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NMpoAoyog

H mapovoca petamtvylokn epyocio pe TiTAO «ZVGYETION TOV YEVETIKMOV TOPOUAAAYDV TOL
CYP2D6 pe 1 petafoMkn tovg OpaoctnplOTNTe UECH TPOGOUOIMGE®Y MOopPlakng
Avvoputkne»y  mpoaypotomomdnke  oto mACicl  TOL  SUOPVLUOTIKOD  HETOTTUYLOKOV
npoypappatog g latpikng Xyxodg tov IHoavemompiov Kpning kot tov ITE pe titho:
BlonAnpopopikn, oto Epyactipio Ymoloyiotikrg Bio-latpikng (CBML) tov Ivetitovtov
Teyxvoloyiag kot "Epgvvag, katd 10 Akadnuoiké étog 2020-2021. Katapyds, 6o nbsha va
evyaploTiom tov emPrémovia Epevvnm wvpro Ilotapid, ywo v vmoompién tov, v
evldppuvon KoL TV EUTIGTOGVUV TOV HOL £0€1Ee GE OAN T S1APKELDL TNG LETATTVYLOKNG OV
gpyaciag. Oa NBeia emiong va gvyaplotiom tov Emikovpo kadnynm kdpio Aackardakn yio
v kafodynon Tov kot TV onuovtiky cupfoAr] tov oe Bépato Moplokng AVVOLUKNIG.
Eniong, evyopiotd tov Avaminpot) Kabnynt| xdpio HAoOmovlo mov déymmke va
CUUUETACYEL TNV TPIUEAN] EEETAGTIKT EMTPONY|. T GLUVEXELN, B OEA VO EVYOPIGTHOW® TOV
gpevvnt AAEEavopo Kavtepdkn yioo OAN v vrootpiEn kot 115 GLINTNGELS TOV KAVOLLE
KaBOAN N OdpKeln TG peTamTV) kNG epyacioc. Télog, dev Ba pumopovca vo maporeiyw
OA0VG TOVG GLUPOLTNTES TOL Metamtuytokob Tlpoypdppatog mov Ekavay avtd ta 6Ho ypovia

TOV HETOTTUYIOKOV OKOUA L0 OLLOPPOL.






MepiAnyn

Ta évlopa tov kvtoypoduatoc P450 avikouv oe pia vrepokoyévela evEOU®Y TOL TEPEXOVY
po aipn copmapdyovto kot givatl vrevbuva yio Tov petaforicpd nepiocdtepov ond to 90%
TOV KAMVIKOV @appdkov. ‘Eva amd to onuaviikotepa EvOLHO ovTNG TNG OIKOYEVEWNS, TO
kutdypopa P450 2D6 (CYP2D6), petaforilet mepimov 25% twv KAVIKA pNGUYLOTOLOVUEVOV
QOPUAK®OV, GUUTEPIAAUPOVOUEVOV KPICIU®Y KOl GLYVE YOPNYOOUEVOV QUPUAK®OV 0TS TO
avTikaToOMTTIKG, To YNUEOOEPATEVTIKA, Ol B-0vacTOAElG Kot To. 0mloedn). Ot TapaAlayég
tov CYP2D6, evig efaipetikd moAvpoppkol T0mov 610 yovidimua, stvat tkavég va aAldEovy
™ HETAPOMKY] AETOLPYIKOTNTO TOV, E€MMPEALOVIOG TNV OMOTEAEGUOTIKOTNTO KOl THV
towotnta moAdV eapudkwv. Ilepiocdtepor amd 100 amidtvmor tov evlbpov CYP2D6
é&yovv tavtomomBel ko katoywpnOel ot Pdon dedopévev tov Pharmacogene Variation
Consortium (PharmVar, www. pharmvar. org), mapovcidloviag peydAes doKVUAVOELS TN
KOvVOTNTA HETOLOMGLOD QAPUAK®OV KOl 00NYOVTOS G€ UETAROAES TNG CLYKEVIPMOONG TMV
QOPUAK®OV 6T0 TAAGHA. O TANPNG GLOYETIGUAC HETAED TV YEVETIKMOV TAPUALAYDV KOl TNG
petafolkng wavotnrag egokolovbel va amotehel éva avoytd kot dvokoro gpdtnua. O
KOPLOG GTOYOG HOG MTOV VO SIEPEVVIICOVILE TOLG TOPAYOVTEG TOV £ivol KaBopioTikol yio Tnv
petafoliky] dpactnpoTTe TOV EVEOUOVL 0EOTOIDVING KOl YPNOLUOTOOVTIOS KOTAAANAN
puebooovg Moprokng Avvapikng. H Moplakn Avvopukn givor puo eEeMypévn vmoAoylotikn
péBodog mov emrpémet TV TPOPAEYN TG YPOVIKNG EEMENC TV BEcE®V TV 0TON®V PECH GE
aAAniemdpavta  cvotnuato popiov. Ta 10 oxomd owtd, efetdoape T SLVOLUKN
noAvdapOuov waparloydv tov CYP2D6, og Hoviédo AEITOVPYIKOV Kol UN AELTOVPYIKOV
evlopov. KoataAn&ape oto ocvpmépacpo 6t ot petaforéc otovg b-factors tov katoloinwmv
Kot 1 avaivon Dynamic cross-correlation pmwopodv va xpnotponomfovv og avaAVGELS Yo T
JaKpLon TOV Vo KaTnyopldV peTafoikng dpactpiotntoc. H avéilvon Molecular Docking
peta&d tov mopoAraydv tov CYP2D6 ko tov BACELl avoactoléa emPefoimce ta
amoteAéopato pog kot avédele to poro g akog I ko e K-K' loop kot g oyetikn toug
kivnong om Jdpactnpota tov evidpov. Ta amoteAéopata Moplakng AvVoKNg Tov
CYP2D6 *1 ypnoyomomOnkoyv 6Tov TpoGOIopIGHO TOV CUAVTIK®V TEPLOYDYV TG TPOTEIVNG
uéocw Markov State Modeling. Boowldpevor oe autéc Tig meployés e mpmTEIVIG Kot
YpNooTol®vTag o, dedopéva amd v avdivon tICA/MSM, dnuovpynonke éva dataset yio
Ka0e aAinAiopoppo tov CYP2D6, to onoio ot cuvéysta xpnoyoromdnke yia tn dnuovpyio
eVOC LOVTELOL TTPOPAEYNG NG METABOAKNG KOVOTNTOG TOV SLOPOPETIKMDY UAANAOUOPOOV.
Eivar n mpd™ @opd mov avantdcoetal éva tétoto epyadreio. Ta amoteAéopata avtig g
epyaciag &yovv peydAn onuocio yio topeic 0nwc n E&atopuceopévn latpukn, n tpofieym

AVETBOUNTOV EVEPYELDOV PAPLAK®OV KOL 1) AVOKAALYT VEOV QUPLAKOV.






Summary

Cytochrome P450s enzyme belongs to the superfamily of heme-containing proteins,
responsible for metabolizing more than 90% of clinical drugs. One of the most significant
enzymes in this family, Cytochrome P450 2D6 (CYP2D6), metabolizes ~25% of the
clinically used drugs including crucial and commonly administered drugs such as
antidepressants, chemotherapeutics, beta-blockers and opioids. Variations in CYP2D6, a
highly polymorphic loci in the genome, could alter its activity influencing the efficacy and
toxicity of numerous drugs. More than 100 haplotypes (star alleles) of the drug metabolizing
enzyme CYP2D6 have been reported in the Pharmacogene Variation Consortium (PharmVar,

www.pharmvar.org), resulting in wide intraindividual variability in drug metabolism activity

and changes of the drug plasma concentration. The complete connecting link between the
genetic variants and the metabolizer phenotype is still an open and challenging question. Our
main objective was to investigate the key factors that determine the metabolizer phenotype by
exploiting and appropriately employing molecular dynamics (MD) methods. MD is an
elaborate computational method that enables the prediction of the time evolution of atomic
positions within interacting systems of molecules. To this end, we have probed the dynamics
of numerous CYP2D6 variants, as enzyme models with normal and no function, at all-atom
resolution. We concluded that changes in residue b-factors and Dynamical Cross-correlation
analysis could be used as markers in the discrimination of the two classes of metabolizing
activity. Molecular docking analysis between CYP2D6 variants and BACEI] inhibitor
confirmed our observations and highlighted the role of helix I and of K-K’ loop and their
relative movement in the activity of the enzyme. Classical MD runs on the CYP2D6 *1
(wild-type) were used for identifying the important residues for the protein conformational
space using Markov State Modeling. Based on these residues and using the data from the
tICA/MSM analysis, a dataset for each variant has been produced which was then used to
build a prediction model for the metabolizer phenotype. This is the first time such a tool has
been developed. Results of this work are of great importance for areas like Personalized

Medicine, Adverse Drug Reaction (ADR) prediction and drug discovery.

