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Interactive Formulation of SPARQL Queries through
Examples and Feedback

Abstract

The formulation of structured queries in knowledge graphs is a challenging
task since it presupposes familiarity with the syntax of the query language and
the contents of the knowledge graph. To alleviate this problem, and enable plain
users to formulate SPARQL queries (and aid advanced users to formulate queries
with less effort), in this thesis we introduce “SPARQL by Example”, an interactive
method for formulating SPARQL queries. The user points to positive/negative
entities, the system computes one query that describes these entities, and then
the user refines the query interactively by providing positive/negative feedback
on entities and suggested constraints. We analyze this problem, we propose an
interactive process, we present SPARQL-QBE a tool that implements this approach,
and finally we report the results of a task-based evaluation with users that provided
positive evidence about the usability of the approach.





Διαδραστική Διατύπωση Επερωτήσεων SPARQL
μέσω Παραδειγμάτων και Ανατροφοδότησης

Περίληψη

Η διατύπωση δομημένων επερωτήσεων σε Γνωσιακούς Γράφους αποτελεί πρόκλη-

ση, καθώς προϋποθέτει γνώση και εξοικείωση με το συντακτικό της γλώσσας ε-

περωτήσεων και τα περιεχόμενα του Γνωσιακού Γράφου. Για να απαλυνουμε αυτό

το πρόβλημα και να επιτρέψουμε σε απλούς χρήστες να διατυπώνουν εύκολα επερω-

τήσεις SPARQL (και να βοηθήσουμε τους έμπειρους χρήστες ώστε να διατυπώνουν
επερωτήσειςμε λιγότερη προσπάθεια), σε αυτήν τη διατριβή εισάγουμε τη μέθοδο

«SPARQL by Example», μια διαδραστική μέθοδο για τη διατύπωση επερωτήσεων
SPARQL. Βάσει αυτής, ο χρήστης υποδεικνύει θετικά ή/και αρνητικά παραδείγματα
(οντότητες), το σύστημα υπολογίζει μια επερώτηση που περιγράφει αυτές τις οντότη-

τες και στη συνέχεια ο χρήστης βελτιώνει την επερώτηση διαδραστικά παρέχοντας

θετική/αρνητική ανατροφοδότηση για οντότητες και προτεινόμενες συνθήκες. Ανα-

λύουμε αυτό το πρόβλημα, προτείνουμε μια διαδραστική διαδικασία, και παρουσιάζουμε

το SPARQL-QBE ένα διαδικτυακό σύστημα που εφαρμόζει αυτήν την προσέγγιση.
Τέλος αναφέρουμε τα αποτελέσματα μιας αξιολόγησης βάσει εργασιών με χρήστες που

καταδεικνύουν τα θετικά στοιχεία (χρηστικότητα) αυτής της προσέγγισης.
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Chapter 1

Introduction

The formulation of structured queries has always been considered a challenging
task. Especially in knowledge graphs where there are no specific constraints and
limitation for the structure of their contents. The user must either have prior un-
derstanding of the current structure of the graph or either use the query language
to acquire that understating. An additional layer of difficulty is also the syntax
of the query language itself, which for plain users may require training. For these
reasons, many methods and tools have been developed over the years that try to
assist the user to formulate queries either by provide helpful information while the
user writes the query or by hiding the text-based nature of the query behind a
dynamic visual interface. Most of these approaches benefit both plain and knowl-
edgeable users in formulating SPARQL queries without requiring much familiarity
with the knowledge graph or the query language or both.

In this thesis we present “SPARQL by Example” an interactive example-based
method for formulating queries that utilizes a feedback loop. The approach is
inspired by the Query-by-Example paradigm [28] that was developed in the con-
text of Relational Databases, as well as by the relevance feedback mechanisms in
Information Retrieval [21]. The main idea is the following: The user provides one
or more entities, that they may have discovered while browsing or by keyword
search. We then compute one query whose result contains the provided plus other
entities that have commonalities with the entities provided by the user. Then
the user can refine the formulated answer (and query) by providing interactively
positive/negative feedback, by selecting/rejecting constraints that are given to the
user, as well as positive/negative examples.

To grasp the idea, Figure 1.1 shows the start of the interaction loop. The user
selects (through keyword search) as starting examples the films “The Prestige”
and “The Dark Knight” using simple keyword search. The system then generates
a list of selected common constraints and returns all entities that comply with
them. The user then has the option to either access the results and the generated
SPARQL query or continue refining the results by giving feedback. In our case the
user by typing the titles of two movies, managed to formulate the query “movies

1
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Figure 1.1: Running Example: Finding movies through examples and feedback
(via SPARQL-QBE)

PREFIX dbo: <http://dbpedia.org/ontology/>

PREFIX dbr: <http://dbpedia.org/resource/>

SELECT ?x WHERE {

?x rdf:type dbo:Film .

?x dbo:director dbr:Christopher_Nolan .

?x dbo:producer dbr:Emma_Thomas .

?x dbo:starring dbr:Christian_Bale .

?x dbo:starring dbr:Michael_Caine .

}

Figure 1.2: The formulated SPARQL example of the running example

with Christian Bale and Michael Caine, with director Christoopher Nolan and
producer Emma Thomas, and can directly see the answer of that query (the movies
“Batman Begins” and The “Dark Knight Rises” as shown in Figure 1.1(right)),
as well as the SPARQL query, as shown in Figure 1.2. If the user is not interested
in the involvement of the actor “Christian Bale” the constraint “dbo:starring =
Christian Bale” can be flagged as unwanted. The system will then generate a new
list of constraints that still describe all the given examples but ignore the actor.

In a nutshell, the contributions of this work are: (a) a novel interactive method
for formulating SPARQL by example, (b) an analysis of the process, (c) an im-
plementation of the model that proves its feasibility, and (d) an evaluation of the
model with users with promising results.

Although there are some works that aim at offering a QBE-like interaction
over Knowledge Graphs in RDF, i.e. [14, 12, 1], our approach has some distinctive
characteristics. In particular, “Qbees” [14] neither supports negative examples
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nor produces a pure SPARQL query, “Query from examples” [12] requires from
the user to answer a number of questions, while “Reverse engineering SPARQL
queries” [1] cannot receive feedback on the generated constraints.

In the rest of this thesis is organized as follows: Section 2 describes the con-
text and related work, Section 3 introduces the method and the corresponding
algorithms. Section 4 describes implementation and evaluation. Finally Section 5
concludes the thesis and identifies issues for further research.

