

CODE-CHIPS: INTERACTIVE SYNTAX
IN VISUAL PROGRAMMING

Emmanouil Agapakis

Thesis submitted in partial fulfillment of the requirements for the

Masters’ of Science degree in Computer Science and Engineering

University of Crete
School of Sciences and Engineering

Computer Science Department
Voutes, Heraklion, GR-70013, Greece

Thesis Advisor: Prof. Anthony Savidis

CODE-CHIPS: INTERACTIVE SYNTAX

IN VISUAL PROGRAMMING

Abstract

In this thesis, we present a novel general-purpose syntax-directed visual editor that accepts

as input a programming language grammar, and offers direct-manipulation interactive visual

programming features. Compared to typical syntax-directed text editors, it offers a complete

block-based visual style for program elements, enabling users to form programs even in an

exploratory fashion, without the need of remembering or recalling detailed program structures

(learning by programming).

Particularly, the syntax-directed part of the editor allows end-users to expand non-terminal

grammar symbols by selecting one of all the possible expansions in the symbol’s context. At the

same time, given any produced program element, the editor can display its production chain in

an easily comprehensible block-based form.

Current visual programming editors offer typical jigsaw-style blocks that may be freely placed

onto a canvas or connect directly to other blocks, forbidding any syntactic errors. Although such

an approach enforces grammatical correctness, it fails to explicitly communicate syntactic

information and therefore causes the underlying language grammar to be experientially

assimilated.

With our approach, the programming language’s grammar is explicit as well as an integral

part of the program, enabling a learning process which is based on language exploration via

editing and reviewing programs. To enhance the provided editing experience, the system

supports features such as undo-redo and syntactic copy-paste, as well as aspects of modern

visual programming, such as drag-and-drop insertion of pre-constructed program elements.

Finally, the system employs a row-based grid layout for spatial code organization with

indentation, as well as offers the ability to view a visual program’s textual form in its source

language and JavaScript. In this way we increase familiarity with text-based programming and

facilitate an eventual transition to typical programming environments.

CODE-CHIPS: ΔΙΑΔΡΑΣΙΚΟ ΤΝΣΑΚΣΙΚΟ

ΣΟΝ ΟΠΣΙΚΟ ΠΡΟΓΡΑΜΜΑΣΙΜΟ

Περίληψη

Σε αυτόν την εργαςύα παρουςιϊζουμε ϋνα νϋο γενικού-ςκοπού και γραμματικϊ-

καθοδηγούμενο ςυντϊκτη που δϋχεται ωσ εύςοδο τη γραμματικό μιασ γλώςςασ

προγραμματιςμού και παρϋχει ςύγχρονεσ αλληλεπιδραςτικϋσ λειτουργύεσ οπτικού

προγραμματιςμού για τη ςύνθεςη του προγρϊμματοσ. Σε ςύγκριςη με τουσ

παραδοςιακούσ γραμματικϊ-καθοδηγούμενουσ ςυντϊκτεσ κειμϋνου, προςφϋρει μύα

ολοκληρωμϋνη οπτικό μορφό βαςιςμϋνη ςε γεωμετρικϋσ δομϋσ για τα ςτοιχεύα του

προγρϊμματοσ και δύνει τη δυνατότητα ςτουσ χρόςτεσ να ςυνθϋτουν προγρϊμματα ακόμη

και μϋςω διερεύνηςησ, χωρύσ την απαύτηςη να μνημονεύουν και να θυμούνται λεπτομερεύσ

προγραμματιςτικϋσ δομϋσ (μαθαύνοντασ μϋςω προγραμματιςμού).

Ειδικότερα, το γραμματικϊ καθοδηγούμενο τμόμα του ςυντϊκτη επιτρϋπει ςτουσ

χρόςτεσ να επεκτεύνουν μη-τερματικϊ γραμματικϊ ςύμβολα επιλϋγοντασ μια από τισ

δυνατϋσ επεκτϊςεισ (παραγωγϋσ) ςύμφωνα με το περιβϊλλον του ςυμβόλου. Παρϊλληλα,

δεδομϋνου ενόσ οποιουδόποτε ςτοιχεύου του προγρϊμματοσ, ο ςυντϊκτησ μπορεύ να

παρουςιϊςει όλη την αλυςύδα παραγωγόσ του, ςε εύκολα κατανοητό οπτικό μορφό.

Τα όδη υπϊρχοντα προγρϊμματα οπτικού προγραμματιςμού προςφϋρουν ςτοιχεύα

προγρϊμματοσ με ςυμβατικό μορφό κομματιών παζλ που μπορούν να τοποθετηθούν

ελεύθερα ςε μια περιοχό-καμβϊ ό να ςυνδεθούν απευθεύασ με ϊλλα ςτοιχεύα,

απαγορεύοντασ τα ςυντακτικϊ λϊθη. Μολονότι μια τϋτοια προςϋγγιςη επιβϊλλει

γραμματικό ορθότητα, αποτυγχϊνει να μεταδώςει πληροφορύεσ ςχετικϊ με το ςυντακτικό

και επομϋνωσ επιτρϋπει μόνο την εμπειρικό αφομούωςη τησ γραμματικόσ τησ γλώςςασ.

Με την προςϋγγιςη μασ, η γραμματικό τησ γλώςςασ προγραμματιςμού εύναι ςαφόσ και

αναπόςπαςτο μϋροσ του προγρϊμματοσ, επιτρϋποντασ μια διαδικαςύα εκμϊθηςησ

βαςιςμϋνη ςτη γλωςςικό εξερεύνηςη μϋςω τησ ςυντακτικϊ-οδηγούμενησ επεξεργαςύασ

και τησ αναςκόπηςησ προγραμμϊτων. Για να βελτιωθεύ ακόμη περιςςότερο η παρεχόμενη

εμπειρύα ςύνταξησ, το ςύςτημα υποςτηρύζει χαρακτηριςτικϊ όπωσ η αναύρεςη-επανϊληψη

και η ςυντακτικό αντιγραφό-επικόλληςη, αλλϊ και ευκολύεσ του ςύγχρονου οπτικού

προγραμματιςμού όπωσ η ειςαγωγό προκαταςκευαςμϋνων ςτοιχεύων προγρϊμματοσ

μϋςω εύκολησ αλληλεπιδραςτικόσ διαχεύριςησ.

Τϋλοσ, το ςύςτημα χρηςιμοποιεύ μια διϊταξη πλϋγματοσ βαςιςμϋνη ςε γραμμϋσ για

χωρικό οργϊνωςη κώδικα με δυνατότητεσ εςοχόσ και προςφϋρει τη δυνατότητα προβολόσ

του οπτικού προγρϊμματοσ ςε μορφό κειμϋνου ςτην γλώςςα πηγόσ και την JavaScript. Με

αυτόν τον τρόπο αυξϊνουμε την εξοικεύωςη με τον προγραμματιςμό που βαςύζεται ςε

κεύμενο και διευκολύνουμε μια ενδεχόμενη μετϊβαςη ςε κλαςικϊ προγραμματιςτικϊ

περιβϊλλοντα.

Acknowledgements

I would like to express my gratitude to my supervisor, Anthony Savidis, for his valuable

guidance throughout this project as well as his helpful advice throughout my studies.

I also express my thankfulness to my colleagues at the PLATO laboratory for our

excellent cooperation over the years.

I am very thankful for my friends, who supported me in this journey and provided a,

sometimes much needed, breathing space.

Last but not least, I am sincerely grateful for my family’s unconditional love and support,

without which, my studies and therefore this project would not have been possible.

Στην οικογένειά μου

1

Contents

Contents ... 1

List of Figures .. 3

Introduction .. 5

1.1 Background ... 5

1.1.1 Syntax-Directed Editing .. 5

1.1.2 Visual Programming ... 7

1.1.3 Learning Programming ... 8

1.2 Motivation: Language Understanding ... 9

1.3 Contribution: Learning By Editing.. 11

Related Work .. 13

2.1 Syntax Directed Editing ... 13

2.2 Block-Based Visual Programming ... 20

Features .. 31

3.1 Input: Language Grammar .. 31

3.2 Editing: Block-Based Syntax-Directed Code Manipulation 32

3.2.1 Syntax-Directed Editing with Blocks ... 32

3.2.2 Syntactic Copy-Paste ... 38

3.2.3 Quick Replace and Reverting Production Steps 40

3.2.4 Toolbox, Drag-and-Drop and Visual Code Snippets............................... 43

3.3 Layout: Row-Based Indentation .. 45

3.3.1 More Structured than Floating Blocks .. 47

3.3.2 Enabling User-Defined Indented Code Patterns 49

3.3.3 Pretty Print ... 50

3.4 Reviewing: Code and Productions .. 51

3.4.1 Selectively Visualizing Productions .. 51

3.4.2 Viewing Blocks as Source Text or JavaScript .. 52

2

3.5 Syntax-Driven Language Exploration .. 54

3.6 Block and GUI Theme Configuration .. 57

Implementation .. 59

4.1 System Overview and Software Architecture .. 59

4.2 Meta Language and Parser .. 61

4.3 Interactive Blocks .. 63

4.3.1 The Block Base Class .. 64

4.3.2 Current Block Collection ... 66

4.4 Editor Operations .. 69

4.4.1 Converting Grammar to Blocks .. 69

4.4.2 Editing Commands and Undo-Redo ... 71

4.5 Runtime Support ... 75

4.6 Configuration Facilities .. 77

4.6.1 Block and GUI themes ... 77

4.6.2 Pretty Print ... 79

4.6.3 Source-Text View ... 80

Example Language .. 83

5.1 Grammar Overview ... 83

5.2 Configurations ... 90

5.3 Translation and Execution .. 95

Conclusion and Future Work .. 99

Bibliography ... 101

3

List of Figures

Figure 1: An “if-then-else” template ... 6

Figure 2: A template and its corresponding Blockly block ... 7

Figure 3: Flow-based visual scripting in Unity .. 8

Figure 4: A template example (left) and a phrase example (right) 14

Figure 5: An example of template insertion .. 14

Figure 6: Snapshots of the editor when the user repeatedly presses “return” 15

Figure 7: Hiding the statements inside of a comment template ... 15

Figure 8: Command types for SUPPORT ... 16

Figure 9: Typical MENTOR-PASCAL operators and their sorts .. 18

Figure 10: A Pascal program and the AST it parses into with MENTOR-PASCAL 18

Figure 11: Poe’s Pascal program prototype ... 19

Figure 12: An example of syntax-directed insertion ... 19

Figure 13: The Blockly editor .. 20

Figure 14: Block Factory in Blockly Developer Tools ... 22

Figure 15: MakeCode, Blockly Games, Code.org and App Inventor 23

Figure 16: Tynker’s visual programming environment .. 24

Figure 17: A user-made game in Scratch .. 26

Figure 18: The four kinds of blocks in Scratch .. 27

Figure 19: A user-made game in the environment of Snap! ... 28

Figure 20: User Interface for block creation in Snap! ... 29

Figure 21: A higher order function example in Snap! ... 30

Figure 22: The functionality of a selection block ... 34

Figure 23: The functionality of a repetition group block .. 35

Figure 24: The functionality of an optional block.. 35

Figure 25: The steps of creating a simple “x=y” assignment .. 36

Figure 26: The steps for altering “x = y” to “x = y + 1” ... 38

Figure 27: Replacing an “if-statement” with a “while-statement” 41

Figure 28: Examples of reverting blocks to their higher-level grammar symbols 42

Figure 29: The toolbox area and the workspace area in Code-Chips 43

Figure 30: Two examples of drag-and-drop usage in Code-Chips 44

Figure 31: A comparison between the row-based layout and the open canvas model 47

Figure 32: Examples of applying various indentation style patterns 49

Figure 33: An “x=y” production visualization in Code-Chips. ... 52

Figure 34: Switching between viewing blocks, language source-text and JavaScript 53

4

Figure 35: The place of syntax-directed visual programming .. 54

Figure 36: Interactive visual editing of class definitions in Java .. 56

Figure 37: The default white and light block themes and a custom block theme............. 57

Figure 38: An overview of the system’s software architecture .. 59

Figure 39: The Code-Chips meta language grammar .. 61

Figure 40: An example conversion from grammar to JSON .. 63

Figure 41: The Block Base class .. 64

Figure 42: The core elements of the SimpleBlock class .. 66

Figure 43: The GroupBlock class... 67

Figure 44: The RepetitionGroup class’ basic API and rendering based on GroupBlock .. 68

Figure 45: CSS related to the system’s row-based indented layout 68

Figure 46: Primary logic for block creation ... 70

Figure 47: The Command, the EditorCommand and the CommandHistory classes 71

Figure 48: The ExpandCommand class .. 72

Figure 49: The PasteCommand class’ core implementation... 74

Figure 50: The AstVisitor class’ basic functionality .. 76

Figure 51: The AstHost class’ basic functionality .. 77

Figure 52: All possible statement expansions, excluding “expression” 84

Figure 53: All possible expression expansions, excluding function calls 85

Figure 54: User-defined function calls and input-output library functions 86

Figure 55: Math library functions ... 87

Figure 56: String library functions.. 88

Figure 57: Array library functions .. 89

Figure 58: The example language’s toolbox JSON and its user interface 90

Figure 59: All the example language’s available toolbox categories 91

Figure 60: Example theme configuration for “if_stmt”.. 92

Figure 61: The example language’s pretty print configuration for 93

Figure 62: Configuration examples for conversion to source-text 94

Figure 63: Examples from the runtime implementation of the example language 95

Figure 64: Scope handling in the runtime environment of the example language 97

5

Chapter 1

Introduction

In this thesis, we present Code-Chips, a tool for generating fully-functional powerful

visual programming editors given programming language grammar specifications. Our

work is inspired by the early work on the discipline of syntax-directed editing and the

currently prevalent block-based visual programming editors, used in various modern

teaching and learning programming applications. This chapter provides background

knowledge on syntax-directed editing, visual programming, and learning programming, as

well as analyses our motivations and contributions.

1.1 Background

This section provides useful background knowledge in subjects that are directly related

to the work presented in this thesis and aims to increase the reader’s familiarity with

topics that are discussed throughout it.

1.1.1 Syntax-Directed Editing

Programming languages, due to their highly structured syntactic forms, should not be

treated as mere text, composed of strings of characters. Editors that acknowledge and use

this structure to maintain syntactically correct programs during editing are called syntax-

directed editors [1].

Traditionally, syntax-directed editors provide usable formed language constructs, called

templates. Templates may contain placeholders, which the user can replace by inserting

other templates or code. Figure 1 depicts an “if-then-else” template, which contains a

condition placeholder and two statement placeholders (one for the “if-part” and one for the

“else-part”). In order to manipulate programs, the user moves the cursor and types

6

commands that result to editing operations based on cursor placement. Other than

insertion, syntax-directed editors can support a variety of program manipulation

operations such as deletion and copy-paste, all based on the user’s cursor position. Each

editing operation is performed by the editor only when the resulting program maintains

syntactical correctness.

Figure 1: An “if-then-else” template

For a better understanding of program editing using a syntax-directed editor let’s

consider how the user would alter a complete “if-then” statement, including a condition

and inner statements, to a “while” statement with the same condition and inner statements.

Firstly, the user would insert a new “while” template using an appropriate command. The

user would then copy the condition from the “if-then” statement and paste it into the

condition placeholder of the “while” statement. Following, the user would do the same for

the inner statements. Finally the user would delete the “if-then” statement to complete the

task.

The above example is commonly used in related research work as it reveals a simple

scenario in which syntax-directed editing complicates program manipulation compared to

traditional text-editing. In this case, enforcing syntax correctness restricts the user from

simply deleting “if”, one character at a time, and inserting “while”, one character at a time.

Despite that, the main advantage of a syntax-directed editor remains: editing does not

require knowledge of the language’s syntax and it is impossible to make syntax errors. Due

to this, syntax-directed editors have been successfully used as teaching and learning

mediums to help novices learn programming along with learning a new language and its

structure [2] [3] [4]. The “Related Work” section contains additional information on syntax-

directed editing.