Keywords: Cytochrome P450, CYP2D6 genetic variants, drug metabolism, Molecular

Dynamics.

10



11



1. Introduction

1.1 Cytochrome P450 Enzymes

Cytochrome P450 (CYPs) consists of one of the largest enzyme superfamilies that play a
significant role in the metabolism of numerous endogenous compounds, drugs and other
xenobiotics in almost all living organisms (Lynch and Price 2007). Cytochrome P450
enzymes are heme-containing monooxygenases that are located on the endoplasmic reticulum
of cells or in mitochondrial membranes (Tsuneo Omura and Sato 1964). More than 50
different CYP genes have been identified in humans, classified into 18 families and 44
subfamilies (Korobkova 2015; “Human Cytochrome P450s” n.d.; Daniel W. Nebert, Wikvall,
and Miller 2013). The first three CYP families, CYP1, CYP2 and CYP3, include the major
enzymes involved in xenobiotic metabolism (Zanger and Schwab 2013).

In order to prevent incorrect assignments or duplications of P450 genes, CYP P450
Nomenclature Committee has established the nomenclature system for CYP 450 enzymes
(Nelson et al. 1996). The term “P450” stands for the spectrophotometric peak at the
maximum absorption wavelength of 450nm in the reduced state of the enzyme in the
presence of carbon monoxide (T. Omura 1999). CYP enzymes are designated with the root
symbol “CYP”, followed by a number which indicates the gene family, a letter for the
subfamily and a final number for the individual gene as shown in Figure 1. Any two CYP
enzymes with sequence identity greater than 40% belong to the same family and any two
CYP enzymes with sequence identity greater than 55% belong to the same subfamily (D. W.
Nebert et al. 1987).

Superfamily Family Subfamily Individual CYP

Figure 1 Cytochrome P450 enzyme nomenclature, the example of CYP2D6
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1.2 The Structure of human Cytochrome P450 Enzymes

Cytochrome P450 enzymes have in general similar structures (Johnson and Stout 2013). They
consist of about 500 amino acids and a heme factor buried in the active site (Manikandan and
Nagini 2018). The three-dimensional structures of these hemoproteins, as shown in Figure 2,
share a common overall fold and topology, being mostly a-helical with a small number of
B-sheets (Denisov et al. 2005; Taylor et al. 2020; Hasemann et al. 1995). In all members of
this enzyme superfamily the iron atom of the heme group is bound to the protein through the
thiolate sulphur of a cysteine forming an anionic iron-cysteinate bond, a bond crucial for the
function of the enzyme (Lamb and Waterman 2013). The cysteine residue which provides the
sulfur atom to the heme iron along with the heme group, are the most conserved elements of
the CYPs (J. Wu et al. 2021; Otyepka et al. 2007; Johnson and Stout 2005). The catalytic
domain is connected to the transmembrane helix by a proline-rich region and the
substrate-binding area is located on the distal side of the heme group (J. Wu et al. 2021;
Otyepka et al. 2007). The conformational changes of structural domains that surround the

heme complex play a key role in substrate accessibility of the active site.

Figure 2 The general structure of human CYPs (left) and the crucial iron-cysteinate bond between the cysteine

residue of the protein and the heme group (right)

1.3 The Mechanism of Cytochrome P450 Enzymes

Cytochrome P450 monooxygenase enzymes are present in all tissues but primarily in the

liver and small intestine. In humans, cytochrome P450 enzymes are mostly membrane bound
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to endoplasmic reticulum and the inner membrane of mitochondria. However, they are
present in many other tissues including the intestinal mucosa, brain, kidney, lung and skin.
These proteins play a key role in bile acid biosynthesis, and metabolism of foreign
compounds such as drugs, environmental pollutants, and carcinogens (Zanger and Schwab
2013). CYPs are also responsible for synthesis and degradation of endogenous steroid
hormones and play a major role in vitamin metabolism, oxidation of unsaturated fatty acids,
and cholesterol biosynthesis (Waring 2020; Manikandan and Nagini 2018; T. Omura 1999;
Hasler et al. 1999). CYP enzymes participate in many different reactions including the
hydrocarbon hydroxylation, epoxidation; O-, S-, and N-dealkylation, dehydrogenation,
dehalogenation, oxidative deamination, decarboxylation, reductive dehalogenation, N-oxide,
and epoxide reduction, isomerization and ring formation. However, oxidation is the most
common reaction catalyzed by CYPs and includes the following steps (Figure 3) (J. Wu et al.
2021; Shaik et al. 2010; Isin and Guengerich 2007):

(1) Binding of the substrate to CYP450 enzyme. The binding of the substrates to CYP
enzymes starts mainly when the iron atom of the heme complex is in ferric state (inactive
resting state) and coordinated to a water molecule. The catalytic cycle starts with binding of
the substrate (RH) to the ferric enzyme by displacing the water molecule from the heme iron.
In several isoforms, such as CYP2D6, the water molecule is missing.

(2) Reduction of Fe III to Fe II. After the loss of the water molecule the pentacoordinated
ferric-porphyrin becomes a better electron acceptor. Then, the first electron is provided from
NADPH-CYP reductase (CPR) in order to reduce the ferric (Fe**) to ferrous (Fe*"), a good
dioxygen binder.

(3) Binding of an oxygen molecule to ferrous iron. An oxygen molecule binds to ferrous
iron forming an oxy-ferrous complex which is a good electron acceptor.

(4) Reduction of the dioxygen complex. The formation of the oxy-ferrous complex triggers
a second reduction of the system leading to the formation of the ferric-peroxo anion.

(5) Protonation of the ferric-peroxo anion. The ferric-peroxo anion acts as a good base and
gets easily protonated leading to the formation of the ferric-hydroperdroperoxide species,
Compound 0 (Cpd 0).

(6) Breakage of the O-O bond. In this step Cpd 0 takes another proton, the O-O bond breaks
and a water molecule is released to form the iron-oxo species, the so-called Compound I (Cpd
D).

(7) Monooxygenation of the substrate. The electron deficient complex withdraws an

electron or a proton from the substrate.
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(8) Heme iron returns in ferric state. Finally, substrate oxidation by this reactive complex
produces the oxidized metabolite which exits the pocket and the CYP regenerates to its initial

ferric state.

\ / NADPH-CYP
r r reductase™?
ROH Reduction 1

NADPH-CYP
|eductase"‘

H202 ,"I
1’/ 2
7 g o
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H / \ reductase®™
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Figure 3 The general catalytic cycle of cytochrome P450 enzymes (for details see the text)

1.4 Cytochrome P450 Enzymes and drug metabolism

Drug metabolism refers to the process of the biotransformation of the drugs. During this
process lipophilic compounds are converted into hydrophilic products that can be easily
excreted from the body. Liver is the major site of metabolism, but other organs like kidney,
placenta, adrenal gland, gastrointestinal tract and the skin also participate (Jaladanki et al.
2020).

