-specific and general. The first category

refers to metrics about a student’s attitude towards course-specific activity, while the latter

includes accumulated metrics regarding all the student activities. The complete list of those

attributes can be found below:

General Behavioral Attributes:

• ratio of successfully answered exercises, per exercise type, per difficulty level, and

correlated, e.g., 75% correct answers on multiple choice exercises, 80% on

easy/medium questions, and 20% on hard

• amount of hints asked per exercise type, per difficulty level, and correlated, e.g., 15

hints asked on hard exercises; 12 on free-text exercises and the remaining 3 on

medium

• favorite and disliked difficulty level(s), e.g., {favorite: medium, hard}, {disliked: easy}

65

• favorite and disliked exercise type(s), e.g., {favorite: multiple choice, image-to-image

matching}, {disliked: free-text}

• favorite and disliked course(s), e.g., {favorite: mathematics, physics}, {disliked:

linguistics}

Course-specific Behavioral Attributes (for instance in the context of mathematics):

• favorite exercise type(s), e.g., multiple-choice regarding theorems

• favorite difficulty level(s), e.g., medium or hard

• favorite and disliked topics, e.g., differential equations, trigonometry

Activity related metrics not only assist the learners by providing personalized content

focused on their weak thematic areas, but also improve the educational process by reporting

class’s activity to the teacher; hence, the teacher is able to modify the course schedule,

dictate exercises that the students prefer and augment course syllabus with assistive

material in order to bridge any knowledge gaps.

The student profile data depending on their modification rate are categorized into those

that never change (static), those that gradually change (semi-dynamic), and those that

continuously change driven by user interaction (fully-dynamic). Static data are manually

defined once and never change (e.g., full name, date of birth, etc.), semi-dynamic data are

automatically generated by the ClassMATE core according to environmental triggers (e.g.,

the announcement of course’s upcoming schedule or final examination’s grades). Finally,

regarding the fully-dynamic attributes (e.g., preferred exercise type, preferred difficulty

level, etc.), standard learning styles are used for their initialization (only for the freshman

students), while the Activity Monitor module dynamically updates them at-runtime through

monitoring user interaction. These data gathered by the User Profile service, through an

iterative monitoring and evaluation process, constitutes the main feedback for the Context

Manager, so that a learner’s centric rational is applied for content delivery and interaction

control, thus providing adaptation to individual student’s needs. For efficient monitoring to

be achieved, both the ClassMATE-enabled applications and the ClassMATE core are obliged

to notify the Activity Monitor of interesting events (e.g., the student discarded an exercise,

the student successfully solved a mathematic problem, the student asked for additional

information regarding some topic, etc.). When notified, the Activity Monitor correlates the

data from the received event with contextual information (e.g., current course/topic based

on the timetable, current exercise difficulty level, etc.) and u

respectively.

Figure

The following scenario illustrates the overall process

a student has to solve three exercises,

difficulty regarding the Pythagorean Theorem. The system randomly proposes the hard

problem first, but the student is not confident enough for its solution and decides to skip it.

The theory exercise is propo

Finally, the simple problem is proposed and the student solves it correctly. The pending hard

problem is once again proposed and the student solves it correctly using two of the available

hints. The above scenario yields a pattern, in the context of Mathematics, where the user

prefers problems over theory exercises

system is now aware of that pattern and in the future, in the context of Mathemat

that particular user, it will firstly propose the problems and then the theory exercises; and if

the user asks for supplementary content the system will prioritize simple instead of hard

problems. However, the system will periodically try to ad

monitor and re-evaluate the student’s learning behavior pattern once again. Alternative

patterns based on the aforementioned scenario that could alter the delivery order could be:

66

on the timetable, current exercise difficulty level, etc.) and updates the student profile

Figure 23: Automatic Content Discovery process

The following scenario illustrates the overall process (Fig. 24). In the course of Mathematics,

a student has to solve three exercises, namely one exercise and two problems of varying

difficulty regarding the Pythagorean Theorem. The system randomly proposes the hard

problem first, but the student is not confident enough for its solution and decides to skip it.

The theory exercise is proposed secondly, but the student postpones it for a later session.

Finally, the simple problem is proposed and the student solves it correctly. The pending hard

problem is once again proposed and the student solves it correctly using two of the available

s. The above scenario yields a pattern, in the context of Mathematics, where the user

prefers problems over theory exercises, and in particular simple over hard problems. The

system is now aware of that pattern and in the future, in the context of Mathemat

particular user, it will firstly propose the problems and then the theory exercises; and if

the user asks for supplementary content the system will prioritize simple instead of hard

problems. However, the system will periodically try to advance the difficulty level and

evaluate the student’s learning behavior pattern once again. Alternative

patterns based on the aforementioned scenario that could alter the delivery order could be:

pdates the student profile

. In the course of Mathematics,

namely one exercise and two problems of varying

difficulty regarding the Pythagorean Theorem. The system randomly proposes the hard

problem first, but the student is not confident enough for its solution and decides to skip it.

sed secondly, but the student postpones it for a later session.

Finally, the simple problem is proposed and the student solves it correctly. The pending hard

problem is once again proposed and the student solves it correctly using two of the available

s. The above scenario yields a pattern, in the context of Mathematics, where the user

in particular simple over hard problems. The

system is now aware of that pattern and in the future, in the context of Mathematics and for

particular user, it will firstly propose the problems and then the theory exercises; and if

the user asks for supplementary content the system will prioritize simple instead of hard

vance the difficulty level and

evaluate the student’s learning behavior pattern once again. Alternative

patterns based on the aforementioned scenario that could alter the delivery order could be:

67

either a student who prefers practicing in theory exercises and then move to problems, or a

student who prefers solving hard challenging problems.

5.2 DataSpace

The DataSpace provides an abstraction layer between the applications and the physical

storage layer. This added layer not only encapsulates the implementation details, but also

makes available the following key facilities: (i) a single reference point to content

repositories providing transparent content access and management, (ii) a content

classification mechanism providing the necessary content-related rationale to data mining

procedures, and (iii) a sophisticated filtering mechanism for personalized content delivery

based on user needs and preferences.

The Data Space strongly collaborates both with the User Profile and the ClassMATE core to

collect the essential static or dynamic user- and context- characteristics to enhance the

decision process. Therefore, the ClassMATE-enabled applications are transformed from “fat”

clients who independently provide rich functionality, to “thin” clients with limited

functionality concentrated solely on providing a graphical user interface, as the ClassMATE

core and the DataSpace deals with the content remaining functionality.

5.2.1 Related technologies overview

The DataSpace implementation has adopted numerous well-established data management

standards and mining techniques particularly suited for e-learning platforms; a brief

overview of these technologies is provided in the following section.