7

1.1.2 Visual Programming

Figure 2: An “if-else” statement as in The Cornell Program Synthesizer (left)

 and the corresponding Blockly block (right)

Visual programming refers to any system that allows the user to specify a program in a

multi-dimensional fashion [5]. Traditional text-based languages are considered to define

programs in one-dimension since they are processed as one-dimensional streams of

characters and thus do not qualify as visual programming languages. Following, we briefly

describe two popular and widely used forms of visual programming: block-based visual

programming and flow-based visual programming.

Block-based visual programming has become predominant in recent years, mainly in the

field of teaching and learning, through visual programming environments, such as Scratch

[6] and App Inventor [7], that empower children and teenagers to develop apps, games,

animations, stories and more. Block-based visual program editors allow users to drag-and-

drop shaped and colored structures, called blocks, and connect them with each other to

form programs. Blocks connect to other blocks only to form syntactically correct programs,

resembling syntax-directed editing. Figure 2 compares a traditional syntax-directed editor

“if-then-else” template to a corresponding block. Due to the blocks’ design which indicates

and facilitates syntactically correct placement, as well as the simplicity of the drag-and-

drop gesture, block-based editing appeals to the younger audience and allows for a

pleasant introduction to programming. The “Related Work” section further discusses block-

based visual editing and popular block-based visual programming environments.

Flow-based visual programming uses the concept of the data-flow computational model.

The program can be represented by a directed graph: nodes represent functions and edges

represent the flow of data (incoming edges represent input data and outgoing edges

represent output data) [8]. Flow-based visual programming has various application

8

domains such as general-purpose programming [9], game development [10] [11] and

music [12]. Particularly, in the context of game development, flow-based visual

programming has been incorporated by the most popular industry game engines in order

to facilitate beginners and non-programmers.

Most flow-based visual programming editors use boxes for representing functions and

arrow-lines to represent the flow of data. Boxes have input points, to which arrow-lines can

connect, as well as output points, from which arrow-lines can originate. Input and output

points can be accompanied by descriptive labels and icons for the user’s convenience. The

type of data flowing over arrow-lines may be indicated by the editor and used to perform

type-checking, preventing connections between functions and non-matching data types.

Figure 3 shows Unity’s flow-based visual scripting editor.

Figure 3: Flow-based visual scripting in Unity

1.1.3 Learning Programming

When considering programming for its educational benefits, one should not perceive it

as a mere means of precisely defining computer instructions. Programming is a demanding

process that requires algorithmic and computational thinking. During the learning process,

students improve their creative thinking and reasoning skills, but also acquire and develop

valuable problem-solving and cognitive skills including decomposing, abstracting, iterating,

and generalizing. These skills can successfully transfer to everyday life and other

application domains including physics, biology, arts and social sciences [13] [14] [15].

9

As a result, educational systems and schools worldwide have included programming as a

core course with national curriculum, as a tool related to information and communications

technology (ICT), or as a tool merely related to ICT [15]. Younger children in elementary

and middle schools are introduced to computer science through applications in games,

music, robotics and HTML, while high school students may be taught object orientation,

data-structures, functional programming and core principles in algorithmic thinking.

Inevitably, a plethora of educational tools has been developed in order to satisfy the

needs of teaching and learning programming and benefit from its aforementioned cognitive

advantages. These tools are not necessarily designed for solely teaching and learning in

schools or generally learning with the aid of a teacher; learning without the guidance and

supervision of a teacher is often supported by using intuitive and beginner-friendly

interfaces and by providing tutorials. Educational tools include visual programming games

[16] [17], visual programming environments [6] [18] [19] for developing games and apps

as well as games and game-based environments requiring textual programming [20] [21].

1.2 Motivation: Language Understanding

Thorough knowledge of a language’s grammar and syntactic structure, whether it is a

natural language or a programming language, leads to effective, expressive linguistic

productions and overall a better language understanding. Particularly, according to N.

Chomsky, the study of a language expands the individual’s universal language

comprehension, and hence facilitates subsequent learning processes for different

languages [22].

Despite the benefits of learning the syntax of a programming language, novices face

significant difficulties with it when forming programs in traditional text-based

programming languages [23] [24]. As previously discussed, programming is an overall

demanding process, requiring advanced cognitive skills. The overhead of learning the

syntactic details of a programming language, on top of newly introduced concepts and the

challenging nature of programming, discourages students and increases the likelihood of

quitting. Modern educational tools and learning programming environments should

recognize and address this issue.

10

Current visual programming editors only allow editing operations that result in

syntactically correct programs, surpassing the difficulties of having to deal with syntax

errors. Particularly, in block-based visual programming, a match in the shape of a block and

the shape of a placeholder indicates syntactic compatibility. By interacting with blocks, the

user might slowly form a better understanding of the language, but generally, the

underlying language grammar is not communicated in a well structured manner.

Additionally, although this approach breaks through the syntax barrier and succeeds in

teaching fundamental computer science concepts, when used on its own, it fails on

smoothly transitioning the student to textual programming languages.

Facilitating this transition is not a trivial task. Blockly Games [17] initially introduces the

user to visual programming through playing a series of games. To increase familiarity with

textual programming, blocks only use lowercase letters and, after the completion of a level,

the system displays the JavaScript equivalent of the user’s visual code. In later game stages,

blocks display actual JavaScript instead of paraphrased text. Finally, to complete the

transition to textual programming, the block editor is replaced by a text-based JavaScript

editor.

In this thesis, we combine the methods of traditional syntax-directed editors and modern

block-based visual programming editors, and enhance them with additional features in

order to effectively communicate language specific syntactic information and maintain the

desired intuitive human-computer interaction. With this approach, we aspire to contribute

to learning programming and understanding a language’s underlying structure, as well as

to facilitate the transition from visual programming to textual programming.

11

1.3 Contribution: Learning By Editing

This thesis presents Code-Chips: a modern visual programming editor able to host any

programming language given its grammar, with features inspired both by syntax-directed

editing and block-based visual programming. With our approach, the programming

language’s grammar is explicit as well as an integral part of the program and program

manipulation. Novice programmers are empowered with a block-based structured editing

process that not only eliminates syntax errors, much like syntax-directed editors and visual

programming editors, but also provides meaningful information on the programming

language’s underlying syntax.

Code-Chips, given a grammar specification for a programming language, transforms

terminal and non-terminal grammar symbols into the appropriate blocks. For instance, for

a traditional imperative programming language, a “statement” non-terminal symbol would

be visualized as a dropdown menu block with options for expansion such as “if-statement”

and “assign-statement”, while an “integer” terminal symbol would be rendered as an input

box block. The editor maintains and displays grouping information. For instance an

“assign-statement” block is displayed as a compound block that groups an “expression”

dropdown menu block, a “=” simple terminal block and a second “expression” dropdown

menu block.

To compose programs, the user iteratively expands grammar productions by interacting

with the generated blocks and provides simple keyboard input, such as strings, integers

and identifiers. In contrast to traditional syntax-directed editors, remembering commands

is not necessary for expanding grammar symbols: the user can simply click on a dropdown

menu block, and then select the desired option for expansion. For instance, to produce an

”if-statement” block, the user clicks on a “statement” block and selects “if-statement” from

the displayed options. Furthermore, the user has the ability to examine any phrase within a

Code-Chips program, obtaining a block view of its production path, which visualizes the

expansion steps that were used to construct said phrase. With the aforementioned

facilities, we aspire to provide the means of discovering a programming language’s

structure and semantics while editing and reviewing simple programs.

12

Although the process of expanding non-terminals into an available right-hand-side

communicates information about the language’s structure, we acknowledge that it is

repetitive, especially for users that already possess this knowledge. For instance, going

through the expansion of “statement” to “expression” to “call” to “console” to “print”, in

order to invoke an internal library function “print”, is tedious for users that already know

this method’s existence and production path. To facilitate such expansions, Code-Chips

supports copying and pasting blocks, as well as, dragging and dropping blocks. Users may

copy or drag any phrase-block they have previously produced, or is available to them

through a toolbox with blocks premade by the language author. Of course, pasting and

dropping preserves the syntactically correct state of the program, by allowing only

insertions in non-terminal blocks that, according to the language grammar, result in valid

productions.

To ease the transition to textual programming, Code-Chips provides a textual code view

mode. This mode transforms blocks into pure text and shows the program in its textual

form. The language author is given the ability to include any additional tokens, such as

parentheses and braces, which were not necessary within block view, but are essential in

this view mode. Furthermore, when the language author defines a translation to JavaScript

for a given abstract syntax tree, Code-Chips hosts a view mode which displays the user’s

code in JavaScript, useful for increasing familiarity with textual programming. Finally, in

contrast to current block-based visual programming editors that incorporate a canvas-like

editing layout for editing, we provide a line-based structured layout, which resembles the

one of a text-based editor. The user may freely place new-lines and tabs inside group

blocks, enabling user-defined indented code patterns.

13

Chapter 2

Related Work

This chapter discusses research work and systems that are relevant to the work

presented in this thesis. For the purposes of this thesis, we emphasize on research with

revolutionary ideas and educational systems with widespread usage, as including all

available research work is not feasible. For each concept, we analyze the reasons it is

thematically related to our work and specifically refer to the features each system

introduces and incorporates. Particularly, for the programming editors, we focus on

human-computer interaction, the visual structure and the editing features available to the

end-users. Of course, for educational programming environments, we discuss their goals

and achievements in teaching and learning.

2.1 Syntax Directed Editing

Code-Chips is a tool for generating syntax directed editors, thus it is vital to present

existing work in this field. Syntax directed editing, also known as structured editing, was

primarily researched in the 1980s. Although the work presented in this section is not

particularly recent, there is major significance in the systems’ ideas, features and intent.

Programs are not text; they are hierarchical compositions of computational structures and

should be edited, executed, and debugged in an environment that consistently

acknowledges and reinforces this viewpoint [3]. Syntax-directed editors did not prove to be

ideal for professional development, but this core idea has influenced modern integrated

development environments (IDEs) to incorporate features such as syntax highlighting and

code completion. Additionally, in more recent years, syntax-directed editing has been

significant in teaching and learning, inspiring a plethora of visual programming

environments based on structured editing. Following, we present research work in the field

of syntax directed editors.

14

The Cornell Program Synthesizer

Figure 4: A template example (left) and a phrase example (right)

Figure 5: Insertion of template “PUT SKIP LIST (list-of-expressions)” at the cursor position with command “.p”

The Cornell Program Synthesizer (1981) [3] is an interactive programming environment

with integrated facilities to create, edit, execute, and debug programs. Editing is guided by

the programming language’s syntax and thus errors due to syntactic difficulties are

avoided. When debugging the cursor’s position changes, indicating the location of the

instruction pointer.

The provided editor is a text and tree-view editor hybrid. It uses templates and phrases.

Templates are predefined, formatted patterns of characters and punctuation marks

whereas phrases are arbitrary sequences of typed symbols. Figure 4 shows examples for

both templates and phrases.

Phrases and templates can be inserted into templates replacing placeholders (such as the

“condition” and “statement” placeholders of Figure 4). Insertions are ordered by quick

commands that the user orders by typing. All commands are validated and executed at the

current cursor position only if the program would maintain correct syntax after execution.

Phrases are typed by the user one character at a time. To enforce syntactic correctness, the

15

typed text is parsed when the cursor is directed away from the phrase and if needed an

error message is displayed. Figure 5 provides an example for template insertion.

All modifications of program text occur relative to the current position of the editing

cursor. The user moves the cursor using keys such as the up, down, left, right keys. The

cursor can be positioned anywhere within a phrase and only at the leftmost symbol of a

template or placeholder. Due to this, cursor movement differs from that of a traditional text

editor.

The editor incorporates metasyntactic lists. Each list item is preceded and followed by

“{placeholder}”. The user can use these placeholders to insert templates or phrases,

depending on the language’s syntax. The placeholders are only displayed when the cursor

is positioned there using the return key, as shown in Figure 6.

Furthermore, optional components of templates are supported and denoted as

“[placeholder]”. These placeholders are not normally displayed; they are displayed with a

specific available command.

Finally, the editor provides comment templates as the mechanism to hide the details of a

file and express computational abstractions. It provides a template with both the comment

“/*comment*/” and the statements “{statement}”, thus comments are not inserted in

arbitrary positions of the program. With a key press, the user can hide the statements,

viewing only their documentation: the comment (as depicted in Figure 7).

Figure 6: Snapshots of the editor when the user repeatedly presses “return”

Figure 7: Hiding the statements inside of a comment template

16

SUPPORT Environment

Figure 8: Command types for SUPPORT

With SUPPORT Environment [25] (the Still Unnamed Production Programming Oriented

Research Tool Environment), for which research began in 1981, a programmer can build a

program tree within a window by expanding non-terminals into program text. The system

provides an integrated program development and execution environment for Pascal,

although new languages may be added since it is grammar based. Figure 8 depicts the

system’s available command types.

SUPPORT separates data and control, enabling the programmer to switch to a data

declaration window to add declarations. This way declarations are not simply context free

productions added at specific locations in the program tree. Additionally, the user can

access the chain of references for any given variable and navigate into the source code.

The main contribution of this work expands on The Cornell Program Synthesizer’s [3]

idea of bottom-upparsing by making it available for any non-terminal grammar symbol,

instead of just expressions. As a result, the user may type code and the parser will build a

subtree, which will be appended to the program tree if no errors are detected in the

parsing and the insertion. In the case of an error, the text is available to the user for

modification and resubmission. Furthermore, the system provides the ability to clip

existing subtrees and display them in a separate small editor window, through which the

user can make textual modifications. After editing, the system produces a new non-

terminal using the parser and appends it to the main program tree.

Finally, the system supports comments. The user may add comments by pressing a

“comment button”. Comments are viewed and edited through the aforementioned small

editor window.

17

MENTOR

MENTOR [26], published in 1980, is a processor designed to manipulate structured data.

This data is represented as operator-operand trees, generally called abstract syntax trees

(ASTs). For a given language, the creator must declare a set of sorts, and a set of operators

with sorted operands. Additionally, the creator must specify a parser which, given a sort,

maps a concrete syntax string into the corresponding AST, and an unparser for the inverse

operation. Figure 9 depicts the typical sorted operators for Pascal and Figure 10 shows a

Pascal program and its parsed AST.

MENTOR is driven by the tree manipulation language MENTOL, through which the user

issues commands to the system in order to perform tree operations. The user has access to

MENTOL variables (markers) which may be assigned locations (locs) in the AST.

Additionally, MENTOL supports pattern matching. A pattern is any AST containing special

terminal nodes called metavariables. A pattern matches any tree which is an instance of the

pattern, replacing metavariables by appropriate subtrees. When the given language is

loaded, MENTOR constructs predefined patterns for each operator. Those patterns are

accessible through markers named by the operators.

MENTOL is a full-fledged programming language, as it allows writing procedures. For

instance, the predefined procedure “FORALL” takes a pattern and a command and starting

from the current marker, with a preorder tree traversal, it executes the command for every

instance of the pattern. Using procedures, the designer of a programming environment may

provide powerful context-dependent program manipulations for the end-user, as opposed

to the context-free manipulations of the MENTOL primitives.

Using the core of MENTOR, the authors developed MENTOR-PASCAL, a structured editor

for Pascal programs. For this, the authors wrote higher-level MENTOL procedures that are

the main user commands to construct and modify Pascal programs and their

documentation. An example is “FPROC” which is used to move to the top of a user-given

procedure. Additionally, MENTOR-PASCAL offers normalization and documentation tools

for Pascal programs. Normalization includes arranging them in a more readable but

semantically equivalent form and cleaning-up unnecessary structures such as empty

18

statements. Documentation includes automatic generation of comments, scope-structures

and cross-reference tables.

Figure 9: Typical MENTOR-PASCAL operators and their sorts

Figure 10: A Pascal program (left) and the AST it parses into (right) with MENTOR-PASCAL

Poe

Poe [27] (Pascal Oriented Editor), published in 1984, is a language-based editor with

knowledge of the syntactic and semantic rules of Pascal. Its user interface allows the user

to move the cursor to a prompt symbol and type text. Typing a single-token prefix of a

particular expansion is sufficient; an automatic syntactic error corrector will expand the

user's input and make it syntactically valid.