There are two phases of drug metabolism; Phase I and Phase II (Figure 4) (Jancova,
Anzenbacher, and Anzenbacherova 2010). Phase I consists of oxidation, reduction and
hydrolysis reactions. At this stage, substrates cannot be easily excreted from the body. Phase
IT involves the so-called “conjugative reactions” with endogenous molecules such as
glutathione, sulfate, glycine, glucuronic acid etc. After Phase II, metabolites are more polar

and can be easily excreted. In some cases, reactive metabolites are formed before the Phase 11
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stage which may lead to toxicity. Phase II reactions are catalyzed mainly by transferases such
as UDP-glucuronosyltransferases, sulfotransferases, N-acetyltransferases, glutathione
S-transferases and methyltransferases (Jaladanki et al. 2020; Jancova, Anzenbacher, and
Anzenbacherova 2010; Kadlubar and Kadlubar 2010).

Cytochrome P450 enzymes and primarily CYP3A4, CYP2C9 and CYP2D6, are the major
enzymes involved in the Phase I of drug metabolism (Lu and Xue 2019). During this stage,
drugs either undergo deactivation by CYPs or bioactivation to form their active compounds.
The majority of the members of the cytochrome P450 family present genetic polymorphism
which influences their metabolizing phenotype and affects the efficacy and toxicity of the
drug for patients who have very high or low metabolism rates. Based on different phenotypes
within a population, individuals may be classified as “poor metabolizer” (PM), “intermediate
metabolizer” (IM), “extensive metabolizer” (EM) or “ultra-rapid metabolizer” (UM)
(Gaedigk et al. 2017). For example, rapid metabolizers clear the drug very quickly which can
result in toxicity from reactive metabolites or in low drug efficacy due to the low drug plasma
concentration. On the contrary, poor metabolizer phenotype can lead to higher drug
concentrations and subsequently adverse side effects. Understanding and predicting the drug

metabolism remains challenging but of great importance for drug discovery and development.
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Figure 4 General pathways of drug metabolism
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1.5 Cytochrome P450 2D6 (CYP2D6)
Cytochrome P450 2D6 (CYP2D6), one of the most significant enzymes in this superfamily,

plays a fundamental role in the metabolism of many clinically important drugs. CYP2D6
metabolizes about 25% of the clinically used drugs (Petrovi¢, Pesi¢, and Lauschke 2020;
Ingelman-Sundberg et al. 2007) including crucial and commonly administered drugs such as
antidepressants (i.e. amitriptyline and fluoxetine) (Brandl et al. 2014), chemotherapeutics (i.e.
tamoxifen and irinotecan) (Algeciras-Schimnich, O’Kane, and Snozek 2008), beta-blockers
(i.e. metoprolol) (Sharp et al. 2009) and opioids (i.e. codeine and tramadol) (Ruano and Kost
2018). Almost all known CYP2D6 substrates contain at least one aromatic ring which
interacts with specific residues in the binding pocket (Figure 5) (J. Wang et al. 2010; Keizers
et al. 2004).
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Figure 5 Examples of CYP2D6 substrates



The gene encoding CYP2D6 enzyme is located on chromosome 22q13.2 neighboring two
pseudogenes, CYP2D7 and CYP2DS8 (Figure 6) (Ruano and Kost 2018; Heim and Meyer
1992). Variations in CYP2D6, a highly polymorphic loci in the genome, affect the
functionality of the enzyme influencing the efficacy and toxicity of numerous drugs (Ahmed
et al. 2016). In comparison to the other drug-metabolizing CYPs, CYP2D6 is the only
non-inducible enzyme which means that genetic alterations have a great influence on the
interindividual variation in metabolizer phenotype (Ingelman-Sundberg et al. 2007). At
present, more than 100 haplotypes (star alleles) of the drug metabolizing enzyme CYP2D6
with varying levels of evidence have been reported in the Pharmacogene Variation
(PharmVar) Consortium (“PharmVar” n.d.) resulting in a wide intraindividual variability in
drug metabolism activity and changes of the drug plasma concentration. The Clinical
Pharmacogenetics Implementation Consortium (CPIC) (“Home Page” n.d.) along with
PharmGKB (“PharmGKB” n.d.) has developed guidelines that enable the translation of
genetic laboratory test results into actionable prescribing decisions for specific drugs. The
current classification of CYP2D6 metabolizer status is based on activity scoring of known
haplotypes [46]. Activity scores (AS) act as a tool to translate information regarding the
function of individual haplotypes into an overall predicted metabolizer status for a given

diplotype, and thus an individual (Taylor et al. 2020; Nofziger et al. 2020).

Chromosome 22

CYP2D8 CYP2D7 rep 7 CYP2D6
pseudogene pseudogene
0 50 100 150 200 250 300 350 400 450 497
amino acids
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Figure 6 The relative position of CYP2D6 pharmacogene (red) to two non-functional pseudogenes (grey),
CYP2D7 and CYP2DS8 on the minus strand of Chromosome 22, the amino acid sequence encoded by this gene

and the three-dimensional structure of the protein.

The CYP2D6 polymorphism is historically one of the most representative examples of
pharmacogenetics. Among all major drug metabolizing CYPs, CYP2D6 shows the greatest
impact of genetic polymorphism due to its wide range of different allelic forms, comparably
little influence by environmental and nongenetic factors, and its extraordinarily broad
substrate selectivity. CYP2D6 has received much attention as far as cancer is concerned due
to its role in the bioactivation of tamoxifen, 4-hydroxytamoxifen, and endoxifen used in the
therapy of estrogen receptor-positive breast cancer (Lim et al. 2005; Kadlubar and Kadlubar
2010). It has been also associated with several diseases such as Parkinson disease due to the
fact that CYP2D6 is expressed in the human brain and catalyzes the biosynthesis of dopamine
from L-tyrosine via p-tyramine (Stefanovi¢ et al. 2000; X. Wang et al. 2014). Accurately
detecting and predicting functional and non-functional star alleles, in clinically actionable
pharmacogenes such as CYP2D6 is therefore crucial to the implementation of personalized

medicine.

1.6 Molecular Dynamics

Molecular dynamics (MD) simulations are an important tool for predicting how every atom
in a protein or other molecular system moves over time, based on a general model of the
physics governing interatomic interactions. MD simulations can help us to understand the

physical basis of the structure and function of biological macromolecules. They can be used
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to investigate the properties of a system, in some cases more easily than experiments on the
actual system (Karplus and McCammon 2002; Hollingsworth and Dror 2018). Simulations
can be used to answer a wide range of different questions. Some of the most common
applications of MD Simulations include studies of conformational flexibility and stability, the
investigation of how a biomolecular system responds to some perturbation (i.e. mutation or
ligand binding) and the observation of a dynamic process over time (i.e. protein folding or
membrane transport) (Hollingsworth and Dror 2018).

MD employs Molecular Mechanics (MM) to describe the interactions between atoms. The
atomic forces that govern molecular movement can be classified into two major groups;
Bonded and Non-bonded. Bonded interactions are referred to interactions between atoms that
are chemically bonded, whereas non-bonded interactions are referred to interactions between
atoms that are not bonded (Durrant and McCammon 2011). It uses Hooke's spring law for
bonded interactions, Coulomb's law and the Lennard-Jones potential for non-bonded

interactions, calculating the energy of the system E as a set of partial energies E,.4.q and
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Figure 7 Bonded and non-bonded interactions between the atoms of a system.

In MD, as in an experimental process, we can study the time evolution of a system, so that
the system goes through all possible states. However, using simulations we can examine how
systems evolve and go through different configurations, with adjustable variables
(temperature, pressure, pH), at an atomic level, which is not always possible experimentally.
To perform the simulation we need to follow specific steps (Figure 8). As in the experiment,
we need to prepare the system, declare the initial positions and velocity distributions of the

particles (to perform the simulation using specific temperature-pressure conditions) and then
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find an initial minimum energy structure relevant to the experimentally observed ensemble —
average configurations. This is followed by the production phase of the simulation in which
the energies, the forces that act on the atoms, their new speeds and positions are calculated

for the next time step. After the end of the simulation, the data are collected and analyzed.

