University of Crete

Computer Science Department

ClassMATE: Classroom Multiplatform Augmented Technology
Environment

by

ASTERIOS LEONIDIS

MASTER’S THESIS

Heraklion, September 2010

University Of Crete
Computer Science Department

ClassMATE
Classroom Multiplatform Augmented Technology Environment

by
ASTERIOS LEONIDIS

A thesis submitted in partial fulfillment of the
requirements for the degree of

Master of Science

Author:

Leonidis Asterios, Department Of Computer Science

Board of enquiry:

Supervisor

Constantine Stephanidis, Professor
Member

Anthony Savidis, Associate Professor
Member

Dimitris Plexousakis, Professor

Approved by:

Panos Trahanias, Professor
Chairman of the Graduate Studies Committee

Heraklion, September 2010

Abstract

The evolution of Information Technology (IT) for more than three decades has drastically
affected the way users interact with personal computers and increased their expectations
from technology. Towards this objective, researchers developed novel concepts to provide
content-rich invisible computing applications, eventually leading to the emergence of the
Ambient Intelligence paradigm. Ambient Intelligence is a vision of the future which offers
great opportunities to enrich everyday activities (e.g., on the road, at home, at work, etc.).
Considering that ICT (Information and Communication Technologies) has been proven to
play an important role in education, this thesis investigates the promising potentials of Aml

in the education domain.

The notion of Smart Classroom has been around already for a few years. In a Smart
Classroom, conventional classroom activities are enhanced with the use of pervasive and
mobile computing. However, the majority of the current approaches towards the realization
of the Smart Classroom addresses various issues unilaterally either from the technological or
the educational perspective, neglecting the main objective of supporting the student during
the learning process. The ClassMATE system reported in this thesis aims to provide
numerous essential educational-related facilities both for the student and for the teacher.
ClassMATE, in collaboration with the PUPIL system, incarnates a functional prototype of the

envisioned Ambient Intelligence Classroom (in the context of ICS-FORTH Aml Programme).

ClassMATE constitutes the backbone infrastructure of the Ambient Intelligence Classroom
system, aiming to provide “intelligent” facilities to enhance the educational process. These
facilities include: (i) a context-aware classroom orchestration process based on information
gathered through ambient environment monitoring, (ii) a mechanism to address
heterogeneous interoperability of Aml services and devices, (iii) a synchronous and
asynchronous communication scheme, (iv) a user profiling and (v) a content classification
mechanism in order to deliver personalized content based on the context of use and the

actual needs of every individual learner.

The thesis discusses the overall ClassMATE architecture and presents in details the

implementation of the above mentioned mechanisms.

Mepianym

H €€€AEN TN Kowvwviag TnG mMAnpodoplag KATa TNV SLAPKELA TWV TEAEUTOLWY SEKAETLWV EXEL
EMNPEAOCEL SPAOTIKA TOV TPOMO HE TOV omolo ol xpnote¢ aAAnAemibpolv pE TOUG
UTIOAOYLOTEG, KaBwG Kal TIG TPoodokieg Toug amod tnv TteXvoAoyia. Xtoxevovtog Tnv
LKOvoTolnon Twv Xpnotwy, dnuLloupyndnkav VEEG KOVOTOUEG LOEEG yla eudun cuoTAUATA
Tapoxng TMAoUoLoU SLadpaoTKol TIEPLEXOUEVOU MECW TOU «aOpATOU» uTmoAoyloth. Ot

TAOELG AUTEG amOTEAOUV TOV TIPOSPOO yla KaLvoTopa eptBaiAovta SLayutng vonuoouvng.

H Suayxutn vonuoolvn opapatiletal tnv amlomoinon, SleUKOAUVON KAl EMEKTACH TWV
avBpwnivwy Kabnuepvwv SpaotnplotTwy, yla mapadelya otov SpOpo, 0To OTITL KAl TNV
gpyaoia, 6mou n npooPaocn os mAnpodopieg Ba eival Slapkng Kot anepLoplotn. N'vwpilovtog
OTL N teXvoloyla mailel £€va onUavTIKO pOAo oTov TopEa TG ekmaibeuonc, autn n epyocia
g€etalel TI¢ SuVATOTNTEG KOL TOUG VEOUC opllovieg mou avolyovtal amo £va eKmoLlSEUTLKO

nepLBAaAAov S1axutng vonuoaouvng.

H évvola tng “€€umvng” taéng eudaviotnke ta teAeutaio xpovia kat avadEpeTal o Eva
TEXVOAOYLKA emauénuévo ekmalSeuTikd TeplBailov. Itnv “é€umvn” TtAfn, oL CUUPBATIKEG
eKTIOLOEVTIKEG SpaaTnPLOTNTEG UTtootnpilovtal and SLAXUTeG Kol GOpNTEG UTIOAOYLOTIKEG
OUOKEUEG. QoToc0o, otnv mAsloPndia Toug oL UTIAPXOUCEC TIPOCEYYLOELS MpooTtaBouv va
OVTIUETWITiIoOUV povouepw¢ Sladopa ekmalbeutika {ntiuoata, efetalovtag ta eite omod
TEXVOAOYLKNG (T O eKMALSEVUTLKIG OKOTILAC, Kol 8eV MPOohEPOUV OAOKANPWHEVEG AUCELG
yla TNV UTooTNPLEN Tou pabntrh kad’oAn tnv Sldpkela tng padnong. To cuotnua ClassMATE,
TIOU Ovamtuxbnke oto TMAAiOl0 QUTAG TNC €pyaociag, OToXeUeL va Umootnpiéel Tig
SpaoctnplotnTeg pabntwy Kal kadnyntwv, mpoodepoviag kabodrynon Kal UTooThpLEn oc
oAa ta otadia tng eknmatdeutikng Stadikaoiag. To ClassMATE, os cuvepyacia pe To cUOThUA
PUPIL, evoapkwvel €va MPWTIOTUTO TNG opapati{opevng Tagng Aldayxutng Nonpoouvng (ota

mAaiola Tou poypapatog Aml Programme tou ICS-FORTH).

To ClassMATE amoteAel tnv payokokkoAld tng Tafng Awaxutng Nonupoolvng kot tnv
gumAoutilel pe “€€umvoug” UNXavIoUoUG, LLE OTOXO TNV UTIOCTAPLEN Kol SleUKOAUVONn TWwV
EKTIALOEUTIKWY O6paOTNPLOTATWY. ZUYKEKPLUEV, TlapEXel Ta &&ng: (a) évav “Yndloks”
OUVTOVLOTH TNG TAENG, oL amodAoEeLS TOU Omolou PocapuolovTal OTIG EKACTOTE CUVONKEC
Tou TeptBarlovrog xprnong, (B) Evav EMEKTACIUO UNXAVIOUO TIOU EMUTPETEL TNV UTIOCTAPLEN
TIOWKIAWV UTINPECLWV KOl CUCKEUWV TIou SUvaTtal va urldpEouv oe meptBarlovia SLaxutng
vonuoaouvng, (y) éva diktuo “cuyyxpovng” kal “acuyxpovng”’ emikowvwviag, (8) éva cuotnua

Slaxeiplong duvapika dnuoupyolpevwy mpodid pabntwy, kat Téhog (g) évav autopato

MNXQVIOUO KOTNYoplOTIolNoNG TOU €KMALSEUTIKOU TIEPLEXOUEVOU TIOU ETUTPEMEL TNV
TIPOCWTIOTIOLNEVN TIAPOX KOl APouciaon Tou WOoTe va KAAUWEL TIG TPEXOUOCEG AVAYKEG

TOU €KACTOTE HaBNTA Kol MAALoiou Xprnong.

Autl n epyaocia mopoucldlel tnv opxltektovikrl tou ClassMATE, kot epPabivel otig

AEMTOPEPELEG UAOTIOINGNG TWV UNXAVIOUWY TIOU avopEpBnkav mapanavw.

Vi

Evyaplotieg (Acknowledgements)
Mpwtiotwg Ba NBeAa va eUXOPLOTHOW TOV EMOMTN TNC UETATTUXLAKNG HoU gpyaociag, Kab.

Kwvotavtivo Itepavidn, ya tnv ouvexn kabodnynon kat umootnplén mou pou npocédepe
Ta TeAeuTaia oxedov TEooepa XpoOvla OTo TTAALCLO TN cuvepyaoiag pou pe to Epyaothplo
AMnAenidpaong AvBpwrmou-Yroloylotr tou lvotitoutou MAnpodoptkig tou 18pUpaTog
Texvoloylag kal Epsuvag. Méow aUTAC TNG ocuvepyaciog Bepeliwoa TG YVWOELS OV OTO
OUYKEKPLUEVO TOMEN Kol eEEAiXBnKa OTNV EMLOTAMN TWV UTTOAOYLOTWY, BETOVTAG OTOXO OE

EPELVNTIKA amoteAéopata UPNANE MoLOTNTAG.

Ev ouvexeia Ba nBela va suxaplotiow Bepud tn Mapyapita Avtova, tn ItaupouAa Ntod
Kot Tov NMwpyo MapyEtn yla tnv cUUPBOAN TOUG OTNV EKMOVNON TNG €pyaciag pou Kabwg
EKTOC QMO TIG MOAUTIUEG CUMPBOUAEC Kal tnv BonBela toug, dnulovupynoav eva e{QLPETIKO
neplBaAAov cuvepyaoiag, oto omoio anédwoa To HEYLOTO TwWV SuUVATOTHTWY HOU yla va
npaypotonown®el auty n epyacia. Ma OAa oautd, ald Kal yld TV TPOCWIIKN

CUMMAPACTAON TIOU LOU TIPOCEEPAV, TOUG ELHAL EUYVWHWV.

ErutAéov, Ba nBela va suxaplotiow toug ¢iloug pou Edn, Mavvn A. , Xploa kat Mdvvn A.
TIOU LOU CUMMOPOOTABNKaV Kotd tnv SLAPKELD TNG €KMOVNONG TNG UETATITUXLAKNAG LOU

epyooiag mpoodh£pPOVTaC LoV TIG AMAPAITNTESG OTIYUEG NPEMLOC OTaV TIC elya avaykn.

ISlaitepa, Ba Bela va euxaplotow thv Mapia, kabBwg n moapouoia tng otnv {wrn Hou, Hou
€dwoe tnVv amapaitntn wbnon yla va Kuvnynow TIG TMPOoSOKIEG HOU Kol N oUEPLOTN
CUUMOPAOCTACN TNG 08 OAEG TIC GACELG TNG MapoUonG epyaciag NTav KabBopLloTikn yla Thv

oAokAnpwaon tne.

T€AOG, TO HEYOAUTEPO €UXOPLOTW TO odeilw OTOUC yoveig pou Anunten Kal Avootaocio
KoBwg Kkatl otov adepdo pou BaoiAn, oL omoiol Mapd TNV andotacn mMou pog Xwplle, Ue
otnpllav Kal pe e uxwvav Kabnuepvd. H aydrmn toug Kal n Kkatavonon toug pe fonbnoav
KOTA Tn SLApKELD TwV OToUudwV pou Kal eAltilw aut n epyacio vo amoteAel pla pikpn

«QVTaPOLBN» yla TIG Buoleg tou Ekavayv yla péva.

Vii

To my parents

Demetres and Anastasia

viii

Table of Contents

ABSTRACT ...cuiieiiiteeirenereerreneetaseresesresssessseasssesssssssssssssesssssssssssssassssssssnsssssssssssssssesassssnssssssssassssnsssnnsnens v
AEPINAHWH.............. eestertenssertensetetnnetarnsetttnsetetensieetanseettnntesttnnsesernnsstennsssennsserannans \'}
EYXAPIZTIEZ (ACKNOWLEDGEIMENTS)...uuuueeeennnneneennnnnsnsssnnns Vil
LIST OF FIGURES.....cceeuiiittnneitenneetenneesensersenssessenssssssnssssssnssssssnssssssnssssssnssssssnssssssnssssssnssssssnssssssnssssane Xl
LIST OF TABLES......ccucttuiieiteeetenereentrensrenseressseasssessssassssssssassssssssessssasssasssensessssssnssssssssnssssssssnssssnsennnes Xl
1 INTRODUCGTIONciteuieiitenneeerenneeerenseesrenseessessesssassesssasssssssnssssssnssssssnssssssnssssssnssssssnssssssnssssssnsssssns 1
1.1 AMBIENT INTELLIGENCE «.eeeieiiieieieieieieeeieeeseeesessesssnanseeeeesesesesesesesesesssssassssnsssssnsnsnsnsnnsnssssesesens 1
1.2 THE SMART CLASSROOM ...cceeieieieieieieiesesesesessesesesssnnsnsnnnnssesesesesesesesesesssesssssssasasssnsnssssnnsssnnnseseseses 1
1.3 OBJECTIVES OF THE CLASSIMIATE SYSTEM ...iiiiiiiiiiieeeeeeeeettiiieeeeeeeeeetstneeeeestannneeeeesessssnnnnsesesessssssnnnnns 2
1.4 OVERVIEW OF CLASSIVIATEuuuuuuueuurereusussssssssesssssesssseresesrssnne 4
1.5 STRUCTURE OF THIS THESIS 1uvuvuuvuuuusssnrsrnns 5
2 RELATED WORKtttuiiiiteneittennceerenseeerensesssessessssssesssasssssssnsessssnssssssnssssssnssssssnssssssnssssssnssssssnssssans 6
2.1 AMBIENT ENVIRONMENTS ... eeeeetettttuieeeeereresssnaeeeessessssnnesessssssnneeessssssssssnmsesssssssssssmeeessessssssnneesseses 6
2.2 TOWARDS A TECHNOLOGICALLY-AUGMENTED CLASSROOM ...cceeeieieieieieiesesesesesesennnnnnnnnnnnnnnnsesesesesesesens 8

2.3 ADAPTIVE HYPERMEDIA

3 THE CLASSMATE APPROACH.....ccccitttiiiitnniiitinniiiiianiiiimssiiimasiimmsssiismssssssrssssssrsssssssssssssssssssssnnss 14
3.1 THE CLASSIMIATE ARCHITECTURE. ...ctttteteiuutttteeeeeeautitteeeeseaabeteeeesaeesaaunsateeesesannsteeeeeesaannneeeaeeaanan 15
4 AMBIENT ENVIRONMENT MANAGEMENTcccoittmiiimmmiiiimmiiimmmiimieiimieiimmssimsssrsssssnsss 18
4.1 THE CONTEXT IMANAGER ...ueiiieieiitieeeeeeeeetttiiieeeeeesessstaneaeesssstnnseseesssssssnaasessssssssnnnaesesssssssnnnseseses
W N = [+ 1y {0 Y B 5 =3 o S
4111 Service Factory Interface............
4,1.1.2 Service Info & Factory Entries
4,113 SErVICE FACtOry REGISTIY .uvviiiiiiiiiiiiiei e ieeitt ettt ettt sbre e e e s s e baa e e e e e e s sabbaaaeeeenans
41.1.4 Configuration files (Platform.xml, Global Service Definitions.xml)ccceeceevievecveseencieenen. 26
4.1.2 CIOSSIMATE EVENLSeeeuveeeteeeieeeieesiie ettt stee st e st sateasataesateeseesbaesasae s eseessessbeasseenas
4121 BaSE EVNT IS . ittt e e e e e e e ee e e e e e e ra e e e e e e e s nnreeeeens
41.2.2 Abstract Event producer
4,1.2.3 EVENT PIOXY vvviiiiiiiiiiiieee e ittt sttt e e e e estrr e e e e s e s atat e e e e s s satbaaeeeesassbaesbeaeeesssnssbasaeeesensssseaeeens
4.1.2.4 EVENT REGISTIY ettt e e e e e e s e e e e e s s aree e e e e e e snnneeeeens
4,1.2.5 ClassMATE Message Events ...
4.1.2.6 CIaSSIMIATE COMMANGStitiiriiiiieeniieeiteste st e it sit et e st e sbeesbeesateesbeesabeenbeeseaeeebeesaseenseesanens
W3 S B Vo o] {0 [0y g D =1 o) (PO U SUUPOt
4.13.1 Mime Command Handler
O S 0 [1Y 0ol =X 4 o | (o] GO PRSP
4,141 SECUNILY IMIANAZEN ceiiiiiiiiiieeee ettt e e e et e e e s e st e e e e e s s bbeaeeeeses s sssabebeeeesessssbaaaeesssans
4.1.5 APPLICALION LAUNCRECE ..ottt e ettt a e e e ettt e e e e e e s e e e sstssraaaseeasnees

4.1.5.1 Application Registry
4,1.5.2 Mimetype - Application Map

4.1.6 StAe SEriQIIZALIONeoveeeeeneeeeeee ettt e e ettt e e e e e et a e e aaaeeeesstssnaaaeeessnees
41.6.1 RESOUICE FOIMAt Pail...ccoouiiiiiiiiiiiiii ettt e sebn e e 54
4.1.6.2 E] = L= T3 55
4.1.6.3 N 1Y Lo Y= LT T PP PP RPN 56

S A 011 [][de L (o I o Yol =2 57

4.1.8 Migration Process

4.2 DEVICE IMANAGER ...iietteetet ettt e e e sttt e e e e st e e s e s snnn e e e e s s e mnn e e e e e s e s nnnneeeeeeeeessannnnneee 59

4.2.1 Towards a universal MUltitouch SOIULION.coeecuueieeciieeiiiieeesiee e 59
4.2.2 BOOK LOCQIIZEE ...ttt ettt sttt sttt e s s s st e sseesateananeeas 62
5 CONTENT PERSONALIZATION ...cceuiiiiieniiiieniiiienoiisessimissosisssosss 63
5.1 USER PROFILE ..uuieeeeettietieeeeeeeeettatieeseseseeassuan s sessnsanseseessssannnnssseessssssnnnnssseeesssssnnsesesssssnnnnesesennes 63
5.2 DATASPACE ...t teee e ettt et ettt et e e e e ettt et e e e e e s e b e bt e e e e e e e e b ae bt e e e e e s e bnbteeeee e e e e e bnreeeeeeeeannrreen 67
5.2.1 Related teChNOIOGIES OVEIVIEWc...oveeeceeeeeesiiieeeieeescteeesteeeesteeeseaeaestasaaaesraeaeenees 67
5.2.1.1 Learning Object Metadata (LOM)cceeiieeiieeeeree ettt ee et e st e e e sne e sneeennee e 67
5.2.1.2 Y oF= 1 | PSP RUURRP 68
5.2.13 LT84 1AV o 68
V2 N 1Y/ -1 (o To [+ | {o [T RTRUPP 69
5.2.2.1 LOM TYPES wevteteiiiiiiieteesesiiitteeeesesteretaeeeeessuttseeeesasassssaeeesssassreseeeesasssesbeseeesssnsssseeeessssssseneees 70
5.2.2.2 LOM Metadata Structure & LOM ENTry....ccc.eeeiiiiiiiiieeeiieeeiee ettt e st 71
5.2.3 ResoUrce REferenCe FOIMQLuueccueeeeeceieeeesiieeesctieeesetaeesttaeessttaaesisaaaeasssesaessssaeeanees 72
5.2.3.1 HotSpot...........
5.2.3.2 Multimedia
5.2.3.3 HINE ettt ettt et s bt et e st e s et et e e bt e b e e be et e be et e b e e Rae e be st e e aesbe et e beeetenteeneenbenaes
5.2.4 Content Classification and Personalized Delivery
5.24.1 TaAXONOMIES OVEIVIEW ..cuuiiiiiiiieiiiiie ettt ettt ettt e ettt sib e st e e st e e s st e e s ebbeeeeebreesaabeesenneeenne
5.2.4.2 TaxoNOMIes INSTAHATIONeieieesie e et e e e te e s e eseesneeenneenns
5.2.4.3 Content Collection MEChANISMc.uiiiiieeiieieecee e sae e e eseenaeesneen
5.2.4.4 CoNtENt ClasSifiCatiONeiveeriiiieerie ettt et e st s st e st e ebeesateeseesane s
IV I Do | (o I i 0=T o Yo XY X0 VAN
5.2.5.1 FIl8 IMTANAEET «.eeieiiee ettt ettt e e e e ettt e e st e e et e e e ataeesbbeeeeabaeseesstaeessbeesanbeeeasseaannns 83
5.2.5.2 CONTENT POPUIATION 1.iciiiieciiee ettt ettt ettt et e e te e e s ta e e s eabe e e s baeas s sabaeeeabeeessbaeeansseaeas 84
6 CONCLUSIONS AND FUTURE WORKcceteuuutiiiiiiiinnnniiiiiiiininssssiissinrssssssssisssnmssssssssssssssssssssssns 85

6.1 SUMMARY

6.2 CONCLUSIONetttuueeeeeereetrtnaaeeeeereasssniaseessessnaaeessesesssnnnaseessssssssnnnssessssssssnnnnsesessnnnnseessesssssnnnnsens 86
6.3 FUTURE WORK .eitiieiiiieieieececeeeeee ettt e e e e e e e et eeeeeseeeeseseeaeeeaeanens 87
7 BIBLIOGRAPHYeeeiieiirieiitenireenerenereeseresseresssesssenssssssssessssssssssssssssssssssassssssssnsessssssnssssssssnssssnsne 88
APPENDIX A oo ceriiiittiiitieneinteneettenseestessesssassessssssesssassessssssssssssssessssssessssssssssnssesssnssssssnssssssansesssansesssnnse 91