When creating a new program Poe displays a program prototype (as depicted in

Figure 11). In Poe, there are three types of symbols: required prompts (delimited by “<>”),

optional prompts (delimited by “{ }”) and Pascal symbols (always shown in upper case).

Cursor movement is controlled using the usual cursor control keys. Figure 12 shows the

program of Figure 8 after the user types “if” with the cursor on “{STMT LIST}”.

19

With Poe, the user can cycle through the all possible expansions of a prompt, which in

fact are the productions which have the prompt as the left-hand side symbol. An elision

mechanism is also provided. With the cursor on any symbol and the press of a button the

user can replace the smallest structure containing the symbol with an elision marker. An

elided “IF-THEN-ELSE” appears as “<IF-THEN-{ELSE}…>”, hiding its statements.

Poe uses an algorithm to compute the locally least cost insertion sequence in order to

always make user input syntactically valid. For instance when the user types “Then” with

the cursor placed on a “<STMT>” the system inserts an “IF-THEN-ELSE” statement. This

feature is accompanied with undo capabilities, for the cases in which the user’s intent was

different than the algorithm’s decision. The authors also propose a solution in which a cost

threshold is introduced. When the algorithm’s answer has a cost above the threshold, the

user will choose from a list of suggested options, as the algorithm’s decision is considered

to be of low confidence level.

Figure 11: Poe’s Pascal program prototype

Figure 12: The program of Figure 8 after the user types “if” with the cursor on “{STMT LIST}”

20

2.2 Block-Based Visual Programming

Block-based visual programming editors can be seen as a form of syntax-directed editors.

Insertion using drag-and-drop gestures has replaced the method of keyboard typed

commands, used by traditional syntax-directed editors such as those presented in the

previous section. Additionally, block colors and shapes, along with shaped gaps in

placeholder positions, are used to indicate a syntactic match, limiting textual information.

Due to its user-friendly nature, block-based visual programming is widely used in a

plethora of educational applications. Following, we present existing research in the field of

block-based visual programming. For the purposes of this thesis, we prioritize discussing

each block-based editor’s editing features and each environment’s educational

applications.

Blockly

Figure 13: The Blockly editor

Blockly [28], first released in May 2012 by Google, is a library that allows adding visual

code editors to web and mobile applications. Text is replaced by interlocking graphical

blocks that enforce syntactical correctness and represent code concepts such as variables,

logical expressions and loops.

21

The visual coding editor provided by Blockly contains a toolbox that hosts different

categories of blocks. Blocks that belong in the same category are semantically related and

usually share the same color. The user composes visual code by dragging blocks from the

toolbox and dropping them anywhere in a canvas-like area which is positioned to the right

of the toolbox and is referred to as the workspace. The user can also copy or cut and paste

blocks to the workspace using keyboard shortcuts. Deleting a block is possible in four

ways: by selecting it and pressing delete, by dropping it into a dedicated trash can

positioned at the bottom-right of the workspace, by dropping it into the toolbox, and by

selecting the appropriate option in the right-click context menu. Blockly supports

Undo/Redo for all actions. Figure 13 depicts a simple program in the Blockly editor.

Additionally, Blockly supports collapsing blocks (used for instance to hide a function’s

inner blocks), as well as adding comments to blocks, both accessible through the right-click

context-menu. Blocks associated with comments display a specific icon, which, when

clicked, shows the comment in an overlay text area.

Blockly is not a language itself. Developers that use Blockly in higher level applications

can create their own block languages based on the context of use, using the JavaScript

Blockly API. Blocks can be customized in terms of their color, external inputs (connections)

and internal inputs and their user-input fields. For external inputs the developer can add a

left output connection point or vertical connection points. Internal user-input fields allow

end-user input through a variety of interfaces such as textboxes, dropdown menus and

checkboxes.

Blockly Developer Tools [29] is a web-based developer tool for facilitating Blockly’s

configuration process. It uses the Blockly editor and simple custom user-interfaces in order

to generate ready-to-use JavaScript code. For instance, using the Block Factory section

(depicted in Figure 14) developers can easily create new Blockly blocks for their

applications.

22

Figure 14: Block Factory in Blockly Developer Tools

Due to its open-source nature, extensibility and high-value features such as exporting

code to common programming languages, Blockly is being used by hundreds of projects,

mainly active in the fields of teaching and learning. Following, we briefly describe some of

these applications.

MIT App Inventor [7] is an intuitive, visual programming environment that empowers all

people, and especially young people, to build fully functional smartphone and tablet apps.

Using App Inventor, in school and outside of traditional educational settings, users have

come together and have achieved valuable social impact to their communities.

Code.org [18] is a non-profit organization that aims to provide access to computer

science in schools and particularly encourages participation by underrepresented groups

such as young women. Additionally, to achieve equity and access, Code.org tries to identify

and eliminate barriers that prevent the participation of students and educators with

disabilities. Learning activities in Code.org include making games, apps, computer drawings

with block-based programming.

Microsoft MakeCode [30] is a free, open source platform for creating engaging computer

science learning experiences that support a progression path into real-world programming.

Students and teachers can find material for learning and teaching programming through

tutorials and courses such as “Intro to CS with the micro:bit” and “Intro to CS with

23

Minecraft”. MakeCode includes online editors with custom application-dependent blocks

and appropriate run-time simulations.

Blockly Games [17] is a series of educational games that teach programming to children

with no prior-experience. It initially uses visual programming and slowly transitions to

text-based programming. By the end of these games, children are ready to use conventional

text-based languages.

Figure 15: MakeCode (top-left), Blockly Games (top-right), Code.org (middle) and App Inventor (bottom)

24

Tynker

Figure 16: Tynker’s visual programming environment

Tynker [19], founded in 2012, is a learning programming environment with immersive

game-like courses and interactive lessons with built-in tutorials and has been used by over

60 million students in over 90 thousand schools. Through Tynker's intuitive visual

programming language students can learn the fundamentals of programming and design

without the frustrations of traditional syntax.

Lessons in Tynker are designed for children to keep advancing their skills, motivating

them by offering rewards such as achievements and badges for their progression.

Interactive explanations are introduced by interesting characters and short clips are

provided for easy guidance on common actions such as deleting Actors or changing the

background.

Tynker offers lessons suitable for children of all ages. Children under the age of 7 can be

introduced to programming through a visual programming language with iconic blocks (i.e.

blocks that rely on images instead of text). Building apps and games, controlling robots and

drones, designing Minecraft mods are supported through visual programming and are

recommended for children of ages 8 to 13. Children over the age of 14 can be taught more

25

advanced computer science concepts such as data structures with popular textual

programming languages such as JavaScript and Python.

The visual programming editor provided by Tynker is visually and functionally similar to

Blockly. It provides a toolbox with categories of blocks, enhanced with a search bar for

easier access. In the workspace blocks can be freely dropped. Blocks have shaped

connections and are, themselves, shaped appropriately to annotate valid connectivity and

enforce correct syntax. Blocks of the same category are given the same color to highlight

semantic relevance. Additionally, the editor provides an area, called backpack, in which the

user can drop sequences of blocks to save them for easy access and reuse, similar to code

snippets in text-based programming. Furthermore, Tynker’s editor makes the clipboard

available to the user: every time a block is copied, it is inserted as the top element of a

clipboard dedicated area. The user can drag blocks from this area and drop them in the

workspace as they would do for blocks from the toolbox. The editor also provides an option

for arranging blocks which aligns them in terms of their x coordinates and distances them

appropriately. Finally, the editor is accompanied by a visual programming debugger that

supports breakpoints, using a specific breakpoint block, and watchers, which are added

and viewed through an appropriate user interface. Figure 16 shows Tynker’s visual

programming environment.

26

Scratch

Figure 17: A user-made game in Scratch

Scratch [6], first released in 2007, is a free educational block-based language, developed

at MIT and designed for ages 8 to 16, enabling users to program interactive stories, games,

animations and more. It has over 76 million registered users and 84 million shared

projects, and is used in more than 150 different countries, being available in more than 60

languages. Figure 17 depicts a user-made game in the environment of Scratch.

Scratch’s visual programming is based on Scratch Blocks which is a collaboration

between Google and MIT’s Scratch Team, building on the technologies of Blockly. Again, the

visual code editor is composed of a toolbox area from which the user can drag blocks and a

workspace area in which the user can freely drop blocks. The blocks are colored to indicate

semantic relevance and shaped to indicate the visual language’s syntax. Scratch has

incorporated most of Blockly’s editing features, although there are functional differences

and features which were not included by choice. For instance, Scratch has omitted block

collapsing as well as the Blockly trash can used for deleting blocks and viewing deleted

blocks, and has altered the display of comments in blocks. Additionally, Scratch’s toolbox

has an embedded option for adding built-in extensions such as “Music” and “micro:bit”.

27

Each extension expands the toolbox with an additional category that contains new usable

application-specific blocks.

In Scratch there are command blocks, function blocks, trigger blocks and control structure

blocks. Command blocks can be chained with each other to create stacks of commands,

much like statements in text-based programming. Function blocks return a value and

simulate expressions such as function calls and arithmetic expressions in text-based

programming. Trigger blocks have rounded top sides and thus provide only a bottom

connection, allowing for a stack of command blocks that executes when the triggering

event occurs. Control structure blocks have openings for nested command stacks much like

an “if-then-else” statement in text-based programming. Figure 18 depicts the visual

representation of the aforementioned block categories.

Scratch has boolean, number and string as its first-class data types which can be stored in

variables and used in expressions. Function blocks for numbers and strings, as well as

insertion points, have circular shaped edges while function blocks and insertion points for

booleans have triangular shaped edges. This represents the fact that, in Scratch, number

and string function blocks can be used interchangeably, by internally coercing the

parameter to the target type if necessary. The same does not hold for boolean function

blocks which may only be inserted in insertion points of boolean type.

Figure 18: The four kinds of blocks in Scratch

28

Snap! (or BYOB)

Figure 19: A user-made game in the environment of Snap!

Snap [31], also known as Build Your Own Blocks (BYOB), was first released in 2011 and is

a block-based educational visual programming language for exploring, creating and

modifying interactive animations, games, stories and more. BYOB is a reimplementation of

Scratch with the extensions of first-class procedures, first-class lists and first-class sprites

with inheritance. As a result of the added complexity, BYOB is targeted primarily at

teenagers such as high school students, in contrast to Scratch’s younger target audience.

As indicated by the name BYOB, custom block creation by end-users was a primary goal.

With Snap, users are able to build a block by initially defining its toolbox category, name,

type (which determines its connectivity) and scope (if it is available to all the scripts or

only the current script). After that the user may add input slots and program the block’s

behavior using the visual programming editor. Figure 20 depicts the Snap user interface for

creating a block.

29

Snap’s visual programming editor consists of a toolbox and a workspace, similarly to the

block-based editors that were previously described in this chapter. The blocks are colored

and shaped similarly to Scratch and features such as Undo/Redo and adding comments to

blocks are available to the end-user. In contrast to Scratch, the toolbox is resizable and a

search-bar is provided for easier block access. Figure 19 shows a user-made game in the

environment of Snap.

Figure 20: User Interface for block creation in Snap!

30

Snap, with its first-class procedures, lists and sprites is suitable for a serious introduction

to computer science for its users. Snap visualizes procedures as grey rings that encapsulate

blocks and provides a “call” block for invoking them. In this way, users may write more

advanced programs such as higher order list functions that are essential in the functional

programming style (Figure 21 provides an example).

Figure 21: A higher order function example in Snap!

31

Chapter 3

Features

Throughout this thesis, we refer to two not necessarily mutually exclusive types of users

for our system: the end-user, who we commonly refer to as the user, and the language

creator or language author. The end-users consist of the audience that the editing features

and learning programming applications of the system are designed for, while the language

author is the individual that designs a language and uses the system’s infrastructure and

configuration facilities in order to embed the language into the system. In this Chapter, we

will analyze the features and functionality provided by Code-Chips, as well as describe the

potential applications in learning programming through language exploration. A subset of

the presented features requires preparation from the language author, usually in the form

of filling out simple configuration files. When analyzing such features, we mention the set-

up process required by the language author.

3.1 Input: Language Grammar

Code-Chips is a syntax-directed block-based visual programming editor, and therefore is

suitable for a range of applications. It can be used by beginners and students for an

introduction to programming as well as by experienced programmers to learn the syntax

and semantics for more advanced programming language concepts, such as Java Classes or

C++ templates, or explore the syntactic capabilities of a new language. Additionally, we aim

for a general purpose visual programming editor and thus consider integration in

applications such as game development or simple robot programming. For the above

reasons Code-Chips is designed with the ability to host different programming languages.

In order to load a language into Code-Chips, the language author provides a specification

of its grammar. For a successful parsing by the system, the input language grammar should

be given in a well-defined form. In this context, we have authored a meta language through

32

which language authors can define visual programming languages. For an interested

reader, the Code-Chips meta language grammar specification is discussed in 4.2.

Additionally, a fully operational general-purpose example language and its grammar

specification are analyzed in 5.1. With a correct input language, the system automatically

generates the corresponding set of interactive blocks, as well as a ready-to-use syntax-

directed editor for composing programs.

3.2 Editing: Block-Based Syntax-Directed Code Manipulation

This section discusses the features and characteristics of the editing process according to

our approach. We first mention and analyze the types of interactive blocks available for the

user and how they are used to form programs. We then focus on how beginners and more

experienced users can use this process to explore the structure of the used visual

programming language and how they may benefit from such a process. Lastly, we discuss

editing features inspired from block-based visual programming or textual programming

and how they facilitate and enhance the editing process for a complete programming

experience in our system.

3.2.1 Syntax-Directed Editing with Blocks

Before discussing the syntax-directed editing process itself, it is vital to describe all the

different categories of interactive blocks that can be created through the block generation

process, when the editor is provided with an input programming language grammar. These

block categories are currently selection blocks, simple blocks, input blocks, group blocks,

repetition group blocks and optional blocks.

Selection blocks are dropdown menus with selectable options. When clicked by the user

the dropdown menu expands and presents the options that are available. When an option

is selected by the user, the system replaces the selection block with a new block

corresponding to the selected option. For instance, in a general purpose imperative

programming language, a “statement” selection block may have different options such as

“if-statement”, “while-statement” and “assign-stmt”. If the “while-statement” option is

selected, the “statement” selection block is removed and an appropriate block is generated

33

for “while-statement” - that is “statement” is expanded into “while-statement”. This

example is depicted in Figure 22. In any case, each available option can be accompanied by

a descriptive tooltip with appropriate information about the symbol’s semantics and usage.

Simple blocks are the least interactive of all the aforementioned categories. They are

blocks that simply display text and can represent static terminal grammar symbols such as

operators and keywords. For instance, the “if” keyword of an “if-statement” and the “+”

operator of an arithmetic expression are all represented by simple blocks.

Input blocks are blocks that contain a text field in which the user can type using the

keyboard. In Code-Chips, user input provided in such blocks can be checked for validity.

The system currently supports checking for identifiers, strings, integers, floating numbers

and single characters but is extensible for custom predicates. For instance, in a traditional

programming language a user can type an integer into an input block that expects such an

input. If the input provided by the user is not valid, the input block visually indicates that.

Code-Chips groups blocks into compound blocks to convey language specific syntactic

information. These compound blocks are called group blocks and they render as containers

with one or more inner blocks. For instance, a traditional “assignment” block could be a

group block consisting of three inner blocks: an “identifier” input block, a “=” simple block

and an “expression” selection block. While we have not yet discussed the available editing

operations, it is vital to realize the importance of grouping for convenient editing and

enforcing syntactically correct programs. Selecting per say an “assignment” option from a

“statement” selection block would result in generating one compound “assignment” block

with three inner blocks for the left-operand, the “=” operator and the right-operand.

