Incremental Evaluation of Continuous
Analytic Queries in a High-Level Query
Language

Petros Zervoudakis

Thesis submitted in partial fulfillment of the requirements for the
Masters’ of Science degree in Computer Science and Engineering

University of Crete
School of Sciences and Engineering
Computer Science Department
Voutes University Campus, 700 13 Heraklion, Crete, Greece

Thesis Advisor: Prof. Dimitris Plexousakis

This work has been performed at the University of Crete, School of Sciences and Engineering,
Computer Science Department.

The work has been supported by the Foundation for Research and Technology - Hellas
(FORTH), Institute of Computer Science (ICS).

UNIVERSITY OF CRETE
COMPUTER SCIENCE DEPARTMENT

Incremental Evaluation of Continuous Analytic Queries in a
High-Level Query Language

Thesis submitted by

Petros Zervoudakis
in partial fulfillment of the requirements for the
Masters’ of Science degree in Computer Science

THESIS APPROVAL

Author:

Petros Zervoudakis

Committee approvals:
Dimitris Plexousakis
Professor, Thesis Supervisor

Nicolas Spyratos
Professor Emeritus, Thesis Co-Supervisor

Yannis Tzitzikas
Associate Professor, Committee Member

Departmental approval:

Antonis Argyros
Professor, Director of Graduate Studies

Heraklion, February 2020

Abstract

Data analytics have received a significant attention in recent years, as huge amounts
of data is generated each day from various sources. Analysis of these massive data
poses an interesting but challenging task and requires new forms of processing to
enable enhanced decision making, insight discovery and process optimization. In
addition, besides their ever increasing volume, data sets change frequently, and
as such, results to continuous queries have to be updated at short intervals. In
this thesis, we address the problem of evaluating continuous queries over big data
streams that are frequently updated. To this end, we adopt HIFUN, a high-level
query language, proposed for expressing analytic queries over big data sets. HI-
FUN offers a clear separation between the conceptual layer, where analytic queries
are defined independently of the nature and location of data, and the physical
layer where queries are evaluated, by encoding them as map-reduce jobs or as
SQL group-by queries, thus supporting different types of data set formats. Using
HIFUN, we design an algorithm for incremental evaluation of continuous queries,
processing only the most recent data batch, and exploiting already computed in-
formation, without requiring the evaluation of the query over the complete data
set. Subsequently, we translate the generic algorithm to both SQL and MapRe-
duce using SPARK, exploiting the query rewriting methods provided by HIFUN.
Using a synthetic data set, we demonstrate the effectiveness of our approach in
achieving query answering efficiency. Finally, we show that by exploiting the for-
mal query rewriting methods of HIFUN, we can further reduce the computational
cost, adding another layer of query optimization in our implementation.

ITegirndn

H Saduacta avdiuong dedouévemy €yel ABeL onuavTin Teocoy) Ta TEAsUTHLA YEOVIAL
%xdW¢ TERAC TIEC TOCOTNTES BEBOUEVLY TopdryovTon xadnueptvd and didgpopeg tnyég. H
AVAAUGCT] AUTOY TOV TERAC TIWY DEBOUEVKY AmOTEAEL Evar EVOLAPEPOY AAAd X BUGXONO
€pyo xou anoutel véeg poppéc enclepyaciog MoTe va elvon e@uxth 1 A anopdoewy,
1N avoxdhudn yvooewy xa 1 Behtiwon twv ddwooiky. Emmiéov, extog and tov
CUVEY WS ALEAVOUEVO OYXO TOUC, TA GUVOAX OEGOUEVWY AAALOUY GUVEYMS, Xl WC
€ TOUTOU, TO UMOTEAEGUATA OE GUVEYOUEV EQWTAUNTO TEETEL VO EVIUEQWVOVTOL OF
GUVTOUO YEOVIXA DLo THUTA. € auTh TNV epyaocia, avietonilovue To TpOBAnua
NG AMOTIUNONG CLVEY WV EQOTNUATWY OE UEYSAES POEC BEBOUEVLDY Tou ahhdlouy Gu-
yva. Ilpog auty) tnv xatebduvor, viodetotue tnv HIFUN, uio yAOGoo epmTnudte:y
uPnhol emnédou, TOU TEOTEIVETOL YLt TNV EXPEOCT| AVOAUTIXWOY EQOTNUATWY OF UE-
ydha cOvolo 6edouévev. H HIFUN mpoogépel éva copr| Soywetopd petadd tou
EVVOLOAOYIXOU ETUTEGOL, OTOL Tal AVUALTIXG EpwTHUTA opilovTon aveddptnta and TN
QLo %o TN VECT TV BEBOUEVWY, XL TO PUOIXO ETUTEDO OTOL TA EPWTHUNTA AUTH O-
ToTOvTaL, exppdlovtac to eite we MapReduce duadixaoieg eite we SQL epwthuota
urootnellovtag €Tol BlapopeTixolg TUToug dedouévmy. Xenowomownvtag T HIFUN,
oedLdlouYe Evay ahyoeLiuo yia TNV aLENTIXY ATOTIUNCT CUVEY MDY EQOTNUATWY, ENE-
EepydlovTde WéVo To o TEOCPATO BLUUEPLOUA OEGOUEVMV Xl EXUETOAAEVOUEVOL TIG
101 UTOAOYLIOPEVES TANPOGORIES, Ywpelc Vo amanTeltar 1 amoTUNoT ToU EPWTAUATOS
Tave omd To TANEES GUVORO BEBOUEVMV. LT GUVEYELY, UETUPEALOUME TOV YEVIXO OA-
yopwuo oe SQL xou MapReduce yenowonowdvtog to SPARK, exyetalhebovtog Tig
pedddoug enaveyypaprc cpwtnudtwy tou mopéyovtar and tn HIFUN. Xenowomnol-
OVToG Eva GLUVIETIXG GUVONO BEBOUEVKV, ETUOEXVUOUUE TNV ATOTEAECUATIXOTNTO TNG
TEOGEYYIONG oG oTny eniteuln Tne anddoong anotiunone tng encpmtnong. Télog,
amodEVUOLUE OTL LVETWVTAS TIC ETloNUeS HEVOOOUC EMAVEYYRAUPNS EMEPWTHOEWY
¢ HIFUN, emtuyydvouue tnv mepoutépw UEldOT TOU UTOAOYLOTIXOU XOGTOUC, TEO-
cvéTovtog dANO €va eTtitedo PeATioTOTONONE TWV EPWTNUATWY GTNV LAOTOINGCT] UAC.

Euvyapioticeg

H ohoxAfipwon autig tng epyaoiog emogpayilel TNV emtuyy| dpien oTo TEAOG WS
enimovng, aAAd xou cuVAUA ThoVGLIS SLBPOUNC OE YVAOOELS, EUTELpleg ot Be&LoTNTES.
Apywd, Yo fieha vo euyapiothon tov Kodnyntd x. Anurten IIheCovadun, yio tny
EUTIOTOOUVY] GAAG X0 TIC EUXAPIEC TOU oL €BWOE amd TN TMEPlOd0 TWV TEOTTUYLO-
AWV JOU OTIOUBMY €mC XL CHUERX, UE TNV OhoXAApwor auThc Tng epyaotac. Enlong,
Tov Enltiwo Kadnynt x. Nixdhao Emupdto yio tnv xadodrynon xow tnv umoc ol
&n xod’ OAN TN Budipxelar diexmepaiwone Tne Tapoloac epyaciag. Idwitepa, Yo Rieha
VoL EUYOEIO THOW ToV gpeuvnTY| %x. Xapldonuo Kovouldxm yia Ty moAdTiun xan Wwite-
enc onuactac xadodNynon mou Erafa xaTd TNV YAcT) AVATTUENS QUTAS TNS EpYACiag.
Xoplc autdv, auth 1 epyacia dev Ya elye ohoxinpwiel. Enilong, Yo Adeha va euyapl-
othow 1o Ivetitovto Iinpogopific (ICS) tou Idpluatoc Teyvohoyiog xou Epeuvog
(FORTH) xa ouyxexpipéva 1o Epyaothplo IIinpogopioxdv Luotnudtoy (ISL) yuo
TNV UTOGTHRLEYN XATE TNV BLEOXEL TOV TROTTUYLOXMY X0 HETOTTUYLAXWDY OV GTOU-
0cv. ‘Eva televtalo, ahhd €€{00U GNUAVTIXNG EUYOQIGTG GTNY OLXOYEVELXL OV, TOU
Aty BlmAal Hou OhaL aUTA TAL YEOVLAL.

Contents

Table of Contents i
List of Figures v
1 Introduction 1
1.1 Motivation and Contribution 2
1.2 Thesis Outline 3

2 Related Work 5
2.1 Continuous Queries Based Approaches 5
2.1.1 Tapestry. o e 5

2.1.2 NiagaraCQ & OpenCQ 6

2.1.3 Event-condition and publish-subscribe systems 6

214 COUGAR & TinyDB 6

2.1.5 AURORA & STREAM 7

2.2 Functional Query Language Models 7
2.3 Conclusion e 7

3 The Query Language 9
3.1 The Formal Model 9
3.1.1 Analysis Context 9

3.1.2 Query Definition oo 10

3.1.3 Query Rewriting L. 13

3.1.3.1 Common Grouping and Measuring Rewriting Rule 13

3.1.3.2 Common Grouping Rewriting Rule 13

3.1.3.3 Common Measuring and Operation Rewriting Rule 14

3.1.3.4 Basic Rewriting Rule 14

3.1.4 Conceptual Query Evaluation Scheme 15

3.2 Incremental Computation in HIFUN 16

4 Implementation 21
4.1 Micro-batch stream processing 21
4.2 Continuous HIFUN Queries to MapReduce 22

4.2.1 Conceptual Evaluation Schema to MapReduce 22

4.2.2 Rewritten Set Evaluation
4.2.3 Incremental Evaluation
4.3 Translating Continuous HIFUN Queries to SQL
4.3.1 Conceptual Evaluation Schema to SQL
4.3.2 Evaluation of the rewrittenset

5 Evaluation

5.1 Data preparation o
5.2 Continuous HIFUN Query Evaluation
5.3 Common Grouping and Measuring Rewriting Rule Evaluation . . .
5.4 Common Grouping Rewriting Rule Evaluation

5.5 Common Measuring and Operation Rewriting Rule Evaluation

5.6 Basic Rewriting Rule Evaluation

6 Conclusion and Future Work

Bibliography

ii

33
33
34
36
39
42
44

47

49

List of Figures

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
4.2

4.3

4.4

5.1
5.2
9.3
5.4

9.5

5.6

5.7

5.8

5.9

Analysis Context Example 10
A query @ and its answer ansg 11
An analytic query and its answer 12
The conceptual scheme steps 16
Incremental computing over append-only data set. 17
Incremental evaluation on our running example. 19
Example of basic rewriting rule. 19
State maintenance.o 22
A context and its underlying data stored in the form of a relation

schema. L L e 29
The Common Grouping and Measuring Rewriting Rule to SQL

group-by query. e 31
The Common Grouping Rewriting Rule to SQL group-by query. . 31
Analysis context of the unstructured data set. 34
Analysis Context of the structured dataset. 34
Evaluation of continuous HIFUN query 35

Incremental evaluation of Q1 = (g1, m1, sum) and Q2 = (g1, m1, avyg)
using the MapReduce and SQL Execution model. 36
Evaluation of Common Grouping and Measuring Rewriting Rule
when the MapReduce Execution model is used over an unstructured

dataset. 37
Evaluation of Common Grouping and Measuring Rewriting Rule
when a SQL execution model is used over a structured dataset. . . 38

Evaluation of Common Grouping and Measuring Rewriting Rule for
both, structured and unstructured datasets, while the cardinality of
rewriting and non-rewriting set () increases. 39
Evaluation of Common Grouping Rewriting Rule when a MapRe-
duce Execution model is used over an unstructured data set. . .. 40
Evaluation of Common Grouping Rewriting Rule when a SQL exe-
cution model is used over a structured dataset. 41

iii

5.10

5.11

5.12

5.14

Evaluation of Common Grouping Rewriting Rule for both, struc-
tured and unstructured datasets, while the cardinality of rewriting
and non-rewriting set Q increases.
Evaluation of Common Measuring and Operation Rule when the

MapReduce Execution Model is used over an unstructured data set.

Evaluation of Common Measuring and Operation Rule for unstruc-
tured data set, while the cardinality of rewriting and non-rewriting
query set (Q INCTeases. v v v it e
Evaluation of Basic Rewriting Rule when the MapReduce Execution
Model is used over an unstructured dataset.
Evaluation of Basic Rewriting Rule while the cardinality of rewriting
and non-rewriting set QQ increases.

iv

42

43

44

45

46

Chapter 1

Introduction

Data emanating from high-speed streams is prevalent everywhere, in today’s data
eco-system. Example data streams that are rapidly updated, include IoT data
[60, 14], network traffic data [58], financial tickers [66], health care transactions
[50, 45, 34], the Linked Open Cloud [2, 3] and so on. In order to extract knowledge,
find useful patterns, and act on information present in these streams, these data
need to be rapidly analyzed and processed. However, this is a challenge, as new
data arrive continuously at high speed, and efficient data processing algorithms
are needed.