List of figures

FIGURE 1: THE ENVISIONED SMART CLASSROOMuuttttteeeaauietteeeesseauutteeeesesaussteseteeessasaunseteeeessasnsseeeeessasannseneens 3
FIGURE 2: THE ENVISIONED ARCHITECTURE OF THE SMART CLASSROOM SYSTEM ..eeuveeireeniieeniieenieesnieesseesseesnneenss 17
FIGURE 3: CONTEXT MANAGER ARCHITECTURE DIAGRAMcceutterureiniteeniteeieesiteeseesiteesaseeesseesseeesssesssessnseessseesns 18
FIGURE 4: INTERFACE-BASED ABSTRACT SERVICE FACTORY APPROACH ...eeuveeeuteesireestteestreesseeeteeesseesnseesssessnsessseens 21
FIGURE 5: PLATFORM EXPERT’S METHOD TO CONCRETE SERVICE OBJECTS...veeuveerureesueeensreenueesnseesnseesaseesnseesssseessseens 22
FIGURE 6: ABSTRACT FACTORY DESIGN PATTERNveeruteeritersuteentteeiteesteesseesiteessseeesseesseeesseesnsesssseesssessnseessseenns 23
FIGURE 7: PROCESS TO INSTANTIATE A CONCRETE SERVICE OBJECT ..vveeuveesureesureesereesseeessesessesssessnseessnsesssesssesssseens 24
FIGURE 8: SAMPLE USAGE OF THE SERVICE RESOLUTION MECHANISM....veeiuveeeureeiureesseeesseeesseessesessesssesesssessssesssseens 25
FIGURE 9: GENERIC SEND EVENT METHOD «..veeeuteesuteesiteeniteesteesteeesseesateessseessseesuseesssesssseessesensessnsessnseesssesssseessn 31
FIGURE 10: THE PROXY DESIGN PATTERNetttttieiiitttteeteeaaiitteeeesesauisteeeeteeesesanbatteeeeeeaanseeeeeeesesanseneeeeesasansnnn 32
FIGURE 11: THE EVENT PROXY RATIONALE. .. ceeuvteiuteesuteestteesteeestesesseessesaseessnseesssesssseessssessssensessnsesensessnsesssseesen 34
FIGURE 12: EVENT DISTRIBUTION IMIECHANISIVL e utteuttesuteesteeeteeeseesateessseesuteesssseessseessesesseesnsessnseessseesnseessseesns 36
FIGURE 13: CLASSMATE COMMAND TYPE HIERARCHY ..c.uveiutieiieeniteetieeseesteesteesuteesanseesasesssesesssesssessnseessseesas 38
FIGURE 14: SENDER AND RECEIVE MAP OF COMMAND EVENTSettiiiiiiiiiiteeee e ettt e e sttt e e e e e e e s ieree e e e e e e 38
FIGURE 15: CLASSMATE COMMAND JOURNEY ...ccuuvtesuttesutersueeenseessseesteesseessseessuseessesssesesseesssessssesssseessseesssessns 46
FIGURE 16: MIME COMMAND HANDLING PROCESSveeiuteisutieiieesiteeiteeseesteesseesaseeessseesueesssesssssesnsessnseessseesas 51
FIGURE 17: APPLICATION’S STATE SERIALIZATION PROCESS ..euvveeiuveesureessreesseeentesassessseessseessnseessseesssssssesensessssesans 54
FIGURE 18: PLATFORM INITIALIZATION PROCESS.....uvteeuveesuteessesesseeessessnseesssessssessnsesssseessssesssssssessnsessssessnsessssessns 57
FIGURE 19: APPLICATION IMIGRATION PROCESS ..c..uveeuvteriierstetentteesseesteesseesiteessnteesssesssesesseesnsesssseessseesnseessseenns 58
FIGURE 20: WINDOWS 7 SENDS MESSAGES FROM MULTITOUCH HARDWARE TO AN APPLICATION...ccvvvrerurernveeeneresnreenns 60
FIGURE 21: WINDOWS 7 MANIPULATION OVERIEWettieieiiiereeeeeeaaaintteeeesesauseeeeeeseeesasanseneeeessasansenseeeesesannnes 61
FIGURE 22: PHYSICAL COURSE BOOK LOCALIZATION PROCESSeeiuveeuteeiieeiieeiteeieesteesiteesitesssnseesseesssesensnessseesns 62
FIGURE 23: AUTOMATIC CONTENT DISCOVERY PROCESSvveeuvveevresseeesresseesseesseesssessssseessesssesesseesssessnseessseesns 66
FIGURE 24 THE LOM DATATYPE ...ceiiieiititteee e e ettt e e e e e ettt e e e e e e e e ettt e e e e s e s asbeteeeesesaunbeeeeaeesesnnbensaeaeaesaanans 71
FIGURE 25: LEARNING OBJECT METADATA (LOM) SPECIFICATION ...cuuviieeeuiieeeeieeeeetreeeeeareeeeetseeeessnsseseensseeesenseeas 72
FIGURE 26: SEMWEB BRIDGE BETWEEN RDF DATA AND A RELATIONAL DATABASE......eerverrrreeireereesieesreesseeseeenes 78
FIGURE 27: A SAMPLE QUERY FAMILY THAT DISCOVERS RELATED IMAGES.uvveterrreeesureeessuteeessnseeessreeessssnseeessseens 81

Xi

List of tables

TABLE 1: THE SMART CLASSROOM INTENDED FOR THE ICS-FORTH AMBIENT PROGRAMME

Xii

1 Introduction

1.1 Ambient Intelligence

Information technology has been evolving for more than three decades from the
introduction of the first personal computer in the late 70’s until the dominant World Wide
Web paradigm in the early 00’s. This continuous evolution affected the way users interact
with personal computers and increased their expectations for innovative breakthrough
technologies, causing the intrinsic potentials of the IT to steadily unveil. People nowadays
are hooked on connectivity — they want access to information anytime from anywhere and
the latest trends in IT industry indicates a path towards embedding communication facilities
into devices of everyday use starting from the mobile phones to TV sets, while even more

will definitely emerge.

Towards this objective, researchers developed novel concepts, techniques and tools to
provide content-rich invisible computing. This led to the emergence of a novel domain in ICT
(Information and Communication Technologies), opening up new horizons, namely Ambient
Intelligence. Ambient Intelligence is a vision of the future information society stemming
from the convergence of ubiquitous computing, ubiquitous communication and intelligent

user-friendly interfaces.

Ambient Intelligence offers great opportunities to support social development, enrich
everyday activities and dramatically change the way of life; for instance, on the road critical
information can be delivered easily and in real-time, whereas at home an ambient
environment delivers seamless, on-demand content in any room, while also facilitating
interconnection between homes. Considering that ICT has been proven to play an important
role in education by increasing students’ access to information, enriching the learning
environment, allowing students’ active learning and collaboration and enhancing their
motivation to learn [1], education could not oversee the promising potentials of Ambient

Intelligence.

1.2 The Smart Classroom
The notion of smart classrooms became prevalent in the past decade [42]. Smart classroom

is used as an umbrella term, implicating that classroom activities are enhanced with the use
of pervasive and mobile computing, sensor networks, artificial intelligence, robotics,
multimedia computing, middleware and agent-based software [11] to modernize students’
experience and fully exploit the existing infrastructures (e.g., online resources of educational

content). Following the rationale of augmented technology in the educational environments,

new means of interaction - such as interactive whiteboards, touch screens and tablet PCs -
have gained popularity and have become a major tool in the educational process, allowing
more natural interaction and restoring the past luster of the school when students were
excited about their education. For the Smart Classroom to be acceptable to its users, it
should be defined with educational concerns in mind, where the technology should enhance
the quality of education without increasing its complexity or introducing technology-
oriented burdens. In general, it should be reliable and controllable, but nevertheless
adaptive to students’ habits and changing contexts. Smart classrooms, via their technological
enhancement, may support one or more of the following capabilities: video and audio
capturing in classroom [33], automatic environment adaptation according to the context of
use, such as lowering the lights for a presentation [12], lecture capturing enhanced with the
instructor’s annotations, information sharing between class members or even a tele-
education experience similar to a real classroom experience [24]. The main objectives of the
Smart Classroom are primarily to support the students during the learning process and
facilitate its administration by the teachers. Therefore, the anticipated capabilities extend
beyond simple automation of repetitive tasks and inclusion of e-learning services available in

numerous platforms.

1.3 Objectives of the ClassMATE system

The ClassMATE system reported in this thesis aims to provide the following facilities in the

context of the Ambient Intelligence classroom:

e For the Student

0 Direct access to unlimited educational content

0 Dedicated personal area to store educational material (e.g. submitted
assignments, lecture notes, etc.)

0 Educational applications accessible not only during school hours, but at any
time through the supported personal devices (PDAs / Smartphones, and
Netbooks, etc.)

0 Personalized content and study guidelines delivery, semantically discovered
according to each individual student’s needs

0 Progress monitoring and detailed record keeping

0 Collaboration among classmates

0 Active participation in the teaching process

0 Automation of repetitive everyday tasks

0 Flexible workspace environments

e For the Teacher
0 Lecture preparation assistant
0 Statistics of class progress
0 Real-time student monitoring

0 Automation of everyday tasks

An example of Ambient Intelligence Classroom is currently under development in the
context of the ICS-FORTH Aml Programme. The ClassMATE system, presented in this thesis,
in collaboration with the PUPIL system [22] incarnates the initial concept into a functional
prototype (Fig. 1), consisting of five different platform prototypes (artifacts): the AmIDesk,

the SmartDesk, the AmIBoard, the SmartBoard and a common portable computer.

“augrnented"

student’s

thbook

- "augrnentec{’

desk

Figure 1: The Envisioned Smart Classroom

The PUPIL system acts as the front-end of the overall platform. In brief PUPIL: (i) promotes
the design of usable educational applications though a library of “intelligent” widgets, (ii)
equips classroom artifacts with flexible workspaces and enables application migration
among them, (iii) support reusability of common interface patterns and minimize artifact
specific design decisions and (iv) free designers from building the same interface for various
platforms as the single version automatically transforms to the current context to ensure

optimal display.

The ClassMATE system reported in this thesis constitutes the backbone infrastructure that
aims to provide a set of “intelligent” facilities to enhance the educational process. The key
feature that differentiates ClassMATE from similar architectures is the education-centric
approach that has been adopted during its design. In more details, ClassMATE monitors the
ambient environment and makes context-aware decisions to assist (i) the student in
conducting learning activities, by simplifying everyday tasks and providing personalized
content according to individual needs, and (ii) the teacher with administrative issues by
automating common activities. Summarizing, ClassMATE aims to provide a robust and open

ubiquitous computing framework suitable for a school environment that:

e provides a context aware classroom orchestration based on information coming from
the ambient environment

e addresses heterogeneous interoperability of Aml services and devices

e facilitates synchronous and asynchronous communication

e supports user profiling and behavioral patterns discovery

e encapsulates content classification and support content discovery and filtering

1.4 Overview of ClassMATE

To achieve the above objectives, ClassMATE introduces various modules enclosed either in
the (i) Ambient Environment Manager or in the (ii) Content Personalization Manager. The
Ambient Environment Manager encloses the two modules that monitor the environment
and enable contextual awareness the Context and the Device Manager. The Context
Manager includes: (i) the Platform Expert that operate as an abstraction layer of that
multiplatform environment that provides access to the wide-variety of platform-specific
functions in a platform-independent manner, (ii) the ClassMATE Event System that defines a
hierarchy with specialized event types forming the ClassMATE event type system and
implements the essential mechanisms for their distribution, (iii) the Artifact Director that is a
context aware module that orchestrates each artifact, (iv) the Class Orchestrator that
controls every aspect of the classroom in a high-level, (v) the Application Launcher that
bridges the ClassMATE with the PUPIL system by instructing the applications opening, (vi)
the State Serialization Manager that manages application’s state serialization and
deserialization, and finally (vii) the Migration Processor that facilitates the application
migration from the current local artifact to a remote node. The Device Manager includes: (i)
the Multitouch Device Manager that enables multitouch interaction schemes and (ii) the

Book Localizer that determines current context of use (e.g. currently studied course).

The Content Personalization Manager encloses the two modules charged with the delivery
of personalized education content based on the current needs of the individual learner, the
User Profile and the Data Space Manager. The User Profile collects personal data associated
with a specific user (both static and dynamic) and the Data Space Manager which provides
an abstraction layer between the applications and the physical storage layer and
encapsulates a filtering mechanism for personalized content delivery based on user needs

and preferences (available through the User Profile).

1.5 Structure of this thesis
The rest of the thesis is structured as follows:

e Chapter Two (2) presents a brief overview of related work

Chapter Three (3) presents the ClassMATE approach towards delivering a ubiquitous

computing framework for the Aml Classroom

Chapter Four (4) describes the architecture and the technical details of the Ambient

Environment Manager

Chapter Five (5) presents the Educational Content Manager and in particular the

content classification and the personalization mechanisms

Chapter Six (6) describes in brief a real-life scenario supported by the ClassMATE

system

Chapter Seven (7) summarizes the conclusions of this thesis and outlines the future

steps.

2 Related Work

2.1 Ambient Environments
As highlighted in [4] it is part of the ten-year vision of the Ministries of Education in Europe,

in response to a changing information society, to promote ambient schooling, and create a
schooling environment ‘surrounding’ the pupil in a non-intrusive way to address the issue of
‘disconnection’ between ICT use in and out of schools, with pupils being increasingly critical
of the former. In short, the author points out that as fundamental issues related to the re-
organization of learning is not addressed properly, the future of e-learning for schools in the
Information Society is under question. Assche argues that schools have equipped some of
their classrooms with computers, however their use remains limited, while through ambient
schooling, via the appropriate use of advanced technologies, pupils will be supported as they
continue to learn not only in formal institutions, but in the home, libraries, museums and
the wider community as well. The envisioned system, the schoolGRID, can be seen as a
further evolution of learning object brokerage systems including functionality related to: (i)
learning content management and exchange, (ii) learning communities and (iii) school
management. Finally, the envisioned system incorporates on-the-fly tailoring facilities with
regard to the personal learning style, preferences, competencies, dynamic learner profile, or

learning needs of the pupils.

Lin, Kratcoski and Swan, in [24], conducted a case study on a third grade class to explore the
use of ubiquitous tools during a science unit on forces and motion. Their study documented
the ways in which children could construct knowledge and create representations of their
learning when afforded ready access to a variety of digital devices, and explored the
implications of ubiquitous computing environments on student collaboration and situated
learning. Situated learning asserts learning is connected to real situations in which
knowledge is created and used. For that be achieved, a ubiquitous environment was
selected to present knowledge in an authentic context and support social interaction and
collaboration. The outcome of that study suggested that the use of ubiquitous computing
tools within a situated learning approach facilitated the students’ attainment of curricular

content, technology skills, and collaboration skills.

Both [4] and [24] highlighted the need for a smart classroom environment. According to
ISTAG [20], a ‘key enabling technology’ for a successful implementation of the Aml
landscape is the presence of middleware systems that act as the main coordinator of the

heterogeneous and distributed services of an ambient intelligent environment. Nowadays, a

plethora of such systems exist, providing the necessary functionality for the structured
communication between the various Aml environments’ components. As mentioned in [15],
the essential requirements that an Aml middleware should address are: heterogeneity
integration, synchronous and asynchronous communication, resilience, security and ease of
use. Moreover, a successful Aml middleware should provide all the necessary monitoring
and control facilities of the diverse ubiquitous computing artifacts which interoperate in an

Aml environment, thus supporting a context aware orchestration strategy.

The AMIGO project ([21], [2]) developed a middleware that dynamically integrates
heterogeneous systems to achieve interoperability between services and devices in
intelligent home networks. The AMIGO architecture consists of a base middleware
component, a programming and deployment framework and a series of legacy services
named ‘Intelligent User Services’. The base middleware component ensures the secure and
robust interoperability of the heterogeneous service platforms that an Aml environment
may host, providing also a generic mechanism for their semantic description of functional,
non-functional and architectural features. The programming and deployment framework
enables the developers to implement ad-hoc AMIGO-aware distributed services, allowing
them to choose among two programming languages alternatives, .NET C# and Java. The
Intelligent User Services on the one hand constitute the legacy services layer of the AMIGO
architecture that provides users with basic functionality to interact with the intelligent
environment. On the other hand, such services are responsible for compositing multiple
information sources and disseminating context-related information. Finally, any available
information is encoded into a user profile and exploited towards environment’s adaptation

based on the user's state and context changes.

Bandelloni and Patemo [5] suggested a system that provides users immersed in a
multiplatform environment with the possibility of interacting with an application while freely
moving from one device to another. Their work supported platform-aware runtime
migration for Web applications that allowed users to change device and continue their
interaction from the same point. A migration server takes into account the runtime state of
an application and adapts its interface to best fit the target platform. For migration to be
achieved, the user interface is encoded in an abstract interface description to facilitate
transformation. In addition to total migration where the client interface migrates totally
from a device to the other, they propose that partial migration and synergistic access can be

achieved through their platform. In partial migration the client interface is divided into the

control and the presentation segments whilst the control segment remains on the current
device and the presentation one migrates to the other device; in the synergistic access,
named mixed migration, the client interface is split into several parts, concerning both

control and presentation and different parts are distributed over two or more devices.

The Voyager development framework [32] supports the implementation of ambient
dialogues, i.e., dynamically distributed user Interfaces, which exploit, on-the-fly, the wireless
devices available at a given point in time. The primary motivation of Voyager is based on the
vision that the future computing platforms will not constitute monolithic ““all-power-in-one”
devices, but will likely support open interconnectivity, enabling users to combine the
facilities offered by distinct devices on-the-fly. Physically distributed devices may be either
wearable or available within the ambient infrastructure (either stationary or mobile), and
may be connected via a wireless communication link for easier deployment. Operationally,
each such device will play a specific role by exposing different processing capabilities or
functions, such as character display, pointing, graphics, audio playback, speech synthesis,
storage, network access, etc. From the hardware point of view, such devices may be wrist
watches, earphones, public displays, home appliances, office equipment, car electronics,
sunglasses, ATMs, etc. The Voyager implementation focuses on device discovery and registry
architecture, device-embedded software implementation, ambient dialogue style and
corresponding software toolkit development, and a method for dynamic interface

adaptation, ensuring dialogue state persistence.

2.2 Towards a technologically-augmented Classroom

In [7] Bravo, Hervas and Chariva propose a context-aware identification mechanism to
support implicit user interaction. They argue that, as in recent years many research efforts
aimed at obtaining simple and natural interaction with of computers, the same vision
emerge for the Ubiquitous Computing, where the computer is distributed in a series of
devices with reduced functionality, spread over the user’s environment and communicating
wirelessly. The RFID technology is used to implicitly provide input to the system and to offer
natural interaction, as a smart label carried by the student / teacher is the only requirement
for the identification and contextual services acquisition. This contextual identification
allows users to obtain services from the environment with ease (e.g., visualization of
course’s presentations, proposed and solved assignments, etc.). The key feature of their

work resides in the contextual awareness categorized in identity (which are his preferences),

location (is s/he standing near the board), time (which are the scheduled tasks) and task

(what is s/he doing right now).

Breuer et al. [8] aimed to synthesize two lines of development that have been dealt with
independently so far: (i) the development and evaluation of educational technologies to
support problem-oriented and collaborative learning activities inside and outside of the
classroom, and (ii) interaction design patterns as a means to document and generate design
knowledge. They propose both a software framework to enhance classroom interaction
through interactive whiteboards, multiple clients with pen-tablets and PDAs, and a basic
layout of a pattern language for formal and informal learning environments. The proposed
software orchestrates various hardware artifacts (e.g., Interactive Whiteboard application,
access from multiple pen-tablets) in order to support collaboration, while the overall
approach was illustrated using an interaction design pattern language for learning
environments, aiming to document and optimize existing solutions and patterns, but also to

employ them in order to generate new design knowledge.

The work conducted by Paredes et al. in [31] aimed to bring the Information and
Communication Technologies into the traditional classroom. They argue that collaboration
and Ubiquitous Computing paradigms would benefit to that direction if only they were put
together into the educational environment; to demonstrate their objectives, they
developed as a study case a system for language learning, in particular English as a Foreign
Language (EFL). The AULA system was intended to improve communication abilities in a
learning environment in order to achieve the necessary skills to develop a project in group
by writing reports in a collaborative task. The learning task to be developed was writing a
text (an essay, a report, a news article, etc.) in a collaborative way, since this is a usual
activity in many contexts in real life. The system facilitates the structuring of the information
resulting from the brainstorming process into the so-called aspects. Aspects and ideas are
blocks of partial information, which constitute the initial document’s framework on top of
which the students contributed their work. Any contributions made are stored in a

persistent way, thus supporting the student before, during and after the class.

Soh, Khandaker and lJiang proposed I-MINDS (Intelligent Multiagent Infrastructure for
Distributed Systems in Education) [35], a system that provides a computer-supported
collaborative learning (CSCL) infrastructure and environment for learners in synchronous
learning and classroom management applications for instructors, for large classroom or

distance education situations. Three agent types that provide educational-related facilities

existed: the teacher, the student and the group agent. The teacher agent facilitates
instructor’s interaction with students, classroom’s management and performance
monitoring. The student and the group monitoring agents supports a number collaborative
learning mechanisms and both individual and group monitoring to evaluate performance. I-
MINDS had been deployed and evaluated in a real-time environment, and the results have
shown that such a system could be used to support student cooperative learning activities,
and also as a testbed to collect instructional or pedagogical data for better understanding of

student collaborative learning.

In Yau et al. [43] a Smart Classroom is proposed to increase the level and the quality of
collaboration between college students and the instructor, since group formation to solve
problems or develop projects are typical tasks in such environments. Every student is
equipped with a situation-aware PDA, while the PDAs dynamically form mobile ad hoc
networks for group meetings. Each PDA monitors its situation (locations of PDAs, noise,
light, and mobility) and uses situations to trigger communication activity among the students
and the instructor for group discussion and automatic distribution of presentation materials.
In addition to educational material exchange, the PDAs support various educational-related
tasks, such as electronic submission of exercises or questions, exams preparation,
distribution and collection, etc. Finally, the proposed middleware is claimed to effectively
address situation-awareness and ad hoc group communication for pervasive computing, by

providing development and runtime support to the application software.

Baton [23] is the heart of the Smart Classroom [34] developed by Lin et al. It is a service
management system to explicitly resolve the particular issues stemming from smart spaces
while coordinating agents (delegating smart things in smart spaces). Baton is designed as a
complement to coordination approaches in multi-agent systems with a focus on mechanisms
for service discovery, service composition, request arbitration and dependency
maintenance. Services are described in the OWL-S language, which makes the processes of
service discovery and composition more accurate and efficient, while request collisions are
modeled as linear programming problems that facilitate easier resolution and minimize
service dependencies. Finally, the process of fulfilling a request is handled as a transaction,
and a two-phase commit algorithm is utilized to assure its atomicity. The Smart Classroom
[34] that is built on top of Baton mainly focuses on tele-education and distance learning,
where every participant (remote or local) has the same view, thus the teacher can instruct

the remote students just like teaching face-to-face in a conventional classroom.

10

2.3 Adaptive Hypermedia

In addition to “intelligent” objects and context-aware systems, the domain of education
highly benefits from content filtering mechanisms that aim to deliver content tailored to the
needs of the current learner. As Brusilovsky and Millan state [9], various adaptive web
systems incorporate user models to adapt the systems’ behavior to individual users; the user
model represents the information about a user and is essential to support the adaptation
functionality of the systems. According to the authors adaptive web systems had
investigated a range of approaches to user modeling, and the majority of them use feature-
based approach to represent and model information about the users, while the once
stereotype-based approach has lost dominance. The most popular features modeled and
used by adaptive web systems are user knowledge, interests, goals, background, individual
traits, and context of work, while each individual adaptive system typically uses a subset of
this list. They conclude, among others, that convergence has begun to blur the boundaries
between different classes of adaptive web systems, and that an effective adaptation
learning algorithm would be able to process each user’s interactive behavior information

and simultaneously update the structure of the model.

Heilman et al. proposed an intelligent tutoring system called REAP [16] that provided reader-
specific lexical practice for improved reading comprehension. Towards such goal, REAP
offered individualized practice to students by presenting authentic and appropriate reading
materials selected automatically from the web. To address the various challenges emerged
from using authentic material (e.g., technical documentation, sensitive topics, use of slang)
recommendations by ELI (English Learning Institute) were adopted and appropriate filtering
mechanisms were developed. The REAP system is claimed to satisfy a number of criteria in
order to gain acceptance into the classroom at the English Language Institute of the

University of Pittsburgh.

