
Stochastic and Deterministic Parametrization of
Coarse Graining models for Molecular Systems

University of Crete, Department of Mathematics and Applied Mathematics

Anthony Chazirakis

Committee
Associate Prof. Vagelis Harmandaris

Prof. George Zouraris
Dr. Evangelia Kalligiannaki

October 2017



Abstract

Molecular dynamics (MD) simulations study the physical movement of atoms, providing
valuable insight for a variety of physical systems. Despite of the modern advances to the
available computational resources, the length and time scales of the physical systems un-
der study are still limited. The only remedy is the use of mathematical methods in order
to reduce the dimensionality of the physical system under study. The most often used
methodology for doing that is Coarse Graining (CG). Coarse graining methodologies
have both mathematical as well as computational and numerical challenges. We experi-
ment with three different methods of coarse graining, the Iterative Boltzmann Inversion
(IBI) method, the Force Matching (FM or MSCG) method and the Relative Entropy
(RE) method, for a variety of physical systems and compare the results. The IBI method
finds the CG potential that reproduces the atomistic pair correlation function. The FM
method finds the CG potential that minimizes the mean distance between the atomistic
and the CG forces. The RE method finds the potential that minimizes the difference
between the atomistic and CG coordinate probability distributions. The numerical treat-
ment of the IBI and FM methods is deterministic, although it involves calculation of
expectations. The RE method not only involves calculation of expectations, but also
performs minimization using the stochastic Robins-Monro scheme.
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Chapter 1

Molecular Dynamics

1.1 Introduction

Molecular dynamics (MD) simulations study the physical movement of atoms and molecules.
They do so by treating the problem as an N-body problem. If the interaction potentials
between atoms of the system are properly modeled, then the equations of motion can
be numerically integrated to acquire the evolution of the system through time.

Classical molecular dynamics methods disregard the fluctuations of the electron state
of the atoms and use properly parametrized force fields to model the occurring forces.
This approach is based on the Born-Oppenheimer approximation and usually the ground
state potential energy is represented in the force field. Molecular dynamics simulations
have the advantage of speed as the interactions of the vast amount of electrons is not
studied but approximated. In our simulations the classical molecular dynamics method
is used. The energy potentials used in atomistic MD simulations though, come from
quantum mechanical ab-initio calculations.

Molecular dynamics are used to study phenomena that cannot otherwise be studied,
or that are expensive or dangerous to study by other means. The detailed atomistic
view acquired from such simulations cannot be acquired by other experimental means
and valuable insight on the details of the dynamics and the arrangement of matter can be
gained. This aspect is especially important at studies of biological and organic matter.

Molecular dynamics simulations can be used to predict thermodynamic and struc-
tural properties of materials and substances, for example polymers and drugs, and are
thus considered a valuable tool in material and drug design. Apart from the flexibility
offered by such simulated experiments, where one can test arbitrarily hypothetical con-
figurations, the cost of research is also significantly lower, as simulating a multitude of
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experiments is usually cheaper than having to actually perform them. Another advan-
tage is that one can perform virtual experiments involving very dangerous substances
without having to physically handle them, or impose extremely harsh environmental
conditions without having to manifest them.

Molecular dynamics suffer from the complexity of the calculations involved, and are
thus limited regarding the size of the simulated systems, and the duration of the sim-
ulated experiment. Typical simulations contain less than one million atoms and the
physical time simulated is less than a few microseconds. The continuous growth of
available computing power, most notably the common availability of clusters of parallel
processing units, multiprocessors and programmable graphics processing units, has en-
abled the simulation of much larger systems. Largely parallel computing is mandatory
in molecular dynamics simulations, when large physical systems are to be examined, and
thankfully it has been available during the past few years and is becoming all the more
available.

Still there is the problem of scale in time and length. One often needs to simulate for
times much longer, or for systems much larger than the typical MD scales. Such systems
are usually biological systems where characteristic times and lengths are large. Multiscale
MD tackles this problem by removing degrees of freedom from the system, through
approximations, that hopefully capture the important physical phenomena. Reducing
the number of particles of a simulation has a beneficial side effect on the time scale of
the simulation. Aggregate atoms vibrate slower than their constituting parts, allowing
a greater integration time step. The overall gain in both length and time scales is
of orders of magnitude. In this work we experiment with three different methods of
systematically reducing degrees of freedom in a MD simulation, the Iterative Boltzmann
Inversion method, the Force Matching method and the Relative Entropy method.

1.2 Equations of motion

The molecular dynamics simulations [9] we perform is the numerical solution of the
equations of motion of an N-body system. The system is comprised of N “particles”
which are treated as solid point masses.

The interaction between particles of the system may originate from short range var
der Waals interactions, from long range electrostatic interactions, or from intrarmolecular
interactions due to chemical bonds.

The equations of motion of an N-body system can be derived using the Lagrangian
formalism. If the generalized coordinates describing the atom positions are

q(t) = {q1(t), . . . , qN (t)}
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Then the equations of motion for the system are derived by the following set of
differential equations,

∂L

∂qi
=

d

dt

(
∂L

∂q̇i

)
,

where q̇i = ∂qi/∂t is the generalized velocity of particle i, and L is the Lagrangian of
the system, defined by the total kinetic energy T , and the total potential energy U as

L = L(q, q̇, t) = T − U .

The generalized momenta are defined as

pi =
∂L

∂q̇i
, i = 1, ..., N .

The value of the Lagrangian formulation is that one can easily include constraints in the
Lagrangian of the system, and then derive the equations of motion of the constrained
system. Such constraints may be fixed bond lengths, or fixed system temperature.

The Hamiltonian formalism can also be used to derive the equations of motion, where
generalized momenta are used in place of generalized velocities. The Hamiltonian of the
system is defined as

H(q,p) =
∑
i

pi(q̇i)− L

The generalized coordinates qi and momenta pi satisfy Hamilton’s equations

q̇i = ∂H/∂pi , ṗi = −∂H/∂qi .

When the potential U of a system is independent of velocities and has no explicit depen-
dence of time, the Hamiltonian of a system equals the total energy, kinetic and potential,
of the system.

H = T (p) + U(q)

In Cartesian coordinates the equations of Hamilton produce Newton’s equations of mo-
tion.

q̇i = vi = pi/mi , ṗi = −∇qiU = −∂U/∂qi = fi ,

that give,
miq̈i = fi ,

where fi is the force acting on particle i and mi is its mass.

Overall, the equations of motion can be derived in various ways, which can be useful
if some constraints need to be applied to the system, but they more or less reduce to the
well known Newton’s equations of motion. For a system of N unconstrained particles
the Hamiltonian equations of motion are 6N first order differential equations, that need
to be integrated to acquire the system evolution through time. Additional terms may be
introduced to the Hamiltonian, representing a thermostat that scales velocities (Nose-
Hoover thermostat [25, 14]), or a barostat that scales volume (Andersen [4], Nose-Hoover
[15], Martyna-Tuckerman-Klein [21] barostats). We shall not go into such details.
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1.3 Molecular Force Field

1.3.1 Introduction

What needs to be defined firstly, is the potential energy of the system (see discussion
in the previous section) and thus the force applied to each particle in the system. The
force is the potential gradient in respect to the particle generalized coordinates.

The forces applied to each particle are of three different kinds, the short range non-
bonded forces, the long range electrostatic forces and the forces due to bonds. The short
range non-bonded forces include both the attractive interactions due to the instanta-
neously induced dipole moments of the electron clouds, and the repulsive interactions
due to Pauli’s exclusion principle. The long range electrostatic forces are the forces ex-
erted due to each particle’s net charge. The bonded forces are of three types, the bond
stretching forces that occur when the distance between two bonded particles changes, the
bond bending forces that occur when the angle between three bonded particles changes,
and the torsional bond forces that occur when four bonded particles are rotated about
the central bond. The classification of the bonded forces to three types does not reflect
naturally occurring physical forces, but rather a modeling of the total bond forces ex-
erted due to the variance of the geometry of the bond. For a more detailed presentation
of the molecular force fields see chapter four of [20].

1.3.2 Electrostatic Non Bonded Forces

The electrostatic forces are long range in nature and are modeled by,

U ijc (rij) =
1

4πε0

Qi ·Qi
rij

where U ijc is the electrostatic potential energy of the particle pair, Qi and Qj is the
charge of particle i and j respectively, rij is the distance between the two particles and
ε0 is the permittivity of free space.

There is not much to say here, other than that to calculate the electrostatic forces
in a molecular system, one has to resort to techniques like the Ewald summation, that
screens the charges so as to separate the electrostatic forces to short range forces and
long range forces. Short range forces are calculated like the non electrostatic short range
forces (discussion at section 1.3.3). Long range forces are calculated by sums at the
reciprocal Fourier transformed space. Computationally the Particle Mesh Ewald variant
of the algorithm is usually preferred.
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1.3.3 Van der Waals Non Bonded Forces

The non electrostatic short range non bonded forces are very often modeled using the
Lennard-Jones potential (see figure 1.1), which is of the form,

ULJ(r) = ε

[(rm
r

)12
− 2

(rm
r

)6]
where ε is the well depth, i.e. the strength of the interaction and rm is the location of
the minimum, i.e. the equilibrium distance.

Figure 1.1: The Lennard Jones potential

The attractive term r−6 describes the long range van der Waals force. It has a clear
physical justification, arising as a result of instantaneously induced dipole interactions.
The repulsive term r−12 describes the short range Pauli repulsion due to overlapping
electron orbitals. It is a good approximation of the exponential form suggested by
quantum mechanical calculations and is chosen in favour of computational efficiency, as
it can be calculated as the square of the attractive term.

Different pairs of atoms have different sets of parameters (ε,rm) for the LJ potential
modeling their interaction. A system of Ntypes different types of atoms requires at
least Ntypes(Ntypes − 1)/2 sets of LJ parameters to be modeled. Furthermore, as the
electrostatic distribution of the atom electrons may vary depending on the bonds it has
formed, a physical atom type may be treated as a multitude of distinct atom types in
the simulation.

All non-bonded interactions are usually taken to be pair interactions. Three or more
body interactions should be included for a more detailed simulation, but that would
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significantly increase the computational power required. Alternatively one can use ap-
propriate parameterizations of the two body interactions, not necessarily of an LJ form,
to take into account a significant proportion of the many body effects. Such potentials
are called effective pair potentials and can be used for more accurate simulations.

To reduce computational effort, a cutoff distance is used for the short range poten-
tials. As the potential falls rapidly to zero, at relatively short distances, one can ignore
contributions from interactions of particles that are separated enough. Although this
approach does induce some numerical errors, its benefits are of great value. Most of
the computation time in the simulation is spent on calculating the non-bonded pairwise
interactions. The number of pairs in a system scales as the square of the number of
particles in it, so for larger systems the number of pairs varies non-linearly. By using a
cutoff distance the number of pairs grows linearly with the number of atoms in the sys-
tem, so apart from speeding up a simulation of a given size, the cutoff distance enables
us to run simulations of much larger systems.

1.3.4 Bond Stretching Forces

The bond stretching forces tend to keep pairs of bonded atoms at a fixed distance. By
Taylor expanding an arbitrary potential around its minima it can be shown that a good
approximation is in the form of a harmonic oscillator. So the bond stretching potential
is typically modeled using the following form,

U(l) =
k

2
(l − l0)2 ,

where l is the particle separation, l0 is the natural bond length and k defines the strength
of the bond.

Figure 1.2: A 2-body stretching bond

1.3.5 Bond Bending Forces

The bond bending forces tend to keep the angle θ formed by a triplet of bonded atoms
at a fixed value. The bond bending potential is typically modeled using the following
form.

U(θ) =
k

2
(θ − θ0)2 ,

where θ0 is the natural bond angle and k defines the strength of the bond.
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Figure 1.3: A 3-body bending bond

1.3.6 Torsional Bond Forces

Torsional bond forces tend to keep quadruplets of bonded atoms close to equilibrium
rotational angles around the central bond. Torsional potentials are typically expressed
as cosine series expansions of the following form,

U(ω) =
N∑
n=1

Cncos(ω)n ,

where ω is the torsion angle. We have N Cn parameters that define each torsional bond
type. N is most often five or nine. Note that there may be more than one torsional
potential contributions around a single rotation, for example nine torsional potentials
contribute to ethane (H3C − CH3).

Figure 1.4: A 4-body torsional bond

1.4 Numerical integration of the equations of motion

Having defined a way to model the potential of the system and subsequently the forces
applied to each particle, we can integrate the equations of motion to acquire the system’s
state through time (book [5] §2, book [31] §3.8). The simplest methods used to establish
an integration scheme are based on the Taylor series expansion of the positions q(t),
velocities v(t), accelerations v̇(t) and so forth of the particles of the system.
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1.4.1 Verlet scheme

By Taylor expanding the positions at t+ dt and t− dt we get,

q(t+ dt) = q(t) + dt v(t) +
dt2

2
q̈(t) +

dt3

6

...
q (t) +O(dt4)

q(t− dt) = q(t)− dt v(t) +
dt2

2
q̈(t)− dt3

6

...
q (t) +O(dt4) .

Adding these together we get,

q(t+ dt) = 2r(t)− q(t− dt) + dt2q̈(t) +O(dt4) ,

where q̈(t) = f(t)/m , f(t) is the force acting of the particle and m is the particle’s
mass. So if we have the positions at the previous time step and the forces and the
positions at the current time step, we can calculate the positions at the next time step.
The velocities can be estimated at the half-step

v(t+
dt

2
) =

q(t+ dt)− q(t)

dt

The Verlet scheme has a couple of disadvantages. First of all the velocity is only implicitly
obtained. Then it is not a self starting scheme, as the positions at two time steps must
be known to start the integration.

