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Prologue

A tiling of Rd is a collection of sets, called tiles, which have disjoint interiors
and whose union is the entire Rd. Here we are interested in tilings, where all
tiles are translates of a single tile. Also the only allowed motions of the tile
are translations, not rotations or reflections. The word multiple, in the title
of this thesis, refers to the fact that we allow a tiling to have many levels,
i.e. we can cover each point several times, but we insist that all points are
covered the same number of times. Its easy to see that the only polygons that
tile the plane under translations at level 1, are parallelograms and hexagons.
However, octagons can, also, tile the plane, but at a higher level, and so can
many other shapes (See Figure 2). The purpose of this thesis is to present
some results on the structure of multiple translational tilings. This means
that we are trying to describe how the underlying set of translations of a
tiling, under some assumptions for the tile, looks like. We, mostly, use tools
from Harmonic Analysis. Almost all results that we present here, can be
found in the bibliography [5], [9], [10].

Figure 1: Here we have tilings by regular polygons. But the triangle doesn’t
tile the plane under translations, unlike squares and hexagons.
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Figure 2: An octagon that 7-tiles, but does not 1-tile. Here, each point,
not on the boundary of one of the tiles, is covered exactly 7 times, once we
translate the octagon by all of the integer translation vectors.



Chapter 1

Introduction

1.1 Basic concepts

We now give the formal definition of a multiple translational tiling in Rd.

Definition 1.1.1 (Translational tiling). Suppose f ∈ L1(Rd) is a non-
negative function and Λ ⊆ Rd is a discrete multiset. We say that f tiles
Rd with tile set Λ and weight w ∈ R if∑

λ∈Λ

f(x− λ) = w, (1.1)

almost everywhere and we write f + Λ = wRd.

In the particular case when f = 1Ω is the indicator function of a mea-
surable set Ω ⊆ Rd, we have the classical geometric situation and we write
Ω + Λ = lRd, where l is an integer that denotes the level of the tiling.
The assumption tiling f + Λ = wRd, has some immediate implications about
the density properties of the multiset Λ.

Definition 1.1.2 (Uniform density). A multiset Λ ⊆ Rd has asymptotic
density ρ if

lim
R→∞

|Λ ∩BR(x)|
|BR(x)|

= ρ

uniformly in x ∈ Rd, where BR(x) is the ball of radius R centred at x.
We write densΛ = ρ. We say that Λ has (uniformly) bounded density if the
fraction above is bounded by a constant ρ uniformly for x ∈ Rd and R > 1.
We say then that Λ has density (uniformly) bounded by ρ.

9
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Lemma 1.1.1. If f ∈ L1(Rd) is a non negative function with
∫
f > 0 and

Λ ⊆ Rd is a multiset such that f + Λ = wRd, then Λ has bounded density.

Proof. By hypothesis ∑
λ∈Λ

f(x− λ) = w

almost everywhere and w > 0 (since
∫
f > 0). We choose R > 1 such that

I =
∫
BR(0)

f > 0. Let x0 ∈ Rd be arbitrary, we have

|B2R(0)|w =

∫
B2R(x0)

∑
λ∈Λ

f(x− λ)dx

≥
∫
B2R(x0)

∑
|λ−x0|<R

f(x− λ)dx

≥ |Λ ∩BR(x0)|
∫
BR(0)

f(x)dx.

Thus |Λ ∩ BR(x0)| ≤ |B2R(0)|w/I is bounded independent of x0 ∈ Rd,
which implies that Λ has uniformly bounded density.

1.2 Basic tools and connection with tilings

In this section we present, briefly, the notions and tools we will need. The
main reference is Rudin [1].

The Fourier transform of a function f ∈ L1(Rd) is defined by

f̂(ξ) =

∫
Rd

f(x)e−2πi〈ξ,x〉dx, ξ ∈ Rd.

We also have the Fourier inversion Formula which says that, if f̂ ∈ L1(Rd),
then

f(x) =

∫
Rd

f̂(ξ)e2πi〈ξ,x〉dξ a.e.

Definition 1.2.1 (Schwartz space). We define the Schwartz space as

S(Rd) = {φ ∈ C∞(Rd) : sup
x∈Rd

|xβDαφ(x)| < +∞, ∀α, β ∈ Nd
0},

where xβ = xβ1 ...xβd and Dα = ( ∂
∂x1

)α1 ...( ∂
∂xd

)αd .
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We also define the sequence of seminorms in C∞(Rd) by

pk(φ) = sup
|α|≤k

sup
x∈Rd

(1 + |x|2)k/2|Dαφ(x)|,

where |α| = α1 + ...+ αd.
From these definitions it follows that φ ∈ S(Rd) if and only if pk(φ) <

+∞,∀α ∈ Nd
0. Moreover these semi-norms induce a metrizable topology in

Schwartz space, which under the translation invariant metric

d(φ, ψ) =
+∞∑
k=0

1

2k
pk(φ− ψ)

1 + pk(φ− ψ)
,

becomes a Frechet space, i.e. a locally convex, complete metric space.

Observation 1.2.1. It is obvious that

C∞c (Rd) ⊆ S(Rd) ⊆ L1(Rd),

thus the Schwartz space is a dense subspace of L1(Rd) and it is also known
that the Fourier transform is an automorphism in Schwartz space.

Now the space of tempered distributions, denoted by S ′(Rd), is the dual
space of Schwartz space, equipped with the weak∗-topology induced by the
topology of S(Rd). For convenience we use the symbols S, S ′ instead of
S(Rd) S ′(Rd), respectively.

We now define some operations in the space of tempered distributions by
duality.

(i) Fourier Transform:
û(φ) = u(φ̂)

where u ∈ S ′ , φ ∈ S.

(ii) Convolution with function:

(φ ∗ u)(x) = u(τxφ̃)

where u ∈ S ′ , φ ∈ S and φ̃ = φ̄(−x), φ ∗ u is a function on S.

(iii) Differentiation:
(Dαu)(φ) = (−1)|α|u(Dαφ)

where u ∈ S ′ , φ ∈ S, α ∈ Nd
0.
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(iv) Multiplication by function:

(fu)(φ) = u(f̄φ),

where u ∈ S ′ , φ ∈ S, f ∈ C∞(Rd).

The support of u ∈ S ′ , denoted by suppu, is defined as the smallest closed
set X ⊆ Rd such that:

u(φ) = 0, ∀φ ∈ C∞0 (Rd rX).

We identify locally integrable functions and Radon measures with distri-
butions (the dual space of the space of test functions C∞c (Rd)) with:

(i) f ←→ uf :

uf (φ) =

∫
φ̄(x)f(x)dx,

(ii) µ←→ uµ:

uµ(φ) =

∫
φ̄(x)dµ(x).

We are particularly interested in Radon measures consisting of point
masses at a discrete set Λ, i.e.

δΛ =
∑
λ∈Λ

δλ

Remark 1.2.1. The Radon measure δΛ is not necessarily a tempered dis-
tribution. A sufficient condition for δΛ to be a tempered distribution is the
growth condition

|Λ ∩BR(0)| � Rc, as R→∞, (1.2)

for some c > 0. Where the symbol f(x) � g(x) denotes that there is a
positive constant C such that f(x) ≤ Cg(x) for the indicated range of x.
A set of bounded density satisfies (1.2), with c = d, the dimension.

Definition 1.2.2 (Lattice). A lattice is a discrete subgroup of a topological
abelian group.
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When Λ is a lattice of full rank in Rd, then Λ = AZd, where A ∈ GL(d,R).
In this case, the Fourier transform of the tempered distribution δΛ has a
simple and useful form given by Poisson Summation Formula(PSF)

δ̂Λ =
1

detA
δΛ∗ ,

where
Λ∗ = {x ∈ Rd : 〈x, λ〉 ∈ Z, ∀λ ∈ Λ} = A−>Zd

is the dual lattice of Λ.
Now we argue informally in order to show the connection between har-

monic analysis and tilings. Suppose that f tiles Rd with tile set Λ and weight
w, so from (1.1) we have ∑

λ∈Λ

f(x− λ) = w, a.e.,

so that now the tiling condition can be rewritten as convolution

f ∗ δΛ = w,

and, taking the Fourier Transform, this gives

f̂ δ̂Λ = wδ0.