In [10], Conlan et al. proposed a multi-model approach to the dynamic composition and
delivery of personalized learning utilizing reusable learning objects. The aim was to enhance
the educational impact of eLearning courses, while still optimizing the return on investment,
by facilitating the personalization and repurposing of learning objects across multiple related
courses. Considering that courses typically differ in various aspects (ethos, learning goals,)
and learners have different motivations, prior knowledge and learning styles, the adopted
approach foresee a clear separation of content, learner and narrative models, and offers an
adaptive metadata driven engine that composes, at runtime, tailored educational

experiences across a single content base to the learner’s requirements.

11

Vassileva and Bontchev in [37] argue that modern adaptive hypermedia systems try to select
content that best fits to the model of a given learner, based on various forms of system
adaptation through mechanisms that rely on setting weights for content pages. They
proposed a self-adaptive navigation mechanism based on concepts used for the definition of
a polymorphic learner model (e.g., learning style, goals, prior knowledge, etc). These
concepts are used for indexing the working paths towards content pages but not the pages
themselves, while tests that measure users’ satisfaction at certain control points dynamically
update the weight of navigation path, thus supporting the adaptation engine’s decisions

regarding the most suitable path for a given learner model.

Nowadays, we witness a steadily increasing research interest in smart environments;
everyday things become “intelligent” modules and the surrounding environment
incorporates context-aware software to facilitate interaction with the users. The domain of
education observes closely these technological trends with two mainstream approaches
aiming to develop the smart classroom. The first mainly focus on incarnating an intelligent
environment by integrating technologically advanced objects in the conventional classroom
(e.g. interactive whiteboards, portable computers and mobile devices) [7], [8], incorporating
software solutions that automatically distribute electronically the available educational
material (e.g., presentation, exercises, grades, etc.) [[43][35][23]] and facilitating
collaboration and flexible use from various terminals [ref migration]. The latter approach
aims to support distance learning either online (i.e., tele-education) or offline (i.e., e-
learning). As presented in [43], the main objective of tele-education approaches is to
facilitate remote interaction and leaning as if the learner was physically present in the
classroom. Concerning the offline learning, the e-learning platforms studied diverge from
the current practices where content is structured in uncorrelated courses by introducing
content correlation and real time progress monitoring that facilitate personalization to
individual learners’ needs, based on the actual learner’s needs instead of high-level theoretic

models.

The role of intelligent ubiquitous technology in the classroom and in education in general is
still far from being maturely understood, and systematic approaches to supporting students
and the teachers throughout the educational process are necessary. ClassMATE aims to
combine the best of both worlds, smart environments and e-learning platforms, by
introducing a pervasive ecosystem that assists in a non-obstructive way the students during

learning activities both at school and at home. Moreover, through automating common

12

teachers’ activities (e.g., material distribution, homework collection, progress monitoring),
ClassMATE permits the teacher to undistractedly focus on the teaching process. ClassMATE,
similarly to [2], [43], [24], is built on top of a middleware infrastructure to facilitate dynamic
service discovery, supports collaborative tasks [8], [31], [35], stateful application migration
[5], service personalization [7] and personalization of semantically discovered content to
each individual learner’s needs. Its main advantage though is that every decision made and
action taken is driven by contextual information (who, when, where, what) towards

facilitating end user interaction (student or teacher).

13

3 The ClassMATE Approach

ClassMATE aims to bridge the gap between the ambient environment and the educational
applications in a transparent manner. It constitutes the backbone of the ambient classroom
that enables applications to exploit the information provided by the environment, and
enhances the educational process by automating time-consuming everyday tasks such as
submission deadline notification, student’s activity and progress monitoring, and progress
report. For that to be achieved, ClassMATE is based on a modular architecture. Additionally,
it supports various artifacts in the envisioned classroom. For instance, the Smart classroom
intended for the ICS-FORTH Ambient Programme consists of five different platform
prototypes (artifacts): the AmIDesk [3], the SmartDesk, the AmIBoard, the SmartBoard and a

common portable computer.

. L. . Screen
Artifact Characteristics Resolution i Intended Use
Diagonal

Vision-based touch-enabled

AmlDesk . 1600x600 27" student’s desk
device

SmartDesk Touch screen device 1440x900 19” student’s desk
Vision-based touch-enabled

AmlBoard . 1920x1200 81" classroom board
device
Touch sensitive interactive

SmartBoard . 1024x768 77" classroom board
whiteboard

both classroom and
Netbook Common Netbook 1024x600 10.1” h
ome

Table 1: The Smart Classroom intended for the ICS-FORTH Ambient Programme

The ClassMATE architecture addresses the needs for a robust and open ubiquitous
computing framework in the school environment, as well as fundamental issues such as
heterogeneous interoperability of Aml services, synchronous and asynchronous
communication, resilience, security, context aware orchestration and ease of use in the
intelligent classroom of the future. The key feature of the ClassMATE’s architecture, that
differentiates it from similar architectures, is the education-centric approach that has been
adopted during its design. In more details, ClassMATE aims to provide a set of “intelligent”
facilities to enhance the educational process. Therefore, the offered services were defined
taking into consideration the needs of students and teachers both during school-hours and
when studying at home. In particular, ClassMATE facilitates student’s learning activities by
simplifying everyday tasks such as submission deadline notification, update of educational
material, and by providing personalized content that fits the specific needs of every

individual learner. On the other hand, ClassMATE assists the teaching process by

14

automating common teachers’ activities (e.g., material distribution, homework collection,

progress monitoring), thus permitting the teacher to better focus on the educational process

3.1 The ClassMATE Architecture
The ClassMATE’s core consists of four major components layered in parallel: the Device

Manager, the Data Space, the User Profile and the Security Manager, glued together via the
fifth major component, the Context Manager. A number of Utility modules, placed in
parallel, offer auxiliary services and functionality. These five major components also define
the “hooks” where additional functional modules could be integrated into the system to

extend the available functionality.

The Context Manager is the orchestration component of the ClassMATE’s architecture. It
monitors the ambient environment and makes context-aware decisions.. In more details, the
Context Manager is responsible for making the decisions for every process workflow in the
classroom’s environment, and controlling the operation and collaboration of ClassMATE's
services and applications to address users’ needs at any specific time frame. To this purpose,
the Context Manager applies appropriate reasoning strategies to user-, service-, application-
related data, in the classroom environment. Besides this general orchestration provided by
the Context Manager, every Aml artifact in the classroom operates under the orchestration
of a local Artifact Director, which is responsible for its robust operation. The Artifact
Director, at any time, keeps track of what is currently running (applications or services) on
the artifact, and according to the Context Manager’s directions they initiate, stop or suspend

the processes running on the artifact.

The Device Manager offers a generic mechanism for heterogeneous devices manipulation
by any ClassMATE enabled application. Every Aml artifact (e.g., interactive board, smart
desk, etc.) that belongs to the classroom environment accommodates a local Device
Manager agent that handles input/output devices and supports their interaction with any
application in the ClassMATE cloud. Both remote and local devices are supported
transparently by the system, as the interaction is orchestrated by the Context Manager and

transported through the Events Layer.

The role of the Data Space is threefold: a) it implements a centralized content repository,
providing transparent content access and management by any ClassMATE application and
service, as if it was a local resource, b) it encapsulates a content classification mechanism,
based on IEEE’s LOM specification [18], providing the necessary content-related rationale to

data mining procedures, and c) it encapsulates a sophisticated filtering mechanism for

15

personalized content delivery. For the latter to be accomplished, the Data Space strongly
collaborates with the User Profile to collect the essential static or dynamic user

characteristics.

The User Profile implements the classroom’s users (students and teachers) behavior
monitoring and evaluation, in order to provide user related metadata to the ClassMATE's
services and applications. According to the IEEE’s Learning Technology Systems Architecture
(LTSA) [17], as illustrated Fig. 2, the User Profile represents a learners’ record repository,
which keeps track of every individual student’s learning status and behavior data.
Additionally, the User Profile accommodates the knowledge learning resources library of
students’ behavior patterns, dynamically gathered via their activity monitoring. Data
gathered by the User Profile service, through an iterative monitoring and evaluation process,
constitutes the main feedback for the Context Manager, so that a learner’s centric rational is
applied for content delivery and interaction control, thus providing adaptation to individual

student’s needs.

The Security Manager is responsible for the authorization management of the intelligent
classroom’s stakeholders (users and applications). It is based on a set of dynamically
updated access lists, which define the rules that a user or an application must follow. The
Security service is in continuous communication with the Context Manager, updating its
access lists according to the current needs of the educational process. For instance, when
the teacher requires the complete students’ attention on the whiteboard, the Context
Manager advises the Security service to suspend any interaction with other classroom’s Aml
artifacts (e.g., smart desks), thus students will not be distracted by the interaction with other

devices.

16

/ Aml Classroom Environment \ ClassMATE API

ClassMATE

Security User Profile

Context
Manager

Device
Manager

Data Space

AmI Programme middieware

(a) (b)

Figure 2: The Envisioned Architecture of the Smart Classroom System

In terms of intercommunication, ClassMATE relies on a generic services interoperability
platform, named FAMINE (FORTH’s AMI Network Environment), which has been
implemented in the context of the ICS-FORTH Aml Programme. FAMINE provides the
necessary functionality for the intercommunication and interoperability of heterogeneous
services hosted in an Aml Environment. It encapsulates mechanisms for service discovery,
event driven communication, remote procedure calls, etc., supporting a plethora of
programming languages and frameworks, i.e., .NET languages family, Java, Active Script,

ANCI C++, etc.

17

4 Ambient Environment Management

The envisioned Classroom is surrounded by an intelligent environment that ClassMATE aims
to fully exploit through the Context and the Device Manager. The Content Manager
encapsulates mechanisms to identify environment’s characteristics and facilities, discover
and manage the available services and orchestrate the applications running on the
contained artifacts. The Device Manager aims to offer a generic mechanism for
heterogeneous devices manipulation by any ClassMATE-enabled application; thus in
collaboration with the Content Manager identifies the active devices and makes them

available for use.

4.1 The Context Manager

The Context Manager consists of seven modules, as depicted in Fig 3, which interoperate to
achieve context-awareness. The Platform Expert operate provides access to the wide-variety
of platform-specific functions in a platform-independent manner, the ClassMATE Event
System implements the essential mechanisms for event distribution, the Artifact Director
orchestrates each artifact, the Class Orchestrator controls every aspect of the classroom the
Application Launcher instructs the applications opening, the State Serialization Manager
manages application’s state serialization and deserialization, and finally the Migration

Processor facilitates the application migration.

Am| Classroom Applications
ClassMATE API

Event Mechanism

Platform Artifact Class State
Expert Director Orchestrator Serializer

Migration

Manager

AmI Programme middleware

Figure 3: Context Manager Architecture Diagram

18

4.1.1 Platform Expert

In the envisioned technology-augmented classroom various platforms may exist. Due to the
diversity of services provided by each artifact, the ClassMATE system was designed to
operate as an abstraction layer that provides access to the wide-variety of platform-specific
functions in a platform-independent manner; for instance, the Smart classroom intended for
the FORTH Ambient Programme, consists of five different platform artifacts. Therefore, the
Platform Expert module was introduced. The Platform Expert’s concept is based on similar
well-established abstraction layers incorporated in the majority of the modern operating
systems and was implemented following the Singleton design pattern. The Singleton pattern
[14] ensures that a class has only one instance and that the instance is easily accessible. A
global variable makes an object accessible, but it doesn't avoid instantiating multiple
objects. A better solution is to make the class itself responsible for keeping track of its sole
instance. The class can ensure that no other instance can be created (by intercepting

requests to create new objects), and can provide a way to access the instance.

Every application depends on a well-defined set of services to operate properly. If the host
platform does not implement the complete set, then the application would either execute
poorly or would have to dynamically adapt its logic, using defensive programming
techniques, to address such lack. Nevertheless, if the host platform offers supplementary
services to substitute the missing ones, then the application would work properly as long as

the core functionality remains the same.

Based on the above observation, ClassMATE adopts an Interface-based approach to ensure
that every platform (i.e., ClassMATE enabled device) will support a minimum set of
ClassMATE’s core services. For each core service an APl is defined that describes precisely its
operations, while a concrete implementation is provided by each specific platform to ensure
portability; these classes that implement the same APl constitute a service family. An
application programming interface (API) is an interface implemented by a software program
which enables it to interact with other software. It facilitates interaction between different
software programs similar to the way the user interface facilitates interaction between
humans and computers. An API is implemented by applications, libraries, and operating
systems to determine their vocabularies and calling conventions, and is used to access their
services. It may include specifications for routines, data structures, object classes, and

protocols used to communicate between the consumer and the implementer of the API.

19

Following the Abstract data types (ADT) programming paradigm, every application operates
independently of the platform that is running on, since it does not have to know the
concrete instance that offers a particular service, but only use the appropriate APl exposed
by that service family (as depicted in Fig. 4). ADTs are purely theoretical entities, used
(among other things) to simplify the description of abstract algorithms, to classify and
evaluate data structures, and to formally describe the type systems of programming
languages. However, an ADT may be implemented by specific data types or data structures,
in many ways and in many programming languages; or described in a formal specification
language. ADTs are often implemented as modules: the module's interface declares
procedures that correspond to the ADT operations, sometimes with comments that describe
the constraints. This information hiding strategy allows the implementation of the module to
be changed without disturbing the client programs. The notion of abstract data types is
related to the concept of data abstraction, important in object-oriented programming and
design by contract methodologies for software development. The following example
illustrates the advantages of the Interface-based approach: any application designed for
touch interaction that uses the ClassMATE’s Touch Interface would operate flawlessly both
when running on the vision-based touch-sensitive AmIDesk [3] and the touch screen of the

SmartDesk.

Another additional advantage that derives from the interface-based approach is that despite
the system’s distributed nature, the locality of the required services does not affect the
applications’ logic. One service could run locally on the same host, or remotely on another
host, or even inside the ambient environment, and the interested application will access the
exposed operations through the ClassMATE-exposed interface, as if the concrete service
provider was a simple source-level object. The Platform Expert, in cooperation with the
ClassMATE core, encapsulates the necessary logic to transparently handle the
intercommunication needs between the local and the remote node(s). An example scenario,
enabled by ClassMATE’s distributed services, concerns the ClassBook Reader application,
which displays an electronic version of a physical course book augmented with hotspot areas
that the student can select to search for relevant content (e.g. an image to see relevant
multimedia) or launch an exercise application (e.g., a multiple choice exercise). It uses the
book localization service to determine which page should be displayed. When running on
the Aml- and Smart- Desk artifacts of the technologically-augmented classroom, the in-
artifact (local) service identify the page on the physical course book using the front-facing

camera and notify the reader application, while when running on a student’s laptop at home

20

a remote book localization service can determine the appropriate page range, even the
exact page, based on tomorrow’s lecture schedule. In both cases, the Classbook Reader
application displays the appropriate page without being aware of the concrete instance that
defined it or its locality.

Interface Multitouchinput
{ MultiTouch

intoperationi();

}

Factory
A

Product A

ProdA : Multitouchinput
{

int operation1()

{

return prodAl();

v
Product A

ProdB : Multitouchinput
{
int operationl()
{
return prodB1()
+ prodB2();

Product C

ProdA : Multitouchlnput
{

int operationl()

{
return lprodC1();

} }
} b }

Factory Factory
Localizer A B

Factor
e

Figure 4: Interface-based Abstract Service Factory approach

The interface-based approach for each service family satisfies the requirement of
application’s portability. The modules that support dynamic service installation and platform
configuration through external files, according to the requirement of service modularity, will

be described in the next sections.

21

public List<T> resolveService<T> ()
{
List<T> 1list = new List<T>();
SrvFactoryEntry cntry — scrvices|[typcof (T).FullNamc];

foreach (SrvInfo si in entry.PlatformServices)
{
cbject[] createParams = ‘ si.Name,
si.Locality,
si.Remo-eCxtName };

Object o = null;

entry.FactType.InvokeMember ("createProduct”,
BindingFlags.Default
|BindingFlags.InvokeMethod,
null,
entry.getFactoryObject (),
crea-eParans) ;

list.add ((T)o);

}

return list;

Figure 5: Platform Expert’s method to concrete service objects

4.1.1.1 Service Factory Interface

To be portable across different platforms, an application should not hard-code its services
for a particular platform. Instantiating platform-specific classes of services throughout the
application discourages later modifications. For instance, explicitly declaring the service
“S1”, having in mind a particular platform “P1” (e.g., the SmartDesk artifact) that provides
“S1”, will immediately constitute the application stationery as when launched in another
platform “P2” which provides “S2” as an alternative to “S1” the application will not work
properly. This issue can be addressed by defining a services family “SF1” that defines the
interface “SF1_Interface” which exposes the necessary operations, and every artifact should
provide a concrete implementation of that interface. The application developer, at the
source level, will request a concrete object that implements “SF1_Interface” and the
ClassMATE core will instantiate the appropriate object for. For that to be achieved the
Abstract Factory design pattern [14] is applied; the Service Factory interface declares the
createProduct operation, which when invoked returns a new service object that belongs to
that family (Fig. 5, Fig. 6). Subsequently, clients do no hard-code the desired services;
instead they call the createProduct operation to obtain service instances. Thus clients
remain independent of the prevailing platform as they are not aware of the concrete classes

they are using.

22

AbstractFactory [Client

CreataProducta)
CraatsFroducia]) | AbstractProductd fa————
-{ Productd2 | | ProductA |-—-.
' ¥
ConcreteFactornyl - ConcreteFactory2 |- - !
CreataProductAf) CreateProductid) '
CreataProductB) GreateProductl) | AbstractProduct |..—._

Figure 6: Abstract Factory Design Pattern

Every services’ family that requests integration with the ClassMATE system should
implement the ServiceFactorylnterface and provide a concrete implementation of the
createProduct method to return a new service object for every platform. The createProduct
method when invoked accepts three parameter arguments: Name, Locality and
RemoteContextName. Name indicates which service should be instantiated, Locality
determines the context where the desired service will run (i.e., locally or remotely), and
finally, RemoteContextName is applicable only for remote services and indicates the node

that hosts the desired service.

4.1.1.2 Service Info & Factory Entries

The Service Info class is a utility class that stores data regarding the available services on the
current platform (i.e., Name, Locality and RemoteContextName). During the platform’s
initialization, the Platform Expert module instantiates a new Servicelnfo object for each
supported service contained in the configuration, populates it with the retrieved values and

adds it to the available services list.

The ServiceFactoryEntry, as implied by its name, stores data regarding the factories of
supported services. Each entry contains: the literal representation of the service’s full name,
the factory instance that will be used to create the concrete objects and a list of Servicelnfo
elements enumerating the supported services of this service family in the current platform.
The Platform Expert module populates the list of available factories when loading the
current platform configuration. The service’s name is encoded in the configuration file, but
the factory instance is not explicitly defined. The class that implements the ServiceFactory

interface is implicitly defined by the service’s name, and the ClassMATE system

23

automatically loads that class using the .NET reflection mechanism and in particular the
Activator.Createlnstance operation. The pattern used to discover the factory class is a
proprietary protocol, where the factory class should be named as ServiceTypeXFactory (e.g.,
for a service named “ClassMATE.Core.ServiceA” the system will lookup for a class that
implements the ServiceFactorylnterface named “ClassMATE.Core.ServiceAFactory”).

The client Application

requests an instance of o
MultiTouch Input interface

MultiTouch
Input

Factory
A

J1VINSSED

Create
Product

The client Application
receives a concrete instance of
MultiTouch Input interface
(unaware ofthe exact type)

Figure 7: Process to instantiate a concrete service object

At runtime, the Service Factory Entry list is solely used by the Service Factory Registry during
the service resolution process. Since the createProduct method is a key method of the
ClassMATE’s system, its performance should be optimal; thus, the frequently used Factory
list is always kept in the main memory to ensure fast access time. When a client application
requests a specific service type, the Service Factory Registry retrieves the respective factory
entry, invokes the createProduct method using the contained Servicelnfo entries to supply

the appropriate arguments, and finally collects all the concrete instances into a list that is

24

returned to the client application (Fig. 8). The objects contained in such list offer the service

type requested by the application and supported on the current platform.

4.1.1.3 Service Factory Registry

The Service Factory Registry maintains a one-way associative map between a library and the
service name(s) that it exposes, while a single library can expose more than one service
types. The map is populated during platform’s initialization with the services described in
the platform’s configuration. The key feature is that every family of services that exposes the
same interface also offers a factory class that instantiate the concrete service objects. The
full name of the exposed interface was selected to be the association key in that map, as the
client applications only know the exposed interface type and they are completely unaware

of the internal factory pattern used to create the concrete objects.

Taking into consideration client’s objectives when resolving a service through the Service
Factory Registry, the approach selected is not only straightforward to use but also minimizes
errors taking advantage of the compiler’s runtime checks. The “resolve” method is
implemented as a Generic method, having as a method-specific type argument the interface
type that the client would like to use. The type argument purpose is twofold: on the one
hand it implicitly provides the lookup key, thus the caller (client) does not have to specify
anything else, and on the other hand it eliminates the need for explicit cast of the returned

values (Fig. 9).

interface TouchlInputlIface

{
event CustombDelegate evtDelegate;
void operationl (int param);

¥

public class A
{
//
//some code

//

List<TouchInputIface> list = null;
int param = 0;

list = PlatformExpert.Instance () .resolveService<TouchInputIface>();
foreach (TouchInputIface mi in 1list)
{

mi.operationl (paraml++);

mi.evtDelegate += mymethod;

}

//
//some code

/7

Figure 8: Sample usage of the service resolution mechanism

25

When the “resolve” method is invoked with a type parameter T, the Service Factory Registry
extracts the literal representation of that type T and resolves the Service Factory Entry that
exposes that service. Using the .NET reflection mechanism, the createProduct method of the
respective factory instance is invoked to create the appropriate objects. Since more than
one providers might offer the same service T, the Service Factory Registry stores each

individual object in a temporal list, and upon completion returns it to the caller (client).

Another feature that is natively supported by the Service Factory Registry in cooperation
with the Service Factory Interface is distributed service’s locality. The platfom’s
configuration encodes location-related information (locality type and remote host) and the
service-specific factory instance with respect to these attributes will create the necessary
products. Both a local and a remote provider might as well offer the same service T but the

client will never tell the difference between them.

Portability was one of the key objectives when designing the service resolution method.
Since each Service Platform Registry will use the respective configuration to load the
available services and the client will not have to modify anything, portability is ensured.
Every application that wished to use a particular service is not aware of the concrete
instance that offers it, instead it is only aware of the interface that describes the
functionality of that service. Finally, the only special case that needs exceptional handling is
when no suitable service is available and the client must implement a failsafe mechanism to

address that issue; this is actually part of the client’s application logic.

4.1.1.4 Configuration files (Platform.xml, Global Service Definitions.xml)

The Global Service Definitions configuration file holds the global list of the services available
in the ClassMATE system independently of the platform, along with the library files that
contain them. The data are encoded in an XML format and the library file is shared among
the classroom artifacts; however, it is locally stored to minimize network traffic and optimize
loading time. This external configuration facilitates the introduction of a new service, as by
simply adding a new entry in the configuration the service will be automatically loaded in
the ClassMATE system. When the new service becomes available for the applications to use,
the only prerequisite is to obtain the interface that exposes its functionality. The structure of

the Global Service Configuration file is as follows:

<ClassmateServices>
<Service>
<Type> The Service’s Interface full name goes here </Type>

26

<Lib> Path to the service’s libraryThe library’s name goes here (including the .dll
extension) </Lib>
</Service>
<Service>
More service definitions go here
</Service>
</ClassmateServices>

The Platform configuration file is also encoded in XML format, and is used by the Platform
Expert to determine which services are supported in the current platform (artifact). Apart
from the services, it also contains general artifact information like name, screen resolution,
etc., useful both by the ClassMATE core and by various ClassMATE-enabled modules (e.g.,
the Window Manager, the ICS Widget Library, etc.). This file is unique to each artifact, as the

supported services and artifacts characteristics differ.