1.4.2 Velocity Verlet scheme

The Velocity Verlet scheme overcomes the problem of the definition of the velocities and
positions at different time steps. The positions and velocities are obtained from the
formulae below,

q(t+ dt) = q(t) + dtv(t) +
dt2

2
q̈(t)

v(t+ dt) = v(t) +
dt

2
[q̈(t) + q̈(t+ dt)] .

Since

v(t+
dt

2
) = v(t) +

dt

2
q̈(t) ,

then

v(t+ dt) = v

(
t+

dt

2

)
+
dt

2
q̈(t+ dt) .

And thus the velocity Verlet integration is a three step process. First the new positions
are obtained from the current positions, velocities and forces. Then the velocities at
the half time step are obtained from the starting velocities and forces. Finally the new
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velocities are obtained from the velocities at the half time step and the forces at the new
time step. At the next iteration the forces at the current time step are known, so the
stage of the force calculation occurs once in each time step, after the new positions and
before the new velocities have been calculated. The velocity Verlet scheme is a second
order scheme. It is efficient and accurate enough for molecular dynamics simulations,
where the statistical nature of their results does not require very high accuracy. Most
importantly it is time reversible, guaranteeing the long time energy conservation, which
is much needed in lengthy simulations.

1.5 Maintaining Constant Temperature

The works of this document concern molecular systems at equilibrium at a constant
temperature T0. Various methods exist that keep the simulated system at a constant
temperature. The simplest approach applied to realistic simulations is the Berendsen
thermostat. The Berendsen thermostat scales the velocities at each time step, so that
the rate of change of temperature T is proportional to the temperature difference.

dT

dt
=
T0 − T
τ

,

where τ is the coupling parameter, specifying how tightly the system is coupled to the
heat bath. The system reaches the desired temperature exponentially.

T = T0 − C e−t/τ .

To implement the Berendsen thermostat, the velocities at each time step have to be
rescaled by

λ =

√
1 +

dt

τ

(
T0
T
− 1

)
.

A disadvantage of the Berendsen thermostat is that it does not conform to the canonical
ensemble. That means that it does not accurately sample the constant temperature
system states. Nevertheless it is frequently used. An alternative method of keeping a
constant temperature, that accurately samples the constant temperature ensemble, is
the Nose-Hoover thermostat. We used the Nose-Hoover thermostat in our works (book
[5] §8). We do not present it here as it both tedious and far off topic. We only present
the Berendsen barostat, so that the reader has a sense of how things work in a MD
simulation and because all simulated systems in this work are in the NVT ensemble, i.e.
under equilibrium at constant temperature.
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1.6 Computational Approach

In this work we used a variety of MD simulators, a custom in-house parallel C++ code
[1], LAMMPS [26] and GROMACS [2]. A typical molecular dynamics simulation begins
by defining the molecular system to be simulated. The user has to define all atom types
and the functional forms of the non bonded interactions between them. He or she also
has to define all bonds present in the molecular system along with their functional forms.
The user has also to define the initial placement of the atoms in space, as well as the
dimensions of the simulated volume. These are often called the topology of the system.

Having described the constitution of the molecular system, the user then decides
under which ensemble he wishes to simulate. That may be under constant volume
and energy (NVE), constant volume and temperature (NVT), or constant pressure and
temperature (NPT). There are some relevant parameters that have to be defined, like
the target temperature and the heat bath coupling parameter. The user also defines the
length in time of the integration time step dt and the number of steps that should be
integrated.

Finally the user defines what data should be captured throughout the simulation and
how often should they be captured. Such data may be scalars like the energy, pressure
or temperature of the system, or they may be bulk data like the coordinates and the
velocities of the simulated atoms.

All of the above are the necessary input data to an MD simulator. The simulator
is then executed, usually in a parallel manner, where the computational load is shared
among many processors. The real time length of an MD run is typically of the order
of days or weeks and the gathered data is of the order of tenths of gigabytes. After
the simulation completes, a thorough analysis of the extracted data follows, in order to
reach to any physical conclusions.

A typical MD flowchart for the NVT ensemble is displayed at figure 1.5.
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Initialize System
(Topology, Force Functional Forms, Positions and Velocities)

Calculate Forces

Update Positions and Velocities
(depending on the time step dt)

Calculate Statistics
Export Statistics
Export Trajectory

Apply Thermostat
Update Velocities

Is it time to export data?
(once every so many steps) Yes

Is it time to finish?
(after so many steps)

Terminate Simulation
Do Post Processing TasksYes

No 

No 

Figure 1.5: A typical MD flowchart
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Chapter 2

Multiscale Dynamics of Molecular Systems

2.1 Introduction

Multiscale dynamics refers to studying the dynamics of a system at different time and
length scales. During a molecular dynamics simulation of an atomistic system, there is a
limit to how large the time step dt can be. This is so that the numerical integration of the
equations of motions is accurate. This time step is typically a few femptosecods. Thus
we are restricted to simulating short time intervals, given the available computational
resources.

The actual time, that a simulation spends in calculating the forces of a single time
step, can be reduced by performing parallel MD simulations. Still it cannot be reduced
under a limit where the simulation becomes inefficient. Typically a processor can handle
as few as half a thousand atoms before the overhead nullifies the gain.

For massive numbers of atoms massive parallelism can be utilized. Simple biological
systems, like a single red blood cell, are typically considered huge systems. Although
the length scale can be handled by a supercomputer, the time scale cannot, as biological
time scales are orders of magnitude larger than atomistic ones. The same goes for large
non biological systems of course. For example the relaxation time of long polymer chains
occurs in physically long time scales, longer than average MD simulations can handle.

In order to overcome these limits in length and time scales, degrees of freedom must
be removed from the simulated systems. New smaller systems, with considerably fewer
particle numbers, are derived from the full detail systems. The derived systems must
approximate the original ones to a satisfying degree. If this is the case then the benefit is
twofold. The integration becomes computationally cheaper due to the reduced number
of particles. Also, the time length dt of a single integration step becomes larger, as the
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characteristic times of heavier particles are larger than those of lighter ones. As a result
one may simulate orders of magnitude longer times and scales. Finally, the decrease
of degrees of freedom often simplifies the simulated model and reveals simpler physical
relations in it. Different methods exist towards reducing the degrees of freedom. We
refer to two of them below, Langevin Dynamics in section 2.2 and Coarse Graining in
section 2.3.

Figure 2.1 displays the different scales relevant to the study of molecular systems.
Conceptually four scales define four distinct but related approaches. The first scale,
the quantum mechanical, is where the derivation of the MD potentials is made. People
doing MD are usually different than those providing the all-atom MD potentials. The
second scale is where all atom simulations are performed. Out of all atom simulations,
effective potentials for systems with aggregate atoms are derived. The third scale is
where aggregate atoms are simulated, in order to extract physical information for large
and complex systems. The fourth scale is a the continuum level. There, the physical
properties of matter retrieved from the third scale are used to model matter. Examples
of studies at the fourth scale are fluid dynamics and continuum mechanics. People doing
MD are usually different than those working at the continuum scale.

Figure 2.1: Relation of time and length scales of molecular dynamics and related meth-
ods.

2.2 Langevin Dynamics

In Langevin dynamics we replace the microscopic details of a system with a friction
term and a stochastic term. Langevin dynamics are typically used to model particles
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in a solvent. They are based on the homonymous stochastic differential equation. The
Langevin equation is,

MQ̈ = −∇U(Q)− γQ̇+
√

2γkBTR(t) ,

where Q represents the positions of the particles, M is the mass matrix, kB is Boltz-
mann’s constant, T is the target temperature and U(Q) is the many-body potential.
The stationary measure of the process Q(t) is the canonical measure with,

P (Q) =
1

Z
e−U(Q)/kBT

Z =

∫
dQe−U(Q)/kBT .

The dumping coefficient is γ and the friction term is −γQ̇ . The last term acts as a
thermostat and also as a source of noise that models the occasional collisions of the
system’s particles. The simulation is performed at the NVT ensemble and R(t) is a
Gaussian process (white noise) satisfying

〈R(t)〉 = 0

〈R(t)R(t′)〉 = δ(t− t′)

For molecular systems that can be modeled by Langevin dynamics there is a huge
increase to the length and time scales of the simulations that can be performed. Un-
fortunately most systems do not offer this possibility, since in general the complexity of
the molecular systems is beyond that of a solvent and solute.

An example case that can be modeled by Langevin dynamics is that of Brownian
motion. This is the motion of usually large particles suspended in a fluid or gas. An
example is the motion of dust particles that collide with their surrounding air particles.
Another is the motion of a single water molecule that collides with its surrounding
water molecules. The trajectory of a single water molecule performing Brownian motion
is displayed at figure 2.2.

Notice that Langevin dynamics may be used in conjunction with other methodolo-
gies that reduce the degrees of freedom. That means that apart from the removal of
the solvent atoms in a simulation, the modeled non solvent atoms may themselves be
aggregate atoms.
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Figure 2.2: Brownian motion of a water molecule.

2.3 Coarse Graining

2.3.1 Introduction

Coarse Graining (CG) is a process used to reduce the degrees of freedom of a molecular
system. Several atoms are grouped together and represented by a point particle called
the ”superatom”. This particle’s mass and charge is the sum of the contributing atom
masses and charges respectively. The CG superatom is usually located at the center of
mass of its comprising atoms. After grouping the atoms, various methodologies are used
to derive a molecular force field for the CG system, so that it best approximates the
original all-atom molecular system.
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Figure 2.3: All Atom Dodecane vs United Atom Dodecane

A typical CG example, found in the simulation of polymers, is the United Atom (UA)
model (as opposed to the All Atom model). The UA model merges all the hydrogens
with their bonded carbons, to create the respective CH, CH2, CH3 or CH4 united
atoms. The decrease of degrees of freedom is by a factor of 2 to 3. The high symmetry
of the carbon-hydrogen groups, and the rigidity of the hydrogen bonds, result in very
accurate CG force fields that span large temperature ranges. The relation of the AA
model to the UA model is illustrated at figure 2.3.

Another CG example is that of polysterene presented here. The aromatic rings
become heavy CG atoms. The CH2’s along with the two halves of the CH’s surrounding
them become lighter CG atoms. The head CH3 and the tail CH2 become two other
types of CG atoms, that occur only once. Four types of CG atoms are defined in total
as shown in figure 2.4. The peculiar splitting of the CH in two halves helps reduce the
mass differences of the CG atoms, which results in a more natural CG system, reducing
approximation errors. More CG examples may be found at [30] and [22].
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Figure 2.4: Coarse grained all-atom polysterene

We will present three rigorous methods of deriving the CG force field. These are
the Iterative Botzmann Invertion method, the Force Matching method and the Relative
Entropy method. All of them are defined for molecular systems at equillibrium, under
constant temperature, i.e. in the NVT statistical ensemble.
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2.3.2 CG Mapping

The way a system’s atoms are combined to form a CG system is called the CG map.
Let the number of atoms of the detailed atomistic system be N and the coordinates of
the atoms be

qi , i = 1, ..., N .

The number of superatoms of the CG system is M , with M < N . Their coordinates are
defined by the CG map M : q 7→ Q. For linear M

QI = MI(q) =
∑
i

cIiqi , I = 1, ...,M

M(q) = {M1(q), ...,MM (q)} . (2.1)

The factors cIi are usually such that the superatoms are located at the center of mass
of their comprising atoms.

2.3.3 Potential of Mean Force

For an atomistic system that is at the NVT ensemble, the probability distribution of the
coordinates is,

p(q) =
1

ZA
e−U(q)/kBT , (2.2)

where U is the atomistic potential and ZA is the atomistic partition function,

ZA =

∫
dq e−U(q)/kBT . (2.3)

The probability distribution of the CG system is,

P (Q) =
1

ZCG
e−W (Q)/kBT , (2.4)

where W is the CG potential and ZCG is the CG partition function,

ZCG =

∫
dQ e−W (Q)/kBT . (2.5)

We require that the two distributions are consistent, i.e. the expectation of a quantity
f(Q) must be the same with respect to both probabilities,∫

RM
f(Q)P (Q)dQ =

∫
RN

f(M(q))p(q)dq .
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In order for this to be true, the probability of a CG state must be the integral of the
probabilities of the matching atomistic states,

P (Q) =

∫
dqp(q)δ (M(q)−Q) , (2.6)

where

δ (M(q)−Q) =

M∏
I=1

δ (MI(q)−QI) ,

and δ denotes the Dirac delta.

So then,

e−W (Q)/kBT =
ZCG
ZA

∫
dqe−U(q)/kBT δ (M(q)−Q)⇒

W (Q) = −kBT ln

(∫
dqe−U(q)/kBT δ (M(q)−Q)

)
− ln

(
ZCG
ZA

)
⇒

W (Q) = −kBT ln

(∫
dqe−U(q)/kBT δ (M(q)−Q)

)
+ const .

W (Q) is the many-body potential of mean force (PMF), or effective potential. The
PMF can reproduce structural and thermodynamic properties of the atomistic system,
but not dynamical properties. Although its analytical form is known, its calculation is
not possible due to the high dimentionality of the integral. In principle there are many-
body contributions to the PMF, but it is usually approximated by two-body terms. This
approximation makes it useful in MD simulations, where pair potentials are used for the
sake of performance.

2.4 Direct Boltzmann Inversion

2.4.1 Radial Distribution Function

The radial distribution function (RDF) (book [8] §7.2) is related to the structural prop-
erties of a system. The RDF is symbolized as g(r). It is a measure of the probability of
finding an atom at distance r from another, or equivalently of how the atomic density
varies from the mean density at distance r.

For an isotropic system the simplest definition of the radial distribution function is

g(r) =
ρ(r)

ρ
=
Ndr/Vdr
N/V

,
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where N is the total number of atoms, V the volume of the system, Vdr is the volume
of a thin spherical shell around r, and Ndr is the number of atoms in the spherical shell
(see figure 2.5).