5.2.1.1 Learning Object Metadata (LOM)

The Learning Object Metadata (LOM) [18] specifies a conceptual data schema that defines

the structure and specifies the data elements of a metadata instance for a learning object. A

learning object is defined as any entity -digital or non-digital- that may be used for learning,

education or training. A Metadata instance for a learning object describes relevant

characteristics of the learning object to which it applies. Such characteristics may be

grouped in general, life cycle, meta-metadata, educational, technical, educational, rights,

relation, annotation, and classification categories.

LOM is intended to be referenced by other standards that define the implementation

descriptions of the data schema, so that a metadata instance for a learning object can be

used by a learning technology system to manage, locate, evaluate or exchange learning

objects, while it does not define how a learning technology system represents or uses a

68

metadata instance for a learning object. Its purpose is to facilitate search, evaluation,

acquisition, and use of learning objects, for instance by learners or instructors or automated

software processes. This multi-part standard also facilitates the sharing and exchange of

learning objects, by enabling the development of catalogs and inventories while taking into

account the diversity of cultural and linguistic contexts in which the learning objects and

their metadata are reused.

5.2.1.2 Sparql

RDF is a directed, labeled graph data format for representing information in the Web. RDF is

often used to represent, among other things, personal information, social networks,

metadata about digital artifacts, as well as to provide a means of integration over disparate

sources of information. The SPARQL [24] query language for RDF was designed to include

triple patterns, conjunctions, disjunctions, and optional patterns in queries, and return an

XML document format for representing their results.

Most forms of SPARQL query contain a set of triple patterns called a basic graph pattern.

Triple patterns are like RDF triples [38], except that each of the subject, predicate and object

may be a variable. A basic graph pattern matches a subgraph of the RDF data when RDF

terms from that subgraph may be substituted for the variables and the result is RDF graph

equivalent to the subgraph.

The example below shows a simple SPARQL query to find the title of a book from the given

data graph. The query consists of two parts: the SELECT clause identifies the variables to

appear in the query results, and the WHERE clause provides the basic graph pattern to

match against the data graph. The basic graph pattern in this example consists of a single

triple pattern with a single variable (?title) in the object position.

Data <http://csd.uoc.gr/books/book1> <http://purl.org/dc/elements/1.1/title> "SPARQL

Tutorial" .

Query SELECT ?title

WHERE

{

 < http://csd.uoc.gr/books/book1> <http://purl.org/dc/elements/1.1/title> ?title .

}

Result "SPARQL Tutorial"

5.2.1.3 SemWeb

SemWeb.NET [36] is a Semantic Web/RDF library written in C# for Mono or Microsoft's .NET.

The library can be used for reading and writing RDF (XML, N3), keeping RDF in persistent

69

storage (memory, MySQL, etc.), querying persistent storage via simple graph matching and

SPARQL, and making SPARQL queries to remote endpoints. Limited RDFS and general-

purpose inferencing is also possible. The SemWeb's API is straightforward and flexible. The

library has no particular tools for OWL schemas. It operates at the level of RDF triples only.

The library’s facilities used in ClassMATE are listed below:

• RDF/XML: Reading and writing RDF/XML (including XMP). The reader is streaming,

which means the entire document doesn't ever need to be loaded into memory.

• Notation 3: Reading and writing NTriples, Turtle, and most of Notation 3

• SQL DB-backed persistent storage for MySQL, combined with the extended Select

operation to query many things at once (much faster than making individual calls to

the underlying database)

• The available in-memory store

• RDFS Reasoning and rule-based reasoning based on the backward-chaining Euler

engine, over any data.

5.2.2 Metadata

Metadata is loosely defined as data that describe other data. Metadata is a concept that

applies mainly to electronically archived or presented data, and is used to provide a

substantial amount of information about those elements (e.g., definition, structure,

administrative directives, etc.). Metadata is structured according to a standardized concept

using a well-defined metadata scheme, and the contained information could refer to:

• means of creation of the data

• purpose of the data,

• time and date of creation,

• creator or author of data,

• placement on a network (electronic form) where the data was created,

• etc.

For instance, a digital image may include metadata that describes the camera settings, how

large the picture is, the color depth, the image resolution, when the image was created, and

other data. A text document's metadata may contain information about the size of

document is, the author, the date when the document was written, and a short summary of

the document.

70

Among others, metadata can be used during content discovery to associate their data

elements. The term metadata discovery refers to a process where automated tools discover

the semantics of a data element in data sets and produce a set of mappings between the

data source elements and a centralized metadata registry. Based on the matching algorithm

used, the discovery process can be categorized as lexical (exact, synonym pattern), semantic

and statistical matching [41].

In the context of ClassMATE, where automatic content discovery is a vital task, the

employment of metadata could significantly improve results accuracy. In particular, the LOM

scheme was selected to define the metadata structure, as the majority of its contained data

(general, educational, relation and classification sections) fit the ClassMATE needs and

requirements. thus making LOM an ideal choice. As a result, the mining and classification

processes heavily engaged metadata-related logic in their implementation.

Metadata is data. As such, metadata can be stored and managed in a registry or a

repository. LOM however does not provide a standardized solution concerning metadata

storage. Subsequently, the storage / retrieval mechanism was implemented from scratch

following the specification word by work without any derivations. The XML language was

preferred as the implementation technology over other binary-based solutions, because it

not only facilitates readability and modifiability through a simple text editor, but also

ensures portability as every learning object can always be accompanied by its metadata. The

metadata population will be described in more details late on; in short it is a semi-dynamic

process where the system initializes a metadata entry during learning object’s admittance

using contextual information which the user can later refine and augment.

The LOM implementation in ClassMATE will be described in more details in the next section.

5.2.2.1 LOM Types

The LOM specification defines a set of custom data structures (Fig. 25) used throughout the

hierarchy to ease implementation and facilitate maintenance. These structures include

primitive datatypes, containers and complex data types which either extend or combine

containers and primitives formulating composite structures. The entire collection of the

LOM data structures, their attributes and relations is depicted in the figure:

71

Figure 24: The LOM Datatype

The key functionality of every LOM structures is not limited to its contained attributes, but is

encapsulated in the operations that implement the IEquatable and the XMLSerializable

interfaces. The IEquatable interface is used for comparison purposes and every LOM

element should implement its own algorithm; that algorithm should not only refer to the

natural comparison method but implement a more sophisticated method where the natural

ordering is combined with the stored values to determine the result. The XMLSerializable

interface on the other hand, defines the appropriate methods that facilitate storage and

retrieval from an XML file. During LOM storage, every LOM element is dictated to provide a

string representation of its internal structure to be persisted in an XML file, while during

loading, given a valid XML element, every LOM element should populate its contents with

the supplied values.