From this we conclude that

suppδ̂Λ ⊆ {0} ∪ Z(f̂) (1.3)

where Z(f̂) = {x ∈ Rd : f̂(x) = 0} is the zero set of f̂ .

Remark 1.2.2. The relation (1.3) is the connection between harmonic anal-
ysis and translational tilings. However, neither f ∗δΛ nor f̂ δ̂Λ is well defined,
when f ∈ L1(Rd) in general. We are going to deal this problem in the next
chapter.

1.3 The dual group and Meyer’s theorem

We start this section by giving some definitions, we follow Rudin [2]. Suppose
G is a locally compact abelian (LCA) group. A complex function
γ : G→ C is called a character of G if
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(i) |γ(x)| = 1, ∀x ∈ G

(ii) γ(x+ y) = γ(x)γ(y), ∀x, y ∈ G

The dual group of a LCA group G is the set of all continuous characters of
G. We denote the action of a character γ to an an element x ∈ G as 〈x, γ〉,
i.e. 〈x, γ〉 = γ(x).

The Fourier transform of a function f ∈ L1(G) is continuous function f̂
defined on Γ by

f̂(γ) =

∫
G

f(x)〈−x, γ〉dx.

Notice 〈−x, γ〉 = γ̄(x).
If µ is a finite Borel measure on G its Fourier transform is the continuous
function µ̂ defined on Γ by

µ̂(γ) =

∫
G

〈−x, γ〉dµ(x)

where the integration carried out with respect to the Haar measure on G.
The normalization of the Haar measure will usually be implicit.

Suppose Γ is the dual group of the LCA group G. We denote Γd the
group Γ equipped with the discrete topology and Ḡ the dual group of Γd.
Then Ḡ is a compact abelian group which we call the Bohr compactification
of G. Let τ : G→ Ḡ be defined as x −→ τx, where 〈γ, τx〉 = 〈x, γ〉.
The map τ is a continuous isomorphism from G onto a dense subgroup τ(G)
of Ḡ. Hence this map allows us to regard G as a dense subgroup Ḡ, so that
Ḡ is indeed a compactification of G.

Definition 1.3.1 (Coset ring). The coset ring of a LCA group G is the small-
est algebra(family of sets which is closed under finite set-theoretic operations)
generated by all open cosets of G.

Theorem 1.3.1 (Cohen’s idempotent theorem ). [3] Let G be a LCA group
and Γ its dual group. If µ is a finite Borel measure on G and µ̂ takes only
finite many values, i.e. the range of µ̂ is a finite set S = {s1, ..., sn} ⊆ C,
then the preimage of sj

µ̂−1(sj) = {γ ∈ Γ : µ̂(γ) = sj}

is in the coset ring of Γ, for each j = 1, ..., n
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The next theorem, whose proof is based on Cohen’s idempotent theorem,
is the cornerstone of this thesis, since it provides information on the structure
of the set of translations Λ ⊆ Rd.

Theorem 1.3.2 (Meyer’s theorem). [5] Let Λ ⊆ Rd be a discrete set and δΛ

be the Radon measure

δΛ =
∑
λ∈Λ

cλδλ, cλ ∈ S,

where S ⊆ C \ {0} is a finite set.
Suppose that δΛ is a tempered distribution and that δ̂Λ is a Radon measure
on Rd which satisfies the growth condition

|δ̂Λ|(BR(0))� Rd, as R −→∞.

Then, for each s ∈ S, the set

Λs = {λ ∈ Λ : cλ = s}

is in the coset ring of Rd.

Proof. Let φ ∈ C∞c (B1(0)) such that φ(0) = 1 and |φ̂(ξ)| � |ξ|−α for all
α > 0. We define the sequence of functions

µn(x) = φ(nx) ∗ δΛ(x)

and taking the Fourier transform we have

µ̂n(ξ) =
1

nd
φ̂(ξ/n)δ̂Λ(ξ).

We claim that µ̂n is a uniformly bounded sequence of measures in Rd.
Indeed,

|µ̂n|(Bn(0)) ≤ 1

nd

∥∥∥φ̂∥∥∥
∞
|δ̂Λ(Bn(0))| � 1, as R −→∞

since |δ̂Λ|(BR(0))� Rd as R −→∞.
Furthermore, if 2k � n and using the fact that |φ̂(ξ)| � |ξ|−d−1, as ξ −→∞,
we have

|µ̂n|(B2k+1(0) \ (B2k(0))� 1

nd
|φ̂|B

2k+1
n

(0)\B
2k
n

(0)|δ̂Λ|(B2k+1(0))
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� 1

nd
(
2k

n
)−d−12(k+1)d � n2−k

Hence,

|µ̂n|(Bn(0)c)�
∑
2k>n

|µ̂n|(B2k+1(0) \ (B2k(0))� n
∑
2k>n

2−k � 1

Therefore |µ̂n|(Rd)� 1. We also notice that

limn→∞µn(x) = cx,

if x ∈ Λ and is 0 otherwise. This is a consequence of the fact that Λ is
discrete and the intersection ∩n∈Nsuppφ(nx) = {0}.
We now use the Bohr compactification R̄d of Rd. From definitions above
we have that Rd is a dense subspace of the compact topological space R̄d

and identifying the continuous functions on R̄d with the bounded continuous
functions on Rd, we get that

C(R̄d) ⊆ C(Rd) ∩ L∞(Rd)

is a Banach space inclusion.
Since the measures µ̂n are uniformly bounded measures, they act on all
bounded continuous functions of Rd, and consequently on all continuous
functions of R̄d. That is they constitute a uniformly bounded family of linear
functionals on C(R̄d).By the Banach-Alaoglu theorem there exists a measure
ν on R̄d, such that for every function f ∈ C(R̄d), there is a subsequence of
µ̂n (call it again µ̂n) such that

〈f, µ̂n〉 −→ 〈f, ν〉, as n→∞

Applying this with each character of R̄d in place of f we obtain

ν̂(x) = lim
n→∞

ˆ̂µn(x) = 2πc−x

if −x ∈ Λ and is 0 otherwise. Hence ν̂ has finite range 2πS. By Cohen’s
idempotent theorem the set −Λ, and thus Λ, belongs to the coset ring of Rd

d,
the d-dimensional Euclidean space with the discrete topology.

Meyer’s theorem would be useless if we are not able to describe the coset
ring of Rd. But we have the following results.
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Theorem 1.3.3 (Rosenthal). [4] The elements of the coset ring of Rd which
are discrete in the usual topology of R are precisely the sets of the form

F 4
k⋃
j=1

(αjZ + βj).

Where F ⊆ R is finite, αj > 0 and βj ∈ R, and 4 denotes symmetric
difference.

Theorem 1.3.4 (Kolountzakis). [9] Every discrete element S of the coset
ring of R2 may be written in the form

S =
J⋃
j=1

(Aj \ (Bj
1 ∪ ... ∪Bj

n)) ∪
L⋃
l=1

Ll 4 F

where Aj are two-dimensional translated lattices with pairwise intersections
have dimension at most one, Bj

i , Ll are one-dimensional translated lattices
and F ⊆ R2 is a finite set.
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Chapter 2

Structure in dimension 1

2.1 Preliminaries

In this Chapter we give a result on the structure of tilings of the real line by
a function, under some assumptions. In particular, we show that a function
f ∈ L1(R) with compact support satisfies these assumptions. The main ref-
erence is M.N. Kolountzakis and J.C. Lagarias [5]. We will need the following
lemma.

Lemma 2.1.1. If f ∈ L1(R) and A ⊆ R is any set of bounded density, then

G(x) =
∑
a∈A

f(x− a)

is absolutely convergent almost everywhere and locally integrable.