Managing this “assignment” block now becomes easier, and actions such as deletion can

operate on the compound “assignment” block. Deleting just the “=” simple block would

result into a syntax error and therefore is not allowed. Another important point that comes

from using compound blocks is that the language author can omit tokens used to indicate

grouping, such as parentheses or braces in traditional programming languages.

A repetition group block represents a metasyntactic list and allows repeating a specific

block zero or more times. Repetition group blocks are block containers, like group blocks,

but in contrast to them, they allow addition of elements while editing. The main way this is

possible is by clicking an appropriate button which is part of the repetition group block’s

34

rendered view. Each time the user clicks the aforementioned button, the system repeats

another instance of the repetition group block’s repetitive element. For instance, we can

model the “statements” part of a traditional “if-statement” as a repetition group block with

a “statement” selection block as its repetitive element. Each time the user clicks on the

repetition group’s “+” button, an additional “statement” selection block is appended to the

“statements” repetition group block. Figure 23 depicts a repetition group block for the

“statements” of a traditional “if-statement” block.

Optional blocks are elements that represent optional tokens in programs. For example, a

traditional Java class declaration can have optional access and linkage modifiers, template

type parameters, extend another class and implement interfaces. All the aforementioned

characteristics of a class are optional; that is the programmer may omit them completely if

they are not needed in their program. For this purpose, Code-Chips provides optional

blocks which, when clicked, generate additional sequences of blocks, in order to save

editing time and screen space. For instance, an “if-else-statement” that has its “else” part as

an optional block can initially have no “else” part, but when this is needed, the “else” part

can be easily added on the fly. With the absence of optional blocks, “if-statement” and “if-

else-statement” could be separate blocks, or the “if-statement” block could be omitted and

simulated by an “if-else-statement” block with its “else” part having no statements. With

the first approach, more editing steps are needed to change an “if-statement” to an “if-else-

statement”, while the second approach always uses more screen space. Figure 24 depicts a

Java class declaration block with optional blocks.

Figure 22: The functionality of a selection block

35

Figure 23: The functionality of a repetition group block

Figure 24: The functionality of an optional block

After discussing each currently supported block type, we can make a deeper dive at

syntax-directed editing through Code-Chips blocks. As previously mentioned, traditional

syntax-directed editors use unique keyboard-typed commands for inserting code-

templates at the cursor’s position. However, this approach requires remembering

commands and being a priori aware of possible insertions that maintain syntactic

correctness at the cursor position. With our approach, the aforementioned block categories

replace code-templates and insertion is explicitly handled by selection blocks. The user can

click on a selection block to preview all the different blocks that are allowed to be inserted

at this position. The user, thus, is not required to remember commands and can instead

quickly interact with selection blocks to be reminded of all the possible insertion options,

along with a descriptive tooltip for each option. Figure 25 depicts a sequence of syntax-

directed insertions with Code-Chips blocks that in the end produces a simple “x=y”

assignment.

Selection blocks represent language grammar non-terminals, or in simpler terms,

intermediate placeholders that need to be expanded until another block type is reached in

order to produce meaningful programs. For instance, a “statement” block does not have any

semantics by itself – it is identical to the empty statement. It is when an expansion

36

produces, per say, an “if-statement” group block that a meaningful program starts to form.

In order to have no unpredictable program behavior, the user should have no selection

blocks left in their program – that is every non-terminal grammar symbol is eliminated

through consecutive expansions.

Figure 25: The steps of creating a simple “x=y” assignment

Now that block insertions through selection block expansions are more apparent to the

reader, let us discuss deletion. As in traditional syntax-directed editing, our approach does

not allow deletion by the process of deleting one character at a time as this would result in

programs that are, at least temporarily, syntactically ill-formed. Particularly it is not always

safe to allow deletion, even at block level. For instance deleting the “if” keyword of an “if-

statement” block results in dangling condition and statement blocks. In Code-Chips,

37

deleting a block is only possible if the block was generated by a selection block, an optional

block or a repetition group block. In the cases that the block was generated by a selection

block or an optional block, a deletion operation would result in replacing the block with the

block that generated it so that the program remains syntactically correct and further

editing operations are allowed. For instance, imagine an “x > y” phrase represented by a

group block, generated by expanding an “expression” selection block. When that “x > y”

block is deleted, Code-Chips automatically generates an “expression” selection block in its

place. To better understand the implications of this process, Figure 26 depicts and

describes the steps of altering the “x = y” assignment of Figure 25 to a different assignment

of “x = y + 1”.

Most of the editing actions supported by Code-Chips operate on a single block, selected

by the user through clicking. Performing such editing operations is possible either through

shortcuts and keyboard input, or through the right-click context-menu. For instance, in

order to delete a block, the user can either right-click it and choose the delete option or

click it, in order to select it, and press the delete keyboard button.

Although the mechanism of expanding selection blocks is a primary syntax-directed

editing operation and provides enough for users to compose programs, consecutive block

expansions may become repetitive and tedious for a user that already has formed an

understanding of the visual programming language they are using. The example of Figure

26 demonstrates how an “x = y” phrase can be altered to “x = y + 1” in 9 compact steps.

Throughout this section, we introduce editing features that can reduce user effort and

generally facilitate the editing process in different ways.

38

Figure 26: The steps for altering “x = y” to “x = y + 1”, only using deletion and insertion by expansion

3.2.2 Syntactic Copy-Paste

Copying, cutting and pasting are well established features for text editors and visual

programming editors. Specifically, for a syntax-directed editor, copy-and-paste can save

time and effort used to construct an already existing phrase. In Code-Chips, copy-and-paste

can replace interacting with selection blocks and input blocks and can variably reduce user

effort, depending on the case. For instance, the fifth and sixth steps of Figure 26 consist of

clicking on selection blocks to display the available options for expansion, finding and

choosing the wanted option and finally typing the desired identifier name “y”, in order to

reconstruct the already existing input block “y”. These steps can be replaced by a copy

39

operation on the input block “y”, before the user proceeds with step 1 and a paste

operation targeted at the “expression” before step 5.

Copying in the syntax-directed editing environment of Code-Chips is a self-explanatory

operation – the user can save an exact replica of a block in a clipboard, for later use,

through pasting operations. Of course, the block, targeted by a copy operation, is not

required to exist when the pasting operation is initiated; the target block for the copy

operation could have been deleted in the meantime.

Pasting, on the other hand, is not trivial due to maintaining syntactic compliance relative

to the language grammar. Particularly the pasting mechanism should produce no syntax

errors in a non-restrictive manner for the user. The provided implementation checks

whether the copied block can be pasted at the selected destination block by comparing the

grammar symbols that correspond to these blocks. This comparison is not as simple as an

equality check between grammar symbols; this approach would be extremely restricting as

it would not allow pasting per say an identifier onto an expression, although “expression”

can expand to “identifier”. Additionally, an approach that checks whether the symbol of the

copied block can be produced by consecutively expanding the symbol of the destination

block is not sufficient. Such an approach would not per say allow pasting a “y + 1” group

block to replace a “y” identifier block, as the “y” identifier block cannot expand to “y + 1”.

The solution currently employed by Code-Chips, allows syntactic copy-and-paste when

the root symbol of the destination block can expand to the symbol of the copied block.

According to this, the aforementioned example of pasting “y + 1” onto “y” would work, as in

this case “y” has a root symbol of type “expression” and “y + 1” is of type “binary-

arithmetic-expression” which can be reached by “expression”. For another example,

consider copying the left-hand-side “x” of the expression “x = y” and pasting it into an

“expression” selection block placeholder. This time, “x” is not of type “expression”

according to a traditional programming language grammar (this would allow illegal

expressions such as “x + 1 = y”). In this case, pasting “x” into an “expression” placeholder

still works and the system automatically generates the correct production path from

“expression” to “x”, including all intermediate non-terminal symbols, so that deleting “x”

will work as expected.

40

Copying a block is performed either by clicking on it in order to select it and pressing the

keyboard shortcut “Ctrl + C”, or selecting “Copy” from the block’s right-click context-menu.

Equivalently, pasting is available by the shortcut “Ctrl + V” or through the context-menu.

When pasting the clipboard into the selected block would result in syntax errors, the

pasting operation is not performed and the corresponding context-menu option is shown

as disabled.

3.2.3 Quick Replace and Reverting Production Steps

Although copy-and-paste improves the editing capabilities of our system and generally

reduces user-effort, there are still scenarios in which syntax-directed editing requires too

much effort to perform tasks that are trivial in the context of a textual editor. An example

commonly used in syntax-directed editing related research is the altering of an if-statement

with defined conditions and statements to a while-statement with identical condition and

statements. In traditional text editors, the user would simply be able to erase the keyword

“if” one character at a time and insert the keyword “while” by typing one character at a

time. Of course, this is not possible in syntax-directed editing due to the program being in

an ill-formed state during the process of deleting and inserting. With the currently

presented features, this simple operation would need four discrete steps. First a while-

statement has to be inserted. Secondly, the condition of the if-statement has to be copied

and pasted onto the condition of the while-statement. Thirdly, the if-statements’

statements have to be copied and pasted onto the statements of the while-statement.

Lastly, the if-statement has to be deleted. Figure 27 depicts the steps of this process in

Code-Chips.

For the purposes of simplifying such replacements in terms of user effort and time

required, we introduce a “Quick Replace” feature that empowers the programming

language author to specify simple conversions from a grammar symbol to another, allowing

existing, already-produced symbols to be kept in the converted result. These available

replacement symbols, then, can be displayed and presented to the user through the right-

click context-menu of the block for conversion. With this feature, altering per say an “if-

statement” to a “while-statement” is accomplished with a single simple step.

41

According to the input language grammar, there can be different applications of “Quick

Replace”. For a general purpose visual programming language, especially when aimed at

beginners, the language author should distinguish between arithmetic, relational and

Boolean expressions and provide different visual representations for each one, for instance

by having different colored blocks. This is more important for a syntax-directed editor,

such as Code-Chips, which aims to communicate language-specific structural information

through interactive syntax. As a result, it is not recommended that arithmetic, relational

and Boolean operators are under the same category which for the end-users means that

changing per say an “x + y” arithmetic expression to “x > y” requires the extra steps of

constructing a new relational expression, copying-and-pasting the operands and deleting

the old arithmetic expression. With “Quick Replace”, conversions such as the

aforementioned become trivial while not polluting the input language grammar.

Figure 27: Replacing an “if-statement” with a “while-statement”, without the use of “Quick Replace”

42

In the context of making syntax-directed deletion quicker, Code-Chips allows reverting

multiple production steps at once, instead of using consecutive deletion operations. By

right-clicking a block and selecting the “Reduce To” option, the system displays all the

previously chosen symbols, allowing the user to replace the block with one of them. This is

particularly useful in language grammars that have phrases with high depth as these

phrases would need multiple selection block expansions in order to produce and thus

would need multiple deletion steps to revert. Figure 28 depicts various simple examples.

Figure 28: Various examples of reverting blocks to their higher-level grammar symbols

43

3.2.4 Toolbox, Drag-and-Drop and Visual Code Snippets

Figure 29: The toolbox area and the workspace area in Code-Chips

Up to this point, the discussion was centered at syntax-directed editing and the features

that we introduced were aimed at improving user experience in terms of structured

editing. The only previously presented characteristic that refers to block-based visual

programming is the rectangular colored visual representation we have chosen for

templates. As previously discussed, block-based visual programming editors rely on the

drag-and-drop gesture for visual-code insertions and modifications. In such environments,

the common approach of supporting the drag-and-drop interaction is by providing a

toolbox area with all the available blocks, categorized by their usage and semantics.

Through this toolbox area, the user can drag any block and drop it into the workspace. The

workspace usually consists of a canvas-like area in which blocks may be freely dropped to

form programs. In the following paragraphs we will discuss features that enable block-

based visual programming in the syntax-directed environment of Code-Chips.

44

Figure 30: Two examples of drag-and-drop usage in Code-Chips

Code-Chips follows the conventional block-based visual programming editor approach of

dividing the user interface in two parts: the toolbox and the workspace (as depicted in

Figure 29). The toolbox area in Code-Chips, is able to host categories of blocks. The system

requires each category to be given a name and an icon which are rendered, and when

clicked by the user, display the registered blocks for this category. The language author can

set up the toolbox by defining the category names and icons in a configuration file. After

this process, the language author can use the syntax-directed features of the workspace to

form any phrase-block and include it in the toolbox by dragging it from the workspace and

dropping it in the desired toolbox category. It is worth mentioning that the syntax-directed

editing approach we have discussed only makes use of interacting with workspace blocks

and hence does not require use of the toolbox.

For the end-user, the toolbox is a means through which ready-made language

productions can be found and utilized. In order to use it, the user can drag blocks from the

toolbox and drop them onto placeholder blocks in the workspace. Dropping uses the

previously discussed rules for pasting, in order to avoid ill-formed programs and syntax-

errors. Note that the workspace in Code-Chips does not allow dropping blocks in arbitrary

positions – the system’s structured line-based layout will be discussed in more detail later,

in section 3.3. Despite that, the system allows drag-and-drop block insertions in-between

blocks that are directly into repetition group blocks, without requiring a block placeholder

to be present. For instance, inserting a ready-made “assignment” group block “x = y” as a

new statement into the “statements” repetition group block of a while-statement, can be

45

done by simply dragging the “x = y” block and dropping it into the “statements” block, in

the desired position. The same task, without the usage of drag-and-drop, would require

copying the “x = y” block, creating a new “statement” block by clicking the button of the

“statements” repetition group block and pasting the copied block onto the newly created

“statement” block. Figure 30 depicts two examples of drag-and-drop interaction in Code-

Chips.

The toolbox does not impose requirements for its blocks – in fact any valid language

grammar production can be hosted in it. Additionally, end-users are not only allowed to

drag blocks from the toolbox, but are also empowered to expand its collection of blocks by

dropping workspace block productions into the toolbox. According to these two

statements, the toolbox can easily host an initially empty category with the name of

“Snippets”, in which end-users are encouraged to drop their own formed blocks,

empowering them to save reusable segments of code, for easier and quicker access. For

instance, using this feature, a user can save a conventional “two-dimensional for-loop” with

variables “i” and “j” for later uses.

3.3 Layout: Row-Based Indentation

The currently prevalent block-based visual programming editors use workspaces which

operate in a canvas-like manner. With this approach, users are allowed to drop blocks

anywhere within the workspace, without necessarily connecting them with each other. For

Code-Chips we have chosen a row-based layout which additionally supports indentation. In

order to accomplish this, we introduced two new block types, the new-line block and the

tab block. The new-line block, similarly to a text-editor line-break, signifies the end of a line

and causes blocks after it to start in a new line. The tab block is a simple transparent block

with a fixed width, and can be used to indent the blocks that follow it.

For a better understanding of this row-based indented layout, consider the familiar

layout of a text-editor: the user can insert a new-line character or a tab character in the

position of the cursor, between any two consecutive characters. In Code-Chips, as in other

block-based visual programming editors, editing operations are performed based on a

user-selected block and there is no available cursor. As a result, inserting a new-line or tab,

46

is performed at the position of the selected block: pressing the “Enter” key places the

currently selected block on a new-line and pressing the “Tab” key increases its indentation.

Similarly, the inverse operations of placing the selected block in the previous line or

decreasing its indentation can be done by pressing the “Backspace” key.

Now, let us consider how the multidimensionality of syntax-directed editing affects the

row-based layout. In contrast to text-editors, which process text as a one-dimensional

stream of characters, syntax-directed editors process code as hierarchical compositions of

computational structures. In our block-based environment, this hierarchical nature is

visualized with the aid of group blocks. In this context, in order to support the

aforementioned layout, new-line blocks and tab-blocks cannot be inserted globally but

must be hosted by group blocks. When group blocks are the target of indentation or new-

line commands, their inner blocks move along with them. Additionally, when an inner block

is a target of such commands, the size of the parent group block is automatically altered

vertically and horizontally to accommodate the change. Furthermore, all lines in a group

share the same leftmost x-coordinate but can have different heights, determined by the

block with the greatest height in the line and different length, determined by the total

length of all blocks in the line. For instance, a traditional “if-statement” group block in

Code-Chips, as in Figure 23, contains five blocks in this order: an “if” keyword simple block,

a “condition” selection block, a new-line block, a tab block and a “statements” repetition

group block.