Set the initial conditions
Position, Velocity, Force and Acceleration

Calculate total force on each particle <
C T }
| F(r) |
___________________________________________________ ..
e
Solve numerically the equation of motion over time o
@
TS | F
}L ML) =ni(te) Vilt)=v(t,,) }

Calculate and write positions, velocities, forces, etc. —

Figure 8 Simplified Molecular Dynamics Simulation algorithm. All particles move according to Newton’s

second law or the equation of motion.
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2. Aim of this work

The aim of the present study was to advance scientific knowledge and investigate the key
factors that determine the metabolizer phenotype of the different allelic forms of
CYP2D6. In order to do this, we have chosen to probe the structural characteristics of
several CYP2D6 star alleles with definitive PharmVar level of evidence and known
metabolic activity, as shown in Figure 9, by exploiting and appropriately employing MD
methods and analytical tools. Results can thus be directly associated with applications in
Personalized Medicine and can help to improve the efficacy and safety of various

prescription medicines.
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Figure 9 CYP2D6 star alleles along with their mutations and their metabolic activity
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3. Results

3.1 System convergence

The Root Mean Square Deviations (RMSDs) of the backbone atoms in functional and
non-functional variants of CYP2D6 are shown in Figure 10 over the equilibrium trajectories.
The initial structures for the MD trajectories were used as reference structures for the RMSD
measurements. In general, simulations for the wild-type (WT) and all mutants (MT) converge
before 150ns. The system with the CYP2D6 *33 variant shows rather high RMSD values
compared to the other systems. RMSD of all backbone atoms, including oxygens in
C-terminus, converged at 0.15 nm to 0.22 nm and the final 850 ns have been used for the
analyses described below. The results of the RMSD calculations indicate that all systems

were adequately equilibrated.
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Figure 10 Root Mean Square Deviations for the functional and non-functional CYP2D6 variants.

3.2 Structural fluctuations

Root Mean Square Fluctuation (RMSF) of the residues within all the different allelic forms,
functional and non-functional, are shown in Figure 11. The final 850ns of each equilibrium
trajectory were used for the RMSF calculations. CYP2D6 is a membrane-anchored protein
through its N-terminus, and therefore fluctuations around the N-terminus residues should be
interpreted with care as simulations were performed without the membrane that would likely

stabilize this site through non-bonded interactions.
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Figure 11 Root Mean Square Fluctuations of backbone atoms of functional and non-functional CYP2D6

variants.

In order to gain better insight into these fluctuations, changes between variants in Root Mean
Square Fluctuations (ARMSF) relative to CYP2D6 *1 (wild-type) were examined as shown
in Figure 12. ARMSFs were computed using the value per residue of the allelic form
CYP2D6 *1 as a reference. Positive values of ARMSF correlate to atoms of decreased
flexibility whereas negative values of ARMSF correspond to flexible atoms as compared with
the reference. In general, helices D, E, I, J, K, L are of similar flexibility as the allelic form
CYP2D6 *1. However, changes in plasticity were observed for the different variants
compared to the wild-type. Non-functional variants seem to be more rigid than the functional
ones.

For CYP2D6 *2 flexible sites were observed especially in helix F (residues 197-203) and
K’-L loop (residues 422-428). Rigid sites were observed in 1 sheet (residues 37-52), loop
connecting B1-1 B1-2 (residues 72-75), F-F’ loop (residues 218-219), helix F’ (residues
220-226), F’-G loop (residues 230-239), K’-L loop (residues 411-413) and 3 sheet(residues
476-488). CYP2D6 *33 seems to be a highly flexible variant especially in helix F (residues
195-202), K’-L loop (residues 417-428) and B3 sheet (residues 479-485). For CYP2D6 *33

rigid sites were observed in B1 sheet (residues 37-49), loop connecting f1-1 B1-2 (residues
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73-76), K’ helix (residues 400-403) and K’-L loop (residues 430-433). CYP2D6 *48 flexible
sites are located in helix F (residues 195-199) and especially in K’-L loop (residues 423-424).
Rigid sites are located in B1 sheet (residues 37-52), loop connecting B1-1 B1-2 (residues
74-76), F-F’ loop (residues 218-219), helix F’ (residues 220-224), F’-G loop (residues
230-239), K’ helix (residues 400-401) and B3 sheet (residues 476-488).
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Figure 12 Changes in Root Mean Square Fluctuations (ARMSF) of backbone atoms of functional and

non-functional CYP2D6 variants relative to CYP2D6 *1.
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As far as the non-functional variants are concerned, for CYP2D6 *7 rigid sites were observed
especially in B1 sheet (residues 37-49), loop connecting B1-1 B1-2 (residues 72-76), C-D loop
(residue 144-145), F-F’ loop (residue 219), helix F’ (residues 220 and 224), F’-G loop
(residues 229-238), K’ helix (residues 400-402), K’-L loop (residues 415-416 and 431-432)
and B3 sheet (residues 487-488). Flexible sites in CYP2D6 *7 were observed in K’-L loop
(residues 423-427) and in the B3 sheet (residues 483-485). For CYP2D6 *12 rigid sites were
observed in Bl sheet (residues 37-49), B’-C loop (residues 116-118), F-F’ loop (residues
218-219), F’-G loop (residues 233-239), K-K’ loop (residues 398-400), helix K’ (residues
401-407), K’-L loop (residues 414-415) and B3 sheet (residues 475-488). No notably rigid
sites were detected in CYP2D6 *12. For CYP2D6 *62 rigid sites were observed in 1 sheet
(residues 37-52), loop connecting B1-1 B1-2 (residues 53-76), F-F’ loop (residues 217-219),
helix F’ (residues 220-223), F’-G loop (residues 234-239), K’ helix (residues 400-407), K’-L
loop (residues 428-433) and in B3 sheet (residues 477-482). Flexible sites for this allelic form
were detected in B’-C loop (residues 120-126), helix C (residues 136-140) and in K’-L loop
(residues 436-442). Last but not least, for CYP2D6 *99 rigid sites were observed mainly in
B1 sheet (residues 37-52), loop connecting B1-1 B1-2 (residues 56-76), B’-C loop (residues
114-115), F-F’ loop (residues 218-219), helix F’ (residues 220-223), F’-G loop (residues
234-238), K-K’ loop (residues 398-400), helix K’ (residues 401-402), K’-L loop (residues
414-416), K’-L loop (residues 429-433) and in 3 sheet (residues 475-488). No notably rigid
sites were identified in CYP2D6 *99.

Overall, helices D and E and in particular residues 170-183 are more rigid in non-functional
variants than in the wild-type and the functional variants. Also, residues in the meander loop,
between helices K’ and L, are slightly more rigid in all non-functional variants than in
functional. The different combinations in flexibility and rigidity may influence the function
and metabolizer phenotype of the enzyme, as they can be directly associated with the
effective migration of the drug towards the active site.

We cannot draw a general conclusion about mobility of the different allelic forms relative to
CYP2D6 *1. For this reason, the previous diagrams were translated into B-factors and they
were mapped on the structure of CYP2D6 *1. This was done by populating the B-Factor
column on the pdb files for the eight different allelic forms in order to investigate the
structural fluctuations of each CYP2D6 variant, as shown in Figure 13. The color scheme
indicates the degree of fluctuation, going from blue/violet indicating little fluctuation to
yellow/green indicating intermediate fluctuation and red indicating large fluctuation.

Comparing the dynamics of CYP2D6 at different allelic forms, it can be observed that the
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CYP2D6 functional variants are more stable than CYP2D6 non-functional variants. We could
conclude that CYP2D6 variants with normal function and especially CYP2D6 *1 and *2
remain in a more stable configuration. More specifically, F’-G loop (around 230th residue)
along with H-I loop (around 280th residue) and B3-sheet (around 280th residue) seem to be
less stable in non-functional variants than in functional ones. This might be connected with

the easiness of the drug accessibility to the active sites.
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Figure 13 Structural fluctuations of the various CYP2D6 alleles (A) CYP2D6 *1, (B) CYP2D6 *2, (C) CYP2D6
*7, (D) CYP2D6 *12, (E) CYP2D6 *33, (F) CYP2D6 *48, (G) CYP2D6 *62, (H) CYP2D6 *99.