Figure 2.5: Spherical shell of thickness δr, used for the definition of g(r)

The relation of the RDF to the probability that an atom is at distance r from another
is

g(r) = P (r)/ρ2

Where P (r) is the probability and ρ is the average density of the system.

Note that the two body RDF presented here is a case of the more general n-body
correlation function,

g(n)(q1, ..., qn) =
V nN !

Nn(N − n)!

∫
P (q1, ..., qN )dqn+1...dqN .

A typical plot of an RDF of soft matter is shown at figure 2.6. The first peak is
at the distance of the ”first neighbours” around the central atom. A less dense area
follows until we find the second peak at the distace of the ”second neighbours”. Such
oscillations smooth out until we reach the bulk area, where there is no more structure
information. For systems with multiple atom types multiple RDF’s are defined, one for
each pair type.
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Figure 2.6: A typical fluid Radial Distribution Function (methane at T=100K)

2.4.2 Direct Boltzmann Invertion

The Direct Boltzmann Invertion (DBI) method is a first attempt to approximate the
PMF. The reversible work theorem ([8] §7.3) states that the two-body pair PMF (PPMF),
which is analogous but distinct from the many-body PMF, is related to the RDF by,

W2(r) = −kBT ln g(r) ,

where g(r) is calculated from the atomistic MD simulation. A similar expression relates
the n-body PMF to the n-body correlation function.

A typical intermolecular potential calculated with the DBI method is shown at figure
2.7. The DBI potential is accurate when the CG interactions are isolated and not
coupled. Thus, it is useful for nonbonded pair potentials if the CG sites are dilute and
for bonded potentials if the CG bonds are stiff [22].
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Figure 2.7: A typical intermolecular DBI potential (methabe at T=100K)

For complex CG molecules there are more than one potentials defining its internal
structure [30]. For simplicity let’s assume there is only one bond type, one angle type
and one dihedral type. We denote the bond length with l, the bond angle with θ and
the dihedral angle with ω. The probability distribution governing the molecule’s internal
structure is P (l, θ, ω). We assume the probabity distributions factorize (which is a severe
approximation),

P (l, θ, ω) = P (l)P (θ)P (ω) .

These separate probability distributions can be measured by atomistic MD or Monte
Carlo (MC) simulations. At the NVT ensemble they should be the Boltzmann distribu-
tions,

P (l) ∼ e−U l(l)/kBT ,

P (θ) ∼ e−Uθ(θ)/kBT ,

P (ω) ∼ e−Uω(ω)/kBT .

So then the intramolecular potentials are

U l(l) = −kBT ln P (l) + const.

U θ(θ) = −kBT ln P (θ) + const.

Uω(ω) = −kBT ln P (ω) + const.
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Note that since the normalization of the bond length and bond angle probabilities
relies on the integral ∫

P (l)P (θ)l2sin(θ)dldθdφ = 1 ,

we have to adjust the MD or MC measured probabilities P ′(l) and P ′(θ) so that

P (l) ∼ P ′(l)/l2

P (θ) ∼ P ′(θ)/sin(θ) .

The torsional probability does not require such adjustment. A typical bond length
DBI potential is shown at figure 2.8.

Figure 2.8: CG Hexane (3:1 mapping) bonded DBI potential (taken from [17])

2.5 Iterative Boltzmann Invertion

Recall that for a consistent CG scheme, the CG and atomistic probability distributions
must match (equation 2.6). DBI potentials produce CG probability distributions that
are close but not equal to the atomistic ones. Bonded probability distributions are much
closer than non-bonded ones. The differences occur due to the many-body contributions
to the PMF.

The Iterative Boltzmann Inversion (IBI) method [29] starts with the DBI potential
and iteratively applies corrections to it, until the atomistic and CG probability distri-
butions match. The target RDF for CG superatoms of type α and β is first measured
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from an atomistic MD run. The first CG potential is the DBI potential,

U0
αβ(r) = −kBT ln gTαβ(r) .

Then a CG MD run is performed using U0
αβ. From it the g0αβ(r) RDF is calculated.

The potential at every r is corrected by,

∆U0
αβ(r) = kBT ln

(
g0αβ(r)/gTαβ(r)

)
.

So the new CG potential is,

U1
αβ(r) = U0

αβ(r) + kBT ln
(
g0αβ(r)/gTαβ(r)

)
.

A new CG MD run is performed using U1
αβ(r) and g1αβ(r) is recalculated. A new correc-

tion ∆U1
αβ(r) is applied to U1

αβ(r). In general for i = 1, 2, ...

U i+1
αβ (r) = U iαβ(r) + kBT ln

(
giαβ(r)/gTαβ(r)

)
. (2.7)

This process is repeated until giαβ ≈ gTαβ, i.e.∫
dr
(
giαβ(r)− gTαβ(r)

)2
< ε , (2.8)

for some tolerance ε.

For bonded interactions the IBI scheme is generalized as

W 0
µ(µ) = −kBT ln P (µ)

W i+1
µ (µ) = W i

µ(r) + kBT ln
(
P iµ(µ)/P Tµ (µ)

)
where µ stands for either the bond distance l, bond angle α or torsional angle θ. A
typical g(r) evolution during the execution of the IBI scheme is shown at figure 2.9.
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Figure 2.9: A typical g(r) evolution during the execution of the IBI scheme (bulk
methane at T=100K)

The uniqueness of the IBI potential that reproduces the atomistic RDF is proven
in [13]. The reason that the IBI procedure converges is that an increase in the pair
potential function will always cause an overall decrease in the g(r) and vise versa [29].
The uniqueness theorem for the g(r) ([10] page 178) states that for two pair potentials
U0(r) and U1(r) that differ more than a constant∫

dr
[
U1(r)− U0(r)

] [
g1(r)− g0(r)

]
< 0 , (2.9)

where g1(r) and g2(r) are the RDFs occurring from U1(r) and U2(r). We can write the
total RDF as the sum of the pairwise RDF and the many-body RDF.

g(r) = gp(r) + gm(r) (2.10)

gp(r) = e−U(r)/kBT (2.11)

gm(r) = gp(r)
(
ew(r)/kBT − 1

)
where w(r) is the difference between the pair potential and the potential of mean force.
From eq. 2.11 we get that

∆gp(r)∆U(r) < 0

Substituting this and eq. 2.10 into eq. 2.9 we get that∫
dr∆ [gp(r) + gm(r)] ∆U(r) < 0 (2.12)

Equation 2.12 now shows that an increase in the pair potential function will always cause
an overall decrease in the g(r) and vise versa.
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2.6 Force Matching

The force matching approach (or MS-CG approach) [16, 24, 18] is seeking for an effec-
tive CG potential by minimizing the average difference between the atomistic and the
corresponding CG forces. It approximates the many-body PMF and in the limit where
the trial potential is an N-body potential, like the PMF is, this method produces the
exact PMF[23, 7]. In practice the method is used to produce pairwise approximations
to the PMF.

Recall the symbolism of the atomistic coordinates q and the CG coordinates Q. To
emphasize on the size of the system we denote in the sequel qN the number of elements
N and in the sequel QM the number of elements M , with M < N . We shall denote the
CG potential with a capital U . The charge QI of each CG site I is equal to the sum of
charges of the respective atoms. The electrostatic contribution to the CG potential is

UC(QM ) =
∑
I 6=J

1

4πε0

QIQJ
|QI −QJ |

And the total CG potential is

U(QM ) = UC(QM ) +
∑
ζiγ

Uζi (χζ ({Qγ}))

We need now define some symbols,

ζ : Index of the interaction type, one of: non-bonded, direct bond, angular bond,
torsional bond.

i : Index of the functional form of interaction (see definition of Uζi(x) below).

γ : Index to the set of CG sites of type ζ with the functional form i. It may be an index
to the set of non-bonded CG pairs, or the set of bonded CG pairs, or the set of
angle CG atom triplets, or the set of the dihedral CG atom quads

χζ : The scalar variable for the interaction type ζ. It can be a distance, an angle or a
torsional angle.

{Q}γ : The coordinates of all the CG sites that participate in the set γ.

χζ

(
{Q}γ

)
: The scalar variable for the interaction ζ as a function of the relevant CG

site positions. It can be a distance, an angle or a torsional angle.

Uζi(χ) : The contribution of the potential of the scalar variable χ. It may be like
k(l − l0)

2 for direct bonds, k(θ − θ0)
2 for angular bonds or

∑
nCncos(ω)n for

torsional bonds.
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We also define Fζi to be

Fζi = −
dUζi
dχ

,

then the CG force on particle I is

FI
(
QM

)
= FC

I

(
QM

)
+
∑
ζiγ

Fζi

(
χζ

(
{Q}γ

)) ∂χζ ({Q}γ)
∂QI

,

where FC
I is the electrostatic contribution to the force.

We proceed by defining basis functions (see appendix A were linear and cubic spline
basis functions are defined) so that the Uζi(x) potential is expressed as a linear combi-
nation of them,

Uζi(χ) =
∑
d

φζiduζid(χ) , (2.13)

where uζid is the basis function and φζid is the coefficient. We also derive the set of basis
functions for the force,

fζid(x) = −
duζid
dχ

. (2.14)

So,

Fζi(χ) =
∑
d

φζidfζid(χ) , (2.15)

and the CG force on particle I becomes

FI
(
QM

)
= FC

I

(
QM

)
+
∑
ζid

φζidGI;ζid
(
QM

)
,

where

GI;ζid
(
QM

)
=
∑
γ

fζid

(
χζ

(
{Q}γ

)) ∂χζ ({Q}γ)
∂QI

.

To simplify this expression we replace the multiple index ζid with a single index D
running over all basis functions for all interaction types. We denote the total number of
basis functions with ND. Then,

FI
(
QM

)
= FC

I

(
QM

)
+

ND∑
D=1

φDGI;D
(
QM

)
.

We define fI(q
N ) to be the sum of the atomistic forces acting on the CG site I.

Recall we denote with M(qN ) the operator that maps the atomistic coordinates to CG
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coordinates. We denote with φ the set of CG force field parameters, φ = {φ1, ..., φD}.
We sample the molecular system by atomistic (and not CG) MD simulations. We denote
with nt the number of MD sample configurations. We seek to minimize the total error
of the CG force field approximation.

χ2 =
1

3M

〈
M∑
I=1

∣∣fI(qN )− FI(M(qN );φ)
∣∣2〉

t

(2.16)

=
1

3Mnt

nt∑
t=1

M∑
I=1

∣∣∣∣∣f̃I(qNt )−
ND∑
D=1

φDGI;D(M(qNt ))

∣∣∣∣∣
2

, (2.17)

where,
f̃I(q

N
t ) = fI(q

N
t )− FC

I (M(qNt )) .

So we first run an atomistic MD simulation getting nt sample configurations. Then
we map the atomistic configurations to CG configurations. We calculate the atomistic
forces and the CG forces acting on CG particles and seek to minimize their difference.
Equation 2.17 shows that when we use functions linearly dependent on the parameters
to define the CG potential, e.q. linear splines or the Lennard Jones potential, then we
arrive to a linear least squares minimization problem 1.

We want to reformulate equation 2.17 in matrix form. We define f̃ , G and φ as

f̃ =



f̃1x(qN1 )

f̃1y(q
N
1 )

f̃1z(q
N
1 )

...

f̃Mx(qN1 )

f̃My(q
N
1 )

f̃Mz(q
N
1 )

f̃1x(qN2 )
...

f̃Mx(qNnt)

f̃My(q
N
nt)

f̃Mz(q
N
nt)



(2.18)

1We could have not used linear basis functions and still define a valid non linear minization scheme
with equation 2.16. More on that later.
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G =



G1x;1(M(qN1 )) · · · G1x;D(M(qN1 ))
G1y;1(M(qN1 )) · · · G1y;D(M(qN1 ))
G1z;1(M(qN1 )) · · · G1z;D(M(qN1 ))
G2x;1(M(qN1 )) · · · G2x;D(M(qN1 ))

...
...

...
GMx;1(M(qNnt)) · · · GMx;D(M(qNnt))
GMy;1(M(qNnt)) · · · GMy;D(M(qNnt))
GMz;1(M(qNnt)) · · · GMz;D(M(qNnt))


(2.19)

φ =

 φ1
...
φD

 .

Then

χ2 =
1

3ntM

∣∣∣f̃ − Gφ
∣∣∣2 =

1

3ntM

(
f̃ − Gφ

)T (
f̃ − Gφ

)
(2.20)

If the matrix G is full rank then there is a unique φ that minimizes χ2. The matrix G is
not full rank when the sampling is not adequate for some distances or angles. Then some
columns will be zero and some φi parameters cannot be calculated. While choosing the
basis functions care must be taken so that there are not zero or undersampled columns
of G.

The minimization of equation 2.20 can be performed by QR decomposition or SVD
decomposition or even by some iterative technique. An obstacle might be the size of G
when large systems with long trajectories are handled with great detail. In such cases
the amount of computer memory might not be enough. A solution is to group the rows
of the matrix in many smaller sets of rows and calculate φ for each one of them, taking
the average to be the overall φ. This process is called the block averaging approximation
[24].

Another approach for large systems is to use the normal equation, i.e. define

b = Gf̃ , (2.21)

G = GTG , (2.22)

then equation 2.20 becomes

χ2 = φTGφ− 2bTφ+ f̃
T
f̃ (2.23)
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G is symmetric and normal, with ND rows and columns. The elements of b and G
are given by

bD =
1

3M

〈
M∑
I=1

GI;D(M(qNt )) ·
[
fI(q

N
t )− FC

I (M(qNt ))
]〉

t

(2.24)

G
DD′

=
1

3M

〈
M∑
I=1

GI;D(M(qNt )) · GI;D′(M(qNt ))

〉
t

(2.25)

In this way one can minimize 2.23 by iterative methods or by finding the stationary
point where ∂χ2/∂φD = 0 for all D. Finding the stationary point is equivalent to solving

Gφ = b , (2.26)

which can be done by Gaussian elimination or by LU decomposition. Using equations
2.24 and 2.25 dramatically reduces the computer memory requirements. Still the con-
dition number of G is the square of the condition number of G, so numerical methods
using G might be less accurate. Preconditioning might address this problem.

