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Using Linked Data for Named Entity Extraction and
Disambiguation

Abstract

Named Entity Extraction (NEE) is the process of identifying entities in texts
and, very commonly, linking them to related (Web) resources. This task is useful
in several applications, e.g. for question answering, annotating documents, pro-
cessing of search results, etc. However, it is quite common for an entity name
to correspond to more than one semantic categories, e.g. Argentina may refer
either to Fish Species Argentina or to Country Argentina. This is the well-known
Named Entity Disambiguation (NED) problem. In addition to, existing NEE and
NED tools lack an open or easy configuration although this is very important for
building domain-specific applications. For example, supporting a new category of
entities, or specifying how to link the detected entities with online resources, is
either impossible or very laborious. In this thesis we show how we can exploit se-
mantic information (Linked Data) at real-time for configuring a NEE system and
disambiguating the mined entities. We introduce an RDF/S vocabulary, called
“Open NEE Configuration Model”, which allows a NEE service to describe (and
publish as Linked Data) its entity mining capabilities, but also to be dynamically
configured. We present X-Link a NEE framework that realizes this model, and
contrary to the existing tools, it allows the user to define the categories of entities
that are interesting for the application at hand (by exploiting Linked Data). Then
we focus on the problem of NED in this context, i.e. on the problem of selecting
the right category for each extracted entity. To this end we introduce three meth-
ods, each approaching the problem from a different perspective. The first method
is based exclusively on NEE results and selects as more probable category the one
with the highest occurrence frequency. The second method moves a step forward
and exploits the semantic relations between the mined entities, using their seman-
tic resources, and returns the semantic resource that is closer to the others in the
semantic graph. The last method uses machine learning algorithms for classifying
the entire document into a specific category based on a train set. Then we report
the results of a thorough comparative experimental evaluation using search results
from Bing1 search engine. We evaluate the introduced methods over collections
of documents of different size and we measured the achieved precision and the
required time for disambiguation. The results allowed us to identify the strong
and weak aspects of each method. Overall, the third method works well in most
cases apart from small snippets, e.g. tweets, where it achieves almost the same
precision with the second method.

1https://www.bing.com





Χρήση Διασυνδεδεμένων Δεδομένων για Εξόρυξη
και Αποσαϕήνιση Οντοτήτων

Περίληψη

Με τον όρο Εξόρυξη Οντοτήτων αναϕερόμαστε στη διαδικασία εντοπισμού οντο-
τήτων2 σε κείμενα και αρκετά συχνά στην σύνδεσή τους με σχετικούς (διαδικτυακούς)
πόρους. Αυτή η διαδικασία είναι χρήσιμη σε πολλές εϕαρμογές, όπως στην απάντηση
επερωτήσεων, στην επισημείωση κειμένων, στην επεξεργασία αποτελεσμάτων αναζή-
τησης, κ.α. Ωστόσο, είναι αρκετά σύνηθες ένα όνομα οντότητας να αντιστοιχεί σε
παραπάνω από μια κατηγορίες, λόγου χάρη ο όρος Argentina μπορεί να αϕορά είτε
το είδος ψαριού Argentina, είτε την ομώνυμη χώρα. Αυτό το πρόβλημα είναι γνωστό
στη κοινότητα ως πρόβλημα της Αποσαϕήνισης Οντοτήτων. Επιπρόσθετα, τα υπάρ-
χοντα εργαλεία εντοπισμού και αποσαϕήνισης οντοτήτων στερούνται μιας εύκολης και
«ανοικτής» παραμετροποίησης, η οποία είναι σημαντική για τη δημιουργία εξειδικευμέ-
νων εϕαρμογών. Για παράδειγμα, η υποστήριξη μιας νέας κατηγορίας οντοτήτων ή ο
προσδιορισμός του τρόπου σύνδεσης των οντοτήτων με δεδομένα στο διαδίκτυο, είναι
από πολύ δύσκολο έως ακατόρθωτο. Σε αυτήν την εργασία επικεντρωνόμαστε στο
πως μπορούμε να εκμεταλλευτούμε τις διαθέσιμες σημασιολογικά οργανωμένες πλη-
ροϕορίες, συγκεκριμένα τα Διασυνδεδεμένα Δεδομένα (Linked Data), για να παρα-
μετροποιήσουμε ένα σύστημα εξόρυξης οντοτήτων καθώς και για να αποσαϕηνίσουμε
τις ευρεθείσες οντότητες. Προτείνουμε μια οντολογία RDF/S, που ονομάζεται “Open
NEE Configuration Model”, η οποία επιτρέπει σε μια υπηρεσία εντοπισμού οντοτή-
των να περιγράϕει (και να εκϕράζει ως Linked Data) τις προδιαγραϕές της, καθώς
και να παραμετροποιείται δυναμικά. Επίσης παρουσιάζουμε το X-Link, ένα εργαλείο
εξόρυξης οντοτήτων που υιοθετεί το παραπάνω μοντέλο, που σε αντίθεση με άλλα
συναϕή εργαλεία, επιτρέπει στον χρήστη να προσδιορίζει τις κατηγορίες οντοτήτων
που τον ενδιαϕέρουν για την εϕαρμογή του (εκμεταλλευόμενος τα Linked Data). Εν
συνεχεία, κινούμενοι ως προς αυτή την κατεύθυνση, εμβαθύνουμε στο πρόβλημα της
αποσαϕήνισης οντοτήτων, και πιο συγκεκριμένα στο πρόβλημα της επιλογής της κα-
τάλληλης κατηγορίας για κάθε ευρεθείσα οντότητα. Για τον σκοπό αυτό προτείνουμε
3 μεθόδους, με κάθε μια να προσεγγίζει το πρόβλημα από διαϕορετική σκοπιά. Η
πρώτη βασίζεται εξολοκλήρου στα αποτελέσματα ενός ΝΕΕ εργαλείου και θεωρεί ως
πιθανότερη κατηγορία εκείνη με την μεγαλύτερη συχνότητα εμϕάνισης στα αποτελέ-
σματα. Η δεύτερη επεκτείνει την πρώτη και αξιοποιεί τις σημασιολογικές συσχετίσεις
μεταξύ των οντοτήτων που έχουν εντοπιστεί, χρησιμοποιώντας τις σημασιολογικές
τους ιδιότητες. Θεωρεί ως πιο πιθανή κατηγορία εκείνη που αντιστοιχεί στον σημα-
σιολογικό πόρο που είναι πιο κοντά (στο σημασιολογικό γράϕο) στους υπόλοιπους
που εντοπίστηκαν. Η τελευταία μέθοδος χρησιμοποιεί αλγορίθμους μηχανικής μάθη-
σης για την κατηγοριοποίηση του εκάστοτε κειμένου σε μια συγκεκριμένη κατηγορία,
έχοντας πρώτα «εκπαιδευτεί» σε μια κατάλληλη συλλογή εγγράϕων. Στη συνέχεια
παρουσιάζουμε τα αποτελέσματα μιας εμπεριστατωμένης συγκριτικής αξιολόγησης που

2Οτιδήποτε υπάρχει αυτοτελώς, έχει διακεκριμένα χαρακτηριστικά που το ορίζουν ως αυτοτελή
ύπαρξη.



χρησιμοποιεί αποτελέσματα αναζήτησης από τη μηχανή αναζήτησης Bing. Τα αποτε-
λέσματα της αξιολόγησης μας επιτρέπουν να εντοπίσουμε τα θετικά και τα αρνητικά
κάθε μεθόδου. Πιο συγκεκριμένα, αξιολογήσαμε τις μεθόδους μας πάνω σε συλλο-
γές εγγράϕων διαϕορετικού μεγέθους και υπολογίσαμε την ακρίβεια τους καθώς και
τον απαιτούμενο χρόνο εκτέλεσης. Μετά το πέρας των πειραμάτων καταλήξαμε στο
συμπέρασμα ότι η τρίτη μέθοδος (κατηγοριοποίηση εγγράϕου) λειτουργεί καλύτερα
σε όλες τις περιπτώσεις εκτός αυτής που το περιεχόμενο ενός εγγράϕου είναι περιο-
ρισμένο, πχ. tweets, όπου έχει σχεδόν την ίδια ακρίβεια με την δεύτερη μέθοδο.
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Chapter 1

Introduction

Named Entity Extraction (NEE), also known as Named Entity Recognition (NER)
and Semantic Annotation, is the process of identifying entities in text belonging
to a set of pre-defined categories (class labels) such as Person, Location, Organi-
zation, etc. This task usually includes the Entity Linking process which tries to
link the named entity with a resource (reference) in a Knowledge Base (KB)1.
Entity Linking is also considered a way of Named Entity Disambiguation (NED),
since a resource (e.g. a URI or a Wikipedia page) can determine the identity of
an entity. Specifically, NED deals with the selection of right category for each
extracted (ambiguous) entity based on the textual content and the semantics of
the document that was found, since an entity name may correspond to more than
one categories. NEE is useful in several tasks, e.g. for question answering [48],
post-processing of search results [27, 30], annotating (Web) documents [35, 45]. In
addition, the importance of NEE, especially for the Semantic Web, is justified by
the fact that the Semantic Web realization highly depends on the availability of
metadata (structured content in general) describing Web content, defined through
a formal semantic structure. Thus, a major challenge for the Semantic Web is the
extraction of structured data through the development of automated NEE tools.

There are already several tools that support NEE, NED or both, e.g. DBpedia
Spotlight [46], AlchemyAPI [1], OpenCalais [4], Babelfy [49] and AGDISTIS [61].
However, these tools do not allow the user/developer to easily configure them,
e.g. to define their own interesting types (categories) of entities (e.g. Swedish First
Names), to extend an existing category with additional entities coming from a new
KB, or to determine how to disambiguate the identified entities according to his
needs and the available information. Hence, it is quite difficult to configure them
for building domain specific applications. Furthermore, they do not publish in a
standard format the “entity mining” capabilities of their (Web) services. Conse-
quently, an application cannot dynamically discover and use the services that best
satisfy its annotation needs.

Since a lot of information about named entities is already available as Linked

1From now on, we consider as NEE the process that includes both NER and Entity Linking.
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2 CHAPTER 1. INTRODUCTION

Open Data (LOD) [17], the exploitation of LOD by a NEE system could bring
wide coverage and fresh information. However, existing LOD-based NEE systems
(e.g. DBpedia Spotlight) are mainly dedicated to one specific KB which is indexed
beforehand, not exploiting thereby the dynamic and distributed nature of LOD.
For instance, consider a NEE system that supports a category of entities X. Con-
sider now that a new KB appears which contains plenty of information for entities
belonging to X. It would be useful if one could somehow “plug” the new KB in
the NEE system (with the less possible effort), enabling thereby the linkage of the
identified entities with resources in the new KB. Moreover, the information that
the existing NEE systems return for the identified entities is not rich enough and
cannot be controlled. For example, one cannot configure the properties that are
useful for a particular application, e.g. to restrict the properties to only images or
related entities, or properties in a specific natural language, or to inspect whether
and how the identified entities are connected, not within the document but as
entities in general. However, these correlations between entities can be useful for
the disambiguation process.

To tackle this lack of functionality, in this thesis:

• We elaborate on exploiting the LOD at real time for configuring a NEE
system and we propose a generic (abstract) configuration model. We also
discuss ranking issues that arise within this context.

• We propose the Open NEE Configuration Model, an RDF/S [5] vocabulary
which allows a NEE system to describe (and publish as Linked Data) the
entity mining capabilities of its services.

• We present X-Link, a fully configurable (LOD-based) NEE framework that
we have designed and implemented which realizes the proposed configuration
model.

• In addition, we propose a set of methods for disambiguating named entity
appearances in documents, and we report the results of a comparative ex-
perimental evaluation, where we measure their achieved precision and the
required execution time over datasets of different length (scales of granular-
ity).

For justifying the value of the proposed approach, below we first present a vertical
search scenario that stresses that different communities have different and ever-
changing requirements, and then we discuss several benefits of adopting an open
and exchangeable configuration model.

1.1 The Value of Configurability in Vertical Search

The motivation for enhancing configurability can be made evident from the follow-
ing scenario, which is a real scenario related to the iMarine project2:

2http:/www.i-marine.eu/



1.1. THE VALUE OF CONFIGURABILITY IN VERTICAL SEARCH 3

Consider that you are responsible for maintaining a search system, called X-Search,
a meta-search system that receives a keyword-based query, sends the query to one
or more marine sources and retrieves the results. For giving users an overview of
the search results and allowing them to explore them in a faceted way, you want to
use a NER tool for identifying (at real time) fish species in the snippets or the full
contents of the top results. You think that it would be also useful to link (on de-
mand) the identified species with related semantic resources, as well as to retrieve
more information (e.g. a short description of the species, an image, its taxonomy,
etc.) by querying (at real-time) online semantic KBs. Figure 1.1 depicts a screen-
shot of X-Search for the query “tuna species”. The user can see (in a left bar)
the fish species identified in the search results and can also explore an identified
species at real-time (the species “Atlantic bluefin tuna” in this example). ⋄

Figure 1.1: Semantic post-processing of search results (for the query tuna species)
and exploration of the entity Atlantic bluefin tuna in X-Search.

However, each community of users (e.g. an organization or an institution)
has different needs, which in our scenario means that X-Search should support
different configurations. For instance, scientists in an organization may also want
to inspect other categories of entities in the search results (apart from fish species),
e.g. water areas and countries, and define explicitly the way of disambiguation of
ambiguous entities. In addition, different communities/users may want to link and
enrich the identified species with resources from different sources; one may want
images from DBpedia [14], others with papers that describe the genome of the
species.

For coping with the above requirements, we would like to be able to easily con-
figure X-Search for satisfying the needs of each community of users. In addition,
and since the needs of a community constantly change, we would like to be able to
dynamically change the configuration at any time without requiring to redeploy
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the system (e.g. for updating the list of fish species, for specifying another KB,
etc.). It would be also useful if X-Search could dynamically (ideally at query-time)
discover the NEE services to use according, for example, to the user information
needs. For instance, if a user submits a query requesting documents about water
areas, X-Search could select to use a service that supports identification of water
areas. Finally, by accessing the output of the NEE process in RDF [6], X-Search
could offer advanced exploratory search services over the annotated results. For
example, a user could select to inspect “all results containing information about
fish species of genus Thunnus”.

In this thesis we present one method to accomplish this scenario.

1.2 The Value of Named Entity Disambiguation

Suppose that the above search results also include the entity Argentina. According
to our configuration, X-Search will assume that it refers to fish species, since it
is the only supported category. However, as we know Argentina is also a country of
South America. At this point occurs the problem that the same name can denote
entities belonging to different categories. Thus, in such cases we have to find the
real category of each entity occurrence. This problem is known as Named Entity
Disambiguation or Word-Sense Disambiguation problem, and we will thoroughly
deal with it in Chapter 5.

1.3 The Value of having Exchangeable/Portable Con-
figurations

Having open and exchangeable configurations offers many benefits including:

• Exchangeability and Portability. Configurations can be exchanged by user-
s/communities, e.g. for annotating different corpora of documents using the
same configuration, i.e. the same categories, lists of entities, KBs, etc. In
addition, the availability of a model like the one that we propose enables a
NEE service to offer an API that accepts and uses such configurations, while
the result of the annotation process can be returned in a standard format,
allowing its further exploitation in several contexts.

• Aggregation and Integration of multiple configurations. A common model
allows someone to collect such configurations (provided by different NEE
systems) and then, by querying them, to select those services that satisfy
the needs of the intended application.

• Benchmarking. Common configurations would allow comparative evaluation
of different NEE systems, e.g. with respect to efficiency, effectiveness of
entity disambiguation, etc.

• Extendability. The expression of the model as an RDF Schema allows some-
one to extend it by exploiting also other vocabularies.
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The rest of this thesis is organized as follows: Chapter 2 discusses related works
and the difference of our approach. Chapter 3 analyzes the proposed configuration
model and presents the Open NEE Configuration Model and the extension of the
Open Annotation Data Model, proposed in [33, 34]. Chapter 4 describes in detail
the functionality and configurability of X-Link. Chapter 5 focus on named entity
disambiguation problem. Chapter 6 reports evaluation results. Finally, Chapter 7
concludes and identifies directions for future research.

Publications Derived by this Thesis

Parts of this work were published in the international conference WIMS [33] and
in the international journal IJAIT [34]. In both works we propose an approach
for configuring dynamically (at run-time) a NEE tool, using Linked Data. To this
end we present X-Link a NEE framework that realizes this approach.
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Chapter 2

Related Work

There is a plethora of non LOD-based NEE tools like Wikipedia Miner [47],
Yahoo! Content Analysis API [11], and TagMe [36]. Since the approach that
we propose is based on LOD, below we first discuss the most relevant LOD-based
NEE and NED tools of general purpose (§2.1), we then report some semantic
annotation systems tailored for the life sciences domain (§2.2), and finally we
discuss the main differences of our approach (§2.3).