5.2.2.2 LOM Metadata Structure & LOM Entry

The ClassMATE utilizes only a subset of the LOM specification (Fig. 26) during the mining and

classification processes. This subset contains the following LOM sections: (i) general, (ii)

technical, (iii) educational, (iv) relation, and (v) classification; every section defines a new

class type composed by various LOM types and implements the IEquatable and

XMLSerializable interfaces.

The general section groups the general information that describes a learning object as a

whole, and is mainly used to identify the associated a learning object when necessary. The

technical section describes the technical requirements and characteristics of a learning

object, and is used during the mining process to filter the related content based on the

MIME type. The educational section describes the key educational or pedagogic

characteristics of a learning object, and its main objective is to personalize the content to fit

the learner’s needs before its delivery. The relation section describes the relationship

between a learning object and other learning objects, if any, and is used during the mining

72

process to efficiently resolve other leaning objects already related to the current. Finally, the

classification section describes where a learning object falls within a particular classification

system, and is employed during mining and re-classification to resolve other learning objects

that belong to the same taxonomy (e.g., siblings), and either return them or associate them

with the current learning objects (by appropriately modifying their relation section).

The LOM Entry is a single aggregator that collects together these individual objects in a

single class and exposes the appropriate operations to access them. In addition to these

accessors methods, the LOM Entry also implements the operations defined by the

IEquatable and XMLSerializable interfaces, but their implementation is straightforward as

every request is delegated to the contained objects for execution.

Figure 25: Learning Object Metadata (LOM) Specification

5.2.3 Resource Reference Format

The DataSpace module encapsulates a content classification and a sophisticated filtering

mechanism for personalized content delivery. For the mining process to be successful, every

data object available in the ClassMATE’s repository should be classified and accompanied by

the relevant metadata. However, the content delivery does not automatically ensure that

the content is displayed properly by the application. An XML-based file, the resource

reference file, is generated to hold references to the actual data resources discovered by the

Data Collector.

73

The structure of that file varies according to the type of the discovered content. The

DataSpace has defined a basic, yet extensible, collection of structures, namely Multimedia,

HotSpots and Hints, that are sufficient for the needs of the currently handled content types.

The Data Collector according to the type of the discovered content uses the respective

delegate to transform the results of the mining process into the appropriate structure, and

then store them into a resource reference file. Any ClassMATE-enabled application that

wishes to present those data is solely responsible for parsing the resource reference file and

loading the designated content. To optimize performance, the Data Collector, prior to

generating the resource reference file, copies locally (in collaboration with the File Manager)

any remote resources, hence the stored references point to artifact-specific locations.

During migration though, these artifact-specific locations are no longer valid and should be

replaced. The Data Collector’s delegates are responsible for reloading the previously stored

resource reference files and replacing the any invalid data.

The above observations led to the definition of the ResourceReference API, which defines

two operations only: WriteToStream and RevalidateData. Every internal component that

belongs to the DataSpace module and generates a resource reference file should implement

that interface appropriately. The WriteToStream operation takes as input arguments the

results of the mining process (as a sparql XML result set) and an output stream, and stores

the results in the appropriate structure in the output stream. The RevalidateData operation

takes as input arguments an inputstream that corresponds to a resource reference file

(whose structure can be handled by the current delegate) and an output stream, replaces

any invalid data contained in the input stream, and stores the updated version in the same

structure in the output stream.

<ResourceFormats>

<FormatPair>

 <MimeTypeName> Mime Type </MimeTypeName>

 <ResourceFormat> Format’s Identifier </ResourceFormat>

 <ResourceFormatSchema> Format’s Schema </ResourceFormatSchema>

</FormatPair>

<FormatPair>

 More pair definitions go here

</FormatPair>

</ ResourceFormats >

5.2.3.1 HotSpot

The HotSpot format is exchanged among applications that display course’s content as an

image (e.g., the electronic version of a physical course book page) that contains interactive

74

spots which can trigger the launch of other applications. Such an example is the ClassBook

Application that displays the electronic version of the currently open page of the physical

book. The images and exercises displayed on any page are selectable, and when selected the

relevant content discovery processed is triggered and the appropriate ClassMATE-enabled

application is launched (e.g., the Multimedia Application is launched if an image is selected

or the Multiple-Choice Exercise if an exercise is selected).

The structure of the resource reference file regarding Hotspots, as depicted below, contains

the path to the image that should be displayed (as aforementioned the actual image file is

copied locally to optimize loading time), and the list of hotspots available on that image. For

every hotspot, the bounding points specify the area in which every user action should trigger

a MIME command, and optionally designates the region that could be visually decorated (by

the application) to attract the user’s attention. In addition to the bounding points, the MIME

type of the learning object contained in that area is defined (e.g., image/png) and the

Command entry is populated with that learning object’s URI (e.g.

6thGrade_EnglishCourseBook_Chapter3_Unit3_Lesson1_RollerCoasterImage). When the

user triggers a mime event, the application instead of having to identify the selected object,

simply packages the values of the MIME and the Command entries in a MIME Command and

forwards it to the ClassMATE core for handling.

<HotSpotElements>
<ImageSource> Value </ImageSource>
<HotSpots>
 <HotSpotElement>
 <BoundingPoints>
 <Point>
 <X> Normalized X coordinate </X>
 <Y> Normalized Y coordinate </Y>
 </Point>
 <Point>
 More point definitions
 </Point>
 </BoundingPoints>
 <MIME> Mime type </MIME>
 <Command> Command (Learning object’s URI) </Command>
 </HotSpotElement>
</HotSpots>
<HotSpots>
 More hotspots definitions
</HotSpots>

</HotSpotElements>

75

The HotSpots module implements the ResourceReference API to facilitate its use by the

DataSpace. The WriteToStream operation populates the various HotSpot entries by parsing

the sparql results provided as input, whereas the RevalidateData operation loads the XML-

based representation of a HotSpot structure, locates the image in the ClassMATE’s

repository using the value of the ImageSource tag, makes a local copy of it to the remote

artifact and then replaces the value to point to the new location.

5.2.3.2 Multimedia

The Multimedia format is exchanged among applications that display multimedia content

(e.g., images, videos and sound) such as the Multimedia Application. The structure of the

Multimedia resource reference file contains three distinct sections,Images, Videos and

Audio, whereas any multimedia reference file should contain at least one of these sections.

Each section contains the list of learning objects that should be displayed, while for each

object the path and URI are stored.

The Multimedia module implements the ResourceReference API. The WriteToStream

operation generates a XML-based file with the appropriate format, while the RevalidateData

operation for each path entry copies the data file from the ClassMATE repository to the

remote artifact, and then updates the path value with the new artifact-specific location.