The research community has already provided open-source distributed batch
processing systems like Hadoop [13] and MapReduce [21], that allow query pro-
cessing over static and historical data sets, enabling scalable parallel analytics.
Detailed surveys on MapReduce and Hadoop is available in [37, 40, 48, 51]. Ac-
tually, MapReduce has already been established as a framework for performing
scalable parallel analytics and data mining on vast amount of data; and there is
already a remarkable body of literature on MapReduce, but also some controversy
mainly from the database community [24, 57]. MapReduce follows the functional
programming model [52] and performs explicit synchronization across computa-
tion stages. The wide use of MapReduce is due to several reasons: it is offered
as a free and open source implementation; it is easy to use [22, 47]; it is widely
used by companies like a Google, Yahoo! And Facebook; and has been delivering
excellent performance on extreme scale benchmarking [29, 33]. All these factors
have fueled a rapid adoption of MapReduce for various types of data analysis and
processing [26, 67, 46, 44, 19, 20].

In MapReduce, every job has the following cycle: first the input data are
read, the processed, and finally written back to the Hadoop filesystem. Following
jobs can consume the output produced, however is should be reread from the file
system. As such, for iterative algorithms, that want to read once, and iterate
the data many times, the MapReduce model introduces a significant overhead.
To tackle this limitation, Spark [64] emerged on top of Hadoop, using the Re-
silient Distributed Datasets (RDDs) which implement in-memory data structures

1

2 CHAPTER 1. INTRODUCTION

for caching intermediate data across a set of nodes. Since RDDs can be kept in
main memory, the various algorithms can iterate over the RDD data efficiently. In
nowadays, SPARK has gained impressive traction, with many additional advan-
tages such as fault tolerance and efficient data processing exploiting main memory
storage.

However, even with those technologies, processing and analyzing large volumes
of data, in batch, is not efficient enough. This is true especially in scenarios
that need rapid response to change over continuous (big) data streams [32]. Con-
sequently, stream processing has gained significant attention. Several streaming
engines including Spark Streaming [65], Spark Structured Streaming [7], Storm
[30], Flink [17], and Google Data Flow [5], have been developed to that purpose.
Continuous query processing, is a major challenge in a streaming content. A con-
tinuous query is a query which is evaluated automatically and periodically over a
data set that changes over time [10, 59, 42, 41] and allows the user to retrieve new
result from a data set without the need to issue the same query repeatedly. The
results of continuous queries are usually fed to dashboards, in large enterprises, to
provide support in the decision-making process [11, 27] etc.

1.1 Motivation and Contribution

As new data are constantly arriving at a high rate, the data sets grow rapidly and
re-evaluation of the query incurs delays. Therefore the problem we focus in this
thesis is incremental query evaluation, that is, given the answer of the query at
time ¢, on data set D, how to find the answer of the query at time ¢’ on data set
D', assuming that the answer at time ¢ has been saved and results become stale
and stagnant over a time. Incremental processing is an auspicious approach for
refreshing mining results as it uses previously saved results, to avoid the cost of
re-computation from scratch. There is an obvious relationship between continuous
queries and materialized views [28, 12, 35, 49, 68, 36], since a materialized view
is a derived database relation whose contents are periodically updated by either a
compete or incremental refresh based on a query. Incremental view maintenance
methods [4] exploit differential algorithms to re-evaluate the view expression in
order to enable the incremental update of materialized views. However, in our
case, both the methods and the target are different.

In this thesis, we study this problem in the context of HIFUN, a recently
proposed high level functional language of analytic queries [56, 55]. Two distinctive
features of HIFUN are that (a) analytic queries and their answers are defined and
studied in the abstract, independently of the structure and location of the data
and (b) each HIFUN query can be mapped either as a SQL group-by query or as
a Map-Reduce job. To summarize, at a high level, the main contributions of this
master thesis are the following;:

e We present a framework able to offer analytic information over a highly
heterogeneous dataset, including both structured and unstructured data.

1.2. THESIS OUTLINE 3

e We use the HIFUN language to define the continuous query problem in the
abstract and give a high-level algorithm for its solution.

e We map this generic algorithm to the physical level, implementing the eval-
uation mechanism both as SQL queries and Map-Reduce tasks.

e We map the HIFUN query rewriting methods to the physical layer and we
experimentally show that out implementation provides considerable benefits
in terms of efficiency.

The experimental results indicate that, in terms of performance, our implemen-
tation is at least as good as the conventional ones, in most of the cases however,
offering a significant advantage in query answering in terms of efficiency. To the
best of our knowledge, our approach is unique in presenting incremental algorithms
for both the high-level HIFUN language and the corresponding low-level mapping
of those algorithms to the map-reduce and the group-by SQL models.

1.2 Thesis Outline

The remaining of the thesis is organized as follows. Related work is presented in
Section 2. Then, the theoretical framework and the query language model used
are presented in Section 3. More specifically, in Section 3.1 we present the seman-
tics and internals of the HIFUN language, namely the notion of Analysis Context
(subsection 3.1.1); the abstract definition of a query and its answer (subsection
3.1.2); the formal approach to rewriting HIFUN queries (subsection 3.1.3); and
the adopted conceptual schema for query evaluation (subsection 3.1.4). In Section
3.2 we present a detailed description of how this conceptual schema can be applied
over an evolving dataset using an incremental approach. In Section 4, we present
a detailed description of the implemented system, we describe how an evolving
dataset relates to micro-batching (subsection 4.1); and how the HIFUN concep-
tual evaluation scheme for continuous queries can be mapped to physical level
mechanisms depending on the nature of data (subsections 4.2 and 4.3). In Sec-
tion 5, we evaluate query evaluation, using the incremental computation instead
of the baseline approach of batch computation. We also show the improvements
exploiting the rewriting rules for reducing the evaluation cost. Finally, Section 6
concludes this thesis and present directions for future investigation.

CHAPTER 1. INTRODUCTION

Chapter 2

Related Work

In the literature, there are many studies already on collecting, storing and querying
huge amounts of data both for static and dynamic datasets. In this thesis, we
focus primarily on the problem of processing multiple continuous queries over
evolving datasets. Many systems have been developed around this topic either in
a centralized or in a distributed one.

As in this work we are focusing on continuous queries model and how these
queries can be evaluated incrementally, in this chapter, we will initially present an
overview of recent state of the art on continuous query processing. Then, we also
present an overview of the functional models that exist in the literature, for the
analysis of large volumes of transactional data sets.

2.1 Continuous Queries Based Approaches

The data stream and continuous queries problem has been extensively researched
in both in the past and in recent years. For example in [9] the authors present
models and issues in data stream issues. In this thesis, we focus on semantics for
continuous queries and how those semantics mapped to an existing physical level
mechanism.

2.1.1 Tapestry

Continuous queries were introduced as SQL- based language in Tapestry [59],
named TQL, for content-based filtering over an append-only of email and post-
ing massages database. Conceptually, a restricted subset of the SQL was used
and it was converted into an incremental query that was defined to retrieve all
answers obtained in an interval of ¢ seconds. The incremental query was issued
continuously, every ¢ seconds, and the union of answers returned constituted the
answer to the continuous query. An incremental evaluation approach was used,
to avoid the repetitive computations and to return only the new results to the
users. However, this approach was envisioned to append-only systems, as in our

6 CHAPTER 2. RELATED WORK

case, in which we suppose that the data set to be analyzed can only increase in
size between successive time moments, an assumption common in data warehouses
environments.

2.1.2 NiagaraCQ & OpenCQ

NiagaraCQ [18] and OpenCQ [42] use continuous queries over changing data, as a
periodic execution of one-time queries as in Tapestry. NiagaraCQ is a distributed
continuous query system that allows continuous XML-QL queries to be posed over
dynamic Web content. The issue of scalability is addressed by grouping continuous
queries for efficient evaluation. OpenCQ is another system focusing on continuous
queries, for monitoring streaming web content. It focuses on scalable event-driven
query processing and uses a query processing algorithm based on incremental view
maintenance. In [63] the authors further discuss rate-based query optimization for
streaming data in the context of NiagaraCQ. The similarity with our approach,
is that NiagaraCQ and OpenCQ support incremental evaluation of continuous
queries by considering only the changed portion of each updated source file and not
the entire file. However, both systems focus on continuous queries over relational
database sources, and thus do cannot handle unstructured streaming data.

2.1.3 Event-condition and publish-subscribe systems

Event-condition and publish-subscribe systems are also related. Event condition
action methods [58] provide a mechanism to implementing event-driven querying
in a conventional SQL database, by using continuous queries defined over special
append-only active tables. Content-based filtering engines XFilter [6] and YFilter
[25] perform efficient filtering of XML documents, based on user profiles, expressed
as continuous queries using XPath [23] language. Their solutions, however, focused
only on specific nature of data sets and designed as centralized systems.

2.1.4 COUGAR & TinyDB

Two other systems, COUGAR [14] and TinyDB [43] deal with query processing
in sensor networks. In COUGAR, the authors define a data model and long-
running queries semantics for sensor databases. A sensor database combines stored
and sensor data. Stored data are represented as relations, while sensor data are
represented as time series. Long-running queries are formulated using SQL with
extensions and define a persistent view, which is updated at given time intervals.
TinyDB is also a distributed query engine that runs on each of the nodes in a sensor
network. Both systems, COUGAR and TinyDB are distributed query processors
that run on sensor nodes with the TinyOS [38] operating system. Consequently,
they are platform dependent.

2.2. FUNCTIONAL QUERY LANGUAGE MODELS 7

2.1.5 AURORA & STREAM

AURORA [1], is a workflow-oriented system that allows users to build query plans
by arranging operators, and the data flow among the operators, and then uses
those specifications to determine how and when to shed load.

STREAM [10] is a framework that focuses on addressing the demands imposed
by data streams on data management. The authors pay attention on memory
management to enable approximates query answering. In particular, one of the
project’s goals is to understand how to efficiently run queries in a bounded amount
of memory.

Both of these systems can process streaming data but they are designed as
centralized systems. In this thesis, we propose a continuous query framework
which utilizes state-of-the-art big data technologies.

2.2 Functional Query Language Models

In this subsection, we focus also on works related to functional models which
can be used for the analysis of large volumes of detailed transaction data. A
functional model was presented in [53] for data analysis in data warehouses over
star schemas, using a definition of query similar to the one used in HIFUN. In
[54], a language for data analysis was presented based entirely on partitions of
the data set. Moreover, a notion of query rewriting was proposed based on the
concept of quotient partition. However, no algorithms for query rewriting were
presented. The functional query language FQL was presented in [15, 16], as an
alternative to the relational model. The basic property of the FQL query language
is the set of simple functional operations which can be combined using the function
composition operation in a similar way to the HIFUN.

2.3 Conclusion

The above studies are primarily focusing on allowing users to query stored data.
In order to make those approaches scalable, big data technologies are needed.
Spark [64] and Spark Streaming [65] have been adopted by the industry as key
technologies in developing big data systems. To this direction, Flink [17] was also
proposed as a platform for processing of massive streams, and provides the ability
to process distributed data. In general, both Spark and Flink aim to support
most data processing workloads in a execution engine. The main difference is
that respective architecture of each can prove limiting in certain scenarios. Spark
Streaming divides streaming into discrete chunks of data called micro-batches and
repeats the processing workload in a continuous loop. Instead of processing the
streaming data one record at time, Spark Streaming discretizes the streaming data
into tiny, sub-second micro-batches. This architecture, Spark Streaming’s ability
to batch data and leverage the Spark engine leads to higher throughput to other

8 CHAPTER 2. RELATED WORK

streaming systems.

Hence, we propose a framework which utilizes the Spark engine to evaluate
incrementally continuous queries in order to analyze huge amounts of data dis-
tributed and independently of the nature of the data.

Chapter 3
The Query Language

In this section, we describe the HIFUN model [55, 56] and how this model applies
over an evolving data set using an incremental approach. The model offers a
clear separation between a conceptual and the physical level, which means that it
can be used to define (and evaluate) analytic queries independent of the specific
nature and location of the data sets (structured, unstructured, centrally stored
or distributed). For more details on the HIFUN language the interested reader is
referred to the relevant papers.

3.1 The Formal Model

3.1.1 Analysis Context

In our model, the context is an acyclic graph with a single root and a data set
is an assignment of set functions, one to each arrow of the graph. More specific,
the basic notion that the HIFUN model uses is the notion of attribute of a data
set. An attribute is a function from the data set to some domain of values. In
addition, as commonly implemented in practice, to analyze a data set, analysts
use an analysis context, consisting of a number of different attributes.