2.1 LOD-based NEE & NED Tools of General Purpose

DBpedia Spotlight [46] is a REST API tool for annotating mentions of DBpedia
resources in text, providing a solution for linking unstructured information sources
to the LOD. It finds and returns entities that are found in a text, ranks them de-
pending on how relevant they are to the text content, and links them with URIs
from DBpedia. The results of the entity extraction process can be stored into var-
ious forms (HTML, XML, JSON or XHTML+RDFa). As regards configurability,
users can provide whitelists (allowed) and blacklists (forbidden) of resource types
for annotation. The available types are derived from the class hierarchy provided
by the DBpedia Ontology. In addition, the interesting resources can be constrained
using a SPARQL query. However, this configurability allows only the specification
of the interesting resources from the existing ones; the user/administrator cannot
add a new category of entities (e.g. describing resources coming from another KB),
update a category or specify how to link and enrich the identified entities.

AlchemyAPI [1] is a Natural Language Processing (NLP) service which provides
a scalable platform for analyzing web pages, documents and tweets along with
APIs for integration. The retrieved entities are ranked based on their importance
in the given text and the results can be stored as JSON, Microformats, XML and
RDF (using a dedicated schema1). In addition, the named entity extractor is able
to disambiguate the detected entities, link them to various datasets on the LOD
and resolve co-references.

1http://rdf.alchemyapi.com/rdf/v1/s/aapi-schema#

7
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OpenCalais: Calais [4] is a toolkit that allows incorporating semantic function-
ality within a blog, content management system, website or application. The
OpenCalais Web Service automatically creates semantic metadata for the submit-
ted content. Using NLP, machine learning and other methods, Calais analyzes a
document, finds the entities within it and gives them a score based on their text
relevance. The results can be saved as JSON, RDF (using a dedicated schema2),
Microformats, N3 or simple text. In addition, it supports automatic connection to
the LOD.

AIDA [62] is a framework and online tool for entity detection and disambigua-
tion. Given a natural-language text, AIDA maps mentions of ambiguous names
to entities registered in the YAGO2 KB [42]. It accepts plain text, HMTL as well
as semi-structured inputs like tables, lists, or short XML files. AIDA is centered
around collective disambiguation exploiting the prominence of entities, similarity
between the context of the mention and its candidates, and the coherence among
candidate entities for all mentions. The results can be stored in JSON.

Wikimeta [10] is a NLP semantic tagging and annotation system that allows
incorporating semantic knowledge within a document, website or content man-
agement system. It tries to link each detected named entity with an entity in
DBpedia based on a disambiguation process that is described in Charton et al.
[20]. Wikimeta API is compliant with REST and the responses are formatted
in XML and JSON. The datasets used to train the NLP tools of Wikimeta are
derived from Wikipedia.

Lupedia [3] uses a gazetteer which is a list of surface forms associated to a subset of
entities in DBpedia and LinkedMDB (a dataset that contains movies descriptions).
The default configuration takes the longest sequence of consecutive words that
corresponds to an entry in the gazetteer and annotates it with the corresponding
entity in the KB. The results can be stored in HTML, JSON, RDFa or XML.

AGDISTIS [61] is an open-source and knowledge base independent NED frame-
work. It combines the HITS algorithm with label expansion strategies and string
similarity measures. Initially an index of semantic resources is created, using any
knowledge base, this step is performed only once regardless the given document.
After that, it retrieves the named entities that occur in a document and links them
with the appropriate resources utilizing the previous index. Then, a disambigua-
tion graph is formed, applying the Breadth-First-Search (BFS) algorithm in the
semantic resources of retrieved entities. Finally, the graph nodes/resources are
sorted by their authority score using the HITS algorithm and are kept only these
with the highest score.

Babelfy [49] is a graph-based NED and entity linking approach which is based
on BabelNet3 semantic network. Each node of this network is associated with a
set of other related nodes, which is called semantic signature. Afterwards, are
detected all the linkable fragments of an input text, and are linked with one or

2http://www.opencalais.com/files/owl.opencalais-4.3a.xml
3http://babelnet.org/
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more candidate meanings from BabelNet. Then, the meanings of the retrieved
fragments are combined with their semantic signatures and form a graph. In the
final step, a dense subgraph is extracted using various subgraph heuristics. The
resulting graph contains the appropriate senses of linkable fragments.

2.2 Life Sciences-tailored Annotation Tools

Domeo Annotation Toolkit [22] is a collection of software components that
enables users to create, share and curate ontology-based annotations for online
documents. It supports fully automated, semi-automated, and manual biomedical
annotation with full representation of the provenance of annotations, as well as
personal or community annotations with authorization and access control. An-
notations are represented using the Annotation Ontology (AO) RDF model [21].
However, Domeo is currently being extended to also support the Open Annotation
Data Model [58]. Its user interface is an extensible web component which enables
direct biomedical annotation of HTML and XML documents. Domeo performs
entity mining and accesses ontologies as well as other automated markup facilities
via web service calls.

Utopia Documents [13] is a desktop application for reading and exploring PDF
files like scientific papers. By exploiting domain-specific ontologies and plugins,
it links both explicit and implicit information (of biological or chemical interest)
embedded in the articles to online resources. Utopia Documents allows editors and
authors to annotate terms with definitions from online resources and allows readers
to easily find these definitions. It also transforms static tables and figures into
dynamic, interactive objects and simplifies the process of finding related articles
by automatically linking references to their digital online versions. Via its plugins
it has access to a wealth of bioinformatics data: each plugin uses appropriate client
libraries to access web-service endpoints and other remotely accessible resources,
such as relational databases and RDF stores.

The NCBO Annotator [43] is an ontology-based web service for annotating tex-
tual biomedical data with biomedical ontology concepts. The NCBO Annotator
provides access to almost two hundred ontologies from BioPortal and UMLS and
is an alternative to manual annotation through the use of a concept recognition
tool. The annotator is not limited to the syntactic recognition of terms, but also
leverages the structure of the ontologies to expand annotations. Such annotations
allow unstructured free-text data to become structured and standardized, and also
contribute to create a biomedical Semantic Web that facilitates data integration.

Whatizit [52] is a text processing system that allows a user to perform text-
mining tasks. Whatizit identifies molecular biology terms and links them to related
(publicly available) databases. The identified terms are wrapped with XML tags
that carry additional information, such as the keys to the databases where relevant
information is kept. Any vocabulary can be integrated into Whatizit as a pipeline
and also several vocabularies can be integrated in a single pipeline. Examples
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of already integrated vocabularies are Swissprot, the Gene Ontology and Medline
Plus.

2.3 Differences of the proposed approach

The main difference of our approach is that we focus on configurability. Specifically,
we propose a method which exploits the dynamic and open nature of LOD for
specifying the entities of interest, as well as for specifying how to link and enrich the
identified entities. This enhanced configurability allows the dynamic configuration
of a NEE system even while a corresponding service is running. On the contrary,
the configuration of the existing systems is a laborious task even for persons with
computer science background and requires many technical skills. Other differences
include:

• Most of the existing index semantic information (e.g. RDF triples or URIs),
for example, AGDISTIS and Babelfy create indexes for the candidate mean-
ings and labels of identified entities. However our proposed approach just
indexes plain lists of entities (gazetteers) regarding only the supported cat-
egories of entities. This makes the NEE system lightweight and portable.

• By adopting the proposed approach, a NEE system can retrieve at real-time
more information about the identified entities (e.g. properties and related
entities) and this is configurable. On the contrary, the majority of the ex-
isting systems return only the corresponding URIs and maybe some related
web pages.

• Existing systems do not describe/publish their entity mining capabilities in
a standard format.

We should also stress that the Open NEE Configuration Model that we pro-
pose, as well as the extension of the Open Annotation Data Model, can be applied
by existing systems. For instance, a NER system that also performs Entity Link-
ing can describe its service through the supported categories of entities and the
Knowledge Bases that it exploits. Of course, in this case it is not needed/required
to also specify linking template queries since it can directly return the correspond-
ing URI (that has been derived by the Entity Linking process). Likewise, a system
that only performs NER and Word-Sense Disambiguation can be LOD aware by
offering entity linking and entity enrichment capabilities. In all cases, the result of
the NEE process can be described using the proposed extension of the Open An-
notation Data Model. Also, in contrast to existing systems, our approach enables
the user to specify the way of entity disambiguation and select the appropriate
method according to his application requirements, i.e. required disambiguation
time, available data, etc. For instance, a supervised method may be inappropriate
for a simple user/developer, since it requires a set of hand annotated documents
(concerning his categories of interest) for the training task, which is time consum-
ing. Whereas, a company or an institution may prefer supervised methods, since
they usually outperform the unsupervised ones. Finally, our approach can easily
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adapted for the implementation of a non-LOD based NEE or NED tool. For in-
stance, we can replace the SPARQL queries, that are used in our case, with SQL
queries for retrieving information from relational databases apart from semantic
ones.
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Chapter 3

The Proposed Approach

At first we provide a few fundamental notions and notations (§3.1), then we intro-
duce the proposed configuration model (§3.2), we give an example of that model
(§3.3), we describe the semantics of such configurations (§3.4), we evaluate the
URI ranking approaches (§3.5), we introduce the Open NEE Configuration Model
(§3.6), and finally we present the extension of the Open Annotation Data Model
(§3.7).

3.1 Notions and Notations

Since the proposed approach is based on Semantic Web technologies, below we
first provide a short introduction to RDF and LOD, and then we introduce a few
notions and notations regarding the NEE process.

Let us first formalize the structured knowledge available as LOD or queryable
through a SPARQL endpoint [8]. Consider an infinite set U of RDF URI [9]
references, an infinite set B of blank nodes [15] and an infinite set L of literals. A
triple (s, p, o) ∈ (U ∪ B) × U × (U ∪ B ∪ L) is called an RDF triple (s is called
the subject, p the predicate and o the object). An RDF KB K, or equivalently
an RDF graph G, is a set of RDF triples. For an RDF Graph Gi, we shall use
Ui, Bi, Li to denote the URIs, blank nodes and literals that appear in the triples of
Gi respectively. The nodes of Gi are the values that appear as subjects or objects
in the triples of Gi.

Let now C be a set of entity categories, e.g. C = {Fish Species, Country, Water
Area} are possible categories for the marine domain. For a category c ∈ C, let
E(c) denote the set of entity names in c, e.g. E(Country) = {Afghanistan, Albania,
Algeria, . . . }. Inversely, let ctg(e) ∈ C denote the category of an entity name (e.g.
ctg(Algeria) = Country). For an entity name e, let U(e) denote the URIs that are re-
lated to e and exist in one or more RDF graphs, e.g. U(Chum Salmon) = {http://
dbpedia.org/resource/Chum_salmon, https://www.googleapis.com/freebase/
v1/rdf/m/03ysh6}. For an entity URI u, let Descr(u) be a set of RDF triples
that express information about u.

13
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For an input document, say doc, we define as Ent(doc, c) the set of (distinct)
entity names identified in doc (by applying NER) that belong to the category c.
Obviously Ent(doc, c) ⊆ E(c). Thus, the set of all entities identified in doc is
Ent(doc) = ∪c∈CEnt(doc, c).

In general, in a set of documents we can identify entities of various categories,
each of these entities is associated with URIs and each of these URIs with triples
that describe these URIs. Specifically, if we have a set of documents D then:

• Ent(D) = ∪d∈DEnt(d) is the set of entities identified in D,
• U(D) = ∪e∈Ent(D)U(e) is the set of URIs of these entities, and
• Graph(D) = ∪u∈U(D)Descr(u) is a set of triples about these URIs which

essentially define an RDF Graph.

Note that in many cases we have a name that corresponds to entities of different
categories. For example, argentina may refer to the country Argentina or the fish
genus Argentina. In general, a name may correspond to n categories. In such cases
we consider that we have n different entities, one for each category. Therefore, each
of these entities will have one category (i.e. |ctg(e)| = 1). This choice enables to
apply afterwards disambiguation methods (more in §5.4).

3.2 The Proposed Configuration Model

Figure 3.1 shows the configuration model that we propose. Each Category has a
name and can be associated with one or more Knowledge Base Mirrors (KBMs).

Figure 3.1: A generic (abstract) model for configuring a NEE system.

A KBM holds the URL of a SPARQL endpoint and it is associated with three
kinds of elements: (a) SPARQL Queries, (b) SPARQL Template Queries for Entity
Linking, and (c) SPARQL Template Queries for Entity Enrichment.

The elements of type (a) are used for specifying the entity names of interest
by providing a KBM-answerable SPARQL query. The elements of type (b) allow
specifying how entity names correspond to entity URIs, by providing a KBM-
answerable SPARQL query. The elements of type (c) allow specifying what extra
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information (in the form of RDF triples) should be fetched for each entity URI,
by providing a KBM-answerable SPARQL query.

3.3 Example of the Configuration Model

Let’s now describe an indicative instantiation of the above model. Consider a set of
two categories C = {Fish Species, Country}. The category Fish Species is associated
with two KBMs:

• KBM1 = http://dbpedia.org/sparql (SPARQL endpoint of DBpedia).

• KBM2 = http://www.fao.org/figis/flod/endpoint (SPARQL endpoint
of FAO FLOD [2]).

The category Country is associated with one KBM:

• KBM3 = http://factforge.net/sparql (SPARQL endpoint of FactForge
[16]).

For the KBM1, we can set the SPARQL query of Figure 3.2 for specifying the
fish species of interest, or the one shown in Figure 3.3 in case we are interested
only in English fish names.

SELECT DISTINCT str(?label) WHERE {

?uri rdf:type <http://dbpedia.org/ontology/Fish> ; rdfs:label ?label }

Figure 3.2: SPARQL query for retrieving a list of fish names from DBpedia.

SELECT DISTINCT str(?label) WHERE {

?uri rdf:type <http://dbpedia.org/ontology/Fish> .

?uri rdfs:label ?label FILTER(lang(?label)="en") }

Figure 3.3: SPARQL query for retrieving a list of English fish names from DBpedia.

For Entity Linking, KBM1 can be associated with the template query shown
in Figure 3.4 which aims at returning URIs of type Fish whose label contains the
name of an entity (ignoring case)1. Notice that the query contains the character
sequence [ENTITY] (including the [ and ]) which is replaced (at query-time) by the
entity’s name. For example, by providing the string “chum salmon” as entity name,
DBpedia returns the URI “http://dbpedia.org/resource/Chum_salmon”. Of
course, one could provide a “stricter” SPARQL template query, e.g. the one shown
in Figure 3.5, focusing on bigger precision.

For Entity Enrichment, KBM1 can be associated with the template query
shown in Figure 3.6 which retrieves the outgoing properties of a URI2. Notice

1The results of this task are shown in the pop-up window “Entity Exploration” in Figure 3.7.

2The retrieved triples are those shown if the user clicks the link of a resource in the pop-up
window of Figure 3.7.
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SELECT DISTINCT ?uri WHERE {

?uri rdf:type <http://dbpedia.org/ontology/Fish> .

?uri rdfs:label ?label FILTER(regex(str(?label), "[ENTITY]", "i")) }

Figure 3.4: Example of a SPARQL template query for linking an identified Fish
name with resources in DBpedia.

SELECT DISTINCT ?uri WHERE {

?uri rdf:type <http://dbpedia.org/ontology/Fish> .

?uri rdfs:label ?label FILTER (lcase(str(?label)) = lcase("[ENTITY]")) }

Figure 3.5: Example of a “stricter” SPARQL template query for linking an iden-
tified Fish name with resources in DBpedia.

SELECT DISTINCT ?propertyName ?propertyValue WHERE {

<[URI]> ?propertyName ?propertyValue }

Figure 3.6: SPARQL template query for retrieving the outgoing properties of
resource.

that the query contains the character sequence [URI] (including the [ and ])
which is replaced (at query-time) by the entity’s URI. For example, by providing
the entity URI “http://dbpedia.org/resource/Chum_salmon”, one of the RDF
triples that is returned by DBpedia is: “http://dbpedia.org/resource/Chum_
salmon (subject) - http://dbpedia.org/ontology/genus (predicate) - http:

//dbpedia.org/resource/Oncorhynchus (object)”.

By collecting the RDF triples that correspond to a set of entity URIs, we
can form an RDF graph from which we can conclude whether and how these
entity URIs are connected. For example, Figure 3.8 depicts a simple RDF graph
which shows how the entities Chum salmon, Chinook salmon and Coho salmon
are connected (for simplicity we have omitted the namespaces). Of course, one
could extend this query in order to obtain more information, e.g. all information
(triples) that can be reached (collected) up to a certain radius in the RDF graph.