3.3 Dynamic cross correlation analysis

In order to understand the extent to which the atomic fluctuations of a system are correlated,
a dynamic cross correlation analysis was performed using the Bio3D package as shown in
Figure 14 and Figure 15 (Grant et al. 2006). Cross correlation between the i-th and j-th atoms
is represented by Cij, which ranges from —1 to +1. The Ca atoms for CYP2D6 *1, *2, *7,

*12, *33, *62, *99 were used to compute the cross correlation €7-matrix (see Figure 14). A
positive value represents the correlated motion, and a negative value represents the
anti-correlated motion. In general, functional variants present more strong correlations
between their residues compared to non-functional variants. The amount of correlated and
especially the amount of anti-correlated motions for non-functional variants decreased

significantly compared with that of the functional variants.
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CYP2D6 *12

Residue No.

Residue No.

Residue No.

CYP2D6 *99

Residue No.

Figure 14 Residue-residue cross-correlations of the various CYP2D6 alleles. Red and blue lines indicate

correlated and anti-correlated motions respectively.

In general, in functional variants and in particular in CYP2D6 *1 *2 and *33, correlated and

anti-correlated motions were observed throughout the protein. In case of CYP2D6 *48, which

also has normal function, these anticorrelated motions are more limited and are observed

mostly between helix I and B1-sheet, C-D loop, helix D, E-F loop, helix F and helix G and

between the beginning of helix F and B’-C loop, helix D, E-F loop, helix H and 3-sheet. In

the non-functional variants, anticorrelated motions are even more limited and are observed

mostly between F-F’ loop/helix F and 1-sheet, B-B’ loop, B’-C loop and K-K’ loop.
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Figure 15 Cross-correlation matrix of Ca atoms of the various CYP2D6 alleles (A) CYP2D6 *1, (B) CYP2D6
*2, (C) CYP2D6 *7, (D) CYP2D6 *12, (E) CYP2D6 *33, (F) CYP2D6 *48, (G) CYP2D6 *62, (H) CYP2D6

*99. Red and blue lines indicate correlated and anti-correlated motions respectively.

According to the above results, the loss of the anti-correlation relationships developed by
helix I in functional variants and their replacement by relationships developed by helix F’/F-F
loop, in combination with the loss of correlation relationships can influence the stability and
functionality of the enzyme. The crucial sites that participate in functional and non-functional
anti-correlated motions are shown in Figure 16. Probably, these changes result in the closure

of access and egress channels.

Figure 16 The sites that develop anti-correlation relationships and seem to play a key role in functional (orange)

and non-functional (green) variants.
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3.4 Molecular Docking

Molecular docking simulations have been used in order to probe the potential interactions
between CYP2D6 and drug molecules. BACE1 inhibitor was selected for molecular docking
as a representative drug. Docking was performed on key conformations (time-median
configuration of populous ensembles) out of the classical MD trajectories of each variant
produced by clustering.

This particular drug molecule, the BACEI inhibitor, was chosen for the docking analyses
because it has been co-crystalized in the CYP2D6 structure employed for the MD
simulations. In the crystal structure the molecule is placed in the active site as shown in
Figure 17, at a distance of 4.6 A from the iron atom of the heme group. The selection of this
molecule allows for a direct comparison of the docking results with that of the experimentally

determined orientation of the drug in the structure.

Figure 17 The heme-BACEI! inhibitor complex in crystal structure (PDB entry: 4XRY)

In CYP2D6 *1, six representative structures have been produced by clustering. In all
representative structures, the ligand approaches the active site and the distance between
ligand and the iron atom of the heme is similar to that of the crystal structure as shown in

Figure 18.
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Figure 18 Results of Molecular Docking in the first (A) and in the second (B) representative structure of

CYP2D6 *1

Similarly, in the case of CYP2D6 *2, the distance between the heme iron and the substrate is
even smaller than that of the crystal structure. In addition, the substrate appears to interact
with various residues within the active site. Two of the major representative structures along

with the ligand are shown in Figure 19.

i

N, e

Figure 19 Results of Molecular Docking in the first (A) and in the second (B) representative structure of

CYP2D6 *2
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To the contrary, a change in the ligand binding orientation was observed in the case of the
non-functional CYP2D6 * 7, compared to the functional variants. In this case, the heme and
the substrate are way apart making their interaction impossible. This is shown in Figure 20.

The catalytic site seems to be non-accessible by the ligand.

Figure 20 Results of Molecular Docking in the first (A) and in the second (B) representative structure of
CYP2D6 *7

Similarly, to CYP2D6 *7, in case of the non-functional CYP2D6 *12, the substrate does not
approach the catalytic site of the enzyme. Interestingly, the heme group interacts with helix I
forming a hydrogen bond with Ala305 as shown in Figure 21C. This probably impairs the

accessibility to the active site.
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Figure 21 Results of Molecular Docking in the first (A) and in the second (B) representative structure of
CYP2D6 *12 and (C) interaction between the heme group and the amino acid Ala305

For the functional variant CYP2D6 *33, seven representative structures have been produced
by clustering. Figure 22 shows the distance between substrate and iron atom of the first two

representative structures.
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Figure 22 Results of Molecular Docking in the first (A) and in the second (B) representative structure of
CYP2D6 *33

Although the results of CYP2D6 *48 for the first representative structure do not agree with
the results of the other functional variants, in the second structure the substrate is close to the
heme (Figure 23). We have to note that the different representative structures employed
herein refer to the median structures of populous ensembles of structures. This indicates that
in vivo we might have different configurations of the same CYP2D6 variant, that can
interchange between functional and non-functional states. The percentage of each
configuration present in vivo might relate to factors not probed herein that can shift the
equilibrium towards the functional, or non-functional forms. Thus, the identification of even
a single variant configuration that efficiently binds the reference drug could justify a
functional variant, as it is the case for the reverse trend (ineffective binding, non-functional
form). However, to draw solid conclusions, a more elaborate technique has to be employed
(e.g. binding free energy simulations) to weigh the population of the different configurations

of the variant and their importance in the vivo functionality.
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Figure 23 Results of Molecular Docking in the first (A) and in the second (B) representative structure of
CYP2D6 *48

As far as the non-functional variant CYP2D6 *62 is concerned, on the one hand, in the first
representative structure the ligand is very close to the heme which would favor the interaction
between them. On the other hand, in the second representative structure the ligand is located
at the plane of the heme group, which normally would not allow the drug molecule to interact

with the iron atom. These results are shown in Figure 24.

Figure 24 Results of Molecular Docking in the first (A) and in the second (B) representative structure of
CYP2D6 *62
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Last but not least, in the case of CYP2D6 *99, the distance between the ligand is large
enough not to allow the approach to the catalytic site in all of the representative structures

(Figure 25) The K K’ loop seems to obstruct the substrate from enterlng the actlve site.

Figure 25 Results of Molecular Docking in the first (A) and in the second (B) representative structure of
CYP2D6 *99

In general, in the majority of non-functional variants, the substrate appears to be unable to
approach the iron atom of the heme and the distance between substrate and the heme group is
greater than that observed in the crystal structure. This is not observed in the case of the
functional ones. In allele *7 and *12, the role of helix I and K-K’ loop respectively in the
accessibility of the enzyme was observed. The I helix was positioned directly above the
heme, not allowing its interaction with the ligand, while the K-K’ loop prevented the
substrate from entering the active site. The previous analyses have also highlighted the

importance of these sites.