Proof. Since A has bounded density there is a constant C > 0 such that
|A ∩ (T, T + 1)| ≤ C for all T ∈ R. Then

19
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∫ T+1

T

|
∑
a∈A

f(x− a)|dx ≤
∫ T+1

T

∑
a∈A

|f(x− a)|dx

≤
∑
a∈A

∫ T+1

T

(|f(x− bac) + f(x− bac − 1)|)dx

≤ 2C
∑
n∈Z

∫ T+1

T

|f(x− n)|dx

= 2C

∫
∪n∈Z[T−n,T−n+1]

|f(y)|dy

= 2C

∫ +∞

−∞
|f(x)|dx = 2C ‖f‖1 <∞

This proves local integrability and implies that G(x) is defined as an
absolutely convergent series almost everywhere. �

2.2 A spectral condition for tiling

Now we give a rigorous statement in R of the informal argument in the
previous chapter that led us to the relation (1.3) which is the connection
between harmonic analysis and tilings.

Theorem 2.2.1. [5] Let f ∈ L1(R) have a Fourier Transform f̂ ∈ C∞(R),
and A ⊆ R be a set of bounded density.

(i) If f + A = wR, then

suppµ̂A ⊆ {0} ∪ Z(f̂)

(ii) If µ̂A is a Radon measure and if suppµ̂A ⊆ {0} ∪ Z(f̂), then

f + A = wR

for some weight w.
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Proof. (i) We note that B = {0} ∪ Z(f̂) is a closed set, as the inverse
image of a singleton under the continuous function f̂ union a singleton
in a Hausdorff space. To prove that suppµ̂A ⊆ B we need to show that

µ̂A(φ) = 0, ∀φ ∈ C∞c (R \B)

(because C∞c (R\B) is dense in S(R\B) and µ̂A is continuous). We fix
such a φ and take ψ ∈ S such that ψ̂ ∈ C∞c (R), ψ̂(0) = 1 and ψ̂(ξ) 6= 0
in an open set that contains suppφ.
We introduce the function

F = ψ ∗ f

We note that since ψ̂ has compact support and f̂ is smooth, the prod-
uct ψ̂f̂ is in Schwartz space, and so is then F = ψ ∗ f , because Fourier
transform is an automorphism in Schwartz space. Hence the convolu-
tion F ∗ µA is well defined. Firstly we want to prove that

F ∗ µA = w

Indeed, (F ∗ µA)(x) =
∑

a∈A F (x − a), with the sum converging abso-
lutely since F ∈ S and

∑
a∈A

F (x− a) =
∑
a∈A

∫ +∞

−∞
f(x− a− t)ψ(t)dt

=

∫ +∞

−∞
ψ(t)

∑
a∈A

f(x− a− t)dt

= w

∫ +∞

−∞
ψ(t)dt = wψ̂(0) = w

The interchange of summation and integration is justified using Fubini’s
theorem. For this we need

∑
a∈A

∫ +∞
−∞ f(x − a − t)|ψ(t)|dt < ∞, but

this follows from the fact that |ψ(t)| decreases faster than any power of
t and the set A is of bounded density.

Taking the Fourier transform of F ∗ µA = w ,we get

F̂ µ̂A = wδ0
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We note that F̂ = ψ̂f̂ and f̂ have the same zero set within an open

interval contain the support of φ. It follows that φ/
¯̂
F is a smooth

function whose compact support is disjoint from B. We have

µ̂A(φ) = F̂ µ̂A(φ/
¯̂
F ) = wδ0(φ/

¯̂
F ) = 0

since 0 /∈ suppφ. This proves (i).

(ii) Let ψ ∈ S be arbitrary and define F = ψ ∗ f . We want to show that
suppF̂ µ̂A is {0} for this we consider φ ∈ C∞c ((0,+∞)). We have

F̂ µ̂A(φ) = µ̂A(φ
¯̂
F ) (2.1)

But F̂ = ψ̂f̂ vanishes whenever f̂ does. Since suppµ̂A ⊆ {0} ∪ Z(f̂)
and suppµ̂A is a locally finite measure the second term in (2.1) is 0.
So we conclude that suppF̂ µ̂A has no support in (0,+∞) and using a
similar argument for an arbitrary φ ∈ C∞c ((−∞, 0) we have that

supp(F̂ µ̂A) = {0}

Therefore,

F̂ µ̂A = (F̂ (0)µ̂A({0}))δ0 = (ψ̂(0)F̂ (0)µ̂A({0}))δ0

and from the Fourier inversion theorem, since 1̂ = δ0, we have

F ∗ µA = F̂ (0)µ̂A({0})ψ̂(0) = w

∫ +∞

−∞
ψ(t)dt,

for w = F̂ (0)µ̂A({0}).
By Lemma 2.1.1 the function G(x) =

∑
a∈A f(x − a) is a locally in-

tegrable function and we need to prove G(x) = w almost everywhere.
For all x ∈ R we have

w

∫ +∞

−∞
ψ(t)dt = F ∗ µA =

∑
a∈A

F (x− a)

=
∑
a∈A

∫ +∞

−∞
f(x− a− t)ψ(t)dt

=

∫ +∞

−∞
ψ(t)

∑
a∈A

f(x− a− t)dt
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with the interchange of summation and integration justified as in part
(i). Since ψ ∈ S is arbitrary, we have the equality∑

a∈A

f(x− a− t) = w,

between functions (of t)as tempered distributions. Hence we have that
the function

∑
a∈A f(x− a− t) is ,also, equal to the constant function

w almost for every t ∈ R and therefore
∑

a∈A f(x− a) = w, for almost
all x ∈ R.

2.3 Structure theorem for tile sets

We prove, under some conditions on f ∈ L1(R), that all tile sets of bounded
density for f are finite unions of complete arithmetic progressions and sub-
sequently we show that every compactly supported function f satisfies these
conditions. This result extends (and proved earlier by Leptin and Müller in
[7])that a bounded region admits only periodic tilings, which was proved by
Lagarias and Wang in [6].

Theorem 2.3.1 (Structure theorem). [5] Let f ∈ L1(R) have a Fourier
Transform f̂ ∈ C∞(R) which has a discrete zero set satisfying the bound

|{ξ : f̂(ξ) = 0, |ξ| ≤ R}| ≤ cR (2.2)

for some constant c.
Suppose that f tiles R with the tile set A of bounded density, i.e. f+A = wR
for some weight w.Then the set A is a finite union of complete arithmetic
progression

A =
J⋃
j=1

(αjZ + βj), all αj 6= 0.

Proof. Firstly we will show that the measure µA satisfies the hypotheses of
Meyer’s theorem and then from Rosenthal’s theorem will obtain a structural
result for the tile set A. By theorem 2.1(i) we have

suppµ̂A ⊆ B = {0} ∪ Z(f̂)
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Hence the support of the tempered distribution µ̂A is a discrete set, since
Z(f̂) is discrete by hypothesis.
Step 1: The tempered distribution µ̂A is a Radon measure.
From Rudin [1] (Theorem 6.25) we have that a distribution supported at
a single point b ∈ R is a finite linear combination of derivatives of Dirac
measure δb . Since the support of µ̂A is a discrete set,we conclude that

µ̂A =
∑
b∈B

ψb

where

ψb =

mb∑
j=0

cb,jD
jδb

In order to show that µ̂A is a measure, we must show that each distribution
ψb has zero order, i.e mb = 0 for all b ∈ B.
Fix b ∈ B and take a test function φ ∈ C∞c (−1, 1) such that Djφ(0) = (−1)j,
for 0 ≤ j ≤ mb. We consider the distribution µ̂A acting on the scaled test
function g(x) = φ(λ(x− b)), whose Fourier Transform is given by

ĝ(ξ) =
1

λ
e−2πξb/λφ̂(ξ/λ)

If λ is large enough, then

suppg ∩B = {b}

because suppφ ⊆ (−1, 1). In this case

µ̂A(g) = ψb(g)

=

mb∑
j=0

cb,jD
jδb(g)

=

mb∑
j=0

cb,j(−1)jDjg(b)

=

mb∑
j=0

cb,j(−1)jλjDjφ(0)

=

mb∑
j=0

cb,jλ
j
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This is a polynomial in λ of degree mb. On the other hand,

µ̂A(g) = µA(ĝ) =
∑
a∈A

ĝ(a)