Analogously, one can specify SPARQL queries and template queries for all
KBMs related to the defined categories. Note that any of the above queries can
use the federated features of SPARQL 1.1 [7]. This means that information from
more than one SPARQL endpoints will be used.

3.4 The Semantics of the Configuration Model

A configuration essentially defines an information structure as defined in §3.1.
Specifically, it defines the set of categories C. For each category c ∈ C, the cor-
responding set of entity names E(c) is obtained by running the corresponding
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Figure 3.7: Semantic post-processing of search results (for the query tuna species)
and exploration of the entity Atlantic bluefin tuna in X-Search (reoccurrence of
Figure 1.1).

SPARQL queries to the related KBMs. For each entity name e ∈ E(c), its linked
URIs, U(e), are obtained by running the corresponding Linking Template Queries
(where e is passed as parameter), and for each URI u ∈ U(e) the triples Descr(u)
are obtained by running the corresponding Enrichment Template Queries (where
u is passed as parameter).

We should stress here that the Linking Template Queries can be also considered
a way of “trivial” disambiguation that has the objective to find the resource or the
resources that better characterize the entity name. However, a characteristic of this
“trivial” disambiguation is that we already know the category of the corresponding
entity name and thereby we can form accordingly the SPARQL template query
(e.g. we can compare the entity name with the names of entities belonging to a
specific RDF class, as in the template queries of Figures 3.4 and 3.5). Furthermore,
we should clarify that details like the exact NER method that is applied to the
document(s), or the exact NED algorithm that is used for deciding the category
of a detected entity name, regard implementation details that must be specified
by the NEE system that adopts the proposed model. For instance, one can use
surface forms for NER (like DBpedia Spotlight [46]), advanced machine learning
techniques for NED, etc.

Returning to our setting, for a set of documents D, Graph(D) can now be
defined either by collecting the triples Descr(u) for each URI u ∈ U(D), or by
considering also information that can be reached up to a certain radius r. Regard-
ing the latter, let us first introduce some notations. Let S be a set of URIs and
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Chum 
Salmon

Oncorhynchus

Salmonidae

Coho 
Salmon

Chinook 
Salmon

Figure 3.8: An example of an RDF graph.

Gi the RDF graph of the underlying KB. We define In(S) and Out(S) as follows:

In(S) = {(s, p, u) | u ∈ S, (s, p, u) ∈ Gi},
Out(S) = {(u, p, o) | u ∈ S, (u, p, o) ∈ Gi}

The description of u comprising triples that are reachable in radius 1 is defined as:

Descr(u, 1) = In({u}) ∪Out({u})

This is generalizable to higher values of radius as follows:

Descr(u, r) = Descr(u, r − 1)

∪ In({u′ | (s, p, u′) or (u′, p, o) ∈ Descr(u, r − 1)})
∪ Out({u′ | (u′, p, o) or (s, p, u′) ∈ Descr(u, r − 1)})

Now we can define the graph of D of radius r as follows:

Graph(D, r) = ∪u∈U(D)Descr(u, r) (3.1)

The value of this graph is that it makes evident how the entities are associated
(more in §4.2.4).

Sometimes there is also the need to rank the detected entities (i.e. the elements
in Ent(D), or in Ent(doc) if we consider a single document) and the URIs that
match an entity name e (i.e. the elements in U(e)), and this can be configurable.
The ranking information is useful, for example, for deciding which entities/URIs
to promote in a displayed list, for selecting the one entity that best characterizes
a document, or for selecting the one URI that best characterizes an entity name.

As regards the ranking of the detected entities, a straightforward approach is
to rank them according to their frequency in the document. Let count(e) be the
number of occurrences of the entity name e in a set of documents D (the same
approach can be applied considering a single document doc). Then, the normalized
score of e can be computed as:

score(e) =
count(e)∑

e′∈Ent(D) count(e
′)

(3.2)
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Of course, several other approaches can be examined, e.g. taking into account
the application context or the positions of the entities in the document(s), however
this is out of the scope of this thesis.

As regards the ranking of the entity URIs, at first we should stress that both
the number of the URIs that match an entity name and their quality (in terms
of relevance) highly depend on the KBs that we exploit and the specified linking
template queries. For instance, a loose and generic template query could return
many irrelevant URIs, while a very “strict” template query could return no URIs.
Note also that there might be more than one URIs that semantically are correct,
e.g. two URIs coming from two different KBs may refer to the same real-world
object. In any case it is useful to score and rank these URIs. One approach is
the following: for each URI u that matches an entity name e, we can compare
the string of e with the label of u (in a graph Gi) or/and the suffix of the URI
string. Specifically, let label(u) be the value of u’s rdfs:label property in Gi and
suffix(u) be the substring of the URI string after the last ‘\’ or ‘#’, replacing the
underscore letters that might exist with the space character. Let now edt(a, b) be
the Edit (Levenshtein) Distance [50] between the strings a and b (ignoring case).
If l(a) denotes the length of a string a, we can define the similarity between two
strings a and b as:

sim(a, b) =
max(l(a), l(b))− edt(a, b)

max(l(a), l(b))
(3.3)

Then, the score of a URI u that matches an entity name e can be defined as:

URIscore(e, u) = max(sim(e, label(u)), sim(e, suffix(u))) (3.4)

Instead of comparing the strings using Edit Distance, we can use the distance
function proposed by Stoilos et al. [59], where the similarity between two strings
is a function of both their commonalities and their differences. In both cases,
the highest the score of a URI is, the more probably that URI characterizes the
corresponding entity name. We have chosen the property rdfs:label because it
is the most common and widely used property for indicating the name/label of an
entity. Of course, and according to the KB that we exploit, one could use another
property, e.g. foaf:name, skos:prefLabel, etc. If a URI contains multiple values
for this property, we can consider all of them and select the one with the highest
similarity score. Moreover, if a URI does not contain a value for this property, we
can consider sim(e, label(u)) = 0.

3.5 Effectiveness of the URI Ranking Approaches

In order to get a first feedback about the effectiveness of the URI ranking ap-
proaches, we performed an evaluation in the marine domain. The objective is to
inspect if the proposed ranking schemes can detect the URI that best characterizes
the corresponding entity name.
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We ran indicative experiments using a collection of 464 Wikipedia pages re-
garding several fish species.3 Specifically, we performed entity mining with fish
species from DBpedia as the entities of interest, and for each top-ranked (i.e. more
frequent) detected entity we retrieved its matched URIs by querying DBpedia’s
SPARQL endpoint and using the linking template query of Figure 3.4. Then, we
computed the top-ranked URI using a) the Edit Distance function, b) the Stoilos
function [59], and we manually inspected if that URI actually represents or not
the corresponding entity name.

The number of entities for which we retrieved their matched URIs was 412
(some pages returned the same top-ranked entity). In average, about 10 matched
URIs were returned for each entity name, while for 232 entity names the SPARQL
query returned only one (correct) URI and thus we ignored them. Using the Edit
Distance function, for the 91.1% of the remaining entity names the top-ranked
URI was correct, while for the 2.2% the top-ranked URI was false. Moreover, for
the 5.6% of entity names there were more than one URIs with the same top score,
containing the correct URI, while for the 1.1% there were more than one URIs with
the same top score, not containing however the correct one. Using the Stoilos

function, for the 91.1% of the entity names the top-ranked URI was correct, for the
1.1% the top-ranked URI was false, for the 6.1% there were more than one URIs
with the same top score, containing the correct URI, while for the 1.7% there were
more than one URIs with the same top score, not containing however the correct
one.

By inspecting the false cases, we noticed that the main cause is that the cor-
responding entity name is a disambiguated entity and its type/category has been
added in parentheses in both its URI and its rdfs:label. For example, in DBpe-
dia the label of the fish genus “Gila” is “Gila (genus)” and not “Gila”. Thus, an
optimization of this ranking method would be to remove any text in parentheses
from the rdfs:label and the suffix of the URI.

From the above results, we can conclude that comparing the name of the
detected entity with the label of the matched URI or the suffix of the URI string,
we can find the correct matched resource with precision more than 90%. As regards
the distance function, we saw that both Edit Distance and Stoilos behave well
with almost the same performance.

3.6 The Open NEE Configuration Model

In [34] we proposed an RDF/S vocabulary called “Open NEE Configuration Model”,
which enables a NEE tool to describe (and publish as Linked Data) its configura-
tion and its “entity mining” capabilities. As depicted in Figure 3.9, the proposed
vocabulary4 consists of 8 classes and 13 individual properties, which are briefly

3The dataset used in the evaluation as well as the results are available to download through:
http://www.ics.forth.gr/isl/X-Link/files/rankEval.zip.

4The vocabulary is accessible through: http://www.ics.forth.gr/isl/oncm
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described in Table 3.1.
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Figure 3.9: The Open NEE Configuration Model.

By publishing the configurations supported by one or more NEE services, an
application can dynamically detect and use the services that satisfy its annotation
needs, while we are able to run (SPARQL) queries of the form:

• Give me the NEE services supporting a category with name “Mammal”
(Figure 3.10).

• Give me all categories that use a KBM with SPARQL endpoint
<http://dbpedia.org/sparql> (Figure 3.11).

• Give me all KBMs (together with the endpoints) of category with name
“Location” (Figure 3.12).

3.7 Exporting/Exchanging the Annotation Results

Correspondingly with Open NEE Configuration Model where we describe the con-
figuration of a NEE tool in Linked Data, it would be useful if we could also export
its annotation results in the same way. For this reason in [34] we propose an ex-
tension of the Open Annotation Data Model [58]. The extension model5 (which
is an RDF/S vocabulary) is depicted in Figure 3.13 and introduces 1 new class,
8 new properties and 1 new instance. This model enables the user to perform
complex SPARQL queries (according to defined vocabulary) over the annotation
results and retrieve the resources that meet the criteria. Also can be consider as
a way of comparing the quality of results of various NEE tools.

5The extension is available at http://www.ics.forth.gr/isl/oae
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Table 3.1: Classes and properties of the Open NEE Configuration Model.

Class Class description

NEEService A Named Entity Extraction (NEE) service.
Configuration The configuration supported by a NEE service.
Category A category/class of entities supported by a configuration.
RankingMethod A method used for ranking the entities or the entity URIs.

KBM
A Knowledge Base Mirror: the gateway for accessing a Knowledge
Base.

EntityNamesSpec Specification of the entity names of a category.

EntityLinkingSpec Specification of how an entity name corresponds to entity URIs.

EntityEnrichmentSpec
Specification of the extra information that should be fetched for an
entity URI.

Property Property description

supports
Relates a NEE service to a configuration, or a configuration to a
supported category.

accessibleThrough
Relates a NEE service to a resource, e.g. to a URL describing the
API of a service.

ranksEntitiesUsing Relates a configuration to a method for ranking entities.

ranksResourcesUsing Relates a configuration to a method for ranking resources.

isDefinedBy
Relates a ranking method to a resource, e.g. to a URL describing
the ranking approach.

entitiesSpecFrom Relates a category to a KBM.
endpoint Relates a KBM to the URL of a SPARQL endpoint.
usesEntityNamesSpec Relates a KBM to specification of entity names.
usesEntityLinkingSpec Relates a KBM to an entity-linking specification.

usesEntityEnrichmentSpec Relates a KBM to an entity-enrichment specification.
usesSparqlQuery Relates a specification of entity names to a SPARQL query.

usesSparqlTemplateQuery
Relates an entity-linking or entity-enrichment specification to a
SPARQL template query.

usesSparqlTemplateParam
Relates an entity-linking or entity-enrichment specification to a
SPARQL template parameter.
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SELECT ?tool ?name WHERE {

?tool a onc:NEEService ; foaf:name ?name ; onc:supports ?config .

?config onc:supports ?categ . ?categ rdfs:label "Mammal" }

Figure 3.10: SPARQL query for retrieving the name and the URL of all services
that support the category “Mammal”.

SELECT ?name WHERE {

?categ rdfs:label ?name ; onc:entitiesSpecFrom ?kbm.

?kbm onc:endpoint <http://dbpedia.org/sparql>}

Figure 3.11: SPARQL query for retrieving the categories that use a KBM with
SPARQL endpoint http://dbpedia.org/sparql.

SELECT ?kmb ?endpoint WHERE {

?categ rdfs:label "Location" ; onc:entitiesSpecFrom ?kbm.

?kbm onc:endpoint ?endpoint}

Figure 3.12: SPARQL query for retrieving the KBMs (together with the endpoints)
of category with name “Location”

By performing NEE in a set of documents and exporting the results using the
proposed extension, we can run (SPARQL) queries of the form:

• Give me documents referring entities whose category is subclass of “Eukary-
ote” (Figure 3.14).

• Give me documents containing information about mammals of genus “Pan-
thera” (Figure 3.15).

• Give me countries with population over 30 million (Figure 3.16).

An application can now offer advanced exploratory search services over the anno-
tated set of documents, e.g. according to the faceted interaction paradigm over
RDF data [37, 44].
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Figure 3.13: The extension of the Open Annotation Data Model.

SELECT ?doc WHERE {

?annot a oa:Annotation ; oa:hasTarget ?doc ; oa:hasBody ?ent .

?ent a oae:Entity ; oae:belongsTo ?cat .

?cat a onc:category ; rdfs:subClassOf ?superCat.

?superCat rdfs:label "Eukaryote" }

Figure 3.14: SPARQL query for retrieving the documents referring entities whose
category is subclass of “Eukaryote”

SELECT ?doc WHERE {

?annot a oa:Annotation ; oa:hasTarget ?doc ; oa:hasBody ?ent .

?ent a oae:Entity ; oae:belongsTo ?cat ; oae:hasMatchedURI ?uri .

?cat a onc:category ; rdfs:label "Mammal" .

?uri dbp-owl:genus dbp:Panthera }

Figure 3.15: SPARQL query for retrieving the documents containing information
about mammal of genus “Panthera”.

SELECT ?entName WHERE {

?ent a oae:Entity ; oae:belongsTo ?cat ; rdfs:label ?entNam .

?cat a onc:category ; rdfs:label "Country".

?ent dbo-owl:populationTotal ?pop. FILTER(?pop > 30000000)}

Figure 3.16: SPARQL query for retrieving countries with population over 30m.



Chapter 4

The X-Link Framework

X-Link is a LOD-based NEE framework that we have designed and implemented
which realizes the configuration model described in the previous section. Below,
we describe its architecture (§4.1), its functionality (§4.2), the supported config-
urability (§4.3), two applications that currently use X-Link (§4.4), and finally we
evaluate its effectiveness (§4.5).

4.1 Architecture

X-Link is based on the Gate ANNIE [18, 25] system and supports both gazetteers
and NLP functions. Gate ANNIE is a ready-made information extraction system
which contains several components (e.g. Tokeniser, Gazetteer, Sentence Splitter,
Orthographic Coreference, etc.). X-Link extends Gate ANNIE in order to be able
to create a new supported category and update an existing one (using gazetteers).
This gives us the opportunity to adapt its functionality according to our needs,
making X-Link configurable and extendible. We should also stress that X-Link

can use any NER system (as a component) that takes as input a text and returns
a list of entity names.

Figure 4.1 shows the architecture of X-Link. The core component is the
Controller which links and controls all the components. Configuration Manager

is responsible for reading and changing the configuration files (Gate and X-Link

Configuration Files). Entity Miner is an extension of Gate ANNIE and per-
forms the entity mining process in the contents of a document (the document
is read by the Text Extractor component). The components Entity Linker,
Entity Enricher and Entity Connector are responsible for retrieving the cor-
responding semantic information by querying external SPARQL endpoints (using
the SPARQL Query Runner component). Finally, the results are exported using
the Result Exporter component.

25
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Figure 4.1: The architecture of X-Link.

4.2 Functionality

4.2.1 Supported File Types

Currently X-Link supports the analysis of plain text files, HTML pages, Microsoft
Word and Powerpoint files (.doc, .docx, .ppt and .pptx), PDF files, and XML-
based files (e.g. XML and RDF files).

4.2.2 Entity Mining

X-Link at first reads the contents of the requested document. Then it applies
entity mining using Gate ANNIE according to the specified categories of interest.
In our setting, Gate ANNIE takes as input the contents of a document and the
categories of interest, and the output is a set of detected entities. Each detected
entity is accompanied by its category, its position(s) in the document and its score.
X-Link ranks the detected entities according to their frequency in the document
as described in §3.4. Note also that Gate Annie internally “cleans” the document
contents by removing useless text (like the HTML tags of a Web page).