3.5 Analysis of access and egress tunnels

The active site of the enzyme is located deep in the protein next to the heme. Polymorphisms
can affect the formation of access and egress channels between the surface and protein
surface. In order to study how the overall motion of the protein affects the opening and the
dimensions of these channels, we analysed the presence and the bottleneck radius of channels
in each of the selected allelic forms over the course of the produced simulations. For the eight

variants, six classes of tunnels were identified (2b, 2f, 2e, 2c, 2ac and s). The channel
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nomenclature we followed is based on a series of published papers (Liidemann, Lounnas, and
Wade 2000; Schleinkofer et al. 2005; Cojocaru, Winn, and Wade 2007). Tunnels 2b and 2e
were found near to the B-B’ loop, with 2b opening on the side close to B-sheet and 2¢ in the
middle of the B-C loop region. Tunnel 2¢ was found between the B-C loop and helix I.
Tunnel s (solvent tunnel) was found between helices F and I; tunnel 2ac was located between
the B’ helix and F'-G loop, and tunnel 2f was between F-F’ loop and A helix. The highest
ranked pathways in the allelic variants were subclasses of channel 2. All of the above tunnels
are present in all the models except for 2ac which is absent in CYP2D6 *7, *33 and *62, as
shown in Figure 26, and for this reason no comparison was made between the variants for

this tunnel.
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Figure 26 Major tunnels identified in the various CYP2D6 alleles (A) CYP2D6 *1, (B) CYP2D6 *2, (C)
CYP2D6 *7, (D) CYP2D6 *12, (E) CYP2D6 *33, (F) CYP2D6 *48, (G) CYP2D6 *62, (H) CYP2D6 *99. The
channels shown are 2b (green), 2f (blue), 2e (orange), 2¢ (magenta), 2ac (red) and s (yellow). Heme is shown in

red sticks
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Although each channel has different rates of occurrence in each variant, it was observed that
channels 2b and 2f are the major pathways for all allelic forms. The top ranked channels for
each variant were: 2b in *1 *7 *12 *48 *62 and *99, 2f in *2 and s in *33. Study of the time
evolution of the bottleneck radius of channels 2b, 2¢, 2e, 2f and solvent in each CYP2D6
allelic form during simulations was performed as shown in Figure 27. Channel 2b which is
the major channel for the majority of the variants, is more open and for longer time intervals
in case of CYP2D6 *1 than in CYP2D6 *7 and *12 where time intervals with low bottleneck
radius were observed. The 2¢ channel is the dominant tunnel of CYP2D6 *2 and seems to be
most open in CYP2D6 *2 as compared to the other variants. The solvent channel, which is
not one of the major channels in the majority of the variants, is almost absent in the
non-functional variant CYP2D6 *99. CYP2D6 *62 shows no major changes in relation to
functional variants. The loss of activity in this variant may be due to the fact that the mutation
occurs in an amino acid that interacts and forms a hydrogen bond with heme. With this
mutation the orientation of the heme may changes and although the active site is accessible,

the ligand may not be able to bind.
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Figure 27 Time evolution of the bottleneck radius of channels 2b, 2f, 2e, 2¢ and s in each CYP2D6 variant
during simulations. The color of each element expresses the bottleneck radius of a given tunnel cluster in X,
snapshot. The gray color indicates that no tunnel from a given cluster was identified in a given snapshot.The
color scheme indicates the bottleneck radius, going from red indicating narrow opening to green indicating wide
bottleneck
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4. A Prediction Model for the metabolizer phenotype of CYP2Dé

The classical MD runs on the CYP2D6 *1 were used for identifying the important residues
for the protein conformational space. Thus, retrieved protein trajectories of CYP2D6 *1 were
further analyzed by Markov State Modeling (MSM) (Prinz et al. 2011). Time-structure
independent components analysis (tICA) was used to reduce the dimensionality of our data,
in PYEMMA (Scherer et al. 2015). The tICA method identified the torsional angles of the
following CYP2D6 residues: 103, 352, 378, 406, 407, 409, 410, 411, 460, 462 and 464 as the
most important features, by setting a threshold equal to 0.19 for the coefficients in the tICA
vectors. For the selection of this threshold, we checked for different thresholds the
VAMP2-score and the states projected onto the first two independent components. Based on
the torsional angles of these residues and the coefficients of the tICA vectors, we were able to
induce a reduced space that represent each MD-based simulated protein trajectory in the form

shown in Figure 28 (columns Residue, IC1, IC2, IC3, Cosine/Sine and Phi/Psi).

tICA coefficients

Res IC1 Ic2 IC3 Cos/Sin Phi/Psi Inter_Distance Intra_Distance Class
$ Phel25 -0.101 -0.175 0.152 Cos Phi 0.151 0.327
3 .
= °
i S
o prary
w
= Phel25 0.023 -0.249 0.081 Sin Phi 0.266 0.268 =
2 2
[=] =
b o
o z
% Phel25 0.047 -0.432 0.234 Cos Psi 0.282 0.61 ::”
3 S
£ =]
o0 o
é‘q Phel25 -0.103 0477 -0.271 Sin Psi 0401 0.134

Figure 28 tICA-based reduced representation of a proteins’ trajectory (IC values), enhanced with engineered
features that capture the inter- and intra-distance of residues (see text)

Representativeness of residues. In the representation shown in Figure 28 there are two
specially engineered features, added to capture “hidden” relations that underlie and
putatively govern the functional status of the different allelic forms. For each residue entry
(row) belonging to a specific functional class (functional, non-functional), ‘Inter Distance’
is computed as the average over all distances between the tICA internal-components (IC1,
IC2, IC3) of this residue entry and the corresponding internal-components of residue entries

that belongs to the opposite class. In other words, Inter-Distance captures and contrasts the
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distance between corresponding entries (as defined by residue-position and cosine/sine
between phi/psi dihedral angles) that belong to different classes. It could be considered as a
measure of representativeness of the entry for the specific protein. On the other hand,
‘Intra_Distance’ is the distance of each entry to its corresponding ones for variants that
belong to the same class. In other words, Intra Distance seizes the representativeness of
each entry for the class it belongs, capturing the cohesion of the functional class itself. In the
conducted experiments the Euclidean distance was used. So, each reduced protein file (see
Figure 28) comprises eleven — (11) positions for the respective residues identified as most
influential. Each position refers to four — (4) different cosine/sine - phi/psi dihedral
combinations, resulting into a total of forty-four — (44) entries, with each of them
accompanied by the coefficients of the three tICA vectors and the corresponding
Inter Distance and Intra Distance figures.

Functional class-prediction models from MD simulated proteins. As already mentioned,
the work of this thesis comprises classical MD simulations of eight — (8) CYP2D6 variants
including functional and non-functional ones. The wild-type, CYP2D6 *1 form, as well as
three other variants, *2, *33 and *48 belong to the functional class, and forms *7, *12, *62
and *99 belong to the non-functional forms. For each variant we have at our disposal (after
the respective classical MD runs and MSM analysis are performed) the corresponding matrix

shown in Figure 28, and these files are our input.

° Learning approach. The induction and performance assessment of the devised
prediction models was done with the utilization of various Machine Learning methods. In
order to decide which of the learning approaches is the most promising for our task we
conducted cross-validation experiments (10-fold and leave-one-out/LOOCV) using as input
all eight proteins (functional and non-functional). After extensive experimentation, the
Multi-Layer Perceptron / MLP learning algorithm shown the best results. MLP is a
widely-utilized feed-forward artificial neural network (ANN) supervised learning approach
based on non-linear unit activation functions and backpropagation in its core process (Hastie,
Tibshirani, and Friedman 2001). The ‘vanilla’-like MLP architectures have just a single
hidden layer. Our experiments were conducted with a vanilla-like MLP form. The Weka MLP
implementation was used.

° Data setup. For each target protein the training input comprises the files of residue
entries (as described above) from all the proteins except the file of the target protein, with the
later used for festing. For example, the training input for the wt CYP2D6 form consists of

seven concatenated files (for functional protein forms *2, *33, *48 and non-functional protein
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forms *7, *12, *62 and *99). So, we train the MPL network on the wt-train input file and test
it on the ‘unseen’ wt-test file in order to assess the accuracy of the prediction model, i.e., how
well it differentiates between functional and non-functional protein classes.

° Strength of predictions. As with every learning algorithm, when an MLP trained
model is applied on an unseen test case it outputs its prediction with a prediction probability.
For example, if we assume that we have trained the model with wt-train and test it on wt-test,
the algorithm outputs its predictions in the form shown in Figure 29. Taking the average over
a specific range of these probabilities (here the 0.7 threshold is used, figures in bold) we
come up with a prediction for wt-test to be functional or non-functional with ‘strength’ of

0.94 and 0.90, respectively.