As a running example consider a database in a distribution center, which col-
lects and delivers products of various types in a number of branches. Figure 3.1
shows the analysis context of this data set D stored in the distribution center’s
database. The data that appears in an invoice has a unique identifier and shows
the branch and the region in which the delivery took place, the date, the type of
the product, the number and cost of units delivered. We define this information
as a set of six attributes, namely b, r, d, p, ¢ and cst. Following this perspective,
given an invoice identifier, the attribute b returns the brunch, the attribute r re-
turns the region, the attribute d returns the date, the attribute p returns product
and the attribute ¢ and cst returns the quantity and the cost of the product re-
spectively. These is the primary characteristics of the data set, so the attributes
with domain the data items of D, are called direct attributes. However, each of
these characteristics determines one or more secondary characteristics of the data

10 CHAPTER 3. THE QUERY LANGUAGE

| Category H Suppller

Bra nch Quantlty

Reglon Cost

Figure 3.1: Analysis Context Example

set. For instance, as shown in Figure 3.1, the Data determinates the Month and
the Product determines both Category and Supplier. Although these secondary
attributes might not appear on the invoice, they can usually be inferred from the
primary characteristics, and are useful for data analysis propose. These is the
secondary characteristics, so the attributes that can be derived from the direct
attributes are called derived attributes.

The functions represent information about some application being modelled.
Combining these functions by using function algebra we can acquire new informa-
tion about the application. More details about the combinations of these functions
is available in following sections.

We note that, the context can have more than one root. That means that data
analysis concerns two or more different data sets, possible of different nature and
possible sharing one or more attributes. The study of these characteristics is out
of the scope of this thesis.

3.1.2 Query Definition

A query is defined to be an ordered triple Q = (g, m,op) such that g and m are
functions of the context labeled as grouping attributes and measuring attributes
respectively, and op is an aggregate operation that performs a calculation on a
set of m-values. Formally, we have the following definition: let D be a finite
set of data items, such that D = {di,...,d,}. An analytic HIFUN query over
D is an ordered triple @ = (g,m,o0p), where g is function with domain the set
D and range a set A, m is a function with domain the set D and range a set
V', and op is an operation over V taking its values in a set W. If {aq,...,a,} is

3.1. THE FORMAL MODEL 11

a set containing the values of g over D (clearly k& < n), then we call grouping
of D by g, the partition 7, = {g7'(a1),...,g7*(ax)} inducted by g on D. The
reduction of m with respect to op, denoted red(m,op) is a value of W defined as
red(m, op) = op(< m(dy),...,m(d,) >). On the basis of the above definitions, the
answer to (), denoted as ansg, is a function from a set of values of g to W defined
by ansg(a;) = red(m/g~'(a;),op), i = 1,...,k. Figure 3.2 shows the relationship
between the function ansg and the functions appearing in the query Q.

Quirun = (g, m, op)

ansy(a;) = red(m/g " (a,), op)

key reduction
(of the query) operation

N
e~
/b D/q,\'

grouping measuring
function function

Figure 3.2: A query @ and its answer ansg

Restricted queries can also be defined over D. A restricted query is a query,
which is attribute-restricted and/or result-restricted. An attributed-restricted
query is defined as @ = (g/E, m,op), where E is any subset of the domain of
D. The evaluation of this type of query, requires the computation of restriction
g/E and then the valuation of query (g/E,m,op), over E. A result-restricted
query is defined as @ = (g,m,op)/F, where D is any subset of the domain of
definition of ansg. The evaluation of this type of query, requires the evaluation
of (g,m,op), over D to obtain its answer ansg and then the computation of the
restriction ansg/F.

Returning to our running example, assume that we want to know the total
quantity delivered to each branch only for month 'December’. Formally, this query
is written as Q = (b/E, q, sum), where E = {z|x € D A (mod)(x) =" December'}.
This computation needs only three functions, namely b, ¢ and m o d among the
set of functions that are defined in context of Figure 3.1. Figure 3.3 (a) illustrates
an example of the data returned by b, ¢ and m o d and the computations needed
during the query evaluation process. In order to find the total quantity by branch
for month ’December’, the following steps should be executed:

(a) Grouping: The grouping based on b/ E creates a group for each branch which
is different than the obtained when grouping is based on b. During this step,
all invoices that happened in month ’October’, referring to the same branch

12 CHAPTER 3. THE QUERY LANGUAGE

are grouped together.

(b) Measuring: In each group computed during the previous step, we find the
quantity corresponding to each invoice by extracting the value using the
function q.

(¢) Reduction: For each group, we sum up the quantities. Then the relation of
each branch to the corresponding total quantity is the evaluation of query
@, illustrated in 3.3(b).

b q sum
Breanch +—fionth 4—o— D —> Aty ———»-Totaty

Brl +—Gae——1——»200

Br_1 1»-:_’\‘3"‘ + Deca——2——>100 |

Brl +—pete—3——200 |

(a) Brl 4 Jine——4——»100

- f::m +—aca——5 —» 100 | Evaluation of Q

Brl 46 ———»300 |

Br3 4 1]
Br_3 (" Dece——7 —» 100
Br-3

*— Daca——8 ———»200

——»300

——»300

ansq
(b) . Branch——» TotQty
ey
of the que Brl ——» 300
{ aueny) Br-2 — 400

Br-3 ———» 300
Figure 3.3: An analytic query and its answer

Furthermore, a defined query over context contains complex grouping func-
tions using the following four operations on functions: composition(c), pairing(N),
restriction(/). More specifically:

(a) Composition: This operation takes as input two functions f and g, and re-
turns a function go f. As mentioned above, a composition operation can be
used to compose one or more attributes to support grouping by 'derived’ at-
tributes. For example, refer to context of the Figure 1, the following queries
contains the composition operation on grouping part. (e.g. (sop,q, sum) or

(cop,q,sum)).

(b) Restriction: as detailed described previously, the restriction operation can
be used to express restricted queries.

(¢) Cartesian product projection: The Cartesian product projection operation is
necessary in order to be able to reconstruct the arguments of a pairing and
it is useful for query rewritings explained in the following sections.

3.1. THE FORMAL MODEL 13

(d) Pairing: This operation used to allow grouping by more than one attributes.
To see an example of pairing usage, refer to context of the Figure 1 and
consider the following query: @ = (b A r,q, sum). The answer of this query
is a function, namely ansq : Branch x Region — TotQty associating each
pairing (branch, region) with a total quantity. Put it differently, the query
Q asks for the total quantities delivered by branch and region. The pairing
operation can be extended to more than two functions in the conspicuous
way.

3.1.3 Query Rewriting

In above sections we presented the definitions of our query language over an anal-
ysis context. However, independently how a query is evaluated, the formal model
of HIFUN supports a query rewriting. An incoming query or a set of queries can
be rewritten at the conceptual level, in terms of other queries. Query rewriting has
been studied extensively [39] and it still active topic in areas such as the semantic
web [62]. In this section we briefly describe the rewriting rules of our model to
optimizing the evaluation of a query or a set of queries. This is done by rewriting
an incoming set of queries in terms of the results of queries which have already
been evaluated and the results stored (for example kept in main memory).

3.1.3.1 Common Grouping and Measuring Rewriting Rule

Q = {(g,m,op1),...,(g,m,0p,)} : The set of @ contains n queries, all having
the same grouping function and the same measuring functions, but possible dif-
ferent reduction operations. In this case the rewriting of @) is the following:
Q' = (g9,m,{op1,...,0p,}), meaning that the grouping and the measuring is done
only once and the n reductions operations are applicable to the results of measur-
ing.

To see through an example how the common grouping and measuring rewriting
rule works, consider the following set of queries on the context of Figure 1: @ =
{(s A\'p,q,min), (s A p,q,max)}. This set of queries asking for the minimum and
maximum quantity delivered by supplier. To optimizing the evaluation of the @
is done by rewriting the incoming set () exploiting the similarity in grouping and
measuring part as follows: Q' = (s o p,q,{min,mazx}). Therefore, grouping and
reduction can be performed simultaneously for both min and max operations.

3.1.3.2 Common Grouping Rewriting Rule

Q = {(g,m1,0p1), ..., (g, mpn,0pn)} : The set of @ contains n queries, all having
the same grouping functions, but possible different measuring and reduction oper-
ations. In this case the rewriting of @ is the following: Q" = {g, (m1,0p1), ..., (My,
opn)}, meaning that the grouping is done only once and the n measuring and
reduction operations steps are applied to the results of grouping.

14 CHAPTER 3. THE QUERY LANGUAGE

To see through an example how the common grouping rule works, consider the
following set of queries on the context of Figure 1: @ = {p, ¢, sum), (p, cst, sum)}.
This set of queries asking for the total quantity delivered and the total cost of each
product. In this case, to evaluation of Q is done by rewriting the incoming set ()
exploring the similarity in grouping part as follows: Q" = (p, {q, sum}, {cst, sum}).
Hence, the common grouping operation can be performed once for two different
measuring attributes.

3.1.3.3 Common Measuring and Operation Rewriting Rule

Q = {(g1,m,0p), ..., (gn,m,op)} : The set of Q contains n queries, all having the
same measuring and the same reduction operation, but possible different group-
ing functions. In this case the rewriting of @) is the following: @ = {(g1 A ... A
9n, M, Op)a (prOlea (gl Ao N gn,m, Op)a Op)a) (pT’OjGN, (gl N o N gn,m, OP), Op)}'
In this point, we note that reduction operation is required to be distributive.
The query) can be answered directly, following the abstract definition of answer
(grouping, measuring, reduction) for each one of the n queries. Also, the query @
can be answered indirectly by the execution of @', if we first answered the base
query Qp = (g1 A ... Agn, m,op) and then the projection queries are evaluated using
the result from the base query which has already been evaluated and their result
kept in main memory.

Let see an example for this rewriting rule. Suppose the context of the Figure
1 and we want to know the total quantity delivered for each branch and the total
quantity for each product. These queries can be formally written as follows Q) =
{(b, q, sum), (p, q, sum)}. The set of Q can be answered directly follow the abstract
definition of the answer. The answer of) defined by the following functions:
ansp : Branch — TotQty and ansp : Product — TotQty. The incoming set)
can be also rewritten to probably reduce the evaluation cost as follows:

Q, = {(b/\p, q, Sum)’ (pTOjBa (b/\pv q, Sum)v Sum)a (pTij, (b/\pa q, Sum)’ S’U,TTL), Sum)}

However, Q can also be answered indirectly and equivalently as @', if we know
the totals by branch and product according to the function: ansg, : Branch X
Product — TotQty, then all we need to do is to evaluate each projection query
using the corresponding projection function as a grouping function and then the
projection query evaluated follow the abstract definition of the answer (grouping,
measuring, operation).

3.1.3.4 Basic Rewriting Rule

Q = {g2 0 g1,m,op} : This rewriting rule based on the basic idea that a func-
tional expression when used as a grouping function, can be equivalently rewrit-
ten to other expressions. In this case the rewriting of @ is the following: Q' =

{(g1,m,0p), (g2, (91,m, 0p), 0p)} meaning that the base query Q, = (g1,m, op) is

3.1. THE FORMAL MODEL 15

evaluated first, and the result used to answer the rewritten query Q’. This obser-
vation leads to our basic rewriting rule for queries that have a common measuring
function and operation but different grouping functions and require that the ag-
gregate operation to be distributive.

To see intuitively how the basic rewriting rule works, consider the following
queries on the context of Figure 1. The query Q = (p, q, sum) asking the totals
by product and the query Q' = (c o p,q, sum) asking for the totals by category.
Clearly, the query Q' can be answered directly, following the abstract definition
of answer (i.e. by grouping, measuring and reduction). However, @' can also be
answered, if we know (a) the totals by product and (b) which products are in
which category. Then all we have to do is to sum up the totals by product in each
category to find the totals by category. Now, the totals by product are given by
the answer to (), and the association of products with categories is given by the
function c¢. Therefore, the query @’ can be answered by the following query Q”,
which uses the answer of @) as its measure: Q" = (c,ansg, sum), asking for the
sum of product totals by category. Note that the query Q" is well formed as ¢ and
ansg have Product as their (common) source.

3.1.4 Conceptual Query Evaluation Scheme

HIFUN offers a clear separation between the conceptual level, where analytic
queries are defined and the physical level where analytic queries are evaluated.
Using the batch processing approach, we first have to store the available data and
then evaluate the query. In detail the following steps have to be followed:

(a) Query Input Preparation. IN(Q) denotes the set of tuples which contain
the information for evaluating query @), independently of whether the data
set is centrally or distributed stored. In this step k sets of tuples Iy, ..., [
are returned, that form a partition 77y (g) of the input IN(Q), where each
tuple contains a data item identifier and the values of its attributes g and
m, including the values of any possible attributes contained in the query
restrictions.

(b) Attribute Filtering. If there are no attribute restrictions on query defini-
tion, this step is skipped. Elsewhere, filtering is performed on I N(Q) tuples
according to the query attribute restrictions.

(c) mg Construction. This step constructs the partition 7, = {G1,...,Gn}, as
it was previously defined in the query definition. The reduction of 7, will
produce the answer to the query.