Publications related to this thesis:

• A. Akritidis and Y. Tzitzikas, Demonstrating Interactive SPARQL Formu-
lation through Positive and Negative Examples and Feedback, 26th Interna-
tional Conference on Extending Database Technology, EDBT 2023, March
2023



4 CHAPTER 1. INTRODUCTION



Chapter 2

Context and Related Work

In this chapter: §2.1 describes the required context, §2.2 discusses the placement
of this work in the spectrum of access methods over RDF, §2.3 discusses SPARQL
formulators, §2.5 describes example-based SPARQL works while §2.4 discusses
cases from different domains where the notion of “example” is used.

2.1 Knowledge Graphs in RDF

A Knowledge Graph (KG) is a structured representation of knowledge that models
entities with their properties and relationships using a graph. The entities are
represented as nodes with a unique identifier. The relationships are represented as
edges connecting two nodes that the relationship applies to. The simplicity of only
having two types of elements, nodes and edges, allows for an improved machine
interpretability of knowledge.

The Resource Description Framework (RDF) is a standard used mainly to
model the data of a KG. The main component of RDF is the triple statement.
Each triple is composed of a subject, predicate and object. The subject represents
the resource being described, the predicate represents the relationship between
the subject and object, and the object represents the value being assigned to the
relationship.

The Resource Description Framework Schema (RDFS) is a collection of classes
that allow for a more standardised description of the entities and relationships of
a KG.

For example for the movie “The Dark Knight” if we want to model some basic
properties (type/label) and some relationships with some people (director/actor)
we could have:

dbr:The_Dark_Knight rdf:type dbpo:Film .

dbr:The_Dark_Knight rdfs:label "The Dark Knight (film)"

dbr:The_Dark_Knight dbo:director dbr:Christopher_Nolan

dbr:The_Dark_Knight dbo:starring dbr:Christian_Bale

dbr:The_Dark_Knight dbo:starring dbr:Michael_Caine

5
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Figure 2.1: An Overview of Access Methods over RDF

Where the prefix for each identifier notates the where it’s defined (db stands
for dbpedia).

Overall, the use of knowledge graphs has become widespread in various do-
mains, where large amounts of information need to be processed and analysed,
including search engines, recommendation systems, natural language processing
and others. They occupy the space between knowledge being stored in natural
language and table format of the classic relational database. They are more struc-
tured than natural language but with less constraints and more flexibility than
relational databases.

2.2 Overview of Access Methods over RDF

There are several access methods over RDF, as it can be seen in Fig. 2.1 (extended
version of that of [16]). In particular, they can be divided in four different
categories, a) Structured Query Languages (like SPARQL and various extensions
of the language), b) Keyword Search (e.g. [16]), c) Interactive Information Access
that includes plain browsing, similarity-based browsing [2], faceted search [23], and
query builders, and d) Natural Language Interfaces (like QA [15]).
Our Placement. Our work falls in the category of Interactive Information Access,
specifically on assistants for query formulation.

2.2.1 SPARQL

The SPARQL Protocol and RDF Query Language (recursive acronym SPARQL)
is widely used as the main query language for RDF data. Similarly to other query
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languages, it is designed to provide a way to access and also manipulate data. In
this thesis we only consider the access part of the language.

SPARQL supports a wide range of queries from simple filtering and pattern
matching to complex aggregate queries. For example, using the KG of “The Dark
Knight” from the previous section, if we want to retrieve all the actors taking part
in the a movie we could have

PREFIX dbr: <http://dbpedia.org/resource/>

PREFIX dbo: <http://dbpedia.org/ontology/>

SELECT ?actor WHERE {

dbr:The_Dark_Knight dbo:starring ?actor .

}

The query uses the SELECT statement to specify that we want to retrieve the
values of the variable “?actor”. The WHERE statement specifies the pattern that
we are searching for. In this case, we are looking for triples where the subject is
“The Dark Knight” and the predicate is “starring”. The object of these triples
will be the names of actors who starred in the movie, represented by the variable
“?actor”. The results of the query will be a table with a single column for the actor.
There are multiple actors in the movie so each actor will appear as a separate row
in the table.

More complex patterns are also supported, for example chaining of properties
from the object of one triple to the subject of another triple (property paths) can
also be modelled:

PREFIX dbr: <http://dbpedia.org/resource/>

PREFIX dbo: <http://dbpedia.org/ontology/>

SELECT ?movie WHERE {

?movie dbo:director ?director .

?director dbo:birthPlace dbr:London .

}

Here we want to retrieve all the movies that have a director from London.
The variable “?director” is used only internally to create a property path from the
variable “?movie” to London.

For a complete deception of RDF and SPARQL see: https://www.w3.org/

TR/rdf11-concepts/ and https://www.w3.org/TR/sparql11-query/

2.3 SPARQL Query formulators

The tools that aid the formulation of SPARQL queries could be divided into two
categories Query Builders and Faceted Search.
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Query Builders like SPARQL Assist [13] and YASGUI [19] simply assist the
user to write the query with the main interface being a text field for SPARQL.
More visual Query builders, like SPARKLIS [7], ResearchSpace [17], Sparnatural
[8], and Assistive Query Building (A-QuB) [11], enable the user to construct a
query step by step using interactive graphical interfaces. For instance SPARKLIS
[7], enables the user to inspect the schema and select elements through which
to formulate the desired query. To hide the complexity of the schema, systems
like ResearchSpace [17], Sparnatural [8], and Assistive Query Building (A-QuB)
[11] enable the user to formulate a query over an abstraction of the schema, and
assist the user by providing autocomplete fields, dropdown lists and other similar
elements.

Figure 2.2: A-QuB [11] multiple nested filters

The queries that are formulated over that view are then translated to SPARQL
queries over the original schema. This approach is very useful in cases the ontology
is big and complex (like CIDOC CRM [4]), since it would be almost impossible for
the user to formulate directly one of the derived SPARQL queries. However, the
abstraction of the model has to be configured by the designer. The formulators,
like RDF Explorer [25] allow the user to freely explore an interactive visual graph,
with the assistance of various components (search panel, visual query editor, node
detail view, node editor, SPARQL query editor), that will lead to the formulation
of a query (see [9] for an overview of older visual query builders published prior to
2015).

Faceted Search systems over RDF (see [23] for a survey), have a more ex-
ploratory nature, showing also the entities at each state and offering to the user
only options that lead to non empty results. A recent system for Faceted Search
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Figure 2.3: RDF Explorer [25] example visual query

over RDF that supports also analytic queries is [18]

Somehow relevant are the extensions of SPARQL with similarity, like [26, 6]
enabling the formulation of criteria that would be hard to express in SPARQL.

Our Placement. Our work differs since the main input from the user a set of
(positive and negative) entities.