2.7 Relative Entropy

2.7.1 Relative Entropy

The relative entropy (or the Kullback-Leibler divergence)[28, 6, 12, 19] is a measure of
distance between two probability distributions. The aforementioned quantity is defined
as

Srel(Û) =

〈
ln
P (Q)

PÛ (Q)

〉
Q

=

∫
dQ P (Q)ln

P (Q)

PÛ (Q)
(2.27)

Where P (Q) is the CG probability distribution that stems from the atomistic one
(equation 2.6).

P (Q) =

∫
dqp(q)δ (M(q)−Q) ,

Û(Q) is the trial CG potential, and PÛ (Q) is the probability distribution that stems
from the trial CG potential (equation 2.4) ,

PÛ (Q) =
1

Ẑ
e−Û(Q)/kBT ,
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where

Ẑ =

∫
dQe−Û(Q)/kBT .

The expectation 〈·〉Q is calculated with respect to the probability P (Q). It can
be converted (see appendix B) to be written as an average with respect to atomistic
probability distribution (equation 2.2)

Srel(Û) =

〈
ln

p(q)

PÛ (M(q))

〉
q

+ Smap(M)

=

∫
dq p(q)ln

p(q)

PÛ (M(q))
+ Smap(M) ,

where M is the coarse graining map (equation 2.1) and Smap is the relative entropy that
stems from the degeneracy of states of the CG mapping and it is independent from the
trial CG potential Û .

In order to best match the atomistic and the CG probability distributions we mini-
mize the relative entropy. Since Smap is independent of the trial CG potential we only
need to minimize

F(Û) =

〈
ln

p(q)

PÛ (M(q))

〉
q

. (2.28)

In principle one could minimize Srel(Û) that includes Smap(M) in order to choose
the best among different CG mappings M . We will not examine this case.

Typically we would parametrize the trial CG potential with a set of numbers

φ = {φ1, ..., φm} .

Note that these parameters are equivalent to the φ parameters we used to parametrize
the FM potential (see relation 2.13).

We seek to find the optimal φ∗

φ∗ = argmin
φ

F(Û(·;φ)) (2.29)

To proceed with some numerical minimization scheme, such as the Newton-Raphson
scheme, we need to calculate the Jacobian and the Hessian of F with respect to φ. First
we work a bit with F(Û).

F(Û) =

∫
dq p(q) ln

p(q)

PÛ (M(q))
=

∫
dq p(q) ln

Z−1e−U(q)/kBT

Ẑ−1e−Û(M(q))/kBT
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=

∫
dq p(q)ln

Ẑ

Z
+

∫
dq p(q) ln e(Û(M(q))−U(q))/kBT

= ln Ẑ − ln Z +
1

kBT

∫
dq p(q)

(
Û(M(q))− U(q)

)
=

1

kBT

〈
Û(M(q))− U(q)

〉
q

+ ln Ẑ − ln Z

The Jacobian then is J(φ) = ∇φF = (J1(φ), ..., Jm(φ)), where Ji(φ) is,

Ji(φ) =
∂F
∂φi

=
1

kBT

〈
∂

∂φi
Û(M(q),φ)

〉
q

+
∂

∂φi
ln Ẑ

=
1

kBT

〈
∂

∂φi
Û(M(q),φ)

〉
q

+
1

Ẑ

∂Ẑ

∂φi

=
1

kBT

〈
∂

∂φi
Û(M(q),φ)

〉
r

+
1

Ẑ

∂

∂φi

∫
dQ e−Û(Q;φ)/KbT

=
1

kBT

〈
∂

∂φi
Û(M(q),φ)

〉
q

+
1

Ẑ

∫
dQ

∂
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kBT

∫
dQ PÛ (Q|φ)

∂

∂φi
Û(Q;φ)

=
1

kBT

(〈
∂

∂φi
Û(M(q),φ)

〉
q

−
〈

∂

∂φi
Û(Q;φ)

〉
Q|φ

)

Where the first expectation 〈·〉q is with respect to the atomistic probability distribu-
tion p(q) and the second 〈·〉Q|φ is with respect to the trial CG probability distribution

(PÛ (Q|φ) = Ẑ−1exp(−Û(Q;φ)/kBT )).

Similarly the Hessian has elements

Hij =
∂2F(Û)

∂φi∂φj
=

1

kBT

〈∂2Û(M(q),φ)

∂φi∂φj

〉
q

−

〈
∂2Û(Q,φ)

∂φi∂φj

〉
Q|φ


+

(
1

kBT

)2
〈∂Û(Q,φ)

∂φi

∂Û(Q,φ)

∂φj

〉
Q|φ

−

〈
∂Û(Q;φ)

∂φi

〉
Q|φ

〈
∂Û(Q;φ)

∂φj

〉
Q|φ


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The second part of the Hessian is the covariance matrix

Cij = CovQ|φ

[
∂Û(Q;φ)

∂φi
,
∂Û(Q;φ)

∂φj

]

=

〈∂Û(Q,φ)

∂φi

∂Û(Q,φ)

∂φj

〉
Q|φ

−

〈
∂Û(Q;φ)

∂φi

〉
Q|φ

〈
∂Û(Q;φ)

∂φj

〉
Q|φ


In this work we examine CG systems that have only pairwise interactions. We

parametrize the trial CG potential as a linear combination of basis functions Uζi,

Û(Q;φ) =
∑
I 6=J

∑
ζi

Uζi(QIJ) , (2.30)

where the outer sum is over all pairs of atoms, QIJ is the distance of the pair I, J and
Uζi is exactly the same as in the FM method (equation 2.13), i.e.,

Uζi(QIJ) =
∑
d

φζiduζid(QIJ) .

The CG potential then is

Û(Q;φ) =
∑
I 6=J

∑
ζid

φζiduζid(QIJ) ,

and if we choose to replace the ζid multiple index with a single index K = 1, ..., ND

then,

Û(Q;φ) =

ND∑
K=1

φK
∑
I 6=J

uK(QIJ) =

ND∑
K=1

φK ūK(Q) ,

where

ūK(Q) =
∑
I 6=J

uK(QIJ) .

The form of the basis functions uK is similar to the one given in appendix A. The
slight difference is that now we define the linear and cubic spline basis functions for the
potential instead of the force.

The first part of the Hessian vanishes due to the double differentiation and the
Hessian becomes

Hij(φ) =

(
1

kBT

)2

Cij
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=

(
1

kBT

)2
〈∂Û(Q,φ)

∂φi

∂Û(Q,φ)

∂φj

〉
Q|φ

−

〈
∂Û(Q;φ)

∂φi

〉
Q|φ

〈
∂Û(Q;φ)

∂φj

〉
Q|φ


The Hessian now is positive semidefinite and symmetric. So if φ ∈ Φ and Φ is convex,

then the minimization problem of equation 2.29 is convex as well. If the Hessian is
positive definite the minimization problem is strictly convex and has a unique minimum.

The averages of the Jacobian and the Hessian are calculated by sampling either
atomistic or CG MD simulations. We denote the number of atomistic samples with Sat
and the number of CG samples with SCG. Then the Jacobian elements become,

Ji(φ) =
1

kBT

(
1

Sat

Sat∑
s=1

ūi(M(qs))−
1

SCG

SCG∑
s=1

ūi(Qs|φ))

)
, (2.31)

and the Hessian elements become,

Hij(φ) =(
1

kBT

)2
(

1

SCG

SCG∑
s=1

ūi(Qs|φ)ūj(Qs|φ)−

(
1

SCG

SCG∑
s=1

ūi(Qs|φ)

)(
1

SCG

SCG∑
s=1

ūj(Qs|φ)

))
.

Minimization of the relative entropy with some (iterative) numerical scheme starts
with an initial φ0 and proceeds iteratively at better φk’s until convergence. In order to
calculate the Jacobian we must once calculate the first term of equation 2.31, which is
the contribution of the atomistic MD simulation to it. The second term of the Jacobian
must be recalculated at each φk by resampling a new CG MD simulation. The Hessian
must be recalculated at each step like the Jacobian. It is important that the atomistic
contribution to the Jacobian is adequately sampled, i.e. Sat is large enough, since it
produces a constant bias to the total Jacobian.

2.7.2 Modified Robins Monro minimization

We want to solve the minimization problem defined at 2.29. Since we have the Jacobian
and the Hessian of F (equation 2.28) we could proceed with the Newton Raphson pro-
cedure to find where the Jacobian vanishes. Specifically we could start at some φ0 and
proceed as below until convergence,

φk+1 = φk −H−1(φk)J(φk) , k = 0, 1, ...

The problem is that the Jabobian and the Hessian are very noisy, i.e. it is difficult
to acquire accurate expectations. Due to the noise the Hessian can become singular and
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non invertible. If we want to overcome this we must use a very large number of samples
(SCG). This is not efficient and it poses a severe problem for medium to large molecular
systems. An alternative is to use the Robins-Monro [27] stochastic optimization method.

φk+1 = φk − αkJ(φk) , k = 1, 2, ...

where αk is a sequence of real numbers such that
∑∞

k=1 αk = +∞ and
∑∞

k=1 α
2
k < +∞.

Intuitively these conditions for αk mean that the sequence of steps may span as large
distance as needed to find the root, while maintaining a convergent behavior for large k.
A typical such sequence is αk = 1/k.

Still another problem persists. The Robins Monro scheme, as opposed to the Newton-
Raphson scheme, does not use curvature information to determine an iteration’s step
size. This causes problems as the initial step size might be too large. The sequence αk
could be modified to reduce the step size. Even then the Robins Monro step size could
be inadequately small at flat regions.

The modified Robins-Monro scheme [6] addresses these problems. The problem of
the Newton-Raphson scheme occurs when solving H(φk)x = J(φk) , as H might be
singular. If instead of solving this system we perform a few conjugate gradient steps, we
get some curvature information without having to deal with the singularity. The number
of conjugate gradient steps should not be too large, since that would be equivalent to
solving the initial problem. The optimal number of steps remains an open problem, but
the algorithm is stable for a wide range of selections. The number of steps we empirically
used in this work is half the dimension of x.

To sum up, the modified Robins-Monro scheme consists of starting from zero pk and
performing several conjugate gradient steps to determine pk from,

H(φk)pk = J(φk) ,

and then performing the Robins-Monro step with pk instead of the Jacobian.

φk+1 = φk − αkpk (2.32)

This method is a hybrid of the Newton-Raphson and Robins-Monro schemes and apart
from solving the instability problems that the plain Robins-Monro scheme does, it is
also much more efficient.

2.8 Relation of the three methods

The Relative Entropy and Force Matching methods theoretically [7, 23, 18, 22] produce
the exact PMF (equation 2.4), provided that the trial CG potential spans all possible
interactions. When the PMF is approximated with a pair PMF these methods are not
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expected to produce the same results. The IBI method should produce the same results
with the RE method when using a pair PMF, since they both match the atomistic pair
correlation functions [7]. In practice, as we shall later see, the three methods produce
different results for all but the simplest cases. This is primarily because the pair PMF’s
from the FM and RE methods are distinct projections of the many body PMF [18]. Also
the numerical properties of the three algorithms are different.

• The IBI method

– Seeks to minimize the distance of the atomistic and CG RDF’s (equation 2.8).

– Samples the atomistic RDF from an initial MD simulation.

– Starts with the DBI potential.

– Iteratively resamples the CG RDF by MD simulation of the CG system,
making corrections to the trial potential.

• The FM method

– Seeks to minimize the average atomistic and CG force differences (equation
2.16).

– Samples once the atomistic forces and trajectory, from an initial MD simula-
tion.

– Linearly parametrizes the trial CG potential.

– Solves the linear least squares problem of minimizing the mean atomistic and
CG force differences.

• The RE method

– Seeks to minimize the distance of the atomistic and the CG positional prob-
ability distributions (equation 2.29).

– Samples once the atomistic Jacobian, from an initial MD simulation.

– Starts with the DBI potential.

– Iteratively resamples the CG Jacobian and Hessian by MD simulation of the
CG system, making corrections to the trial potential.

– Proceeds with the stochastic modified Robins-Monro scheme.
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Chapter 3

Implementation Details

3.1 Iterative Boltzmann Inversion

The IBI method was implemented in Python, while the required MD runs were performed
by a custom MPI + openmp parallel C++ MD code. Excerpts of code of the IBI method
are given in C.1. The RDF calculations where performed by a custom SIMD + openmp
parallel C++ code. The calls from Python to the external programs was made using
Python’s subprocess package.

For all studied systems we first obtained a single atomistic MD trajectory from which
we calculated the RDF (section 2.4.1). The calculated RDF was first processed with a
narrow Savitzky-Golay filter to make it smoother. Then the DBI potential (section 2.4.2)
was calculated from it. RDF’s values below a tolerance of 10−3 were zeroed out to avoid
irregular bumps of the DBI. The DBI potential at high energies (short distances) was
extrapolated by fitting a exp(−br) + c at the first 0.25Angstroms.

The potential U(r) was intentionally sampled at relatively few distances r (≈ 60
knots). The values between these nodal points were given by a InterpolatedUnivariateS-
pline from the scipy.interpolate package. The corrections to the potential at each step of
the procedure were made only at these nodal points. This has proved to provide stability
to the iterations.