(d) my Reduction. Once the block G; has been constructed, it can be reduced
by the operation defined in the query definition, to obtain the answer on the
value g; of g : ansg(g;) = red(m/G;, op).

16 CHAPTER 3. THE QUERY LANGUAGE

(e) Result Filtering. If there are no result restrictions on query definition, this
step is skipped. Elsewhere filtering is performed on ansg according the
restriction on the query results.

In our running example, the query @ = (b/E,q,sum), where E = {z|z €
DA (mod)(z) =" December'} is mapped to the aforementioned conceptual schema
as illustrated in Figure 3.4.

Query Evaluation Schema

IN(Q) = (i, b(i), m(d(i)), a(i)) filtering I, construction Tty reduction
Q= (b/E, q, sum) (1, Br_1, Oct, 200)
E={x| x €D " (m°d) (x) = ‘December’} | (2, Br_1, Dec, 100) Br 1, Dec, 100
™1 (3, Br_1, Dec, 200) PR (8r-1,100) Gpr—y ——* 300
l , Br_1, Dec, (Br_1, Dec, 200) (Br_1, 200)
L (4, Br_2, Jun, 100) ”
(Br_2, Dec, 100) Br_2, 100) Gorz —» 400 b ansg
(5, Br_2, Dec, 100) o _| (Br_2, Dec, 300) [Br_2, 300)
“7=---.u] (8, Br_2, Dec, 300) (Br_3, Dec, 100) ¥ (Br_3, 100) Ggrg ——> 300
(7, Br_3, Dec, 100} (Br_3, Dec, 200) Br_3, 200)
(8, Br_3, Dec, 200)

Figure 3.4: The conceptual scheme steps

3.2 Incremental Computation in HIFUN

In this section, we show how we can use the HIFUN language to incrementally
evaluate continuous queries. An important common feature of real-life applications
is that the input data continuously grow and old data remain intact. As such for
the rest of this paper we assume that the data set being processed can only increase
in size between t and t’. In such a scenario, the idea of incremental computation
of a continuous query is to use the results of an already performed computation
on old data and evaluate the query only on the lately appended data, merging
eventually new and previous results.

Figure 3.5 illustrates our proposed incremental approach for continuous queries
- the same query asked two times. We perceive the problem of incremental evalu-
ation as follows: given the answer of a query Q) at time ¢, on data set D, find the
answer of the query at time ¢’ on data set D', where D’ = D + AD, by evaluating
the query only on AD and reusing the answer on D.

3.2. INCREMENTAL COMPUTATION IN HIFUN 17

Query Q
Query Q
D
DJ
BN . e e
. %\‘\
S e
v u
ans, @ timet incry @ time t’
|I1:|n D on AD |
ansg é) time t’
v
time onD’'=D+AD

Figure 3.5: Incremental computing over append-only data set.

Now assume that the function ans is the answer on D of @) at time ¢, including
K groups of answers, and that the function incrq is the answer on AD at time ¢/,
including the K’ groups of answers. If the reduction operation op is a distributive
operation, the answer ans’ of query @ at time t/, is evaluated as follows:

e op=sum: ans'(i) = ans(i) +incr(i) if i is in KNK'; ans(i) if i is in K\ K';
incr(i) ifiis in K’ \ K;

e op=min: ans'(i) = min(ans(i),incr(i)) if i is in K N K'; ans(¢) if i is in
K\ K';incr(i) ifiisin K\ K;

e op=max: ans'(i) = max(ans(i),incr(i)) if i is in K N K'; ans(i) if i is in
K\ K';incr(i) ifiis in K\ K;

e op=count: ans'(i) = ans(i) + incr(i) if i is in K N K'; ans(i) if 1 is in
K\ K'; incr(i) ifi is in K\ K

18 CHAPTER 3. THE QUERY LANGUAGE

Aggregate operations operate on a set of values to compute a single value
as a result [60]. Distributive aggregate operations are those whose computation
can be ’distributed’ and be recombined using the distributed aggregates. All the
operations that are previously described are distributive. This means that if the
data are distributed into n sets, and we apply the aforementioned distributive
operation to each one of them (resulting in n aggregate values), the total aggregate
operation can be computed for all data by applying the aggregate operation for
each subset and then combining the results. For example: sum(1,2,3,4,5) =
sum(sum(1,2), sum(3,4,5)).

We also support non-distributive aggregate operations such as the average as:
avg(1,2,3,4,5) # avg(avg(1,2),avg(3,4,5)). Non-distributive aggregate opera-
tions can be computed by algebraic functions that are obtained by applying a
combination of distributive aggregate functions. For example, the average can be
computed by summing a group of numbers and then dividing by the count of those
numbers. Both, sum and count are distributive operations. More specifically:

e op=avg:
— ans'(i) = ans(i) if i is in K \ K';
— ans'(i) = incr(i) if iis in K\ K;

op=sum@tincrop=sum @ _ if § ig in K N K';
bl

op=count(i)+incrop=count (%)

— ans'(i) = —

Finally, there are additional aggregate operations, whose computation requires
looking at all the data at once, and hence their evaluation cannot be decomposed
into smaller pieces. Common examples of this type of aggregate operations include
median and count-distinct. However, we leave those operations for future work.

Now consider the example illustrated in Figure 3.6. We would like to know the
total quantity delivered to each branch during the month December. At time ¢ the
query was evaluated over the data set D, returning the function ansg : Branch —
TotQty, as the answer of (). Then, at time ¢’ the query was again evaluated over
only the data set AD, returning the function incrqg : Branch — TotQty, as the
answer of Q on D. In this case, the aggregate operation is the distributive operation
sum. As such, we can produce the cms’Q on time ¢ merging the functions ansg
and incrg as follows: The groups that appear only in K, which are the groups
returned by the query @ at time ¢ on D, are transferred directly to the result of
ansg. The groups that appear only in K’, which are the groups of the query Q
at time ¢ on AD, are transferred directly to the result of ans’Q. The distributive
operation sum is applied when the groups appear in the intersection of K and K'.
For example, the key Br —2 appears in both K and K’, therefore the answer ans'Q
for that key resulting as sum(400 + 200) = 600.

3.2. INCREMENTAL COMPUTATION IN HIFUN 19

[Branch——» TotQty
answer ansg
- g -
time t - Brl 300
Br-2 ————» 400 answer ans’y, t, D’
onb Br3 — » 300 Branch ", TotQty
Br-1 > 300
L
- Br-2 » 600
answer incr. | Branch———————» TotQty Br-3 » 700
O -t »
time t/ | Brr2 — 200 Br-4 » 100
on AD Br-3 — 400
Br-4 —— 100

Figure 3.6: Incremental evaluation on our running example.

As already mentioned, HIFUN includes, out of the box, query rewriting rules.
Using those is possible to reduce the evaluation cost. Assume for example the
context of Figure 1 and the rewritten query @ = (¢, (p, g, sum), sum). Assume
also that the rewritten query () has already been evaluated on D at time ¢ and
the function ansg : Category — Totals is the answer of Q). Figure 3.7 shows
how we leverage the basic rewriting rule, to evaluate the query @ on AD at time
t’. The rewriting rule requires the evaluation of the base query @, = (p, m, sum)
only on AD at time t'. The query @y is executed and the answer is returned as
ansq, : Product — TotQty. Therefore, the query () can be answered on AD at
time ¢’ by evaluating the following query Q" = (¢, ansgq,, sum). The answer of the
rewritten query ', (the equivalent query of @ on AD) is computed by combining
the function incry, on AD at time t' and the function ansg on D at time t as
previously described.

Basic Rewriting Rule Incremental Evaluation

Qa=(c, (p, g, sum), sum) IN(@p) = (i, p(i), q(i)) Q5 = (p, g, sum) Q= (¢, ansg,,,,, sum) associations
(totals by category)
1, pr-1, 100 mapper, <p(i), q(i)> mapper, p; = 1; pi—T;
_w| 2,pr-1, 200 {pr-1, 100)
3, pr-2, 100 (pr-1, 200) cat-1, 300 pr-1— cat-1
AD attimet’ | 4, pr-2, 300 {er-2, 100} cat-2, 600
Tl 5, Ef'z, 200 (er-2, 300} cat-2, 300 pr-2 — cat-2
6, pr-3, 100 (pr-2,200)
g {pr-3, 100)
7, pr-3, 200 (or-3. 200) pr-3 — cat-2
reducer, ansg,: Product — Totals reducer, incrg,: Region — Totals
pr-1, 300 cat-1, 300
pr-2, 600 cat-2, 900
pr-3, 300 Q at time t on initial D
ansg: Category — Totals
Q at time t on initial D cat-1, 200
ansg: Category — Totals cat—Z: 100
cat-1, 200 cat-3, 300
cat-2, 100
cat-3, 300

Figure 3.7: Example of basic rewriting rule.

20

CHAPTER 3. THE QUERY LANGUAGE

Chapter 4

Implementation

As already shown, HIFUN queries can be defined at the conceptual level indepen-
dent of the nature and the location of the data. These queries can be evaluated
by encoding them either as map-reduce jobs or SQL group-by queries, depending
on the nature of the available data. In this section, we show how to physically
evaluate a HIFUN query processing live data streams. This is implemented using
two different physical layer mechanisms: (1) the Spark Streaming [65] and (2) the
Spark Structured Streaming [7]. Both mechanisms support the micro-batching
concept - fragmentation of the stream as a sequence of small batch chunks of data.
On small intervals, the incoming stream is packed to a chunk of data and is deliv-
ered to the system to be further processed [31]. This system based on definitions
and features as formally proposed by HIFUN, and performs optimizations through
incremental approach and query rewritings to reduce the computational costs.

4.1 Micro-batch stream processing

In the micro-batching approach, as a data set continuously grows and as new
data become available, we process the tuples in discrete batches. The batches
are processed according to a particular sequence. As a high volume of tuples can
be processed per micro batch, the aforementioned mechanism uses parallelization
to speed up data processing. An initial data set D; is followed by a continuous
stream of incremental batches AD; that arrive at consecutively time intervals At.
As we already explained, incremental evaluation would produce the query results
at time t + At by simply combing the query results at time ¢ with the results
from processing the incremental batches AD;. Two key observations should be
made here. The first is that computations needed are solely performed within the
specific batch, following the evaluation scheme described in the previous section.
Therefore, for every batch interval we calculate a result based on delta subset
AD;, e.g. incr; «— e(AD;). The second observation is that a state should be kept
across all batches. Stateful processing is able to handle unbounded streams of data.
After the evaluation of each query is completed for each micro-batch, we need to

21

22 CHAPTER 4. IMPLEMENTATION

keep the state across all batches. The previous state value and the current delta
result are merged together and the system produces a new state incrementally, e.g.
state «— u(incr;, state). Figure 4.1, illustrates this incremental approach.

t t+ At t 4 2At

W AD; Stream

Figure 4.1: State maintenance.

4.2 Continuous HIFUN Queries to MapReduce

In [61] Glampedakis describes how the steps of the HIFUN conceptual evaluation
scheme mapped to the existing physical level mechanisms of Apache Spark [64],
using the Map-Reduce programming model and the Resilient Distributed Dataset
(RDD), the main abstraction provided by Spark. In this work, the conceptual eval-
uation scheme is also implemented using the Map-Reduce programming model over
the physical layer but exploiting Spark Streaming. Spark Streaming is a stream
processing framework based on the concept of discretized streams and provides the
DStream API which accepts sequences of data which arrive over time. The API
implements the micro-batch stream processing approach with periodic checking of
internal state at each batch interval. Internally, each DStream is represented as
a sequence of data structure called Resilient Distributed Datasets (RDDs) which
keeps the data in memory as they arrive in each batch interval. Batch interval
also indicates how often an input RDD is generated. In the following, we de-
scribe in detailed how the conceptual schema presented previously is mapped to
the physical layer mechanisms. Also, we describe the mechanism that allows the
incremental algorithm to update continuous query results without recomputing
them from scratch.

4.2.1 Conceptual Evaluation Schema to MapReduce

In this section we elaborate on the generic query evaluation schema, described in
section 3, presenting details on its implementation over the physical layer when
the Spark Streaming is used:

(a) Query Input Preparation. A set of attributes which are included in grouping
and measuring part of Q is used to extract the information from the initial
unstructured data set. In this step, the IN(Q) set is computed and consists

4.2. CONTINUOUS HIFUN QUERIES TO MAPREDUCE 23

of tuples that contain the useful attributes values for each record. For this
propose a map method is used to iterate through over all input records of the
DStream and returns a new DStream which contains the information useful
for the next evaluation steps.

(b) Attributes filtering. If attribute restrictions exist, this step filters the tuples
of the DStream that do not conform to the query restrictions. The filter
method applies on DStream and returns a new DStream containing only the
elements that satisfy the queried predicate.