We enumerate the points of the tile set A in increasing order of absolute
value A = {an}n∈N The bounded density of A implies |an| � n. Thus as
n→∞

|ĝ(an)| = 1

λ
|φ̂(an/λ)| � 1

λ
|an
λ
|−3/2 � λ1/2n−3/2

where we used |φ̂(ξ)| � |ξ|−3/2. Thus as λ→∞

|
mb∑
j=0

cb,jλ
j| = |µ̂A(g)| � λ1/2

∞∑
n=1

n−3/2 � λ1/2

This implies mb = 0 . Thus µ̂A is a Radon measure

µ̂A =
∑
b∈B

cbδb, cb ∈ C. (2.3)

Step 2: The coefficients cb in (2.3) are bounded.
Fix b ∈ B and take a test function φ ∈ C∞c (−1, 1) such that φ(0) = 1. We
consider the scaled test function h(x) = φ(λ(x−b)), whose Fourier Transform
is given by

ĥ(ξ) =
1

λ
e−2πξb/λφ̂(ξ/λ)

If λ is large enough, then

supph ∩B = {b}

because suppφ ⊆ (−1, 1). We also consider the enumeration of A = {an}n∈N
as before. We have

cb = µ̂A(h) = µA(ĥ) =
∞∑
n=1

ĥ(an)

hence,

|cb| ≤
1

λ

∞∑
n=1

|φ̂(an/λ)| = S1 + S2
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where S1, S2 represent the sum taken over |an| ≤ λ and |an| > λ, respectively.
Since |an| � n and using the estimate |φ̂(an/λ)| ≤ |φ̂|[−1,1], we obtain

S1 ≤
1

λ
|φ̂|[−1,1]|{n : |an| ≤ λ}| � 1

λ
λ� 1.

Similarly using the estimate |φ̂(an/λ)| � |an/λ|−2 � λ2/n2 we bound S2,

S2 ≤
1

λ

∑
|an|>λ

λ2

n2
� λ

∑
n�λ

1

n2
� λ

1

λ
� 1

Thus,
|cb| � 1.

Step 3: The set A is in the coset ring of R.
The claim is a consequence of Meyer’s theorem, since

|µ̂A|([−R,R]) ≤ sup
b∈B
|cb| · |{b ∈ B : |b| ≤ R}| � R

by the assumption on the zero set B = {0}∪Z(f̂). We have that the measure
µA satisfies the hypotheses of Meyer’s theorem, so A is in the coset ring of R
and by Rosenthal’s theorem has the form

A = F 4
k⋃
j=1

(αjZ + βj),

for some finite set F .
Step 4: The finite set F is empty, which proves the theorem.
If A′ =

⋃k
j=1(αjZ + βj) then the (PSF) implies that µ̂A′ is a weighted sum

of point masses on arithmetic progressions. Then

µ̂A = µ̂A′ +
∑

n∈F\(A′∩F )

e−2πiξ −
∑

n∈(A′∩F )

e−2πiξ

This shows that F must be empty, since µ̂A has no continuous parts by
(2.3).

Theorem 2.3.2. [5]Let a non-zero function f ∈ L1(R) have compact sup-
port. Then any tile set A of bounded density for f is a finite union of arith-
metic progressions

A =
J⋃
j=1

(αjZ + βj), all αj > 0.
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Proof. We show that if f ∈ L1(R) has compact support then its Fourier
transform f̂ satisfies the hypotheses of theorem 6,i.e f̂ ∈ C∞(R) which has a
discrete zero set satisfying (2.2). If f has support in [−R,R] then the Fourier
transform defined on the complex numbers

f̂(z) =

∫ R

−R
f(z)e−ixzdx, z ∈ C,

is an entire function, which satisfies the growth bound

|f̂(z)| =
∫ R

−R
exIm(z)|f(x)|dx ≤ ‖f‖1 e

R|z|.

If N(T ) counts the number of zeros of f̂(z) in the disc {z : |z| ≤ T}, an
application of Jensen’s formula (Boas [8], theorem 2.5.13) gives

lim sup
T→∞

N(T )

T
≤ eR

which implies (2.2).
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Chapter 3

Structure in dimension 2

3.1 Preliminaries

In this chapter we prove that a class of polygonal regions which tiles the
plane R2 have specific structure. The main reference for this chapter is
Kolountzakis [9].

Definition 3.1.1 (Polygons with the pairing property). A polygon K ⊆ R2

has the pairing property if for every edge e of K there is precisely one other
edge of K parallel to e.

Remark 3.1.1. 1. The polygonal regions we deal are not assumed to be
connected.

2. All symmetric convex polygons have the pairing property and it is easy
to see that all convex polygons that tile by translation are necessarily
symmetric.

Definition 3.1.2 (Quasi-Periodic multiset). A multiset Λ ⊆ Rd is called
quasi-periodic if it is a finite union of translated d-dimensional lattices in
Rd.

Suppose K a polygon with the pairing property and e1, e2 is a pair of
parallel edges in the direction u. Then, as we noticed, e1, e2 have the same
length.
If µu is the measure which is equal to arc-length on e1 and negative arc-length
on e2 then, if K + Λ is a multiple tiling of R2,∑

λ∈Λ

µu(x− λ)

29
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is the zero measure, since every part of a translate of e1 in the tiling has to
be cancelled by part of a copy of e2.
It is also intuitively obvious that the vanishing of the above measure for all
directions u implies that K + Λ is a multiple tiling of R2.

So if we write e2 = e1 + τ for some vector τ ∈ R2 (where e1, e2 are viewed
as point sets), we have made the following observation

Observation 3.1.1. If a polygon K has the pairing property then it tiles
multiply the plane, i.e. K+ Λ = wR2, if and only if for each pair e and e+ τ
of parallel edges of K, ∑

λ∈Λ

µe,τ (x− λ) = 0 (3.1)

where µe,τ is the measure which is equal to arc-length on e and negative arc-
length on e+ τ .

In this point we want again to use harmonic analysis so we rewrite the
relation (3.1) of the observation as a convolution

µe,τ ∗ δΛ = 0

Now we notice that, if K+Λ is a tiling, then Λ cannot contain more than cR2

points in any disc of radius R,R > 1, where c is a constant which depends
on K and the weight of the tiling. Hence, we have the growth condition
(1.2), which implies that δΛ is a tempered distribution and so we can take
the Fourier Transform in the convolution above

µ̂e,τ δ̂Λ = 0

which implies
suppδ̂Λ ⊆ Z(µ̂e,τ ). (3.2)

3.2 The Shape of the Zero-Set

In this section we study the shape of the zero-set Z(µ̂e,τ ) and determine its
structure. First we calculate the Fourier transform of µe,τ in the particular
case when e is parallel to the x-axis, for simplicity. We define the measure
µ ∈M(R2) by duality by

µ(φ) =

∫ 1/2

−1/2

φ(x, 0)dx, φ ∈ C(R2)
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That is µ is the arc-length on the line-segment joining the points (−1/2, 0), (1/2, 0).
A simple calculation using Fubini’s theorem gives

µ̂(ξ, η) =
sinπξ

πξ

If µL is the arc-length on the line-segment joining the points (−L/2, 0), (L/2, 0)
we have

µ̂(ξ, η) =
sinπLξ

πξ

hence
Z(µ̂L) = {(ξ, η) : ξ ∈ L−1Z \ {0}}

Write τ = (a, b) and µL,τ for the arc-length on the line-segment joining the
points (−L/2, 0), (L/2, 0) translated by τ/2 and the negative arc-length on
the same segment translated by −τ/2. That is, we have

µL,τ = µL ∗ (δτ/2 − δ−τ/2)

and, taking the Fourier transform, we get

µ̂L,τ = −2
sin πLξ

πξ
sin(aξ + bη)

Hence, if we define u = τ/|τ 2| and v = (1/L, 0), we have

Z(µ̂L,τ ) = (Zu+ Ru⊥) ∪ (Z \ {0}v + Rv⊥)

where u⊥, v⊥ are the unit vectors orthogonal to u, v respectively.
Therefore the shape of the zero set of the measure µL,τ is a set of straight

lines of direction u⊥ evenly spaced by |u|, plus a similar set of lines of direction
v⊥ spaced by |v|. However in the latter set of parallel lines the straight line
through zero has been removed (See Figure 3.1). We state this as a theorem
for later use.