The key feature though is not the configuration of the supported services per se, but the
definition of service families that follow the factory design pattern and offer a class to

transparently create the alternative concrete implementations of a service T interface.

<Platform>
<Info>
<Name> Artifact’s Name goes here </Name>
<Resolution>
<Width> Horizontal Resolution (e.g. 1600) </Width>
<Height> Vertical Resolution (e.g. 800) </Height>
</Resolution>
Other characteristics go here
</Info>
<Type>
<Name>
The Service’s Interface full name (as defined in the Global Service
Definitions)
</Name>
<Service>
<Name> IdentifierThe name as defined in the Global Service Definitions
</Name>
<Locality> LOCAL | REMOTE </Locality>
<RemoteCxtName> The name of the remote node </RemoteCxtName>
</Service>
<Service>
More service definitions go here
</Service>
</Type>
<Type>
More service type definitions go here
</Type>

27

| </Platform>

The Platform Configuration contains a complete description of the platform and being
external facilitates the maintenance and upgrade process. The removal of an unsupported
service can be achieved by simply removing the appropriate service element, while the
addition of a new one under an existing service family is accomplished by simply adding the
new child element in the appropriate section. On the other hand, the addition of an entirely
new service family (interface type) is a two-step process. The first step is to declare the
service in the Global Services Definitions, and the second step is to add a new service type
element in the supported platforms’ configuration that internally contains the concrete

classes implementing that service.

4.1.2 ClassMATE Events

Coupling was first defined as “the measure of the strength of association established by a
connection from one module to another” by Stevens, Myers and Constantine [13]. As the
definition implies, coupling is inevitable in almost any software system, however it can be
significantly minimized through careful system design and confined among the simplest

components while the complex ones remain completely decoupled [13].

Two major coupling types exist: static and dynamic. In static coupling, if class A is coupled to
class B, then class B should be available during class’s A compilation for that to be successful.
Moreover, if class B changes, then class A should also change to be compilable again. In
dynamic coupling, if class A is coupled to class B, then class B should only be available during
runtime, while class A individually compiles successfully. Since class B does not have to be

present at compile time, any changes do not break the compilation of class A.

Among these types of coupling, the static one appears to be more problematic, in the sense
that compile-time dependencies are essential. However, these dependencies make static
coupling safer than dynamic, as the compiler makes the necessary type checking. On the
other hand, dynamic coupling does not have any compile-time dependencies but any
coupling related errors would only show up during runtime, thus hindering the debugging

process.

Apart from the aforementioned coupling types, three orthogonal coupling flavors can be
identified: Logic, Type and Signature coupling. Logic coupling is the most abstract and the

least desirable of the three, as it means that two classes share information or make

28

assumption about each other (i.e., class A contains an algorithm that is related to an
algorithm contained in class B or classes A and B contains a literal value that is used for the
same conceptual purpose). Type coupling is the most recognizable form, and arises when a
class A directly uses a type defined in another class B. Finally, Signature coupling occurs only
at run time and has the potential to decouple classes from each other (i.e., C++ function
pointers or C# delegates, as long as the method’s signature is compatible then the caller

does not know the receiving end of the call the callee).

In general, in terms of development cost, system scalability and maintenance, dynamic
coupling accompanied by Signature coupling is an optimal choice, especially in a fully

dynamic system such as ClassMATE.

The issue arises therefore to identify a programming paradigm / tool / methodology that can
offer the desired features. Such a programming paradigm is event-based programming. An
event is a detectable condition that can trigger a notification, while a notification is an
event-triggered signal sent to a run-time—defined recipient. A software system is said to be
event-based if its parts interact primarily using event notifications [13]. An event-based
system not only reduces the overall complexity, making design, development, testing and
maintenance easier, but most importantly reduces the coupling of the system as the
modules do not have to be aware of each other but only to “listen” and correspond to the
appropriate events. Since extensibility is one of the main ClassMATE objectives, and since
high coupling discourages extensibility, it was designed and implemented as an event-based

system to reduce coupling to the minimum.

An event is the detection of a condition that sends a notification (“fires the event”) to the
interested parties to trigger their reaction. The node that detects the condition is known as
the event publisher, the event source or simply the sender, while the receiving end of the
event is the event subscriber or listener or event handler or simply the receiver. From the
above becomes clear that for an event to be “fired” at least one subscriber is required. The
process of establishing a valid set of receiver is called subscription or registration [13].
Finally, during registration a well-known list of publishers is necessary for the receivers in

order to register themselves appropriately.

ClassMATE’s event mechanism is implemented on top of .Net built-in Event Mechanism and
extends it to offer the necessary functionality. Following the .NET Framework approach,

stating that if the event handler requires state information, the application must derive a

29

class from the EventArgs class to hold the data, a hierarchy with specialized event types
derived from general ones was defined, forming the ClassMATE event type system [13].
Subsequently, a set of core event types, named ClassMATE commands, were defined:
AppCmd, MigrateCmd, MimeCmd, UpdateCmd. Their exact objectives and internal

mechanics will be described in more details later on.

During receiver registration, as mentioned above, the list of the publishers should be known.
However, in ClassMATE this is not possible, since the list of publishers could be modified at
any time. As a result, the need emerged for a dynamic and scalable solution. A variant of the
Proxy design pattern [14] based on events was selected. The pattern’s intention “Define a
one-to-many dependency between objects so that when one object changes state, all its
dependents are notified and updated automatically” [14] fits perfectly the needs of
ClassMATE. The Proxy Design Pattern is used when an object, called the Proxy, is interested
in knowing about events that occur in another object, called the subject. The Proxy tells the
subject which events it is interested in. When the subject detects one of these events, it
sends an event notification to the Proxy, often by calling one of the Proxy’s methods. A

subject can theoretically have any number of Proxies.

Utilizing the Proxy pattern, any interested party does not need to know the exact producer
of an event, but only register a callback method (by delegating) to a specific event type.
When an event of this type occurs, the Proxy pattern ensures that every registered callback

will be invoked.

4.1.2.1 Base Event Args

Event-related data make ClassMATE events useful, and since the .NET EventArgs class does
not contain event data, ClassMATE defined its own base class from which every ClassMATE
event will derive from, the BaseEventArgs. This class obviously derives from the .NET
EventArgs class to ensure seamless integration with the .NET framework, and introduces two
quite important attributes, common to all ClassMATE events, the event Sender and the
event identifier. Since multiple event handlers can be triggered by the same event, each
handler determines whether an event was intentionally received and should be handled or it
should be discarded by checking if this handler is interested to events coming from the

particular Sender.

30

4.1.2.2 Abstract Event producer

An Event Producer could be considered as a special-purpose service that exposes a certain
public API and fires (produces) events. Setting aside the event type, every event producer
must offer the same functionality. That APl exposes the methods that facilitate (i) new
subscribers’ addition, (ii) existing subscribers’ removal, and (iii) invocation of the currently

registered delegates.

To ensure that all event producers will implement that fundamental API, the
AbstractEventProducer class was defined to accumulate those common tasks. It is
implemented as Generic class to support any Event type that derived from
BaseCmdEventArgs and encapsulate operations that are not specific to a particular data
type, and declared as abstract to permit the declaration of the abstract method “isLocal”
with no implementation that should be overridden by any derived class. Every ClassMATE-

aware Event Producer should derive from this class and must provide implementation for all

III

abstract methods. The “isLocal“ method differentiates a Local from a Remote Event

producer, and is mainly utilized by the Event Registry during event broadcast process.
Finally, each Event Producer can enhance the base class with event-specific functionality, as

long as the main interface remains unchanged.

Finally, the key feature of the Abstract Event Producer is the EventHandler delegate that it
contains, which will be called upon the occurrence of some "event". The delegate can have
one or more associated methods that will be called when your code indicates that the event
has occurred. Since direct access to this member is limited, the OnEvent method was
defined that takes the Custom Typed Event as a parameter and distributes it through that

delegate to the subscribers (Fig. 10).

publ'c class EvenlReg ' slry
{

/7

//some code

/7
rrivate List<AbstractEvtProcucer<T>> producersList;

rublic voic sencEvent (object sencer, T t)
{
foreach (AbstractEvtPrcducer<T> item in producersList)
{
if (item.isLocal())
item.OnEvent (sender, z);
clsc
//conditional code

}
/7
//some code

//

Figure 9: Generic Send Event method

31

4.1.2.3 Event Proxy

ClassMATE, in addition to dynamic service registration, supports application and service
migration from one node to another at run time. Migration refers either to the Ul or the
application logic or both. Concerning the event handling mechanism, even though the above
cases suffer from different problems, the main common difficulty is that every event
producer(s) and receiver(s) change during migration. As a result, the application/service
should be aware of the migration process and keep track of all the event producers that it
uses, so as to update them if they change their content after initialization (during execution).
Pure event producers do not have to know anything about context or migration, since they
only produce events and the receivers are responsible for successfully receiving them (not
such a good practice). However, event producers that are dependent on other event

producers, so they are actual event receivers, should follow the same approach.

Subject
Requesi()
. ralSubject
RealSubject realoubec Proxy
Request(} Request() G-p--------- realSubject-=Request();

Figure 10: The Proxy Design Pattern

This is not compatible with the modular nature and ease of use of ClassMATE. Since
ClassMATE is responsible for launching / suspending services in any ClassMATE node, then
clearly it should be responsible for a transparent migration process. Migration if examined
closely amounts to suspending the application / service at some node, save its state, transfer
the state to the new location and resume the same application / service with the saved state
at another remote node. The state transition will be examined in more details in the

StateSerialization API.

The state itself characterizes the application, however the rest of the services / application
present in the classroom ecosystem do not need to know anything about the state, as they
are only interested in the event produced. For handlers to be installed, the producer should

be implicitly known as an AbstractEventProducer of the event type A. Even so, when the

32

producer instance alters, the abstraction is invalid. The new AbstractEventProducer should
be registered and the handlers re-subscribed. To automate and transparently handle this

process, the EventProxy class was defined to minimize the necessary boiler plate code.

The EventProxy (Fig. 11) was implemented as a Generic class that allows the definition of
type-safe data structures, without committing to actual data types, and facilitate reuse of
data processing algorithms without duplicating type-specific code. Internally it maintains
two lists, the handlers’ delegates and the producers list. The handlers list contains all the
event delegates registered for a certain type of event and that must be invoked when the
event occur. Apparently, this list is not used for invoking the delegates, but for keeping track
of the installed handlers, so as to re-subscribe them if a migration occurs. The producers list
contains all the AbstractEventProducers, registered in the ClassMATE, that produce events
of type T. ClassMATE supports dynamic service registration through the PlatformExpert and
ServiceRegistry modules. To enable integration with ClassMATE, every event type T must be
accompanied by a module that implements the ServiceFactorylnterface and creates the

respective AbstractEventProducer for that event type.

When the migration process is complete, the Event Proxy is notified to update its’
invalidated list of producers and re-subscribe the handlers to the new producers, so as to be
notified when an event occurs. This process is completely transparent to the handlers since
they would never know the exact producer so they will also not know that the producer has
changed. They are only aware of a particular event type and they have only offered one
method to be invoked when an event of that type occurred. The process of adding a new

delegate is accomplished through the EventRegistry module that will be described next.

The Event Proxy also contains a SendEvent method that broadcast the event to the
registered subscribes. For that to be achieved, Event Proxy iterates the list of current
AbstractEventProducers and invokes their OnEvent method (as defined in the
AbstractEventProducer base class), and as a result the event distributes. It is important to
note that at before the invocation any migrated producers had been re-initialized and as a

result the list is updated (Fig. 12).

33

Event
Type

‘. o ‘. !

(b)

Figure 11: The Event Proxy Rationale

4.1.2.4 Event Registry

The EventRegistry module is the sole entry point for the various applications and services to
the ClassMATE’s event mechanism. Both the handlers’ subscription and events’ distribution
processes are accomplished through that point, and considering that a unique instance of it
should exist in the same artifact, the Singleton design pattern [14] is used for its

implementation.

The subscription process is performed by the AddHandler and RemoveHandler exposed to
the Event Registry API. Every ClassMATE-enabled application or service that desires
notifications for events should subscribe the relevant delegate to be invoked by the
producer when the event condition is satisfied. A delegate is a type that references a
method and is similar to a C++ function pointer. Once a delegate is assigned a method, it
behaves exactly like that method. The delegate method can be used like any other method,
with parameters and a return value. Any method that matches the delegate's signature,
which consists of the return type and parameters, can be assigned to the delegate. This
makes it possible to programmatically change method calls, and also plug new code into
existing classes. As long as the delegate's signature is known, it can be assigned its own

delegated method.

As the above suggests, an event handler class should implement a method that matches the
delegate signature for the desired event. Despite that such a programming practice would
not compromise scalability -as each event type will define its own signature- it would
perplex maintainability. If a single delegate signature changes, then all the relevant handlers
should update their implementation to comply with the new specifications. ClassMATE,
aiming to enforce uniformity, utilizes the default EventHandler delegate offered as a built-in

facility of the Microsoft’s .Net Framework. The default EventHandler is a predefined

34

delegate that specifically represents an event handler method for an event that does not
generate data. Since ClassMATE’s events hold data, the Generic version of that delegate is
used, the EventHandler<TEventArgs> delegate class, where the Generic type parameter is

substituted by the appropriate subclass of the Base Command Event Arguments.

The standard signature of an event handler delegate defines a method that does not return
a value, whose first parameter is of type Object and refers to the instance that raises the
event, and whose second parameter is derived from type EventArgs and holds the event
data. If the event does not generate event data, the second parameter is simply an instance
of EventArgs. Otherwise, the second parameter is a custom type derived from EventArgs and

supplies any fields or properties needed to hold the event data.

Despite the fact that the Event Registy does not use Generics at all, the AddHandler and
RemoveHandler methods were implemented using method-specific Generic type
parameters [26]. The different event types are stored in a Dispatch Table that maps an event
type with an Event Proxy. When any of the Add or Remove Handler methods is invoked
specialized with a particular event type, the event type is the key that indexes the
appropriate Event Proxy that has to either subscribe or unsubscribe the provided delegate
from its active subscribes list. The event distribution mechanism works in a similar manner.
When the SendEvent method is invoked with the specialized event type, the Event Registry
locates the appropriate Event Proxy and delegates the distribution process to it by invoking
the Proxy’s SendEvent method that notifies event’s subscribers (Fig. 13). The
aforementioned process highlights the importance of the Event Proxy class, as neither the
subscribers nor the Event Registry are concerned with any migration-related activity,

because the migration logic is encapsulated in each Event Proxy instance.

35

The client Application
distributes an Type A event
through the Event Registry

Event Registy

JLVINSSED

Figure 12: Event Distribution Mechanism

4.1.2.5 ClassMATE Message Events
The ClassMATE Message Event is a primitive event type that is exchanged between either

local or remote nodes. It derives from the BaseEventArguments and extends it by adding the
Receiver, the RemoteContextName and the Message attribute. The Receiver denotes the
intended recipient of that message, the RemoteContextName is used by the FAMINE
infrastructure to facilitate the artifacts communication and dispatch the event to the proper
node and finally the Message attribute contains the actual message that must be exchanged.
For the Message Event to be successfully dispatched a conditional delivery is necessary; thus
the EventRegistry checks the RemoteContextName, and if it is empty, then the event should
be dispatched locally, otherwise it should be forwarded to the FAMINE infrastructure for

delivery.

4.1.2.6 ClassMATE Commands

4.1.2.6.1 Base and RemoteBase CommandEventArgs

The ClassMATE Command Events are divided into two major categories: the intra-artifact or
local and the inter-artifact or remote events. The intra-artifact events “travel” within the
same artifact since they are raised and handled by different threads of the same local
process; consider the Multimedia Application, used to display multimedia content (i.e.,
images and videos) that receives an event from the SmartDesk ClassBook Reader

I”

Application. The inter-artifact events, on the other hand, “travel” between the various

36

classroom artifacts (e.g., from the AmlDesk Multimedia Application to the SmartBoard
Multimedia Application, etc.) since they are raised from a thread of the local process and
handled by a thread of a remote process in another artifact. The following scenarios
illustrate an intra- and an inter- artifact event. An intra-artifact event occurs when the
BookLocalizer service of the AmIDesk detects the current physical book page and instructs
(by raising a local event) the AmIDesk Window Manager to display that page in the
Classroom Book application. On the other hand, an inter-artifact event could occur when the
student selects the migration of the Multiple Choice Exercise Application from the AmIDesk
to the SmartBoard, and the ClassMATE instance of the AmIDesk communicates with the
remote Window Manager of the SmartBoard to initiate and execute the migration process.
ClassMATE in order to support both intra- and inter- artifact events introduced the
BaseCommandEventArgument and the RemoteBaseCommandEventArgument classes

respectively.

The BaseCommandEventArgument is primarily a ClassMATE event, thus it derives from the
BaseEventArguments and extends it by adding the Receiver attribute. Since multiple event
handlers can be triggered by the same event, each handler determines whether an event
was intentionally received and should be handled or it should be discarded by checking the

Receiver attribute.

The RemoteBaseCommandEventArgs extends the BaseCommandEventArguments by adding
the LocalContextName and the RemoteContextName attributes. The RemoteContextName is
used by the FAMINE infrastructure to facilitate the artifacts communication and dispatch the
event to the proper node, while the LocalContextName is used by the remote handler to
cross-check the validity of the received command. The following example highlights the
usage of these attributes. A student instructs the migration of the local Multimedia
Application to the SmartBoard without prior teacher’'s permission. The
RemoteBaseCommandEventArguments attributes populates as follows: “StudentDeskld” as
the LocalContextName and “SmartBoard” as the RemoteContextName. Upon receipt, the
SmartBoard’s handler checks if the LocalContextName is permitted to execute the migration
command through the Security Manager. If the desk identified by the “StudentDeskld” does
not have the necessary privileges, the command will be discarded and no action will be

taken.

37

4.1.2.6.2 Command Types and Objectives
Based on ClassMATE’s requirements, the possible commands were categorized under the

following domains (Fig. 14): Application, Update, Mime and Migrate. This categorization’s
role is twofold. On the one hand, from a conceptual point of view, such a command
hierarchy disambiguates the purpose of each type and facilitates the overall design process,
as every application designer has to deal with the a subset of system events only. On the
other hand, from a technical point of view, this command type system based on subclassing
is preferred over a more naive approach where all the available commands form a complex
union type and every instance declares its type. Moreover, every handler is interested in less
than two events, thus it does not have to know redundant information regarding the other
types and to check during runtime if the event is of the correct type. Finally, using different
event types, ClassMATE eliminates flooding of the communication channel due to
broadcasting every event to every subscriber (even those that are not interested in that
particular event, not known at that time), but it implements a more sophisticated
mechanism, where only the interested parties get notified (Fig. 15). The objective, the
locality and the rationale of the various ClassMATE command types are described in more

details in the next sections.

BaseCmd
1
1 1 1 1 1 1 1
Update N Migrate MigrateApp Mime UpdateMe UpdateMe
pptm
AppCmd AppCmd RemCmd AppCmd Cmd RemCmd

Figure 13: ClassMATE Command Type Hierarchy

| Modue | _wm]| oM | icsapp |
S R S R S R

a. UpdateAppCmd . . d, g
b. AppCmd . O

c. MigrateAppCmd . O

d. MirgateAppRemCmd .)

e. MimeAppCmd ° .

f. UpdateMeCmd . Y

g. UpdateMeRemCmd . .

Figure 14: Sender and Receive Map of Command Events

38

4.1.2.6.2.1 Application Command
The application command, as implied by its name, aims to change the internal state of an

application. The receiver is always a ClassMATE-enabled application and the sender is always
the only component aware of any application instances, the Window Manager [22]. Since
both parties reside locally in the same artifact, the Application Command derives from the
BaseCommandEventArgs and introduces two additional parameters: the ApplicationName

and the Argument.

An application command though is not issued by the Window Manager, but by the
ClassMATE core. Such commands are mainly triggered by ambient environment factors and
the core encapsulates them into expressive packages. Since the core does not have direct
access to the applications, the Window Manager becomes the middleman for their delivery.
However, the Window Manager might receive an application command because it is a
ClassMATE-enabled application too, as long as it has registered the appropriate delegate

(i.e., disable desk interaction as the teacher requires full attention to the board).

Multiple handlers may receive the same event simultaneously. The ApplicationName
attribute is used to determine whether this command refers to the current handler and
should be executed, or it should be discarded without modifying the handler’s state. The
argument encodes the actual command for execution. To address the encoding issue, a
straightforward but extensible application-independent protocol was defined, including the

most commonly used commands. The built-in commands are:

e OPEN--FilePath: Open the file indicated by the provided complete path

o STATE--Stateld: Restore the state indicated by the state identifier (used during
migration)

o TERMINATE--Apps, where Apps contains a list of comma-separated application
names or the keyword ALL: Terminate the denoted applications

o DISABLE--Apps, where Apps contains a list of comma-separated application names
or the keyword ALL: Disable the user interaction with the denoted applications

e FOCUS--AppName: Bring the denoted application to the front

Multiple applications can accept and decode the same command, but the interpretation and
reaction will be application-specific. For instance, both the Multimedia Viewer and the
Classbook Reader applications can decode the command “Open--FileName.xml|”, but each
one will react appropriately. Since the ClassMATE core is the only issuer of every application

command, any protocol modifications (i.e., a new ambient event triggers an already defined

39

action) or additions (i.e., a new ambient event introduces a new command) affect only the

core’s command generator module and the respective handlers’ delegate method.

An indicative example that illustrates the usage of the application command type is the
following: when a student opens the physical book to a particular page, the ClassMATE core

identifies that page and launches the Classbook Reader application to display its electronic

copy.

4.1.2.6.2.2 Update Application Command
The ClassMATE core uses the Window Manager as the middleman to distribute commands

to the applications. The Update Application Command wraps a list of Application commands
in a single package which the Window Manager later propagates to the receivers in the form
of single Application Commands. The Update Application Command resides in the local
artifact as the route of this event is always from the core to the Window Manager. Thus, it
extends the BaseCommandEventArgs class and appends the dynamic list of Application

Commands attribute.

To ensure that all the contained commands are delivered successfully to their recipients
with zero losses, when an Update Application Command is received, the Window Manager
examines every Application Command, launches the application pointed by the AppName
attribute if inactive, and when notified that the application launched successfully,

propagates the command for execution.