<Multimedia>
<Images>

 <Image>
 <ImagePath> The path to the image file </ImagePath>

 <ImageURI> The unique identifier of this learning object </ImageURI>
 </Image>
 <Image>
 More image definitions
 </Image>

</Images>
<Videos>

 <Video>
 <VideoPath> The path to the video file </VideoPath>

 <VideoURI> The unique identifier of this learning object </VideoURI>
 </Video>

</Videos>
<Audio>

 <Audio>
 <AudioPath> The path to the audio file </AudioPath>

 <AudioURI> The unique identifier of this learning object </AudioURI>
 </Audio>
 </Audio>
</Multimedia>

76

5.2.3.3 Hint

The Hint format is used by the application that take advantage of ClassMATE’s mining and

personalization features to assist the student when solving an exercise. Hints are presented

gradually while their content is adapted to fit the needs of each individual learner, for

instance augment textual information with an explanatory image for visual learners. Every

Hint resource reference file is structured in three sections that correspond to their displaying

order. The first section provides the definition of the selected item (e.g., the black in a

multiple choice exercise) in a textual representation accompanied by a collection of

multimedia files (image, video and audio file) that describe the same definition in a

multimodal manner. The second section provides a personalized collection of examples of

use that include the available options (e.g., multiple-choice alternatives, available words for

selection in a matching exercise). Finally, the third section contains a list of incorrect options

that should be eliminated, leaving the student with a fewer choices between the correct

answer and one or more incorrect ones.

The Hint module also implements the ResourceReference API. The WriteToStream operation

generates a XML-based file conforming to the Hint format, while the RevalidateData

operation only affects the first section where the contained path entries, if any, are updated

with the new artifact-specific locations.

<Hints>
<FirstHint>

 <Definition> A definition of the word to be filled-in the selected sentence </Definition>
 <ImagePath> A representative image </ImagePath>
 <VideoPath> A representative video </VideoPath>
 <AudioPath> A representative audio file </AudioPath>

</FirstHint>
<SecondHint>

 <Example> An example of use </Example>
 <Example>
 More examples
 </Example>

</SecondHint>
<ThirdHint>

 <Eliminate> Word A </Eliminate>
 <Eliminate> Word B </Eliminate>
 </ThirdHint>
</Hints>

5.2.4 Content Classification and Personalized Delivery

The Data Space is not a simple content repository in terms of a local data holder, but in fact

it integrates a sophisticated metadata repository, with references to the actual system’s

data.

77

5.2.4.1 Taxonomies Overview

Taxonomy is the practice and science of classification. A taxonomy, or taxonomic scheme, is

a particular classification ("the taxonomy of ..."), arranged in a hierarchical structure.

Typically, it is organized by supertype-subtype relationships; in such inheritance

relationships, the subtype by definition inherits the properties, behaviors, and constraints as

the supertype, plus one or more additional properties, behaviors, or constraints. The

concept of Taxonomy is particularly suited to the ClassMATE needs, as it allows efficient

classification and retrieval of the available content.

The Resource Description Framework (RDF) is a family of World Wide Web Consortium

(W3C) specifications originally designed as a metadata data model, but it evolved into a

general method for conceptual description or modeling of information. The RDF data model

is similar to classic conceptual modeling approaches, such as Entity-Relationship or Class

diagrams, as it is based upon the idea of making statements about resources in the form of

subject-predicate-object expressions, while a collection of RDF statements intrinsically

represents a labeled, directed multi-graph. These expressions are known as triples in RDF

terminology, where the subject denotes the resource, and the predicate denotes traits or

aspects of the resource and expresses a relationship between the subject and the object.

RDF's simple data model and ability to model disparate, abstract concepts has also led to its

increasing use in knowledge management applications for knowledge representation over

the relational model and other ontological models. The ClassMATE system builds the

knowledge base using the RDF technology and employs the SPARQL language as the

inference channel both for content classification and discovery.

The DataSpace module implements a sophisticated content delivery mechanism to enhance

the educational process and support the learners by providing access to related educational

material that would otherwise require intensive manual effort to discover. Towards this end,

the inclusion of taxonomies in the ClassMATE platform empowers the classification

mechanism by introducing in addition to the basic content categorization the notion of the

knowledge map between learning objects. The latter is achieved by the hierarchical

structure imposed by taxonomies that implicitly connects objects together and increases the

semantic coherence of the knowledge map. The introduction of taxonomies, combined with

the SPARQL query language and the ClassMATE’s User Profile module, results in a powerful

content retrieval mechanism that ensures personalized content delivery according to the

learner’s needs. Moreover, the DataSpace module integrates a semi-automatic content

reclassification mechanism through which a n

essential rationale to reclassify the already available content.

The classification-related data are stored independently of the actual content. A LOM

metadata file accompanies every learning object and any clas

stored in that file. Since learning objects may belong to more than one taxonomy at the

same time, the ClassMATE’s knowledge base consists of complex directed graphs that

should be used during content retrieval.

whenever a learning object is used

the query building will be available through its LOM file

taxonomies). However, a discovery process that iterates the contents of the repository and

parses every LOM file to find similarly classified objects is not efficient; thus the SemWeb

library is used to store in a relational database

performance (Fig. 27).

Figure 26: SemWeb Bridge

5.2.4.2 Taxonomies Installation

The RDF technology includes a

basic elements for the description

taxonomy’s structure is encapsulated in the contained concepts and their relationships,

ClassMATE employs the RDFS technology towards taxonomies def

modeled as an RDF class, and a relation between two concepts is modeled as a property

between their respective classes; the taxonomy’s hierarchy is implicitly defined though

classes inheritance. Taxonomy outlines the pattern and the h

be placed. The taxonomy data are represented as RDF instances, encoded in an external RDF

file built on top of the taxonomy schema; that file’s structure should be fully compliant with

the schema specification. Data files do

taxonomy schema populated with URIs pointing to the appropriate data. For example, an

78

reclassification mechanism through which a newly inserted taxonomy can provide the

essential rationale to reclassify the already available content.

related data are stored independently of the actual content. A LOM

metadata file accompanies every learning object and any classification-related values are

stored in that file. Since learning objects may belong to more than one taxonomy at the

same time, the ClassMATE’s knowledge base consists of complex directed graphs that

should be used during content retrieval. The use externally stored metadata ensures that

whenever a learning object is used as the search criterion all the essential

will be available through its LOM file (e.g., keywords, associated

taxonomies). However, a discovery process that iterates the contents of the repository and

parses every LOM file to find similarly classified objects is not efficient; thus the SemWeb

library is used to store in a relational database (MySQL) the content relations to optimize

SemWeb Bridge between RDF data and a Relational Database

onomies Installation

The RDF technology includes an extensible knowledge representation langu

basic elements for the description, called RDF Schema (often abbreviated as RDFS

taxonomy’s structure is encapsulated in the contained concepts and their relationships,