The user is also able to activate or not a “fuzzy matching” function which
enables the identification of an entity that does not match exactly with an entity in
a category’s gazetteer (using the Edit - Levenshtein - distance [50]). The allowed
edit distance value depends on the length of the matched entity and expresses the
percentage of the required single-character edits with regard to the entity name’s
length. If p denotes the allowed percentage of single-character edits and l(e) is the
length of an entity e, then the allowed edit distance value (for which the candidate
string will match the entity e) is p ∗ l(e). For instance, if p = 0.2 then we allow
2 edits for an entity name with length 10 characters. The above functionality is
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offered by the BWPGazzetteer plugin [51] of Gate ANNIE.

Furthermore, it is quite common in many documents that named entities are
mentioned with their full length only in their first occurrence(s), while in the rest
of them are partially mentioned as substring(s) or acronyms of their gazetteer
entry. For instance, consider the following textual snippets:

p1 : City win the League.

p2 : Putin asks to talk with Tsipras immediately.

p3 : Raikkonen takes no pleasure from beating Vettel.

p4 : IMF might have lost its policy cloud over Greece.

p5 : The ISWC is coming to the Lehigh Valley this fall.

p6 : Papadopoulos and Kresic are recently transferred in Leverkusen.

The desired output of a NER tool (e.g. X-Link) is the following:

• In snippet p1 the entities are City and League, whose real complete labels
are Manchester City and Premier League.

• In snippet p2 the entities are Putin and Tsipras, whose real complete labels
are Vladimir Putin and Alexis Tsipras.

• In snippet p3 the entities are Raikkonen and Vettel, whose real complete
labels are Kimi Raikkonen and Sebastian Vettel.

• In snippet p4 the entities are IMF and Greece, where the real complete label
of IMF is International Monetary Fund .

• In snippet p5 the entities are ISWC and Lehigh Valley, where the real com-
plete label of ISWC is International Semantic Web Conference.

• Finally, in snippet p6 the entities are Papadopoulos, Kresic and Leverkusen,
whose real complete labels are Kyriakos Papadopoulos, Dario Kresic and
Bayer Leverkusen.

From now on, we consider as complete label of a partial entity matching, the label
of the named entity as is stored to a gazetteer list and corresponds to this match-
ing. Notice that a partial matching may refer to more than one complete labels,
which are deemed to be equiprobable and we keep them all (see Figures 4.9 & 4.10).
In both snippets, it is almost impossible for a NER tool to identify most of these
mentions as entities. Hence, except from “fuzzy”, the user can use a “partial
matching” function which enables the identification of partial matchings, permu-
tations and acronyms of a complete entity label in a category’s gazetteer. To
succeed this we extend the previous plugin, and we store the changes into a new
Gazetteer component named PartialMatchingGazetteer, as described briefly in
Algorithm 1, and Figure 4.2. In particular, we modify the function that annotates



28 CHAPTER 4. THE X-LINK FRAMEWORK

named entities occurrences in a document, in which we split a complete entity la-
bel into substrings/tokens, using as separator the space character, and we concern
them as separate entities (Figure 4.5, lines 66-80). Additionally, in the case that
an entity name consist of 3 or more terms we create acronyms, using their first
characters (Figure 4.5 and 4.6, lines 22-65). We also enable the identification of
subterm permutations of a named entity label (Figure 4.6, line 82 and Figure 4.7),
i.e. Ioannis Kapodistrias, Kapodistrias Ioannis, etc.

An alternative approach is to extend the function that adds a new category of
entities and create an additional gazetteer file for keeping the partial matchings,
permutations and acronyms of new entities, as shown in Figure 4.3. The partial
matchings, the permutations and the acronyms are retrieved in a similar way as
above. Additional, in order to be aware of the provenance of partial matchings,
we keep in an external file the complete entity label(s) that correspond to them.
Notice that the above functionality is also applied when we replace or update an
existing category with new entities.

To make it clear consider a gazetteer list that includes several organizations,
where one of them is the “International Monetary Fund”. Its partial matchings
include the terms “fund”, “international”, “international monetary”, “interna-
tional monetary fund”, “monetary” and “monetary fund”, whereas its possible
acronyms are “i.m.f.”, “i.m.f”, “imf” and “i m f”. Notice that the “fuzzy match-
ing” functionality is also available for partial matchings1. Nevertheless, many of
these substring matchings are useless, in the sense that they do not offer us any
information if they are split, e.g. the terms “Fédération Internationale de Football
Association”, “Fédération Internationale de l’Automobile” or more commonly re-
ferred as “FIFA” and “FIA”, are almost never seen in their full length, and none
of their partial matchings is semantically equal with their complete terms.

Depending on adopted approach, there is an extra cost in execution time and
storage. If we use the PartialMatchingGazetteer it takes longer to identify
named entities in document, because we must always create their partial match-
ings. On the contrary, the 2nd approach requires more space for the additional
gazetteer files where we keep the entity partial matchings of the supported cate-
gories. It also requires more time to load the gazetteer files in main memory during
the initialization of X-Link, which is an extra cost that we have to pay only when
we start or restart it. Thus, the basic difference between these approaches is that
the 1st is applied at runtime, whereas the 2nd only in the initialization step, which
is better in our setting.

However, although in these cases more entity names are identified, the precision
falls off because X-Link may identify entities that are lexicographically close to an
entity in a category but semantically totally different. This problem is more acute
when partial matching is enabled, as perceived by the following textual snippets:

p6 : The car that involved in the hit-and-run accident was white.

1From now on, we consider that partial matchings include also acronyms and permutations.
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p7 : The average cost per mile for a small sedan is 46.4 cents.

p8 : Pope Francis would make a two-day visit to the city of Valleta.

Suppose that our configuration supports gazetteer lists about films, politicians,
countries and football teams. Consequently, the retrieved entities will be, “car”,
“white” (p6), and “mile” (p7), which are identified as acronym of Central African
Republic and as partial matchings of Australian politician David White and film
The Green Mile respectively. Finally, in p8 term “city” is considered as partial
matching of football team Manchester City and country Vatican City. Neverthe-
less, in both snippets none of these terms correspond semantically to the retrieved
entities. A possible solution is to keep only the partial matchings whose com-
plete label appears as entity in the list of identified entities. This heuristic can be
applied a posteriori, after NEE process. An alternative solution is to keep only
the partial matchings whose string similarity with their complete label is over a
threshold, which is applied during the creation of a new category. Although both
solutions are naive, they seem to work well in our case.

Algorithm 1 Entity Name Partial Matching Annotation

Input: text, the text where the search should be performed,
annotationSet, the current set of annotations associated with the text,
entity, the word that has to be found,
lookup, the type of annotation that will be associated with occurrences of the
word in the text

1: labels← ∅
2: entity nostw ← removeStopwords(entity)
3: if entity nostw.length() > 0 then
4: acronyms← getPossibleAcronyms(entity nostw)
5: partialMatchings← getPossiblePartialMatchings(entity nostw)
6: labels.add(acronyms)
7: labels.add(partialMatchings)
8: for all label ∈ labels do
9: annotateOccurrences(annotationSet, lookup, label, entity, text)

4.2.3 Entity Linking

As regards the entity linking process, X-Link returns a ranked list of URIs that
match a detected entity name and lets the application (that uses X-Link) to decide
how to cope with them. For instance, in the application example of Figure 1.1
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/** Does the actual search for a given word in the text and annotates the occurrences found.

*

* @param text the text where the search should be performed

* @param annotationSet the current set of annotations associated with the text

* @param entity the word that has to be found

* @param lookup the type of annotation that will be associated with occurrences of the

* word in the text

*/

private void annotate(char[] text, AnnotationSet annotationSet, String entity,

Lookup lookup){

1 for(String label : findAcronymsPartialsPermutations(entity).keySet()){

// for each ’label’ we annotate its occurrences in the given text

2 annotateOccurrences(annotationSet, lookup, label, entity, text);

3 } }

Figure 4.2: Annotation function of partial matching plugin.

the system presents to the user all the URIs that match an identified entity, while
another application could return only the top-ranked URI.

For ranking the URIs, X-Link supports the approach described in §3.4 which
computes the similarity between the name of the entity and the label of the URI in
the KB or the suffix of the URI string. As regards the distance function, X-Link
supports both Edit Distance and the one proposed by Stoilos et al. [59]

4.2.4 Entity Enrichment

As regards entity enrichment, i.e. the retrieval of RDF triples that describe the
entity URIs, X-Link offers two different functions: a) retrieve triples that are
interesting for the application at hand, and b) inspect the connectivity of the
entity URIs.

As regards the former, for an entity URI u, Descr(u) is obtained either by
running the corresponding Enrichment Template Queries or by selecting to retrieve
one of the following (common) types of properties: a) outgoing (u is the subject in
the RDF triple), b) incoming (u is the object in the RDF triple), c) both outgoing
and incoming, d) outgoing in a specific language, e) both outgoing in a specific
language and incoming. Note that it is in the responsibility of the application that
uses X-Link to decide how to exploit all this semantic information. For instance,
one can use it even for disambiguating the identified entities, or for ranking the
URIs, etc.

As regards the connectivity of the entity URIs, X-Link supports Graph(D, r)
as defined in §3.4. In addition, it computes a subgraph of Graph(D, r), which is
denoted by ConnectGraph(D, r), for making more evident how the entity URIs
are associated. Specifically, this graph contains only the triples which are involved
in paths whose both start and end vertex are URIs in U(D). For example, for
r = 1 the graph can show entity URIs that share common properties or which
are directly connected (so properties that are not reachable by at least two URIs
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are omitted). Figure 4.8 depicts an example of a Graph(D, 1). Consider that the
entity URIs in U(D) are three: Chum Salmon, Chinook Salmon and Coho Salmon
(for simplicity we have omitted the namespaces). The graph enclosed in the dashed
shape, containing the black nodes, is the ConnectGraph(D, 1).

4.2.5 Entity Disambiguation

In §3.1 we argued that we may have a name that corresponds to entities of dif-
ferent categories (recall the “argentina” example which may refer to the Country
Argentina or the Fish Genus Argentina). Even if only one category is supported, we
cannot be sure if a detected entity (that matches an entity name in the gazetteer of
the supported category) actually belongs to this category. Likewise, when partial

matching is used, it is highly possible that a document term will be incorrectly
identified as entity or may correspond to more than one entity names of differ-
ent (or same) categories. Recall the textual snippets in §4.2.2, whose extracted
entities are depicted in Figures 4.9 & 4.10. This is the well-known entity disam-
biguation (or word-sense disambiguation) problem whose solution stills an open
challenge [19]. Several approaches have been proposed in the literature, e.g. ex-
ploiting Wikipedia data [24, 40], using statistical methods [1], exploiting ontolo-
gies [41], or graph-based approaches [49, 61]. X-Link currently does not apply
any disambiguation method, i.e. if an entity name exists in the gazetteers of two
supported categories, then this entity is returned twice, one for each supported
category. However, in Chapter 5 we propose some entity disambiguation meth-
ods that allows the application that uses them to disambiguate afterwards the
identified entities, e.g. by exploiting context information or user feedback. For
instance, in Theophrastus system [35] if the user requests the exploration of a
detected entity with ambiguous name (i.e. which belongs to more than one of the
supported categories), the system informs the user through a popup window and
the user can disambiguate the entity by selecting the appropriate category (the
Theophrastus system is briefly described in §4.4). In our setting, exploiting the
RDF triples that correspond to the detected entities, i.e. Graph(doc), can help
towards this direction. For example, by adopting a Link Analysis-based approach
[28, 32] for ranking the elements (entities and properties) of a graph related to a
set of search results, we could isolate entities irrelevant to the search context (they
will receive low score).

Note also that in some application scenarios, especially in professional systems,
even if we are not sure about the relevance of an entity, it is preferable to retrieve
and return it, i.e. recall (the retrieval of as much as possible relevant information)
is crucial. For instance, in professional search (e.g. medical search, patent search,
bibliography search) it is often unacceptable to miss relevant documents, therefore
the retrieval of nearly all relevant documents is sometimes necessary.
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4.2.6 Overall Process

Summarizing the above functionality, the following steps are:

1. We instantiate the entity mining component based on given configuration.

2. We select whether to enable or not the fuzzy and partial matching function-
ality. (optional)

3. We instantiate X-Link using the entity mining component.

4. We apply entity mining in the given document.

5. We select whether to link and enrich the retrieved entities with semantic
resources. (optional)

6. We select whether to disambiguate the retrieved entities. (optional)

The beyond steps are also depicted in Algorithm 2.

Algorithm 2 Named Entity Extraction and Disambiguation process

Input: text, the text where the search should be performed,
categories, the set of active categories,
configuration, the file path of the configuration file

1: emc = new GateEntityMiningComponent(config) // instantiation of

GateEntityMiningComponent

2: emc.startup()
3: emc.enablePartialMatching() //enable partial matching functionality (optional)

4: emc.enableFuzzyMatching() // enable fuzzy matching functionality (optional)

5: emc.changeEditDistanceV alue(0.2) //set the maximum allowed percentage of (lexico-

graphical) distance between 2 terms to 0.2

6: xlink = new XLink()
7: xlink.setEntityMiningComponent(emc) //instantiation of X-Link

8: xlink.retrieveEntities(text, categories) //apply entity mining

9: xlink.xlink() //entity linking functionality (optional)

10: xlink.enrich() //entity enrichment functionality (optional)

11: xlink.disambiguate() //entity disambiguation functionality (optional)

12: entities = xlink.getEntities()

4.2.7 Output

X-Link exports the results in XML, CSV and RDF. As regards RDF, X-Link
exploits the extension of the Open Annotation Data Model (described in §3.7) and
supports the formats RDF/XML, N-Triples, and Notation3 (N3).
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4.2.8 Ways to Use

X-Link is a framework that can be used (and extended) by other applications
according to their needs, allowing its exploitation in a plethora of contexts and
application scenarios. Specifically, X-Link can be used as a:

• Java Library which can be integrated in the code of the intended applica-
tion.

• Web Application that can receive submissions and return the outcomes of
the analysis.

• Web Service which can be used through a REST API.

In the last two cases, it is assumed that a running instance exists, therefore the
X-Link library offers operations that allow changing the configuration model. This
allows changing or refreshing the “knowledge” of X-Link without having to rede-
ploy the application that uses it.

More information is available at: http://www.ics.forth.gr/isl/X-Link.

4.3 Configurability

X-Link supports the configuration model described in §3 in two ways: (a) it can
read such a configuration from a properties file, and (b) it offers a configuration
API. It can also read a configuration expressed in RDF using the Open NEE
Configuration Model. For publishing the configuration supported by an X-Link

service, X-Link offers a function which creates an RDF file describing its current
configuration using the Open NEE Configuration Model. For instance, the config-
uration that is currently supported by an X-Link service configured for the marine
domain is publicly available at http://www.ics.forth.gr/isl/X-Link/marine/
config.n3.

4.3.1 File-based Configuration

An indicative part of the properties file (configured for the marine domain) is
shown in Figure 4.11. In that example, X-Link supports 7 categories of entities
(line 1), i.e. the entity names of these categories have been retrieved and stored
in Gate ANNIE. However, the active categories are only Fish, Country and Water
Area (line 2), i.e. the remaining categories are inactive. The set of active cat-
egories allows us to define which of the supported categories are interesting for
an application, thus X-Link can identify entities that belong to these categories
only. The category Fish uses one KBM (line 3), which is actually the SPARQL
endpoint of DBpedia (line 4), and for updating this category X-Link can use the
SPARQL query given in a file (line 5). In addition, we can see the file paths and
the parameters of the template queries that are used for linking and enriching the
identified fishes (lines 6-9). Finally, the radius for inspecting the connectivity of
the identified entities is 1 (line 10), while fuzzy & partial matching is allowed with
p = 0.2 (lines 11-12).
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4.3.2 Configuration while Running

X-Link can be configured through its API even while a corresponding service is
running. In particular, the following functions are supported:

• Add a new category (using one or more lists of entities and/or one or more
SPARQL queries).

• Update an existing category (using one or more lists of entities and/or one
or more SPARQL queries).

• Remove a category.
• Change the displayed name of a category (i.e. rename).
• Set/change the KBMs of a category.
• Set/change the SPARQL queries and the template queries of a KBM.
• Set/change the active categories.
• Set/change the value of radius r.
• Set/change if fuzzy matching is allowed and the value of p.
• Set/change if partial matching is allowed and the value of p.
• Set/change the URI ranking distance function.

Regarding the update of an existing category, the user/developer is able to either
totally replace a category (i.e. remove its old entity names and add the new ones)
or just add the new entity names. We should also note that each of the above
functions changes accordingly the properties file and also it updates several files
in Gate ANNIE. For example, when a new category is created, the corresponding
gazetteer file is created and loaded in Gate ANNIE, the name of the category is
added in the set of supported categories in the properties file, etc.