Returning to the aforementioned book example, from the point of view of the Window
Manager, it can be formulated as follows: the ClassMATE core creates an Application
Command, packages it into an Update Application Command and propagates it to the
Window Manager. If the Classbook Reader application is not active, the Window Manager
launches it and then propagates the command; otherwise, it simply propagates the
command. ClassMATE in cooperation with the Window Manager (through the Update
Application Commands) controls the applications and performs the overall classroom’s

orchestration.

4.1.2.6.2.3 UpdateMe and UpdateMeRemote Application Commands
During migration the state of an application is transferred from the local to a remote

artifact, but the “new” application executes in an isolated standalone mode. Nevertheless,
many cases exist in an ambient environment where the parent application should be able to
control the migrated one, and vice versa. Instead of re-implementing a remote desktop

protocol, ClassMATE offers a more sophisticated solution where only the necessary data are

40

transmitted to synchronize the remote state. For that to be achieved, the parent application,
being aware that a migrated instance exists, digests any local events and transmits them
when necessary. However, since no direct communication channel exists between them, the
only available route is through the ClassMATE core, which encapsulates the transmission

process.

The UpdateMe Application Command is exchanged between an application instance and the
ClassMATE core, thus it derives from the BaseCommandEventArgs and packages two
additional attributes, the AppName and the Argument. The UpdateMe and the Application
Command seemingly appear the same in terms of enclosed data; however, the involved
parties differ and most importantly, the Argument contained in an UpdateMe command is
encoded in a proprietary, application-specific, protocol which only that particular application
can handle. An application is able to use one of the predefined system protocols (e.g., the
Application Command Protocol described above) to transfer messages to its remote instance
as long as the protocol is suitable for its needs. When the ClassMATE core receives such a
command, it firstly consults the Security Manager and the Classroom Orchestrator to
validate sender’s privileges and if that requirement is met, the command is wrapped into an

UpdateMeRemote Application Command and marked as ready for transmission.

The UpdateMeRemote Application Command is the carrier of every UpdateMe command
from one artifact to another. The transmission channel is a combination of .NET Events and
FAMINE proprietary format, while the necessary marshaling and unmarshaling processes are
completely transparent to the receiver. Every UpdateMeRemote Application Command
derives from the RemoteBaseCommandEventArgs, since the local and remote context
attributes define the involved network nodes, and adds a single attribute, the UpdateMe

command to be transmitted.

Upon receipt, the remote ClassMATE instance maps the UpdateMe Application Command
into an Application Command. No sophisticated logic is needed, as the command attributes
were appropriately filled by the parent application which initially generated it. The
translation into an Application Command ensures that no additional handlers should be
registered for that particular command type, since the already registered Application
Command handler will receive and handle it by incorporating the appropriate logic. The
generated Application Command is eventually delivered to the target application wrapped in

an Update Application Command handled by the respective Window Manager.

41

The following example illustrates the use of the UpdateMe and UpdateMeRemote
Application Commands. The teacher asks one of the students to continue his Multiple Choice
Exercise at the AmIBoard. From that point forward, every action on the desk artifact (i.e.,
multiple question answer) is locally handled, and only the digested outcome is packaged and

transmitted by the desk’s ClassMATE instance to the board’s ClassMATE instance.

4.1.2.6.2.4 Mime Command
Through the ClassMATE core, the ambient classroom may launch various educational

applications. However, every application can launch other applications either directly or
indirectly, to enhance the educational process and facilitate students’ study through their
collaboration. In shell-based approaches, well-established practices to address application
intercommunication, the parent application launches a virtual shell and executes a set of
commands with the appropriate initialization parameters to launch another application. The
shell-based approach is particularly suited for systems that host a great variety of
applications (i.e., a complete 0OS), however, in the ClassMATE’s case, it would most likely
compromise its clearness, as every application instead of complying with a common scheme,
would arbitrarily define its own proprietary scheme and the other applications should
incorporate specific logic for each one. Besides, ClassMATE’s educational objectives require
a preprocessing step to authorize on the one hand the application launch and on the other
hand ensure personalized content delivery based on context-related reasoning. To highlight
the added value of the above, consider the following example: the student selects to launch
the Multimedia Application in order to play a specific video, but ClassMATE collects also
other educational material (images, words, exercises, etc.) related to that particular video

and proposes them to the student.

For that to be achieved an intermediate layer was introduced, that orchestrates the launch
process and relieves the application from handling the reasoning process, i.e., communicate
with the respective modules and provide the relevant data to facilitate mining. The most
appropriate host of such module is the ClassMATE core, as it not only orchestrates the
overall classroom, but is also in direct communication with other key modules such as the
DataSpace and the Security Manager. ClassMATE uses a variant of the Mailcap invocation
scheme [6] that modern Operating Systems use to associate specific applications with
specific mime types, and when an application has to launch a new application it should only

notify the core and supply the appropriate mime.

42

An Internet media type, originally called a MIME type after MIME (Multipurpose Internet
Mail Extensions) and sometimes a Content-type after the name of a header in several
protocols whose value is such a type, is a two-part identifier for file formats on the Internet.
MIME is short for Multipurpose Internet Mail Extensions and it was defined in 1992 by the
Internet Engineering Task Force (IETF). MIME is a specification for formatting non-ASClII
messages so that they can be sent over the Internet. Many e-mail clients now support
MIME, which enables them to send and receive graphics, audio, and video files via the
Internet mail system. There are many predefined MIME types, such as GIF graphics files and

PostScript files. It is also possible to define your own MIME types.

The application communicates with ClassMATE through a special command type, the Mime
Command. This command is exchanged between local modules, thus it derives from the
BaseCommandEventArgs and two essential attributes to fulfill its objective: the Mime type
and Resource ldentifier. The Mime type belongs to the commonly known mime types and

the identifier is used as reference for searching relative content.

The key feature is that the ClassMATE core supplies the necessary data (i.e., mime types and
identifiers) for every interactive resource and the application simply packages them in a
Mime Command when triggered by the user. ClassMATE when it receives a MIME
Command, initially resolves the application that can handle that mime type (i.e., png images)
and then requests from the DataSpace module to search for related content. Upon
successful discovery, the DataSpace stores the locations of the discovered data in a file and
returns its path to ClassMATE. The generated file is structured in a mime-specific format
which can be read by the applications able to handle that particular mime type. The
ClassMATE core firstly packages the application’s name and the file path in an Application
Command, then wraps the Application Command in an Update Application Command and
finally dispatches it to the Window Manager to arrange application’s launch. Through a
Mime Command an application can not only launch another application, but also

dynamically modify its content if already launched.

An indicative scenario that illustrates the described process is the following: the student
interacts with the Classbook Reader and selects an image contained in the course book
asking for relative content. The Classbook Reader constructs a Mime Command, populates
the Mime type attribute with the image’s type value (e.g., “image/png”) and the
Resourceldentifier with the URI of that particular image, and sends the command to the

ClassMATE. Upon receipt, ClassMATE resolves the Multimedia Application and asks from the

43

DataSpace to discover related content. As soon as the relative content is successfully
gathered, the ClassMATE notifies the Window Manager to launch the Multimedia
Application and dictate its content population based on the discovered data. Ultimately, the

student will be able to interact with the Multimedia Application and browse those images.

4.1.2.6.2.5 Migrate and MigrateRemote Commands
Many educational methods are based on collaborative learning. For that to be achieved in a

traditional classroom, the teacher should firstly spend some time copying the relevant data
at the blackboard and then start lecturing. On the other hand, students do not care for the
actual lecture but they are trying to copy the contents of the board to their notebooks to
study them later. Moreover, traditional means discourage collaboration in interactive media
(i.e., videos, images, games etc.) as their rendering to a blackboard is an extremely complex
task if not impossible. In the technology-augmented classroom, native support is offered to
the concept of collaborative education with minimum software overhead and no additional
hardware cost. Finally, since the content is stored in a redistributable digital format, the

students do not have to copy anything, but can concentrate on the lecture.

The Window Manager [22], in close cooperation with ClassMATE, makes the whole process
completely transparent to the rest of the system, using Migrate Commands. A Migrate
Commands due to its local exchange derives from the BaseCommandEventArgs and the two
added attributes are: the ApplicationName, MigrationContext and the State Identifier. The
ApplicationName apparently defines the application that should migrate, the
MigrationContext defines the remote node where the application should launch at, and
finally the Stateld is used by the remote application, when launched, to restore its state

through the StateManager module.

For application migration to be achieved, the application’s current state must be transferred
and resumed to the other side. The StateManager maintains a map structure indexed by the
Stateld which associates an application with its saved state data and, in cooperation with the
DataSpace, transfers and restores that state in the remote node. The migration process will

be described in more details in later on.

Every user can transfer his work anywhere in the classroom (usually at the classboard) with a
single gesture through the Pie Menu [22]. The Window Manager identifies the gesture,
resolves the focused application and initiates the migration process. Initially, the Window
Manager requests from the StateManager to store the application’s state and return its

unique id and then instantiates, populates and propagates a Migrate Command to the

44

ClassMATE. The local ClassMATE instance, upon receiving the Migration Command, confirms
authorization privileges with the Security Manager and the Global Classroom Orchestrator. If
successfully authorized, the saved state (indexed by the stateld) is copied into a temporal
network repository for retrieval by the remote ClassMATE instance. ClassMATE has no
control over the state data, but it simply manages the state transfer from one node to the
other. Finally, a RemoteMigrate Command is instantiated and dispatched, through FAMINE,

to the appropriate remote node as indicated by the MigrationContext attribute.

Similar to the UpdateMeRemote Command, the MigrateRemote Command is the carrier of
every Migrate Command from one artifact to another. Every MigrateRemote Command
derives from the RemoteBaseCommandEventArgs since the local and remote context
attributes define the involved network nodes, and adds a single attribute, the Update
Application Command that holds an Application Command populated appropriately with

data digested from the Migrate Command (i.e., application’s name and STATE--Stateld).

Upon receipt, the local ClassMATE core lays the groundwork for a successful migration. For
that to be achieved, the ClassMATE core copies locally the state data stored at the temporal
network repository pointed by the “Stateld” encoded in the contained Application
Command. As soon as the copy process completes, the Update Application Command is
forwarded without any further processing to the local Window Manager to launch the
relevant application. On successful initialization, the application will receive an Application
Command that instructs its state restoration and will use the supplied identifier to load the

appropriate one from the StateManager module.

The aforementioned example, where the teacher asks one of his students to continue his
Multiple Choice Exercise at the AmIBoard, presupposes that the migration process for the
Multiple Choice Exercise Application is successfully completed and that the application

migrates with its state from the student’s AmIDesk to the AmIBoard.

45

puoddyadiy

Aty e et

Send
P ,1igrae
- AppCmd

Send
AppCmed

Apptmd

send
Update
MaCmid

e

W [
.\.'\‘_’L. . Applmd

\-?\‘\':\“ - k

remote

apj infa

{naine,
o)

---> Famine Event
---* Internal C# Event
——> ClassMATE Event

Figure 15: ClassMATE Command journey

4.1.3 Artifact Director

The Artifact Director is the context aware module that orchestrates each artifact. Since only
a sole instance of such module should exist per artifact, the Singleton design pattern was
used for its implementation. The decisions made and action taken can be either artifact-
oriented, independent of the rest of the classroom, or global guidelines coming from the
Class Orchestrator. In addition to the Class Orchestrator, the director is in direct
communication with the other ClassMATE core modules (i.e., Security Manager, Data Space,
Device Manager, etc.). The communication with the Class Orchestrator ensures that
situations concerning the overall classroom ecosystem (e.g. the latest teacher’s directives or
environmental stimulations) and not only the artifact, for which the specific director is
responsible, will be taken into consideration when managing the operation workflow and

the collaboration among the available services (i.e., initiation, suspension or termination).

Context awareness is the key feature that facilitates the “smart” decision making process,
since the Artifact Director and Class Orchestrator should take into account current context
attributes, both static and dynamic, to make the respective decision. “Smart” decisions
based on static attributes could include the termination of applications unrelated with the

current course or automatic homework submission, while decisions based on dynamic

46

attributes might include access restriction to the help system (i.e., the Dictionary
application) during examinations or disabling interaction with every application when the
teacher requires the students’ full attention to the board. The low-level subsystems should
communicate with the Security Manager and the Global Orchestrator to make these

decisions.

In addition to being the artifacts’ orchestrator, the Artifact Director constitutes a bridge
between the internal native FAMINE services, such as the BooklLocalizer or the
MigrationManager, and the ClassMATE-enabled applications. Any events fired by a native
FAMINE service are first wrapped into ClassMATE events and then distributed to the rest of

the system.

The migration and remote synchronization processes are handled by the Artifact Director in
cooperation with the State Manager and the DataSpace module. When notified by the local
Window Manager that an application should migrate, the Director saves the current state of
that application in a temporal network repository and notifies the remote Director about
that location. The remote director copies that state locally and notifies the Window
Manager to launch the indicated application and use the copied data to restore its state. A
similar approach is followed during the synchronization process, however for that to be
achieved every Director maintains a map that associates every migrated application with a

remote node name to dispatch the appropriate commands.

Regarding the Artifact Director’s workload, it is engaged in heavy tasks either during
initialization where communication channels with the rest core components should be
established or when an event occurs and the director should handle it. The director’s action
to events can be marked as either proactive, when the Artifact Director tries to take some
precaution measures (i.e., disable user interaction for the artifact when a test examination is
about to begin), or reactive when the Artifact Director responds to a stimulating event (i.e.,

when the student initiates the migration process).

The Artifact Director is also responsible for handling any ClassMATE Commands sent to the
ClassMATE core by the various applications or services. Thus, the set of handler operations
that implement the necessary logic for each Command type are registered during the
Director’s initialization. The complex commands, like the MIME or Migrate commands, are

delegated to internal command-specific sub-modules following a modular approach where

47

the logic is distributed into several concrete modules, facilitating scalability and code

readability.

The Artifact Director though could “suggest” some more-interesting applications (i.e.,

pending exercises close to deadline, or applications with related content).

Finally, the Artifact Director through monitoring the overall artifact logs every student’s
action and facilitates the user profiling process. The student-related data are maintained by
the Data Space component, and in particular the User Profile module, and used to facilitate
the data mining process. The exploitation of these data will be described in more details in

chapter five.

4.1.3.1 Mime Command Handler

The mime Command Handler is an internal subsystem of the Artifact Director that handles
all the MIME commands by launching the suitable applications with the appropriate data.
The invocation of the appropriate operation is achieved through a dispatch table that
associates the known mime types with delegate methods to handle them. Every delegate
method takes a single argument, the MimeCommandEventArgs (as received by the issuer
application) which contains all the necessary information. A dispatch table is a table of
pointers to functions or methods. The use of such a table is a common technique when

implementing late binding in object-oriented programming.

The Mime Command Handler, being an internal part of the Artifact Director, has direct
access to the various ClassMATE core components (i.e., Data Space, Security Manager, etc.)
to accomplish its tasks. When a Mime command is received, the Mime Command handler
based on the supplied mime type invokes the appropriate delegate to handle it. The
delegate will firstly resolve the most suitable application, and then request relevant content
from the DataSpace component based on the MIME command’s supplied argument. When
the mining process completes, the Mime Command Handler will notify the Launcher to
schedule the initiation of the resolved application to display the discovered content

described in the automatically generated resource file.

The application’s selection is accomplished using a special purposed map, the Mime Map. It
is important to note that the Mime Command Handler does not take any precautions
regarding the application’s ability to load and interpret the resource file, as it is taken for
granted that an application that can handle a particular type is also aware of the file’s format

containing the data to be displayed.

48

4.1.4 Class Orchestrator

The Class Orchestrator is the head of the classroom; it can be compared to the CEO of the
classroom as it controls every aspect of the system. The control is performed in a high level
and the Artifact Directors are responsible to apply its directions. For the decisions to be
made, the Class Orchestrator monitors the environment and reacts to events of common
interest. Orchestrator’s decisions can affect either an individual or a group of artifacts; for
instance, if the Orchestrator realizes that an examination is about to start, an instruction
should be distributed declaring that every assistive application should suspend during
examination time. On the contrary, if the Orchestrator realizes that the teacher yielded the
floor to a student, then an instruction should be sent directly to the artifact that hosts that

particular student, declaring that this student is authorized to interact with the class board.

The environmental monitoring and the communication needs between the Class
Orchestrator and the Artifact Directors is accomplished directly through the FAMINE
middleware. In addition to the environment monitoring, the Class Orchestrator utilizes the
class timetable and the detailed course schedule to infer decisions regarding global actions
(e.g., exercises delivery or submission, examination date and time), while the Artifact
Directors feed the Orchestrator with data regarding individual students (e.g., ongoing

assignment score).

A modular approach was used for the Class Orchestrator implementation; the Interface-
based mechanism is used to resolve the available services that monitor the environment,
while the Security Manager is a special-purposed module which the Orchestrator uses to

delegate access-related requests for handling.

4.1.4.1 Security Manager

Every attempt to launch an application or migrate from the local to a remote node is
authenticated by the ClassMATE’s authentication and authorization module, the Security
Manager. Nevertheless, the decisions regarding any access rights are made by the Class
Orchestrator as it performs classroom administration and monitoring, however they are no
longer disseminated by the Orchestrator as the Security Manager intercepts and handles any

access-related requests.

The Security Manager utilizes both static data from the Course-Applications registry and the
dynamic decisions made by the Class Orchestrator as part of the context monitoring (e.g.,

disable hints applications during examinations) respectively. To optimize that process the

49

Security Manager maintains a local cache of previously made decisions, thus not having to
qguery Orchestrator all the time and simultaneously “listens” for events coming from the
Orchestrator to alter these decisions. The Course-Applications Registry is a configuration file
that associates a particular course with a list of applications related to it. That registry is
used during school hours to ensure that the students will always interact with course-related
applications without being occupied with other courses or even worse wasting time
entertaining applications. During break or out-of-school-hours, the students are permitted

to interact with any of the installed applications.

An LDAP [40] approach is used to accommodate multiple rights lists, as for every application
and artifact two lists exist, the groups’ and the users’ list, containing the authorized user
groups and individual users respectively. In addition to these detailed lists, a few wildcard
flags are used to handle special cases. Special cases occur due to context-related triggers
and affect the access to an application or even an artifact. For example, consider the
following cases, where access should be disabled on the one hand to the Multimedia
Application when solving an exercise to avoid distraction, and on the other hand to the
entire artifact to draw student’s attention to the board. In the first case the
MultimediaAccess flag turns from “LIST” to “NONE”, where LIST denotes that the
appropriate list contains the authorized users and NONE disables access completely; in the
second case, the DeskAccess turns to “FALSE” to completely disable interaction with the
entire Desk artifact. These flags are prioritized during the decision making process to take

advantage of compiler’s short-circuit evaluation and optimize the overall performance.

4.1.5 Application Launcher

The Application Launcher is the core module that bridges ClassMATE with the PUPIL system
[22], by instructing application opening (Fig. 17). The Launcher cannot actually launch an
application as every ClassMATE-enabled application is hosted inside the PUPIL’s
environment, in particular the artifact’s Window Manager, but it generates the appropriate
commands (i.e., Update Application Command) that when handled by the Window Manager,

will eventually result in application(s) launching.

An application can be launched either directly by the Artifact Director as a response to a
native FAMINE (context-oriented) event, or indirectly by its Mime Handler delegate when
handling a Mime Command fired by an application. In both cases, for an application to be

launched the ClassMATE should incorporate mechanisms to both resolve from the installed

50

applications the preferred one(s), either by name or by mime type association, and ensure

that the essential security-related requirements are met.

: Mime .
REpeaan A_rtlfact Data Space Command Application
Director Manager Handler Launcher

Figure 16: MIME Command Handling Process

Regarding its implementation, three main reasons led to the selection of the Singleton [14]
design pattern: (i) facilitate control monitoring by issuing every single launch command from
the same object, (ii) ensure that all the commands will be issued in order, and (iii) simplify
the Launcher’s invocation process by either Artifact Director or the Mime Command

Handler.

4.1.5.1 Application Registry

To simplify the installation process of new applications and ensure the system’s scalability,
an external application configuration was introduced. For an application to be successfully
installed, the respective entry must be present in the applications configuration. The
application entry stores information regarding the application’s name and icon, the loader
class that constitutes the entry point to the constructor and the path to the binary file that

contains the executable code (DLL library).

<ClassmateApplications>
<Application>
<Name> The Service’s Interface full name </Name>
<Loader> Loader’s full name </Loader >
<lcon> Path to the application’s icon </Icon>
<Lib> Path to the application’s library (including the .dll extension) </Lib>
<Mime> Mime Type </Mime>
<RelatedCourses>
<Course>CourseNamel</Course>
<Course>CourseName2</Course>
</RelatedCourses>
</ Application>
<Application>
More application definitions go here
</Application>
</ClassmateApplications>

The configuration is loaded at start-up and the contained entries are converted into a map

where every installed application is listed. The repetitive loading ensures that the map will

51

always be up-to-date. Whenever an application must be launched, this map provides the
necessary parameters to the Application Command’s issuer to generate a valid command,
suitable for the Window Manager. In most cases the application registry is not used
individually, but in combination with the Mimetype — Application Registry that will be

described later.

4.1.5.2 Mimetype - Application Map
In addition to the installed applications registry, an associative dictionary exists to map the
system’s available mime types with the applications able to handle them. Apparently, every

mapped application must belong to the currently installed applications.

Two alternative approaches exist regarding the storage of the mime types: either in the
Applications’ Configuration file or in an external configuration file. If mime types are stored
in every application’s configuration, a conflict might arise at runtime as more than one
application could be able to handle the same mime type. On the contrary, if they are stored
in an external configuration file, the conflict issue would be resolved; however, support for
multiple applications handling the same mime type would be eliminated as well. A hybrid
solution was the most preferable, as it combines the best of both worlds. Every application
declares at installation time the mime types it can handle, and the Mime Map would store
only the “preferred” one (as most modern Operating Systems do). Whenever a conflict
occurs, context-aware reasoning is applied to select the application that can both handle
that particular mime type and belong to the current course-related application list as well. If
no match is found, then the user is prompted to select the preferred application from a list
of available choices. Eventually, every pair entry associates a Mime type with a particular
application. The Mime Map is generated during start-up and facilitates dynamic mime
configuration by reflecting any changes made before use. At runtime the Mime Map is used
by the Mime Command Handler to resolve and schedule the launch of the application that

will display the discovered data.

<MimeMap>
<MimePair>
<MimeTypeName> Mime Type </MimeTypeName>
<ApplicationName>
Application’s Name (as defined in ClassmateApplications)
</ ApplicationName >
</MimePair>
<MimePair>
More pair definitions go here
</MimePair>

52

| </MimeMap>

4.1.6 State Serialization

In computer programming, an application’s state is essentially a snapshot of the measure of
various conditions in the system. In the ClassMATE system, the concept of program’s state is
the building block used to realize fundamental ambient services: (i) suspend the
application’s state based on context-related conditions (e.g., suspend the Dictionary
Application when taking an essay exam) and restore it later, (ii) store a temporal snapshot of
the application’s state and use it as a bookmark to jump back to that state (e.g., pin an
interesting image displayed in the Multimedia Application to the Clipboard [22] to simplify
return) and (iii) empower migration to another context by saving the application’s current

state and restore it at a remote node.