(c) my construction: To construct the grouping partition 7y, the map method
is used. Each mapper receives the tuples to be used for extracting the key-
values pairs from each data item. The result of this step - after the mapper
which is applied to the tuples of DStream - is a new PairDStream which
contains key-value pairs < K,V >. The key K is the value of the grouping
attribute of each data item or the value of the grouping attributes if the
domain of ansg is a cartesian product of two or more grouping attributes.
The value V is the value of the measuring attribute of each data item.

(d) my reduction. In this step, each reducer uses the query operation op to reduce
the set of key-value pairs received. The reduce-by-key method is applied and
a new DStream is returned in which each RDD has a single element generated
by reducing each RDD of the DStream.

(e) Result filtering. If result restrictions exist, this step filters the tuples of the
DStream that do not conform to the query restrictions. The filter method is
applied on DStream and the new DStream is returned containing only the
elements that satisfy the queried predicates.

4.2.2 Rewritten Set Evaluation

As described in the formal definition of the query language, a set of () can be
rewritten according to some rules. In this section, we give a detailed description
how the evaluation mechanism leverages these rules.

(a) Common Grouping and Measuring Rewriting Rule. In this case of rewriting,
n number of different operations are applied to the common grouping and
measuring attributes. In Query Input Preparation step extracted the infor-
mation from the initial unstructured data set using the common grouping
and measuring attributes which are appeared in the query set (). For this
propose a map method is used to iterate through over all input records of
the initial DStream and returns a new DStream containing the values of the
common grouping and measuring attributes for each record, useful for the
next evaluation steps. To construct the grouping partition 7,4, the previously
generated IN(Q) is iterated by a map method and a new pairing DStream
created which contains the constructed key-value pairs < K,V >. The key

24

CHAPTER 4. IMPLEMENTATION

K is the value of the common grouping attribute for each DStream record
and value V is synthetic and carrying a list of measuring attribute values.
The measuring value of each DStream record is used and repeated n times to
create a list of n values as a key K. The length n of the list is defined by the
number of the operations which are appeared in the query set . The final
mg reduction is constructed when a reduction operation is completed. The
reduce method applies for each key K the n operations on the list of values
and produces the query answer in the form of key-value pairs < Ky, Vj, >,
where K, is the key of the query and Vj, its synthetic value containing the
redacted value for each operation applicable to measure attribute. The an-
swer of the Common Grouping and Measuring Rewriting Rule is completed
when a set of < Ky, V}, > is created.

Common Grouping Rewriting Rule. The evaluation of this rewriting rule is
slightly different to the evaluation of the Common Grouping and Measur-
ing Rewriting Rule. In this case n number of different measuring attributes
reduced to the common grouping attribute applying n possible different op-
erations. In Query Input Preparation step extracted the information from
the initial unstructured data set using the common grouping attribute and
the n different measuring attributes which are appeared in the query set Q).
A map method is used to iterate through over all input records of the initial
DStream and returns a new DStream containing the value of the common
grouping attribute and the values of n measuring attributes for each record,
useful for the next evaluation steps. To construct the grouping partition
the previously generated IN(Q) is iterated by a map method and a new
pairing DStream is created which contains the constructed key-value pairs
< K,V >. As we mentioned for the previous rewriting rule, the key K is the
value of the common grouping attribute for each DStream record. The V
in this rewriting rule is a synthetic value and carrying a list of n measuring
attribute values. The length n of the list is defined by the number of the dif-
ferent measuring attributes which are appeared in the query set Q. The final
g reduction is constructed when a reduction operation is completed. The
reduce method applies for each key K the n operations on the list of n values
and produces the query answer in the form of key-value pairs < K,V >,
where K is the query key and V}, its synthetic value containing the redacted
value for each operation applicable to measure attributes. The answer of the
Common Grouping Rewriting Rule is completed when a set of < K ,V;, >
is created.

Common Measuring and Operation Rewriting Rule. In this rule one mea-
suring attribute assigned to n different grouping attributes. The evaluation
of the base query required first as follows. In Query Input Preparation step
extracted the information from the initial unstructured data set using the
common measuring attribute and the n different grouping attributes. A

4.2.

CONTINUOUS HIFUN QUERIES TO MAPREDUCE 25

map method is used to iterate through over all input records of the initial
DStream and returns a new DStream which contains the values of the n
different grouping attributes and the value of common measuring attribute.
To construct the grouping partition m, for the base query, the previously
generated IN(Q) is iterated by a map method and a new pairing DStream
is created which contains the constructed key-value pairs < K,V >. The
key K is the value of the pairing operation applicable on n different group-
ing attributes of each DStream record and the value V is the value of the
common measuring attribute of each DStream record. The 7, reduction for
the base query is constructed using a reduce method which applies the com-
mon operation to redact the set of key-value pairs which are received. The
intermediate result of base query has been produced in the form of key-value
pairs < Ky, Vp i >, where K, is the pairing key of the base query and Vj
its redacted value. A set of key-value pairs is now available for the next
evaluation steps. The set of key-value pairs < K, Vi > traversed n times
to produce n new sets of key-value pairs. For each projection query a map-
reduce job is needed to construct the answer as follows: a map method used
to construct a set of key-value pairs < K’, V' >. The key K’ emitted as the
value of the subset of the pairing key K3, which is specified by the projection
operation. The value V; emitted as a new V' > value for the key K’ >.
The reduce method applied and produces the answer for the projection query
in the form of key-value pairs < K, Vj, >, where K, is the query key and V},
its value. The answer of the Common Measuring and Operations Rewriting
Rule is completed when n sets of < Ky, V}, > are created.

Basic Rewriting Rule. The evaluation of the base query required first in
this rule. The Query Input Preparation step extracts the information from
the initial unstructured data set using the grouping and measuring attribute
which are appeared in the base query. The construction of the grouping par-
tition 7, for the based query is needed. An iteration through the previously
created IN(Q) by a map method creates the new DStream which contains
the constructed key-value pairs < K,V >. The key K is the value of the
grouping attribute and V is the value of measuring attribute used in the
base query of each DStream record. The 7, reduction for the base query is
constructed using the reduce method which applies the operation to reduce
the set of key-value pairs received. The intermediate result has been pro-
duced in the form of key-value pairs < Ky, Vp r >, where Kj, is the base
query key and Vj i its value. A set of key-value pairs is available for the
next evaluation step and used as follows. A map method is used to iterate
through over all previously generated key-value pairs and constructs new set
of key-value pairs < K’,V’ > as follows. For each key Kj a new key K’
emitted specified by the association between Kj and K’ as defined in the
context. The value V;, emitted as a new V'’ > value for the key K’ >. Final
a reduce method applied and produces the final answer of this rewiring rule

26 CHAPTER 4. IMPLEMENTATION

in the form of key-value pairs < K, Vi, >, where K, is the query key and V},
its value.

The deepest understanding of basic rewriting rule is coming through the fol-
lowing example. We assume the following HIFUN query @ = (k,u, op), where k
and u are the functions used by the mappers to extract the key-value pairs during
the input preparation step and op is the operation applied by the reducers. If
k = go f is the composition of two functions, then the query) can be rewritten
under the basic rewriting rule as follows Q' = (g, (f, u, op),op). This implies that
the initial query @) can be rewritten as a sequence of two other queries. The base
query Qp = (f,u,op) should be executed first and the attributes f and u used
during the Query Input Preparation step. The resulting query Q' = (g, ansg,, op)
should then be executed, based on the previous result, as follows: the mapper
used to construct the key-values pairs by using the association of f with g that is
provided from the function g and then the reducer applies the reduction by the
operation op on the set of constructed key-pairs.

Whichever rewriting method if is applied, the produced answer is a function
or functions where the function has a domain of values to a set of values and
represented as a set or sets of key-value pairs. For each function the domain of
values is a set of keys, each of those correlated with the key of the query. The
incremental algorithm examines the set of keys independently of whether those
keys occurred after evaluating the original query Q or the rewritten one. In the
next subsection, the details of the incremental evaluation are provided.

4.2.3 Incremental Evaluation

The aforementioned jobs are executed using Spark Streaming for each incoming
micro-batch. When a query is executed, an answer is produced for a micro-batch
and a DStream is created which encapsulates a key-value pair in the form of a
DStream[(K, V)], where K is the key of the continuous query that appears in the
current micro-batch and V is the value of the reduction operation. We have to
note that we maintain the state across the micro-batches (using the mapWithState
method), using the key-value pairs produced for each micro-batch. Stateful trans-
formation is a particular property used in this case and it enables us to maintain
state between micro batches across a period of time, and it can be as long as an
entire session of streaming jobs. That operation is able to execute partial updates
for only the newly arrived keys in the current micro-batch. As such, computations
are initiated only for the records that need to be updated. The state information is
stored as a mapWithStateRDD, thus benefiting from the distribution’s efficiency
and effectiveness of Spark.

Let see now how the incremental update mechanism leverages the rewriting
rules and allow to update the state or states between the micro-batches. We
distinguish the incrementalization of rewritings in two cases.

Case 1. The first case includes the rules Common Grouping and Measuring

4.3. TRANSLATING CONTINUOUS HIFUN QUERIES TO SQL 27

Rewriting Rule, Common Grouping Rewriting Rule and Basic Rewriting Rule. In
these rules when a rewritten query is executed over a micro-batch a DStream is
created in a form of DStream|[(Kg4, Vy)]. The K, signifies the key of the query
and V}, signifies the synthetic value of its K, in the current micro-batch. The
mapWithState method is used to update the current state, which is also in the
form of DStream|(Ks, Vis)], where K signifies the key of the aggregated query
and Vj, signifies the synthetic value of its K. In each micro-batch, this method
executed only for the keys of the state that needs to be updated, which is a great
performance optimization.

Case 2. The second case includes the Common Measuring and Operation
Rewriting Rule. In this rule when a rewritten query is executed over a micro-
batch, n number of DStreams are created in a form of DStream[(Ky,Vy)]. Here,
the K, signifies the key of the projection query and Vj, signifies the value of its K|,
in the current micro-batch. The n DStreams depends on the number of different
grouping attributes appear in the rewritten set). A chain of mapWithState
methods are used to update the n current states, which are also in the form of
DStream|(Ks, Vis)]. The K signifies the key of the aggregated projection query
and Vj, signifies the value of its K.

4.3 Translating Continuous HIFUN Queries to SQL

In [61] Glampedakis describes how the HIFUN conceptual evaluation scheme im-
plemented using the existing physical level mechanisms of Apache Spark SQL [8],
which is a Spark module for structured data processing. In this work, we show
how a query in HIFUN can be evaluated when the involving data set D is stored
in an unbounded append-only relation table and also, we describe how we map
the conceptual evaluation schema to the existing physical level mechanism using
the semantics of the SQL exploiting group-by SQL queries of Spark Structured
Streaming. The basic idea in Structured Streaming is treating continuously arriv-
ing data, as a table, that is being continuously appended. Structured Streaming
runs in a micro batch execution model as well. Spark waits for a time interval and
batches together all events that were received during that interval. The mapping
mechanism defines a query on the input table, as if it was a static table, computing
a result table that will be updated through the data stream. Spark automatically
converts this batch-like query to a streaming execution plan. This is called instru-
mentalization: Spark figures out what needs to be maintained to update the result
each time a new batch arrives. At each time interval, Spark checks for new rows
in the input table and incrementally updates the result. As soon as a micro-batch
execution is complete, the next batch is collected and the process is reapplied.

4.3.1 Conceptual Evaluation Schema to SQL

In [56] and [55]is already proved that HIFUN queries can be mapped to SQL group-
by queries. In general, for the query Q = (ga, mp, op), two cases are distinguished.

28 CHAPTER 4. IMPLEMENTATION

Case 1. The attributes A and B appears in the same table, say T. In this case
we can obtain the answer of QQ using the following group-by statement of SQL.

Select A, op(B) as ansg(A) From T GroupBy A

Case 2. The attributes A and B appear in two different tables, says S and T.
In this case we can obtain the answer of) using the following group-by statement
of SQL.

Select A, op(B) as ansg(A) From join(T,S) GroupBy A

To this direction, let us see some examples of mapping analytic queries directly
to SQL. We shall use the context of the Figure 4.2 and we shall assume that the
data set is stored in the form of a relation data warehouse under the star schema
shown in that figure. In general, a star schema includes one or more fact tables
indexing any number of associated dimension tables. In our example, this star
schema consists of the fact table F'T and two-dimensional tables: the dimensional
table DT B,qncn of Branch and the dimensional table DT'p,oguct 0f the Product. The
edges of the context are embedded in these three tables as functional dependencies
that the tables must satisfy, and the underlined attribute in each of these three
tables in the key of the table.

Our implementation handles the above relation schema as follows: the fact
table represented as an unbounded table containing the primary incoming stream-
ing data and the dimensional tables DTgqnch and DT proguet are represented as
static tables which are connected to the fact table. The assumption of the static
dimensional tables is coming to avoid the stream-stream joins. The problem of gen-
erating inner join results between two data streams is that, at any time, the view
of the data set is incomplete for both sides of the joining making it inefficient to
find the matching values between two inputs data streams. Any row received from
the input stream can match with any future not yet received row from the other
input stream. Thus, the solution for this is coming, for both the input streams, by
the buffering the past input as streaming state to match every future input with
past input and accordingly generate join results. Since the above observations,
our implementation has supported joins between a streaming and static relational
table.