Up to this section, the new-lines and tabs were not mentioned for simplicity, but the

editing features and available block types of our system are designed to complement the

row-based indented layout. For instance, the drag-and-drop gesture is allowed to be

initiated by dragging a block and dropping it either onto a workspace block or in-between

blocks of a repetition group block. Now that the reader has a better understanding of the

underlying layout, the phrase in-between blocks of a repetition group block implies that the

two blocks are separated by a new-line block. In this case, when dropping a block the

system also inserts a separate new-line block in order to keep the, now three, blocks in

separate lines. In the same manner, a “statements” repetition group block, per say, inserts a

“statement” block along with a new-line block when its button is clicked.

47

In the remainder of this section we discuss the benefits of choosing a line-based layout

with indentation. In particular, we discuss its advantages in structure, compared to the

common canvas-like layout, demonstrate how it can be used to enable expressive user-

defined code patterns and introduce a simple pretty print mechanism for Code-Chips

blocks.

3.3.1 More Structured than Floating Blocks

Figure 31: A comparison, in terms of code organization, between the row-based layout with indentation

(right) and the open canvas with floating blocks (left) currently adopted by most visual programming tools

As previously stated, most block-based visual programming tools currently incorporate

an open two-dimensional canvas-like area that allows placing blocks anywhere with

enough space to fit them. With this approach, it is very easy to create more chaotic

programs that lack in terms of code structure and organization. For a better understanding

of this statement, let us consider the example of textual programming. Textual

environments encourage users to author programs that have a limited character count per

line and expand vertically. Even when following this direction, novices and even more

48

experienced programmers, can easily derail from code organization guidelines, and author

hard to read programs. When a textual program has no particular structure, locating per

say a function definition can be as difficult as scanning the program vertically until the

function is spotted. In the common canvas model of visual programming, semantically

different program components such as event handlers and functions can be located in any

arbitrary position in the two-dimensional canvas area. In this context, a program can be

particularly more chaotic since scanning the program in a vertical manner is not enough to

spot per say a specific function block – the user needs to examine the entire two-

dimensional area. The left-part of Figure 31 illustrates this organizational issue. In addition,

aligning blocks in terms of their x-coordinate is not always provided, even by widespread

visual programming editors and environments. As a result, aligning per say two function

definitions is a task that requires the end-users to move blocks in a free-hand manner.

The row-based layout of our system does not share these disadvantages. In contrast to

the canvas approach, and in similarity to the text-based layout, each block can have a

visually identifiable left-neighbor block and right-neighbor block, as well as a line it belongs

to. This enables the end-user to navigate in group blocks by simply using the arrow-keys of

their keyboard. With the addition of a “step-in” command and a “step-out” command, which

navigate into and out of compound blocks respectively, the user can navigate to and select

any block in the program even without using the mouse.

With our approach programs expand in a vertical manner, similarly to textual

programming, facilitating the intrinsic organization of simple programs. In this context, our

system can make further improvements in structured visual program design, utilizing its

syntax-directed portion. In particular, with a language grammar designed with such aims, it

is possible to enforce per say functions to be defined before any other visual code segment.

This approach, combined with visual indications through grouping and block colorization,

allows for more structurally clear visual programs, without necessarily appearing

restrictive in the perspective of the end-users.

49

3.3.2 Enabling User-Defined Indented Code Patterns

Figure 32: Examples of applying various indentation style patterns directly on visual blocks and their

respective source-text JavaScript equivalent (the top-left block is shown under a different display theme)

Textual programming editors empower users to employ custom code patterns by

utilizing line-breaks and tabs, according to their personal preferences. For instance, a

programmer can write an if-statement in the same line in its entirety, with no new-line or

tab characters, when it contains a short single inner statement. A different programmer

may still choose the more traditional option of placing the inner statement at a new-line

and indenting it by one tab character. On the other hand, current visual programming

editors employ blocks that have a predefined visual structure and do not allow any layout

customization. As a result, personalized visual code patterns are not supported by such

visual programming environments.

In Code-Chips, the addition of new-line blocks and tab blocks allows a variety of

personalized user-defined code patterns. Similarly to textual editors, users can press

50

“Enter” or “Tab” to insert a new-line block or a tab block, respectively, at the position of the

selected block, modifying the compound block’s visual structure according to the situation

and their personal preferences. Figure 32 depicts examples of custom indented code

patterns and their JavaScript source-text equivalent.

3.3.3 Pretty Print

As previously mentioned, supporting the system’s row-based layout requires group

blocks and repetition group blocks to be able to host new-line blocks and tab blocks. In this

context, the system can support blocks such as “if-statement” which usually require more

than one line of code and need indentation. For a general purpose visual programming

language, an “if-statement” block can be a group with three inner blocks: an “if” simple

block, a “condition” selection block and a “statements” repetition group block. The user can

then achieve its traditional form by placing a new-line block and a tab block before the

“statements” block.

Although having blocks in their desired indented layout form is possible by hosting them

in the toolbox, without any added support, syntax-directed insertions would produce

blocks without any new-lines and tabs, resulting in one-line blocks. Additionally, repetition

group blocks need information about whether to insert blocks in a new line, for program

elements such as statements, or insert blocks in the same line, for program elements such

as function call arguments. A solution to this would be to embed new-line and tab specific

information into the input language grammar, but we value keeping the language grammar

simple and believe that such an approach pollutes it.

A better solution, and what was implemented in Code-Chips, is a simple pretty print

system based on a language-specific configuration file. In this configuration file, the

language author can specify in which groups and in which positions the system needs to

generate new-lines and tabs as well as which repetition group blocks generate new-lines

along with their repetitive element. For instance, using this configuration file, the language

author can specify that an “if-statement” group block needs a new-line block after its

condition and a tab-block before its statements, as well as that a “statements” repetition

group block needs a new-line between consecutive “statement” blocks.

51

This simple pretty print system can be used in two ways: automatically and on-demand.

In its automatic usage, the editor applies it directly on every syntax-directed block

insertion, resulting in visual code that automatically conforms into the provided pretty

print settings. In its on-demand usage, the system applies it on the whole program - useful

for the cases that the program has an unwanted structure due to mistakenly placed user

tab and new-line insertions.

3.4 Reviewing: Code and Productions

Although syntax-directed editing can lay the foundation for an introduction to computer

science and learning a programming language, we believe that beginner programmers and

learners can significantly benefit from reviewing ready-made programs, not only in the

context of problem solving but also in terms of syntactic language expressiveness. In

current block-based visual programming editors, the user is given the ability to review a

translation of their visual script to a textual programming language, usually JavaScript, to

increase familiarity with text-based programming. In this section, we will discuss features

that enable end-users to review programs and language grammar productions in Code-

Chips.

3.4.1 Selectively Visualizing Productions

Syntax-directed editing, in Code-Chips, is based on expanding grammar symbols to their

production right-hand-side and typing simple input through keyboard, by interacting with

selection blocks and input blocks respectively. We introduce a new feature that empowers

the user, to view the production chain of any block at any point – that is to review the steps

needed to produce a given phrase. In Figure 25, we show how an “x = y” assignment can be

produced with discrete simple steps using custom hand-made arrows and screenshots of

Code-Chips blocks. With the introduction of production path visualization, the user can

obtain a similar result through the system, accompanied by an interactive tree-view. Figure

33 depicts the production path for an “x = y” assignment, as visualized in Code-Chips. This

feature can be utilized by tutors in the process of teaching a new language, or by end-users

themselves when applied on ready-made programs, constructed by others.

52

Figure 33: An “x=y” production visualization in Code-Chips.

3.4.2 Viewing Blocks as Source Text or JavaScript

Although current visual programming editors usually provide translations to textual

programming languages, such as JavaScript, they do not provide functionality for viewing

the source-text representation of the visual program. This cannot simply be a mere

conversion from blocks to their inner text, as the extra dimension of grouping allows visual

programming languages to omit tokens such as braces and parentheses. For example, the

expression “(2*2) + 1” does not require parentheses in its block representation, as “2*2” is

a visually distinct group block. In such cases, converting to source-text requires adding

parentheses to the block’s output source-text. As stated previously, we prefer keeping the

language grammar simple and thus opt to a separate configuration file for storing this

information. In this configuration file, the language author can specify, per group block, any

extra characters and their positions for correct source-text translation. The same

configuration file also serves for defining the source-text pretty print settings, which can be

different from the pretty print settings for blocks, since source-text translation may need

additional characters such as parentheses.

53

Figure 34: Switching between viewing blocks, embedded language source-text and JavaScript

With the aforementioned setup by the language author, the end-user then can, at any

time, view the program in a textual form within the system by clicking an appropriate

button. By using this feature, the user can increasingly become more familiar with textual

programming and eventually transition to text-based environments. Obtaining the source-

text becomes particularly interesting when the language embedded into Code-Chips is an

existing programming language. For instance, a teacher that serves the role of the language

author can provide a grammar specification for C, or a subset of it, and host it in Code-

Chips. Their students then can benefit from the syntax-directed and visual programming

capabilities of the system and avoiding syntax-errors, but can also view their programs in

pure C. Additionally, the language author can setup the system to make a request to an

available C compiler, when the program is run, meaning that execution is possible without

implementing a runtime environment.

The system also supports translating blocks to JavaScript. For this feature, similarly to

current visual programming editors, the system requires the language author or an

experienced programmer to specify the translation through code. As with viewing the

source-text of the embedded language, the end-user can inspect the JavaScript equivalent

of their visual script with the click of a button. Figure 34 depicts a program viewed in all

available modes: blocks, embedded language source-text and JavaScript.

54

3.5 Syntax-Driven Language Exploration

Figure 35: The place of syntax-directed visual programming, bridging the gap between

compositional visual programming and source-text-based programming systems

In this chapter we have focused on introducing and analyzing features of our system that

empower users to edit, review and structure programs, combining elements and

characteristics from the disciplines of syntax-directed editing and block-based visual

programming. Although, we have presented how users may benefit from such features in

terms of efficient editing, we have only briefly demonstrated how the system and its

functionality can be beneficially used in terms of teaching and what is the impact for the

end-user’s learning programming experience.

As stated before, learning programming is a demanding process and it requires as well as

teaches and trains important cognitive skills that transfer to other disciplines and everyday

life. Visual programming is commonly considered as a tool primarily targeted to learners,

entry-level programmers and generally non-professional programmers. Through visual

programming, young people can improve their creative thinking, problem solving and

reasoning skills. Additionally, visual programming commonly serves as a stepping stone for

easing the transition to more elaborate text-based programming environments. We discuss

how our syntax-directed visual programming approach can assist beginners and students

as well as more experienced developers.

In the context of introducing beginners to programming, although the current visual

programming systems offer syntactic safety, they fail to directly communicate the

55

underlying syntax of the used visual programming language, resulting in incomplete

understanding of available language expressiveness. With Code-Chips, syntax is embedded

and integrated into editing. With the help of a tutor, a beginner can be taught about an

imperative language’s structure and comprehend its semantics in depth, all while editing

and reviewing programs. In this way, there can be absolute certainty about the productions

that are allowed or forbidden. Through interacting with selection blocks, the user can

explore all available possible expansions and read short but descriptive tooltips that

communicate their semantics. Through deleting blocks, reverting productions and

undoing-redoing expansions and deletions the user can easily navigate forward and

backward, without being punished for making mistakes. As a result, the user is encouraged

to explore the used visual programming language in its entirety. By reviewing productions

in ready-made programs, a user can observe how common program elements are

constructed and a tutor can teach their students the structure of a language. On this basis, a

more insecure user can start from reviewing programs and slowly progress into composing

their own.

The benefits of using a more structured, syntax-directed approach are more apparent

when end-users are pursuing a transition to textual programming for personal or

professional use. As previously stated, according to Chomsky, the study of a language

expands the individual’s universal language understanding and facilitates subsequent

learning processes for different languages. In this context, learning a visual programming

language’s underlying syntax will assist the end-user in their later steps of text-based

software development. Code-Chips’ features of reviewing the source-text equivalent of a

visual program, as well as the JavaScript equivalent, aim in further facilitating the

transition from visual programming to textual programming. In addition, the row-based

and indented layout for blocks that we have introduced is very similar to that of a textual

code editor. Experimenting with indented patterns, navigating to the previous or next line,

or to the previous or next block as well as reordering lines of blocks with simple shortcuts,

all make Code-Chips look and feel closer to code than traditional visual programming

editors.

Last but not least, diving into the structure of a programming language can be of

significance to more experienced programmers and even professional software developers.

56

A programmer usually learns about a new language’s syntactic specifications from online

documentation, code examples, as well as by practical experimentation. While the latter

two are able to produce quicker results, they can result in an incomplete understanding, at

least for complicated and demanding language features. For instance, a programmer might

know the basics of using C++ templates but may lack a deeper understanding, which in

practice limits their potent use. In this context, syntax-driven visual programming systems,

such as Code-Chips, can be used to assist professional developers to more easily

experiment with and ultimately learn new advanced programming language features.

Figure 36 depicts Java class definitions hosted by Code-Chips.

Figure 36: Interactive visual editing of class definitions in Java, with syntax-driven assistance: (1) the initial

block with all tooltips on grammar symbols shown; (2) access modifiers; (3) linkage modifiers; (4) class

members; (5) base classes and generic bases; and (6) methods, in particular return types.

57

3.6 Block and GUI Theme Configuration

Figure 37: Displaying blocks in the default white and light themes and in a custom colorful theme

Due to the high count and variance of visual programming applications, ranging from

educational to professional use, Code-Chips provides block and user interface

customization. Through altering values in configuration files, the language author is able to

customize each user interface component, including the toolbox and the syntax-directed

editor. Customization properties include background colors, borders, font-sizes, font-colors

and font-styles, padding and margins, scrollbar styling and more. Using these facilities,

Code-Chips allows custom user interface themes, which make it adaptable and able to be

integrated into and blend in with any visual programming environment.

Other than altering the appearance of the system’s user interface, Code-Chips provides

configuration capabilities for block customization. In contrast to the user interface themes,

which are agnostic to the embedded language and can be reused by different language

authors, block customization is language dependent. The system, upon embedding a

language, can export a configuration file which includes customization settings for each

grammar symbol. Again, these settings include general properties for background colors,

borders, font-styles, padding and margins, etc. Additionally, each different block type is

58

configurable in different ways. For instance, selection blocks offer customization properties

for their dropdown menu that can have, per say, a different background color and font-

style than the main part of the block. In this context, elements such as the dropdown menus

of selection blocks have customizable properties on user interaction such as on-mouse-

hover change of background color. Similarly, repetition group blocks offer separate

customization for their “+” button which includes altering it on-mouse-hover.

In order to facilitate block customization, the language author does not have to fill-in the

properties for every grammar symbol. The configuration file not only contains properties

per grammar symbol, but also allows customization per block category. Using this

infrastructure the language author can configure settings that apply to all the grammar

symbols of the same type, for instance, changing the background-color for the dropdown

menus of every symbol that corresponds to a selection-block. Specific grammar symbols,

then, can use different customization properties or override properties that are already

defined by their block category. For instance the language author can define common

properties for every group block, including their padding, inner margins and border radius.

Then, to differentiate, per say, a “for-statement” and an “if-statement” group block, the

language author can skip specifying their common properties and only specify per say

different background and border colors. Figure 37 depicts a visual code example in three

different themes.

59

Chapter 4

Implementation

In this chapter we will present an overview of our system’s software architecture and

provide information about our implementation. For the purposes of this thesis, we do not

mention and analyze every component and do not provide implementation details for

every feature. Instead we focus on components and features that we consider important for

forming a better understanding of the system.

4.1 System Overview and Software Architecture

Figure 38: An overview of the system’s software architecture

60

In this section the reader can learn more about our system from an engineering and

software development perspective. The system is a web application written mainly in

vanilla JavaScript, HTML and CSS. For assistance with DOM element manipulation, we have

utilized jQuery [32]. It was our intent to use as little external libraries as possible for easier

system maintenance. In this context, we are considering removing jQuery and proceeding

entirely with vanilla JavaScript in future versions.