4.3.3 Portability of Configurations

The configurations can be exchanged. For instance, consider that a person A
configures the system and then sends the configuration files to a person B. The
person B sets the system to use the configurations files received by the person A
(by simply providing some paths). Now the person B is able to enjoy exactly the
same configuration as person A.

The size of the configuration files is relatively small and mainly depends on
the number of supported categories and on the number of named entities in each
category. Indicatively, the configuration files for supporting 4 categories related
to the marine domain have size less than 5MB. These files include the gazetteers
of the supported categories and several files required by Gate ANNIE. Note that
X-Link does not store any semantic information (e.g. URIs or RDF triples), since
the entity linking and the entity enrichment processes are performed at real-time.

We should also stress that adopting the Open NEE Configuration Model sim-
plifies even more the exchange of configurations since an RDF file (describing the
configuration using the proposed vocabulary) can be just provided.
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4.4 Current Applications of X-Link

X-Link is currently used by the systems X-Search2 and Theophrastus3.
X-Search [27, 31] is a meta-search engine that reads the description of a

search source, queries that source, analyzes the returned results in various ways
and also exploits the availability of semantic repositories. X-Search exploits
X-Link in two different contexts: in the marine domain (in the context of the
iMarine4 project) and in patent search (in the context of the PerFedPat5 project).
In iMarine, X-Link has been configured to identify Fish Species, Water Areas,
Countries, and Regional Fisheries Bodies, while the KB that is exploited is the
MarineTLO-based Warehouse[60]. In PerFedPat, X-Link has been configured to
identify the (medicine-related) categories Diseases, Drugs, Proteins, and Chemical
Substances, while the online version of DBpedia is exploited as the underlying KB
[29].

Theophrastus [35] is a system that supports the automatic annotation of web
documents through entity mining and provides exploration services by exploiting
LOD at real-time. The system, which aims at assisting biologists in their research
about species and biodiversity, exploits X-Link for performing entity mining and
entity exploration in web documents, and has been designed to be highly config-
urable regarding a number of different aspects like entities of interest, information
cards (semantic information related to a detected entity) and external search sys-
tems.

4.5 Effectiveness of X-Link

There are various papers that aim at evaluating the effectiveness of NEE tools [38,
53, 54, 55]. The effectiveness of X-Link highly depends on how the user/developer
has configured it, i.e. on the completeness of the specified categories, the quality
of the underlying KBs, the specified SPARQL template queries, etc. In X-Link we
have focused on the configurability of a NEE system and on how we can exploit
the LOD; we have not proposed a new entity mining method, since it currently
relies on Gate ANNIE (the proposed approach can be also applied by existing
NEE systems). Therefore, the quality of the identified entities is out of the scope
of this thesis. Finally, as we already mentioned above X-Link does not apply any
disambiguation method at run-time, however in §5 we propose a set of methods
for disambiguating afterwards the identified entities, that are appropriate for our
setting, and then we evaluate them in §6.

2http://www.ics.forth.gr/isl/X-Search
3http://www.ics.forth.gr/isl/Theophrastus
4http://www.i-marine.eu/
5http://www.perfedpat.eu/
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/**

* Adds the list file of the new category.

*

* @throws IOException

*/

private void addListFile() throws IOException {

1 BufferedWriter output = new BufferedWriter(new OutputStreamWriter(

new FileOutputStream(LIST_FILE_NAME), "utf8")),

2 output_refs = new BufferedWriter(new OutputStreamWriter(

new FileOutputStream(LIST_FILE_NAME_PARTIAL_REFS), "utf8"));

3 for(String entity : entities) {

4 entity = entity.replace("\"", "");

5 output.write(entity);

6 output.write("\n");

7 }

8 output.close();

9 System.out.println("# The " + LIST_FILE_NAME + " file was created!");

10 output = new BufferedWriter(new OutputStreamWriter(

new FileOutputStream(LIST_FILE_NAME_PARTIAL), "utf8"));

11 TreeMap<String, TreeSet<String>> labels = findAcronymsPartialsPermutations(entities);

12 for (String entity : labels.keySet()) {

13 TreeSet<String> getLabels = labels.get(entity);

14 if(IsStringSimilarityOverThreshold(entity, getLabels, 0.5)){

15 output.write(entity);

16 output.write("\n");

17 String refs = "";

18 for(String temp : getLabels)

19 refs += temp + ";";

20 refs = refs.substring(0, refs.length()-1);

21 output_refs.write(entity + " -:- " + refs);

22 output_refs.write("\n");

23 } }

24 output.close();

25 System.out.println("# The " + LIST_FILE_NAME_PARTIAL + " file was created!");

26 output_refs.close();

27 System.out.println("# The " + LIST_FILE_NAME_PARTIAL_REFS + " file was created!");

28 }

Figure 4.3: Add named entities in gazetteer file.
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/**

* Checks if the string similarity of a term with at least one (string) element of a set

* is over a given threshold and returns true if holds, false otherwise.

* @param partialMatchLabel A term.

* @param realLabels A set of string elements.

* @param threshold The threshold we want to check.

* @return true if holds, false otherwise.

*/

public static boolean IsStringSimilarityOverThreshold(String partialMatchLabel,

Set<String> realLabels, double threshold){

1 for(String realLabel : realLabels){

2 if(XLink.computeStoilosSimilarity(realLabel.toLowerCase(),

partialMatchLabel.toLowerCase()) >= threshold)

3 return true;

4 }

5 return false;

6 }

Figure 4.4: Checks if the string similarity of a term with at least one set element
is over a threshold.
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/**

* Returns partial matchings, acronyms and permutations for a set of given named entities.

* @param entities The set of named entities whose partial matchings and

* acronyms we want to find.

* @return A set of partial matchings and acronyms.

*/

public static TreeMap<String, TreeSet<String>> findAcronymsPartialsPermutations

(TreeSet<String> entities){

1 Set<String> stopWords = new LinkedHashSet<String>();

2 TreeMap<String, TreeSet<String>> labels = new TreeMap<String, TreeSet<String>>();

3 try {

4 BufferedReader bf = new BufferedReader(new FileReader(

Resources.XLinkRepo_forTestClients + "stopwordsEn.txt"));

5 for(String line;(line = bf.readLine()) != null;)

6 stopWords.add(line.trim());

7 bf.close();

8 } catch (IOException ex) {

9 Logger.getLogger(HelpingFunctions.class.getName()).log(Level.SEVERE, null, ex);

10 }

11 for(String entity : entities){

12 String entity_nostw = "";

13 String[] split = entity.split(" ");

// Remove stopwords from a named entity label

// e.g. entity = "United States of America"

// entity_nostw = "United States America"

14 for (int i = 0; i < split.length; i++) {

15 if(!stopWords.contains(split[i])){

16 if(split[i].trim().length() > 0)

17 entity_nostw += split[i] + " ";

18 } }

19 if(entity_nostw.trim().length() > 0 ){

20 String[] split2 = entity_nostw.trim().split(" ");

21 String label = "";

// Acronyms

22 String temp = "", temp_dot = "", temp_sp = "";

23 if(split2.length >=3){

24 for (int i = 0; i < split2.length; i++) {

25 char tmp = split2[i].charAt(0);

26 temp = temp + tmp; // USA

27 temp_dot = temp_dot + tmp + "."; // U.S.A.

28 temp_sp = temp_sp + tmp + " "; // U S A

29 }

30 TreeSet<String> get = labels.get(temp.toLowerCase().trim());

31 if(get == null){

32 get = new TreeSet<String>();

33 get.add(entity);

34 labels.put(temp.toLowerCase().trim(), get);

35 } else{

36 get.add(entity);

37 labels.put(temp.toLowerCase().trim(), get);

38 }

39 get = labels.get(temp_dot.toLowerCase().trim());

40 if(get == null){

41 get = new TreeSet<String>();

42 get.add(entity);

43 labels.put(temp_dot.toLowerCase().trim(), get);

44 } else{

45 get.add(entity);

46 labels.put(temp_dot.toLowerCase().trim(), get);

47 }

...

Figure 4.5: Find partial matchings, acronyms and permutations.
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...

48 get = labels.get(temp_sp.trim().toLowerCase().trim());

49 if(get == null){

50 get = new TreeSet<String>();

51 get.add(entity);

52 labels.put(temp_sp.trim().toLowerCase().trim(),get);

53 } else{

54 get.add(entity);

55 labels.put(temp_sp.trim().toLowerCase().trim(),get);

56 }

57 get = labels.get(temp_dot.substring(0, temp_dot.length() - 1).toLowerCase().trim());

58 if(get == null){

59 get = new TreeSet<String>();

60 get.add(entity);

61 labels.put(temp_dot.substring(0, temp_dot.length() - 1).toLowerCase().trim(),get);

62 } else{

63 get.add(entity);

64 labels.put(temp_dot.substring(0, temp_dot.length() - 1).toLowerCase().trim(),get);

65 }

// e.g. labels = {"united states of america", "usa", "u.s.a.", "u s a", "u.s.a"}

// Partial matchings

66 for(int i = split2.length; i>=1; i--){

67 for(int j = 0; j <= split2.length - i; j++){

68 for(int k = j; k < j + i; k++)

69 label+=split2[k] + " ";

70 get = labels.get(label.trim().toLowerCase().trim());

71 if(get == null){

72 get = new TreeSet<String>();

73 get.add(entity);

74 labels.put(label.trim().toLowerCase(), get);

75 } else{

76 get.add(entity);

77 labels.put(label.trim().toLowerCase(), get);

78 }

79 label = "";

80 } }

// e.g. labels = {"united states of america", "usa", "u.s.a.", "u s a", "u.s.a",

// "america", "states", "states america", "united",

// "united states", "united states america"}

// Permutations

81 String[] split_p = entity_nostw.split(" ");

82 TreeSet<String> permutations = permute(Arrays.asList(split_p),0);

83 for(String permutation : permutations){

84 TreeSet<String> get = labels.get(permutation.toLowerCase().trim());

85 if(get == null){

86 get = new TreeSet<String>();

87 get.add(entity);

88 labels.put(permutation.toLowerCase().trim(), get);

89 } else{

90 get.add(entity);

91 labels.put(permutation.toLowerCase().trim(), get);

92 } }

// e.g. entity = ’barack obama’

// permutations = {’barack obama’, ’obama barack’}

93 } }

94 return labels;

95 }

Figure 4.6: Find partial matchings, acronyms and permutations (cont.).
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/**

* Find all combinations of a given word terms.

* @param arr An array that contains the terms of a word.

* @param k The starting position of array.

* @return

*/

public static TreeSet<String> permute(List<String> arr, int k){

1 TreeSet<String> labels = new TreeSet<String>();

2 for(int i = k; i < arr.size(); i++){

3 java.util.Collections.swap(arr, i, k);

4 labels.addAll(permute(arr, k+1));

5 java.util.Collections.swap(arr, k, i);

6 }

7 if (k == arr.size() -1){

8 String label = "";

9 String[] array = (String[]) arr.toArray();

10 for(String str : array)

11 label+=str + " ";

12 labels.add(label);

13 }

14 return labels;

15 }

Figure 4.7: Find String permutations of given elements.
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- Input: "City win the League."

- Output:

# Detected entities:

Entity name: City

Category: country

Complete label: [vatican city]

Entity name: City

Category: football_teams

Complete label: [manchester city]

Entity name: League

Category: sports_league

Complete label: [premier league]

- Input: "Putin asks to talk with Tsipras immediately."

- Output:

# Detected entities:

Entity name: Tsipras

Category: politicians

Complete label: [alexis tsipras]

Entity name: Putin

Category: politicians

Complete label: [vladimir putin]

- Input: "Raikkonen takes no pleasure from beating Vettel."

- Output:

# Detected entities:

Entity name: Raikkonen

Category: formula_1_drivers

Complete label: [kimi raikkonen]

Entity name: Vettel

Category: formula_1_drivers

Complete label: [sebastian vettel]

- Input: "IMF might have lost its policy cloud over Greece."

- Output:

# Detected entities:

Entity name: Greece

Category: country

Complete label: [greece]

Entity name: IMF

Category: organizations

Complete label: [international monetary fund]

- Input: "The ISWC is coming to the Lehigh Valley this fall."

- Output:

# Detected entities:

Entity name: ISWC

Category: conferences

Complete label: [international semantic web conference,

international symposium on wearable computers]

Entity name: Lehigh Valley

Category: location

Complete label: [lehigh valley]

Figure 4.9: Output of X-Link using partial matching.
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- Input: "Papadopoulos and Kresic are recently transferred in Leverkusen."

- Output:

# Detected entities:

Entity name: Papadopoulos

Category: football_players

Complete label: [avraam papadopoulos, dimitris papadopoulos, kyriakos papadopoulos]

Entity name: Kresic

Category: football_players

Complete label: [dario kresic, milos kresic]

Entity name: Leverkusen

Category: football_teams

Complete label: [bayer leverkusen]

Entity name: Papadopoulos

Category: politicians

Complete label: [tassos papadopoulos]

- Input: "The car that involved in the hit-and-run accident was white."

- Output:

# Detected entities:

Entity name: car

Category: country

Complete label: [central african republic]

Entity name: white

Category: politicians

Complete label: [david white]

- Input: "The average cost per mile for a small sedan is 46.4 cents."

- Output:

# Detected entities:

Entity name: mile

Category: film

Complete label: [the green mile]

- Input: "Pope Francis would make a two-day visit to the city of Valleta."

- Output:

Entity name: city

Category: country

Complete label: [vatican city]

Entity name: city

Category: football_teams

Complete label: [manchester city]

Figure 4.10: Output of X-Link using partial matching (cont.).
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1 xlink.categories.supported = Fish;Country;Water_Area;Disease;Drug;Protein;Chemical_Substance

2 xlink.categories.active = Fish;Country;Water_Area

3 xlink.categories.Fish.kbms = dbpedia_fish

4 xlink.categories.Fish.kbms.dbpedia_fish.endpoint = http://dbpedia.org/sparql

5 xlink.categories.Fish.kbms.dbpedia_fish.entitynames = C:/xlink/queries/dbp_fishes.sparql;

6 xlink.categories.Fish.kbms.dbpedia_fish.templatequeries.linking =

C:/xlink/templates/dbp_fish_linking.tquery

7 xlink.categories.Fish.kbms.dbp_fish.templatequeries.linking.parameter = [ENTITY]

8 xlink.categories.Fish.kbms.dbp_fish.templatequeries.enriching =

C:/xlink/templates/dbpedia_fish_enriching.tquery

9 xlink.categories.Fish.kbms.dbpedia_fish.templatequeries.enriching.parameter = [URI]

10 xlink.connect.radius = 1

11 xlink.fuzzy = true

12 xlink.fuzzy.value = 0.2

13 xlink.partialmatching = true

Figure 4.11: A part of X-Link’s properties file configured for the marine domain.
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Chapter 5

Named Entity Disambiguation

In this chapter we focus on NED problem. Initially, in Section 5.1 we define the
problem statement. In Section 5.2 we give some motivating examples. In Section
5.3 we present our research directions. In Section 5.4 we propose 3 disambiguation
methods, and then we evaluate them over motivating examples.

5.1 Problem Statement

Let us assume that there is an entity name e that belongs to the set of entities
of more than one categories, and we want to find the most probable category or
categories of e, denoted as Cprob, where Cprob ⊆ ctg(e). Consider a document doc
that contains an entity e, such that e ∈ Ent(doc) and there are two (or more)
categories, say c and c′, such that e ∈ E(c) ∩ E(c′).

Let occuri(e, doc) denote the i-th occurrence of entity e in document doc. For
an entity occurrence and a category c we shall use the notation belongs(occuri(e, doc), c)
to define that the real category (what the author of the text means) of that entity
is c. Also, let occurCount(e, doc) be the number of occurrences of e in doc. If
occurCount(e, doc) = 0 it means that entity e does not occur in document doc.
We would like to estimate one of the following:

• Find the probability that the occuri(e, doc) corresponds to category c,
i.e. compute P (belongs(occuri(e, doc), c)), ∀c ∈ ctg(e)

• Find the category c ∈ ctg(e), denoted as bestCtg(occuri(e, doc)), that maxi-
mizes the above probability, i.e. c = argmaxc∈ctg(e)P (belongs(occuri(e, doc), c)).

5.2 Motivating Examples

Consider the following 5 textual snippets, and suppose that we are asked to retrieve
entities that belong to the following categories, Fish Species, Location, Food
and Person.

45
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p1 : Argentina and Salmon live in deep waters.

p2 : Argentina is sharing land borders with Chile.

p3 : Sebastian Leto was born in Argentina.

p4 : I like sushi pizza with Argentina. Usually I eat them during summer time.
By the way, the next summer I plan to visit Argentina because I have a
cousin who studies in the university of Buenos Aires and he could host me
there.

p5 : The Argentina is 3 years of light away from earth.