2.4 Using the notion of “Example” in other Domains
and Tasks

Query by Example in Relational Databases. In the context of relational
databases, almost 50 years ago, Moshe M. Zloof developed the Query-by-Example
language [28]. The goal of the language was to allow non-programmers to query
relational databases. The user is provided a visual area with empty tables where
the user could add rows and fill cells. Every table provided corresponded to a
table in the database with the same columns and column names but with none
of the existing rows. In the simplest cases, the user constructs example rows
with a combination of constants and variables in some of the columns. Then the
system provides values for the variables that conform with the example rows. The
variables can be referenced and are shared between all the example rows of each
table which allows the creation of complex queries that support implicit joining
of tables. The language was also extended to support more operations than just
querying [29] [27]. A study of real users (of that era) trying to solve problems
using Query-by-Example [22] has shown promising results. However the number
of tables/columns of the database was relatively small if we consider the context
of knowledge graphs and the number of properties. Also mapping of a knowledge
graph to a table/column interface usually leads to small number of tables with
very large number of columns which is an undesired structure when a user has any
direct interaction with tables. Many graphical front-ends for databases use the
ideas from QBE (Query By Example) today.
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It should be noted that in Moshé M. Zloof’s papers [28] the “examples” are
effectively a combination of constraints that describe the expected results. Note
that relational databases are value-based, however RDF is graph-based and has
explicit entities. To this end, we use entities instead of values, and as we shall see
this is more flexible (and economical) for the user than values, since an entity is
associated with several values.

Information Retrieval (IR). In IR we have Relevance Feedback [20] where the
user provides positive and negative feedback to the hits returned to the initial
query, which are used for improving the query. The updated query is aimed at
returning better results, however it is larger (and more expensive to evaluate), and
can lead to some unexpected results (low explainability). In our case we do not
have this problem, since we use the input for the common constraints and the user
selectes the desired.

Schema Mappings. The notion of example has also been used for constructing
mappings between schemas. For instance, according to the ostensive method for
schema mappings [24], two systems exchange sets of objects and try to compute
and return the best approximate queries that describe these objects, and this
enables the two parties to establish mappings between their terms and queries.

2.5 Example-based SPARQL works

There have been other works where examples are used as the starting point of
finding a desired set of results. The term “example” is used in every case but, in
the context of each work, the definition of the term is different. In our work, an
example can be categorized into four types, which are based on the combination of
whether the example has a positive or negative connotation, and whether it refers
to a entity or a property-value pair.

In “Query from examples” [12] the user of the system provides examples in a
form of a dataset-result pairs they may not be part of the final results. The system
then starts a feedback loop with the user by asking specific generated questions.

In “Qbees: query by entity examples” [14] the examples are entities but only
positive, there is no support for negative examples. The results are directly gen-
erated based on ranking of common properties without the formulation of corre-
sponding SPARQL query.

In “Reverse engineering SPARQL queries” [1] and works that use the same
technique (eg. SPARQLByE [3]) the examples are positive and negatives entities
without support for specific property-value pairs. The system generates a query
based on the given examples with an optional feedback loop where the user can
adjust the given examples in every step.

Our Placement. Our work most resembles the “Reverse engineering SPARQL
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Figure 2.4: SPARQLByE [3] user interface showing the result of adding labelled
examples

queries” however in the techniques described the addition of property-value pairs
as possible positive or negative examples cannot be integrated. The addition of
property-value pair examples, more specifically negative ones, improves greatly
the feedback because it replaces the need for the user to find counter-examples.
Counter-example are difficult to be found and may not be interpreted by the system
as intended.
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Chapter 3

SPARQL by Example: Problem
Statement, Principles and
Algorithms

3.1 Problem Statement

Given a set of positive and negative examples, EP and EN respectively (where
EP ∩EN = ∅), the objective is to compute a query q, such that answer of the query
ans(q) ⊃ EP and EN ∩ ans(q) = ∅. We limit all queries to simple conjunction of
constraints represented as the set of those constraints and every constrain c as a
property-value pair.

Of course there may be several such queries, or no query at all. Since the user
provides the set EP as a set of indicative examples, to provide them with moremore
entities, it is reasonable to try finding those conditions that the elements of EP

satisfy, and suggest to the user those (more) entities that satisfy these constraints.
Since there may be several common constraints, there is a need for methods for
selecting those to be included in the query. Since we are in the context of an
interactive system, this selection can be based on the following desiderata: (a)
the selection should support gradual enlargement of the answer, (b) the selection
should be transparent and explainable (i.e. the user understands why they get more
entities). Therefore, we propose computing and showing the common constraints
in a way that enables the user to declare any of the constraints as wanted or
unwanted creating the sets of positive and negative constrain examples, CP and
CN respectively (where where CP ∩ CN = ∅).

As regards negative feedback, the entities in EN are used to exclude combina-
tions of common constraints. While some of the constraints of the final query q
may be met by entities of EN , the conjunction of all the constraints must reject
all the entities of EN .

13
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So the system can be described as single pure function:

SPARQL-QBE(EP , EN , CP , CN ) = q

3.2 Algorithm

We support a session-based interaction scheme, allowing the user to refine/change
his/her query gradually. As stated earlier, the process starts by selecting (by brows-
ing, keyword search or any other access method) at least two positive examples
EP . Then it enters into an interaction loop. The system accepts 4 kinds of input:
the positive EP and negative EN set of entities, and the positive CP and negative
CN set of constraints. Given a dataset and the 4 inputs, the system will output
the same query q (stateless), and the answer of the query A. The steps of the
above process are shown in Alg. 1. In particular, in each loop of the interaction,
the user after inspecting the answer A of the current query, can either: (i) provide
positive or negative feedback to the entities of the answer received by selecting
elements of A, E′

P = (EP ∪EPadded
) \EP deleted, E

′
N = (EN ∪ENadded

) \ENdeleted),
(ii) delete one of the constraints c of the original query q, and this changes the
set of unwanted constraints, i.e. CN ′ = CN ∪ {c}, (iii) add a new constraint by
clicking on the (p,=, v) values of the elements of the answer; they can also add
such a constraint in negated form (p ̸= v), and get CP ′ = CP ∪ {(p, op, v)}.

Algorithm 1 QBE Interactive Loop

0: function QBE-Interactive(EP , EN : sets of entities, CP , CN : sets of constraints)
0: C ← (CC(EP ) ∪ CP ) \ CN

0: Q← {q |q ∈ P (C), ans(q) ∩ EN = ∅}
0: q ← Rank(Q)[1] //the first query in the rank

0: while ans(q) = EP do //no extra entities

0: q ← next element of Rank(Q) //The next in the rank query

0: end while
0: show A = ans(q)
0: Receive any input from the user and get E′

P , E
′
N , C ′

P , C
′
N

0: call QBE-Interactive (E′
P , E

′
N ,C ′

P , C
′
N )

In the following sections, every step and component of the algorithm are de-
scribed in detail.