Definition 3.2.1 (Geometric Inverse of a vector). The geometric inverse of
a non zero vector u ∈ R2 is the vector

u∗ =
u

|u2|
Theorem 3.2.1. [9] Let e and e+ τ be two parallel line segments, of magni-
tude and direction described by e and symmetric with respect to 0. Let also
µe,τ be the measure which is equal to arc-length on e and negative arc-length
on e+ τ . Then

Z(µ̂e,τ ) = (Zτ ∗ + Rτ ∗⊥) ∪ (Z \ {0}e∗ + Re∗⊥).
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Figure 3.1: The shape of the zero set Z(µ̂e,τ ).

3.3 Quasi-Periodic Structure in Rd

Theorem 3.3.1. [9] Suppose that Λ ⊆ Rd is a multiset with density ρ. If
the Fourier transform δ̂Λ of the distribution δΛ =

∑
λ∈Λ δλ is a measure in a

neighbourhood of zero, then δ̂Λ({0}) = ρ.

Proof. Take a test function φ ∈ C∞c (Rd) with φ(0) = 1. Then we have

δ̂Λ({0}) = lim
t→∞

δ̂Λ(φ(tx))

= lim
t→∞

δΛ(t−dφ̂(ξ/t))

= lim
t→∞

t−d
∑
λ∈Λ

φ̂(λ/t))

= lim
t→∞

∑
n∈Z

∑
λ∈Qn∩Λ

t−dφ̂(λ/t))

.

Where, for fixed T > 0,

Qn = [0, T )d + Tn, n ∈ Z.

Since Λ has bounded density ρ it follows that for each ε > 0 we can choose
T large enough so that, for all n,

|Λ ∩Qn| = ρ|Qn|(1 + δn),
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with |δn| ≤ ε.
From the mean value theorem for φ̂, we have that for each n and λ ∈ Qn we
have

φ̂(λ/t) = φ̂(Tn/t) + rλ

where |rλ| ≤ CTt−1
∥∥∥∇φ̂∥∥∥

L∞(t−1Qn)
.

Hence,

δ̂Λ({0}) = lim
t→∞

∑
n∈Z

t−d
∑
λ∈Qn

(φ̂(Tn/t) + rλ)

= lim
t→∞

∑
n∈Z

t−dρ|Qn|(1 + δn)φ̂(Tn/t)

+ lim
t→∞

∑
n∈Z

t−d
∑
λ∈Qn

rλ

= lim
t→∞

S1 + lim
t→∞

S2

For S1 we have

|S1 −
∑
n∈Z

ρ|Qn|φ̂(Tn/t)| ≤ ε
∑
n∈Z

ρ|Qn||φ̂(Tn/t)|,

where the first sum
∑

n∈Z ρ|Qn|φ̂(Tn/t) is a Riemann sum for ρ
∫
Rd φ̂ = ρ and

the second sum
∑

n∈Z ρ|Qn||φ̂(Tn/t)| is a Riemann sum for ρ
∫
Rd |φ̂| < ∞.

Therefore, since ε was arbitrary, limt→∞ S1 = ρ.
For S2 we have

|S2| ≤ C
∑
n∈Z

t−dρ|Qn|(1 + δn)Tt−1
∥∥∥∇φ̂∥∥∥

L∞(t−1Qn)

≤ CρTt−1
∑
n∈Z

t−d|Qn|
∥∥∥∇φ̂∥∥∥

L∞(t−1Qn)

The last sum above is a Riemann sum for
∫
Rd |∇φ̂|, which is finite, since

φ̂ is in Schwartz space. Hence limt→∞ S2 = 0.

Remark 3.3.1. The same proof as Theorem 3.3.1 shows that if

µ =
∑
λ∈Λ

cλδλ, where cλ ≤ C

Λ is of zero density, and the tempered distribution µ̂ is locally a measure in
a neighbourhood of some a ∈ Rd then we have µ({a}) = 0
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Theorem 3.3.2. [9] Suppose that Λ ⊆ R2 is a discrete multiset of uniformly
bounded density and that δ̂Λ is locally a measure with

|δ̂Λ|(BR(0))� Rd, as R −→∞.

Assume that also δ̂Λ has discrete support. Then Λ is a finite union of trans-
lated lattices.

Proof. Define the sets (not multisets)

Λk = {λ ∈ Λ : λ has multiplicity k}.

By Meyer’s theorem (applied for the base set Λ with coefficients cλ equal to
the corresponding multiplicities) each of the Λk is in the coset ring of R2 and
from Theorem 1.3.4 because it is discrete it is of the type

J⋃
j=1

(Aj \ (Bj
1 ∪ ... ∪Bj

n)) ∪
L⋃
l=1

Ll 4 F

where Aj are two-dimensional translated lattices with pairwise intersections
which have dimension at most one, Bj

i , Ll are one-dimensional translated
lattices and F ⊆ R2 is a finite set.
We may write

Λk = A4B,

with A = ∪Jj=1Aj, where Aj are 2-dimensional translated lattices which have
pairwise intersection at most one, and dens B = 0.
Hence

δΛk
=

J∑
j=1

δAj
+ µ,

where µ =
∑

f∈F cfδf , with dens F = 0 and |cf | ≤ C(J). The set F consists
of B and all points contained in at least two of the Aj.
Combining for all k, and reusing the symbols Aj, µ, F we have

δΛ =
J∑
j=1

δAj
+ µ.

However, δ̂Λ is discrete by assumption and
∑J

j=1 δ̂Aj
is also discrete by PSF.

This implies that µ̂ is discrete. However from Remark 3.3.1, since dens F = 0
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and the coefficients cf are bounded, we have that µ̂ has no point masses which
means that µ̂ = 0. Now, because the Fourier Transform is an automorphism
in the space of tempered distributions we conclude that µ = 0.
Hence

δΛ =
J∑
j=1

δAj
⇔ Λ =

J⋃
j=1

Aj,

where the last equality is between multisets.

The next theorem shows that the discrete support of δ̂Λ implies that δ̂Λ

is locally a measure.

Theorem 3.3.3. [9] Suppose that Λ ⊆ Rd is a multiset with density uni-
formly bounded by ρ and that for some a ∈ Rd and R > 0,

suppδ̂Λ ∩BR(a) = {a}.

Then in BR(a), we have δ̂Λ = wδa, for some w ∈ C with |w| ≤ ρ

Proof. We use again the fact that the tempered distributions supported at a
point a are finite combination of derivatives of δa. So, for φ ∈ C∞(BR(a)),
we have

δ̂Λ(φ) =
∑
a

ca(D
aδa)(φ) =

∑
a

ca(−1)|a|Daφ(a), (3.3)

where the sum extends over all values of the multiindex α = (α1 + ...+ αd),
with |α| = α1 + ... + αd ≤ m. We want to show that m = 0. Assume the
contrary and let α0 be a multiindex with a non-zero coefficient and |α0| =
m. Pick a smooth function φ supported at a neighbourhood of 0 such that
for each multiindex α with |α| ≤ m we have Dαφ(0) = 0 if α 6= α0 and
Dα0φ(0) = 1.
Let φt(x) = φ(t(x− α)). Then, from (2.3) we have that

δ̂Λ(φt) = tm(−1)mcα0 , (3.4)

and on the other hand, using the Fourier transform, we have

φ(t(x− α))̂(ξ) = e−2πi〈α,ξ/t〉t−dφ̂(ξ/t),

and we get

δ̂Λ(φt) =
∑
λ∈Λ

e−2πi〈α,λ/t〉t−dφ̂(λ/t). (3.5)

By a proof similar to that of Theorem 3.3.1 we get that (3.5) is a bounded
quantity as t→∞, while (3.4) increases like tm, a contradiction.
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The following theorem which is the main result of this section is a conse-
quence of the previous theorems and gives structure for the multiset Λ ⊆ Rd.

Theorem 3.3.4 (Kolountzakis). [9] Suppose that for a multiset Λ ⊆ Rd

1. Λ has uniformly bounded density,

2. δ̂Λ is a discrete measure,

3. |δ̂Λ|(BR(0))� Rd, as R −→∞.

Then Λ is quasi-periodic, i.e. a finite union of translated d-dimensional lat-
tices.