Figure 38 provides an overview of our system’s software architecture, depicting the

primary editor components, as well as language related configuration. As previously stated,

the system can host any programming language given a grammar specification according to

the Code-Chips meta language. For this purpose we have implemented a language parser

that validates the input programming language and outputs a corresponding JSON file,

readable by the syntax-directed editor. The system, given the input language, also outputs

configuration files that can be filled in by the language author and are used to configure the

user interface. Configuration files are mostly language specific and contain grammar

symbol references in order to provide adequate customization, for instance, different

themes or pretty-print settings for blocks that represent specific grammar symbols.

The system, when provided with JSON files for the input language and its configuration,

generates a corresponding syntax-directed visual programming editor. Grammar symbols

are represented by a variety of interactive blocks, such as input blocks and selection blocks.

Each of these blocks extends a generic block class, implements methods for being rendered

and accepts handlers for events triggered by user actions. With this functionality the editor

can generate, render, and connect blocks to user-actions by specifying their appropriate

handlers. Group blocks can host any block and additionally, provide functionality for

inserting, deleting and generally manipulating inner blocks. Visual code is represented in

the form of an AST, with its root being a group block. The editor, when the end-user

interacts with the user interface, executes editing commands which manipulate the visual

code, utilizing the API provided by group blocks. Each editing command provides

functionality for executing, undoing and redoing it. The editor’s row-based layout is simply

accomplished by inserting and deleting tab blocks and new-line blocks, which when

rendered modify the page appropriately. The editor, using the API provided by blocks, can

issue a command to obtain the visual code in JSON format, and export it for the end-user. Of

61

course, the editor supports the inverse command of importing code in JSON format. For

code execution and translation to JavaScript, we provide an AST visitor class and an AST

host class, which the language author or an experienced programmer can use In order to

map out visual code to JavaScript. In the following sections of this chapter we will discuss

the implementation of our system in more detail and provide relevant code samples.

4.2 Meta Language and Parser

Figure 39: The Code-Chips meta language grammar, in which terminals are denoted in capital letters or are

in quotes (SIMPLE_ID and QUOTED_ID are defined in a different lexer file and accept textual input)

Integrating a programming language into Code-Chips requires specifying its grammar in

a valid form. For this purpose, we provide an expressive but simple meta language (Figure

39), that contains type definitions for each terminal or non-terminal grammar symbol and

62

the corresponding non-terminal symbol productions. Each production definition consists of

the “define” keyword followed by an identifier for the symbol and the definition right-

hand-side inside braces. Each definition right-hand-side consists of its type and its right-

hand-side symbols, which we call items. The definition type can be any of the tokens

“all_of”, “any_of”, “list_of” and “optional”. The definition type can also be left empty, in

which case it is interpreted as “all_of”. While the types “all_of” and “any_of” can accept

multiple items in braces, the types “list_of” and “optional” accept just a single item and it is

valid to omit braces. These types will be later used by the editor to generate the

appropriate block for each symbol. A definition item is an identifier, which provides a

reference to another defined terminal or non-terminal symbol, and is accompanied by an

optional alias and an optional tooltip, which allow the language author to provide context

specific information. For instance, an “expression” symbol that represents the condition of

an if-statement can be aliased as “condition” and be given an appropriate tooltip, but

grammatically it remains an expression for the purposes of expansion.

After the language author provides an input grammar according to the Code-Chips meta

language, the system generates a JSON file that can be used by the editor to host the given

language. This process is handled by a parser written with Jison [33], which is a JavaScript

version of Bison [34] and generates bottom-up parsers in JavaScript. The output file

contains all the information provided by the input grammar, converted into a JSON object.

In particular, this JSON object contains just a single key, “defs”, with a value of an array of

objects, each representing a non-terminal definition. Theoretically, the language author can

define the input language directly in JSON form, since the parser’s output is still humanly

readable, but using the meta language is easier, takes less typing and is more elegant.

Figure 40 depicts an example input grammar and a sample corresponding generated JSON

object for one of its definitions. In section 5.1, the reader can find additional examples

based on a fully-working general-purpose visual programming language we have

integrated into the system.

63

Figure 40: An example conversion from grammar to JSON

4.3 Interactive Blocks

In Code-Chips, blocks are designed to allow syntax-directed editing operations such as

insertion and deletion, as well as block-based visual programming operations such as drag-

and-drop. Particularly, each block type has a significant role in the process of syntax-

directed editing and represents a different set of grammar symbols. In this section, we will

discuss the implementation behind blocks, as well as the functionality and the API that is

provided to the editor. Before focusing on each block separately, we will review the Block

base class, which mainly provides functionality for rendering, adding event handlers,

exporting to JSON format and cloning.

64

4.3.1 The Block Base Class

Figure 41: The Block Base class, the API it provides and the methods it requires from subclasses

The Block base class (Figure 41) provides a collection of fields and methods that can be

used by the syntax-directed editor and its commands, as well as any other component that

requires block functionality. Every block category should inherit from the block base class

and provide implementation for its pure virtual methods. For the purposes of this thesis we

will discuss the primary fields and methods, as well as the requirements that must be met

by subclasses.

In order to construct a valid block, the creator needs to provide a type string, which can

be later accessed to invoke methods that are specific to a subclass, as well as a symbol

object, which stores data as provided in the language grammar specification. Particularly,

65

the symbol field contains data for the grammar symbol’s type (terminal or non-terminal),

as well as its name, alias and tooltip. The generatedBy field is used by the editor to hold

predecessor blocks in a linked list manner. Predecessor blocks are previous selection

blocks, which were expanded through syntax-directed insertions to generate the current

block. For instance a binary-arithmetic-expression block could have a generatedBy

arithmetic-expression block which could have a generatedBy expression block. This

information is used in editing operations such as deletion, in order to retrieve and re-

render previous blocks in the expansion sequence. The parent field can be accessed by the

editor in order to retrieve the group block which is one level lower in the visual code AST.

For instance the parent field of a “condition” block could be an “if-statement” block. The

$wholeView field contains the DOM element which corresponds to the block. The

isDraggable and isDroppable fields are used by components to control the drag-and-drop

block interaction. For instance isDroppable is set to false for blocks in the Code-Chips

toolbox, to prevent replacing them by dropping other blocks onto them.

In the context of rendering, the Block base class provides four primary methods: Render,

RenderBeofre, RenderAfter and RemoveRenderedView. These methods allow the editor to

render the block inside a container, before or after another DOM element, or completely

remove its rendered view respectively. In order to achieve this, each subclass provides a

Render_ method that constructs and saves the corresponding DOM element in the

$wholeView field without attaching it to the page. The rendering methods, then, append the

block to the document and apply the appropriate event handlers, which were attached by

the editor, to the rendered view. Finally, the rendering methods invoke PastRendering_,

optionally provided by subclasses, in order to handle tasks that cannot be completed before

the block is a part of the page.

It is essential for the Block base class to support functionality for cloning and exporting

to JSON or string, as this facilitates features such as exporting the whole visual code AST to

JSON format, or copying-and-pasting blocks onto other blocks. In order to achieve

conversion into JSON, the base class explicitly handles its data, which are shared by all

block subclasses and requires from each subclass to implement a ToJson_ method that

exports data specific to the subtype. Similarly, for cloning, subclasses provide a Clone_

method, through which the base class obtains a clone, to which it attaches event handlers.

66

The methods ToJsonRec and CloneRec recursively apply ToJson or Clone for each of the

generatedBy blocks.

4.3.2 Current Block Collection

Figure 42: The core elements of the SimpleBlock class

The current block collection includes classes for simple blocks, selection blocks, input

blocks, optional blocks, group blocks, repetition group blocks, new-line blocks and tab

blocks. Figure 42 depicts the core of the most trivial of these: the SimpleBlock class. As

previously stated, the simple block category simulates language grammar terminal symbols

such as the “if” keyword or the “=” operator. In its core, it only provides implementation for

ToJson_, Clone_ and Render_ which are required base class methods. In its ToJson_ method,

it returns an empty object since it does not use any extra data. For its rendering, it creates a

div DOM element, attaches the class “simple-block” to it and sets its text to the symbol’s

alias, if the language author provided one, otherwise sets it to the symbol’s name.

At their core, the SelectionBlock and InputBlock classes are simple but unlike

SimpleBlock, provide interactive rendered views. As a result, they provide methods for

setting their interaction event handlers. In particular, a selection block is constructed given

a symbol which represents the left-hand-side of a production and a symbol array which

represents its alternate right-hand-side expansion choices. For decoupling reasons,

selection blocks do not have embedded logic for creating and inserting the new block upon

user selection. Instead they accept an event handler, called onSelection, and are responsible

for invoking it when the user selects one of the available alternate options for expansion.

67

Similarly, input blocks accept an onInput event handler which they are responsible to

invoke each time the user types a character. The editor uses this to validate the input,

based on the symbol’s type (e.g. integer, string etc) and provide visual feedback.

Figure 43: The GroupBlock class, along with its primary API and rendering implementation details

The GroupBlock class Figure 43 emulates grammar non-terminal symbols with a

production right-hand-side that contains more than one symbol. For instance, an “if-

statement” group block consists of inner blocks for an “if” symbol, an “expression” symbol

and a “statements” symbol. The elems_ field is an array that holds blocks of any category.

The GroupBlock class provides methods for manipulating this array, which the editor uses

in its various editing commands. The autoRendering field denotes whether the GroupBlock

automatically updates its rendered view, when manipulating the array with one of the

methods it provides. Of course, this does not require producing all the group DOM

68

elements, but builds on the existing rendered view using the methods RenderChildAfter_ or

RenderChildBefore_. Figure 43, also depicts the rendering sequence for a GroupBlock in

which a div container is created and attached to the page, followed by rendering the inner

blocks by invoking Render of the Block base class.

Figure 44: The RepetitionGroup class’ basic API and rendering based on GroupBlock

Figure 45: CSS related to the system’s row-based indented layout

RepetitionGroupBlock (Figure 44) extends the GroupBlock class with the addition of a

repetitive element. This repetitive element, repetitiveElem_, is generated with every press

of the button $repButton_. Similarly to selection blocks and input blocks, event handling is

decoupled from the class and delegated to the syntax-directed editor, with the method

SetOnCreate. In terms of rendering, repetition group blocks use the infrastructure of group

blocks, but also add a “repetition-group” CSS class, append a button to the group’s rendered

69

view and override the method RenderChild_, in order to render the elements at the

appropriate position.

Group blocks, and thus repetition group blocks, are partly responsible for the Code-Chips

row-based layout and indentation, as they are able to host new-line blocks and tab blocks.

Particularly, group blocks are designed to offset their inner elements by a margin, and due

to their inline display, they are rendered in a horizontal manner. When a group block hosts

a new-line block, the new-line block occupies a whole horizontal line by itself and ensures

the following elements are rendered below it, using an appropriate CSS property. When

two new-lines are rendered in a row, the last new-line occupies more vertical space in

order to simulate an empty line, similarly to a text-editor line. Tab blocks are simply DOM

elements with a fixed width and inline display, so that they offset the elements that follow

them. Figure 45 depicts the CSS code that is primarily responsible for rendering according

to the system’s row-based indented layout.

4.4 Editor Operations

In this section we will discuss the infrastructure behind editing commands, designed to

allow undo-and-redo functionality and we will provide appropriate code segments and

examples. Before that, having discussed our approach’s meta language grammar and how it

is converted to JSON format, as well as the available blocks in our system and their

implementation, we will analyze the process of converting the input grammar definitions to

interactive blocks.

4.4.1 Converting Grammar to Blocks

As we have previously stated, our system’s syntax-directed editor accepts the input

language grammar specification in JSON form, as it is output by the parser. In order to

allow easier manipulation and access, the editor converts the JSON object, output by the

parser, into an instance of the Language class, which provides a simple API, mainly for

registering and accessing symbols and their productions. Figure 46 provides an overview

of the algorithm for converting symbols into blocks. Non-terminal grammar symbols can

produce either simple blocks for static terminals such as the “if” keyword and the “+”

70

operator, or input blocks for dynamic terminals such as an integer or a string. Non-terminal

grammar symbols can produce group blocks, repetition group blocks, selection blocks and

optional blocks, according to the item type used by the language author on the grammar

specification. The aforementioned block types correspond to the meta language tokens

“all_of”, “any_of”, “list_of” and “optional” respectively. In the special case of having a non-

terminal grammar symbol that is of type “all_of” or “any_of” with a production right-hand-

side that consists of only one grammar symbol, the editor can skip the symbol and proceed

with generating a block for its production right-hand-side symbol. In the end of the block

creation process, the editor must bind the created block by setting generic event handlers

such as opening the context-menu when a block is right-clicked or highlighting the block

when it is clicked as well as block type specific event handlers, such as syntax-directed

insertion when a selection block option is clicked or input validation when the user types a

character in an input block.

Figure 46: Primary logic for block creation

71

4.4.2 Editing Commands and Undo-Redo

Figure 47: The Command base class, the EditorCommand class and the CommandHistory class

Code-Chips, as other visual programming and syntax-directed editors, provides undo-

and-redo functionality for its editing commands. In order to accomplish this, we have used

the command design pattern. Every editor command derives from the class

EditorCommand, which itself derives from the Command base class (left part of Figure 47).

Every editor command must implement the three pure virtual methods of the Command

base class - Undo, Redo and Execute – and thus provide functionality for undoing and

redoing itself.

In order to keep track of the commands that are available for undoing and redoing, the

syntax-directed editor has an instance of the CommandHistory class (right part of Figure

47), which uses an array of commands, named “history”, and a position in the array, named

“i”. Commands that are available for undoing are positioned to the left of “i” with it always

pointing at the index of the leftmost command available for redoing. As a result, “i” is

decreased when undoing and increased when redoing. When a new command is executed

through ExecuteAndAppend, the available for redoing commands are removed from the

array and the new command is inserted as the rightmost command, meaning it is the most

recent command and the first one available for undoing.

72

Figure 48: The ExpandCommand class

For a better understanding of the mechanism of editing commands and visual code

manipulation using the group block API, let us look at the implementation of the primary

operation of expanding a selection block into the production right-hand-side symbol

chosen by the user. In order to expand a symbol, the user clicks on a selection block, which

opens the selection block’s dropdown menu with all the possible options. The user action

of selecting one of the options triggers the selection block’s onSelect event handler, which

was registered by the syntax-directed editor. As a result, a new instance of the

ExpandCommand class is created and used as an argument to invoke the

ExecuteAndAppend method of CommandHistory and execute the command.

The ExpandCommand constructor accepts, as its arguments, the editor, the selection

block that caused the event and the symbol chosen by the user. In its Execute method,

ExpandCommand creates a new block using the previously analyzed CreateBlock editor

method and sets its generatedBy field to the selection block which caused the expansion.

Afterwards, using the group block API, it replaces the selection block with the new block by

73

inserting it to the place of the selection block and then removing the selection block.

Finally, it invokes the editor method Select, which selects the block and highlights it with a

yellow border to visually indicate that it is selected. Note that there is no need for the

editor to re-render the whole group block as group blocks automatically update their

rendered view on insertion and deletion.

The method Undo reverses the above insertion and deletion sequence, meaning that it

re-inserts the selection block, removes the new block and highlights the selection block.

The method Redo simply invokes Execute to repeat the aforementioned steps of insertion

and deletion. An important observation is that Execute saves the newly created block as a

class field, in order to be reused in subsequent calls. This is not done purely for

optimization reasons; it is required for proper undo-and-redo functionality, as commands

such as this use references to blocks. If the block was re-created upon redoing the

command, then following invocations of Redo for other command instances that use the

originally created block would result in invalid access to memory and improper execution.