3.3 The Exact Process of SPARQL-QBE

Positive Examples. Let K be the set of triples of the underlying Knowledge
Graph. Let hereafter use EP to denote the initial positive examples, i.e. one or
more URIs selected by the user as indicative examples. Let CC(EP ) be the set of
common constraints of the selected entities, defined as:

CC(EP ) = { (p, v) | ∀e ∈ EP , (e, p, v) ∈ K}
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For example, assuming two movies EP = {m1,m2}, we may have CC(EP ) =
{(director,Maria), (starring, James), (year, 2022)}. This is the initial query q0,
and we show to the user the constraints of this query q0 = CC(EP ) = {c1, . . . , ck}
as well as the answer of q0, denoted by ans(q0), as shown in Figure 3.1.

Figure 3.1: EP = {m1,m2} and ans(q) = {m1,m2,m5}

Positive/Negative Feedback on Constraints. The user can proceed and pro-
vide positive or negative feedback on the constraints, i.e. the user can define the
set of wanted and/or unwanted constraints, either from CC(EP ), and/or from in-
specting the descriptions of the entities of the current answer, ans(q0). The latter
set is defined as:

D(ans(q0)) = { (p, v) | (s, p, v) ∀s ∈ ans(q0) }

In this way the user can interactively select a set of positive constraints CP and
and a set of negative constraints CN . Each is a subset of CC(EP ) ∪ D(ans(q0)),
that is, the common constraints are not related only to EP but also on the answer
obtained by the first query. In our running example suppose that:
CP = {(director,Maria), (genre, comedy)} and CN = {(starring, James)}. The
first constraint in CP comes from CC(EP ), while the second (i.e. (genre,comedy)),
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comes by inspecting D(ans(q0)). With this feedback we can define CC ′ as CC ′ =
(CC(EP ) ∪ CP ) \ CN , i.e. in our example:
CC ′ = {(director,Maria), (genre, comedy), (year, 2022)}, and this is the new
query, i.e. q1 = CC ′ as shown in Figure 3.2.

Figure 3.2: EP = {m1,m2}, CP = {(director,Maria), (genre, comedy)}, CN =
{(starring, James)} and ans(q) = {m1,m2,m5,m6}

Negative Examples. So far we have seen negative feedback on constraints. Let’s
suppose the user has provided negative examples, i.e. a set EN . We will use this
to exclude from the powerset of CC ′ (i.e. all possible conjunctive queries) those
queries that would include any entity of EN in their results. The exclusion will
indirectly remove the negative examples from the results of the final query and
possibly remove other entities also.

Continuing our example, suppose the user provides one negative example EN =
{m3} whereD({m3}) = {(director,George), (genre, comedy), (year, 2022)}. From
the 8 possible subsets of CC ′ = {(director,Maria), (genre, comedy), (year, 2022)}
we exclude the all possible subsets ofD({m3}) found in CC ′ which are {(genre, comedy)},
{(year, 2022)}, their union {(genre, comedy), (year, 2022)} and the empty set, so
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the remaining 4 subsets, let’s call them candidate queries, are:

Q1 = {{ (director,Maria), (genre, comedy), (year, 2022)},
{ (director,Maria), (genre, comedy) },
{ (director,Maria), (year, 2022) },
{ (director,Maria) }}

Now suppose the user gives one more negative example m4, therefore now we have
EN = {m3,m4} whereD({m4}) = {(director,Maria), (genre, drama), (year, 2022)}.
From this we have to exclude {(director,Maria)}, {(year, 2022)} and their union,
ending up to a Q2 that has two possible queries:

Q2 = {{ (director,Maria), (genre, comedy), (year, 2022) },
{ (director,Maria), (genre, comedy) }}

From these two possible queries, we can use a ranking method to select one of
them. So the full process (from a logical point of view) is (we use P (C) to denote
the powerset of C):

CC = CC(EP )

C = (CC ∪ CP ) \ CN

Q = {q |q ∈ P (C), ∀n ∈ EN , n /∈ ans(q)} = {q |q ∈ P (C), ans(q) ∩ EN = ∅}
q = Rank(Q)

3.3.1 Ranking

As regards the last step, i.e. ranking, one approach is to select the query with the
most constraints, thus we could write: q = argq maxq∈Q(|q|). Instead of getting
the query with the max number of constraints, and also for resolving ties, we can
rank the elements of Q according to the expected size of their answer. Below we
describe two main methods for ranking the elements of Q: a fast but approximate
methodMfreqand a more accurate but more expensive methodMconj .

MethodMfreq. At first we introduce some notations. We shall use pri to denote
the number of instances of a property pr and analogously we use (pr, vl)i to denote
the number of instances of a property pr with a value vl (where superscript i stands
for instances):

pri = |{(s, p, o) ∈ K | p = pr}|
(pr, vl)i = |{(s, p, o) ∈ K | p = pr, o = vl}|

We can define the frequency of a constraint c = (pr, vl) as

freq((pr, vl)) =
(pr, vl)i

pri
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Table 3.1: Frequencies in our running example

freq((pr, vl))−1 pr vl (pr, vl)i pri

6884 ’dbo:director’ ’dbr:Christopher Nolan’ 15 103261

6423 ’dbo:producer’ ’dbr:Emma Thomas’ 10 64237

2554 ’dbo:starring’ ’dbr:Christian Bale’ 49 125130

1026 ’dbo:starring’ ’dbr:Michael Caine’ 122 125130

. We can use this metric to rank each constraint by either promoting the more
frequent ones or the more rare ones (or the user could select the desired option
at interaction time). In the running example of the introductory section, the
frequencies are those shown in Table 3.1. For example “Michael Caine” has starred
in over double the number of movies than “Christian Bale”, which makes the
corresponding constraints to have a different effect in the expected answer size,
so if we want to gradually increase the answer size then we can select “Chistian
Bale” (that appears in 49 movies), and then “Michael Caine” (that appears in 122
movies). It follows that we can use the ranking ofMfreq in two ways. Firstly, for
a q ∈ Q, we can define scorefreq(q) =

∑
c∈q freq(c), and we can rank in this way

the elements of Q. Secondly, we can reduce the set Q by removing the queries
q ∈ Q which contain one of the lowest ranked constraints. The advantage of this
method is that it is fast, the required frequencies can be pre-computed (like the
histograms in relational databases [10]). One weakness of the method is that from
these frequencies, we cannot predict accurately the impact of each constraint when
combined with the others, i.e. the size of the answer of the formulated query.

MethodMconj . To tackle the weakness ofMfreq, for each member q of Q, we can
compute |ans(q)| that is, the size of the answer if q is used. The advantage of this
method, let’s call itMconj , is that the user can see the size of the answer of that
possible query, hence we could rank these suggested conjunctions of constraints,
based on |ans(q)|, to offer a kind of “guaranteed query relaxation functionality”,
enabling the user to gradually get more entities. Table 3.2 shows the elements of
Q ordered with respect to their answer size. We can see suggestions whose answer
ranges from 4 to 122.