3.4 Application to tilings by polygons

In this section we apply Theorem 3.3.4 and use the shape of the zero set
Z(µ̂e,τ ), which we described explicitly in section 3.2, in order to give quasi-
periodic structure for the tilings formed by a class of polygons.

Theorem 3.4.1. [9] Let the polygon K have the pairing property and tile
multiply the plane with the multiset Λ. Denote the edges of K by

e1, e1 + τ1, e2, e2 + τ2, ..., en, en + τn.

Suppose also that
{ē1, τ̄1} ∩ ... ∩ {ēn, τ̄n} = ∅, (3.6)

where v̄ denotes the orientation of the vector v. Then Λ is a finite union of
2-dimensional translated lattices.

Proof. By Observation 2 (3.1) and (3.2), the tiling assumption implies

suppδ̂Λ ⊆ Z(µ̂e1,τ1) ∩ ... ∩ Z(µ̂en,τn).

By Theorem 3.2.1 in the intersection above each of the sets is contained in a
collection of lines in the direction ēi union a collection of lines in the direction
of τ̄i. Hence the intersection is a discrete set unless an entire line lies in it, but
this case excluded by assumption (3.6). Furthermore, because of the regular
spacing of these pairs of sets of lines, it follows that the resulting intersection
has at most CR2 points in a disc of radius R. Theorem 3.3.4 now implies
that Λ is a finite union of 2-dimensional translated lattices.
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Theorem 3.4.2. [9] Suppose that K is a symmetric convex polygon which
is not a parallelogram. Then K admits only quasi-periodic multiple tilings.

Proof. Suppose that (3.6) fails and that the intersection contains a vector
which is, say, parallel to the x-axis. It follows that each pair of edges ei, ei+τi
of edges of K either has both edges parallel to x-axis, or has the line joining
the two midpoints parallel to the x-axis. In both cases this can only happen
for one pair of edges, which means that K is a parallelogram.

Remark 3.4.1. It is clear that parallelograms admit tilings which are not
quasi-periodic. We can take the regular tiling by a square, i.e. with lattice
Z2, and move each vertical column of squares arbitrarily up or down.
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Chapter 4

Structure in dimension 3

4.1 Preliminaries

Definition 4.1.1 (Minkowski sum and Zonotopes). The Minkowski sum of
the polytopes P1, P2, ..., Pn ⊆ Rd is defined as

M(P1, P2, ..., Pn) = P1 + P2 + ...+ Pn = {x1 + x2 + ...+ xn : xj ∈ Pj}.

A zonotope is the Minkowski sum of a finite number of line segments.

Suppose that we are now given n line segments in Rd, such that each line
segment has one endpoint at the origin and the other endpoint is located
at the vector uj ∈ Rd. Then by definition, the Minkowski sum of these n
segments is

M(u1, u2, ..., un) = {λ1u1 + λ2u2 + ...+ λnun : λj ∈ [0, 1]} = A[0, 1]d,

where A is the (d × n)-matrix whose j-th column is uj, i.e. a zonotope is a
translate of A[0, 1]d. Hence, a zonotope may equivalently be defined as the
projection of some l-dimensional cube.
It is sometimes useful to translate a zonotope so that the origin becomes its
new center of mass. To this end, we now dilate the matrix A by a factor of
2 and translate the resulting image so that its new center of mass is at the
origin. So we can redefine a zonotope as

M(u1, u2, ..., un) = A[−1, 1]d,

which shows that a zonotope is centrally symmetric. It is moreover true that
each face of a zonotope is again a zonotope and that therefore every face of

39
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a zonotope is centrally symmetric.
Another fact that we will use is that any zonotope can be decomposed into a
disjoint union of half-open parallelepipeds. This can be proved by induction
on the number of line segments in Minkowski sum.

For any symmetric polytope P , and any face F ⊆ P , we define F− to be
the face opposite of F with respect to P ′s center of symmetry. Also we denote
x⊥ the perpendicular subspace to the vector x. We also use the standard
convention of boldfacing all vectors. We furthermore use the convention that
[e] denotes the 1-dimensional line segment from 0 to the endpoint of the
vector e.

Definition 4.1.2 (4-legged-frame of a polytope). 1. Suppose P ∈ R3 is
a zonotope. A collection of four, one-dimensional, edges of P is called
a 4-legged-frame if whenever e is one of the edges then there exist two
vectors τ1 and τ2 such that the four edges are

[e], [e] + τ1, [e] + τ2, [e] + τ1 + τ2

and such that the edges [e], [e] + τ1 belong to the same face of P and
the edges [e] + τ2 and [e] + τ1 + τ2 belong to the opposite face.

2. For a set of four legs as above the leg measure is the measure supported
on the legs and is equal to arc-length on the two legs [e] and [e]+ τ1 + τ2

and minus arc-length on the two legs [e] + τ1 and [e] + τ2. We denote
this measure by µe,τ1,τ2.

4.2 The FT of a 4-legged-frame

Lemma 4.2.1. [10] Suppose e, τ1, τ2 ∈ R3 are linearly independent and con-
sider the leg measure µ = µe,τ1,τ2. Then the zero-set of the Fourier Transform
µ̂, is

Z(µ̂) = H−0(e) ∪H(τ1) ∪H(τ2), (4.1)

where

H(x) = Zx∗ + x⊥

and

H−0(x) = (Z \ {0})x∗ + x⊥
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Figure 4.1: A 4-legged-frame of a convex polytope.

Where x is a non-zero vector and x∗ is the geometric inverse of x.
Here x⊥ is the plane orthogonal to the vector x, so that H(x) = Zx∗ + x⊥ is
a collection of parallel planes, orthogonal to x spaced by 1/|x|.

Proof. Translating a measure doesn’t affect the zero set of its FT so we can
translate µ so that 0 is the midpoint of the first line segment, which now
runs from −e/2 to e/2. Denoting by ν the arc-length measure on this line
segment and writing α = δ0−δτ1 and β = δ0−δτ2 we obtain µ as convolution:

µ = ν ∗ α ∗ β.

Taking the FT we get that

Z(µ̂) = Z(ν̂) ∪ Z(α̂) ∪ Z(β̂)

Based on calculation of the FT of the indicator function of [−1/2, 1/2]∫ 1/2

−1/2

e−2πiξxdx =
sin πξ

πξ

we conclude that

ν̂(u) = |e|sin π〈u, e〉
〈u, e〉

.

One also immediately obtains the formulas

α̂(u) = 2ie−πi〈τ1,u〉 sin π〈τ1,u〉
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and
β̂(u) = 2ie−πi〈τ2,u〉 sin π〈τ2,u〉.

Now we notice that ν̂, α̂, β̂ vanish precisely on H−0(e),H(τ1),H(τ2), respec-
tively.

4.3 Application to tilings by convex polytopes

In this section we use again Theorem 3.3.4 to obtain a quasi-periodic struc-
ture for a class of convex polytopes.

Theorem 4.3.1. [10] Suppose P is a symmetric polytope in R3 and Λ ⊆ R3

is a multiset such that, P + Λ = kR3, is a k-tiling of R3. Then we have

suppδ̂Λ ⊆ {0} ∪
⋂

e,τ1,τ2

(H−0(e) ∪H(τ1) ∪H(τ2)), (4.2)

where the intersection above is taken over all 4-legged frames (e, τ1, τ2) of P .

Proof. We have from [11] (Lemma 3.1 and Lemma 3.2) that if P + Λ is k-
tiling of R3 and µ is a leg measure on P then µ also tiles with Λ with zero
weight, i.e. µ ∗ δΛ = 0. Since P + Λ = kR3, is a k-tiling of R3 it follows that
|Λ∩BR(0)| � R3, (as R→∞). Hence δΛ is a tempered distribution and
we may take its FT which gives us

µ̂δ̂Λ = 0,

this implies
suppδ̂Λ ⊆ {0} ∪ Z(µ̂).

But the zero set of µ̂ is described in (4.1) at Lemma 4.2.1 and since this must
be true for all sets of four legs of P we conclude (4.2).