Each iteration involves an MD run of 0.5 to 2ns and samples about 1000 configu-
rations in order to calculate the current RDF. The corrections to the potential’s nodal
points are made (equation 2.7) and the new MD potential is calculated. The potential
is again extrapolated as before at the high energy distances. The iterations stop when
the maximum correction to the potential is below 5 · 10−3Kcal/mol.
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3.2 Force Matching

The Force Matching method was implemented in Matlab. Excerpts of code of the FM
method are given in C.2. For all studied systems we first obtained a single atomistic
MD trajectory, the same atomistic trajectory used in IBI, from which we calculated the
mapped coordinates M(rnt ) and the CG forces f̃I(r

n
t ) (see eq. 2.17).

We created a Basis class that is extended by LinearBasis, CubicSplineBasis and
LJBasis to implement specific basis functions. The different basis classes define fζid(x)
and uζid(x) (equations 2.14 and 2.13), where uζid(x) is defined to be the integral of
fζid(x). The Basis class can calculate Fζi(x) from a set of φζid’s (equation 2.15). We
created basis functions for non-bonded potentials only, as such were the cases we studied.
The x range of the basis functions was evenly spaced in all cases. The smallest x was
determined by examining where the RDF had it’s first nonzero values, in order to avoid
singularities.

Having defined the basis functions we calculated G (equation 2.19) in parallel using
Matlab’s parfeval. The calculation of f̃ (equation C.2) was trivial as we did not have
Coulombic interactions. We calculated G and b as in equations 2.21 and 2.22 and then
solved the normal equations problem of equation 2.26 in order to calculate φ. We chose
not to use equations 2.24 and 2.25, as we wanted to compare the numerical accuracy of
minimizing using the form 2.20 by a singular value decomposition (SVD), in relation to
minimize by solving the normal equations 2.26. Where we made such tests we noticed
no benefit of the SVD approach.

For the non linear Morse potential case, we directly calculated (again in parallel using
parfeval) f̃I(q

N
t ) −

∑ND
D=1 φDGI;D(M(qNt )) from equation 2.16 and fed it to Matlab’s

lsqnonlin in order to determine the Morse CG potential parameters.

The CG potentials at high energies (low distances) were again extrapolated by fitting
a exp(−br) + c at the first 0.25Angstroms

3.3 Relative Entropy

The relative entropy method was implemented in Python, while the required MD runs
where performed initially by Gromacs [2] and later by LAMMPS [26]. Excerpts of code
of the RE method are given in C.3. The calculations of the Jacobian and the Hessian
were first implemented in Mathlab and later in MPI parallel C++ in favor of speed
(30x to 70x speedup on a typical i7), using Eigen [11] for then matrix/vector operations.
The calls from Python to the external programs was made using Python’s subprocess
package.
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The iterative processes that we primarily performed is the Modified Robins-Monro
2.7.2. The conjugate gradients steps performed were half of the dimension of the linear
basis. The αk sequence of equation 2.32 was 1/k. For the water system we used the
Newton-Raphson iterative process.

We started the iterative process from the DBI potential (section 2.4.2). The calcu-
lated RDF was first processed with a narrow Savitzky-Golay filter to make it smoother.
Then the DBI potential was calculated from it. The potential at high energies (low
distances) was extrapolated by a power law of the form a/r12 + b, requiring that the
potential and its derivative are continuous at the beginning of the extrapolation.

We expressed the potential on a linear basis like the one used in the Force Matching
procedure. The difference is that the basis is now linear to the potential and not to the
force. The initial coefficients relative to the linear basis where calculated by a non linear
least squares fit to the DBI potential.

At each step of the procedure we need to calculate the force that originates from
the potential. Since we used linear basis functions for the potential, the force would
not be smooth. To avoid that we smoothed the potential at each step with a narrow
Savitzky-Golay filter, before performing the MD run.

The iterative process stopped after a fixed number of 100 to 150 iterations. That
is because after a few tenths of iterations the Jacobian norm would no longer decrease.
We wanted to monitor this process so we kept the number of steps to a safe high value.
More details on this issue can be found at the results section.
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Chapter 4

Results

4.1 Molecular Systems

We experimented with several molecular systems and compared the results of the three
CG methods, Iterative Boltzmann Inversion, Force Matching and Relative Entropy. The
molecular systems we experimented with is a two methane (CH4) system, bulk methane
at temperatures of 80K and 100K, and water (H2O) at temperature of 300K.

4.1.1 Two Methane System

The first system we worked with is a model system of two methane (CH4) molecules. We
obtained two Langevin MD trajectories of the two methane system at temperatures of
80K and 100K. Langevin integration was used in order to avoid entrapment at minimal
energy configurations of the two methane systems. We performed the Force Matching
procedure using these trajectories. The data for these trajectories were obtained from
[3].

We compared the results with an ”exact” potential calculated by a geometric direct
calculation [3]. The geometric averaged constrained two-body effective potential, is
obtained by rotating the two CH4 molecules around their centers of mass, through
their Eulerian angles and taking account of all the possible orientations. The molecules
are treated as rigid bodies, that is bond lengths and bond angles are kept fixed. This
calculation produces the exact PMF which in this case is a two body PMF. All of the
above calculations have been performed using the all-atom Dreiding force field.

The force matching procedure was performed for a variety of basis functions. With
the linear basis function approach we used linear splines, cubic splines and Lennard
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Jones basis functions. With the non linear residual minimization approach we used the
Morse potential (U(r) = De(1− e−a(r−re))2).

We present the results for the two methane system at figures 4.1a and 4.1b. The
results for the linear basis and for the cubic basis are identical and they match the exact
PMF. The results of the non linear Morse approach are almost identical to the above.
The Lennard Jones basis though fails to capture the exact PMF. We conclude that for
this simple system the FM approach indeed produces the exact PMF. We also note,
observing the Lennard Jones case, that in general, care should be taken so that the trial
CG potential is flexible enough to capture the PMF.

(a) 80K (b) 100K

Figure 4.1: Force Matcing results for the two methane system.

4.1.2 Bulk Methane

The second system we worked with is bulk methane at two different temperatures, 80K
and 100K. We obtained two atomistic MD trajectories of several nanoseconds (ns) at
constant temperature (NVT conditions) at T=80K and T=100K. 512 CH4 molecules
were modeled, whereas the density was calculated after equilibrating the system in the
NPT ensemble for 5 ns (ρ = 0.38 g/cm3). The time step was 0.5 fs and a cut-off
distance of 10 Angstroms was used. The calculations have been performed using the all-
atom Dreiding force field. For the coarse-grained representation of CH4, we have used a
one-site representation with a pair potential. We performed the various CG procedures
using these trajectories.

We first tested the Force Matching method with various basis functions for the linear
case and with the Morse potential for the non linear case. We see at figures 4.2a and
4.2b that the linear splines and the cubic splines approaches both yield the same results.
The Morse approach results are also very close to them, but the Morse functional form
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fails to capture the double minima of the CG force. The Lennard Jones basis completely
fails to approximate the CG potential. We compare with the ”exact” PMF of the two
isolated methane system and observe that the bulk PMF is close to the two methane
PMF.

(a) 80K (b) 100K

Figure 4.2: Force Matcing results for the bulk methane system.

We also tested the IBI method for the bulk methane at both temperatures. We see
at figures 4.3a and 4.3b that relatively few iterations are needed for convergence, 10 for
the system at 80K and 14 for the system at 100K. The evolution of the IBI potential is
displayed at figures 4.4a and 4.4b.

(a) 80K (b) 100K

Figure 4.3: Evolution of the RDF during the IBI iterations for the bulk methane system.
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(a) 80K (b) 100K

Figure 4.4: Evolution of the potential during the IBI iterations for the bulk methane
system.

We present the target RDF along with the results of the IBI iterations, at figures
4.5a and 4.5b, so as to display their good matching. We also present at figures 4.6a and
4.6b the difference from the target RDF and calculate it’s squared integral, in order to
measure the quality of the match. We notice that the overall error is of the order of
10−3 and that most error comes from the RDF at high energies (low distances). This is
the area where we have little data and have to rely on extrapolation of the potential.

(a) 80K (b) 100K

Figure 4.5: IBI RDF results for the bulk methane system.
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(a) 80K (b) 100K

Figure 4.6: IBI RDF quality results for the bulk methane system.

We applied the Relative Entropy approach to the bulk methane at 100K temperature.
The minimization was performed with the modified Robins-Monro scheme. A general
observation we made is that the Jacobian norm does not reach zero, but it remains at a
value close to zero, regardless of the number of iterations performed. This probably has
to do with the quality of the sampling, i.e. the noise of the Jacobian and the Hessian.
We performed two runs with a different MD sample size. We observe in figure 4.7 that
by quadrupling the CG MD sample size, the minimum Jacobian norm halves. In any
case the Jacobian does not improve after 40 iterations.

Figure 4.7: The effect of better sampling to the minimum of the Jacobian norm.
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Still the results in both cases are very close to the IBI results, as they theoretically
should. We see at figures 4.8a and 4.8b that the potentials and the forces from the IBI
and the two RE calculations are nearly the same.

It is also evident from the forces plot that the potential derivative slightly oscillates.
The width of the oscillations decreases for the ”200 sample” case, secondarily because
of the better sampling and primarily because there we used fewer basis functions, 80
linear splines instead of 140 linear splines used in the ”50 sample” case. The oscillations
could be treated by smoothing but it would probably be adequate and better, to use
a cubic spline basis with wider distance intervals in addition to better MD sampling.
Another direction of improvement in the Modified Robins-Monro RE scheme, would be
to use an adaptive and increasing MD sample size as the Jacobian norm lowers. The
final steps of the procedure could be replaced by Newton-Raphson steps if the sample
size is adequate. We believe that these improvements would both lower the minimum
Jacobian norm and treat any force oscillations.

(a) Potential (b) Force

Figure 4.8: Relative entropy results for the bulk methane system at 100K.

Concluding, for the bulk methane system at 100K, we compare the potentials and the
forces from the three methods at figure 4.9 and find that the results are nearly identical
from all methods. Specifically the results from IBI and RE are exactly the same, as they
should. The results from FM are very close, as expected. This similarity of the FM
results has to do with the simplicity and symmetry of the methane molecule. We shall
later see that at the water system this is not the case.
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Figure 4.9: Comparison of the results of all methods for the bulk methane at 100K.

We also applied the Relative Entropy approach to the bulk methane at 80K tem-
perature. The minimization was performed with the modified Robins-Monro scheme.
Again the Jacobian does not reach zero and it now stabilizes slower at somewhat higher
values than the 100K case. The evolution of the Jacobian is plotted at figure 4.10. We
stopped at 150 iterations.

49



Figure 4.10: RE evolution of the Jacobian for methane at 80K

The results are very close to the IBI results. We see at figures 4.11a and 4.11b
that the potentials mostly differ by a constant and that the forces from the IBI and
the RE calculations are very close. As one can see from the forces plot, the potential
derivative slightly oscillates. Still it’s local mean is very close to the IBI. Notice that
the oscillations are much smaller than these of the ill ”50 samples” case of the 100K
system. This happens because we used much less basis functions for the 80K system, 80
linear splines instead of 140 linear splines, increasing the distance interval of each basis
function. This helps avoid local noise. The comments regarding treating the oscillations
and the non zero Jacobian norm, are the same as these on the 100K system.

50



(a) Potential (b) Force

Figure 4.11: Relative entropy results for the bulk Methane system at 80K.

Concluding for the bulk methane system at 80K, we compare the potentials and the
forces from the three methods at figure 4.12 and find that the results are nearly identical
from all methods.

Figure 4.12: Comparison of the results of all methods for the bulk methane at 80K
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4.1.3 Methane CG Model Quality

For the methane at 100K system, we used the different CG models (approximated pair
CG interaction potentials) derived above, to predict the properties of the bulk CG
methane fluid. In all cases we compared with the reference all-atom bulk system. First,
in figure 4.13 we examine the structure of the model CG methane liquid by presenting
the resulting CG g(r) (RDF) from the different models and from the all-atom data
of the system. As expected the CG model derived from the IBI method gives a g(r)
very close to the one derived from the analysis of the all-atom data. Interestingly the
CG model derived from the FM model is also in good agreement to the reference one,
despite the small differences in the CG interaction potential (see figure 4.9). This is
not surprising if we consider that for most molecular systems small differences in the
interaction potential lead to even smaller differences in the obtained pair correlation
function. Overall, differences between the different sets of data of figure 4.13 are less
than 5% using square differences defined at the level of g(r). Similar is the case also for
other temperatures (T = 80 K) studied.

Figure 4.13: CG RDF for the different CG models and from the reference all-atom
simulations, for the bulk Methane model at 100K.

Second, in figure 4.14 we shortly discuss the dynamics of the model CG methane
liquid at 100K by presenting the mean square displacements (msd’s) of the CG particles
derived from the different models, as well as from the analysis of the all-atom methane
simulations.
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Diffusion is the mean by which mass transportation takes place in liquids and gasses.
In an atomistic view diffusion occurs as a result of random walks of atoms and molecules.
To measure how fast particles travel in a system we define the mean square displacement
as,

∆R(t) =
〈
(Q(t)−Q(0))2

〉
,

where Q is a particle’s coordinate and the average is sampling every particle at time t.

Mean square displacement increases with time, irregularly for small times, but even-
tually linearly on a larger scale, as can be easily shown using some simple random walk
model.

Figure 4.14: Mean square displacement of methane molecules obtained from the different
CG models and from the reference all-atom simulations (T = 100 K).