Correct Wrong
# Input Predicted Prob. # Input Predicted Prob.
1 functional functional 1.00 31 functional not_functional 1.00
2 functional functional 1.00 32 functional not_functional 1.00
3 functional functional 1.00 33 functional not_functional 1.00
4 functional functional 1.00 34 functional not_functional 0.98
5 functional functional 1.00 35 functional not_functional 0.95
6 functional functional 1.00 36 functional not_functional 0.81
7 functional functional 1.00 37 functional not_functional 0.72
8 functional functional 1.00 38 functional not_functional 0.72
9 functional functional 1.00 39 functional not_functional 0.58
10 functional functional 1.00 40 functional not_functional 0.54
11 functional functional 1.00 41 functional not_functional 0.53
12 functional functional 1.00 42 functional not_functional 0.52
13 functional functional 0.99 43 functional not_functional 0.52
14 functional functional 0.99 44 functional not_functional 0.51
15 functional functional 0.99
16 functional functional 0.98
17 functional functional 0.97
18 functional functional 0.96
19 functional functional 0.91
20 functional functional 0.89
21 functional functional 0.87 Final Protein-Class Prediction
22 functional functional 0.87 Funtional 0.94
23 functional functional 0.85 Not-Funtional 0.90
24 functional functional 0.84
25 functional functional 0.82
26 functional functional 0.78
27 functional functional 0.71
28 functional functional 0.58
29 functional functional 0.56
30 functional functional 0.56

Figure 29 Example of algorithm’s predictions

Following the aforementioned prediction modeling process (with a threshold of 0.7) we came
up with the prediction strengths for all CYP2D6 allelic forms shown in Table 30. The results
show that all variants are correctly predicted to belong to their correct functional
classes. We have performed experiments with higher prediction strength thresholds (e.g., 0.8)
and the results are the same. Of course, the whole prediction modelling process should be
tested and evaluated on other domains and with bigger populations of MD-simulated protein

data in order to confirm its efficacy, efficiency and reliability.
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Predicted Class

Actual Class F NF A
wt 0.941 0.899 0.042

var_2 0.945 0.920 0.025

F var_33 0.986 0.872 0.114
var_48 0.962 0.849 0.113
Average-F 0.958 0.885 0.073

var_7 0.966 0.992 0.026

var_12 0.938 0.949 0.010

NF var_62 0.918 0.956 0.038
var_99 0.932 0.942 0.010
Average-NF 0.938 0.960 0.021

Figure 30 Predicting the functional status of CYP2D6 protein forms (blue: functional, red: non-functional) —

Results
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5. Discussion

In the present study, long time-scale Molecular Dynamics simulations was performed for a
series of eight different CYP2D6 variants (1 microsecond per variant), including functional
and non-functional allelic forms.

Molecular Dynamics analyses on CYP2D6 variants allowed an atomic-level description of
the possible effects of specific mutations on their metabolizer phenotype. Based on the
residue b-factors, several sites of non-functional variants seem to be less stable in comparison
with the functional variants. More specifically, F’-G loop along with H-I loop K-K’ loop and
B3-sheet seem to be less stable in non-functional variants than in the functional ones. Also,
the loss of anti-correlation relationships in combination with the loss of correlation
relationships, in case of non-functional variants, can influence the functionality of CYP2D6.
In particular, the loss of the anti-correlation relationships developed by helix I in functional
variants and their replacement by relationships developed by helix F’/F-F loop, in
combination with the loss of correlation relationships can influence the stability and
functionality of the enzyme. Both changes could be used as markers in the discrimination of
the two classes of metabolizing activity.

Results from Molecular docking using BACEI inhibitor as a substrate, confirm the previous
analyses and highlight the role of helix I and of K-K’ loop and their relative movement in the
activity of the enzyme. BACE]1 inhibitor seems to be closer to the active site in functional
than in the non-functional variants. Analysis of substrate channels revealed that there are
several differences in the major pathways as well as in bottleneck radius and duration of
openings.

Furthermore, retrieved protein trajectories of the CYP2D6 *1 (wild-type) were used for
identifying the important residues for the protein conformational space using Markov State
Modeling. Based on these residues and using the data from the tICA/MSM analysis, a dataset
for each variant has been produced which was then used to build a prediction model for the
metabolizer phenotype.

Various Molecular Dynamics simulation studies have been performed in the past on other
CYP2D6 variants, however, to the best of our knowledge, this study is the first attempt in
which a wide range of both functional and non-functional allelic forms are co-examined
using Molecular dynamics and changes that are present in all non-functional enzymes and
absent in all functional ones are identified. Additionally, it is the first time that a prediction

model for the metabolizer phenotype has been developed.
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6. Material and Methods

Model setup

There are various three-dimensional structures available in the literature for the Cytochrome
P450 2D6 (CYP2D6). In the present study, the crystal structure of the Human Cytochrome
P450 2D6 BACEI Inhibitor 5 complex (PDB code 4XRY) was used for the initial
coordinates to build the models. Chain A, its corresponding heme cofactor and
crystallographic waters were retained whereas the inhibitor was removed. Our choice of
coordinates was based on the completeness of the resolved CYP2D6 sequence and the quality
of chain (at least 90%). The protonation states of titratable residues were simulated at neutral
pH, thus all Glu, and Asp residues were left deprotonated, except Glu-362 which was
protonated, in accordance with the PDB2PQR (propka 3.0 method, pH 7.3) predictions
(Dolinsky et al. 2004). His-48, His-94, His-324, His-376, His-416, His-426, His-463 and
His-477 were protonated only at the Ne site. The rest of His residues were protonated only at
the N sites, to maintain the hydrogen bonding network within the crystal structures. The
all-atom models, as defined previously, were embedded in orthorhombic boxes of around
10.2nm x 10.2nm x 10.2 nm in the X, y and z dimensions. Up to around 32500 TIP3P water
molecules (Mark and Nilsson 2001) were used to hydrate each protein. Ion (K', CI)
concentration was set at the value of 150 mM to mimic the physiological salt content. A
surplus of Cl” was also added to neutralize the protein charges in each sample, resulting in
simulation unit boxes of around 105000 atoms. The CHARMM?27 (MacKerell et al. 1998)

protein force field was used for the residues and ions.

Equilibration-Production Molecular Dynamics setup

The equilibration-relaxation for the all-atom systems is employed based on a published
protocol for water-soluble proteins (Petratos et al. 2020). This contains a steepest descend
energy minimization with a tolerance of 0.5 kJ mol' for 1000 steps, and a sequence of
isothermal (nVT), isothermal-isobaric (nPT) runs with the gradual relaxation of the
constraints on protein heavy atoms (from 10* in steps 1-2 to 10° kJ mol" nm? in step-4) and
Co atoms (from 10° in step-5, to 10* in step-6, 10 in step-7, 1 in step-8 and 0 kJ mol”' nm? in
step-9) for around 30 ns, with a time step of 1.0 fs (steps 1-4) and 2.0 fs (steps 5-9). In detail:
(step-1) Constant density and temperature (nVT) Brownian dynamics (BD) at 100 K for 50 ps

that employs the Berendsen thermostat (Berendsen et al. 1984), with a temperature coupling
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constant at 1.0 fs. (steps 2-3) Two short constant density (nVT) and constant pressure (nPT)
runs for 100 ps each, with a weak coupling Berendsen thermostat and barostat (Berendsen et
al. 1984) at 100 K employing time coupling constants of 0.1 ps for the temperature and
isotropic 50.0 ps coupling for the pressure with a compressibility of 4.6x107. (step-4) Heating
from 100 to 250 K in a constant density ensemble (nVT) for 3 ns employing the v-rescale
thermostat (Bussi, Donadio, and Parrinello 2007), with a time coupling constant of 0.1 ps.
(step-5) Heating from 250 to 310K in a constant pressure ensemble (nPT) for 2 ns, employing
the v-rescale thermostat (Bussi, Donadio, and Parrinello 2007) and Berendsen barostat
(Berendsen et al. 1984), with time coupling constants of 0.1 ps for the temperature and 2.0 ps
for the pressure, removing also all but the Ca-atom protein position restraints. (step-6)
Equilibration at 310K (0.1 ps temperature coupling constant) for 5 ns (nPT, 1 atm, 2.0 ps
coupling constant for pressure. (steps 7-8) Equilibration at 310K (0.5 ps temperature coupling
constant) for 5 ns (nPT, 1 atm, 2.0 ps coupling constant for pressure). (step-9) Equilibration at
310K (0.5 ps temperature coupling constant) for 10 ns (nPT, 1 atm, 2.0 ps coupling constant
for pressure). The barostats-thermostats employed for steps 6-9 were the same as in the
production trajectories that follow.