Corollary 4.3.2. [10] Suppose P is a symmetric polytope in R3 and Λ ⊆ R3

is a multiset such that, P + Λ = kR3, is a k-tiling of R3 and let the following
intersection property hold:⋂

e,τ1,τ2

(e⊥ ∪ τ⊥1 ∪ τ⊥2 ) = {0}, (4.3)

where the intersection above is taken over all 4-legged frames (e, τ1, τ2) of P .
Then suppδ̂Λ is a discrete set in R3, of bounded density.
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Proof. The sets in the intersection (4.2) are all unions of planes. For this
set to be non-discrete it must be the case that it contains an entire line of
direction, say a non-zero vector u ∈ R3. This in turn implies that there is a
selection Xl of e, τ1, τ2 for each set l of four legs such that u ∈ X⊥l , but this
contradicts (4.3).
Having established that the intersection in (4.2) is a discrete set we observe
that the larger set ⋂

e,τ1,τ2

H(e) ∪H(τ1) ∪H(τ2)). (4.4)

is a finite union of discrete groups, each of them of the form⋂
l

H(l),

where l runs over all possible sets of four legs of P and for each l = (e, τ1, τ2)
the set H(l) is one of the H(e),H(τ1),H(τ2). Since each discrete group has
bounded density so has the the set (4.6), we conclude that suppδ̂Λ is a discrete
set, of bounded density, as its subset.

Theorem 4.3.3. [10] Suppose P is a symmetric polytope in R3 and Λ ⊆ R3

is a multiset such that, P +Λ = kR3, is k-tiling of R3 and let the intersection
property (4.3) of Corollary 4.3.2 hold. Then Λ is quasi-periodic.

Proof. We need to verify conditions (1),(2) and (3) of Theorem 3.3.4. Hy-
pothesis (1) follows from the fact that in each sufficiently large ball BR(x)
every point is covered exactly k times by the translations of P with the set
Λ ∩ BR′ (x) where R

′
= R + diamP. Hypotheses (2) and (3) follow from the

previous corollary.

4.4 Tilings with non-discrete suppδ̂Λ

In this section we study the convex polytopes that admit exceptional multiple
tilings, in the sense that the multiset is not a finite union of 3-dimensional
translated lattices. A class of these exceptions is easily provided by prisms (a
Minkowski sum of a symmetric polygon with a line segment which doesn’t lie
in the polygon’s plane). By Corollary 4.3.2 for such a tiling the intersection
property (4.3) cannot be true. Therefore, there is a line l ⊆ R3 such that

l ⊆
⋂

e,τ1,τ2

(e⊥ ∪ τ⊥1 ∪ τ⊥2 ). (4.5)
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It was shown in [11] that multiple translational tiling in R3 must be a zono-
tope. Here we will show that non-discreteness of suppδ̂Λ implies that a zono-
tope is Minkowski sum of two 2-dimensional symmetric polygons.

Definition 4.4.1 (Two-flat zonotope). We say that a polytope P is a two-flat
zonotope in R3 if P is the Minkowski sum of line segments

[v1], ..., [vn], [w1], ..., [wn]

where v1, ...,vn ∈ H1 and w1, ...,wm ∈ H2 and H1, H2 are two different
2-dimensional subspaces.

Theorem 4.4.1. [10] Suppose a polytope P tiles R3 by translations over a
multiset Λ and condition (4.5) holds. Then P is a two-flat zonotope.

Proof. We let L be a plane orthogonal to l and supporting P , then (4.5)

L ⊥ l ⊆
⋂

e,τ1,τ2

(e⊥ ∪ τ⊥1 ∪ τ⊥2 ), (4.6)

implies
∀e, τ1, τ2, either e‖L or τ1‖L or τ2‖L.

Let F = L∩P . The dimension of the face F can be 0, 1, or 2. Consider any
facet (edge or face) G of P such that:

(i) has at least one common vertex with F ,

(ii) and we choose an edge e of G that shares exactly one vertex v with F
(so G 6= F ).

Consider the 4-legged frame determined by G and e with τ1, τ2 being the
corresponding translation vectors. Since v ∈ L, by (4.6) one of the three
vertices v + e, v + τ1, v + τ2 lies in L, and therefore lies also in F . By our
choice of e, v + e is a vertex of G but not of F , due to (ii). Thus either
v + τ1 ∈ F or v + τ2 ∈ F

1. If v+ τ1 ∈ F , then τ1 ∈ G∩F (since v, v+ τ1 ∈ G∩F ), so we see that
τ1 is an edge of G. Hence, by the definition of a 4-legged frame, G is a
parallelogram.

2. If v + τ2 ∈ F , then F connects G with its opposite face G−See Figure
4.2).
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Figure 4.2: The two possibilities for the facet G with respect to F .

Figure 4.3: This is the case that each facet adjacent to F , is a parallelogram
sharing an edge with F , giving us a prism.

Now, we show that there is a facet G which satisfies property 2. If,
to the contrary, every facet adjacent to F satisfies property 1, then each
facet adjacent to F is a parallelogram sharing an edge with F . It follows
that exactly three edges meet at every vertex of F and all edges of these
parallelograms that are not edges of F or parallel to F , are parallel to each
other. Since F is centrally symmetric, consider two parallel edges e+ and e−

of F and the corresponding parallelograms G and G−. The facets G and G−

are parallel and therefore opposite in P , so G satisfies property 2.

Now that we have found a facet G such that F connects G and G−, we
also note that since P is centrally symmetric, G also connects F and F−.
We will show that P = F + G. Without loss of generality we may assume
that F and G do not share an edge. The case that F and G do in fact share
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an edge my be handled in exactly the same manner.
Since P is a zonotope we have

P = F +G+H,

where H is a polytope and

F = [f1] + ...+ [fk]

G = [g1] + ...+ [gl]

H = [h0] + [g1] + ...+ [hm]

where k ≥ 0, l ≥ 2, and m ≥ 0. To arrive at a contradiction we assume that
H is not a single point and let h0 be an edge of H. We may also assume
that all line segments have their origin as their midpoint and thus the center
of P is at the origin. We further consider a normal vector f⊥ to the face F
of P . When F is 2-dimensional face, f⊥ cannot be orthogonal to any line
segment hi ∈ H and gi ∈ G. If F is a 0 or 1 dimensional face of P we have
an infinite collection of perpendicular vectors to F and we may choose f⊥ to
be not orthogonal to any line segment hi ∈ H and gi ∈ G.
For each edge gi, hi we define g+

i ,g
−
i and h+

i ,h
−
i , respectively, to be the vector

from the origin to the endpoint of gi, hi such that

〈g+
i , f⊥〉 > 0, 〈g+

i , f⊥〉 < 0,

〈h+
i , f⊥〉 > 0, 〈h+

i , f⊥〉 < 0.

Now the location of the faces F, F− in R3 is given by

[f1] + ...+ [fk] + g+
1 + ...+ g+

l + h+
1 + ...+ h+

m

[f1] + ...+ [fk] + g−1 + ...+ g−l + h−1 + ...+ h−m

as a set of extremal points, respectively.
Therefore the distance between F and F− is

dist(F,F−) = 〈f⊥,
l∑

i=0

g+
i +

m∑
i=0

h+
i −

l∑
i=0

g−i −
m∑

i=0

h−i 〉

> 〈f⊥,
l∑

i=0

(g+
i − g−i )〉
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Figure 4.4: Here F is a lower-dimensional face of P , an edge of P , and we see
how we can get from the face F to the face F− by walking along the vectors
g+
i − g−i .

where the strict inequality follows from the assumption that H contains the
edge h0.

On the other hand, since G connects F and F−, we have that F =
F− +

∑
i∈I (g+

i − g−i ), for a set I of edges in G. Therefore the distance
between F and F− is not more than

〈f⊥,
∑
i∈I

(g+
i − g−i )〉,

a contradiction.

The next theorem which is the main result of this chapter is an immediate
consequence of the previous statements.

Theorem 4.4.2. [10] Suppose a polytope P tiles R3 by translations over a
multiset Λ, and suppose that P is not a two-flat zonotope. Then Λ is a finite
union of translated lattices.