In this setting, consider the query @ = (b/E,q,sum) where E = {z|x €
D Ad(z) =" 24/10/1992'} over the context of Figure 10, asking for totals by
branch in October 24, 2019. In this query, the grouping and measuring attributes
appear in the same fact table. This query will be mapped to the following SQL

query:
Select Branch, sum(Quantity) As ansg(Branch)
From FT

Where Date = '24/10/2019°
Group by Branch

4.3. TRANSLATING CONTINUOUS HIFUN QUERIES TO SQL 29

| Region | | Supplier H Category |
r s
______ [N | S — -—==4,
Branch Product
¥ =
b P

DTprnacn (Branch, Region)

|

|

1

| FT(D,Date, Branch, Quantity)

|

| DTproquet (Broduct, Supplier, Category)

Figure 4.2: A context and its underlying data stored in the form of a relation
schema.

Let see another example of a query evaluation step-by-step. Consider again
the context in Figure 10 and suppose we need to evaluate the following query
Q = ((sop) x (cop),q,sum) asking for the totals by supplier and category. In
this query, the grouping attributes supplier and category appears in different table
from the measuring attribute quantity. We map the Q to the following SQL query
over a star schema:

Select Supplier ,Category, sum(Quantity)
As ansg(Supplier, Category)

From join (FT, DTproduct)

Group by Supplier ,Category

In Input Preparation Step the grouping attributes are selected which are the
grouping attributes Supplier and Category and the measuring attribute Quantity.
The attributes Supplier and Category appear in the dimensional table DT p,oqyet SO
the fact table F'T' and the dimensional table DTp,oquct are joined accordingly. In
the 7, construction step, the grouping partition as defined in the conceptual level
is constructed using the ’Group by’ clause that is used to group rows that have the
same attributes Supplier and Category. In the 7, reduction step, is implemented
by applying the query operation sum on the measuring attribute Quantity. The
'ansg(Supplier, Category)’ is user defined attribute and the query returns the
answer of Q in the form of a table with two attributes, Supplier x Category and
ansqg(Supplier, Category).

4.3.2 Evaluation of the rewritten set

As mentioned before, a set QQ of HIFUN queries can be rewritten according to some
rules. Glampedakis [61] has already show how the rewritten set can be mapped
to SQL group-by queries using the physical level mechanism of Spark SQL over a
static relational tables. In this section, we give a detailed description of how the
evaluation mechanism leverages these rules and a HIFUN rewritten set Q mapped
to a physical level mechanism of Spark Structured Streaming and the semantics

30

CHAPTER 4. IMPLEMENTATION

of SQL when the evolving data sets stored in an unbounded append-only relation

table.

(a)

Common Grouping and Measuring Rewriting Rule. In this rewriting rule,
the SQL query is created customizing the 7, reduction step of SQL group-by
query by adding the aggregate functions related to the n operations on the
common measuring attribute which appears in the rewritten HIFUN @ set.
Figure 4.3 shows the group-by SQL query decomposed into steps for this
rewriting rule.

Common Grouping Rewriting Rule. In this rewriting, the SQL query is cre-
ated similarly as the previous rewriting rule. In the 7, reduction step of SQL
group-by query adding the aggregate functions related to the n operations
on the n corresponding measuring attributes which appears in the rewritten
HIFUN @ set. Figure 4.4 shows how the rewritten set of HIFUN queries with
common grouping attributes decomposed into steps and mapped to physical
level SQL-group-by query.

Common Measuring and Operation Rewriting Rule. This rewriting rule is
not supported when the Spark Structured Streaming is used as physical
level evaluation module. Firstly, a base table produced by the evaluation of
the base query. In the next steps, this base table used for each projection
query to produce the final result for the n grouping attributes appears in
the rewritten set Q. The above computations are achievable under the SQL
semantics by mapping the base HIFUN query to SQL-group-by query and
each projection HIFUN query to projection SQL-group-by query. if the Spark
Structured Streaming is used, the execution a chain of aggregation queries
not supporting (until version 2.4.3)

Basic Rewriting Rule. This rewriting rule is also not supported when the
Spark Structured Streaming is used as physical level evaluation module. In
this case, for the evaluation of the second HIFUN query, the answer table
which is produced by the evaluation of the base query is joined with the table
containing the grouping attribute of the second query. The above evaluation
steps are achievable under the SQL semantics but a chain of aggregations
queries required for this purpose. As mentioned before a chain of aggregation
queries is not supported in Spark 2.4.3.

4.3. TRANSLATING CONTINUOUS HIFUN QUERIES TO SQL 31

Q = (g4, mp, {0Op4, ..., 0p,}) — SELECT A, op;(B), ..., op,(B)
FROMT
GROUP BY A

Figure 4.3: The Common Grouping and Measuring Rewriting Rule to SQL group-
by query.

Q = (gﬁl! {mB» Op1}, ey {mnr Dpn}) — SELECT A, Opl(B)! ey Opn(z)
FROMT
GROUP BY A

Figure 4.4: The Common Grouping Rewriting Rule to SQL group-by query.

32

CHAPTER 4. IMPLEMENTATION

Chapter 5

Evaluation

In this section, we describe the experiments that we conducted to evaluate our
system. We expect that implementing an incremental query mechanism will re-
sult in a significant to the overall evaluation performance and scalability. In the
following experiments, we compare our incremental approach with the batch pro-
cessing approach to show the benefits that we can get form continuous queries
when evaluated incrementally to avoiding unnecessary query evaluations. Also,
we investigate the effectiveness of the query rewritings.

5.1 Data preparation

Our system was performed on a workstation cluster consisted of 4 nodes each
equipped with 38 cores at 2.2 GHz, 250 GB RAM and storage capabilities of 1TB.
On top Ubuntu LTS 16.04 was installed running Java version of 1.8.0.131 and
Apache Spark 2.4.4. Spark was operated on top of Apache Mesos cluster with
default configuration parameters for all experiments. For the data generation, we
used a custom data generator to create a synthetic data size of 50GB split into 10
files of 5GB each(80M Records). Each dataset represented as an RDD and each
RDD pushed into a queue and treated as a batch of data in the DStream, and
processed like a stream. To distributed the data uniformly among all the cluster
workers, the data follows uniform distribution. The following experiments were
conducted over synthetic data sets stored in distributed file system (HDFS). In
the case of the map reduce execution model the source data set is provided in a
single text file and the analysis context of this data set is depicted in Figure 5.1,
whereas in the case of SQL execution model, the source data set was structured
according to relational table and the analysis context of this data set is depicted
in Figure 5.2.

33

34 CHAPTER 5. EVALUATION

[G1 |6 |[61][6ie | Gus |
Gi1 - fis

My ... My

FT(D, Gy, ..., G5, My, ..., M)

Figure 5.2: Analysis Context of the structured data set.

5.2 Continuous HIFUN Query Evaluation

In order to evaluate the effectiveness of the incremental evaluation of a HIFUN
query against the base line approach, we define the following query @ = (g1, m, sum).
Experiments started with an initial data set of 80M records. That data set was
continuously growing over time and at each time interval, 80M new records were
added to the existing data set. Using this data set, the batch computation ap-
proach looks at the entire data set when new data is available to be processed. The
incremental approach on the other hand, only examines the new incoming data
in the last time interval and incorporates the increment in the result. Figure 5.3
shows the performance of the two approaches when the HIFUN query is evaluated
using MapReduce jobs or group-by SQL queries. The results show that the incre-
mental approach shows a great benefit when used in practice: while the data set
grows over a time, the evaluation cost remains stable independent of the overall
increasing data size. In contrast, when the queries are evaluated over a batch data,
the evaluation cost increases as the size of the input batch data increases as well.

5.2. CONTINUOUS HIFUN QUERY EVALUATION

Execution Time

Execution Time

200

100

200

100

0

MapReduce Execution Model

—¥— Batch Computation
—B— Incremental Computation

P © = © S © S © —o— ©
1 1 1 1 1 1 1 1
% s s s \Y AN s s s s
P vq} &"?’b ’&"b'b &*‘3‘> \."ﬁb - > &"%b vqb
Time
SQL Execution Model

—3— Batch Computation I I I I I t

—B— Incremental Computation 7
% s s s \Y AN s s s s
P qu,b qu,b ’ﬂ."b(b vﬂ;,b K*ﬁb - > \'x%b qub

Time

Figure 5.3: Evaluation of continuous HIFUN query

35

In the next set of experiments, a continuous HIFUN query is executed and
the results produced by applying the incremental computations. We define the
following two queries: Q1 = (g1, m1, sum) and Q2 = (g1, m1, avg). In both queries
the same grouping and measuring attribute is used but different aggregation op-
erations appear in those. We present the execution cost of each HIFUN query,
contrasting efficiency and the aggregation operation which is used. As previously
described, the non-distributive operations (e.g. avg) require the combination of
synthetic computations to incorporate the increment in the result. The results
show that the execution time of a HIFUN query is the same for both distribu-
tive and non-distributive operations. Figure 5.4 shows the performance when the

HIFUN queries are evaluated using MapReduce jobs or group-by SQL queries.

36 CHAPTER 5. EVALUATION

MapReduce Execution Model

@
E 200 —%—Q1=(g1, m1, sum)
= —6—Q2 = (g2, m2, avg)
S
§ 100
@
i 8 ® = = = —8

0 1 1 1 1 1 1 1 1

X 5 5 5 5 5 5 5 X 5
o> x"‘lb ’&"Q’b x"b‘b x"ﬁb x"“‘:’b x"“‘b x’f%b &*qb
Time
SQL Execution Model

@
E 200 —¥— Q1= (g1, m1, sum)
= —6—Q2 = (g2, m2, avg)
S
§ 100
@
i

0 8@

X

_xb\' vq,b‘ Kxfbb\' pd ve,b‘ v@,b‘ K"“'& K"%& qub‘

\'x
Time

Figure 5.4: Incremental evaluation of Q1 = (g1, m1, sum) and Q2 = (g1, m1, avg)
using the MapReduce and SQL Execution model.

5.3 Common Grouping and Measuring Rewriting Rule
Evaluation

In order to evaluate the Common Grouping and Measuring Rewriting Rule the
grouping attribute g; and the measuring attribute m; used to create a set Q) of 5
queries with 5 different aggregation operations applicable on measuring attribute
mq. The query set @ defined as follows:

Q= {(91, mi, Sum), (91, miy, min), (91, mi, mw)a (91, mi, Count), (91, my, avg)}

The equivalent rewritten of Q by this rule is the following query:

Ql = {(gla ml)? (sum, mina max, count, avg)}

In the first series of experiments for this rewriting rule, we evaluate the ef-
fectiveness of the incremental approach instead of a batch approach. The batch
computation approach looks at the entire data set when new data is available to
be processed. In this perspective, two different scenarios are evaluated: In the
first scenario the) executed by the evaluation of the included queries individually
(e.g. without rewriting), and in the second scenario, the rewritten set Q' exe-
cuted as defined by the rewritten theory. The incremental computation approach

5.3. COMMON GROUPING AND MEASURING REWRITING RULE EVALUATION37

is more efficient by examines only the new incoming data in the last time interval
and incorporate the increment in the result. In this perspective we evaluate again
the two scenarios: the first scenario requires the execution of the @Q; the second
scenario requires the execution of rewritten Q'.

Figure 5.5 illustrates the evaluation time when @ and Q' are executed using
the MapReduce execution model and the two different approaches; Figure 5.6 il-
lustrates the evaluation time when @ and Q' are executed using the SQL execution
model and the two different approaches. For example, at time ¢t + 3A¢, the batch
computation approach requires to execute the query set Q or the rewritten set @',
over all data generated in range of t < +3At. At time t + 3At, the incremental
computation approach requires to execute the query set) or the rewritten set ',
only on data generated in range of t + 2At <t < t 4+ 3At and then corporates the
increment on the aggregated result. The experiment results prove the effectiveness
of the theory about incremental computation. While a data set grows over a time,
the evaluation cost remains stable independent of the overall increasing data size.
When the queries are evaluated over a batch data, the evaluation cost growths
linear accordingly of the size of the input batch data.

MapReduce Execution Model
T T T T T T

1200 - -

—+— Batch Computation (Non-Rewr.) -t

—&— Batch Computation (Rewr.)
1000 - Incremental Computation (Non-Rewr.)
—#— Incremental Computation (Rewr.)

800 [~ 1

600 - b

Execution Time

400 - b

2004

s ‘xb\ qu}\ Kxfbb\ * A \xgb" 'c;ob" o S ‘xtbb’\ ‘xgb\

Time

Figure 5.5: Evaluation of Common Grouping and Measuring Rewriting Rule when
the MapReduce Execution model is used over an unstructured dataset.