ClassMATE employs the RDFS technology towards taxonomies definition. A concept is

and a relation between two concepts is modeled as a property

between their respective classes; the taxonomy’s hierarchy is implicitly defined though

classes inheritance. Taxonomy outlines the pattern and the hooks where the actual data will

be placed. The taxonomy data are represented as RDF instances, encoded in an external RDF

file built on top of the taxonomy schema; that file’s structure should be fully compliant with

the schema specification. Data files do not enclose actual content, rather they hold the

taxonomy schema populated with URIs pointing to the appropriate data. For example, an

ewly inserted taxonomy can provide the

related data are stored independently of the actual content. A LOM-based

related values are

stored in that file. Since learning objects may belong to more than one taxonomy at the

same time, the ClassMATE’s knowledge base consists of complex directed graphs that

metadata ensures that

essential information for

keywords, associated

taxonomies). However, a discovery process that iterates the contents of the repository and

parses every LOM file to find similarly classified objects is not efficient; thus the SemWeb

(MySQL) the content relations to optimize

n extensible knowledge representation language, providing

abbreviated as RDFS). Since the

taxonomy’s structure is encapsulated in the contained concepts and their relationships,

inition. A concept is

and a relation between two concepts is modeled as a property

between their respective classes; the taxonomy’s hierarchy is implicitly defined though

ooks where the actual data will

be placed. The taxonomy data are represented as RDF instances, encoded in an external RDF

file built on top of the taxonomy schema; that file’s structure should be fully compliant with

not enclose actual content, rather they hold the

taxonomy schema populated with URIs pointing to the appropriate data. For example, an

79

instance entry of the Classbook taxonomy, defined based on course’s structure (i.e., book,

section, chapter, etc.), will contain the following values:

<Book>
 …

<Page>
 <hasPageId> 37 </hasPageId>

 <hasImage>
 6thGrade_EnglishCourseBook_Chapter3_Unit3_Lesson1_RollerCoasterImage
 </hasImage>

 </Page>
….

</Book>

The TaxonomyLoader is responsible for loading the taxonomy definition and data in the

system. The LoadTaxonomy operation parses the RDF schema, collects the contained classes

and properties and stores them in the TaxonomyRegistry maintained by the DataSpace. The

LoadInstances operation utilizes the TaxonomyRegistry to resolve the appropriate taxonomy

components (i.e., classes and properties) and uses them to insert the supplied taxonomy

instances in the database. For that to be achieved, the appropriate RDF triples should be

generated and fed to the SemWeb library to finalize insertion.

The implemented algorithm is a recursive process, which parses the data file. Whenever an

entry is completely loaded, it is immediately inserted in the database. The insertion query as

aforementioned is encoded as an RDF triple. Every class instance is either the subject or the

object of that triple while every property corresponds to the predicate; however, when an

RDF property starts from a class and points a literal value, then the object of that triple is an

RDF Literal instance. RDF parsing is a top-down process. However, in TaxonomyLoader’s case

the “shift-reduce” alternative was implemented, a widely-known mechanism by RDP

parsers, supported by an internal stack to “memorize” data during “shift” and facilitate their

insertion during “reduce”.

5.2.4.3 Content Collection Mechanism

The data gathering procedure is performed on demand by the Data Collector mechanism,

which searches in a “transparent” way diverse sources (e.g., web, file system, etc.) in order

to discover content related to a particular topic and present it through the appropriate

application. The various search criteria necessary to the collection process (e.g., topic,

related taxonomies, mime type, etc.) are determined by a particular learning object and the

URI of that object is provided to the Data Collector to facilitate the extraction of the

necessary information from the linked metadata file (accessible through the URI).

80

The LOM standard offers a great number of metadata structures to facilitate the content

discovery mechanism. The general description and keyword fields are used for “simple”

queries, while the educational fields (i.e., semantic density, difficulty and typical learning

time) are used for advanced queries. Classification attributes are also used during discovery,

through a modular mechanism for searching for relevant content; the information from the

classification section facilitate the Data Collector to identify the taxonomies under which the

current learning object is classified and use the relative queries to discover relevant content.

An information retrieval process begins when a query is entered into the system. Queries

are formal statements of information needs, while a query does not uniquely identify a

single object in the collection; instead, several objects may match the query, perhaps with

different degrees of relevancy. The queries used in the ClassMATE platform are expressed in

SPARQL to take full advantage of the semantic information provided by the RDF technology.

Queries are created by experts already acquainted with the taxonomies and the

interrelations of the contained concepts.

Every query retrieves data from a particular taxonomy only, whereas a taxonomy can have

multiple queries assigned to. Conflicts are eliminated by assigning every query to a specific

mime type which indicates the data type of the learning objects that will be eventually

discovered. Queries associated with the same mime type form a query family. The Query

Registry is used to collects all queries together to facilitate their maintenance. New queries

can be easily added in the registry, either under a section that corresponds to an existing

taxonomy, or under a new section introduced by a new taxonomy; in the latter case, the

added section implies that the new taxonomy has been successfully inserted in the

DataSpace. Every query includes some “blank” parameter placeholders that are dynamically

filled before execution with values extracted from the leaning object’s metadata file and

return the result set in an XML-based format. To facilitate federated queries, queries that

correspond to the same MIME type should return the same XML-format, while in the

majority of the cases only the URI of the discovered content provides adequate data for the

content collector to further process. Figure 28 presents a sample query family, extracted

from the actual system, that collects image files by calculating their relevance based on their

hierarchical distance (i.e., different images that belong to the same hierarchical branch and

share a common ancestor are treated as relevant).

Figure 27

The data collection delegate resolves

populates their parameters with data gathered from the learning object’s metadata file.

mining process is as follows:

1. Load the metadata of the learning object pointed by the supplied URI

2. Extract the taxonomies under which this learning object is classified

3. Initialize the list of acceptable MIME types with this learning object’s type

3.1. Augment the list of acceptable MIME with any explicitly defined types (e.g.

module that initiates the data collectio

the inclusion of specific mime types)

4. Request from the Query Registry those queries that match the specified criteria (i.e.

taxonomies and mime types)

5. Populate the parameter placeholders for each query and execut

SemWeb proxy

6. Collect the results into an federate result set (categorized per mime type) and

propagate them to the filtering and personalization module

The filtering process is divided into two distinct phases: the contextual filtering and

personalization. During the initial phase, contextual information is used to determine the

81

27: A sample query family that discovers related images

The data collection delegate resolves the appropriate queries from the Query Registry and

populates their parameters with data gathered from the learning object’s metadata file.