For that to be achieved in all three cases, the application’s state should be stored in an
efficient and easily programmable manner. In computer science, in the context of data
storage and transmission, serialization is the process of encoding objects and the objects
reachable from them, while protecting their private and transient data, into a stream of
bytes so that it can be stored in a file or memory, supporting the complementary
reconstruction of the object graph from that stream. Serialization among others provides a
more convenient method of persisting objects than writing their properties to a text file on
disk, and re-assembling them by reading this back in [30]. The only precondition is that if a
serialized object contains internally other objects, then that object should also be
serializable. All the mainstream programming languages offer a built in serialization
mechanism in the form of an API, though any class may implement its own external
encoding format and become solely responsible for its proper serialization and
deserialization. ClassMATE is based on such approach, and in order to simplify the
integration process offers its own proprietary Serialization Interface built on top of the
native .NET Serialization Interface, which every ClassMATE-enabled application should

implement to save/restore its state in a uniform manner.

53

» The application invakes the State Manager to save its state

® The State Manager collaborates with the File Manager to temporarily store any
local resources to the State Repository

y

~\

» When state persistence completes return control to the Artifact Director to notify
the application about the received stateld.

y

~

* The application stores the supplied stateld, to facilitate future loading

€€€L

Figure 17: Application’s State Serialization Process

Considering that every state object is application-dependent, an abstract approach was
adopted during implementation to ensure universal application. The Serialization API defines
two simple methods: (i) the SaveState and (ii) the LoadState, both implemented using
Generics. The SaveState method simply serializes the supplied arguments regardless of their
types, while the LoadState restores the application’s state using the supplied arguments. In
the latter case, the supplied types should match the desired ones for the restoration process
to be successful (e.g., if application A attempts to restore its state using data intended for
application B, then the process would result either in a corrupted memory stack with invalid

data or in a runtime memory exception).

4.1.6.1 Resource Format Pair

An application may use multiple sources to get data from; in the ClassMATE system though,
these sources correspond to local data files. These files can be encoded either in a
proprietary application-specific format, as they were created during installation to hold
configuration properties or during runtime to store application related data (e.g., history,
user preferences, etc.), or in one of the predefined system formats as they were
automatically generated at runtime by ClassMATE components (e.g., DataSpace). During the
serialization process the first are handled as simple binary files while the latter require
special treatment. This information regarding file variations are preserved in the persistent
layer thought the ResourceFormatPair class which associates an existing file with a resource

reference format (described in chapter five).

54

Serialization is a bidirectional process towards and from the file system. During serialization
phase every data file, application-specific or not, is treated as a simple binary file and is
stored in the appropriate location. During the deserialization phase though, the application-
generated files are treated differently from the system-generated ones. In the first case, the
system being unaware of the proprietary format cannot customize the data contained in
those files, thus it simply loads them from the persistent layer to the main memory; in the
latter case, a format-specific process is invoked to revalidate the contained data. As an
example, consider the case where the Multimedia Application migrates from an AmIDesk to
the AmIBoard; the system-generated file that describes the images to be displayed include
desk-specific file paths, thus the Multimedia-specific delegate must replace them with valid

board-specific paths.

4.1.6.2 State Class

The state of each application is determined by a number of attributes maintained by that
particular application. In such cases, serialization is achieved by storing the state-related
data in an auxiliary class and then save that class the file system; when loaded back the
extracted data are used for state’s restoration. ClassMATE’s Serialization mechanism
extends the aforementioned process in order to operate independently of any internal
structures by introducing an abstract utility class, the State class, that package the state-
related data. The State class implements the .NET Serialization interface to be
(de)serializable and maintains the following attributes: (i) the name of the application whose
state is encoded in the current instance, (ii) the AppData, a parameterized type object to
store the application’s auxiliary class, and (iii) a collection of ResourceFormatPairs where the
external data files used by the application are described. For the state’s (de)serialization to
be successful, all the contained objects should also implement the .NET Serialization
interface. The ClassMATE Serialization mechanism does not modify at any point the state
object as the application is solely responsible for its valid population; ClassMATE only cares

about its intact transfer to the storage repository.

The State object is instantiated by the application when the SaveState method is invoked,
populated with the appropriate data and forwarded to the StateManager to associate it with
a unique identifier and write it to the file system. Likewise, when the LoadState is invoked, a
state object is supplied as the argument encoding the state data and the application uses it
to restore its state; to facilitate that process, the State class provides a parameterized

method that returns the AppData object casted in the application’s specific type.

55

4.1.6.3 State Manager

The State Manager contains the low-level routines that communicate with the file system
during the serialization and deserialization process respectively. To ensure that a single
instance will handle any serialization-related request the Singleton [14] design pattern was

used for its implementation.

For Serialization to be achieved, the State Manager uses both the built-in .NET Serialization
components and the ClassMATE’s File Manager. The .NET components (i.e., FileStream and
BinaryFormatters [25]) expose operations to read and write binary files, while the File
Manager provides the file descriptors by transparently querying the classroom’s data
repository. The State Manager is a stateless component as instead of maintaining any data in
its memory, it stores every state object in a binary format in the repository. In the repository
a particular segment is reserved to host the state objects, and a string-based protocol is used
as the indexing scheme. Every serialized state object generates its own folder and is
identified by and unique id that includes: (i) the application’s name, (ii) the artifact’s
identifier, and (iii) a timestamp of the creation date. The protocol not only ensures that the
same application can serialize (and deserialize) its’ state multiple times, but also eliminates

overlaps between states created from the same application on different artifacts.

The StateManager public exposes the SaveState and the LoadState that encapsulate the low-
level procedure calls to write and load data from the file system. The SaveState (Fig. 18)
takes as input arguments the state object that must be serialized and a flag that indicates
the Serialization type (Suspension, Pin, Migration) and returns as an output result the unique
Stateld to be used during deserialization (similar to a ticket given at the cloakroom when
checking a coat). If Serialization type is either Suspension or Migration, then the state’s
ResourceFormatPair collection is iterated to locate and copy the external files in the state’s
folder in the repository. The LoadState receives the Stateld as a single input argument and
upon completion returns the retrieved state object. Its workflow can be decomposed in two
phases: the deserialization and data validation phase. During the deserialization phase, the
Stateld points the binary data to be deserialized as a state object in the main memory, while
the second phase ensures that the data contained in external files generated by system
components will be valid. During the validation phase, the state’s ResourceFormatPair
collection is iterated, and for each file whose associated format type belongs to the system-

generated types, the appropriate delegate is invoked to revalidate its contents. The

56

revalidation process will be described in more details in the “Resource Description Format”

section; in a nutshell it includes from simple string replacements to even binary files copy.

4.1.7 Initialization Process

The ClassMATE’s modular architecture assumes that during system’s initialization, a series of
actions will be taken to load and prepare the essential modules before use. Considering that
the ClassMATE systems targets systems of diverse scales (e.g., from a single notebook to a
large scale distributed Aml environment), the Platform Expert module should be launched
first to identify the current platform, resolve the respective services, and then launch the
Artifact Director to undertake artifact’s control. ClassMATE’s initialization process resembles
the one followed by every computer, where the system’s Bios (Platform Expert) is initially
launched to setup the environment, and then the OS kernel (Artifact Director) takes over

control.

The initialization process (Fig. 19) of the Artifact Director module consists of three phases: (i)
events installation, (ii) local services resolution, and (iii) environment’s notification. During
events installation, the Artifact Director immediately initiates the ClassMATE’s event system
and registers the Command handler delegates to start listening for events addressing the
ClassMATE core, including events from other core component (e.g., DataSpace,
DeviceManager, etc.) and the Class Orchestrator. During the second phase, the Artifact
Director, based on the current platform’s configuration, resolves the artifact-specific
services that provide context-related data (e.g., book localization, student’s presence, etc).
Finally, during the last phase, the Artifact Director notifies the Class Orchestrator, and the
ambient environment in general, that the current artifact was successfully initialized and is

henceforth fully functional.

Upon successful initialization, the control is passed back to the caller, to continue in

ClassMATE’s case to the Window Manager, to continue with its normal workflow.

: ." ‘e Load Load Load :;:;i:i:z Initialize Resolve
: B Global Platform Platform artifact- Notify Class
. - for the Event .
. . Service General support supported System specific Orchestrator
L N Definitions Information services services

services

Figure 18: Platform initialization process

57

4.1.8 Migration Process

Application’s migration is the result of collaborative work between both local and remote
components, and can be decomposed into the foundation and the realization phase (Fig.
20). During the foundation phase, the local Window Manager identifies the appropriate user
action on the desk and initiates the migration process by requesting from the application on
the foreground to save its state through the State Manager. When save is completed, the
application returns the unique Stateld received by the State Manager to the Local Window
Manager, who creates a Migrate Command with the application’s name, the Stateld and the
remote context and forwards it to the Artifact Director. When received by the Artifact
Director invokes a special-purposed internal module, the Migration Command Handler, to
extract the necessary information from the received Migration Command and generate an
Application Command with a “STATE--Stateld” argument, denoting that the remote
application will have restore its state. The foundation completes by the transmission of the

generated command to the remote node.

The realization phase starts when the remote Artifact Director receives that command, and
engages by modules running on the remote node only. The Artifact Director after
successfully validating that the command was received intentionally, the contained data are
not corrupted and the Security Manager approves migration, requests from the State
Manager to transfer locally and revalidate the data pointed by the Stateld (the exact process

was described in detail in the State Manager section).

Local Artifact
Director

User triggers

. Manager initiates
migration

migration

Remote Artifact

D FAMINE Local State Serializer

Remote State
Serializer

LCAELLEE (BB Migrate Application

the appropriate
Application

Figure 19: Application Migration Process

Finally, the Artifact Director notifies the Window Manager to launch the appropriate
application and forward the Application Command that enforces the application to restore

its saved state and successfully complete migration.

58

4.2 Device Manager
The Device Manager offers a generic mechanism for the manipulation of heterogeneous

devices, by any ClassMATE-enabled application. For that to be achieved, the same Interface-
based approach used by the Platform Expert is adopted as well, where every device exposes
its functionality as a service API, completely dissociated from the hardware layer; an artifact
that lacks a particular device can emulate its functionality through software by
implementing the appropriate interface. Therefore, the Device Manager is the sole
extension point where new devices can be added, whereas any ClassMATE-enabled

applications request the appropriate service APl from the Platform Expert.

Every artifact accommodates a Device Manager instance which handles the input / output
devices and supports their interaction with any application in the ClassMATE cloud. During
initialization, the Device Manager uses the Service Factory pattern to resolve the services of
the current platform (the factory instance is responsible for instantiating the appropriate
objects); hence, both remote and local devices are transparently supported by the system,
as the interaction is orchestrated by the Class Orchestrator and the communication needs

are handled by the ClassMATE’s Events Layer.

4.2.1 Towards a universal Multitouch solution
The latest trends in human-computer interaction indicate a turn towards multitouch

interaction schemes, especially after the launch of Apple’s Iphone and other several
multitouch-capable tablets and screens. Moreover, the computer’s vision domain
contributes towards the same track, supporting to reproduce multitouch interaction through
vision. The great variation between the protocols used by hardware vendors with those used
by software-based solutions prevents the establishment of a commonly acceptable, yet
scalable Multitouch API. The latter has changed with the advent of Microsoft Windows 7 and
the Windows Touch technology [29] (Fig. 21). Multitouch functionality has been
incorporated as an integral part in the operating system’s core and full support was added to
the application development tools [27]; hence applications can take full advantage of the
native multitouch support by using native APIs. ClassMATE introduces an extensible
mechanism where any hardware- or software- based multitouch system can be
transparently installed, with no modifications either to the application or to the Windowing

System.

59

Multitouch
Hardware

Application Window

7 Windows 7 messages @

]

Figure 20: Windows 7 sends messages from multitouch hardware to an application

The introduction of multitouch interaction established new interaction schemes like the
Multitouch Manipulation. Manipulations can be considered as a superset of gestures. The
difference between manipulations and gestures is best demonstrated through a simple
example. The user can expand an object and at the same time move it using manipulations;
with gestures, only one at a time can be performed. This ability to manipulate an object in
real time makes applications more intuitive to users by enabling a more realistic experience.
The Manipulation APIs are used to simplify transformation operations on objects for touch-
enabled applications. Manipulations are performed in Windows 7 through the manipulations
COM object [28]; without that built-in mechanism, every developer should keep track of
active touch points, calculate numerous metrics and, finally, manually apply the appropriate

transformations.

Manipulations are transparently calculated by each WPF components private manipulation
processor using Windows Touch Messages generated by the driver of the touch-capable

device, as depicted in the following Fig. 22.

60

Object in Focus

Windows

Touch passed to
Messages

Manipulation Processar ‘

2

Manipulation Events

to

_IManipulationEvents Interface

ManipulationStarted
ManipulationDelta
« ManipulationCompieted

Figure 21: Windows 7 Manipulation Overiew

In ClassMATE though, the built-in processors cannot directly translate and use ClassMATE’s
Touch events to calculate manipulations. To address that, the ManipulationEnabled APl was
introduced to avoid low level driver programming; every application that is manipulation-
enabled should implement it and provide an operation that returns its internal manipulation
processor to the ClassMATE system to inject custom code that can recognize and handle the
custom events. In addition to the ManipulationEnabled API, a number of supplementary
classes, required by the Windows Touch mechanism, were introduced to provide the

necessary functionality.

e The VisionBasedTouchDevice emulates in software a physical custom touch device
and encapsulates touch-related information: (i) the position of the touch, (ii) the
exact time at which the event occurred, and (iii) a flag denoting its type, (i.e.,
TouchDown when a finger touches the screen for the first time, TouchMove when a
finder is moved over the screen without losing contact, and TouchUp when a finger

is drawn away from the screen).

e The Touchlnputinterface is the publicly exposed interface that provides Touch
functionality. Its’ key feature is the provided event hook, where applications can
register their own delegates to be invoked when a touch event occurs; the same
technique is following for native WPF touch events as well. The event mechanism
used is the one built-in .NET framework, so as to optimize performance and offer

great user experience.

61

4.2.2

Finally, the TouchlnputHandler is the Touch system core, as it communicates directly
with the vision system. Its main objective is to translate vision events to Touch
events, which when received by the WPF framework generate the same effect as if
they were generated by a physical touch device. The handling process includes: (i)
the translation of the coordinate system, as the one used by vision differs from that
used by the screen, and (ii) the determination of the event type (up, down move).
For that to be achieved, the handler maintains a dictionary of the currently active
contacts, and upon change, identifies the newly added contacts, the contacts that
moved, and those that do not exist anymore and generates the appropriate touch

events.

Book Localizer

The Book Localizer is a local module that resides on every artifact and is charged with

identifying the current book page that the ClassBook Reader Application should display (Fig.

23). In the technologically-augmented desk [3], the front-facing camera is utilized to identify

the currently open page and notify the Artifact Director to launch, if necessary, and update

the ClassBook Reader appropriately. For the remaining artifacts, that module is emulated

through

software as they lack the necessary hardware. In that case the exact page is

selected by combining data from the class timetable retrieved by the Class Orchestrator, the

obligations of the course (i.e., ongoing tasks and assignment deadlines) also from the Class

Orchestrator and finally current student’s profile (already prepared assignments, pending

tasks) by the User Profile.

Localizer Director Manager Launcher Manager Manager

‘ 4 I. Book Artifact Data Space Application Security Window .

Figure 22: Physical Course book Localization Process

62

5 Content Personalization

One of the key features of the ClassMATE system is the delivery of personalized education
content based on the current needs of the individual learner. For that to be achieved various
modules collaborate. On the one hand, the User Profile provides the user-related
parameters for the content personalization process. In addition to the “common” static
personal data (e.g., name, surname, grade, scores, etc.), dynamic data are collected at
runtime though interaction monitoring and encoded into behavioral models that facilitate
the adaptation of the filtering process. On the other hand, the educational content is
enhanced with metadata that convey information about its educational attributes and the
taxonomies under which is classified, whilst a sophisticated content discovery mechanism
utilizes the available metadata entries to semantically identify educational content suitable
for the current context of use (e.g., course) and the current student. Finally, the content
personalization mechanism is built in a modular way to facilitate: (i) content addition, (ii)
introduction of new classifications schemes or modification of existing ones, and (iii) query

adjustments.

5.1 User Profile
The User profile is a collection of personal data associated to a specific user; therefore a

profile refers to the explicit digital representation of a person's identity and characteristics.
The information contained in the profile can be exploited by systems taking into account the
persons' characteristics and preferences, for instance by adaptive hypermedia systems, to
personalize the human computer interaction. In ClassMATE the user profile is not a passive
structure, as in various computer applications where it simply identifies the valid users of
the system, but is rather an active component that evolves through time, and bridges the
ambient environment with the Data management layer. The User Profile’s main objectives
resemble those of the IMS Learner Information Package [19], where the data model that

describes the characteristics of a learner can be used for:

e Recording and managing learning-related history, goals, and accomplishments

e Engaging a learner in a learning experience

e Discovering learning opportunities for learners
In the ClassMATE system two discrete profiles exist: (i) the teacher’s and (ii) the student’s
profile. The teacher’s profile is not yet fully exploited for educational purposed and mainly

acts solely as a passive personal data repository. The student’s profile on the other hand, is
“fully” utilized by the system both to personalize the content discovery process to the

63

particular educational needs of each individual student, and log commonly used interaction
patterns in order to define a student’s behavioral profile. The behavioral characteristics and
the analysis process will be described in more details in the next section. The student’s
profile is divided into four segments: (i) personal data, (ii) student record, (iii) user
preferences, and (iv) behavioral attributes.

e The personal data, as implied by their name, include personal information such as
full name, date of birth, e-mail address, home address, etc.

e The student record includes detailed grades (oral and written examinations,
projects, etc.) and activity list (pending exercises, scheduled examinations, etc.) for
the ongoing courses, and a complete history of the past years’ records.

e |n the user preferences section, the user’s customization options [22] are stored
(e.g., desktop background, windows skins, color themes, etc.)

e Finally, the behavioral attributes section accommodates the knowledge resources
library of students’ behavior patterns, dynamically gathered via their activity
monitoring.

To better understand the behavioral attributes used by the ClassMATE system, consider that
the available educational content is structured under thematic areas (e.g., mathematics,
physics, linguistics, etc.) and every single educational exercise is marked with a type (e.g.,
multiple-choice exercise, fill-in-the-gap exercise, free-text exercise, etc.) and a difficulty tag

(i.e., easy, normal, hard).

The behavioral attributes are categorized into course-specific and general. The first category
refers to metrics about a student’s attitude towards course-specific activity, while the latter
includes accumulated metrics regarding all the student activities. The complete list of those

attributes can be found below:
General Behavioral Attributes:

e ratio of successfully answered exercises, per exercise type, per difficulty level, and
correlated, e.g., 75% correct answers on multiple choice exercises, 80% on

easy/medium questions, and 20% on hard

e amount of hints asked per exercise type, per difficulty level, and correlated, e.g., 15
hints asked on hard exercises; 12 on free-text exercises and the remaining 3 on

medium

e favorite and disliked difficulty level(s), e.g., {favorite: medium, hard}, {disliked: easy}

64

e favorite and disliked exercise type(s), e.g., {favorite: multiple choice, image-to-image

matching}, {disliked: free-text}

e favorite and disliked course(s), e.g., {favorite: mathematics, physics}, {disliked:

linguistics}

Course-specific Behavioral Attributes (for instance in the context of mathematics):

e favorite exercise type(s), e.g., multiple-choice regarding theorems

e favorite difficulty level(s), e.g., medium or hard

e favorite and disliked topics, e.g., differential equations, trigonometry

Activity related metrics not only assist the learners by providing personalized content
focused on their weak thematic areas, but also improve the educational process by reporting
class’s activity to the teacher; hence, the teacher is able to modify the course schedule,
dictate exercises that the students prefer and augment course syllabus with assistive

material in order to bridge any knowledge gaps.

The student profile data depending on their modification rate are categorized into those
that never change (static), those that gradually change (semi-dynamic), and those that
continuously change driven by user interaction (fully-dynamic). Static data are manually
defined once and never change (e.g., full name, date of birth, etc.), semi-dynamic data are
automatically generated by the ClassMATE core according to environmental triggers (e.g.,
the announcement of course’s upcoming schedule or final examination’s grades). Finally,
regarding the fully-dynamic attributes (e.g., preferred exercise type, preferred difficulty
level, etc.), standard learning styles are used for their initialization (only for the freshman
students), while the Activity Monitor module dynamically updates them at-runtime through
monitoring user interaction. These data gathered by the User Profile service, through an
iterative monitoring and evaluation process, constitutes the main feedback for the Context
Manager, so that a learner’s centric rational is applied for content delivery and interaction
control, thus providing adaptation to individual student’s needs. For efficient monitoring to
be achieved, both the ClassMATE-enabled applications and the ClassMATE core are obliged
to notify the Activity Monitor of interesting events (e.g., the student discarded an exercise,
the student successfully solved a mathematic problem, the student asked for additional
information regarding some topic, etc.). When notified, the Activity Monitor correlates the

data from the received event with contextual information (e.g., current course/topic based

65

on the timetable, current exercise difficulty level, etc.) and updates the student profile

respectively.

* The ClassMATE-enabled application
sends a MIME Command

¢ The Artifact Director receives that
Command

* The Artifact Director Loads the LOM
metadata via the File Manager

¢ The Mime Command Handler invokes
the associated delegate for that mime

* The Content Collector loads and
executes the SPARQL queries

¢ The Resource Reference Format
delegate appropriately encodes the
results

* The Application Launcher generates
the appropriate Command Sequence

¢ The Window Manager launches
indicated application

* The application is notified to display
the previously discovered data

Figure 23: Automatic Content Discovery process

The following scenario illustrates the overall process (Fig. 24). In the course of Mathematics,
a student has to solve three exercises, namely one exercise and two problems of varying
difficulty regarding the Pythagorean Theorem. The system randomly proposes the hard
problem first, but the student is not confident enough for its solution and decides to skip it.
The theory exercise is proposed secondly, but the student postpones it for a later session.
Finally, the simple problem is proposed and the student solves it correctly. The pending hard
problem is once again proposed and the student solves it correctly using two of the available
hints. The above scenario yields a pattern, in the context of Mathematics, where the user
prefers problems over theory exercises, and in particular simple over hard problems. The
system is now aware of that pattern and in the future, in the context of Mathematics and for
that particular user, it will firstly propose the problems and then the theory exercises; and if
the user asks for supplementary content the system will prioritize simple instead of hard
problems. However, the system will periodically try to advance the difficulty level and
monitor and re-evaluate the student’s learning behavior pattern once again. Alternative

patterns based on the aforementioned scenario that could alter the delivery order could be:

66

either a student who prefers practicing in theory exercises and then move to problems, or a

student who prefers solving hard challenging problems.

5.2 DataSpace
The DataSpace provides an abstraction layer between the applications and the physical

storage layer. This added layer not only encapsulates the implementation details, but also
makes available the following key facilities: (i) a single reference point to content
repositories providing transparent content access and management, (i) a content
classification mechanism providing the necessary content-related rationale to data mining
procedures, and (iii) a sophisticated filtering mechanism for personalized content delivery

based on user needs and preferences.