As a second and more interesting example, let us discuss the implementation for

syntactic copy-and-paste (Figure 49). We concentrate on pasting, as copying can be

handled by simply invoking the Block base class method CloneRec of the selected block and

saving the result to an editor field. As stated previously, pasting is not trivial due to

maintaining syntactic compliance relative to the language grammar and thus producing no

syntax-errors. Code-Chips allows syntactic copy-and-paste when the root symbol of the

destination block can expand to the symbol of the copied block, meaning that there is a

chain of productions (production path), starting from the destination block’s initial

placeholder, that produces the copied block. In order to answer this question, the system

precomputes a mapping of each symbol valid copy-paste pair <i, j> to the production path

that leads from i to j. This is implemented by initiating a depth-first search from each non-

terminal grammar symbol and saving the current path for every node that is reachable by

the process of following its productions. These data is held by the editor in a field named

productionPaths and is used by commands such as the PasteCommand and the

DropCommand.

74

Figure 49: The PasteCommand class’ core implementation

Particularly, PasteCommand requires the editor, the copied block, called source, and the

destination block, called dest. Its core functionality is performed by the method Paste_,

which initially uses the aforementioned editor field productionPaths to acquire the chain of

expansions that produces the source grammar symbol, when expanding starts from the

destination grammar symbol. Note that the syntax-directed editor has already ensured that

pasting is possible before constructing an instance of PasteCommand and thus checking for

existence is not required. After acquiring the production path, a block is generated, using

the editor method CreateBlockSequence. The last expansion step is excluded from the

generation, as the command can use the source block instead. CreateBlockSequence simply

invokes CreateBlock and connects the blocks in a simply-linked list using their

SetGeneratedBy method. A detail is that, due to having aliases and tooltips only on right-

75

hand-side symbols of the language, the root of the produced chain does not have a proper

alias and tooltip. For this purpose, the appropriate alias and tooltip are copied from the

root of the original destination block. Finally, the source block is connected to the produced

block and replaces the destination block in the AST.

Similarly to ExpandCommand, PasteCommand marks the new block as selected by

invoking the editor method Select, and saves the new block for reusing. Using the field

pasteResult, the Undo and Redo methods are trivial and similar to the ones of

ExpandCommand.

4.5 Runtime Support

In this section we will discuss how the infrastructure of our system can be utilized by the

language author, in order to create a runtime environment for the language they have

developed. In particular, we will analyze two classes, AstHost and AstVisitor, which can be

used in combination to traverse the block AST, convert it to JavaScript and execute it.

Of course, conversion to JavaScript is specific to the input language grammar and its

semantics, so providing a global runtime environment is not possible. Instead, our system

currently provides the AstVisitor class and the AstHost class. The AstVisitor class

(Figure 50) provides functionality for registering visitors per block category, such as

simple blocks and group blocks, and per symbol type, such as expression or statement.

When the method Visit is invoked with a block as its argument, it invokes the handler

which is registered for the specific grammar symbol or the appropriate generic block

category handler if the former is not provided. These handlers accept blocks as their

arguments, meaning the language author has access to the entire block API.

The AstHost class (Figure 51) accepts a visitor instance as its constructor argument and

is responsible for traversing through the block AST and invoking the visitor’s Visit method

in the correct order. The AstHost of Figure 51 traverses the AST and invokes Visit in post-

order traversal, meaning a group block will be visited after all its children-blocks are

visited in an order from the left-most to the right-most.

76

Figure 50: The AstVisitor class’ basic functionality

The language author or a different programmer can utilize this infrastructure by

implementing a subclass of the visitor class and defining the language specific handlers for

each grammar symbol. For instance, a language author can provide a visitor subclass that

converts the block AST to JavaScript by gradually converting each block, when possible,

storing the results and connecting them in an appropriate way when visiting group blocks.

After obtaining JavaScript source-code, execution is easily handled by using JavaScript’s

eval function. This is the approach that we have chosen when implementing the runtime

environment for the example language of Chapter 5. Section 5.3 provides details about its

implementation, including the handling of indentation and parenthesization for producing

readable source-code.

Although the system provides the aforementioned infrastructure, the editor can accept

any handler for JavaScript conversion and visual code execution. In this context, language

77

authors are free to explore other options, such as implementing a custom interpreter and

not explicitly converting to JavaScript for execution.

Figure 51: The AstHost class’ basic functionality

4.6 Configuration Facilities

In this section, we will briefly discuss our implementation, regarding the system’s

configuration facilities as well as the form of expected input configuration files.

4.6.1 Block and GUI themes

Supporting customizable block themes requires a lengthy and more complicated to

understand configuration file, when compared to the simpler structure of our system’s

other configuration files. The block theme configuration file consists of two parts: the

general, per block category theme configuration settings and the specific per grammar

symbol configuration settings. Each category of blocks, due to its different rendered

representation, provides different theme customization properties. Simple blocks provide

the simplest theme-able configuration, since they render as rectangles that contain text. In

78

this context, they provide customization properties for background color, left, right, top

and bottom padding, font-color and size, border width, border color and border radius.

However, not every block category is as simple to configure. A selection block’s rendered

view consists of a rectangle that contains text and an arrow, which when clicked, expands

to a rectangular dropdown list that includes selectable options which, on mouse-hover,

display tooltips. Each of these elements is customizable, meaning that selection blocks

provide configuration properties for the main block (background color, left, right, top and

bottom padding, font size and font color, width of the gap between the text and the arrow,

border width, border color and border radius), the arrow (color, width, and height), the

option container (background color, left, right, top and bottom padding), each inner option

(background color, left, right, top and bottom padding, font size and font color), each inner

option on-mouse-hover (background color and font color) as well as the option tooltip

(background color, font size and font color).

In order to achieve this in a flexible way, each block category chooses, for each of its

configurable elements, a subset from the set of all the configuration properties available

through the system. For instance, selection blocks, as mentioned in the previous paragraph

have 6 configurable rendered views: the main block view, the arrow, the option container,

the inner options, the inner options on-mouse-hover and the option tooltip. For each one of

these elements, there is a different supported subset of configuration properties, as they

are mentioned in the previous paragraph. Furthermore, each block provides methods

which return the corresponding rendered DOM elements of its configurable components.

For applying the chosen configuration theme, a different component translates the

properties to CSS, obtains the corresponding DOM elements and applies the properties

directly to their style attribute. Furthermore, because interactive configuration such as on-

hover is not applicable to the style attribute of DOM elements, configurable properties such

as the on-mouse-hover background color of a selection block’s inner option, are applied by

obtaining the properties’ CSS translation and utilizing it in specific JavaScript event

handlers, or appending it directly in HTML <style> elements.

The input configuration file not only accepts configurable settings per block category, but

also configurable settings per specific grammar symbol. These settings consist of

configuration properties derived by the grammar symbol’s block category and when

79

specified, override them. For instance, an “if-statement” block can be configured by

properties specified in the general group block category as well as in the language

dependent “if-statement” grammar symbol category, with configuration properties of the

latter being prioritized. In this context, the language author can specify a general

background color for all group blocks and override it in the case of a specific symbol. For

automatically generating a template for the language specific part of the block theme

configuration file, the editor loops through all the input language’s terminal and non-

terminal symbols, calculates their block category and outputs the appropriate configurable

components and properties. When the system is provided with a complete theme

configuration file, the editor precomputes and saves the theme for each language grammar

symbol by initially assigning it its general category properties and then overriding the ones

which are also provided in the specific per-grammar-symbol configuration. When a block is

inserted or generated through the editor, it is automatically provided with its

corresponding input theme, which is applied when the block is rendered.

The user interface theme configuration facilities use the same backbone mechanism,

meaning that each configurable component provides the editor with a list of its

configurable subparts and their chosen configuration properties. The editor then can

export a theme template, and when given a valid theme configuration file, it can apply it to

the user interface.

4.6.2 Pretty Print

As previously stated, the system uses a pretty print configuration file in order to

automatically construct blocks that are structured according to a desired layout. With the

absence of such a mechanism, all blocks would be one-line elements. Using pretty print, the

language author can define, per say, “if-statement” blocks to have their statements in a

new-line and indented by one tab character. The pretty print configuration JSON has two

distinct parts, one related to group blocks, and one related to repetition group blocks.

Generating the first part of the pretty print configuration file requires looping through all

the language grammar symbols that lead to producing group blocks. These are the non-

terminal grammar symbols that have a right-hand-side of multiple grammar symbols and

80

are defined using the “all_of” meta language grammar token. The editor, then, outputs, for

each of these symbols, a JSON object that contains a key-value pair with the symbol’s name

as its key and, as its value, an array containing all of its production’s right-hand-side

symbol names. The language author can then alter the array with the right-hand-side

symbols, by adding the special prefixed tokens $$_newline and $$_tab in the wanted

positions. This configuration JSON object is validated and saved by the editor. In each

syntax-directed insertion operation, the block generation process is followed by consulting

the pretty print configuration JSON and inserting any new-line or tab blocks in the specified

positions.

The second part of the pretty print configuration file is related to insertions in repetition

group blocks and is used to indicate whether the editor should generate new-line blocks

between their repetitive elements. While, per say, a repetition group block for statements

requires each statement in a new-line, an “arguments” block for function formal

parameters usually has each argument in the same line. Similarly to the previous part of

the pretty print configuration file, this part is generated by looping through all the non-

terminal grammar symbols which produce repetition group blocks. Each of these grammar

symbols has its own entry, which has a value of true if the symbol requires generating new-

line blocks and false otherwise. When the end-user generates a new block using the “+”

button of a repetition group block, the editor consults the input pretty print configuration

JSON and inserts a new-line block, only if required.

4.6.3 Source-Text View

Visual code has a hierarchical nature and displays grouping in a visual way without

requiring the use of specific tokens such as parentheses and braces. For converting visual

code to its source-text, the language author can specify any additional tokens, required for

valid conversion. The structure of the system’s source-text view configuration file, which

allows the addition of such tokens, is identical to that of the pretty print configuration file,

with the difference that the editor accepts any $$_ prefixed token such as $$_(for left-

parenthesis or $$_{ for left-brace, instead of accepting only $$_tab and $$_newline.

Additionally, the configuration file allows specifying any prefixed token for inserting

81

between the repetitive elements of repetition group blocks, instead of allowing a Boolean

answer of whether to insert a new-line block or not. This is particularly useful for

converting traditionally comma separated repetitive elements, such as function formal

parameters. The language author has to redefine newline and tab placement, since the

additional tokens of source-text conversion impact the group blocks’ structure.

When the system is provided with a source-text configuration JSON object, the editor

validates it and saves it. When the user issues a command to enter into the source-text view

mode, the editor converts the visual code to source-text by performing a traversal in the

visual code AST. In this traversal, the editor applies a specific theme to each block, which

mainly erases its background-color and borders in order to simulate pure text, generates

simple blocks corresponding to the tokens specified in the source-text view configuration

file and places them into their correct position into the visual code AST. Any new-line or tab

blocks that were defined before the conversion are saved and erased. When reentering

block-based editing mode, the editor reapplies the user-defined color theme, removes all

the tokens added by the source-text view mode and reinserts the new-line and tab blocks

as they were before entering the source-text view mode. The language author has access to

an additional configuration file, for defining the source-text color theme. This is mainly

used to define the font color for the source-text view’s special tokens, but also to define

different font colors than those specified in the block theme configuration file for already

existing grammar symbols.

82

83

Chapter 5

Example Language

In this chapter, we will describe an example general purpose visual programming

language primarily targeted at learners, which we have authored while developing the

system. Throughout this process, we aim to further elaborate on the process of integrating

a visual programming language into our system. Particularly, we provide the complete

language grammar specification written in the Code-Chips meta language as well as show

the block representation that is produced by the system, when given this language as its

input. Additionally, we show how the language author can use our system’s configuration

facilities, such as theme and pretty printing configurations, in order to alter the visual block

representation. Lastly, we demonstrate the implementation of the example language’s

runtime environment, showing how the language author, or generally an experienced

programmer, can use the system’s infrastructure in order to provide executable visual

code.

5.1 Grammar Overview

In this section we will discuss the grammar of an example language and show its visual

block representation. The provided example language is a simple imperative general

purpose visual programming language, primarily aimed at beginners. However, for the

purposes of this thesis, we have chosen to present it in the form of a traditional grammar

specification and keep abbreviations such as “stmt” instead of “statement” or “expr” instead

of “expression”. For its practical applications in learning, especially with the absence of a

tutor or a teacher, we recommend using the full non-abbreviated words, as they are more

easily comprehensible by beginners.

84

Figure 52: All possible statement expansions, excluding “expression”

Programs, in this example language, compose of statements which are executed, as

normal, in a linear fashion. Each statement can be one of “if-statement”, “if-else-statement”,

“while-statement”, “for-statement”, “expression-stmt”, “function-definition”, “break-

statement”, “continue-statement” and “return statement”. For each one of these expansions,

we have defined tooltips such as “Do something if a condition is true” for “if-statement” or

“Continue to the next iteration of the current loop” for “continue-stmt”. Note that

statements such as “break”, “continue” and “return” are permitted to be inserted in the

context of any statement, as they are handled at runtime in order to produce valid

JavaScript code. Additionally, we permit nested function definitions, which can use

variables defined in outer scopes, as in JavaScript. This is usually not permitted by the

visual programming languages used in popular visual programming environments, for

simplicity reasons. Disallowing this for our example language, in a grammar level, is as easy

85

as creating a new rule for the top-level statements which includes “function-definition” and

excluding it from the “statement” rule.

Figure 53: All possible expression expansions, excluding function calls

Figure 52 depicts the definitions of every alternative statement expansion, other than

“expression-statement”, which will be discussed later. As we discussed previously,

parenthesized tokens in the grammar represent aliases for grammar symbols and are used

for context-specific display of token names. For instance, in Figure 52, we use

“condition_expr” as an alias for the “expr” grammar symbol in the definition of “if_stmt” and

thus the system displays the alias at the corresponding block, instead of displaying “expr”.

In this example language, it is allowed to use a simple expression as a statement,

similarly to many textual programming languages that usually require the addition of a

semi-colon. In this context, “expression-statement” is simply an alias for “expression”. By

86

allowing expressions as statements, and making expressions expand to assignments and

function calls, we allow chaining assignments and using function calls as operands of

arithmetic, relational and logical expressions as well as arguments to other function calls.

The expression grammar symbol can expand to arithmetic, logical, relational, primary,

assignment and function-call expressions. Arithmetic expressions can be either binary, in

the cases of addition, subtraction, multiplication, division and modulo or unary in the case

of unary minus. Each of these operations has its own operand, which as in most traditional

programming languages, are “+”, “-“, “*”, “/” and “-“ respectively. Similarly, logical

expressions can either be binary, in the cases of logical “and” as well as logical “or”, or

unary in the case of logical “not”. Relational expressions are always binary and can use “>”,

“<”, “=”, “!=”, “>=” and “<=” as their operands. Primary expressions can be identifiers,

floating or integer numbers, alpharithmetic strings or single characters, Booleans, or

arrays. As we have previously discussed, blocks such as integers or identifiers require user-

typed input, which is validated by the system. Figure 53 depicts all of the aforementioned

expression expansions, excluding function calls, which will be depicted separately.

Figure 54: User-defined function calls and input-output library functions

87

Figure 55: Math library functions

In this example language, function calls are divided into two categories: user-function

calls and library-function calls. User-function calls can be invoked with an unlimited

number of arguments, similarly to JavaScript. For library functions, arguments are

embedded into their grammar definition and only allow the user to invoke them with the

correct number of arguments, similarly to blocks in prevalent visual programming

environments. Currently, library functions are divided into four categories: input-output,

math, strings and arrays, but the design of the language grammar allows for easy additions

of more categories, or expanding a category’s existing collection of functions. Figure 54

depicts the grammar definitions for user-functions as well as the input-output library

functions “print”, which displays an alert box with a specified message, and “input” which

displays a dialog box that prompts the user for input.

A math function call (Figure 55) can expand into seven different functions: “pow”, which

raises a number into an exponent, “sqrt”, which computes a number’s square root, “round”

which rounds a number into the nearest integer, “floor”, which computes the greatest

integer that is less than or equal to the input number, “ceiling”, which computes the least

88

integer greater than or equal to the input number, “sin” and “cos”, which compute the sine

and cosine of the input angle respectively. Note that, although it is not depicted in the

provided figures, we accompany each function with a tooltip, which is shown when making

the expansion, as well as when hovering over an already constructed function block.