One weak point of this method is that it is more expensive than Mfreq to
compute, since it is exponential with respect to |C|, so it can be used only if |C|
is small. However, since the constraints of each query are combined by logical
conjunction, the computation of ans(q) is not expensive: we compute and keep
stored ans({c}) for each c ∈ C where {c} a query with a single constrain c, and
compute ans(q) by taking the intersection of all ans({c}) for each c ∈ q As regards
ties, if two possible queries, say q and q′ have the same answer size, we could select
the one with the more constraints or the one with less constraints, to promote
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Table 3.2: The methodMconj

|ans(q)| q

4 ’dbo:starring = Michael Caine, dbo:starring = Christian
Bale, dbo:producer = dbr:Emma Thomas, dbo:director =
dbr:Christopher Nolan, rdf:type = dbo:Film’

7 ’dbo:starring = Michael Caine, dbo:producer
= dbr:Emma Thomas, dbo:director =
dbr:Christopher Nolan, rdf:type = dbo:Film’

9 ’dbo:producer = dbr:Emma Thomas, dbo:director =
dbr:Christopher Nolan, rdf:type = dbo:Film’

10 ’dbo:producer = dbr:Emma Thomas, rdf:type = dbo:Film’

15 ’dbo:director = dbr:Christopher Nolan, rdf:type =
dbo:Film’

49 ’dbo:starring = Christian Bale, rdf:type = dbo:Film’

122 ’dbo:starring = Michael Caine, rdf:type = dbo:Film’

accordingly a more or less descriptive query based on the existing dataset, or show
both options to allow the user to make that choice. Currently, we select the query
with the most constraints which implicitly gives the user more information and
control.

Proposed Policy: As system’s level, it is better to start fromMfreq (that is ap-
plicable even in big KGs) in order to remove some of the lowest ranked constraints.
After reaching a number of constraints where Q is not that big, the system could
switch toMconj .

Case: No Extra Entities. If ans(q) = EP , i.e. if the user does not get any
extra entities (apart from EP ), the system should try to relax the query. This
can be achieved by deleting some of the constraints or even selecting a new set of
constrains. To do so, we extend the use ofMfreq andMconj . In case ofMfreq

we delete the constraint with the smallest frequency, and if the results of the query
do not change, we repeat the process and delete more constrains until we see a
change in the results. In case of Mconj , we simply select the next query in the
rank.

Case: Single Positive Example. If the Ep = {e}, i.e. the user selected a single
positive example, the system will consider all the properties of the entity e as the
common constrains CC({e}) = { (p, v) | (e, p, v) ∈ K }. Some of these constraints
will be discarded by the two methods and a query will be generated. With only a
single example the query may contain none of the desired constraints but with the
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use of the negative feedback the user can direct the system to different constraints.

3.4 Extended constraints

We have defined a constraint as property value pair and an entity e satisfy a
constraint c = (p, v) when (e, p, v) exists in the knowledge graph.

3.4.1 Operators

In order to extend the expressiveness of the constraints we include the an operator
for every constraint. The operator describes the condition between the value of the
constraint and the value of the corresponding property of an entity that is required
for the entity to satisfy the constraint. The previous behaviour is denoted as the
operator “=” so that (p, v) is now represented as (p,=, v). We define the operators
{<,≤, ̸=,≥, >} as the operations of the corresponding math operators.

3.4.2 Property paths

The second extension is the replacement of the first element of the constraint from
a single property to a property path. The property path is defined similarly to a
SPARQL property path where a constraint c = ({p1, p2},=, v) is satisfied by an
entity e when a linking entity l exists such that both (e, p1, l) and (l, p2, v) also
exist in the knowledge graph. The property path may consist of a single property
element, where it fall-backs to the previous behaviour, two or more elements that
construct a property path.

We can also extend the possible user feedback on the constraints from only the
property-value pairs to property path-value pairs. The number of such pairs may
be very large and possibly infinite based on the fact that most knowledge graphs
contain property circles. So they cannot be displayed or provided to the user at
once.



Chapter 4

Implementation and Evaluation

In this chapter: §4.1 describes the functionality of the proof-of-concept prototype,
§4.2 discusses implementation and datasets and their efficiency, §4.3 discusses the
expressive power of SPARQL-QBE, §4.4 discusses the scalability, §4.5 is about eval-
uation and applicability, §4.6 provides a comparison with related approaches and
systems, §4.7 presents the dataset applicability, §4.8 presents some of the current
limitations.

21
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4.1 Functionality of SPARQL-QBE

We have implemented a proof-of-concept prototype that we call SPARQL-QBE. The
application supports the scenario described in section 1. It starts in a keyword
search mode for enabling the user to find the starting examples, an example is
shown in Figure 4.1.

Figure 4.1: SPARQL-QBE: Step 1: Keyword Search and marking positive and negative
examples

The user can continue in this way for providing more examples, as shown in
Figure 4.1(bottom part). After the user selects any number of examples and exits
the keyword search mode, i.e. it presses “Query Formulation” at the top bar,
the application provides the first list of constraints and the corresponding results.
The user can delete unwanted constraints, can provide more positive/negative
examples, as shown in Figure 4.2.
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Figure 4.2: SPARQL-QBE: Step 2: Negative feedback on common constraints, and
more positive/negative examples

Moreover the tool makes evident the constraints that each entity satisfies
(marked green), and enables positive/negative constraints through the entities,
as shown in Figure 4.3.

Figure 4.3: SPARQL-QBE: Making evident constraint satisfaction, and constraint
feedback through entities
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For the support of property paths, every property value can be extended to
display all of its property-value pairs in an indented second list as shown in Figure
4.4. The user can then create a property path constraint by selecting one of the
second list property value pairs. This behaviour is supported recursively, i.e. the
user can extend a property value from the second list into a indented third list.

Figure 4.4: The ongoing extension of SPARQL-QBE with path expressions
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4.2 Implementation

The implementation of SPARQL-QBE is a JavaScript application, with no need for
a server for the time being. All the triples are contained in a text files packaged
with the application that the user loads once with the first load of the application.

4.2.1 Datasets

We have tested various datasets. For the needs of the task-based evaluation with
users we constructed a dataset containing most well documented films and actors
from DBpedia whose size is 1,083,029 triples (112,668 films, 43,157 actors). Also
we constructed a smaller more inner connected dataset of a subset of published
paper and their references from Scopus with size of 532,002 triples (24,431 papers).

A deployment of SPARQL-QBE with these datasets (named MoviesActors and
Papers) is accessible through https://demos.isl.ics.forth.gr/SPARQL-QBE/.