For the production trajectories within the all-atom MD methodology, the Newton’s equations
of motion are integrated with a time step of 2.0 fs at 310K. All production simulations are run
with the leap-frog integrator in GROMACS 2020 (Berendsen, van der Spoel, and van Drunen
1995) for 1.0 ps each. They were performed at the constant pressure nPT ensemble, with
isotropic coupling (compressibility at 4.5x10”°) employing the v-rescale thermostat (Bussi,
Donadio, and Parrinello 2007) (310K, temperature coupling constant 0.5) and the
Parrinello-Rahman barostat (Parrinello and Rahman 1981) (1 atm, pressure coupling
constant 2.0). Details for parameters can be found in an earlier work (Petratos et al. 2020).
The first 150 ns were considered further equilibration from each independent trajectory per
sample, and were disregarded in the analysis, based also on the RMSD fluctuations (a plateau
is reached roughly beyond 100ns depending on the trajectory). Van der Waals interactions
were smoothly switched to zero between 1.0-1.2 nm with the VERLET cut-off scheme.
Electrostatic interactions were truncated at 1.2 nm (short-range) and long-range contributions
were computed within the PME approximation (Darden, York, and Pedersen 1993; Yeh and
Berkowitz 1999). Hydrogen bond lengths were constrained employing the LINCS algorithm
(Hess et al. 1997).
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RMSD and RMSF

RMSD and RMSF were calculated over the 850 ns production simulation for all backbone
atoms (Ca, C, N) using GROMACS 2020. Corresponding structures were prepared by
populating the B-Factor column in the pdb of the corresponding genetic variant and were then
visualized using PyMOL.

Root Mean Square Deviation (RMSD) and the Root Mean Square Fluctuations (RMSF) are
two of the most common measures of structural fluctuations. RMSD, a useful measure for the
analysis of time-independent motions of the structure, represents the average displacement of
the atoms at an instant of the simulation relative to a reference structure. RMSF is the
displacement of a particular atom relative to the reference structure averaged over the number

of atoms and is a measure of individual residue flexibility

Dynamic cross correlation analysis
For each protein, we perform calculations for residue-level dynamic cross-correlations on the
respective Ca trajectory using the dcem function in the Bio3D package with the following

equation.

_ < Ar; (t) A?"j (t) >t
VAR @ >ey/< [|Ar; @) >

DCCup | %, ]

with r(t) and rj(t) refer to the coordinates of the ith and jth atoms as a function of time t, <>

indicates the time ensemble average and Ary(t) = ry(t) — (< r(t) >)t and Ari(t) = 1;(t) — (<r;(H)>)t.

Molecular Docking
AutoDock Vina was the docking program used in this study (Trott and Olson 2010). PDBQT file

format was prepared, and the grid box size was determined using AutoDock Tools version 1.5.4
(Morris et al. 2009). Ligand was docked individually to the receptors with grid coordinates (grid

center) and grid boxes of certain sizes for each receptor.
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Figure 32 Screenshot from AutoDock Tools. Representative protein structure of CYP2D6 *1 along with the grid
box.

Tunnel Analysis

Snapshots of each variant were taken over the 850 ns simulation run time generating a total of
1000 snapshots used in tunnel analysis for each allelic form. CAVER 3.0 software was used
for the analysis of substrate accessibility and egress channels (Chovancova et al. 2012). The
starting point for CAVER analysis was set at 4 A above the iron atom of the heme group. The
probe radius was set to 0.9 A and clustering threshold was initially set at the default value of
4.0. The bottleneck heat map range was set at 0.9-2.5 A and the profile heat map range was
set at 0.9-2.0 A. Seed was set to 1 to ensure consistent results. All other parameters were set
to the default values as listed in the CAVER user guide version 3.0 and included: shell radius
(3), weighting coefficient (1) for tunnel clustering, bottleneck contact distance (3), the
number of approximating balls (12), max distance for the calculation starting point from the
initial starting point (3), and desired radius (5) for the closest Voronoi vertex to the initial

starting point. Resulting tunnels were identified and visualized in PyMOL.

Markov State Modeling of CYP2Dé6 *1 (wild-type)

We obtained a series of MD equilibrium trajectories of CYP2D6 *1 (3 x 1.0us = 3us). We
combined the all-atom MD simulations with Markov state model (MSM) theory (Pande,
Beauchamp, and Bowman 2010; Chodera and Noé¢ 2014; Prinz et al. 2011) in order to enable
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the extraction of long-time-scale dynamics from rather short-time-scale MD trajectories of
different states. The application and accuracy of the powerful MSM theory has been
presented in many cases also by experiments that include protein—protein, or protein-drug
binding kinetics, as well as protein folding rates and protein dynamics (Plattner and Noé
2015; Plattner et al. 2017; Voelz et al. 2010; Durrant et al. 2020). Our objective was to
approximate the slow dynamics in a statistically efficient manner. Thus, a lower dimensional
representation of our simulation data was necessary. In order to reduce the dimensionality of
our feature space, we employed the time-structure independent components analysis (tICA)
which yields a representation of our molecular simulation data with a reduced dimensionality
and can greatly facilitate the decomposition of our system into the discrete Markovian states
necessary for MSM estimation. The conformations of the system were projected on these
slowest modes as defined by the tICA method, then the trajectory frames were clustered into
30 cluster-centers (microstates) by k-means clustering, as implemented in PYEMMA (Scherer
et al. 2015). Conformational changes of a system can be simulated as a Markov chain, if the
transitions between the different conformations are sampled at long enough time intervals so
that each transition is Markovian. This means that a transition from one conformation to
another is independent of the previous transitions. Therefore, an MSM is a memoryless
model. The uncertainty bounds were computed using a Bayesian scheme (Noé 2008;
Trendelkamp-Schroer et al. 2015). We found that the slowest implied timescales converge
quickly and are constant within a 95% confidence interval for lag times above 50ns. The
validation procedure is a standard approach in the MSM field. A lag time of 50 ns was
selected for Bayesian model construction, and the resulting models were validated by the
Chapman-Kolmogorov (CK) test. Subsequently, the resulting MSMs were further coarse
grained into a smaller number of three metastable states or microstates, using PCCA++ as
implemented in PYEMMA. The optimum number of microstates (three) was proposed based
on the VAMP2-score (H. Wu and Noé¢ 2020). Both the convergence of the implied timescales,
as well as the CK test confirm the validity and convergence of the MSM. The CK test
indicates that predictions from the built MSM agree well with MSMs estimated with longer
lag times. Thus, the model can describe well the long-time-scale behavior of our system
within error. The tICA method identified the torsional angles of the following CYP2D6
residues: 125, 274, 400, 428, 429, 431, 432, 433, 482, 484 and 486 as the most important
features, by setting a threshold equal to 0.19 for the coefficients in the tICA vectors. For the
selection of this threshold, we checked for different thresholds the VAMP2-score and the

states projected onto the first two independent components. In MD approaches it is common
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to capture protein conformations via its internal atomic coordinates, with dihedral angles
between specific atoms to represent one of the most utilized and successful representations
(Sittel, Jain, and Stock 2014). Namely, two such angles are used, after their introduction by
Ramachandran (Ramachandran, Ramakrishnan, and Sasisekharan 1963): ¢ (phi) - the angle
in the atoms’ backbone chain C' = N — Ca — C', and y (psi) — the angle in the atom’s
backbone chain N — Ca — C' — N. In particular the relation between the cosine (cos) and sine
(sin) of these angles is utilized in order to capture the motion of the internal atomic
coordinates during simulated conformations. Data from the tICA/MSM analysis of the
different variants for these specific residues were used in order to build the prediction model

for the metabolizer phenotype using WEKA software (Hall et al. 2009)

Computational resources

This work was supported by computational time granted from the National Infrastructures for
Research and Technology S.A. (GRNET S.A.) in the National HPC facility - ARIS - under
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