As depicted in Figure 56, string library functions follow the concept of method calls, for

which the string, to which the method is applied, is mentioned before the method’s name,

in contrast to passing the string as the first or last argument of a function call. The currently

available string method calls are “append”, “get_character”, “get_substring” and “get_size”.

String “append” returns a new string equal to the string, concatenated with the method’s

argument, “get_character” returns the character at the specified position of the string,

“get_substring” returns a new string that starts at “start_index” (inclusive) and ends at

“end_index” (non-inclusive), and “get_size” returns the number of characters in the string.

Figure 56: String library functions

89

Finally, the currently provided array methods (Figure 57) are “get”, “insert”, “push_back”,

“set” and “get_size”. Array “get” returns the element at the given position of the array,

“insert” inserts the given element at the given position and pushes the elements that follow

it so that the array has one more element than before performing the insertion,

“push_back” inserts the given element as the last element into the array and “get_size”

returns the number of elements that are currently in the array.

Figure 57: Array library functions

90

5.2 Configurations

Figure 58: The example language’s toolbox JSON and its corresponding user interface

In this section we will review samples of the configuration files, used for setting up the

editor toolbox, altering the default block theme, as well as pretty print and source-code

conversion settings. For this example language, we have divided blocks into eight

categories, related to their semantics. Particularly, the chosen categories are: control,

logical, math, string, array, input/output, variable and function. Each of these categories is

represented by its own toolbox subarea and is accompanied by its name and icon, which

we defined in an appropriate configuration file (as depicted in Figure 58). Using the editor,

we have exported blocks into their JSON form and have placed them into appropriate

categories. The complete toolbox block collection can be seen in Figure 59. Additionally, we

have created an initially empty “Snippets” category in which end-users can freely add any

block sequence for easier access.

91

Figure 59: All the example language’s available toolbox categories

The visual representation of blocks, including their chosen colors, padding, inner

element colors and more, is an important aspect for designing visual programming

languages. For this example language, we have chosen the approach of a colorful block

theme (Figure 59), similar to those of popular visual programming editors. With this

approach blocks are color-coded based on their semantics in order to facilitate beginners in

the learning process. Of course with the provided configuration facilities, the language

authors can customize their blocks with access to different configuration properties and

accomplish different visual results. For instance, Figure 37 depicts a visual code segment

written in this example language, as it is viewed in three different themes.

As previously stated, in the context of block customization, the language author has

access to general settings per block category, as well as specific settings per grammar

92

symbol name, according to their block category. For instance, an “if-statement” block in this

example language is of the group block category and thus can be configured with the

options offered by group blocks. In this context, an “if-statement” block acquires its style by

combining the general group block configuration style with the “if-statement” specific

configuration style, as depicted in Figure 60. In the same figure, we provide configuration

settings for different block components. Note that the provided configuration settings are

expressive and allow customizations such as color-change on hover of the repetition group

button or on hover of selection block options. Despite that, accomplishing the example

language theme does not require much work in terms of customization, as the general

settings per block category mostly suffice. The specific settings per grammar symbol are

usually used for background-colors and border-colors of specific elements (for instance an

“if-statement” is blue and a “while-statement” is green). However, the visual difference

between the condition placeholder of an “if-statement” and that of a “while-statement” is

not accomplished by specifying different background colors but relies on the alpha value

for the background color of the general selection block customization settings.

Figure 60: Example theme configuration for “if_stmt”

93

Figure 61: The example language’s pretty print configuration for

This example language requires minimal customization for pretty printing. Particularly,

there are five group blocks that need new-lines and tabs: “if-statement”, “if-else-statement”,

“while-statement”, “for-statement” and “function-definition”. In order to define the

placement of the required new-lines and tabs, the language author places the prefixed

$$_newline and $$_tab keywords in an appropriate position inside the desired JSON

element. Additionally, repetition group blocks require customization for determining

whether the blocks generated by them will appear in a different line or not. For instance,

clicking the “+” button to generate a new “statement” block automatically generates a new-

line, while clicking the “+” button to generate a new function argument generates it in the

same line. The whole pretty print configuration for this example language is depicted in

Figure 61. Finally, for configuring source-text translation, we have used a similar

configuration file to that of pretty print. Other than appropriately inserting new-lines and

tabs, the source-text configuration infrastructure allows the insertion of parentheses,

commas, braces and more. We have used this infrastructure to, for instance, parenthesize

94

binary arithmetic expressions, wrap elements such as the inner statements of an “if-

statement” in braces and separate function-arguments with commas. Figure 62 provides

examples of configuration for conversion to source-text.

Figure 62: Configuration examples for conversion to source-text

95

5.3 Translation and Execution

Figure 63: Examples from the runtime implementation of the example language

In this section, we discuss the implementation for the example language’s runtime

environment. For the purposes of this thesis we do not provide the complete code-base of

the implemented runtime environment and instead focus on key aspects for understanding

96

its functionality. Execution is based on translating the visual code AST to JavaScript and

executing it by using the JavaScript “eval” function.

In this context, we have used the previously described AstVisitor base class, and have

authored a subclass in order to translate the visual code AST to JavaScript. The subclass

uses a stack, to which AST nodes (blocks) push their converted JavaScript equivalent.

Group blocks, which have more than one inner block, utilize the code segments that are

pushed by their inner blocks, combine them appropriately and push the result into the

stack. For instance, an “if-statement” group block that consists of an “if” simple block, a

“condition” block and a “statements” block, is responsible for combining these and pushing

a syntactically correct JavaScript “if-statement” by including parentheses before and after

the condition, and braces before and after the combined statements. At the same time, we

would like the code to be not only executable but also humanly viewable, in terms of

indentation and parenthesization. To accomplish correct indentation, the implemented

visitor subclass keeps track of the current count of tabs. Each AST node can increase,

decrease or use this count to insert tabs where needed. To avoid unnecessary parentheses,

AST nodes that use operators have to factor in their converted JavaScript operator

precedence and associativity. For instance a binary expression of “(expr1) and (expr2)”, for

which expr1 is “x or y” and expr2 is “not z” is converted to “(x or y) and !z”, as our

implementation compares “and” to “or” as well as “not” to add parentheses only when

needed. Figure 63 provides code and further explanations on our implementation.

An important aspect of the example language’s semantics is variable definitions and

declarations. The example language, as previously described, does not provide blocks for

declaring variables but uses declaration by use, meaning that variables are automatically

declared on their first use. At the same time, as previously stated, the example language

allows nested function definitions. In this context, inner functions have access to variables

defined in outer functions, similarly to JavaScript, but we do not allow shadowing outer

scope variables, since there is no variable declaration keyword (shadowing outer scope

variables is only possible by defining a function with the same name). For implementing

such functionality, each translated JavaScript function defines the variables that were

found directly in their statements, excluding variables that were references to ones of outer

functions. With this implementation, a variable that was defined in an outer function is not

97

shadowed in an inner function. In code, each function definition AST node is associated

with its own scope, which tracks variables, functions and formal arguments. Every AST

node that uses a variable identifier checks if this specific identifier is defined in an outer

live scope. If the answer is positive, no modifications are made to the current scope,

otherwise the identifier is added to it. When a function-definition node is visited, it declares

its own scope’s variables using the JavaScript “var” keyword. Figure 64 depicts code for all

the required scope related operations.

Figure 64: Scope handling in the runtime environment of the example language

98

99

Chapter 6

Conclusion and Future Work

This thesis presents Code-Chips: a general-purpose syntax-directed visual programming

editor that accepts the actual language grammar as its input. For this purpose, we have

defined a simple but expressive meta language through which experienced programmers

can author visual programming languages. Given a valid language grammar specification,

the system generates language dependent configuration files, which can customize its user

interface and blocks.

The system translates the input grammar symbols to interactive blocks which support

syntax-directed editing operations and block-based visual programming operations. In

contrast to traditional syntax-directed editors, end-users are not required to remember

and recall commands. Instead, by interacting with selection blocks, end-users are given the

ability to choose from all the available expansions in the given context.

In contrast to popular visual programming editors, the underlying language grammar is

explicit and is directly communicated to the end-users. Additionally, the system empowers

end-users with the ability to inspect the production chain of any formed program element,

by viewing it in a block-based form.

Through the syntax-directed aspect of the system, end-users can benefit from a learning

process based on language exploration. The system’s visual programming aspect, including

the block-based form for program elements, the toolbox with its ready-made language

productions in the form of blocks, and the support for syntactic drag-and-drop insertions,

allow for introducing beginners to programming. In combination, even experienced

programmers can benefit from learning grammatically advanced or new language

concepts, using a textual programming language within the system.

Although we believe the presented system can help beginners as well as more

experienced programmers in the aforementioned manner, Code-Chips has yet to be

100

evaluated and tested by real users in real scenarios. Particularly, it is our intent to conduct

case studies through which we will collect valuable information on how the system is

perceived in teaching scenarios, from the student’s perspective, as well as from the

educator’s point of view. Additionally it would be interesting to measure how the system

can solely, or in combination with traditional methods, benefit a developer in forming in-

depth knowledge of syntactically complicated language concepts.

Another area in which the system can improve is the facilities for being integrated into

application specific educational environments. Although Code-Chips offers functionality for

embedding a programming language and customizing its produced blocks, this process

requires using the meta language and altering configuration files. In the future, we plan on

facilitating such tasks with graphical user interfaces. Particularly, the meta language can be

hosted by the editor itself, and thus provide a means for defining languages for the system,

within the system. Furthermore, the available customization properties can be the input of

a user interface generator which will allow viewing and altering them, as well as provide

immediate feedback.

Finally, it would be interesting to examine how the system could navigate from its

current syntax-directed features, which are based on grammatical structure, to also

support more context-aware features such as intelligent code completion for variable

names, functions and methods.

101

Bibliography

[1] Khwaja, Amir Ali, and Joseph E. Urban. "Syntax-directed editing environments:

Issues and features." Proceedings of the 1993 ACM/SIGAPP symposium on Applied

computing: states of the art and practice. 1993.

[2] Lang, Bernard. "On the usefulness of syntax directed editors." Advanced

Programming Environments. Springer, Berlin, Heidelberg, 1987.

[3] Teitelbaum, Tim, and Thomas Reps. "The Cornell program synthesizer: a syntax-

directed programming environment." Communications of the ACM 24.9 (1981):

563-573.

[4] Goldenson, Dennis R. "Learning to Program with Structure Editing: An Update and

Some Replications." Proceedings of the National Educational Computing Conference.

1990.

[5] Myers, Brad A. "Taxonomies of visual programming and program visualization."

Journal of Visual Languages & Computing 1.1 (1990): 97-123.

[6] Maloney, John, et al. "The scratch programming language and environment." ACM

Transactions on Computing Education (TOCE) 10.4 (2010): 1-15.

[7] “With MIT App Inventor, Anyone Can Build Apps with Global Impact.” MIT App

Inventor | Explore MIT App Inventor, https://appinventor.mit.edu/. Accessed Dec.

2021.

[8] Hils, Daniel D. "Visual languages and computing survey: Data flow visual

programming languages." Journal of Visual Languages & Computing 3.1 (1992): 69-

101.

[9] Cox, Philip T., F. R. Giles, and Tomasz Pietrzykowski. "Prograph: a step towards

liberating programming from textual conditioning." 1989 IEEE Workshop on Visual

languages. IEEE Computer Society, 1989.

[10] “Unity Shader Graph: Build Your Shaders Visually with Unity.” Unity,

https://unity.com/shader-graph. Accessed December 2021.

https://appinventor.mit.edu/
https://unity.com/shader-graph

102

[11] “Blueprint Visual Scripting.” Unreal Engine Documentation,

https://docs.unrealengine.com/4.27/en-

US/ProgrammingAndScripting/Blueprints/. Accessed December 2021.

[12] “What Is Max?” What Is Max? | Cycling '74, https://cycling74.com/products/max.

Accessed December 2021.

[13] Scherer, Ronny, Fazilat Siddiq, and Bárbara Sánchez Viveros. "The cognitive benefits

of learning computer programming: A meta-analysis of transfer effects." Journal of

Educational Psychology 111.5 (2019): 764.

[14] Liao, Yuen-Kuang Cliff, and George W. Bright. "Effects of computer programming on

cognitive outcomes: A meta-analysis." Journal of educational computing research 7.3

(1991): 251-268.

[15] Buitrago Flórez, Francisco, et al. "Changing a generation’s way of thinking: Teaching

computational thinking through programming." Review of Educational Research

87.4 (2017): 834-860.

[16] Yaroslavski, Danny. "How does Lightbot teach programming." Retrieved January 29

(2014): 2016.

[17] Blockly Games, https://blockly.games/. Accessed December 2021.

[18] “Learn Computer Science. Change the World.” Code.org, https://code.org/. Accessed

December 2021.

[19] “Coding for Kids, Kids Programming Classes and Games: Tynker.” Tynker.com,

https://www.tynker.com/. Accessed December 2021.

[20] CodeCombat. “Coding Games to Learn Python and JavaScript.” CodeCombat,

CodeCombat, https://codecombat.com/. Accessed December 2021.

[21] “Coding for Kids: Game-Based Programming.” CodeMonkey,

https://www.codemonkey.com/. Accessed December 2021.

[22] Chomsky, Noam. Knowledge of language: Its nature, origin, and use. Greenwood

Publishing Group, 1986.

[23] Piteira, Martinha, and Carlos Costa. "Learning computer programming: study of

difficulties in learning programming." Proceedings of the 2013 International

Conference on Information Systems and Design of Communication. 2013.

https://docs.unrealengine.com/4.27/en-US/ProgrammingAndScripting/Blueprints/
https://docs.unrealengine.com/4.27/en-US/ProgrammingAndScripting/Blueprints/
https://cycling74.com/products/max
https://blockly.games/
https://code.org/
https://www.tynker.com/
https://codecombat.com/
https://www.codemonkey.com/

103

[24] Denny, Paul, et al. "Understanding the syntax barrier for novices." Proceedings of the

16th annual joint conference on Innovation and technology in computer science

education. 2011.

[25] Zelkowits, Marvin V. "A small contribution to editing with a syntax directed editor."

ACM Sigplan Notices 19.5 (1984): 1-6.

[26] Donzeau-Gouge, Veronique, et al. Programming environments based on structured

editors: The MENTOR experience. INSTITUT NATIONAL DE RECHERCHE

D'INFORMATIQUE ET D'AUTOMATIQUE ROCQUENCOURT (FRANCE), 1980.

[27] Fischer, Charles N., et al. "The POE language-based editor project." ACM SIGSOFT

Software Engineering Notes 9.3 (1984): 21-29.

[28] Fraser, N. "Google Blockly-a visual programming editor"

https://developers.google.com/blockly. Accessed December 2021.

[29] “Blockly Developer Tools”, https://developers.google.com/blockly/guides/create-

custom-blocks/blockly-developer-tools. Accessed December 2021.

[30] “Microsoft MakeCode Computer Science Education.” Microsoft MakeCode,

https://www.microsoft.com/en-us/makecode. Accessed December 2021.

[31] Bernat Romagosa, Michael Ball. “Welcome to Snap!” Snap! Build Your Own Blocks,

https://snap.berkeley.edu/. Accessed December 2021.

[32] JQuery, https://jquery.com/. Accessed December 2021.

[33] Carter, Zach. “Jison.” Jison / Documentation,

https://gerhobbelt.github.io/jison/docs/. Accessed December 2021.

[34] Levine, John. Flex & Bison: Text Processing Tools. " O'Reilly Media, Inc.", 2009.

https://developers.google.com/blockly
https://developers.google.com/blockly/guides/create-custom-blocks/blockly-developer-tools
https://developers.google.com/blockly/guides/create-custom-blocks/blockly-developer-tools
https://www.microsoft.com/en-us/makecode
https://snap.berkeley.edu/
https://jquery.com/
https://gerhobbelt.github.io/jison/docs/