Note that in all CG simulations used here dynamics is not expected to follow the
all-atom one, since the intrinsic time scale of the CG model is not the same as that of the
underlying chemical system. The reason is that due to the reduced degrees of freedom in
the CG description, the friction between the CG beads is significantly reduced compared
to what it would be if the monomers were represented in full atomistic detail. We observe
in figure 4.14 that the atomistic msd is lower than the CG msds.
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4.1.4 Water

The last system we worked with is bulk water at 300K. We obtained a single atomistic
MD trajectory, using one of the most typical atomistic force fields, the SPC/E. The
model system consists of 1192 molecules at ambient conditions (T = 300 K, P = 1 atm).
The time step was 1 fs. A cut-off distance of 10 Angstroms was used, while electrostatic
interactions were calculated using the Particle Mesh Ewald method (section 1.3.2). We
first equilibrate the system under NPT conditions for about 50 ns. Then an NVT
simulation in the average density was performed for 20 ns. All-atom configurations
were recorded every 10 ps. For the coarse-grained representation of H2O, we have also
used a one-site representation with a pair potential. In the CG representation of water
electrostatic interactions were not required to be introduced.

We first performed the IBI procedure. The number of iterations needed for conver-
gence, approximately 100, is much higher than that of the methane system. This has to
do both with the tightly packed structure of water and with it’s asymmetrical molecule.
We can observe the evolution of the obtained RDF and of the potential with respect to
the iterations at figures 4.15a and 4.15b.

(a) RDF (b) Potential

Figure 4.15: Evolution of the RDF and of the Potential during the IBI of the water
system

The match of the target RDF and the IBI result is displayed at figure 4.16a. The
squared difference of the target RDF and the result RDF is depicted at figure 4.16b and
we see that it is of the order of 10−4. Again we see that the large source of errors is at
the high energy region (at short distances), where we cannot sample enough and have
to rely on extrapolation of the potential.
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(a) Target RDF vs IBI result (b) Squared distance of Target RDF from IBI

Figure 4.16: IBI RDF quality results for the water system

We then applied the Force Matching and the Relative Entropy procedures. For the
FM procedure, we only tested the cubic spline basis. It was not possible to acquire good
results from the Relative Entropy method, using the modified Robins-Monro scheme.
The Jacobian norm could not approach zero and there was not enough time to properly
investigate the numerical issues. Instead we acquired data from [3, 17] to compare with
the RE method. There the RE minimization was performed by a plain Newton-Raphson
scheme.

Figure 4.17: Comparison of the three methods for Water.
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The comparison of the results from all three methods is shown at plot 4.17. We
see that all methods produce similar, but not the same, results. Possible reasons for
these discrepancies are related to the fact that FM and RE are only asymptotically
equivalent, meaning that finite size basis sets effects might be important during the
numerical optimization procedure. Clearly more work is required in order to clarify such
differences.

Figure 4.18: Comparison of the Atomistic and the Relative Entropy RDF for Water.

Finally in figure 4.18 we show the CG RDF obtained from the RE minimization
problem, together with the reference curve obtained from the analysis of the all-atom
data. The curves are very close to each other. However there are small differences, in
particular in small distances close to the first maximum. Note that theoretically it is
expected that the RE outcome, at the level of the RDF, should agree with the IBI one.
The observed differences should be attributed to the numerical issues of the RE method.

4.2 Comments on the numerical issues of the three methods

All methods studied in this work are computationally demanding. As a result parallel
calculations are mandatory, not only while performing the MD simulations, but also
when calculating the force residual at the FM method or calculating the Jacobian and
the Hessian at the RE method. The heavy workload makes it difficult to experiment
with different parameters. A single FM experiment may take hours to a day, a single IBI
experiment may take a couple of days and a single RE experiment may take a couple of
days to a week.
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The steadiest method of three is the Force Matching method, as it lacks problems
related to the iterative schemes of the other methods. The basis spline functions must
not be too narrow and they must be defined only over the range of the MD sampled
distances. Information on the latter can be extracted from the RDF. The optimal width
of the basis functions is related to the number of MD sampled configurations and it is
usually determined empirically.

The IBI method may have convergence problems related to the extrapolation of the
short distance potential. The minimal distance before which the extrapolation occurs
must be carefully chosen. Such information is extracted from the RDF. Also the method
of extrapolation must be robust to always produce repulsive potentials. The number of
knots of the interpolating spline must not be too large so as to avoid artificial oscillations
of the potential. Smoothing the observed RDF’s may be necessary to avoid instabilities
of the MD and of the iterative scheme.

The Relative Entropy method has the greatest numerical difficulties of all methods.
It suffers from the same difficulties of the short distance potential extrapolation as the
IBI method does. Choice of the number of basis functions as well as the number of
CG MD simulation steps impacts the noise of the Jacobian and the Hessian and thus
of the convergence of the method. Being of the safe end by choosing very high CG MD
simulation steps make the iteration times much too large. Also, choice of the conjugate
gradient steps and of the ak sequence of the modified Robins-Monro method both have
unexplored properties. Future work should focus on a method to dynamically select the
number of CG MD simulation steps as the iterations proceed and maybe to resort to
Newton-Raphson steps when the Jacobian stabilizes to a non zero norm.

4.3 Conclusions and Future Work

• Conclusions

– Results from the three methods for the methane systems are identical. This is
not the case for water. There results from the three methods are similar, but
not the same. Different methods are expected to produce different results.
We attribute the exact match of the methane results to the symmetry of the
methane molecule.

– CG potentials reproduce the atomistic structure. CG dynamics are close to
the atomistic but faster, due to less friction in the CG system.

– Trial potential functional forms must be flexible enough to capture the actual
CG potential. The proper choice of the number of spline basis functions is
important to the quality of the results. Convergence of the Relative Entropy
process can be problematic for complex systems.
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– All methods are computationally demanding. IBI and RE are the most as
they require MD simulations at each iterative step. Ad-hoc procedures such
as smoothing and extrapolation are important for the convergence of the
iterative methods.

• Future Work

– Perform the RE modified Robins-Monro process for water with cubic spline
basis functions.

– Create adaptive scheme for the modified Robins-Monro RE process, where
the sampling is increased when close to convergence, so as to achieve better
results.

– Implement variable width spline basis functions.

– Conclude on robust extrapolation techniques for the non-bonded and bonded
potentials.

– Work with more complex systems having CG bonded interactions, like hexane.

58



Appendices

59



Appendix A

Representation of non-bonded potentials

We follow the symbolism used in [24] and expand to define the basis functions used in our
work. The potentials and forces are defined as a linear combination of basis functions.

Uζi(x) =
∑
d

φζiduζid(x)

Where the ζ index indicates the interaction type (van der Waals, bonded, angular,
torsional) and the i index the functional form of the interaction. uζid is the dth basis
function and φζid is its contribution to the potential.

Fζi(x) = −dUζi(x)/dx =
∑
d

φζidfζid(x)

fζid(x) = −duζid(x)/dx

In the force matching method it is natural to explicitly define the fζid basis functions
and derive the uζid from them.

∫ b

a

duζid(x)

dx
dx = uζid(b)− uζid(a)⇒

uζid(b) = uζid(a)−
∫ b

a
fζid(x)dx⇒

uζid(x) = uζid(−∞)−
∫ x

−∞
fζid(y)dy
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Note that the above are valid only for var der Waals potentials where uζid(±∞) = 0.
Extension for angular and torsional potentials is straightforward as the integrals may
simply start from zero. For the bonded potentials one should not only start from zero
but also branch the integral towards the two opposite sign infinities.

A mesh of Nζi equally spaced grid points is defined around which the basis functions
are defined.

{xζid} = {xζi1 + (d− 1)∆ζi} , d = 1, ..., Nζi

∆ζi =
max(xζi)−min(xζi)

Nζi − 1

A.1 Linear Basis

A linear basis is defined for the forces from (A3-A5) at [24] as below.

Ad(x) = 1−Bd(x) =
xζi(d+1) − x
xζi(d+1) − xζid

Bd(x) = 1−Ad(x) =
x− xζid

xζi(d+1) − xζid

ηd(x) =


Bd−1(x) xζi(d−1) < x ≤ xζid
Ad(x) xζid < x ≤ xζi(d+1)

0 elsewhere

The basis functions fζid(x) = ηd(x) are such that

Fζi(x) =
∑
d

φζidfζid(x)

Working a bit with ηd(x) we get

fζid : [xζi1, xζiNζi ] 7→ [0, 1]
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fζid(x) =


x−xζi(d−1)

xζid−xζi(d−1)
xζi(d−1) < x ≤ xζid

xζi(d+1)−x
xζi(d+1)−xζid

xζid < x ≤ xζi(d+1)

0 elsewhere

We integrate the force to get the potential basis functions uζid(x)

∫ x

−∞
fζid(y)dy =

∫ β

α

y − xζi(d−1)
xζid − xζi(d−1)

dy +

∫ γ

β

xζi(d+1) − y
xζi(d+1) − xζid

dy ⇒

uζid(x) =


− (β2−α2)/2−xζi(d−1)(β−α)

xζid−xζi(d−1)
− xζi(d+1)(γ−β)−(γ2−β2)/2

xζi(d+1)−xζid
1 < d < Nζi

−xζi(d+1)(γ−β)−(γ2−β2)/2

xζi(d+1)−xζid
d = 1

− (β2−α2)/2−xζi(d−1)(β−α)
xζid−xζi(d−1)

d = Nζi

α = min(xζi(d−1), x)

β = min(xζid, x)

γ = min(xζi(d+1), x)

As we work on meshes of equally spaced points we may simplify our equations by
setting h ≡ ∆ζi = xζid − xζi(d−1).

fζid(x) =


x−xζid+h

h xζid − h < x ≤ xζid
xζid−x+h

h xζid < x ≤ xζid + h

0 elsewhere

(A.1)

uζid(x) =


− (β2−α2)/2−(xζid−h)(β−α)

h − (xζid+h)(γ−β)−(γ2−β2)/2
h 1 < d < Nζi

− (xζid+h)(γ−β)−(γ2−β2)/2
h d = 1

− (β2−α2)/2−(xζid−h)(β−α)
h d = Nζi

α = min(xζid − h, x)

β = min(xζid, x)

γ = min(xζid + h, x)
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(a) Force (b) Potential

Figure A.1: Linear basis functions for the force matching scheme.

A.2 Cubic Spline Basis

Now we need 2Nζi coefficients of φζi to define the potential on a mesh of Nζi equally
spaced points. The following are from equations (A3-A9) of [24].

Ad(x) =
xζi(d+1) − x
xζi(d+1) − xζid

Bd(x) =
x− xζid

xζi(d+1) − xζid

Cd(x) =
1

6

(
A3
d(x)−Ad(x)

)
(xζi(d+1) − xζid)2

Dd(x) =
1

6

(
B3
d(x)−Bd(x)

)
(xζi(d+1) − xζid)2

ηd(x) =


Bd−1(x) , xζi(d−1) < x ≤ xζid
Ad(x) , xζid < x ≤ xζi(d+1)

0 , elsewhere

µd(x) =


Dd−1(x) , xζi(d−1) < x ≤ xζid
Cd(x) , xζid < x ≤ xζi(d+1)

0 , elsewhere

The force is now expressed in terms of the basis functions as below
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Fζi(x) =
∑
d

φζidfζid(x) =

Nζi∑
d=1

[
φζi(2d−1)ηd(x) + φζi(2d)µd(x)

]
It shows that

fζid(x) =

η d+1
2

(x) , d is odd

µ d
2
(x) , d is even

(A.2)

We need Bd−1(x) and Dd−1(x).

Bd−1(x) =
x− xζi(d−1)
xζid − xζi(d−1)

Dd−1(x) =
1

6

[(
x− xζi(d−1)
xζid − xζi(d−1)

)3

−
x− xζi(d−1)
xζid − xζi(d−1)

] (
xζid − xζi(d−1)

)2
We explicitly write ηd(x) and µd(x).

ηd(x) =


x−xζi(d−1)

xζid−xζi(d−1)
, xζi(d−1) < x ≤ xζid

xζi(d+1)−x
xζi(d+1)−xζid

, xζid < x ≤ xζi(d+1)

0 , elsewhere

µd(x) =


1
6

[(
x−xζi(d−1)

xζid−xζi(d−1)

)3
− x−xζi(d−1)

xζid−xζi(d−1)

] (
xζid − xζi(d−1)

)2
, xζi(d−1) < x ≤ xζid

1
6

[(
xζi(d+1)−x
xζi(d+1)−xζid

)3
− xζi(d+1)−x

xζi(d+1)−xζid

] (
xζi(d+1) − xζid

)2
, xζid < x ≤ xζi(d+1)

0 , elsewhere

When d is odd

η d+1
2

(x) =



x−x
ζi( d−1

2 )
x
ζi( d+1

2 )−xζi( d−1
2 )

, xζi( d−1
2 ) < x ≤ xζi( d+1

2 )
x
ζi( d+3

2 )−x

x
ζi( d+3

2 )−xζi( d+1
2 )

, xζi( d+1
2 ) < x ≤ xζi( d+3

2 )

0 , elsewhere
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The basis is of dimension 2Nζi and so d runs from 1 to 2Nζi with the last odd being
2Nζi−1. Thus for odd d we may define λ = d+1

2 , λ = 1, ..., Nζi. So now each λ correspond
to one grid point.

ηλ(x) =


x−xζi(λ−1)

xζiλ−xζi(λ−1)
, xζi(λ−1) < x ≤ xζiλ

xζi(λ+1)−x
xζi(λ+1)−xζiλ

, xζiλ < x ≤ xζi(λ+1)

0 , elsewhere

On a uniform grid with spacing h this becomes

ηλ(x) =


x−xζiλ+h

h , xζiλ − h < x ≤ xζiλ
xζiλ−x+h

h , xζiλ < x ≤ xζiλ + h

0 , elsewhere

When d is even

µ d
2
(x) =



1
6

( x−x
ζi( d2−1)

x
ζi( d2 )−xζi( d2−1)

)3

−
x−x

ζi( d2−1)
x
ζi( d2 )−xζi( d2−1)

(xζi( d2 ) − xζi( d2−1)
)2

, xζi( d
2
−1) < x ≤ xζi( d2 )

1
6

( x
ζi( d2+1)−x

x
ζi( d2+1)−xζi( d2 )

)3

−
x
ζi( d2+1)−x

x
ζi( d2+1)−xζi( d2 )

(xζi( d2+1) − xζi( d2 )

)2
, xζi( d2 ) < x ≤ xζi( d2+1)

0 , elsewhere

The basis is of dimension 2Nζi and so d runs from 1 to 2Nζi. Thus for even d we
may define k = d

2 , k = 1, ..., Nζi. So now each k correspond to one grid point.