:

Load the metadata of the learning object pointed by the supplied URI

axonomies under which this learning object is classified

Initialize the list of acceptable MIME types with this learning object’s type

Augment the list of acceptable MIME with any explicitly defined types (e.g.

module that initiates the data collection mechanism is able to explicitly request

the inclusion of specific mime types)

Request from the Query Registry those queries that match the specified criteria (i.e.

taxonomies and mime types)

Populate the parameter placeholders for each query and execut

Collect the results into an federate result set (categorized per mime type) and

propagate them to the filtering and personalization module

The filtering process is divided into two distinct phases: the contextual filtering and

personalization. During the initial phase, contextual information is used to determine the

the appropriate queries from the Query Registry and

populates their parameters with data gathered from the learning object’s metadata file. The

Load the metadata of the learning object pointed by the supplied URI

Initialize the list of acceptable MIME types with this learning object’s type

Augment the list of acceptable MIME with any explicitly defined types (e.g., the

n mechanism is able to explicitly request

Request from the Query Registry those queries that match the specified criteria (i.e.,

e it through the

Collect the results into an federate result set (categorized per mime type) and

The filtering process is divided into two distinct phases: the contextual filtering and the

personalization. During the initial phase, contextual information is used to determine the

82

rule set, while during the second phase the remaining content is personalized according to

the learner’s profile. In more details, if the contextual filtering occurs during school-hours,

the course-irrelevant learning objects will be discarded from the result set (i.e., in the

context of foreign languages an image of a roller coaster could stimulate the discussion,

while the kinetic energy equation is not important); vice versa, if the same scenario occurs

during homework, then both learning objects will be returned as they are both equally

useful.

The personalization phase begins immediately after the contextual filtering completes;

during that phase the learner’s profile eventually determines the content to be delivered.

The behavior patterns stored in the User Profile clean up the remaining results by discarding

those learning objects that do not meet the learner’s needs; the LOM metadata are used to

determine if a learning object is suited for the particular learner. An illustrative example of

this process is the following: a learner wishes to study further on a topic and requests

supplementary material in the form of multiple choice exercises that belong to that topic.

The data collection process may return numerous exercises that match the search criteria;

nevertheless, only the exercises whose difficulty level matches the preferred will be

delivered, while the rest will be discarded. Any changes made in the User Profile have a

direct impact on the personalization process, as the filtering operations evolve to include

these updates.

At this point, the result set encloses the final list of learning objects (in the form of URIs) that

should be displayed; however, the ClassMATE-enabled applications require additional

information to display them properly. Therefore, the Data Collector instructs the Reference

Resource delegates to generate the appropriate description files by extracting any additional

information from the respective metadata files.

When the filtering and personalization process completes, the control is passed back to the

Data Collector to notify the Artifact Director and eventually present the discovered content

to the learner.

5.2.4.4 Content Classification

One of the key features of the ClassMATE’s content delivery mechanism is the ability to

reclassify content at runtime, thus altering the generated result set. Through that process

the knowledge map evolves as new connections are added. The classification process is

accomplished via RDF rationale that utilizes taxonomies (e.g., apply rules to select those

83

resources that derive from a specific base class or that share a specific property). Whenever

a new taxonomy is imported, it should be accompanied by a rationale that describes how to

classify the existing content under the specific taxonomy, and what should be inserted into

the LOM classification section. The rationale is expressed as a set of SPARQL queries (similar

to those used in the discovery process) that define the matching criteria. The learning

objects that meet these specifications are added into the reclassification result set which

update their classification sections to include the new taxonomy. For instance, consider the

following scenario where the system currently has classified its content using the initial

taxonomy and a new taxonomy regarding great Mathematicians was introduced. A sample

rationale would be: classify all the “theorems” under the field of “Mathematics”, using the

name of the mathematician that proved them.

The reclassification process includes, in addition to the metadata update, a database update

to store the latest semantic. To this purpose, a process similar to the file-based taxonomy

installation is followed; the reclassification result set is used to dynamically generate a set of

RDF triples which the SemWeb proxy imports to the database. Recalling the example from

the “Taxonomy Installation” section, a potential reclassification of the book taxonomy would

result in a list RDF triples in which the objects of the “hasPage” predicates will be

automatically populated with URIs from the reclassification result set.

Finally, since the process of classification is a highly power-demanding task, it is conducted

offline by the system, depending on its workload (e.g., overnight or during weekends).

5.2.5 Data Repository

Influenced by the emerging trend of online storage services where files are distributed in the

cloud, and the wide acceptance of file sharing protocols, ClassMATE instead of binding to a

particular solution, implements an open mechanism where data can be stored anywhere,

and the File Manager fetches them when necessary. That way the available storage space

explodes exponentially, the introduction of new data sources (e.g., online platforms that

host educational material) requires minimum modifications, and the available classroom

storage can be utilized as a local cache to decrease loading time.

5.2.5.1 File Manager

The File Manager is the entry point from which the ClassMATE core and the various

ClassMATE-enabled applications gain access to educational content. Content is not directly

loaded from its original location, but a local copy is made to optimize loading time and act as

a cache for future requests. File Manager encapsulates the necessary mechanisms to locate

84

a particular file in the available repository(ies) and fetch it locally to the current artifact. The

adopted approach facilitates the addition of any kind of repositories, local, networked, and

distributed, without affecting the applications since the Manager API remains unaltered.

Finally, in addition to the educational content repositories, the File Manager provides access

to locally stored dedicated repositories (e.g., state repository) to support fundamental

ClassMATE activities such as state suspension/restoration and migration.

5.2.5.2 Content Population

The first time that a specific content is searched by the system, it becomes immediately

available to the user who requested it, but it is stored in a pending state as unclassified

learning content, which will not be available until it is fully classified. However, whenever

new content is stored in pending state, it is actually partially classified by the system,

according to its current context of use (e.g., studying course, chapter, etc.), which is known

to the Context Manager, and then marked for approval by the teacher. The approval and

possible enrichment of its metadata is accomplished offline, followed by a new classification

round; upon its completion, the new content becomes available to the entire system as

appropriate learning content.

85

6 Conclusions and Future Work

6.1 Summary
This thesis has presented the ClassMATE architecture, a pervasive computing infrastructure

for education, focusing on fundamental issues that should be addressed in order for an AmI

educational environment to be supported. The ClassMATE system: (i) enhances the

classroom orchestration with context awareness, (ii) addresses heterogeneity in the AmI

classroom through well-established software design patterns, and (iii) supports educational

content classification and personalized delivery.

CLASSMate has been designed and developed taking into account the educational process

which takes place in the classroom and beyond, and in particular the needs and

requirements which emerge in the context of typical learning activities. In order to

immediately respond and orchestrate the AmI artifacts available in the classroom (e.g.,

interactive boards, smart desk, etc.) to address the needs of students and teachers

effectively and efficiently, ClassMATE introduced the Class Orchestrator and the Local

Director modules that monitor the ambient environment and make context-aware decisions.

Furthermore, the ClassMATE event type system was defined to satisfy the inter-

communication needs between the core and the external applications stemmed by

ClassMATE’s distributed nature. Finally, the Device Manager offers a generic mechanism for

heterogeneous devices manipulation, by encapsulating any platform-dependent operations

into abstract APIs.