Figure 4.5: SPARQL-QBE dataset selection screen

As shown in Figure 4.5 the user has also the ability to load a different dataset
by selecting the “Costume RDF data” option and then providing the triples of the
dataset in Turtle format.

4.2.2 Efficiency

Overall, for the datasets described earlier, we have real time interaction. The
following time measurements performed with Intel Core i5-8250U/8GB RAM using
Chromium v96.0.4664.45.

At the initialization of the system the more time consuming task is the down-
loading of the dataset from the server to the browser of the client (for the com-
pressed movie dataset: 6.4MB ∼ 2.5s). Below we report execution times assuming
a dataset with one 1 million of RDF triplets. The two main operations are the
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“Keyword search” with average time 126ms and the “Query execution” with aver-
age time 103ms. For the two ranking methodsMconj andMfreq with caching we
achieve executions under 10ms, however for the first time their execution is equiva-
lent to a “Query execution” for each of the constraint that they evaluate. Overall,
a single feedback loop of the system, which mainly consists of the two methods
initially last from one up to an average of 8 “Query executions” (∼ 103-824 ms),
then after a couple of feedback loops (with the utilization of the caches) the time
decreases down to the same time as a single “Query execution” (∼ 103ms). An
analysis of the time (with and without caching) is shown in Figure 4.6, where we
can see the impact of caching for the ranking methods.

Figure 4.6: Single feedback loop times (with and without caching)

4.3 Expressive Power

The system can formulate single variable single class conjunctive queries.
The system supports different classes however all the examples must be of the

same class (or of a common super-class). The class is going to be used as the first
generated constraint. The system is designed with the single class query in mind
and in the context of examples it would not be clear for a collection of positive
examples, where each element has different class, how it should be interpreted.

Except from the class restrictions the rest of the generated queries consist of
a set of constrains in conjunction. Each constrain can be a positive or negative
match of property with a single value. With the extended constraints, more general
conditions with property paths and values can also be supported. Even if all the
examples are of the same class, the property paths indirectly allow for constraints
that relate to multiple other classes.

The simplicity of the form, even with the extended constraints, allows for a
straight forward visual representation of the query as a single list of constraints.
Because the goal is not to generate the perfect query in every feedback loop step,
in fact some relaxation is required based on nature of the system, and because
a visual representation of a query with multiple combination of conjunctions and
disjunctions is difficult to visualize in way that allows for feedback, we consider
that the conjunctive only queries are sufficient as a starting point.

However the conjunctions are between constraints that are not required to
match to a single SPARQL statement. Some of that constrains could be a hidden
complex SPARQL statement labeled with a user friendly notation without chang-
ing the feedback interface (eg. “(year ≥ 1980∧year ≤ 1989)∨year = 80s” labeled
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as “year = 80s”).

4.4 Scalability

All operation have execution times that are linearly depended on the number
of entities and properties given as examples and the SPARQL query execution
operation that is provided.

Referring to the lines of the algorithm as shown in Alg. 1: Line 2 performs
linear operations in the given input sets. Line 3 generates the set of valid queries.
In worst case the size of the generated set is equal to the number of valid constraints
raised to the power of 2. For the negative example check there is no need for the
query to be executed in the whole dataset, using the negative examples set as the
target dataset is sufficient. Line 4 uses the two ranking methods as described in the
corresponding sections Mfreqand Mconj , the methods require a query execution
for every valid constraint and valid query accordingly, but they can be partially
precomputed or cached during a session. Lines 5-7 with each loop a single query
execution is performed. In worst case there will be as many loops as the number of
valid queries. Lines 8-10 describe the interface and feedback operations and have
no significant computation cost.

Ranking optimization: The first ranking methodMfreqdoes not require whole
queries and can also provide a ranking to single constraints. In order to limit the
exponential nature of the power set of Line 3, we can perform an initial reduction
of the valid constraints using Mfreq. By the size of the reduction we can now
indirectly provide a upper bound to the generated power set size.

In our JavaScript application we implement our own query execution operation
which supports only the subset of SPARQL that can be generated. Based on
the fact that the our queries are single variable conjunctive queries (see previous
section) this operation is linearly depended on the number of entities.

Triplestores. For the system to utilize a triplestore instead of the current in-
memory dataset model the requirement is query execution endpoint and some
capability of keyword search. After the initial keyword search for the first examples
the system only requires query executions. Keyword search requests could also be
transformed to SPARQL queries in case of no keyword search services.

More specifically all queries, except the for the keyword search, if translated
to SPARQL have the following form:

SELECT ?x WHERE {

?x prop1 value1 . # prop1 = value1

?x prop2 value2 . # prop2 = value2

...

}
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Each of the property-value pairs represent a single simple constraint. To sup-
port the extended constraints with operators and property paths we have to intro-
duce the MINUS and FILTER statement of SPARQL. More specifically, to support
the operator ̸= they property value pairs are moved inside a MINUS statement and
to support the arithmetic operators <,≤,≥, > a FILTER statement is generated
with the property, value and the operator:

SELECT ?x WHERE {

?x prop1 value1 . # prop1 = value1

MINUS { ?x prop2 value2 . } # prop2 != value2

?x prop3 ?y . # prop3 > value 3

FILTER { ?y > value3 }

...

}

The two ranking methods need to retrieve the number of entities that meet
some constraints. So they require the same queries as shown previously with the
only difference being that the results are aggregated with COUNT.

SELECT COUNT(DISTINCT ?x) WHERE {

...

}

Also most of the requests can be cached, especially during a session where the
same properties are ranked in every feedback loop.

Lastly for displaying the query results a second series of the queries may be
performed to collect all the properties of the referred entities, if they are not already
known from previous queries.

4.5 Evaluation

Analytically. In contrast to relational databases, where the user has to fill in
values in existing tables (after first selecting these tables), in our case (in graph
databases in general) we do not have this limitation. There are where it is easier
for the user to point to examples than to conditions that entities satisfy, eg. a
user may point to two songs of a similar style of music without knowing the actual
name of that style. Also even if the user can point to the desired constraints the
number of them are probably more than two which is the number of examples that
could provide instead. Therefore it can be faster (i.e. it may require less actions
from the user) than Faceted Search since in the latter the user has to make an
action for each constraint. Roughly, the actions required by the query by example
are less if |EP | < |desired constraints|.

Task-based Evaluation with Users. We conducted a preliminary and small
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scale task-based evaluation with users to see if users can use and/or like this
interaction paradigm and for collecting feedback for improving the GUI, as well as
the process. We used the 10 tasks shown in Table 4.1.