The Data Space strongly collaborates both with the User Profile and the ClassMATE core to
collect the essential static or dynamic user- and context- characteristics to enhance the
decision process. Therefore, the ClassMATE-enabled applications are transformed from “fat”
clients who independently provide rich functionality, to “thin” clients with limited
functionality concentrated solely on providing a graphical user interface, as the ClassMATE

core and the DataSpace deals with the content remaining functionality.

5.2.1 Related technologies overview
The DataSpace implementation has adopted numerous well-established data management

standards and mining techniques particularly suited for e-learning platforms; a brief

overview of these technologies is provided in the following section.

5.2.1.1 Learning Object Metadata (LOM)

The Learning Object Metadata (LOM) [18] specifies a conceptual data schema that defines
the structure and specifies the data elements of a metadata instance for a learning object. A
learning object is defined as any entity -digital or non-digital- that may be used for learning,
education or training. A Metadata instance for a learning object describes relevant
characteristics of the learning object to which it applies. Such characteristics may be
grouped in general, life cycle, meta-metadata, educational, technical, educational, rights,

relation, annotation, and classification categories.

LOM is intended to be referenced by other standards that define the implementation
descriptions of the data schema, so that a metadata instance for a learning object can be
used by a learning technology system to manage, locate, evaluate or exchange learning

objects, while it does not define how a learning technology system represents or uses a

67

metadata instance for a learning object. Its purpose is to facilitate search, evaluation,
acquisition, and use of learning objects, for instance by learners or instructors or automated
software processes. This multi-part standard also facilitates the sharing and exchange of
learning objects, by enabling the development of catalogs and inventories while taking into
account the diversity of cultural and linguistic contexts in which the learning objects and

their metadata are reused.

5.2.1.2 Sparql

RDF is a directed, labeled graph data format for representing information in the Web. RDF is
often used to represent, among other things, personal information, social networks,
metadata about digital artifacts, as well as to provide a means of integration over disparate
sources of information. The SPARQL [24] query language for RDF was designed to include
triple patterns, conjunctions, disjunctions, and optional patterns in queries, and return an

XML document format for representing their results.

Most forms of SPARQL query contain a set of triple patterns called a basic graph pattern.
Triple patterns are like RDF triples [38], except that each of the subject, predicate and object
may be a variable. A basic graph pattern matches a subgraph of the RDF data when RDF
terms from that subgraph may be substituted for the variables and the result is RDF graph

equivalent to the subgraph.

The example below shows a simple SPARQL query to find the title of a book from the given
data graph. The query consists of two parts: the SELECT clause identifies the variables to
appear in the query results, and the WHERE clause provides the basic graph pattern to
match against the data graph. The basic graph pattern in this example consists of a single

triple pattern with a single variable (?title) in the object position.

Data <http://csd.uoc.gr/books/book1> <http://purl.org/dc/elements/1.1/title> "SPARQL
Tutorial" .
Query SELECT ?title
WHERE
{
< http://csd.uoc.gr/books/book1> <http://purl.org/dc/elements/1.1/title> ?title .
}
Result "SPARQL Tutorial"

5.2.1.3 SemWeb
SemWeb.NET [36] is a Semantic Web/RDF library written in C# for Mono or Microsoft's .NET.

The library can be used for reading and writing RDF (XML, N3), keeping RDF in persistent

68

storage (memory, MySQL, etc.), querying persistent storage via simple graph matching and
SPARQL, and making SPARQL queries to remote endpoints. Limited RDFS and general-
purpose inferencing is also possible. The SemWeb's API is straightforward and flexible. The

library has no particular tools for OWL schemas. It operates at the level of RDF triples only.
The library’s facilities used in ClassMATE are listed below:

e RDF/XML: Reading and writing RDF/XML (including XMP). The reader is streaming,
which means the entire document doesn't ever need to be loaded into memory.

e Notation 3: Reading and writing NTriples, Turtle, and most of Notation 3

e SQL DB-backed persistent storage for MySQL, combined with the extended Select
operation to query many things at once (much faster than making individual calls to
the underlying database)

e The available in-memory store

e RDFS Reasoning and rule-based reasoning based on the backward-chaining Euler

engine, over any data.

5.2.2 Metadata
Metadata is loosely defined as data that describe other data. Metadata is a concept that

applies mainly to electronically archived or presented data, and is used to provide a
substantial amount of information about those elements (e.g., definition, structure,
administrative directives, etc.). Metadata is structured according to a standardized concept

using a well-defined metadata scheme, and the contained information could refer to:

e means of creation of the data

e purpose of the data,

e time and date of creation,

e creator or author of data,

e placement on a network (electronic form) where the data was created,

e etc.

For instance, a digital image may include metadata that describes the camera settings, how
large the picture is, the color depth, the image resolution, when the image was created, and
other data. A text document's metadata may contain information about the size of
document is, the author, the date when the document was written, and a short summary of

the document.

69

Among others, metadata can be used during content discovery to associate their data
elements. The term metadata discovery refers to a process where automated tools discover
the semantics of a data element in data sets and produce a set of mappings between the
data source elements and a centralized metadata registry. Based on the matching algorithm
used, the discovery process can be categorized as lexical (exact, synonym pattern), semantic

and statistical matching [41].

In the context of ClassMATE, where automatic content discovery is a vital task, the
employment of metadata could significantly improve results accuracy. In particular, the LOM
scheme was selected to define the metadata structure, as the majority of its contained data
(general, educational, relation and classification sections) fit the ClassMATE needs and
requirements. thus making LOM an ideal choice. As a result, the mining and classification

processes heavily engaged metadata-related logic in their implementation.

Metadata is data. As such, metadata can be stored and managed in a registry or a
repository. LOM however does not provide a standardized solution concerning metadata
storage. Subsequently, the storage / retrieval mechanism was implemented from scratch
following the specification word by work without any derivations. The XML language was
preferred as the implementation technology over other binary-based solutions, because it
not only facilitates readability and modifiability through a simple text editor, but also
ensures portability as every learning object can always be accompanied by its metadata. The
metadata population will be described in more details late on; in short it is a semi-dynamic
process where the system initializes a metadata entry during learning object’s admittance

using contextual information which the user can later refine and augment.
The LOM implementation in ClassMATE will be described in more details in the next section.

5.2.2.1 LOM Types
The LOM specification defines a set of custom data structures (Fig. 25) used throughout the

hierarchy to ease implementation and facilitate maintenance. These structures include
primitive datatypes, containers and complex data types which either extend or combine
containers and primitives formulating composite structures. The entire collection of the

LOM data structures, their attributes and relations is depicted in the figure:

70

{t DataSpace.LOM.Types

) ¥
1§ LOMString 5 LangString 1§ LOMDuration

¥ 5 ¥ i ¥ 1 ¥ 1L (¥
A5 Idemifier 15 Lomvacab<T> 1§ TechnicalOrCompasite § ClassificationTaxon 14 LoMSource

1 ¥ 13 ¥ E! ¥
44 RelationResource £§ ClassificationTaxonPath § Educationall earningResource

¥
15 LOMList<T>

Figure 24: The LOM Datatype

The key functionality of every LOM structures is not limited to its contained attributes, but is
encapsulated in the operations that implement the IEquatable and the XMLSerializable
interfaces. The IEquatable interface is used for comparison purposes and every LOM
element should implement its own algorithm; that algorithm should not only refer to the
natural comparison method but implement a more sophisticated method where the natural
ordering is combined with the stored values to determine the result. The XMLSerializable
interface on the other hand, defines the appropriate methods that facilitate storage and
retrieval from an XML file. During LOM storage, every LOM element is dictated to provide a
string representation of its internal structure to be persisted in an XML file, while during
loading, given a valid XML element, every LOM element should populate its contents with

the supplied values.

5.2.2.2 LOM Metadata Structure & LOM Entry
The ClassMATE utilizes only a subset of the LOM specification (Fig. 26) during the mining and

classification processes. This subset contains the following LOM sections: (i) general, (ii)
technical, (iii) educational, (iv) relation, and (v) classification; every section defines a new
class type composed by various LOM types and implements the I|Equatable and

XMLSerializable interfaces.

The general section groups the general information that describes a learning object as a
whole, and is mainly used to identify the associated a learning object when necessary. The
technical section describes the technical requirements and characteristics of a learning
object, and is used during the mining process to filter the related content based on the
MIME type. The educational section describes the key educational or pedagogic
characteristics of a learning object, and its main objective is to personalize the content to fit
the learner’s needs before its delivery. The relation section describes the relationship

between a learning object and other learning objects, if any, and is used during the mining

71

process to efficiently resolve other leaning objects already related to the current. Finally, the
classification section describes where a learning object falls within a particular classification
system, and is employed during mining and re-classification to resolve other learning objects
that belong to the same taxonomy (e.g., siblings), and either return them or associate them

with the current learning objects (by appropriately modifying their relation section).

The LOM Entry is a single aggregator that collects together these individual objects in a
single class and exposes the appropriate operations to access them. In addition to these
accessors methods, the LOM Entry also implements the operations defined by the
IEquatable and XMLSerializable interfaces, but their implementation is straightforward as

every request is delegated to the contained objects for execution.

oy 1.1.1 Cal
1.1 Identifier ﬁ
1.2 Titls

g _n!guaﬁ
4 Description

5.1 Intaractivity T
5.2 Learning Resource Typa
5.3 Interactivity Lavel

5.5 Intended End User Role | 1. General
5.6 Confext
5.7 Typical Age Range

5.8 Difficult

5. Educational I
1

5.9 Typi
5.10 Description

2.1 version
2.2 Status

2. Life Cycle 23.1 Role
8.1 Cost 2.2 Contribute { ::ZED%
£.2 Copyright and Other Restrictions \, 6. Rights Sl
6.3 Description
. 3,1.1 Catal
LOM 3.1 Iwnl;ﬁer@
7.1 Kind 3.2.1 Role
2t et e N\ 3. Meta-Metadata / 3.2 Contribute / 322 Enti
y > L2Ler 7.2 Besource | 7. Relation - 323 Date
7.2.2 Description 3.3 Matadata Schema
8.1 Entif
8.2 Dale \ 8. Annatation 4.1 Format
8.3 Description

9.1 Purpose

4. Technical

8.21 Source

4.4 Requirement 4.4.1 OrCompase

"\ 4414 Maimurs Varsion

9.2 Taxon Path

e 8227 (e
= |9. Classification

4.5 Installation Remarks

4.6 Other Platform Requirements

4.7 Duration

9.3 Description

a schematic representation of the hierarchy of elfements in the LOM data model!

Figure 25: Learning Object Metadata (LOM) Specification

5.2.3 Resource Reference Format

The DataSpace module encapsulates a content classification and a sophisticated filtering
mechanism for personalized content delivery. For the mining process to be successful, every
data object available in the ClassMATE’s repository should be classified and accompanied by
the relevant metadata. However, the content delivery does not automatically ensure that
the content is displayed properly by the application. An XML-based file, the resource

reference file, is generated to hold references to the actual data resources discovered by the

Data Collector.

72

The structure of that file varies according to the type of the discovered content. The
DataSpace has defined a basic, yet extensible, collection of structures, namely Multimedia,
HotSpots and Hints, that are sufficient for the needs of the currently handled content types.
The Data Collector according to the type of the discovered content uses the respective
delegate to transform the results of the mining process into the appropriate structure, and
then store them into a resource reference file. Any ClassMATE-enabled application that
wishes to present those data is solely responsible for parsing the resource reference file and
loading the designated content. To optimize performance, the Data Collector, prior to
generating the resource reference file, copies locally (in collaboration with the File Manager)
any remote resources, hence the stored references point to artifact-specific locations.
During migration though, these artifact-specific locations are no longer valid and should be
replaced. The Data Collector’s delegates are responsible for reloading the previously stored

resource reference files and replacing the any invalid data.

The above observations led to the definition of the ResourceReference API, which defines
two operations only: WriteToStream and RevalidateData. Every internal component that
belongs to the DataSpace module and generates a resource reference file should implement
that interface appropriately. The WriteToStream operation takes as input arguments the
results of the mining process (as a spargl XML result set) and an output stream, and stores
the results in the appropriate structure in the output stream. The RevalidateData operation
takes as input arguments an inputstream that corresponds to a resource reference file
(whose structure can be handled by the current delegate) and an output stream, replaces
any invalid data contained in the input stream, and stores the updated version in the same

structure in the output stream.

<ResourceFormats>
<FormatPair>
<MimeTypeName> Mime Type </MimeTypeName>
<ResourceFormat> Format’s Identifier </ResourceFormat>
<ResourceFormatSchema> Format’s Schema </ResourceFormatSchema>
</FormatPair>
<FormatPair>
More pair definitions go here
</FormatPair>
</ ResourceFormats >

5.2.3.1 HotSpot
The HotSpot format is exchanged among applications that display course’s content as an

image (e.g., the electronic version of a physical course book page) that contains interactive

73

spots which can trigger the launch of other applications. Such an example is the ClassBook
Application that displays the electronic version of the currently open page of the physical
book. The images and exercises displayed on any page are selectable, and when selected the
relevant content discovery processed is triggered and the appropriate ClassMATE-enabled
application is launched (e.g., the Multimedia Application is launched if an image is selected

or the Multiple-Choice Exercise if an exercise is selected).

The structure of the resource reference file regarding Hotspots, as depicted below, contains
the path to the image that should be displayed (as aforementioned the actual image file is
copied locally to optimize loading time), and the list of hotspots available on that image. For
every hotspot, the bounding points specify the area in which every user action should trigger
a MIME command, and optionally designates the region that could be visually decorated (by
the application) to attract the user’s attention. In addition to the bounding points, the MIME
type of the learning object contained in that area is defined (e.g., image/png) and the
Command entry is populated with that learning object’'s URI (e.g.
6thGrade_EnglishCourseBook_Chapter3_Unit3_Lessonl_RollerCoasterlmage). When the
user triggers a mime event, the application instead of having to identify the selected object,
simply packages the values of the MIME and the Command entries in a MIME Command and

forwards it to the ClassMATE core for handling.

<HotSpotElements>
<ImageSource> Value </ImageSource>
<HotSpots>
<HotSpotElement>
<BoundingPoints>
<Point>
<X> Normalized X coordinate </X>
<Y> Normalized Y coordinate </Y>
</Point>
<Point>
More point definitions
</Point>
</BoundingPoints>
<MIME> Mime type </MIME>
<Command> Command (Learning object’s URI) </Command>
</HotSpotElement>
</HotSpots>
<HotSpots>
More hotspots definitions
</HotSpots>
</HotSpotElements>

74

The HotSpots module implements the ResourceReference API to facilitate its use by the
DataSpace. The WriteToStream operation populates the various HotSpot entries by parsing
the sparql results provided as input, whereas the RevalidateData operation loads the XML-
based representation of a HotSpot structure, locates the image in the ClassMATE's
repository using the value of the ImageSource tag, makes a local copy of it to the remote

artifact and then replaces the value to point to the new location.

5.2.3.2 Multimedia
The Multimedia format is exchanged among applications that display multimedia content

(e.g., images, videos and sound) such as the Multimedia Application. The structure of the
Multimedia resource reference file contains three distinct sections,Images, Videos and
Audio, whereas any multimedia reference file should contain at least one of these sections.
Each section contains the list of learning objects that should be displayed, while for each

object the path and URI are stored.

The Multimedia module implements the ResourceReference APl. The WriteToStream
operation generates a XML-based file with the appropriate format, while the RevalidateData
operation for each path entry copies the data file from the ClassMATE repository to the

remote artifact, and then updates the path value with the new artifact-specific location.

<Multimedia>
<Images>
<Ilmage>
<ImagePath> The path to the image file </ImagePath>
<ImageURI> The unique identifier of this learning object </ImageURI>
</Image>
<lmage>
More image definitions
</Image>
</Images>
<Videos>
<Video>
<VideoPath> The path to the video file </VideoPath>
<VideoURI> The unique identifier of this learning object </VideoURI>
</Video>
</Videos>
<Audio>
<Audio>
<AudioPath> The path to the audio file </AudioPath>
<AudioURI> The unique identifier of this learning object </AudioURI>
</Audio>
</Audio>
</Multimedia>

75

5.2.3.3 Hint
The Hint format is used by the application that take advantage of ClassMATE’s mining and

personalization features to assist the student when solving an exercise. Hints are presented
gradually while their content is adapted to fit the needs of each individual learner, for
instance augment textual information with an explanatory image for visual learners. Every
Hint resource reference file is structured in three sections that correspond to their displaying
order. The first section provides the definition of the selected item (e.g., the black in a
multiple choice exercise) in a textual representation accompanied by a collection of
multimedia files (image, video and audio file) that describe the same definition in a
multimodal manner. The second section provides a personalized collection of examples of
use that include the available options (e.g., multiple-choice alternatives, available words for
selection in a matching exercise). Finally, the third section contains a list of incorrect options
that should be eliminated, leaving the student with a fewer choices between the correct

answer and one or more incorrect ones.

The Hint module also implements the ResourceReference API. The WriteToStream operation
generates a XML-based file conforming to the Hint format, while the RevalidateData
operation only affects the first section where the contained path entries, if any, are updated

with the new artifact-specific locations.

<Hints>
<FirstHint>
<Definition> A definition of the word to be filled-in the selected sentence </Definition>
<ImagePath> A representative image </ImagePath>
<VideoPath> A representative video </VideoPath>
<AudioPath> A representative audio file </AudioPath>
</FirstHint>
<SecondHint>
<Example> An example of use </Example>
<Example>
More examples
</Example>
</SecondHint>
<ThirdHint>
<Eliminate> Word A </Eliminate>
<Eliminate> Word B </Eliminate>
</ThirdHint>
</Hints>

5.2.4 Content Classification and Personalized Delivery
The Data Space is not a simple content repository in terms of a local data holder, but in fact

it integrates a sophisticated metadata repository, with references to the actual system’s

data.

76

5.2.4.1 Taxonomies Overview
Taxonomy is the practice and science of classification. A taxonomy, or taxonomic scheme, is

a particular classification ("the taxonomy of ..."), arranged in a hierarchical structure.
Typically, it is organized by supertype-subtype relationships; in such inheritance
relationships, the subtype by definition inherits the properties, behaviors, and constraints as
the supertype, plus one or more additional properties, behaviors, or constraints. The
concept of Taxonomy is particularly suited to the ClassMATE needs, as it allows efficient

classification and retrieval of the available content.

The Resource Description Framework (RDF) is a family of World Wide Web Consortium
(W3C) specifications originally designed as a metadata data model, but it evolved into a
general method for conceptual description or modeling of information. The RDF data model
is similar to classic conceptual modeling approaches, such as Entity-Relationship or Class
diagrams, as it is based upon the idea of making statements about resources in the form of
subject-predicate-object expressions, while a collection of RDF statements intrinsically
represents a labeled, directed multi-graph. These expressions are known as triples in RDF
terminology, where the subject denotes the resource, and the predicate denotes traits or
aspects of the resource and expresses a relationship between the subject and the object.
RDF's simple data model and ability to model disparate, abstract concepts has also led to its
increasing use in knowledge management applications for knowledge representation over
the relational model and other ontological models. The ClassMATE system builds the
knowledge base using the RDF technology and employs the SPARQL language as the

inference channel both for content classification and discovery.

The DataSpace module implements a sophisticated content delivery mechanism to enhance
the educational process and support the learners by providing access to related educational
material that would otherwise require intensive manual effort to discover. Towards this end,
the inclusion of taxonomies in the ClassMATE platform empowers the classification
mechanism by introducing in addition to the basic content categorization the notion of the
knowledge map between learning objects. The latter is achieved by the hierarchical
structure imposed by taxonomies that implicitly connects objects together and increases the
semantic coherence of the knowledge map. The introduction of taxonomies, combined with
the SPARQL query language and the ClassMATE’s User Profile module, results in a powerful
content retrieval mechanism that ensures personalized content delivery according to the

learner’s needs. Moreover, the DataSpace module integrates a semi-automatic content

77

reclassification mechanism through which a newly inserted taxonomy can provide the

essential rationale to reclassify the already available content.

The classification-related data are stored independently of the actual content. A LOM-based
metadata file accompanies every learning object and any classification-related values are
stored in that file. Since learning objects may belong to more than one taxonomy at the
same time, the ClassMATE’s knowledge base consists of complex directed graphs that
should be used during content retrieval. The use externally stored metadata ensures that
whenever a learning object is used as the search criterion all the essential information for
the query building will be available through its LOM file (e.g., keywords, associated
taxonomies). However, a discovery process that iterates the contents of the repository and
parses every LOM file to find similarly classified objects is not efficient; thus the SemWeb
library is used to store in a relational database (MySQL) the content relations to optimize

performance (Fig. 27).

DataSpace Manager

Figure 26: SemWeb Bridge between RDF data and a Relational Database

5.2.4.2 Taxonomies Installation
The RDF technology includes an extensible knowledge representation language, providing

basic elements for the description, called RDF Schema (often abbreviated as RDFS). Since the
taxonomy’s structure is encapsulated in the contained concepts and their relationships,
ClassMATE employs the RDFS technology towards taxonomies definition. A concept is
modeled as an RDF class, and a relation between two concepts is modeled as a property
between their respective classes; the taxonomy’s hierarchy is implicitly defined though
classes inheritance. Taxonomy outlines the pattern and the hooks where the actual data will
be placed. The taxonomy data are represented as RDF instances, encoded in an external RDF
file built on top of the taxonomy schema; that file’s structure should be fully compliant with
the schema specification. Data files do not enclose actual content, rather they hold the

taxonomy schema populated with URIs pointing to the appropriate data. For example, an

78

instance entry of the Classbook taxonomy, defined based on course’s structure (i.e., book,

section, chapter, etc.), will contain the following values:

<Book>

<Page>
<hasPageld> 37 </hasPageld>
<haslmage>
6thGrade_EnglishCourseBook_Chapter3_Unit3_Lesson1_RollerCoasterimage
</haslmage>
</Page>

</Book>

The TaxonomylLoader is responsible for loading the taxonomy definition and data in the
system. The LoadTaxonomy operation parses the RDF schema, collects the contained classes
and properties and stores them in the TaxonomyRegistry maintained by the DataSpace. The
LoadInstances operation utilizes the TaxonomyRegistry to resolve the appropriate taxonomy
components (i.e., classes and properties) and uses them to insert the supplied taxonomy
instances in the database. For that to be achieved, the appropriate RDF triples should be

generated and fed to the SemWeb library to finalize insertion.

The implemented algorithm is a recursive process, which parses the data file. Whenever an
entry is completely loaded, it is immediately inserted in the database. The insertion query as
aforementioned is encoded as an RDF triple. Every class instance is either the subject or the
object of that triple while every property corresponds to the predicate; however, when an
RDF property starts from a class and points a literal value, then the object of that triple is an
RDF Literal instance. RDF parsing is a top-down process. However, in TaxonomyLoader’s case
the “shift-reduce” alternative was implemented, a widely-known mechanism by RDP
parsers, supported by an internal stack to “memorize” data during “shift” and facilitate their

insertion during “reduce”.