Concerning student management, ClassMATE provides the User Profile module that not only

maintains student personal data, school records, etc., but also incorporates a learners’

behavior knowledge library (updated at runtime through user monitoring) for the intelligent

environment to provide educational content appropriately adapted to each user’s actual

learning needs.

The Data Space Manager facilitates content management. It supports actual data

distribution in multiple repositories, as access is performed through high-level operations

that encapsulate the necessary discovery logic. Moreover, a sophisticated content retrieval

mechanism is incorporated that performs “intelligent” semantic queries over the available

data to discover and fetch content tailored to the learning needs of the current student.

Finally, a collection of auxiliary mechanisms were implemented to facilitate the use of

ClassMATE framework by application developers; indicative examples are the Event Registry,

86

the Platform Expert, the State Manager, the Query Registry and more.

In summary, the outcomes of the work presented in this thesis include:

• the CLASSMate architecture for the Ambient Intelligent classroom

• the Context Manager for context-aware orchestration of the classroom environment

• the Device Manager for abstracting heterogeneous devices into high-level APIs

• the Data Space Manager for adaptive content discovery and personalized delivery

• the User Profiler for managing user-related information

• a collection of auxiliary programming tools such as the Event and the Classification

system.

6.2 Conclusion
In combination with the PUPIL system, which realizes the User Interface of AmI classroom

infrastructure, the ClassMATE system empowers scenarios such as the following:

• the student points an image to the electronic version of the book, the Context

Manager collaborates with the Data Space Manager to discover and retrieve

relevant content and when complete, notifies the PUPIL system to launch the

Multimedia application to display that content

• the student send an interesting image to the augmented board in order to discuss it

with the entire class; for that to be achieved the Artifact Director collaborates with

the Class Orchestrator and the State Manager to deploy the same application to the

remote artifact

• the student decides to solve an exercise electronically, points the exercise to the

electronic version of the book, the Context Manager in combination with the Data

Space Manager determine the application associated with the exercise type and

notifies PUPIL system to launch the electronic version of the exercise

• the student asks a hint for a specific exercise, , the Context Manager collaborates

with the Data Space Manager to discover, retrieve and personalize the appropriate

hints and when complete, notifies the PUPIL system to launch the hint application.

Overall, it can be claimed that this work constitutes a significant first step towards

supporting the extensive use of AmI technologies in the context of the classroom and of the

educational process in general, by facilitating the development of context-aware

87

applications through hiding the complexity deriving from their use on various artifacts and

devices.

6.3 Future Work
Hereafter, additional steps should be taken to fully support the initial concept.

The next step of this work would be to augment the available content and the classification

criteria and then conduct an exhaustive user-based evaluation in order to acquire additional

useful feedback from end users regarding the robustness of the system and the matching

accuracy of the discovered content. The results of this evaluation would lead to further

improvements and extensions of the Data Space Manager in order to better meet the

students’ needs. Towards this end, ClassMATE can assist the teacher, the ClassMATE system

by providing supplementary graphical tools that facilitate content insertion and semantic

query editing. The insertion tool should include both a single and a batch mode, where a

single or multiple educational elements would be automatically classified and stored in the

classroom repository(ies). Moreover, a classification refinement process would facilitate the

teacher in customizing a priori the classification process or manually correcting any

misclassified content afterwards. The semantic query editor would also increase the added

value of the Data Space Manager, especially if it simplifies the mapping process by utilizing

already available taxonomies and the conceptual relations among them.

In order to support mobile devices with limited processing power and functionality, some

ClassMATE modules should be ported to that particular platform(s).

Possible enhancements to the context-related system include the integration of additional

ambient devices in the Device Manager and the extension of the Class Orchestrator to react

to natural gestures (e.g., voice commands, gesture recognition, eye-tracking to determine

the receiver of a command etc.)

Finally, some general ideas that could empower the ClassMATE system would be to extend

the administration facilities to orchestrate the whole school and explore potential

interconnections with other ambient school environments or learning material repositories

to form a global school network.

88

7 Bibliography
[1] Abrami, P., Bernard, R., Wade, C., Schmid, R., Borokhovski, E., & Tamim, R. (2008). A

Review of E-learning in Canada: A Rough Sketch of the Evidence, Gaps and Promising

Directions.

[2] AMIGO. (2008). Amigo: Ambient intelligence for the networked home environment.

[3] Antona, M., Margetis, G., Ntoa, S., Leonidis, A., Korozi, M., Paparoulis, G., et al.

(2010). Ambient Intelligence in the classroom: an augmented school desk. Applied

Human Factors and Ergonomics.

[4] Assche, F. (2009). Towards Ambient Schooling.

[5] Bandelloni, R., & Paterno, F. (2004). Flexible Interface Migration. Proceedings of the

9th international conference on Intelligent user interfaces.

[6] Bell Communications Research, Inc. (1991). mailcap - Linux man page. Retrieved

from http://linux.die.net/man/4/mailcap

[7] Bravo, J., Hervás, R., & Chavira, G. (2005). Ubiquitous Computing in the Classroom:

An Approach through Identification Process. Journal of Universal Computer Science .

[8] Breuer, H., Baloian, N., Sousa, C., & Matsumoto, M. (2007). Interaction Design

Patterns for Classroom Environments.

[9] Brusilovsky, P., & Millán, E. (2007). User Models for Adaptive Hypermedia and

Adaptive Educational Systems.

[10] Conlan, O., Wade, V., Bruen, C., & Gargan, M. (2006). Multi-model, Metadata Driven

Approach to Adaptive Hypermedia Services for Personalized eLearning.

[11] Cook, D. J., & Das, S. K. (2007). How smart are our environments? An updated look

at the state of the art.

[12] Cooperstock, J. (2001). Classroom of the Future: Enhancing Education through

Augmented reallity. Proc. Conf. Human-Computer Interaction (HCI Int’l 2001), (pp.

688-692).

[13] Faison, T. (2006). Event-based programming: taking events to the limit. Apress.

[14] Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994). Design patterns : elements of

reusable object-oriented software.

[15] Georgalis, Y., Grammenos, D., & Stephanidis, C. (2009). Middleware for Ambient

Intelligence Environments: Reviewing Requirements and Communication

Technologies. Proc. 13th International Conference on Human-Computer Interaction

(HCI International 2009), (pp. 168-177). San Diego.

[16] Heilman, M., Collins-Thompson, K., & Cal, J. (2006). Classroom Success of an

Intelligent Tutoring System for Lexical Practice and Reading Comprehension.

89

[17] IEEE Learning Technology Standards Committee. (2001). Draft Standard for Learning

Technology-Learning Technology Systems Architecture (LTSA). IEEE Computer

Society, IEEE 1484.12.1-2002.