Table 4.1: Evaluation Tasks

ID Task

T1 1. From the series of Batman movies, like “Batman Begins” and “The Dark
Knight”, try to find the names of other such movies

T2 2a. You know about “Before Sunset” and its sequel “Before Midnight”, try to
find the name of the third film of the series. (continues)

T3 2b. Try to find movies that have some properties in common with “Before”
movies (hinted that if all results are flagged as wanted, the query will extend
to contain more results).

T4 3a. What the movies “The Prestige” and “The Dark Knight” have in common
other than actors. (continues)

T5 3b. Count how many movies the director and producer of “The Prestige” and
“The Dark Knight” have made.

T6 4. Find the last Harry Potter movie “Harry Potter and the Deathly Hallows”
and instead of selecting the movies, select only the actors “Daniel Radcliffe”
and “Emma Watson”. Count in how many movies both actors participate.

T7 5. In the movies “Agent Carter” and “Captain America: The First Avenger”
we know that “Hayley Atwell” plays the character Agent Carter, try to find
the name of other movies possibly containing the character. (note that the
movie “The Duchess” has no relation to the character “Agent Carter”)

T8 6a. Count how many movies are in the “Wolverine” series with the actor
“Hugh Jackman”. (continues)

T9 6b. What all the movies with “Wolverine” have in common.

T10 7. Find a movie with “Michael Caine” and “Leonardo DiCaprio”

Task Selection. Notice that the tasks are not trivial (like “find the x property
of y”), but correspond to more complex information needs. The first two tasks
T1-2 require a simple query generation based from two examples. T3 requires
the user to give a feedback, an instruction to the feedback loop. T4-5 require the
user to access more generated information than query results. T6 requires the
use of the constrain examples instead of entity examples. T7-10 are more general
and simulate tasks where the user have some preexisting knowledge and uses the
system to retrieve related information.

Participants, Questionnaire and Results. We invited by email various per-
sons to participate in the evaluation voluntarily. The users were asked to carry
out the tasks and to fill (anonymously) the prepared questionnaire. No training
material was given to them, just a paragraph with basic instructions1 and the
participation to this evaluation was optional (invitation by email). Eventually, 22
persons participated (from April 14, 2022 to April 30, 2022). The number was
sufficient for our purposes since, according to [5], 20 evaluators are enough for

1Like the help page of the prototype.
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getting more than 95% of the usability problems of a user interface. In numbers,
the participants were 22.7% female and 77.3% male, with ages ranging from 19
to 52 years; with 70% almost uniformly distributed from 19 to 30. As regards
occupation and skills, all have studied Computer Science. In detail, 55% were
undergraduate students, 41% of them postgraduate computer science students,
and the rest computer engineers, professionals and researchers. Some participants
were familiar with SPARQL however none were familiar with the given knowledge
graph. The questionnaire is shown below, enriched with the results of the survey
in the form of percentages written in bold:

Q1 How would you rate the “Keyword Search” tab?: Very user friendly (50%), User
friendly (45.5%), Not user friendly (4.5%), Very difficult to use (0%)

Q2 Rate the usability of the “Query Formulation” tab: Very user friendly (4.5%), User
friendly (81.8%), Not user friendly (13.6%), Very difficult to use (0%)

Q3 How would you describe the workflow?: Very Intuitive (9.1%), Intuitive (77.3%),
Unintuitive (13.6%), Very Unintuitive (0%)

Q4 How would you describe the constraint representation?: Very Intuitive (22.7%),
Intuitive (59.1%), Unintuitive (18.2%), Very Unintuitive (0%)

Q5 Would you prefer instead of the two tabs a single page with all the functionality?:
Yes (40.9%), Indifferent (18.2%), No (40.9%)

Q6 Would you use the app to formulate queries?: Yes (40.9%), Maybe (59.1%), No
(0%)

Q7 Would you use the app to find a movie? Yes (77.3%), Maybe (22.7%), No (0%)

Q8 Have you ever formulated a SPARQL query? Never (22.7%), Only a few times
(without using SPARQL) (13.6%), Quite a lot (63.6%).

Q9 How would you rate the entire system? Very Useful (27.3%), Useful (72.7%), Little
Useful (0%), Not Useful (0%)

Q10 You can report here errors, problems, or recommendations. (free text of unlimited
length)

4.5.1 Results Analysis and Discussion.

The results were very positive: By summing the two positive options (Very user-
friendly/intuitive, user-friendly/intuitive), we can see that most users find it user-
friendly (86.3% in Q2), find the workflow intuitive (86.4% in Q3), they liked the
constraint representation (81.8% in Q3), they rated the system useful (100% in
Q9), and it is interesting that many would use the system to find movies (Q7).

Task Performance. As regards task performance, from the 220 collected re-
sponses (10 tasks x 22 participants), 65 (30%) reported failure to find the requested
information. In most cases of the failed responses, the participants were able to
find some answer which was either incomplete or wrong. Only in a few cases (6
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responses, i.e. ∼ 2%) the participants were unable to translate the task into ac-
tions for the system and were unable to find any answer. As shown in Figure 4.7,
the participants faced problems mainly at task T8. The task did not imply a clear
course of actions and so 8 participants (36%) ended up with correct answer, 10
(45%) with different answers and 4 (18%) failed to answer. From the 4 participants
that had never used SPARQL, we have only 6 (15%) wrong responses however half
of them reported that system is somewhat unintuitive to work with but still useful
and they would maybe use it again in the future.

Figure 4.7: Success Rate by Task

Free form Feedback. With respect to the free form feedback (Q10), the users
provided some suggestions about some icons and omissions related to the dataset,
not the system (e.g. omission of movies’ genre and list of characters).

4.6 Comparison with Related Approaches and Systems

There are several tools, “example”-based or not, that can generate queries like
those that can be formulated by SPARQL-QBE. However the process that the user
has to follow is fundamentally different.

Comparison with systems that do not support the notion of ”Example”.
In a non example-based approach, like Faceted Search, the first step a user has
to make is to provide/select a property, a value of that property, or in general
some constraint on that property. Even if a system provides a list of all available
properties and values of the KG, the user still has to know the commonalities
of the desired entities and how they are represented in the context of the tool
used. Instead, with the notion of example, the only requirement for the user is to
provide a single example (two examples are suggested but not required), and then
the feedback loop will assist him/her to generate the desired query.

Consequently, we could say that in general we have two possible starting points:
(a) single property constraints (for not example-based systems), and (b) single
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Table 4.2: Comparison with example-based systems

Entity Negative Constraints
Examples Examples Feedback

Query from examples

Qbees: query by entity examples ✓
Reverse engineering SPARQL queries ✓ ✓

SPARQL-QBE ✓ ✓ ✓

examples (for example-based systems). The expressive power (or restriction capa-
bility) of the two options are not equal. For instance, from two examples a system
may infer several (common) constraints, but from two property constraints a sys-
tem cannot infer anything more. Therefore, in cases where the desired number
of constraints is large, even if these constraints are known, an example-based ap-
proach may be faster than non example-based systems (like Faceted Search). We
should also note that in SPARQL-QBE, apart from the support of examples, if the user
cannot provide any example, (s)he can alternatively start by providing a wanted
constraint and then continue with the feedback loop; this is a distinctive feature
of SPARQL-QBE in comparison to other example-based systems.