The expected output of a NEE tool (e.g. X-Link) is the following:

• In snippet p1 the retrieved entities are Argentina and Salmon.
– ctg (Argentina) = {Location, Fish Species}
– ctg (Salmon) = {Fish Species }

• In snippet p2 the retrieved entities are Argentina and Chile.
– ctg (Argentina) = {Location, Fish Species}
– ctg (Chile) = {Location}

• In snippet p3 the retrieved entities are Argentina and Sebastian Leto.
– ctg (Argentina) = {Location, Fish Species}
– ctg (Sebastian Leto) = {Person}

• In snippet p4 the retrieved entities are Argentina, sushi pizza and Patagonia.
– ctg (Argentina) = {Location, Fish Species}
– ctg (Sushi pizza) = {Food}
– ctg (Buenos Aires) = {Location}

• Finally, in snippet p5 the only retrieved entity is Argentina
– ctg (Argentina) = {Location, Fish Species}

In all snippets the ambiguous entity is the Argentina. A rising question is "How

can we understand when Argentina refers to the Fish Species Argentina,

the Location Argentina or something else?".

The ideal output of a NED tool should be the following:

• In snippets p2 & p3 the real category of Argentina is Location.
– belongs(occur1(Argentina, p2), Location)
– belongs(occur1(Argentina, p3), Location)

• In snippet p1 the real category of Argentina is Fish Species.
– belongs(occur1(Argentina, p1), Fish Species)

• In snippet p4 there are 2 occurrences of Argentina. The 1st refers to Fish
Species, while the 2nd to Location.
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– belongs(occur1(Argentina, p4), Fish Species)
– belongs(occur2(Argentina, p4), Location)

• Finally, in snippet p5 it is highly possible that the entity Argentina refers to
a celestial body. Even if we do not known if there is a asteroid or planet
named Argentina, we could say that is more probable that this occurrence
refers to a Location.

5.3 Research Directions

Some questions we need to have in mind during the selection of the appropriate
disambiguation method, are the following:

1. Should we do something in advance (before the entity recognition)?

2. Should we use more information (external data)? Which and how?

3. Just do something at execution time (without having to do anything in ad-
vance, or requiring any extra information)?

5.4 Possible Approaches

Below we describe 3 methods that we propose for disambiguating the occurrences of
one (or more) identified ambiguous named entities, and then we evaluate them over
the above motivating examples. Let Amb(doc) be the set of ambiguous entities
identified in document doc, m be a NED method and numOfCA(m, doc) the
number of ambiguous entities of doc that have been annotated with their real
category by method m (correct annotations). Notice that if there are 2 or more
occurrences of the same entity name that belong to different categories, they are
considered as different entities and are counted accordingly. In order to estimate
the precision of our methods we define the metric:

prec(m, doc) =
numOfCA(m, doc)

|Amb(doc)|
In detail it holds that :

numOfCA(m, doc) =
∑

e∈Ent(doc)
ctg(e)>1

occurCount(e,doc)∑
i=1

belongs(occuri(e, doc), bestCtg(occuri(e, doc))) == TRUE︸ ︷︷ ︸
we consider that the statement is equal to 1 if it holds, 0 otherwise

and

|Amb(doc)| = |{e ∈ Ent(doc)
∣∣ctg(e) > 1}| =

∑
e∈Ent(doc)
ctg(e)>1

occurCount(e, doc)
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5.4.1 Method 1: Category Frequency in Snippets

The main idea is that if a document doc contains many entities that belong to a
specific category c, then the occuri(e, doc) will probably refer to the same category.
We define the probability that the real category of the i-th occurrence of entity
e is c, as follows:

P (belongs(occuri(e, doc), c)) =
|Ent(doc, c)|
|Ent(doc)|

, |Ent(doc)| > 0 (5.1)

However, it is more accurate to take into account only the categories of the non-
ambiguous entities. Let NonAmb(doc) = {e ∈ Ent(doc)

∣∣|ctg(e)| = 1} be the set
of non-ambiguous entities identified in doc, and NonAmb(doc, c) = Ent(doc, c) ∩
NonAmb(doc) be the set of non-ambiguous entities identified in doc and belong to
category c. Therefore, the above probability can be modified into:

P (belongs(occuri(e, doc), c)) =
|NonAmb(doc, c)|
|NonAmb(doc)|

, |NonAmb(doc)| > 0 (5.2)

Even in this case, we can not be sure about the ambiguity of an entity because it
depends on current configuration, i.e. the set of supported categories. Specifically,
suppose that we are only interested for Fish Species. In this case, the Argentina

will be concerned as non-ambiguous entity, which is not correct. Either way, this
method assigns the same category to all occurrences of an entity e.

If the supported categories are C = {cFish, cLoc}, where cFish corresponds to
Fish Species and cLoc to Location, then the expected output of m1, for the motiva-
tion examples, is the following:

• In snippet p1 the only non-ambiguous entity is the Salmon.

The outcome of eq. 5.1 is:

– P (belongs(occur1(Argentina, p1), cFish)) =
|Ent(p1,cFish)|

|Ent(p1)| = 2
2 = 1

– P (belongs(occur1(Argentina, p1), cLoc)) =
|Ent(p1,cLoc)|

|Ent(p1)| = 1
2 = 0.5

The outcome of eq. 5.2 is:

– P (belongs(occur1(Argentina, p1), cFish)) =
|NonAmb(p1,cFish)|

|NonAmb(p1)| = 1
1 = 1

– P (belongs(occur1(Argentina, p1), cLoc)) =
|NonAmb(p1,cLoc)|

|NonAmb(p1)| = 0
1 = 0

In both cases, it holds that bestCtg(occur1(Argentina, p1)) = Fish Species,

which is the real, so the precision is prec(m1, p1) =
numOfCA(m1,p1)

|Amb(p1)| = 1
1 = 1.
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• In snippet p2 the only non-ambiguous entity is the Chile.

The outcome of eq. 5.1 is:

– P (belongs(occur1(Argentina, p2), cFish)) =
|Ent(p2,cFish)|

|Ent(p2)| = 1
2 = 0.5

– P (belongs(occur1(Argentina, p2), cLoc)) =
|Ent(p2,cLoc)|

|Ent(p2)| = 2
2 = 1

The outcome of eq. 5.2 is:

– P (belongs(occur1(Argentina, p2), cFish)) =
|NonAmb(p2,cFish)|

|NonAmb(p2)| = 0
1 = 0

– P (belongs(occur1(Argentina, p2), cLoc)) =
|NonAmb(p2,cLoc)|

|NonAmb(p2)| = 1
1 = 1

In both cases, it holds that bestCtg(occur1(Argentina, p2)) = Location,

which is the real, so the precision is prec(m1, p2) =
numOfCA(m1,p2)

|Amb(p2)| = 1
1 = 1.

• In snippet p3 & p5 there is not any non-ambiguous entity, so the eq. 5.2
cannot be measured (division with 0).

The outcome of eq. 5.1, for i = 3, 5, is:

– P (belongs(occur1(Argentina, pi), cFish)) =
|Ent(pi,cFish)|

|Ent(pi)| = 1
1 = 1

– P (belongs(occur1(Argentina, pi), cLoc)) =
|Ent(pi,cLoc)|

|Ent(pi)| = 1
1 = 1

The probabilities are equal for both categories, so we cannot select one. In
such cases we select the most popular category of the specific entity. In
our approach we assume that the most popular category is this with the
highest frequency in the collection of documents that we have already check,
and there is not a tie in at least one of the probabilities 5.1 and 5.2. Let
freq(e, c) be the frequency of entity e with category c. Consequently, the
probability of 5.1 can be modified into

P (belongs(occuri(e, doc), c)) = freq(e, c),
∑

c∈ctg(e)

freq(e, c) = 1

An other option is to keep the category that has the most incoming edges in
a semantic graph of a KB. In these special cases we assume that the precision
of our method is

prec(m, doc) =
1

ctg(e)

Thus, the precision for i = 3, 5 is prec(m1, pi) = 0.5
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• In snippet p4 the non-ambiguous entity is the Buenos Aires .

The outcome of eq. 5.1, for i = 1, 2 is:

– P (belongs(occuri(Argentina, p4), cFish)) =
|Ent(p4,cFish)|

|Ent(p4)| = 1
2 = 0.5

– P (belongs(occuri(Argentina, p4), cLoc)) =
|Ent(p4,cLoc)|

|Ent(p4)| = 2
2 = 1

The outcome of eq. 5.2, for i = 1, 2 is:

– P (belongs(occuri(Argentina, p4), cFish)) =
|NonAmb(p4,cFish)|

|NonAmb(p4)| = 0
1 = 0

– P (belongs(occuri(Argentina, p4), cLoc)) =
|NonAmb(p4,cLoc)|

|NonAmb(p4)| = 1
1 = 1

In both equations, for i = 1, 2, it holds that bestCtg(occuri(Argentina, p4)) =
Location, which is true only for the 2nd occurrence of Argentina, so the pre-
cision is prec(m1, p4) =

numOfCA(m1,p4)
|Amb(p4)| = 1

2 = 0.5.

As we observe, method m1 finds the real category of Argentina only in snippets
p1, p2 and p4 (2nd occurrence). In the rest of them the resulting probabilities do
not give us enough information so as to find the real category. The main reason is
that m1 is based only on text statistics, which works well only if all occurrences of
an ambiguous entity refer to the same category. However, quite often we have to
handle the case that two occurrences of the same entity label belong to different
categories, e.g. in p4 the 1st occurrence of entity Argentina refers to Fish Species,
whereas the 2nd to the Location. Hence, we need a method that can exploit the
semantics of a document textual content, so as to be able to select the best category
for each entity occurrence.

5.4.2 Method 2: Distance in the Semantic Web

As stated above, a restriction of method m1 is that ignores the semantics of doc-
uments. However, these semantics offer valuable information that let us to un-
derstand better the text content and find the proper category for each entity
occurrence. Thus, in method m2 we estimate the semantic distance between two
entities. There are many definitions and metrics for computing the semantic dis-
tance between two words. Of course this requires having a corpus of information
about words and concepts, e.g. a dictionary, an ontology, a thesaurus, either a
generic one (e.g. WordNet) or domain specific. We hereafter assume that we
have one such source in the form of an RDF graph (e.g. DBpedia). We make
this assumption because RDF is the ’lingua franca’ for expressing metadata
and knowledge in the sense that any dictionary, thesaurus or ontology can be de-
scribed in RDF form. As we mentioned in Section 3.1, we assume that one such
RDF graph is accessible through a SPARQL endpoint.

In our approach we consider the semantic distance of entities e and t as the
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length of the shortest (undirected) path that connects their semantic resources
(URIs) in a specific semantic graph, where t can either be an entity, a concept, a
text fragment or phrase that has been exported from the text around e, denoted
as s. We extend the notations of Section 3.1 and we denote as U(e, c) the set of
URIs that are related to e, when e belongs to category c. Hence, the distance of
e and t is denoted as

dist(e, t) = min{distgraph(ue, ut)
∣∣ue ∈ U(e, c), ut ∈ U(t, c′), c ∈ ctg(e), c′ ∈ ctg(t)}

It is worth mentioning that the possible categories of t, ctg(t), are not known
in advance, so we need to find them when we want to conduct experiments. A
possible way to detect them is to use the template query shown in Figure 5.1.
More specifically this query searches for resources whose rdf:label property value
contains the t, and returns their resource classes, which may not belong to the set
of supported categories. In the same way we can retrieve the semantic resources of
t, in the case that belongs to a specific category, using the template query shown
in Figure 5.2. Notice that the queries contain the character sequences [FRAGMENT]
and [CLASS] (including the [ and ]) which are replaced (at query-time) by the
current text fragment and resource class.

In the ideal case we assume that exist at least one non-ambiguous named entity
t, so if we know its semantic resources (URIs) we can then estimate its distance
from all candidate resources of an ambiguous entity e and keep only the resource
with the minimum, i.e. compute the argminc∈ctg(e)distgraph(U(e, c), U(t, c

′)), where
c′ if fixed. This approach is resembling with the Entity Enrichment functionality
described in Section 3.3, where we can form an RDF graph by collecting the RDF
triples of the corresponding entities and conclude whether and how these entities
are related (Figure 3.8).

The above process, as described in Algorithm 3, is as follows: Initially we apply
a NLP function (e.g. Gate Annie) to split the textual snippet s into tokens and we
store in S only these that are nouns and noun phrases (see line 4). Then we keep
only the linkable elements of set S and store them in S′ (see line 5), i.e. text terms
that can be matched with one (or more) semantic resources. In the final step,
for each possible combination of semantic resources of occuri(e, doc) and linkable
fragment term of s we estimate their semantic distance, using the Djikstra’s al-
gorithm1, and we keep the category c of occuri(e, doc) from the combination with
the minimum distance (see lines 6-13). This category we presume that is the best.

However, most of these entities correspond to at least one abstract category,
such as http://www.w3.org/2002/07/owl#Thing. Consequently, many semanti-
cally irrelevant entities seem to have semantic distance equal to 2, which has a
negative influence in our results. Therefore, in order to avoid such improper con-
nections we exclude from the RDF graph all the triples that have as predicate the
rdf:type2 and as object any of these abstract semantic categories.

1https://en.wikipedia.org/wiki/Dijkstra’s_algorithm
2rdf : http://www.w3.org/1999/02/22-rdf-syntax-ns#
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Concerning the selection of s, we assume that there is a method that given a
specific occurrence of e returns the respective textual snippet. A naive approach is
to return the textual content between two ’.’. Notice that in this case the size of s
is not fixed and can be ranged from a few words to a whole paragraph. Hence, it is
preferable to use a sliding window, with adjustable size, centered in occuri(e, doc).
Finally, the semantic resources existence of t can be controlled through the queries
shown in Figures 5.1 and 5.2 as we mentioned above (see line 5).

Algorithm 3 Estimate Minimum Semantic Distance

Input: e, a named entity, s, a textual snippet
Output: categ, the best category of e
1: S ← ∅
2: S′ ← ∅
3: minDist← k // k is a large integer

4: S ← findNouns(s) // returns the nouns and noun phrases of s

5: S′ ← findLinkableElements(S) // returns the linkable elements of S′

6: for all term ∈ S′ do
7: for all c ∈ ctg(e) do
8: for all c′ ∈ ctg(term) do
9: dist← dist(U(e, c), U(term, c′))

10: if minDist > dist then
11: minDist← dist
12: categ ← c
13: return categ

SELECT DISTINCT ?class WHERE {

?uri rdfs:label ?label FILTER(regex(str(?label), "[FRAGMENT]", "i"))

?uri rdf:type ?class }

Figure 5.1: Example of a SPARQL query for retrieving the possible categories of
a fragment.

SELECT DISTINCT ?uri WHERE {

?uri rdf:type <[CLASS]>

?uri rdfs:label ?label FILTER(regex(str(?label), "[FRAGMENT]", "i")) }

Figure 5.2: Example of a SPARQL template query for linking an text fragment
with resources in a KB.

The expected output of m2 for the above motivating examples, using the semantic
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graph of DBpedia (as depicted in Figure 5.3) is the following:

• In snippet p1 the candidate semantic resources of Argentina & Salmon are
http://www.dbpedia.org/page/Argentina_(fish), http://www.dbpedia.
org/page/Argentina & http://www.dbpedia.org/page/Salmon. Their se-
mantic distances are:

– dist(dbpedia:Argentina (fish), dbpedia:Salmon) = 2

– dist(dbpedia:Argentina, dbpedia:Salmon) = ∞

The above results indicate that bestCtg(occur1(Argentina, p1)) = Fish Species.

In this case the precision is prec(m2, p1) =
numOfCA(m2,p1)

|Amb(p1)| = 1
1 = 1.

• In snippet p2 the candidate semantic resources of Argentina & Chile are
http://www.dbpedia.org/resource/Argentina_(fish), http://www.dbpedia.
org/resource/Argentina & http://www.dbpedia.org/resource/Chile. Their
semantic distances are:

– dist(dbpedia:Argentina (fish), dbpedia:Chile) = ∞
– dist(dbpedia:Argentina, dbpedia:Chile) = 2

The above results indicate that bestCtg(occur1(Argentina, p2)) = Location.

In this case the precision is prec(m2, p2) =
numOfCA(m2,p2)

|Amb(p2)| = 1
1 = 1.

• In snippet p3 we have:

– dist(dbpedia:Argentina (fish), dbpedia:Sebastian Leto) = ∞
– dist(dbpedia:Argentina, dbpedia:Sebastian Leto) = 2

It holds that bestCtg(occur1(Argentina, p3)) = Location, so the precision is

prec(m2, p3) =
numOfCA(m2,p3)

|Amb(p3)| = 1
1 = 1.