Proof. If P is not a two-flat zonotope then theorem 18 implies that condition
(4.5) fails. Therefore, the intersection property (4.3) in corollary 16 holds.
Theorem 17 now concludes the proof.
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4.5 Weird tilings

In this section we prove that there are two-flat zonotopes which admit tilings
which are not quasi-periodic.

Theorem 4.5.1. [10] Suppose that P is a two-flat zonotope in R3, which is
the Minkowski sum of the segments

[v1], ..., [vn], [w1], ..., [wn],

where v1, ...,vn ∈ H1 and w1, ...,wm ∈ H2 and H1, H2 are two different
2-dimensional subspaces. Suppose also that the additive group generated by
v1, ...,vn,w1, ...,wm is discrete and that the vj span H1. Then P admits a
tiling by translations at a set Λ ⊆ R3 which is not a finite union of translated
lattices.

Proof. We have that P can be paved by parallelepipeds, whose sides are
among the vectors vj and wj. Therefore we can write its indicator function
as a finite sum of indicator functions of parallelepipeds.

1P (x) =
M∑
j=1

1Bj
(x), a.e.,

where each Bj is a parallelepiped whose three edges are among the vj and
wj.
Suppose now that the parallelepiped B is centred at the origin and has as
edges the three linearly-independent vectors a,b, c. We can write the indi-
cator function of B convolution

1B =
| det(a,b, c)|
|a| · |b| · |c|

µa ∗ µb ∗ µc,

where µa is the measure that equals arc-length on the line segment from
−a/2 to a/2 and µb, µc are defined similarly. Since we have computed in
section 4.2

µ̂a(ξ) = |a|sin π〈ξ, a〉
π〈ξ, a〉

and similarly for µ̂b, µ̂c we obtain the formula

1̂B(ξ) = | det(a,b, c)|sin π〈ξ, a〉
π〈ξ, a〉

sin π〈ξ,b〉
π〈ξ,b〉

sin π〈ξ,b〉
π〈ξ,b〉

. (4.7)
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Each parallelepiped Bj in the decomposition of P is a translate of a par-
allelepiped of the type B, above, with some the vectors vj,wj in place of
a,b, c. Translates don’t affect the zero set of Fourier Transform, hence

Z(1̂Bj
) = ((Z \ {0})a∗ + a⊥) ∪ ((Z \ {0})b∗ + b⊥) ∪ ((Z \ {0})c∗ + c⊥),

where a∗ is the geometric inverse of a, etc.
Write now

G = 〈v1, ...,vn〉

for the additive subgroup (lattice) of H1 generated by vj’s and G∗ ⊆ H1 for
its dual group in H1, i.e.

G∗ = {u ∈ H1 : ∀g ∈ G 〈u, g〉 ∈ Z}

We claim now that for each j = 1, ..., n,

H⊥1 + (G∗ \ (v⊥1 ∪ ... ∪ v⊥n )) ⊆ Z(1̂Bj
). (4.8)

This follows since at least one side of Bj is equal to a vector vj which
makes the corresponding factor in (4.7) vanish on any element of G∗, since
〈ξ,vj〉 ∈ Z, ∀ξ ∈ G∗, except from those which are orthogonal to vj, due to
denominator. And since that factor in (4.7) is constant along H⊥1 we obtain
the claim. Since (4.8) holds for all j we obtain

H⊥1 + (G∗ \ (v⊥1 ∪ ... ∪ v⊥n )) ⊆ Z(1̂P ). (4.9)

Pick now any non-zero c1, ..., cn ∈ R. We claim that

τ = 1P ∗ δG ∗ (δ0 − δc1v1) ∗ ... ∗ (δ0 − δcnvn) = 0, (4.10)

where δG =
∑

g∈G δg.
For this it is enough to show that the Fourier Transform of the above measure

τ̂(ξ) = 1̂P (ξ)(1− e2πic1〈v1,ξ〉)...(1− e2πicn〈vn,ξ〉)δ̂G

is identically zero.
By the Poisson Summation Formula, it follows that δ̂G is a measure with

suppδ̂G = G∗ +H⊥1 .
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By (4.9) the function 1̂P (ξ) kills δ̂G except at the lines of the form g∗ +H⊥1
with g∗ ∈ G∗ is orthogonal to some vj, but at these lines one of the factors

(1− e2πic1〈v1,ξ〉), ..., (1− e2πicn〈vn,ξ〉)

vanishes. Hence, τ̂ = 0.
Now we rewrite the measure (δ0 − δc1v1) ∗ ... ∗ (δ0 − δcnvn) in the form

N∑
k=1

δu+
k
−

N∑
k=1

δu−k
, N = 2n−1.

Equivalently, we can rewrite (4.10) as the equality

1P ∗ δG ∗
N∑
k=1

δu+
k

= 1P ∗ δG ∗
N∑
k=1

δu−k
. (4.11)

We define the multisets

S = G+ {u+
1 , ...,u

+
N}, T = G+ {u−1 , ...,u−N}

whose ground sets are the supports of the discrete measures

δG ∗
N∑
k=1

δu+
k

and δG ∗
N∑
k=1

δu−k

and their multiplicities at each point are those described by these measures.
In what follows we exploit (4.11) to give an example of a multiple tiling by P
with a discrete set Λ, which cannot be expressed as finite union of translated
lattices.
We notice first that since P is a zonotope decomposing into parallelepipeds
Bj of sides among the vectors vj,wj, it is a k-tiling of R3, for some k, with
the lattice

Γ = 〈v1, ...,vn,w1, ...,wm〉

generated by the vj,wj. The reason is that each Bj tiles with a subgroup
of Γ, the subgroup generated by its side vectors, and therefore it tiles with
Γ multiply itself. Clearly, P is also a Nk-tiling of R3 by the union of N
translations of Γ by the vectors u+

1 , ...,u
+
N .
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Let {γj : j ∈ Z} be a complete set of representatives of G in Γ. Define the
set of translates

Λ =
⋃
j∈Z

(Ej + γj),

where for each j ∈ Z we choose Ej = S or Ej = T arbitrarily.
We claim that for any such choice of the Ej, P + Λ is a Nk-tiling of R3.
The claim is true if all Ej = S as it is a restatement of the fact that P is a
Nk-tiling of R3 with Γ +{u+

1 + ...+u+
N}. Observe now that if we change any

single Ej from S to T we are adding the quantity

1P ∗ δG ∗
N∑
k=1

δu−k
∗ δγj − 1P ∗ δG ∗

N∑
k=1

δu+
k
∗ δγj (4.12)

to the constant function
1P ∗ δΛ,

which therefore remains the same since (4.12) is identically zero by (4.11).
We conclude that we have a Nk-tiling no matter how Ej the are chosen.
Choose now all Ej = S with the exception E0 = T . We claim that the
corresponding set Λ is not a finite union of translated 3-dimensional lattices.
By the Poisson Summation Formula we have that, if

Λ
′
=
⋃
j∈Z

(S + γj) = Γ + {u+
1 + ...+ u+

N}

then δ̂Λ′ is a discrete measure in R3 and this should also be true for δ̂Λ, if Λ
were a finite union of translated lattices. Thus the difference

δ̂Λ′ − δ̂Λ

would also be a discrete measure. But

δΛ′ − δΛ = δS+γ0 − δS+γ0

= δγ0 ∗ δG ∗
N∑
k=1

(δu+
k
− δu−k )

= δγ0 ∗ δG ∗ (δ0 − δc1v1) ∗ ... ∗ (δ0 − δcnvn).

Hence

δ̂Λ′ − δ̂Λ = e2πi〈γ0,ξ〉
n∏
j=1

(1− e2πicj〈vj ,ξ〉)δ̂G. (4.13)
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But we recall that
suppδ̂G = G∗ +H⊥1 .

Hence, the factors in the right hand side of (4.13) vanish at the set

n⋃
j=1

(Z
vj
cj

+ v⊥j ). (4.14)

Each set in this union consists of a series of planes normal to vj and spaced

by (cj|vj|)−1. Each of the straight lines that make up the support of δ̂G is
parallel to each plane and, therefore, each such line is either entirely contained
in (4.14) or is disjoint from it. It follows that, since the right hand side of
(4.13) is not identically zero, its support contains at least one straight line,
so it is not a discrete set, contradiction.
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