38 CHAPTER 5. EVALUATION

SQL Execution Model

1200 L T T T T T]
—+— Batch Computation (Non-Rewr.)
—&— Batch Computation (Rewr.) |t
1000 - Incremental Computation (Non-Rewr.)
—#— Incremental Computation (Rewr.)

800 - *

600 - b

Execution Time

400 *

£y

200 :]

0 s =
. x B &xq,b" \,‘rbb‘ - A ,\xc_)b‘ ,\,‘Q,D‘ o DS K,ga,b‘ \,‘gb‘

Time

Figure 5.6: Evaluation of Common Grouping and Measuring Rewriting Rule when
a SQL execution model is used over a structured dataset.

The next series of experiments evaluate the effectiveness of the Common Group-
ing and Measuring Rewriting Rule using the previously defined Q and @', when
the incremental processing approach used to refreshing previously generated re-
sults. Firstly, we evaluate the non-rewriting set () by running the query evaluation
process for a set @) of cardinality n = 1, and gradually increasing it to cardinality
n = 5. In this scenario, each included query in @) executed for each micro-batch
individually, and we report the average execution time as the average time of a set
Q@ of cardinality n needs to executed incrementally for a specific number of incre-
mental iterations over a synthetic data set. Secondly, we evaluate the rewriting set
@' by running the query evaluation for the rewriting set)’ of cardinality n = 1,
and gradually increasing it to cardinality n = 5. In this scenario, each included
query in rewriting set Q’, executed for each micro-batch as defined by the rewrit-
ing theory and the average execution time is reported. Figure 5.7 illustrates the
results of this series of experiments: when a non-rewriting query set @ is executed,
the execution cost increase accordingly to the number of participating queries in
the set. Moreover, we can be observed that the more queries participating in the
rewriting set @Q’, the execution cost remains the same.

5.4. COMMON GROUPING REWRITING RULE EVALUATION 39

MapReduce Execution Model

250 T
E 200 —¥— Rewriting
i= =& Non-rewriting
o 150
2
w 100
2 50 il % i
q: o3 o3 Ead
0 1 1 1
1 2 3 4 5
1Ql
SQL Execution Model
250 T T T D
E 200 + —¥— Rewriting 4
i= —&— Non-rewriting
o 150 .
@
& 100 .
2 s0t]
< " v s
o® " * !
1 2 4 5

D w

Figure 5.7: Evaluation of Common Grouping and Measuring Rewriting Rule for
both, structured and unstructured datasets, while the cardinality of rewriting and
non-rewriting set () increases.

5.4 Common Grouping Rewriting Rule Evaluation

In order to evaluate the Common Grouping Rewriting Rule, the grouping attribute
g1 and five measuring attributes m;...ms5 used to create a set () of 5 queries with
5 different aggregation operations applicable on those measuring attributes. The
query set () defined as follows:

Q = {(glamh Sum)a (gla m27min)7 (glvm37maw)7 (917m47 COUTLt), (91; ms, G/Ug)}

The equivalent rewritten of () by this rule is the following query:

Q" = {g1, (my, sum), (ma, min), (ms, max), (mg4, count), (m4, avg)}

In the first series of experiments the same evaluation experimental protocol
as the previous subsection, is following. We evaluate the effectiveness of the in-
cremental approach instead of a batch approach for this rewriting rule. Both
approaches, batch and incremental approach, are evaluated in two different sce-
narios. Firstly, the included queries in @ evaluated individually and secondly, the
included queries in Q evaluated as Q' as defined by the rewriting theory. Figure

40 CHAPTER 5. EVALUATION

5.8 illustrates the evaluation time when @ and @Q’ are executed using the MapRe-
duce execution model and the two different approaches; Figure 5.9 illustrates the
evaluation time when @ and @’ are executed using the SQL execution model and
the two different approaches.

MapReduce Execution Model
1200 L T T T T / T T]
—+— Batch Computation (Non-Rewr.)
—E&— Batch Computation (Rewr.)

1000 - Incremental Computation (Non-Rewr.)
—#— Incremental Computation (Rewr.)

800 - .

600 - N

Execution Time

400 - *

200

AN X X X X
o> ‘xq)) \,;5!) pr‘\)

P xx‘b& o D K,g,b\ \xgb"

Figure 5.8: Evaluation of Common Grouping Rewriting Rule when a MapReduce
Execution model is used over an unstructured data set.

5.4. COMMON GROUPING REWRITING RULE EVALUATION 41

SQL Execution Model
T T

T T T T
1200 - ¥ i
—+— Batch Computation (Non-Rewr.)
—&— Batch Computation (Rewr.)
1000 - Incremental Computation (Non-Rewr.)| |
—#— Incremental Computation (Rewr.)
) L i
£ 800
=
c
o
5 600 1
5]
0]
b4
w 4
400 - 1
E‘/e—/"'
200 1
0 — + * * ——— 4

. Kxb‘ K,g,b‘ ,\,‘q,b‘ & ABt \,‘c,b‘ ,\X@D" o NS ,\x@b" vgb‘

Time

Figure 5.9: Evaluation of Common Grouping Rewriting Rule when a SQL execu-
tion model is used over a structured data set.

In the second series of experiments, we evaluate the effectiveness of the Com-
mon Grouping Rewriting Rule, using the defined @ and Q" when the incremental
processing approach is used to incorporates the increment to the aggregated result.
We investigate the evaluation time of @ and Q' of cardinality n=1 and gradually
increasing it to cardinality n=>5. Figure 5.10 illustrates the results of this series of
experiments for both, structured and unstructured data sets.

42 CHAPTER 5. EVALUATION

MapReduce Execution Model

500
E 400 - —¥— Rewriting
[—&— Non-rewriting
J
)
=
L
o
=
<
5
1Ql
SQL Execution Model
250 T T T)
E 200 - —¥— Rewriting 4
e —&— Non-rewriting
¢ 150 |
2
w 100 7
g-‘ 50 F N
< T AN L
Oq_ il I I
1 2 4 5

0w

Figure 5.10: Evaluation of Common Grouping Rewriting Rule for both, structured
and unstructured datasets, while the cardinality of rewriting and non-rewriting set
Q increases.

5.5 Common Measuring and Operation Rewriting Rule
Evaluation

In order to evaluate the Common Measuring and Operation Rewriting Rule the

attributes ¢g; and go are used as grouping attributes, the attribute m; is used

as measuring attribute and the aggregation operation sum applied on measuring
attribute mq.

Q= {(glaml’ S’LL’I’I’L), (92,7711, sum)}

The equivalent rewritten of () by this rule is the following query:

Q/ = {(gl /\927m178um)7
(pT‘Ole, (gl A gz, my, Sum)a Sum)a (pTOsza (gl A g2,my, Sum)7 Sum)}

We follow the experimental protocols that describe in the above subsections.
Figure 5.11 illustrates the evaluation time when @ and @’ are executed using the
MapReduce Execution Model for both approaches, batch and incremental compu-
tation.

5.5. COMMON MEASURING AND OPERATION REWRITING RULE EVALUATION43

In the second series of experiments in this rewriting rule, we define the set @
which is equivalent rewriting as Q' as formally described by the Common Measur-
ing and Operation Rewriting Rule theory.

Q = {(glu my, Sum)a (925 my, Sum)a (93) my, 5um)7 (947 my, 8um)7 (957 my, Sum)}

Figure 5.12 illustrates the evaluation time of Q and @’ while the cardinality of
included queries in both sets increases from n =1 to n = 5.

MapReduce Execution Model

T T T T T T
1200 - b
—+— Batch Computation (Non-Rewr.)

—&— Batch Computation (Rewr.)
1000 - Incremental Computation (Non-Rewr.)
—#— Incremental Computation (Rewr.)

800 [~ 1

600 - 1

Execution Time

A ‘xb\ !\xq,b‘ !\xfbb\ & ab \xc_)l)‘ &xqs\)!‘ o S ‘qub‘ &ng‘

Time

Figure 5.11: Evaluation of Common Measuring and Operation Rule when the
MapReduce Execution Model is used over an unstructured data set.

44 CHAPTER 5. EVALUATION

MapReduce Execution Model
500 T

L —#—Rewriting _
450 —E&— Non-rewriting | &

400]

(%)
4]
o
T
1

Avg. Exec. Time
[o]
w
o
T
1

O Il Il 1
1 2 3 4 5

1l

Figure 5.12: Evaluation of Common Measuring and Operation Rule for unstruc-
tured data set, while the cardinality of rewriting and non-rewriting query set @)
increases.

5.6 Basic Rewriting Rule Evaluation

The first experiment that we conducted to evaluate the efficiency of the basic
rewriting rule is following described. The continuous query @ = (g11 091, m1, sum)
and the rewritten continuous query Q' = (g11, (g1, m1, sum), sum) are defined,
were both evaluated using map-reduce over an increasing synthetic data set using
the context of Figure 5.13. In batch approach the non-rewriting query) and the
equivalent rewriting query @’ is evaluated. Furthermore, the incremental approach
is used to evaluate both, Q and @Q’. Analyzing the results of this experiments, we
notice that when the incremental approach is applied instead of batch approach,
the evaluation cost is redacted. The rewriting of (g o f,m,op) not effects the
computation cost, for both approaches, when we unfold the initial query to two
other queries as describe above.

5.6. BASIC REWRITING RULE EVALUATION 45

MapReduce Execution Model

T T T T T T
1200 - b
—+— Batch Computation (Non-Rewr.)

—&— Batch Computation (Rewr.)
1000 - Incremental Computation (Non-Rewr.)
—#— Incremental Computation (Rewr.)

800 b

600 [~ b

Execution Time

400 1

200

0 * * * * #* * * . *

. Kxb‘ K,g,b‘ ,\,g,b‘ & ABt \,‘c,b‘ ,\X@D" o NS ,\x?,b" vgb‘

Time

Figure 5.13: Evaluation of Basic Rewriting Rule when the MapReduce Execution
Model is used over an unstructured data set.

Now we present another experiment on the unstructured data set by the context
of Figure 12. We define the following set of queries:

Q = (gll ©g1,my, Sum)a ceey (915 ©gy,my, Sum)

containing five queries and all of them have the same distributive operation
applicable on the same measuring attribute my. As described by the rewriting
theory, the @ can equivalent rewritten by the basic rewriting rule as follows:

Ql = {(glla (glv m, 0p)7 sum), (XY (9157 (917 m, Op)a sum)}

The rewritten set @)’ consists of five queries and each one uses the answer of
(g1, m,op) as its measure. To investigate the effectiveness of this rewriting rule,
we run the experiments for a set Q' of cardinality n = 1 and increasingly the
cardinality increments up to n = 5. We notice how the effectiveness of the basic
rewriting rule adjusts as more queries participate in the rewritten Q’. Figure 5.14
shows the average evaluation time of the non-rewriting set () and the rewritten set
Q' accordingly to the number of participated queries. The result shows that the
average evaluation time it is not affected while the number of participated queries
increasing.

46

MapReduce Execution Model
T

CHAPTER 5. EVALUATION

500

450 -

400

350

(5]
o
o

Avg. Exec. Time
[o]
w
o

—#—Rewriting })
—&E— Non-rewriting

200 .
150 .
100 .
50 4
0
1 2 3 4 5
1l

Figure 5.14: Evaluation of Basic Rewriting Rule while the cardinality of rewriting

and non-rewriting set QQ increases.

Chapter 6

Conclusion and Future Work

In this thesis, we leverage the HIFUN language, adding an incremental evaluation
mechanism using Spark Streaming. We present an approach allowing the incre-
mental update of continuous query results, preventing the costly re-computation
from scratch. We also show the additional benefits of query rewriting, enabled
by the adoption of the HIFUN language. The query rewriting rules can be im-
plemented in the physical layer as well, further benefiting the efficiency of query
answering. We demonstrated experimentally the considerable advantages gained
by using the incremental evaluation, reducing the overall evaluation cost using
both the map-reduce implementation and the SQL one. Our system provides a
compact solution for big data analytics and can be extended to support a big vari-
ety of data set formats, with its evaluation mechanisms working regardless of the
nature of the data.

Future work will exploit a number of research items that can be used for the ex-
tension of our system. The first concerns the evaluation of a query in millisecond
low-latency processing mode of streaming called continuous mode. Our imple-
mentation mechanism has been providing stream processing capabilities through
micro-batching. The main disadvantage of this approach is that each task (e.g.
micro-batch) needed to be collected and scheduled at regular intervals, through
which the minimum latency that the physical level module could provide. Suppose
now we want to analyze fraudulent credit card transactions. Ideally, we want to
identify and reject a fraudulent transaction as soon as the culprit has swiped the
credit card. The continuous processing mode, instead of launching periodic tasks,
attempts to overcome this limitation to provide stream processing with very low
latencies.

The second research item concerns event time support in query evaluation.
Event time is the time that each individual event occurred on its producing phase
(e.g. generated from IoT device) and can be included within the record before
enter in processing phase, and that event timestamp can be extracted from each
record. When all the data has arrived, event time processing is able to produce
correct and consistent results even when working with out-of-order or late events.