5.2.4.3 Content Collection Mechanism
The data gathering procedure is performed on demand by the Data Collector mechanism,

which searches in a “transparent” way diverse sources (e.g., web, file system, etc.) in order
to discover content related to a particular topic and present it through the appropriate
application. The various search criteria necessary to the collection process (e.g., topic,
related taxonomies, mime type, etc.) are determined by a particular learning object and the
URI of that object is provided to the Data Collector to facilitate the extraction of the

necessary information from the linked metadata file (accessible through the URI).

79

The LOM standard offers a great number of metadata structures to facilitate the content
discovery mechanism. The general description and keyword fields are used for “simple”
queries, while the educational fields (i.e., semantic density, difficulty and typical learning
time) are used for advanced queries. Classification attributes are also used during discovery,
through a modular mechanism for searching for relevant content; the information from the
classification section facilitate the Data Collector to identify the taxonomies under which the

current learning object is classified and use the relative queries to discover relevant content.

An information retrieval process begins when a query is entered into the system. Queries
are formal statements of information needs, while a query does not uniquely identify a
single object in the collection; instead, several objects may match the query, perhaps with
different degrees of relevancy. The queries used in the ClassMATE platform are expressed in
SPARQL to take full advantage of the semantic information provided by the RDF technology.
Queries are created by experts already acquainted with the taxonomies and the

interrelations of the contained concepts.

Every query retrieves data from a particular taxonomy only, whereas a taxonomy can have
multiple queries assigned to. Conflicts are eliminated by assigning every query to a specific
mime type which indicates the data type of the learning objects that will be eventually
discovered. Queries associated with the same mime type form a query family. The Query
Registry is used to collects all queries together to facilitate their maintenance. New queries
can be easily added in the registry, either under a section that corresponds to an existing
taxonomy, or under a new section introduced by a new taxonomy; in the latter case, the
added section implies that the new taxonomy has been successfully inserted in the
DataSpace. Every query includes some “blank” parameter placeholders that are dynamically
filled before execution with values extracted from the leaning object’s metadata file and
return the result set in an XML-based format. To facilitate federated queries, queries that
correspond to the same MIME type should return the same XML-format, while in the
majority of the cases only the URI of the discovered content provides adequate data for the
content collector to further process. Figure 28 presents a sample query family, extracted
from the actual system, that collects image files by calculating their relevance based on their
hierarchical distance (i.e., different images that belong to the same hierarchical branch and

share a common ancestor are treated as relevant).

80

<taxonomy n "GenericPhysicalTaxonomy " >

<physical:SocialParty> <query ="image/png">
<physicel:hesSccielPartylnageld>SocialParty AmusementParkl</physical

</physical:SocialParty>

<physical:SocialParty>
<physical:hasSocialFartylmageld>SocialParty_ AmusementPark2</physical

</query>
</taxoncmy>

~
H

3
"
m
B
&l
v

ctionld>Amusement Park</beok:hasSectionld> <TRZOnCN GenericClassbookTaxcnomy”>
asPage> <query image/png">
ok:Page>

<book:hasPageld>Pagell</boock:haspPageld>
<bovk:hasPageUri>\\ckeanos.ics.forth.gr\hci\Public\kd
<book:hasSegment>
<book:Segqment>
< hasSegmentId>Segment1</book:hasSegment]
<book:hasInage>
<book: Image>
:hasInageId>EnglishC X Ur
nageTypeld>IMAGE PHG</book
AatSpet>
TSpot>
<bock:hasTopLeit>
tPoint>

rhas'>0.160</boq
tSpotPoint>
</book:hasToplefc>
<book:hasTopRighty
<book:HotSpotPoinc>

</query>

Figure 27: A sample query family that discovers related images

The data collection delegate resolves the appropriate queries from the Query Registry and
populates their parameters with data gathered from the learning object’s metadata file. The

mining process is as follows:

1. Load the metadata of the learning object pointed by the supplied URI
2. Extract the taxonomies under which this learning object is classified
3. Initialize the list of acceptable MIME types with this learning object’s type
3.1. Augment the list of acceptable MIME with any explicitly defined types (e.g., the
modaule that initiates the data collection mechanism is able to explicitly request
the inclusion of specific mime types)
4. Request from the Query Registry those queries that match the specified criteria (i.e.,
taxonomies and mime types)
5. Populate the parameter placeholders for each query and execute it through the
SemWeb proxy
6. Collect the results into an federate result set (categorized per mime type) and

propagate them to the filtering and personalization module

The filtering process is divided into two distinct phases: the contextual filtering and the

personalization. During the initial phase, contextual information is used to determine the

81

rule set, while during the second phase the remaining content is personalized according to
the learner’s profile. In more details, if the contextual filtering occurs during school-hours,
the course-irrelevant learning objects will be discarded from the result set (i.e., in the
context of foreign languages an image of a roller coaster could stimulate the discussion,
while the kinetic energy equation is not important); vice versa, if the same scenario occurs
during homework, then both learning objects will be returned as they are both equally

useful.

The personalization phase begins immediately after the contextual filtering completes;
during that phase the learner’s profile eventually determines the content to be delivered.
The behavior patterns stored in the User Profile clean up the remaining results by discarding
those learning objects that do not meet the learner’s needs; the LOM metadata are used to
determine if a learning object is suited for the particular learner. An illustrative example of
this process is the following: a learner wishes to study further on a topic and requests
supplementary material in the form of multiple choice exercises that belong to that topic.
The data collection process may return numerous exercises that match the search criteria;
nevertheless, only the exercises whose difficulty level matches the preferred will be
delivered, while the rest will be discarded. Any changes made in the User Profile have a
direct impact on the personalization process, as the filtering operations evolve to include

these updates.

At this point, the result set encloses the final list of learning objects (in the form of URIs) that
should be displayed; however, the ClassMATE-enabled applications require additional
information to display them properly. Therefore, the Data Collector instructs the Reference
Resource delegates to generate the appropriate description files by extracting any additional

information from the respective metadata files.

When the filtering and personalization process completes, the control is passed back to the
Data Collector to notify the Artifact Director and eventually present the discovered content

to the learner.

5.2.4.4 Content Classification

One of the key features of the ClassMATE’s content delivery mechanism is the ability to
reclassify content at runtime, thus altering the generated result set. Through that process
the knowledge map evolves as new connections are added. The classification process is

accomplished via RDF rationale that utilizes taxonomies (e.g., apply rules to select those

82

resources that derive from a specific base class or that share a specific property). Whenever
a new taxonomy is imported, it should be accompanied by a rationale that describes how to
classify the existing content under the specific taxonomy, and what should be inserted into
the LOM classification section. The rationale is expressed as a set of SPARQL queries (similar
to those used in the discovery process) that define the matching criteria. The learning
objects that meet these specifications are added into the reclassification result set which
update their classification sections to include the new taxonomy. For instance, consider the
following scenario where the system currently has classified its content using the initial
taxonomy and a new taxonomy regarding great Mathematicians was introduced. A sample
rationale would be: classify all the “theorems” under the field of “Mathematics”, using the

name of the mathematician that proved them.

The reclassification process includes, in addition to the metadata update, a database update
to store the latest semantic. To this purpose, a process similar to the file-based taxonomy
installation is followed; the reclassification result set is used to dynamically generate a set of
RDF triples which the SemWeb proxy imports to the database. Recalling the example from
the “Taxonomy Installation” section, a potential reclassification of the book taxonomy would
result in a list RDF triples in which the objects of the “hasPage” predicates will be

automatically populated with URIs from the reclassification result set.

Finally, since the process of classification is a highly power-demanding task, it is conducted

offline by the system, depending on its workload (e.g., overnight or during weekends).

5.2.5 Data Repository
Influenced by the emerging trend of online storage services where files are distributed in the

cloud, and the wide acceptance of file sharing protocols, ClassMATE instead of binding to a
particular solution, implements an open mechanism where data can be stored anywhere,
and the File Manager fetches them when necessary. That way the available storage space
explodes exponentially, the introduction of new data sources (e.g., online platforms that
host educational material) requires minimum modifications, and the available classroom

storage can be utilized as a local cache to decrease loading time.

5.2.5.1 File Manager

The File Manager is the entry point from which the ClassMATE core and the various
ClassMATE-enabled applications gain access to educational content. Content is not directly
loaded from its original location, but a local copy is made to optimize loading time and act as

a cache for future requests. File Manager encapsulates the necessary mechanisms to locate

83

a particular file in the available repository(ies) and fetch it locally to the current artifact. The
adopted approach facilitates the addition of any kind of repositories, local, networked, and

distributed, without affecting the applications since the Manager APl remains unaltered.

Finally, in addition to the educational content repositories, the File Manager provides access
to locally stored dedicated repositories (e.g., state repository) to support fundamental

ClassMATE activities such as state suspension/restoration and migration.

5.2.5.2 Content Population
The first time that a specific content is searched by the system, it becomes immediately

available to the user who requested it, but it is stored in a pending state as unclassified
learning content, which will not be available until it is fully classified. However, whenever
new content is stored in pending state, it is actually partially classified by the system,
according to its current context of use (e.g., studying course, chapter, etc.), which is known
to the Context Manager, and then marked for approval by the teacher. The approval and
possible enrichment of its metadata is accomplished offline, followed by a new classification
round; upon its completion, the new content becomes available to the entire system as

appropriate learning content.

84

6 Conclusions and Future Work

6.1 Summary
This thesis has presented the ClassMATE architecture, a pervasive computing infrastructure

for education, focusing on fundamental issues that should be addressed in order for an Aml
educational environment to be supported. The ClassMATE system: (i) enhances the
classroom orchestration with context awareness, (ii) addresses heterogeneity in the Aml
classroom through well-established software design patterns, and (iii) supports educational

content classification and personalized delivery.

CLASSMate has been designed and developed taking into account the educational process
which takes place in the classroom and beyond, and in particular the needs and
requirements which emerge in the context of typical learning activities. In order to
immediately respond and orchestrate the Aml artifacts available in the classroom (e.g.,
interactive boards, smart desk, etc.) to address the needs of students and teachers
effectively and efficiently, ClassMATE introduced the Class Orchestrator and the Local
Director modules that monitor the ambient environment and make context-aware decisions.
Furthermore, the ClassMATE event type system was defined to satisfy the inter-
communication needs between the core and the external applications stemmed by
ClassMATE’s distributed nature. Finally, the Device Manager offers a generic mechanism for
heterogeneous devices manipulation, by encapsulating any platform-dependent operations

into abstract APIs.

Concerning student management, ClassMATE provides the User Profile module that not only
maintains student personal data, school records, etc., but also incorporates a learners’
behavior knowledge library (updated at runtime through user monitoring) for the intelligent
environment to provide educational content appropriately adapted to each user’s actual

learning needs.

The Data Space Manager facilitates content management. It supports actual data
distribution in multiple repositories, as access is performed through high-level operations
that encapsulate the necessary discovery logic. Moreover, a sophisticated content retrieval
mechanism is incorporated that performs “intelligent” semantic queries over the available

data to discover and fetch content tailored to the learning needs of the current student.

Finally, a collection of auxiliary mechanisms were implemented to facilitate the use of

ClassMATE framework by application developers; indicative examples are the Event Registry,

85

the Platform Expert, the State Manager, the Query Registry and more.

In summary, the outcomes of the work presented in this thesis include:

the CLASSMate architecture for the Ambient Intelligent classroom

the Context Manager for context-aware orchestration of the classroom environment

the Device Manager for abstracting heterogeneous devices into high-level APls

the Data Space Manager for adaptive content discovery and personalized delivery

the User Profiler for managing user-related information

a collection of auxiliary programming tools such as the Event and the Classification

system.

6.2 Conclusion
In combination with the PUPIL system, which realizes the User Interface of Aml classroom

infrastructure, the ClassMATE system empowers scenarios such as the following:

the student points an image to the electronic version of the book, the Context
Manager collaborates with the Data Space Manager to discover and retrieve
relevant content and when complete, notifies the PUPIL system to launch the
Multimedia application to display that content

the student send an interesting image to the augmented board in order to discuss it
with the entire class; for that to be achieved the Artifact Director collaborates with
the Class Orchestrator and the State Manager to deploy the same application to the
remote artifact

the student decides to solve an exercise electronically, points the exercise to the
electronic version of the book, the Context Manager in combination with the Data
Space Manager determine the application associated with the exercise type and
notifies PUPIL system to launch the electronic version of the exercise

the student asks a hint for a specific exercise, , the Context Manager collaborates
with the Data Space Manager to discover, retrieve and personalize the appropriate

hints and when complete, notifies the PUPIL system to launch the hint application.

Overall, it can be claimed that this work constitutes a significant first step towards

supporting the extensive use of Aml technologies in the context of the classroom and of the

educational process in general, by facilitating the development of context-aware

86

applications through hiding the complexity deriving from their use on various artifacts and
devices.

6.3 Future Work

Hereafter, additional steps should be taken to fully support the initial concept.

The next step of this work would be to augment the available content and the classification
criteria and then conduct an exhaustive user-based evaluation in order to acquire additional
useful feedback from end users regarding the robustness of the system and the matching
accuracy of the discovered content. The results of this evaluation would lead to further
improvements and extensions of the Data Space Manager in order to better meet the
students’ needs. Towards this end, ClassMATE can assist the teacher, the ClassMATE system
by providing supplementary graphical tools that facilitate content insertion and semantic
query editing. The insertion tool should include both a single and a batch mode, where a
single or multiple educational elements would be automatically classified and stored in the
classroom repository(ies). Moreover, a classification refinement process would facilitate the
teacher in customizing a priori the classification process or manually correcting any
misclassified content afterwards. The semantic query editor would also increase the added
value of the Data Space Manager, especially if it simplifies the mapping process by utilizing

already available taxonomies and the conceptual relations among them.

In order to support mobile devices with limited processing power and functionality, some

ClassMATE modules should be ported to that particular platform(s).

Possible enhancements to the context-related system include the integration of additional
ambient devices in the Device Manager and the extension of the Class Orchestrator to react
to natural gestures (e.g., voice commands, gesture recognition, eye-tracking to determine

the receiver of a command etc.)

Finally, some general ideas that could empower the ClassMATE system would be to extend
the administration facilities to orchestrate the whole school and explore potential
interconnections with other ambient school environments or learning material repositories

to form a global school network.

87

7 Bibliography

[1]

[2]
3]

[4]

[5]

[6]

[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Abrami, P., Bernard, R., Wade, C., Schmid, R., Borokhovski, E., & Tamim, R. (2008). A
Review of E-learning in Canada: A Rough Sketch of the Evidence, Gaps and Promising
Directions.

AMIGO. (2008). Amigo: Ambient intelligence for the networked home environment.

Antona, M., Margetis, G., Ntoa, S., Leonidis, A., Korozi, M., Paparoulis, G., et al.
(2010). Ambient Intelligence in the classroom: an augmented school desk. Applied
Human Factors and Ergonomics.

Assche, F. (2009). Towards Ambient Schooling.

Bandelloni, R., & Paterno, F. (2004). Flexible Interface Migration. Proceedings of the
9th international conference on Intelligent user interfaces.

Bell Communications Research, Inc. (1991). mailcap - Linux man page. Retrieved
from http://linux.die.net/man/4/mailcap

Bravo, J., Hervas, R., & Chavira, G. (2005). Ubiquitous Computing in the Classroom:
An Approach through Identification Process. Journal of Universal Computer Science .

Breuer, H., Baloian, N., Sousa, C., & Matsumoto, M. (2007). Interaction Design
Patterns for Classroom Environments.

Brusilovsky, P., & Millan, E. (2007). User Models for Adaptive Hypermedia and
Adaptive Educational Systems.

Conlan, O., Wade, V., Bruen, C., & Gargan, M. (2006). Multi-model, Metadata Driven
Approach to Adaptive Hypermedia Services for Personalized eLearning.

Cook, D. J.,, & Das, S. K. (2007). How smart are our environments? An updated look
at the state of the art.

Cooperstock, J. (2001). Classroom of the Future: Enhancing Education through
Augmented reallity. Proc. Conf. Human-Computer Interaction (HCI Int’l 2001), (pp.
688-692).

Faison, T. (2006). Event-based programming: taking events to the limit. Apress.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994). Design patterns : elements of
reusable object-oriented software.

Georgalis, Y., Grammenos, D., & Stephanidis, C. (2009). Middleware for Ambient
Intelligence Environments: Reviewing Requirements and Communication
Technologies. Proc. 13th International Conference on Human-Computer Interaction
(HCI International 2009), (pp. 168-177). San Diego.

Heilman, M., Collins-Thompson, K., & Cal, J. (2006). Classroom Success of an
Intelligent Tutoring System for Lexical Practice and Reading Comprehension.

88

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

IEEE Learning Technology Standards Committee. (2001). Draft Standard for Learning
Technology-Learning Technology Systems Architecture (LTSA). IEEE Computer
Society, IEEE 1484.12.1-2002.

IEEE LOM. (2002). Draft Standard for Learning Object Metadata. IEEE Learning
Technology Standards Committee, IEEE 1484.12.1-2002.

IMS Global Learning Consortium. (2010). IMS Learner Information Package
Specification. Retrieved from http://www.imsglobal.org/profiles/

IST Advisory Group. (n.d.). Scenarios for Ambient Intelligence in 2010. Retrieved from
ftp://ftp.cordis.europa.eu/pub/ist/docs/ istagscenarios2010.pdf

Janse, M., Vink, P., & Georgantas, N. (2008). Amigo Architecture: Service Oriented
Architecture for Intelligent Future In-Home Networks. Constructing Ambient
Intelligence, (pp. 371-378). Springer Berlin Heidelberg.

Korozi, M. (2010 (Unpublished)). PUPIL- Pervasive Ul develoPment for the amblent
cLassroom. Heraklion: Computer Science department - University of Crete.

Li, J., & Shi, Y. (2005). Baton: A Service Management System for Coordinating Smart
Things in Smart Spaces.

Lin, Y., Kratcoski, A., & Swan, K. (2005). Situated Learning in a Ubiquitous Computing
Classroom. Journal of the Research Center for Educational Technology (RCET) , 25-38.

Microsoft. (2010). BinaryFormatter Class. Retrieved from
http://msdn.microsoft.com/en-
us/library/system.runtime.serialization.formatters.binary.binaryformatter.aspx

Microsoft. (2010). Generics (C# Programming Guide). Retrieved from
http://msdn.microsoft.com/en-us/library/512aeb7t.aspx

Microsoft. (2010). Input Overview. Retrieved from http://msdn.microsoft.com/en-
us/library/ms754010.aspx

Microsoft. (2010). Manipulations. Retrieved from http://msdn.microsoft.com/en-
us/library/dd371574(VS.85).aspx

Microsoft. (2010). Windows Touch. Retrieved from
http://windows.microsoft.com/en-US/windows7/products/features/touch

ORACLE. (2010). Object Serialization. Retrieved from http://download-
lInw.oracle.com/javase/6/docs/technotes/guides/serialization/

Paredes, M., & Ortega, M. (2002). A Ubiquitous Computing Environment for
Language Learning.

89

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Savidis, A., & Stephanidis, C. (2005). Distributed Interface Bits: Dynamic Dialogue
Composition from Ambient Computing Resources. Personal and Ubiquitous
Computing, (pp. 142-168).

Shi, Y., & Xie, E. A. (2003). The smart classroom: Merging technologies for seamless
tele-education. IEEE Pervasive Computing Magazine .

Shi, Y., Xie, W., & Xu, G. (2002). Smart Remote Classroom: Creating a Revolutionary
Real-Time Interactive Distance Learning System.

Soh, L.-K., Khandaker, N., & Jiang, H. (2008). I-MINDS: A Multiagent System for
Intelligent Computer-Supported Collaborative Learning and Classroom
Management. International Journal of Artificial Intelligence in Education 18 , 119-
151.

Tauberer, J. (2010). SemWeb.NET: Semantic Web/RDF Library for C#/.NET. Retrieved
from http://razor.occams.info/code/semweb/

Vassileva, D., & Bontchev, B. (2006). Self Adaptive Hypermedia Navigation Based On
Learner Model Characters.

W3C. (2004). Resource Description Framework (RDF). Retrieved from
http://www.w3.org/RDF/

W3C. (2008). SPARQL Query Language for RDF. Retrieved from
http://www.w3.org/TR/rdf-spargl-query/

Wikipedia. (2010). LDAP. Retrieved from http://en.wikipedia.org/wiki/LDAP

Wikipedia. (2010). Metadata discovery. Retrieved from
http://en.wikipedia.org/wiki/Metadata_discovery

Xu, P., & Han, G. (2009). Towards Intelligent Interaction in Classroom. In Universal
Access in Human-Computer Interaction.

Yau, S. S., Gupta, S., & Karim, F. (2003). Smart Classroom: Enhancing Collaborative
Learning Using Pervasive Computing Technology.

90

APPENDIX A

General Section

e the list of globally unique labels that identifies this learning object; both the catalog
scheme and the value of the identifier for that scheme are required
e the given title given
e the human languages used in its content
e ashort textual description
e alist of keywords the describe the related topic
e the time, culture, geography or region to which this learning object applies
e an enumeration describing its organization structure
0 value space: atomic, collection, networked, hierarchical, linear
e an enumeration describing its aggregation level
0 value space: raw data, collection of raw data (e.g. a lesson), collection of

collections (e.g. course), set of collection (e.g. set of courses)

Technical Section

e the format of this learning object expressed as a MIME type

e the size in bytes required on a physical storage device

e the list of URIs used to access it

e the system requirements necessary for using it (e.g. browser, operating system, etc)
e alist of installation remarks

e alist of other software or hardware requirements

e the time that this learning object takes to be played at intended speed

Educational Section

e an enumeration describing its predominant mode of learning
0 value space: active, expositive, mixed
e an enumeration describing its specific type
0 value space: exercise, simulation, questionnaire, diagram, figure, graph,
index, slide, table, narrative text, exam, experiment, problem statement,
self-assessment, lecture
e an enumeration describing the degree of interactivity that characterizes it
0 value space: very low, low, medium, high, very high

e an enumeration describing the degree of its conciseness

91

0 value space: very low, low, medium, high, very high
e an enumeration describing the intended user(s) for which it was designed
0 value space: teacher, author, learner, manager
e an enumeration describing the environment within which the learning object will be
used
0 value space: school, higher education, training, other
e the age of the typical intended user
e an enumeration describing the difficulty level
0 value space: very easy, easy, medium, difficult, very difficult
e the approximate or typical time it takes to work with or through the learning object
e alist of comments about its use

e the human language used by the typical intended user

Relation Section

e an enumeration describing the nature of the relationship between this learning
object and the target learning object
0 value space: ispartof, haspart, isversionof, hasversion, isformatof,
hasformat, references, isreferencedby, isbasedon, isbasisfor, requires,
isrequiredby
e the target learning object that this relationship references; the structure is similar to

the identifier under the general section

Classification Section

e an enumeration describing the purpose of classifying this learning object
0 value space: discipline, idea, prerequisite, educationalobjective,
accessibility, restrictions, educationallevel, skilllevel, securitylevel,
competency
e ataxonomic path in a specific classification system
e adescription of the learning object relative to the purpose of the classification

a list of keywords and phrases that describe the learning object relative to the
purpose of the classification

92