• In snippet p4 the semantic distances are:

– 1st occurrence of Argentina
∗ dist(dbpedia:Argentina (fish), dbpedia:Sushi pizza) = 3

∗ dist(dbpedia:Argentina, dbpedia:Sushi pizza) = ∞

– 2nd occurrence of Argentina
∗ dist(dbpedia:Argentina (fish), dbpedia:Buenos Aires) = ∞
∗ dist(dbpedia:Argentina, dbpedia:Buenos Aires) = 1
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In this snippet there are two occurrences of Argentina. For the 1st occur-
rence it holds that bestCtg(occur1(Argentina, p4)) = Fish Species, while for
the 2nd that bestCtg(occur2(Argentina, p4)) = Location. So the precision is

prec(m2, p4) =
numOfCA(m2,p4)

|Amb(p4)| = 2
2 = 1.

• Finally, in snippet p5 it holds that:

– dist(dbpedia:Argentina (fish), dbpedia:Earth) = ∞
– dist(dbpedia:Argentina, dbpedia:Earth) = 2

For this snippet it holds that bestCtg(occur1(Argentina, p5)) = Location.
However, it neither belongs to Location nor Fish Species, so the precision is
prec(m2, p5) =

numOfCA(m2,p5)
|Amb(p5)| = 0

1 = 0.

From the above results, we conclude that m2 performs better than m1 in most
cases. The only snippet where both of them fail to find the real category of
Argentina is the p5. In such snippets, where the entity e does not belong to
any of the supported categories c, it is rational that none method will return the
right category. Generally, the quality of results of m2 depends mainly on retrieved
entities and the used ontology of used KB. However, according to our requirements
we may need more than one KBs, which may be structured over a totally different
ontology. Therefore, we need to ensure that there will not be any conflict even in
the case that we use many KBs.

In addition, m2 requires a KB that contains information for a wide set of
categories. To meet this requirement, we can either use a public KB, or create
our own. However, relying on a public KB could prove problematic in the case of
a server downtime. On the other hand, the creation and maintenance of our own
dataset requires advanced computing equipment. Thus, for our needs we create a
local copy of DBpedia that includes only RDF triples of specific categories (see 6.3)
and we keep them in a local instance of OpenLink Virtuoso Server3. Furthermore,
we assume that t concerns only named entities, since all linkable document terms
will correspond to entries of the supported categories. This lead us to miss valuable
information which could help us to find the proper entity. To make this evident, in
our experiments we create a new category named Rest, whose entities are defined
by hand and belong to various categories (different from these that we already
support). Then we estimate the difference in achieved precision when we also
support this category (see more in 6.3).

5.4.3 Method 3: Train Set-based/Text Categorization

The method m3 relies on Text Categorization, whose aim is to classify a col-
lection of documents, based on their textual content, into various categories, e.g.

3http://virtuoso.openlinksw.com/
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prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

prefix dbr: <http://dbpedia.org/resource/>

prefix dbo: <http://dbpedia.org/ontology/>

prefix dbp: <http://dbpedia.org/property/>

prefix yago: <http://yago-knowledge.org/resource/>

dbr:Argentina_(fish) rdf:type dbo:Fish.

.

.

.

dbr:Salmon rdf:type dbo:Fish.

.

.

.

dbr:Argentina rdf:type dbo:Location.

dbr:Argentina rdf:type yago:YagoGeoEntity.

dbr:Argentina dbp:capital dbo:Buenos_Aires.

.

.

.

dbr:Buenos_Aires rdf:type dbo:Location.

.

.

.

dbr:Sebastian_Leto dbp:birthPlace dbr:Buenos_Aires.

.

.

.

dbr:Sushi_pizza dbo:ingredient dbr:Salmon

.

.

.

dbr:Earth rdf:type yago:YagoGeoEntity.

Figure 5.3: Semantic graph snapshot of DBpedia

sports, politics, electronics, etc. This classification is achieved by using one or
more Machine Learning (ML) Classifiers, e.g. Naive Bayes, Decision Tree, Sup-
port Vector Machine (SVM). A ML classification consists of two main steps, the
training and the classification. In the training step we select the classifier
features, i.e. the parameters that will be used to represent the textual content of
a sentence or a whole document. This is a paramount step and we must be careful
so as to avoid side effects such as overfitting and underfitting. In the classification
step, every new sample is represented using the same parameters and based on
their values the classifier returns the most possible category.

In our approach these parameters correspond to document terms that give us
enough information so that we can classify a new document d to a specific cate-
gory c. Let docs(ci) be the set of documents of category ci, docs(w, ci) = {d ∈
docs(ci)

∣∣Contains(d,w)} the set of documents of category ci that contain word w,
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and Contains(d,w) denotes that word w occurs in document d. In order to mea-
sure the importance of each word w we define the Inverse Category Frequency

(ICF) as:

ICF (w) =
|C|∑

ci∈C
|docs(w,ci)|
|docs(ci)|

or

ICF ′(w) =
|C|+ 1− |Cw|

|C|
×

∑
ci∈C

|docs(w, ci)|
|docs(ci)|

where Cw is the set of categories that word w occurs in.

Our methodology is as follows:

1. Find the words W from a document collection (ignoring stopwords) that can
be used as parameters.

2. Estimate the ICF (w), ∀w ∈W .

3. Sort W w.r.t. ICF .

4. Select the best-K words for each category that will be used as parameters.

5. Create a Train Set using the best-K words as parameters.

6. Train a classifier.

7. Classify a new sample.

However, based on a brief experimental evaluation, we conclude that the ICF
measure is insufficient. Therefore, we need an additional ranking formula which
can be placed as an intermediate step between 3 and 4. A possible solution is to
exploit the frequency of word w in the documents of a specific category. The new
formula is defined as:

ScoreB(w, ci) =
|docs(w, ci)|
|docs(ci)|

To make it clear, suppose that we use as document collection the textual snippets
from the above motivating examples, where each snippet is annotated with the
relevant category (Table 5.1). Thus, we can create a train set, as depicted in Table
5.2, where each parameter is initialized with 0 or 1 depending on whether the
corresponding word occurs in the documents of a specific category.

A restriction of ML classifiers is that they require a large document corpus
as train set. However, this is an initial step that it performed once, and in the
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Samples Text Content Category
s1 Argentina and Salmon live in deep waters. cFish

s2 Argentina is sharing land borders with Chile. cLoc

s3 Sebastian Leto was born in Argentina . cLoc

s4 I like sushi pizza with Argentina. cFish

s5 I plan to visit Argentina because I have a cousin who studies in
the university of Patagonia and he could host me there.

cLoc

Table 5.1: Train Set document collection

Parameters
Samples deep waters land borders born sushi pizza university Category

s1 1 1 0 0 0 0 0 0 cFish

s2 0 0 1 1 0 0 0 0 cLoc

s3 0 0 0 0 1 0 0 0 cLoc

s4 0 0 0 0 0 1 1 0 cFish

s5 0 0 0 0 0 0 0 1 cLoc

Table 5.2: Train Set example

cases that we want to classify a new domain/category of entities or to add more
documents for the existing categories.

Nevertheless, the improvement of ML methods and techniques is out of scope
of our work since we emphasize on usage of Linked Data. However we include this
approach because it is used for text classification/categorization which is an equiv-
alent problem with NED. Hence, in order to avoid any implementation failure and
to ensure its proper operation, we use the well known ML toolkit Weka [39]. More
specific, we use the FilteredClassifier class with the StringToWordVector as
filter, and we evaluate the performance of some well known classifiers, e.g. Naive
Bayes, Support Vector Machine, Decision Trees, etc.
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Chapter 6

Evaluation

First, in §6.1 & §6.2 we report a user study that demonstrate the usability of
X-Link, and a case study regarding the efficiency of the functions described in §3.
Then, in §6.3 we report the results of a comparative experimental evaluation of
the NED methods described in §5.

6.1 Task-based User Study

In [33] we performed a user study whose purpose was a) to test the usability of the
proposed approach, i.e. how fast and conveniently a user can configure X-Link,
and b) to identify usability problems that will allow us to improve the tool. Note
that the target user is an administrator or a developer who wants to use X-Link

for building and dynamically configuring an application. Below we summarize the
results.

6.1.1 Tasks and Scenario

We deployed X-Link as a Web application configured for the marine domain which
can identify Fish Species in a text or Web document. The administrator of the
system can change the configuration through an administration page. Specifically,
he/she can add, remove and update categories, specify how to link and enrich the
identified entities, and define the SPARQL endpoints to use.

The 11 subjects that participated in the user study are 23 to 34 years old,
members of the Information Systems Laboratory at FORTH-ICS, they have com-
puter science background and a basic knowledge of Linked Data and the SPARQL
query language. We shortly (in about 5 minutes) described and demonstrated the
application and its functionality to the participants, and then we asked them to
perform the following tasks:

(T1) Add a new category of entities
(T2) Update a category
(T3) Specify how to link the identified entities of a category
(T4) Specify how to enrich the entity URIs of a category

59
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(T5) Inspect the connectivity (for r = 1) of the entity URIs

For the tasks T1 to T4, the participants could also load an example of a
SPARQL query and modify it (instead of writing it from scratch). We recorded
whether they succeeded to complete each task, as well as the time to successfully
accomplish each task.

6.1.2 Results

The results showed that all participants managed to complete the tasks T1, T2
and T5. However, 18% of the participants (two persons) failed to complete T3
and 9% (one person) failed to complete T4. The difficulty behind T3 and T4 is
the comprehension of the SPARQL template query, specifically, the purpose of the
template parameter and how it is used for constructing the template query.

This proves that adopting the LOD-based approach that we propose and un-
derstanding the notion of the SPARQL template queries, one can configure a NEE
system within a few minutes. However these tasks can be proved laborious even for
users with computer science background. We should also stress that if we had ded-
icated more time for explaining the notion of the template queries (e.g. with more
examples), perhaps all the participants would have also successfully completed T3
and T4.

6.1.3 Formulation of SPARQL Queries

There are many tools that can facilitate the construction of SPARQL queries,
without requiring any advanced knowledge in SPARQL [12, 57]. Furthermore,
there are natural language approaches that guide users in formulating queries in a
language seemingly akin to English and translate them to SPARQL [26]. In this
thesis, we consider that the administrator of the underlying application knows the
SPARQL query language.

6.2 Case Study: Querying Online DBpedia

In [33] we also performed a case study for testing the feasibility of the entire
approach. Specifically, we used online DBpedia as the underlying KB and we
measured the time for (1) creating a new category, (2) linking an identified en-
tity with semantic resources, (3) enriching an entity URI, and (4) inferring the
connectivity of the entity URIs.

6.2.1 Creating a New Category

We used 7 sets of DBpedia resource classes. Each set has 5 different resource classes
containing a particular number of entities (thus, totally 35 different resource classes
were used). Each resource class actually corresponds to the new category that we
want to create in X-Link. We measured a) the time for running the SPARQL
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query at DBpedia’s SPARQL endpoint (which retrieves the labels of the entities
belonging to the corresponding resource class), and b) the time for reading the
answer and creating the category in X-Link.

As expected, the most time consuming task is the execution of the SPARQL
query, since we query DBpedia’s SPARQL endpoint at real time (the remaining
tasks cost less than 10 seconds in all cases). We saw that for resource classes with
small number of entities (up to 10,000) the time is less than 20 seconds, while for
resources classes with about 100,000 entities the time is about 5 minutes.

6.2.2 Time for Linking an Identified Entity

For this task we used 8 sets of DBpedia resource classes, each one containing classes
of a particular number of entities. Each set has 5 different resource classes (thus,
totally 40 different resource classes were used). Note that each resource class ac-
tually corresponds to the category of an identified entity. For every resource class,
we randomly selected 10 labels of entities belonging to that class and measured
the average time for running the SPARQL query.

The results showed that for entities belonging to categories with up to 100,000
entities, the average time is less than 1 second, while for entities in categories
with up to 1 million entities, the linking time is about 5 seconds. In addition, for
linking an entity belonging to a category with 6 million entities the time is about
25 seconds.

6.2.3 Time for Enriching an Entity URI

For this task we ran experiments for the following types of properties: i) incoming,
ii) outgoing, iii) outgoing of a specific language, and iv) union of incoming and
outgoing.

We randomly selected 160 URIs from DBpedia and measured the average time
required for retrieving the properties. The required time is very low (less than 300
ms) for all types of properties, since the entity URI for which we want to retrieve
properties is known, thus no many string comparisons are required like in the case
of entity linking.

6.2.4 Time for Inspecting the Connectivity of the Entity URIs

We ran experiments for r = 1 and r = 2. Obviously, the time depends on the
number of entity URIs for which we want to inspect the connectivity. We ran
experiments for 10, 50 and 100 randomly selected URIs belonging to the same
resource class.

Results showed that for r = 1 the time is proportional to the number of URIs
(specifically, about 10 seconds are required for every 50 URIs). However, for r = 2
the task is very time consuming; the time increases exponentially to the number
of URIs (e.g. for 100 URIs about 12 minutes are required). This is a predictable
result since each URI may have many related URIs.
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It is worth mentioning that the above experiments are carried out using the
DefaultGazetteer, otherwise the respective execution time for some tasks might
differ. Recall §4.2.2 where the semantic resource of entity “Vatican City” is
http://dbpedia.org/resource/Vatican_City, whereas the term “Vatican” may
either refers to named entities “Vatican” and “Vatican City”, whose semantic re-
sources are http://dbpedia.org/resource/Prisoner_in_the_Vatican, http:

//dbpedia.org/resource/Vatican_City. In such cases we have to pay the (neg-
ligible) extra cost.

6.3 Disambiguating Named Entities

We performed a comparative experimental evaluation of the NED methods pro-
posed in §5. Specifically, we evaluated them according to the following aspects: (1)
their precision, and (2) the required time for disambiguating an entity appearance
in a document, with respect to its length. Our objective is to find the method
that achieves the best trade-off of effectiveness and time efficiency, according to
our needs.

6.3.1 Evaluation Collection

Since NED still remains an open challenge, there is not any widely accepted corpus
of documents that can be used as an evaluation dataset for our setting. Recall
that we are looking for the most probable category c of an ambiguous entity a.
Thus, we created our own gold standard which consist of documents that contain
occurrences of one (or more) ambiguous entities, whose real category is known in
advance.

The methodology that we use for the creation of our evaluation dataset is
briefly described in Algorithm 4. Specifically, consider a set of ambiguous entities
denoted as A and a set of categories C, where ∀a ∈ A,∃c, c′ ∈ C : ctg(a) = {c, c′}.
For each a ∈ A and for each c ∈ ctg(a) we select a set of documents/paragraphs
that mention a and its sense is certainly c (see line 4). These documents can either
be collected manually or automatically. For the second case, we submit a query
like ”<ambiguous entity name> <category> <helpful comments>” in any search
engine (e.g. Google), we keep the top-K results (e.g. K = 5) and we store them in
the ideal dataset. Notice that the term helpful comments is optional and is used
if we want to retrieve documents with specific content, e.g. ”Argentina Country
Debt Crisis”.

A paramount issue in our evaluation is to spot any difference in the effec-
tiveness and performance of our methods when they are applied in documents of
different size. For this reason we split the retrieved documents (into smaller) and
we create additional datasets, where each of them corresponds to a different scale
of granularity. In our evaluation we use 4 scales of granularity, (1) whole text, (2)
half text, (3) per 200 words, and (4) per ≈ 15−25 words (snippet size), denoted as
D1, D2, D3 and D4 respectively. Either way, each one of the new (sub)documents
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must contain at least one occurrence of ambiguous entity a, otherwise we remove it
from the corresponding dataset. Also, we create 2 versions of the above datasets,
one including stopwords and one omitting them, and we evaluate our methods over
them.

Evaluation Setting In our evaluation, we suppose that A = {Apple, Argentina,
Beetle, Ibiza, Jaguar, Java, Mustang}, whose candidate categories are:

• ctg(Apple) = {Company, Plant}

• ctg(Argentina) = {Country, Fish Species, Plant}

• ctg(Beetle) = {Automobile, Insect}

• ctg(Ibiza) = {Automobile, Island}

• ctg(Jaguar) = {Automobile, Mammal}

• ctg(Java) = {Island, Programming Language}

• ctg(Mustang) = {Automobile, Mammal}

Hence, we have |A| = 7 ambiguous entities, and each entity corresponds to
λ = avg{|ctg(a)|

∣∣a ∈ A} ≥ 2 possible categories. Consequently, we will need
|A| × λ ≃ 14 queries. For each query we keep only the top-15 results, so we will
retrieve 210 web pages. Assuming that each web page has a size of 2000 words,
then dataset D1 will consist of 210 documents, D2 of 420 documents, D3 of 2100
documents, and D4 of ≈ 16800 documents (the real numbers are reported in Table
6.1). Also, for each web page we keep a properties file with some useful information,
i.e. its URI, the title of the retrieved doc, the real category of ambiguous entity,
etc.