µk(x) =


1
6

[(
x−xζi(k−1)

xζik−xζi(k−1)

)3
− x−xζi(k−1)

xζik−xζi(k−1)

] (
xζik − xζi(k−1)

)2
, xζi(k−1) < x ≤ xζik

1
6

[(
xζi(k+1)−x
xζi(k+1)−xζik

)3
− xζi(k+1)−x

xζi(k+1)−xζik

] (
xζi(k+1) − xζik

)2
, xζik < x ≤ xζi(k+1)

0 , elsewhere

On a uniform grid with spacing h this becomes
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µk(x) =


1
6

[(
x−xζik+h

h

)3
− x−xζik+h

h

]
h2 , xζik − h < x ≤ xζik

1
6

[(
xζik−x+h

h

)3
− xζik−x+h

h

]
h2 , xζik < x ≤ xζik + h

0 , elsewhere

We substitute η and µ into A.2 to get

fζid(x) =

{
ηλ(x) , d is odd , λ = d+1

2

µk(x) , d is even , k = d
d

Which we can further simplify by setting

kd =

{
d+1
2 , d is odd
d
2 , d is even

So

fζid(x) =

{
ηkd(x) , d is odd

µkd(x) , d is even

Finally

fζid(x) =



x−xζikd+h
h , xζikd − h < x ≤ xζikd , d is odd

1
6

[(
x−xζikd+h

h

)3
− x−xζikd+h

h

]
h2 , xζikd − h < x ≤ xζikd , d is even

xζikd−x+h
h , xζikd < x ≤ xζikd + h , d is odd

1
6

[(
xζikd−x+h

h

)3
− xζikd−x+h

h

]
h2 , xζikd < x ≤ xζikd + h , d is even

0 , otherwise

In this form it is easier to see that for each interval of our mesh there are both cubic
and linear contributions originating from two successive basis functions. Below we verify
some statements in [24].
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We observe that µkd(x) → 0 and ηkd(x) → 1 when x → xζikd . It is easy to see that
half the phi coefficients correspond to the magnitude of the force at the grid points.
Indeed φζi(2d−1) = Fζi(xζid).

The derivative is discontinuous at each grid point. Indeed both ηkd and µkd contri-
butions to the derivative at the xζikd grid point are of the opposite sign as x → xζikd
from the left and from the right.

dfζid(x)

dx
=



1
h , xζikd − h < x ≤ xζikd , d is odd

(x−xζikd+h)
2

2h − h , xζikd − h < x ≤ xζikd , d is even

− 1
h , xζikd < x ≤ xζikd + h , d is odd

−(xζikd−x+h)
2

2h + h , xζikd < x ≤ xζikd + h , d is even

0 , otherwise

We also verify the statement that the µkd contributions correspond to the limit of
the second derivative at the grid point.

d2fζid(x)

dx2
=



0 , xζikd − h < x ≤ xζikd , d is odd
x−xζikd+h

h , xζikd − h < x ≤ xζikd , d is even

0 , xζikd < x ≤ xζikd + h , d is odd
xζikd−x+h

h , xζikd < x ≤ xζikd + h , d is even

0 , otherwise

So as x→ xζikd only the µkd contributions to the second derivative remain and they
become 1, meaning that φζi(2d) = limx→xζid d

2Fζi/dx
2.

Now we want to integrate fζid to get the potential basis functions uζid.

∫ x

−∞
fζid(y)dy =



β∫
α

y−xζikd+h
h dy +

γ∫
β

xζikd−y+h
h dy , d is odd

h2

6

 β∫
α

(
y−xζikd+h

h

)3
dy +

γ∫
β

(
xζikd−y+h

h

)3
dy


−h2

6

 β∫
α

y−xζikd+h
h dy +

γ∫
β

xζikd−y+h
h dy

 , d is even
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α = min(xζikd − h, x)

β = min(xζikd , x)

γ = min(xζikd + h, x)

We make use of

β∫
α

y − xζikd + h

h
dy = −

(α− β)
(
α+ β − 2xζikd + 2h

)
2h

β∫
α

(
y − xζikd + h

h

)3

dy =

(
β − xζikd + h

)
4 −

(
α− xζikd + h

)
4

4h3

γ∫
β

xζikd − y + h

h
dy =

(β − γ)
(
β + γ − 2xζikd − 2h

)
2h

γ∫
β

(
xζikd − y + h

h

)3

dy =

(
−β + xζikd + h

)
4 −

(
−γ + xζikd + h

)
4

4h3

So

uζid(x) = −
∫ x

−∞
fζid(y)dy

=



− (β−γ)(β+γ−2xζikd−2h)
2h , d = 1

(α−β)(α+β−2xζikd+2h)
2h − (β−γ)(β+γ−2xζikd−2h)

2h , d is odd 6= 1

−(β−xζikd+h)
4−(α−xζikd+h)

4

24h − (−β+xζikd+h)
4−(−γ+xζikd+h)

4

24h

− (α−β)(α+β−2xζikd+2h)h
12 +

(β−γ)(β+γ−2xζikd−2h)h
12 , d is even 6= Nζi

−(β−xζikd+h)
4−(α−xζikd+h)

4

24h − (α−β)(α+β−2xζikd+2h)h
12 , d = Nζi

α = min(xζikd − h, x)

β = min(xζikd , x)

γ = min(xζikd + h, x)
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(a) Odd (b) Even

Figure A.2: Cubic basis functions (for the force) for the force matching scheme.

Figure A.3: Cubic basis functions (for the force) for the force matching scheme (combined
odd + even).
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(a) Odd (b) Even

Figure A.4: Cubic basis functions (for the potential) for the force matching scheme.

Figure A.5: Cubic basis functions (for the potential) for the force matching scheme
(combined odd + even).
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Appendix B

Relation of the Relative Entropy between
the Atomistic and the CG probability
distributions

We first express the atomistic probability in relation to the CG probability and the
back-mapping probability.

p(q) = P (Q)p(q|Q) (B.1)

We start from the atomistic expression for the relative entropy.

Srel(Û) =

〈
ln

p(q)

PÛ (M(q))

〉
q

=

∫
dq p(q)ln

p(q)

PÛ (M(q))

=

∫ ∫
dQdq δ(M(q)−Q)P (Q)p(q|Q)ln

P (Q)p(q|Q)

PÛ (Q)

=

∫ ∫
dQdq δ(M(q)−Q)P (Q)p(q|Q)

(
ln
P (Q)

PÛ (Q)
+ ln p(q|Q)

)
=

∫ ∫
dQdq δ(M(q)−Q)P (Q)p(q|Q)ln

P (Q)

PÛ (Q)

+

∫ ∫
dQdq δ(M(q)−Q)P (Q)p(q|Q) ln p(q|Q)

=

∫
dQ P (Q)ln

P (Q)

PÛ (Q)

∫
dqδ(M(q)−Q)p(q|Q)

+

∫
dQP (Q)

∫
dq δ(M(q)−Q)p(q|Q) ln p(q|Q)

=

∫
dQ P (Q)ln

P (Q)

PÛ (Q)
+

∫
dQP (Q)

∫
dq δ(M(q)−Q)p(q|Q) ln p(q|Q)
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=

〈
ln
P (Q)

PÛ (Q)

〉
Q

− Smap(M)

Where

Smap((M)) = −
∫
dQP (Q)

∫
{q:M(q)=Q}

dq p(q|Q) ln p(q|Q)

Finally

Srel =

〈
ln
P (Q)

PÛ (Q)

〉
Q

=

〈
ln

p(q)

PÛ (M(q))

〉
q

+ Smap(M)
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Appendix C

Excerpts of Code

C.1 Iterative Boltzmann Inversion

Below is the listing of the Python code performing the IBI iterations, for the methane
system at 100K.

Listing C.1: Python code performing the IBI iterations.

import s h u t i l
import subprocess
from numpy import ∗
from sc ipy import i n t e r p o l a t e
from sc ipy . opt imize import c u r v e f i t
from matp lo t l ib . pyplot import ∗
from sc ipy . i n t e r p o l a t e import In t e rpo l a t edUn iva r i a t eSp l i n e

de f s av i t zky go l ay (y , window size , order , de r i v=0, ra t e=1) :
r ”””Smooth ( and op t i ona l l y d i f f e r e n t i a t e ) data with a Savitzky−Golay f i l t e r .
The Savitzky−Golay f i l t e r removes high frequency no i s e from data .
I t has the advantage o f p r e s e rv ing the o r i g i n a l shape and
f e a t u r e s o f the s i g n a l b e t t e r than other types o f f i l t e r i n g
approaches , such as moving averages techn iques .
Parameters
−−−−−−−−−−
y : a r r a y l i k e , shape (N, )

the va lues o f the time h i s t o r y o f the s i g n a l .
window size : i n t

the l ength o f the window . Must be an odd i n t e g e r number .
order : i n t

the order o f the polynomial used in the f i l t e r i n g .
Must be l e s s then ‘ window size ‘ − 1 .

de r iv : i n t
the order o f the d e r i v a t i v e to compute ( d e f au l t = 0 means only smoothing )

Returns
−−−−−−−
ys : ndarray , shape (N)

the smoothed s i g n a l ( or i t ’ s n−th d e r i v a t i v e ) .
Notes
−−−−−
The Savitzky−Golay i s a type o f low−pass f i l t e r , p a r t i c u l a r l y
su i t ed f o r smoothing no i sy data . The main idea behind t h i s
approach i s to make f o r each point a l e a s t−square f i t with a
polynomial o f high order over a odd−s i z ed window centered at
the point .
Examples
−−−−−−−−
t = np . l i n s pa c e (−4 , 4 , 500)
y = np . exp ( −t ∗∗2 ) + np . random . normal (0 , 0 . 05 , t . shape )
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ysg = sav i t zky go l ay (y , window size=31, order=4)
import matp lo t l ib . pyplot as p l t
p l t . p l o t ( t , y , l a b e l =’Noisy s i g n a l ’ )
p l t . p l o t ( t , np . exp(−t ∗∗2) , ’ k ’ , lw=1.5 , l a b e l =’Or i g ina l s i g n a l ’ )
p l t . p l o t ( t , ysg , ’ r ’ , l a b e l =’ F i l t e r e d s i g n a l ’ )
p l t . l egend ( )
p l t . show ( )
Re fe rences
−−−−−−−−−−
. . [ 1 ] A. Savitzky , M. J . E. Golay , Smoothing and D i f f e r e n t i a t i o n o f

Data by S imp l i f i e d Least Squares Procedures . Ana ly t i ca l
Chemistry , 1964 , 36 (8) , pp 1627−1639.

. . [ 2 ] Numerical Recipes 3 rd Edit ion : The Art o f S c i e n t i f i c Computing
W.H. Press , S .A. Teukolsky , W.T. Vet te r l ing , B.P. Flannery
Cambridge Un ive r s i ty Press ISBN−13: 9780521880688

”””
import numpy as np
from math import f a c t o r i a l

t ry :
window size = np . abs (np . i n t ( window size ) )
order = np . abs (np . i n t ( order ) )

except ValueError , msg :
r a i s e ValueError ( ”window size and order have to be o f type i n t ” )

i f window size % 2 != 1 or window size < 1 :
r a i s e TypeError ( ”window size s i z e must be a p o s i t i v e odd number” )

i f window size < order + 2 :
r a i s e TypeError ( ”window size i s too smal l f o r the polynomials order ” )

o rde r range = range ( order+1)
half window = ( window size −1) // 2
# precompute c o e f f i c i e n t s
b = np .mat ( [ [ k∗∗ i f o r i in o rder range ] f o r k in range(−half window , half window+1) ] )
m = np . l i n a l g . pinv (b) .A[ de r iv ] ∗ ra t e ∗∗ der iv ∗ f a c t o r i a l ( de r i v )
# pad the s i g n a l at the extremes with
# va lues taken from the s i g n a l i t s e l f
f i r s t v a l s = y [ 0 ] − np . abs ( y [ 1 : hal f window +1] [ : : −1 ] − y [ 0 ] )
l a s t v a l s = y[−1] + np . abs (y[−half window −1:−1] [ : :−1] − y [−1])
y = np . concatenate ( ( f i r s t v a l s , y , l a s t v a l s ) )
re turn np . convolve ( m[ : : −1 ] , y , mode=’ va l i d ’ )

de f smooth g ( g ) :
n = g . shape [ 0 ]
d = ze ro s ( n )
f o r i in range (n) :

d [ i ] = g [ i , 1 ]
sm = sav i t zky go l ay (d , 21 , 3)
r e s = ze ro s ( ( n , 2 ) )
f o r i in range (n) :

r e s [ i , 0 ] = g [ i , 0 ]
r e s [ i , 1 ] = sm [ i ]

r e turn r e s

de f i n t e r p o l a t i o n o f ( tabular data , s t a r t=0 ) :
n = tabu la r data . shape [0]− s t a r t
x = ze ro s (n)

y = ze ro s (n)
f o r i in range (n) :

x [ i ] = tabu la r data [ i+s ta r t , 0 ]
y [ i ] = tabu la r data [ i+s ta r t , 1 ]