[18] IEEE LOM. (2002). Draft Standard for Learning Object Metadata. IEEE Learning

Technology Standards Committee, IEEE 1484.12.1-2002.

[19] IMS Global Learning Consortium. (2010). IMS Learner Information Package

Specification. Retrieved from http://www.imsglobal.org/profiles/

[20] IST Advisory Group. (n.d.). Scenarios for Ambient Intelligence in 2010. Retrieved from

ftp://ftp.cordis.europa.eu/pub/ist/docs/ istagscenarios2010.pdf

[21] Janse, M., Vink, P., & Georgantas, N. (2008). Amigo Architecture: Service Oriented

Architecture for Intelligent Future In-Home Networks. Constructing Ambient

Intelligence, (pp. 371-378). Springer Berlin Heidelberg.

[22] Korozi, M. (2010 (Unpublished)). PUPIL- Pervasive UI develoPment for the ambIent

cLassroom. Heraklion: Computer Science department - University of Crete.

[23] Li, J., & Shi, Y. (2005). Baton: A Service Management System for Coordinating Smart

Things in Smart Spaces.

[24] Lin, Y., Kratcoski, A., & Swan, K. (2005). Situated Learning in a Ubiquitous Computing

Classroom. Journal of the Research Center for Educational Technology (RCET) , 25-38.

[25] Microsoft. (2010). BinaryFormatter Class. Retrieved from

http://msdn.microsoft.com/en-

us/library/system.runtime.serialization.formatters.binary.binaryformatter.aspx

[26] Microsoft. (2010). Generics (C# Programming Guide). Retrieved from

http://msdn.microsoft.com/en-us/library/512aeb7t.aspx

[27] Microsoft. (2010). Input Overview. Retrieved from http://msdn.microsoft.com/en-

us/library/ms754010.aspx

[28] Microsoft. (2010). Manipulations. Retrieved from http://msdn.microsoft.com/en-

us/library/dd371574(VS.85).aspx

[29] Microsoft. (2010). Windows Touch. Retrieved from

http://windows.microsoft.com/en-US/windows7/products/features/touch

[30] ORACLE. (2010). Object Serialization. Retrieved from http://download-

llnw.oracle.com/javase/6/docs/technotes/guides/serialization/

[31] Paredes, M., & Ortega, M. (2002). A Ubiquitous Computing Environment for

Language Learning.

90

[32] Savidis, A., & Stephanidis, C. (2005). Distributed Interface Bits: Dynamic Dialogue

Composition from Ambient Computing Resources. Personal and Ubiquitous

Computing, (pp. 142-168).

[33] Shi, Y., & Xie, E. A. (2003). The smart classroom: Merging technologies for seamless

tele-education. IEEE Pervasive Computing Magazine .

[34] Shi, Y., Xie, W., & Xu, G. (2002). Smart Remote Classroom: Creating a Revolutionary

Real-Time Interactive Distance Learning System.

[35] Soh, L.-K., Khandaker, N., & Jiang, H. (2008). I-MINDS: A Multiagent System for

Intelligent Computer-Supported Collaborative Learning and Classroom

Management. International Journal of Artificial Intelligence in Education 18 , 119-

151.

[36] Tauberer, J. (2010). SemWeb.NET: Semantic Web/RDF Library for C#/.NET. Retrieved

from http://razor.occams.info/code/semweb/

[37] Vassileva, D., & Bontchev, B. (2006). Self Adaptive Hypermedia Navigation Based On

Learner Model Characters.

[38] W3C. (2004). Resource Description Framework (RDF). Retrieved from

http://www.w3.org/RDF/

[39] W3C. (2008). SPARQL Query Language for RDF. Retrieved from

http://www.w3.org/TR/rdf-sparql-query/

[40] Wikipedia. (2010). LDAP. Retrieved from http://en.wikipedia.org/wiki/LDAP

[41] Wikipedia. (2010). Metadata discovery. Retrieved from

http://en.wikipedia.org/wiki/Metadata_discovery

[42] Xu, P., & Han, G. (2009). Towards Intelligent Interaction in Classroom. In Universal

Access in Human-Computer Interaction.

[43] Yau, S. S., Gupta, S., & Karim, F. (2003). Smart Classroom: Enhancing Collaborative

Learning Using Pervasive Computing Technology.

91

APPENDIX A
General Section

• the list of globally unique labels that identifies this learning object; both the catalog

scheme and the value of the identifier for that scheme are required

• the given title given

• the human languages used in its content

• a short textual description

• a list of keywords the describe the related topic

• the time, culture, geography or region to which this learning object applies

• an enumeration describing its organization structure

o value space: atomic, collection, networked, hierarchical, linear

• an enumeration describing its aggregation level

o value space: raw data, collection of raw data (e.g. a lesson), collection of

collections (e.g. course), set of collection (e.g. set of courses)

Technical Section

• the format of this learning object expressed as a MIME type

• the size in bytes required on a physical storage device

• the list of URIs used to access it

• the system requirements necessary for using it (e.g. browser, operating system, etc)

• a list of installation remarks

• a list of other software or hardware requirements

• the time that this learning object takes to be played at intended speed

Educational Section

• an enumeration describing its predominant mode of learning

o value space: active, expositive, mixed

• an enumeration describing its specific type

o value space: exercise, simulation, questionnaire, diagram, figure, graph,

index, slide, table, narrative text, exam, experiment, problem statement,

self-assessment, lecture

• an enumeration describing the degree of interactivity that characterizes it

o value space: very low, low, medium, high, very high

• an enumeration describing the degree of its conciseness

92

o value space: very low, low, medium, high, very high

• an enumeration describing the intended user(s) for which it was designed

o value space: teacher, author, learner, manager

• an enumeration describing the environment within which the learning object will be

used

o value space: school, higher education, training, other

• the age of the typical intended user

• an enumeration describing the difficulty level

o value space: very easy, easy, medium, difficult, very difficult

• the approximate or typical time it takes to work with or through the learning object

• a list of comments about its use

• the human language used by the typical intended user

Relation Section

• an enumeration describing the nature of the relationship between this learning

object and the target learning object

o value space: ispartof, haspart, isversionof, hasversion, isformatof,

hasformat, references, isreferencedby, isbasedon, isbasisfor, requires,

isrequiredby

• the target learning object that this relationship references; the structure is similar to

the identifier under the general section

Classification Section

• an enumeration describing the purpose of classifying this learning object

o value space: discipline, idea, prerequisite, educationalobjective,

accessibility, restrictions, educationallevel, skilllevel, securitylevel,

competency

• a taxonomic path in a specific classification system

• a description of the learning object relative to the purpose of the classification

a list of keywords and phrases that describe the learning object relative to the

purpose of the classification