Notice that most of modern search engines use various heuristics for improv-
ing the quality of searching results. Such heuristics include user personalization,
results diversity, exploitation of query content, etc. However, search results tend
to be user centric, which is not desirable in our case. Therefore, we use the Bing
Search Engine, which allows us to ignore such heuristics, and we retrieve the desired
documents through the query http://www.bing.com/search?q=[QUERY]&count=

[RESULTS]&first=0&format=rss, where the the character sequences [QUERY] and
[RESULTS] (including the [ and ]) are replaced (at query-time) by the current query
and the number of search results we want to keep.

Additionally, due to the nature of ML methods (m3) we need separate corpus of
documents for the training and classification phase. In any case, for the reliability
of results, all methods must be evaluated on same dataset. Nevertheless, as stated
earlier we will create our own dataset, hence we decide to use as train set the 80%
of our initial corpus (the first 12 documents of each ambiguous entity from dataset
D1 and the respective from D2, D3, D4), and use the rest 20% for the evaluation.
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Dataset Train Set Test Set
D1 162 45
D2 303 88
D3 1544 350
D4 5190 1264

Total documents 7215 1747

Table 6.1: Dataset contents

Algorithm 4 Create Evaluation Dataset

Input: A, a set of ambiguous entities,
k, the number of documents we want to retrieve

Output: D, a collection of documents
1: D ← ∅
2: for all a ∈ A do
3: for all c ∈ ctg(a) do
4: D ← D ∪ retrieveDocs(a, c, k) // returns k documents about entity a of sense c

5: return D

6.3.2 Evaluation Process

The objective of our evaluation, as we mentioned above, is the assessment of the
achieved precision of our methods (as it is defined in §5.4) when they are applied
on documents of different size. A second issue is the measurement of the required
disambiguation time of each method, and the investigation whether is affected by
document length.

Within our experiments, we apply our methods on the aforementioned datasets.
Initially, we retrieve the named entities from each document of datasets D1, D2,
D3, D4 using a NER tool (e.g. X-Link). Afterwards, we try to disambiguate them
using each individual method. During the disambiguation step every (ambiguous)
entity is matched with the best category in the manner described in §5.4.1, §5.4.2
and §5.4.3. To this end we compare the annotated categories with the real, we
count the correct matchings and we then estimate the achieved precision in each
dataset. Recall that each document corresponds to a specific ambiguous entity,
whose real category is already known and is stored in the corresponding properties
file. The above process is briefly described in Algorithm 5.

Our experiments are structured in such way so that they can be reproduced
anytime, using any set of ambiguous entities and corpus of documents. Also we
are able to evaluate a new method and compare it with the existing ones.
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Algorithm 5 Evaluation Process

Input: Methods, a set of NED methods,
Granularity, a set of granularity scales,
AmbEnt, a set of ambiguous entities

Output: Results, the file of results
1: Docs← CreateEvalDataset() // create and returns an evaluation dataset (Alg. 4)

2: for all a ∈ AmbEnt do
3: for all m ∈Methods do
4: for all g ∈ Granularity do
5: for all doc ∈ Docs(a, g) do //for all documents relating entity a and granularity g

6: Cprob ← getCategoryOf(a, doc,m) // guess the category of a in doc using

method m

7: compare(Cprob, Creal) // compare the real category of a with this annotated by m

8: update(Results)
9: return Results

6.3.3 Achieved Precision

We evaluate our methods over both versions of datasets D1, D2, D3 and D4 (with
and without stopwords), and we compare their performance when we use the exact
and partial matching functionality. From now on, we denote as m1 the Category
Frequency method, as m2 the Semantic Distance method with radius equal to 1,
and as m3 the Text Classification method that uses the Support Vector Machine
algorithm which is trained using documents of dataset D4, since it achieves the
best precision over the rest algorithms, as depicted in Figure 6.1.

Figure 6.1: Achieved precision of ML algorithms using as train set documents of
different size
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Figures 6.2, 6.3, 6.4, 6.5 illustrate the achieved precision of our methods when
they are applied on documents of different size, using exact matching. As we can
see, m3 outperforms the rest methods in all datasets except from D4 (see Figures
6.5, 6.6) . This happens because ML algorithms exploit only the text content of a
document, e.g. keywords, terminology, etc, and are unaware of retrieved entities.
In contrast, m1 and m2 are based solely in the output of a NEE process and the
semantic relations between identified entities, which are not always available. Also,
recall the fact that a document term can be incorrectly identified as entity, which
may also influences their performance.

In addition, as we mention above (see also 5.4.2), we support only a few cate-
gories of entities. This lead us to miss many semantic relations, which could help
us to find the proper entity. To test this conjecture we create an additional cate-
gory named Rest, which consists of entities of various categories, that are defined
by hand. As shown in Figure 6.8, if we also support the Rest category the precision
of m2 increased by 10.7%1, which realizes our hypothesis. The same may holds for
m1 if we use a general category, e.g. Eukaryote, instead of specific ones such as
Fish, Mammal, Insect, etc, however due to limitations of computing resources we
cannot test it. Notice that the experiments are conducted using the Rest category.

Regarding the dataset D4, we observe that for small snippets, e.g. tweets,
where the textual content is restricted, the m2 and m3 differ only by 3.9%2, which
makes evident the importance of text semantics, i.e. the semantic relations between
mined entities.

Figure 6.2: Achieved precision of our methods on dataset D1

1Percentage change = (∆V/Vold) ∗ 100 = (Vnew − Vold/Vold) ∗ 100
2Percentage difference = (|∆V |/(ΣV/2)) ∗ 100 = (|(Vnew − Vold)|/((Vnew + Vold)/2)) ∗ 100
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Figure 6.3: Achieved precision of our methods on dataset D2

Figure 6.4: Achieved precision of our methods on dataset D3

Figure 6.5: Achieved precision of our methods on dataset D4
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Figure 6.6: Achieved precision of our methods in both datasets

Figure 6.7: Average achieved precision of our methods
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Figure 6.8: Average precision of m2 when we support or not the Rest category

Figures 6.9, 6.10 6.11 and 6.12 depict the impact of omitting the stopwords
from a document. As we observe, the precision of our methods improved only by
1.42% on average, since it is extremely rare that a stopword corresponds to an
entity name, so the output of m1 and m2 remains almost the same. Additionally,
ML algorithms (m3) use many heuristics for extracting the best features, i.e text
terms, that represent a document and are used to find its appropriate category.
So, it is likely that they ignore already most of the stopwords.

Concerning the impact of partial matching, the results are not the expected,
since the precision increased only 3% for m1 and 1.35% for m2 as shown in Figures
6.13, 6.14 and 6.16, while m3 remains the same, since it ignores the NEE output
(Figure 6.15). At priori, this could mean that either there are not many partial
matchings that help us to find the best category, or that the exact matchings give
us enough information for disambiguating an entity occurrence.

6.3.4 Time for Disambiguating an Entity occurrence

Figure 6.17 reports the average required disambiguating time of our methods.
As we observe the most time consuming method is the m2, since it requires 8.3
seconds (on average) for disambiguating an entity occurrence when we use the
exact matching functionality and 36.5 seconds (on average) when we use partial
matching. The main reason is that m2 uses external data (one or more KBs),
whose access and process is time consuming. Recall that we retrieve the semantic
resources (RDF triples) of identified entities from a KB through a SPARQL query,
we create a graph based on their relations and then we keep the pair of resources
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Figure 6.9: Achieved precision ofm1 in both versions of datasets (with and without
stopwords)

Figure 6.10: Achieved precision of m2 in both versions of datasets (with and
without stopwords)
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Figure 6.11: Achieved precision of m3 in both versions of datasets (with and
without stopwords)

Figure 6.12: Average precision of our methods in both versions of datasets (with
and without stopwords)
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Figure 6.13: Average precision of m1 when we use partial and exact matching

Figure 6.14: Average precision of m2 when we use partial and exact matching
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Figure 6.15: Average precision of m3 when we use partial and exact matching

Figure 6.16: Average precision of our methods when we use partial and exact
matching
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with the minimum distance.

On the contrary, the m1 and m3 require 0.11 and 0.34 seconds in both cases.
This happens because m1 estimates only the occurrence frequency of each sup-
ported category, whereas m3 classifies a new text sample based on its extracted
features, where both tasks have a minor cost. However, m3 requires a train set,
whose creation according to its size can last from several minutes to hours, even
days.

Figure 6.17: Average disambiguation time of our methods

Figure 6.18 depicts the effect of supporting the Rest category in m2 from the
perspective of execution time. As we can see, especially in the case that partial
matching is enabled, it takes 3 times longer to disambiguate the same document.
Whereas, this gap is reduced when we use exact matching. In any case, it is a cost
we have to pay since it improves the achieved precision by 10.7% as we mentioned
above.

6.3.5 Synopsis

The above results showed us that the achieved precision of method m1 is ranged
from 58% up to 73%, the m2 from 72% up to 77% and m3 between 78% and 93%,
whereas their average precision (in both datasets) is 67% for m1, 74% for m2, and
88% for m3, as depicted in Figure 6.7. From the corresponding execution times
we see that the most time consuming method is the m2, since it requires up to
36 seconds (on average) when we use the partial matching functionality and 8.3
seconds in the case of exact matching. The rest methods are much faster, since m3

requires 0.34 second and m1 only 0.1 second.

Hence, it is evident that m3 succeed the best trade-off between effectiveness
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Figure 6.18: Average disambiguating time of m2 when includes or not the Rest
category

and performance. However, it requires a large corpus of documents for the training
phase, which must reproduced every time we want to support a new category of
interest. In addition, the quality of results highly depends on train set, so we
must be very careful when we select the classifiers features because this task is
vulnerable to underfitting and overfitting problems. Moreover, for poor structured
and illegible snippets, m3 achieve almost the same precision withm2, which ignores
the textual content and exploits the semantic relations between mined entities.

Concerning m2, it could be nice if we could also parse the textual content of
given documents and find their part of speech. This could be useful in the sense
that we can disambiguate an entity occurrence, basis on whether it appear as
subject or object. For example Mustang can act (e.g. gallop, neigh) and appear
as subject almost only in the case that it refers to the Mammal and not the
Automobile. For this approach we can use a dictionary, e.g. WordNet.

As regards the partial matching functionality, our results failed to highlight its
value. Therefore we plan to conduct further experiments in the future and evaluate
our methods over different datasets for more reliable results.

Although the related systems are evaluated over different datasets and we
cannot compare them with our approach, however it is worth mentioning their
evaluation results just to be aware of their accuracy. Specifically, in AIDA Hoffart
et al. use as dataset documents from CoNLL 20033, while the achieved precision
is 81.91%. In that work the precision is defined as the fraction of mention-entity
assignments that match the ground-truth assignment (as in our case). In DBpedia
Spotlight Mendes et al. performed an annotation and a disambiguation evaluation.
For the annotation evaluation authors used 35 manually annotated paragraphs

3http://www.cnts.ua.ac.be/conll2003/ner
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from New York Times articles from 8 different domains, where each linkable phrase
of these paragraphs is matched with a DBpedia resource. The achieved F1 score
was reached up to 56%. In the other hand, for the disambiguation evaluation they
used 155.000 randomly selected wikilink samples, and the accuracy was reached up
to 80.52%. In AGDISTIS Usbeck et al. used data from benchmark dataset N3 [56],
from AIDA evaluation corpus4, and from Cornolti et al. [23] benchmark, where
the achieved F-measure was varied between 31% and 87%. Finally, in Babelfy
Moro et al. used data from Senseval-3 for English Word Sense Disambiguation,
SemEval-2007 task 7 and 17 and SemEval-2013 task 12 datasets. The achieved F1

score was varied between 71.6% and 87.4%.
As we can see, most of these systems use the F1 score (F-score or F-measure)

to measure their accuracy, where F1 = 2∗ (precision∗recall)/(precision+recall).
The precision and the recall in that case are defined as follows: ”In a classification
task, the precision for a class is the number of true positives (i.e. the number of
items correctly labeled as belonging to the positive class) divided by the total number
of elements labeled as belonging to the positive class (i.e. the sum of true positives
and false positives, which are items incorrectly labeled as belonging to the class).
Recall in this context is defined as the number of true positives divided by the total
number of elements that actually belong to the positive class (i.e. the sum of true
positives and false negatives, which are items which were not labeled as belonging
to the positive class but should have been).” 5

From the above results we conclude that the performance of related systems
highly depends on the format of documents that are used during their evalua-
tion (document size, provenance), for this reason there are significant variations in
their performance, as in our case. Specifically, the greatest difference is observed
in AGDISTIS where the minimum (31%) and maximum (87%) F-measure differ by
95%. Similarly, in Babelfy the achieved F1 scores differ by 20%, since is evaluated
over multilingual datasets. In our work the highest difference is noticed in m1

where the succeed precisions differ by 23%, whereas in m3 the difference is 17.5%,
and in m2 they differ by 6.7%.

All experiments are carried out in an ordinary laptop with processor Intel i7
@ 2.50 GHz CPU, 16GB RAM and running Windows 10 (64 bit). The imple-
mentation of all approaches was in Java 1.7, using Weka ML library for m3 and
OpenLink Virtuoso Server 7.1 for m2.

4https://www.mpi-inf.mpg.de/departments/databases-and-informationsystems/

research/yago-naga/aida/downloads
5https://en.wikipedia.org/wiki/Precision_and_recall
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Conclusion

We have proposed a method that exploits Linked Data for configuring dynamically
and handily a NEE system. For tackling the configuration requirements we have
defined a generic configuration model, while for being able to exchange a supported
configuration we have proposed an RDF/S vocabulary, called Open NEE Config-
uration Model. By publishing the configurations supported by one or more NEE
services using the proposed model, an application can dynamically discover and
use the NEE services that best satisfy its annotation needs. In addition, a NEE
service that is able to read such configurations can dynamically (at request-time)
use a given configuration for annotating a set of documents.

We should stress that it would be beneficial for the community if every NEE
system supported the configuration model that we propose for making them LOD-
aware, and also if every NEE system published the configurations supported by
its services using the Open NEE Configuration Model.

Furthermore, we have presented the design and functionality of X-Link, a fully
configurable (LOD-based) NEE framework that realizes the proposed configuration
model. X-Link allows the user/administrator to easily define the categories of
entities that are interesting for the application at hand, as well as to update a
category and specify how to link and enrich the identified entities, by exploiting
one or more online semantic KBs. This enhanced configurability allows X-Link

to be used for building and dynamically configuring domain-specific applications
(e.g. for identifying drugs in a medical search system, for annotating and exploring
fish species in a marine-related web page, etc.).

In addition, we proposed a set of methods for disambiguating ambiguous named
entities, that are appropriate for our setting. Primarily we consider that the best
category is this with the highest occurrence frequency. However this method is
unable to utilize the content of documents, which is very important in our case.
For this reason in the next method we exploit the semantics of mined entities
and we investigate their relations. This method assumes that the proper sense
corresponds to the semantic resource (URI) of the ambiguous entity that is closer
(semantically) to rest entities and concepts. Finally, the third method classifies

77
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a document into a specific category, using machine learning algorithms, such as
Support Vector Machine, Decision Tree, Simple Naive Bayes, etc.

Then, we evaluate the proposed methods over documents of different size using
search results of Bing. In our experiments we measure the achieved precision and
the required disambiguation time for each of them. The results showed that our
methods achieve precision up to 88% (on average). We conclude that the Text Cat-
egorization method achieves the best trade-off in large and middle size documents,
whereas in small documents, e.g. tweets, e-mails, where the textual content is re-
stricted it achieves almost the same precision with the Semantic Distance method.

Regarding future work and research, there are several aspects that are worth
investigating. One is to extend the proposed configuration model to allow mod-
eling also non-functional aspects of the NEE service like the average annotation
time, the average linking time, etc. Our long term vision is to offer a model that
can wholly describe the functionality, the API (i.e. how to use it) and the config-
urability of a NEE service. This would allow a client application to dynamically
discover and use NEE services by exploiting only standard Web protocols, without
needing to set up a corresponding service. Moreover, we would like to improve our
NED methods according to evaluation results, and especially extend the Semantic
Distance method in order to parse and exploit the textual content of documents
(e.g. part of speech) except from their semantics, i.e relations between contained
entities. As regards X-Link, a future direction is to incorporate our proposed
methods for automated entity disambiguation, evaluate them over a wide set of
ambiguous entities, and compare them with other well-known NED tools.
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