Comparison with systems that support the notion of ”Example”.

Compared to example-based systems like “Query from examples” [12], instead
of explicitly asking for more information from the user before a query is provided
to the user, SPARQL-QBE provides the best query and then through the feedback
loop the user can provide more information of his own choosing. In comparison to
“Reverse engineering SPARQL queries” [1], that work cannot receive feedback on
the generated constraints, therefore has lower interactivity.

As shown in Table 4.2 SPARQL-QBE supports both positive and negative examples
and also feedback on the generated constraints that is not supported by the other
systems.

OPTIONAL. The OPTIONAL operator is used to extract more information
from the selected entities. Our generated queries select only the entities. So the
OPTIONAL operator never appears at the generated queries. Also the examples
given by the user are entities or constraints where there are no null values that
could be modeled by the OPTIONAL operator.

4.7 Dataset Applicability

By testing this interaction over various datasets, we have realized that this ap-
proach is more efficient that other approaches when the user is not sure about the
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Figure 4.8: Discovery scenario with the papers dataset

constraints that should be added to the desired query.

Especially when the commonalities among their desired results are not clear
to the user. The reason may be the lack of awareness of the significance of some
commonality, eg. a producer of two music tracks, or just be hidden in the large
number of properties, eg. a subset of references in two papers. The system will be
able to detect and generate the constraints in both cases. The user except from
the final query and its results, by inspecting the theses constrains, will be also
made aware of these hidden commonalities.

Apart from the movie-actors dataset, we generated a dataset with information
about published papers where each paper is described by three properties: title,
referenced papers and cited-by papers. The user with SPARQL-QBE over this dataset
can find papers based on some common properties of the example papers given.

In this context and with the use of the negative feedback, the system can be
used more like a paper discovery system than a query generator. An example
scenario, as shown in Figure 4.8:

1: The user starts with a reverse engineer SPARQL related paper, the system
based on the papers’ references generates a query that also returns, or better
in this context “suggests”, a paper related to queries. Assuming that the
user wants more specific papers to SPARQL, flags the suggested paper as
unwanted.

2: The system, based on the feedback, generates a new query that now suggests
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a RDF related paper. The paper may not be about SPARQL but it’s related,
so this time the user flags the paper as wanted.

3: The system finally generates a query that suggests a SPARQL related paper.
The user could then continue this process until the system cannot suggest
any new papers or restart the process with one of the papers that have been
discovered.

4.8 Applicability and Limitations

The method has wide applicability. Not only it can be used as a stand-alone
method, but it can complement, browsing and keyword search systems, i.e. the
user can start the QBE process by picking entities (e.g. putting them in a cart).
Moreover it could complement existing query formulators.

One limitation of the current implementation is that SPARQL-QBE will not look
for common property paths even though they are supported. The user can pro-
vide property path through the interface as we stated but they will never be
automatically generated. A second current limitation there is no special handling
for numbers/dates and by extension arithmetic relations cannot be utilized.
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Concluding Remarks

We proposed a novel interactive method for SPARQL query formulation, for
enabling users (plain and advanced) to formulate queries by providing exam-
ples and various kinds of positive and negative feedback, in manner that does
not pre-suppose knowledge of the query language or the contents of the Knowl-
edge Graph. The proposed method can exploit (and can be combined with)
other access methods (keyword search, browsing), it supports gradual formula-
tion, and various kinds of interactive feedback. We have detailed the algorith-
mic aspect, presented an interactive user interface that implements the approach.
We have applied it in real datasets from DBpedia, and showcased the feasibility
and the effectiveness of the approach. A running prototype is accessible through
https://demos.isl.ics.forth.gr/SPARQL-QBE/. A task-based evaluation with
users, that included users that are not familiar with SPARQL, provided evidence
that that the interaction is easy-to-grasp, intuitive and user-friendly and enabled
the users to formulate the desired queries.

The method could be applied not only to RDF, but on any graph database,
and could be extended to various directions.

5.1 Future Research and Work

There are several issues that are worth further research.

For instance, as described in the limitations, there many possible extensions
to the generation of the query constraints. Property path constraints, that are
currently only provided by the user, could be generated by the system by per-
forming some traversal through the properties. At a certain point very long paths
provide little to no informational value for the initial entity, so for the length of the
properties path a limit could be reasonably defined in order to simplify the search.
Arithmetic relations could also work well with the current system, but it may be
a difficulty detecting such relations. Especially, range constrains for a number or
a date would heavily impact the complexity of the generation. However, similarly
to the property path, the user could be given the option to manually change a

35
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generate equality constraint to an inequality or a range constraint.
More generally some features that also improve the system:
Query editing would allow the user to providing feedback to the system by

directly editing the SPARQL of the query. The system would then have to con-
vert the provided SPARQL to the constraints format in order to be able to be
passed to the main operation of the query generation. For very complex queries
components that cannot be converted to a constraint, they could be handled as a
black box, however in that case queries could be generated that contain duplicate
or contradictory SPARQL statements.

The results of the query are used to provide feedback to the system, queries
with any results other that the entities limit the feedback options of the user. So a
third phase could be introduced, after the “find examples” and “provide feedback”,
where the user has no more feedback to provide and it can provide information
about how exactly the results of the query should be “transformed”, for instance,
some property values instead of the entities or an aggregate of them (eg. count,
avg). The fact that the query generated provides a single column of entities would
allow for simple interface. A list of properties and possible aggregates and group-
ings for each would be sufficient for most generated queries.

Finally, for more advanced users, the could allow more parameterization of the
internal process. The user could provide the desired size of resulting query results.
Based on that the ranking methods and the constraint selection processes would
be adjusted accordingly. Also instead of absolute size, the user could feedback
by requesting more or less results and the system relatively adjust. With these
options then system could also be used to generate a query that describes only the
given examples and no other entity. Also the user could provide the importance of
the properties in the context of the current query generation in order to improve
the ranking methods. The importance could be described as a single value or a
comparison between two properties. This process could be very difficult and time
consuming, so the system could instead ask for the importance of the properties
that would effect the ranking methods based on the given examples.
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[29] Moshé M. Zloof. Query-by-example: The invocation and definition of tables
and forms. In Proceedings of the 1st International Conference on Very Large
Data Bases, VLDB ’75, page 1–24, New York, NY, USA, 1975. Association
for Computing Machinery.