47

48

CHAPTER 6. CONCLUSION AND FUTURE WORK

Bibliography

1]

Daniel J. Abadi, Donald Carney, Ugur Cetintemel, Mitch Cherniack, Chris-
tian Convey, C. Erwin, Eduardo F. Galvez, M. Hatoun, Anurag Maskey,
Alexander Rasin, A. Singer, Michael Stonebraker, Nesime Tatbul, Ying Xing,
Rui Yan, and Stanley B. Zdonik. Aurora: a data stream management system.

In SIGMOD ’03, 2003.

Giannis Agathangelos, Georgia Troullinou, Haridimos Kondylakis, Kostas
Stefanidis, and Dimitris Plexousakis. Incremental data partitioning of rdf
data in spark. In ESWC, 2018.

Giannis Agathangelos, Georgia Troullinou, Haridimos Kondylakis, Kostas
Stefanidis, and Dimitris Plexousakis. Rdf query answering using apache spark:
Review and assessment. 2018 IEEE 34th International Conference on Data
Engineering Workshops (ICDEW), pages 54-59, 2018.

Yanif Ahmad, Oliver Kennedy, Christoph Koch, and Milos Nikolic. Dbtoaster:
Higher-order delta processing for dynamic, frequently fresh views. PVLDB,
5:968-979, 2012.

Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak, Rafael
Fernandez-Moctezuma, Reuven Lax, Sam McVeety, Daniel Mills, F. Perry,
Eric Schmidt, and Sam Whittle. The dataflow model: A practical approach

to balancing correctness, latency, and cost in massive-scale, unbounded, out-
of-order data processing. PVLDB, 8:1792-1803, 2015.

Mehmet Altinel and Michael J. Franklin. Efficient filtering of xml documents
for selective dissemination of information. In VLDB, 2000.

Michael Armbrust, Tathagata Das, Joseph Torres, Burak Yavuz, Shixiong
Zhu, Reynold Xin, Ali Ghodsi, Ion Stoica, and Matei Zaharia. Structured
streaming: A declarative api for real-time applications in apache spark. In

SIGMOD 18, 2018.

Michael Armbrust, Reynold Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K.
Bradley, Xiangrui Meng, Tomer Kaftan, Michael J. Franklin, Ali Ghodsi, and
Matei Zaharia. Spark sql: Relational data processing in spark. In SIGMOD
’15, 2015.

49

50

[9]

[17]

18]

[19]

BIBLIOGRAPHY

Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer
Widom. Models and issues in data stream systems. In PODS 02, 2002.

Shivnath Babu and Jennifer Widom. Continuous queries over data streams.
SIGMOD Record, 30:109-120, 2001.

Olga Baysal, Reid Holmes, and Michael W. Godfrey. Developer dashboards:
The need for qualitative analytics. IEEE Software, 30:46-52, 2013.

José A. Blakeley, Per-Ake Larson, and Frank Wm. Tompa. Efficiently updat-
ing materialized views. In SIGMOD ’86, 1986.

Chrisje R. Bolt. Hadoop: The definitive guide. 2014.

Philippe Bonnet, Johannes Gehrke, and Praveen Seshadri. Towards sensor
database systems. In Mobile Data Management, 2001.

Peter Buneman and Robert E. Frankel. Fql: a functional query language. In
SIGMOD 79, 1979.

Peter Buneman, Robert E. Frankel, and Rishiyur S. Nikhil. An implemen-
tation technique for database query languages. ACM Trans. Database Syst.,
7:164-186, 1982.

Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif
Haridi, and Kostas Tzoumas. Apache flink™: Stream and batch process-
ing in a single engine. IEEFE Data Eng. Bull., 38:28-38, 2015.

Jianjun Chen, David J. DeWitt, Feng Tian, and Yuan Wang. Niagaracq: a
scalable continuous query system for internet databases. In SIGMOD ’00,
2000.

Cheng-Tao Chu, Sang Kyun Kim, Yi-An Lin, YuanYuan Yu, Gary R. Bradski,
Andrew Y. Ng, and Kunle Olukotun. Map-reduce for machine learning on
multicore. In NIPS, 2006.

Tyson Condie, Neil Conway, Peter Alvaro, Joseph M. Hellerstein, Khaled
Elmeleegy, and Russell Sears. Mapreduce online. In NSDI, 2010.

Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing
on large clusters. In CACM, 2004.

Jeffrey Dean and Sanjay Ghemawat. Mapreduce: a flexible data processing
tool. Commun. ACM, 53:72-77, 2010.

Steven J. DeRose and I. Corp. Xml path language (xpath) version 1.0. 1999.

Janine DeWitt and Michael Stonebraker. Mapreduce: A major step back-
wards. 2014.

BIBLIOGRAPHY 51

[25]

[26]

[27]

[28]

[29]

33]

Yanlei Diao, P Fischer, and Michael J. Franklin. Yfilter: Efficient and scalable
of xml document. 2002.

Vasilis Efthymiou, Petros Zervoudakis, Kostas Stefanidis, and Dimitris Plex-
ousakis. Group recommendations in mapreduce. 2017.

Amy Franklin, Swaroop Gantela, Salsawit Shifarraw, Todd R. Johnson,
David J. Robinson, Brent R. King, Amit M. Mehta, Charles L. Maddow,
Nathan R. Hoot, Vickie Nguyen, Adriana Rubio, Jiajie Zhang, and Nnae-
meka G. Okafor. Dashboard visualizations: Supporting real-time throughput
decision-making. Journal of biomedical informatics, 71:211-221, 2017.

Ashish Gupta and Inderpal Singh Mumick. Materialized views: techniques,
implementations, and applications. 1999.

Shengsheng Huang, Jie Huang, Jinquan Dai, Tao Xie, and Bo Huang. The hi-
bench benchmark suite: Characterization of the mapreduce-based data anal-
ysis. 2010 IEEE 26th International Conference on Data Engineering Work-
shops (ICDEW 2010), pages 41-51, 2010.

Muhammad Hussain Muhammad Igbal and Tariq Rahim Soomro. Big data
analysis: Apache storm perspective. 2015.

Paulo Jesus, Carlos Baquero, and Paulo Sérgio Almeida. A survey of dis-
tributed data aggregation algorithms. IEEE Communications Surveys Tuto-
rials, 17:381-404, 2011.

Jeyhun Karimov, Tilmann Rabl, Asterios Katsifodimos, Roman Samarev,
Henri Heiskanen, and Volker Markl. Benchmarking distributed stream data
processing systems. 2018 IEEE 34th International Conference on Data Engi-
neering (ICDE), pages 15071518, 2018.

Kiyoung Kim, Kyungho Jeon, Hyuck Han, Shin Gyu Kim, Hyungsoo Jung,
and Heon Young Yeom. Mrbench: A benchmark for mapreduce framework.
2008 14th IEEFE International Conference on Parallel and Distributed Sys-
tems, pages 11-18, 2008.

Hian Chye Koh and Gerald Tan. Data mining applications in healthcare.
Journal of healthcare information management : JHIM, 19 2:64-72, 2005.

Sailesh Krishnamurthy, Michael J. Franklin, Jeffrey Davis, Daniel Farina,
Pasha Golovko, Alan Li, and Neil Thombre. Continuous analytics over dis-
continuous streams. In SIGMOD Conference, 2010.

Dominique Laurent, Jens Lechtenborger, Nicolas Spyratos, and Gottfried
Vossen. Monotonic complements for independent data warehouses. The VLDB
Journal, 10:295-315, 2001.

52

[37]

[38]

BIBLIOGRAPHY

Kyong-Ha Lee, Yoon-Joon Lee, Hyunsik Choi, Yon Dohn Chung, and Bongki
Moon. Parallel data processing with mapreduce: a survey. SIGMOD Record,
40:11-20, 2011.

Philip Levis, Samuel Madden, Joseph Polastre, Robert Szewczyk, Kamin
Whitehouse, Alec Woo, Jason L. Hill, Matt Welsh, Eric A. Brewer, and

David E. Culler. Tinyos: An operating system for sensor networks. 2005.

Alon Yitzchak Levy. Answering queries using views: A survey. In VLDB
1995, 1995.

Feng Li, Beng Chin Ooi, M. Tamer Ozsu, and Sai Wu. Distributed data
management using mapreduce. ACM Comput. Surv., 46:31:1-31:42, 2014.

Ling Liu, Calton Pu, Roger S. Barga, and Tong Zhou. Differential evalu-
ation of continual queries. Proceedings of 16th International Conference on
Distributed Computing Systems, pages 458465, 1996.

Ling Liu, Calton Pu, and Wei Tang. Continual queries for internet scale
event-driven information delivery. IEEE Trans. Knowl. Data Eng., 11:610-
628, 1999.

Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong.
Tinydb: an acquisitional query processing system for sensor networks. ACM
Trans. Database Syst., 30:122-173, 2005.

Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert,
Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: a system for large-
scale graph processing. In SIGMOD Conference, 2010.

Gunasekaran Manogaran, Daphne Lopez, Chandu Thota, Kaja Abbas,
Saumyadipta Pyne, and Revathi Sundarasekar. Big data analytics in health-
care internet of things. 2017.

Alper Okcan and Mirek Riedewald. Processing theta-joins using mapreduce.
In SIGMOD °11, 2011.

Andrew Pavlo, Erik Paulson, Alexander Rasin, Daniel J. Abadi, David J. De-
Witt, Samuel Madden, and Michael Stonebraker. A comparison of approaches
to large-scale data analysis. In SIGMOD Conference, 2009.

Ivanilton Polato, Reginaldo Ré, Alfredo Goldman, and Fabio Kon. A compre-
hensive view of hadoop research - a systematic literature review. J. Network
and Computer Applications, 46:1-25, 2014.

Xiaolei Qian and Gio Wiederhold. Incremental recomputation of active rela-
tional expressions. IEEE Trans. Knowl. Data Eng., 3:337-341, 1991.

BIBLIOGRAPHY 53

[50]

[51]

[52]

[61]

[62]

Waullianallur Raghupathi and Viju Raghupathi. Big data analytics in health-
care: promise and potential. In Health Inf. Sci. Syst., 2014.

Sherif Sakr, Anna Liu, and Ayman G. Fayoumi. The family of mapreduce
and large-scale data processing systems. ArXiv, abs/1302.2966, 2013.

Peter Sestoft. Analysis and efficient implementation of functional programs.
1991.

Nicolas Spyratos. A functional model for data analysis. In FQAS, 2006.

Nicolas Spyratos and Tsuyoshi Sugibuchi. Parallelism and rewriting for big
data processing. In ISIP, 2012.

Nicolas Spyratos and Tsuyoshi Sugibuchi. A high level query language for big
data analytics. 2014.

Nicolas Spyratos and Tsuyoshi Sugibuchi. Hifun - a high level functional query
language for big data analytics. Journal of Intelligent Information Systems,
51:529-555, 2018.

Michael Stonebraker, Daniel J. Abadi, David J. DeWitt, Sam Madden, Erik
Paulson, Andrew Pavlo, and Alexander Rasin. Mapreduce and parallel dbmss:
friends or foes? Commun. ACM, 53:64-71, 2010.

Mark Sullivan and Andrew Heybey. Tribeca: A system for managing large
databases of network traffic. In USENIX Annual Technical Conference, 1998.

Douglas B. Terry, David Goldberg, David A. Nichols, and Brian M. Oki.
Continuous queries over append-only databases. In SIGMOD ’92, 1992.

Chun-Wei Tsai, Chin-Feng Lai, Ming-Chao Chiang, and Laurence Tianruo
Yang. Data mining for internet of things: A survey. IEEE Communications
Surveys Tutorials, 16:77-97, 2014.

Glampedakis Vassilis. A big data analytics system based on a high-level query
language using apache spark. 2017.

Maria-Esther Vidal, Louiga Raschid, Natalia Marquez, Marelis Cardenas, and
Yao Wu. Query rewriting in the semantic web7. 22nd International Confer-
ence on Data Engineering Workshops (ICDEW’06), pages 7-7, 2006.

Stratis Viglas and Jeffrey F. Naughton. Rate-based query optimization for
streaming information sources. In SIGMOD ’02, 2002.

Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and
Ton Stoica. Spark: Cluster computing with working sets. In HotCloud, 2010.

54 BIBLIOGRAPHY

[65] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker,
and Ion Stoica. Discretized streams: fault-tolerant streaming computation at
scale. In SOSP ’13, 2013.

[66] Dongsong Zhang and Lina Zhou. Discovering golden nuggets: data mining in
financial application. IEEE Trans. Systems, Man, and Cybernetics, Part C,
34:513-522, 2004.

[67] Weizhong Zhao, Huifang Ma, and Qing He. Parallel k-means clustering based
on mapreduce. In CloudCom, 2009.

[68] Yue Zhuge, Hector Garcia-Molina, Joachim Hammer, and Jennifer Widom.
View maintenance in a warehousing environment. In SIGMOD 95, 1995.