r e turn In t e rpo l a t edUn iva r i a t eSp l i n e (x , y )

de f e x p f i t (x , a , b , c ) :
r e turn a∗exp(−b∗x )+c

de f l i n f i t (x , a , b) :
r e turn −a∗x+b

def ex t r apo l a t e u (u , f i r s t g o od ) :
g l oba l ex t r apo l a t i on samp l e r e g i on

u inte rp = i n t e r p o l a t i o n o f ( u , f i r s t g o o d )

x0 = u [ f i r s t good , 0 ]

n f i t = 10
x f i t = ze ro s ( n f i t )
y f i t = ze ro s ( n f i t )
f o r i in range ( n f i t ) :

x f i t [ i ] = x0 + ex t r apo l a t i on samp l e r e g i on ∗ i / n f i t
y f i t [ i ] = u inte rp ( x f i t [ i ] )

p0 = array ( [ 1 , 1 , 0 ] )
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popt , pcov = c u r v e f i t ( e xp f i t , x f i t , y f i t , p0 , maxfev=100000)
a = popt [ 0 ]
b = popt [ 1 ]
c = popt [ 2 ]

p0 = array ( [ 1 , 0 ] )
popt , pcov = c u r v e f i t ( l i n f i t , x f i t , y f i t , p0 , maxfev=100000)
a l = popt [ 0 ]
b l = popt [ 1 ]

u s e l i n n o t e xp = (b <= 0 or a <= 0 or a∗b∗exp(−b∗x0 ) < a l )
u s e l i n n o t e xp = False

r e s u l t = ze ro s ( ( u . shape [ 0 ] , 2) )
f o r i in range (u . shape [ 0 ] ) :

r e s u l t [ i , 0 ] = u [ i , 0 ]
i f i >= f i r s t g o o d :

r e s u l t [ i , 1 ] = u [ i , 1 ]
e l s e :

i f u s e l i n n o t e xp :
r e s u l t [ i , 1 ] = l i n f i t (u [ i , 0 ] , al , b l )

e l s e :
r e s u l t [ i , 1 ] = e x p f i t (u [ i , 0 ] , a , b , c )

re turn r e s u l t

de f c a l c u f r om go f r ( g tab l e , T, n po in t s ) :
g l oba l Kb
g l oba l g z e r o t o l
g l oba l c u t o f f

# c r ea t e g ( r ) i n t e r p o l a t i o n

g = i n t e r p o l a t i o n o f ( g t ab l e )

# cr ea t e u data

xmin = g tab l e [ 0 , 0 ]
xmax = min( g t ab l e [−1 ,0 ] , c u t o f f )
xs = l i n spa c e (xmin , xmax , n po in t s )
r e s u l t = ze ro s ( ( n po ints , 2 ) )
f i r s t g o od = −1 # the point be f o r e which ex t r apo l a t i on i s needed

f o r i in range ( n po in t s ) :
x = xs [ i ]
r e s u l t [ i , 0 ] = x
g i = g (x )
i f g i > g z e r o t o l :

r e s u l t [ i , 1 ] = −Kb∗T∗ l og ( g i )
i f f i r s t g o o d == −1:

f i r s t g o o d = i

# return u plus ex t r ap l a t i on

return ( ex t r apo l a t e u ( r e su l t , f i r s t g o od ) , f i r s t g o o d )

de f c r ea t e md pot en t i a l ( u , n po ints , f i l ename , sectionname ) :
u inte rp = i n t e r p o l a t i o n o f ( u )
duinterp = uinte rp . d e r i v a t i v e ( )
x s t a r t = u [ 0 , 0 ]
x end = u[−1 ,0]
x2s = l i n spa c e ( x s t a r t ∗∗2 , x end ∗∗2 , n po in t s )

uu = ze ro s ( ( n po ints , 2 ) )
f f = ze ro s ( ( n po ints , 2 ) )

fout = open ( f i l ename , ’w ’ ) ;
f out . wr i t e ( ’\n ’ ) ;
f out . wr i t e ( sectionname + ’\n ’ ) ;
f out . wr i t e ( ’N %d RSQ %f %f \n ’ % ( n points , x s t a r t , x end ) )
fout . wr i t e ( ’\n ’ ) ;

f o r i in range ( n po in t s ) :
x = sq r t ( x2s [ i ] )
ux = uinte rp (x )
fx = −duinterp (x )
fout . wr i t e ( ’%d %f %f %f \n ’ % ( i +1, x , ux , fx ) )
uu [ i , 0 ] = x
uu [ i , 1 ] = ux
f f [ i , 0 ] = x
f f [ i , 1 ] = fx
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f out . c l o s e ( )

re turn uu , f f

de f p r ep go f r ( in f i l ename , out f i l ename , N at , Lx , Ly , Lz , s t a r t c o n f ) :
d = loadtxt ( i n f i l e n ame ) ;
N confs = s i z e (d , 0 ) /N at ;
f out = open ( out f i l ename , ’w ’ )
f o r conf in range ( s t a r t c on f , N confs ) :

s = ”%d\n” % N at
fout . wr i t e ( s )
f o r i in range ( N at ) :

j = conf∗N at+i
fout . wr i t e ( ”%d %d %f %f %f \n” % ( i , 0 , d [ j , 0 ] , d [ j , 1 ] , d [ j , 2 ] ) )

f out . wr i t e ( ”%f %f %f \n” % (Lx , Ly , Lz ) )
fout . c l o s e ( )

de f s av e t ab l e ( t , f i l ename ) :
f out = open ( f i l ename , ’w ’ )
f o r i in range ( t . shape [ 0 ] ) :

f out . wr i t e ( ”%g %g\n” % ( t [ i , 0 ] , t [ i , 1 ] ) )
f out . c l o s e ( )

d r g o f r = 0.02
n points md u = 1500
n po in t s u = 60
go f r f i l e n ame = ’ go f r . txt ’
N at = 512
Lx = 33.403300
Ly = 33.422700
Lz = 31.935500
s t a r t c o n f = 250
Kb = 0.0019858759538811696 # Kb in Kcal/mol/K
g z e r o t o l = 1e−3
ex t r apo l a t i on samp l e r e g i on = 0.25 # Angstroms
cu t o f f = 12 .0 # Angstroms

# c l e a r s t ep s f o l d e r
subprocess . c a l l ( [ ’ . / c l ean ’ ] )

# copy i n i t i a l data
s h u t i l . copy ( ’ . . /FM−Tony−3rd/ xxp go f r 100 . txt ’ , ’ . / f o r i n i t g o f r 1 0 0 k . txt ’ )

# ca l c i n i t i a l g ( r )
subprocess . c a l l ( [ ’ . / c a l c g o f r ’ , ’ f o r i n i t g o f r 1 0 0 k . txt ’ , s t r ( d r g o f r ) ] )

T = 100 # Kelvin

# ca l c t a rg e t g ( r )

g t a r g e t t a b l e = loadtxt ( g o f r f i l e n ame ) ;
s av e t ab l e ( g t a r g e t t ab l e , ’ s t ep s / g t a r g e t . txt ’ )

# smooth ta rg e t g ( r )

g ta rg e t smooth tab l e = smooth g ( g t a r g e t t a b l e )
s av e t ab l e ( g ta rge t smooth tab l e , ’ s t ep s / sm g target . txt ’ )

# i n t e r p o l a t e t a r g e t g ( r )

g t a r g e t i n t e r p = i n t e r p o l a t i o n o f ( g t a rg e t smooth tab l e )

# ca l c i n i t i a l p o t en t i a l

u , f i r s t g o od = ca l c u f r om go f r ( g ta rge t smooth tab l e , T, n po in t s u )

step = 0
r e l a x f a c t o r = 1 .0

whi le True :
# run md a f t e r sav ing tabulated po t en t i a l
uu , f f = c r ea t e md pot en t i a l ( u , n points md u , ’ ch4/ l i n e a r 1 00k . t ab l e ’ , ’CH4CH4 ’ )
subprocess . c a l l ( [ ’ . / makeruns ’ ] )

# measure g ( r )
s h u t i l . copy ( ’ ch4 /100k . mdstats ’ , ’ s t ep s /mdstats ’ + ( ”%3.3d” % step ) + ’ . txt ’ )
p r ep go f r ( ’ ch4 /100 kcoords . txt ’ , ’ f o r md go f r 100k . txt ’ , N at , Lx , Ly , Lz , s t a r t c o n f )
subprocess . c a l l ( [ ’ . / c a l c g o f r ’ , ’ f o r md go f r 100k . txt ’ , s t r ( d r g o f r ) ] )

# load measured g ( r ) , smooth i t and i n t e r p o l a t e
g s t e p t a b l e = loadtxt ( g o f r f i l e n ame )
g s t ep smooth tab l e = smooth g ( g s t e p t a b l e )
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g s t e p i n t e r p = i n t e r p o l a t i o n o f ( g s t ep smooth tab l e )

# save u o f s tep and r e s u l t i g g ( r ) convergence p l o t t i n g
s av e t ab l e (u , ’ s t ep s /u ’ + ( ”%3.3d” % step ) + ’ . txt ’ )
s av e t ab l e (uu , ’ s t ep s /uu ’ + ( ”%3.3d” % step ) + ’ . txt ’ )
s av e t ab l e ( f f , ’ s t ep s / f f ’ + ( ”%3.3d” % step ) + ’ . txt ’ )
s av e t ab l e ( g s t ep t ab l e , ’ s t ep s / g ’ + ( ”%3.3d” % step ) + ’ . txt ’ )
s av e t ab l e ( g s tep smooth tab l e , ’ s t ep s / sm g ’ + ( ”%3.3d” % step ) + ’ . txt ’ )

# ca l c c o r r e c t i o n o f p o t en t i a l
n = u . shape [ 0 ]
du = ze ro s ( ( n , 2 ) )
f i r s t g o od = −1
f o r i in range (n) :

x = u [ i , 0 ]
du [ i , 0 ] = x
g t i = g t a r g e t i n t e r p (x )
g s i = g s t e p i n t e r p (x )
i f g t i > g z e r o t o l and g s i > g z e r o t o l :

du [ i , 1 ] = r e l a x f a c t o r ∗( Kb∗T∗ l og ( g s i / g t i ) )
i f f i r s t g o o d == −1:

f i r s t g o o d = i
s av e t ab l e (du , ’ s t ep s /du ’ + ( ”%3.3d” % step ) + ’ . txt ’ )

# check f o r convergence
max re l d e l t a = 0 .0
max delta = 0 .0
re ldu = ze ro s ( ( n , 2 ) )
f o r i in range (n) :

d e l t a = du [ i , 1 ] / u [ i , 1 ]
x = u [ i , 0 ]
r e ldu [ i , 0 ] = x
re ldu [ i , 1 ] = de l t a
max delta = max( abs (du [ i , 1 ] ) , max delta )
max r e l d e l t a = max( abs ( de l t a ) , max r e l d e l t a )

s av e t ab l e ( re ldu , ’ s t ep s / r e l du ’ + ( ”%3.3d” % step ) + ’ . txt ’ )

p r in t
p r in t ”STEP” , step , ”MAX DELTA” , max delta , ”MAX REL DELTA” , max re l d e l t a
p r in t

i f max delta <= 0 . 005 :
s av e t ab l e (u , ’ s t ep s / u f i n a l . txt ’ )
s av e t ab l e (uu , ’ s t ep s / uu f i n a l . txt ’ )
s av e t ab l e ( f f , ’ s t ep s / f f f i n a l . txt ’ )
s av e t ab l e ( g s t ep t ab l e , ’ s t ep s / g f i n a l . txt ’ )
s av e t ab l e ( g s tep smooth tab l e , ’ s t ep s / sm g f i n a l . txt ’ )
break

# apply c o r r e c t i o n
f o r i in range (n) :

u [ i , 1 ] = u [ i , 1 ] + du [ i , 1 ]

# ex t rapo l a t e in excluded volume area

try :
unew = ext rapo l a t e u ( u , f i r s t g o od )
ok = True
f o r i in range ( f i r s t g o o d ) :

i f unew [ i , 1 ] < unew [ i +1 ,1 ] :
ok = False
break

i f ok :
u = unew

except Exception :
p r in t ” Fit f a i l e d , us ing old head”
cont inue

step = step + 1
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C.2 Force Matching

Below is the listing of the Matlab code performing Force Matching method, for the
methane system at 100K.

Listing C.2: Matlab code performing Force Matching method.

c l e a r a l l ; c l o s e a l l ; c l c ;

root = ’ /home/ tha z i r /Documents/ForceMatching/ ’ ;
cpus = 19 ;

poo lob j = parpool ( ’ l o c a l ’ , cpus ) ;

p o s i t i on s pa th = [ root ’ bulk CH4 data/T 100/out xxp . dat ’ ] ;
f o r c e s pa th = [ root ’ bulk CH4 data/T 100/ ou t f f nb . dat ’ ] ;
N at = 2560;
L(1) = 33 . 4033 ; L(2)= 33 . 4227 ; L(3) = 31 .9355 ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% BULK CH4 FULL WIDTH UNWEIGHTED
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

map = SimpleCH4Map ( ) ;

[ xxp , f f ] = l o ad a t om i s t i c ( po s i t i on s pa th , f o r c e s pa th , N at , 1) ;
xxp CG = map . mapPosit ions ( xxp ) ;
ff CG = map . mapForces ( f f ) ;
c l e a r xxp ;
c l e a r f f ;

x s t a r t = 3 . 2 5 ;
x end = 12 . 0 ;
dimension = 48 ;

N confs = s i z e (xxp CG , 1) ;
N mol = s i z e (xxp CG , 2) ;

ba s i s = LinearBas i s ( x s t a r t , x end , dimension ) ;
s t a r t = t i c ;
[G, f t i l d e ] = ca l c G and f (xxp CG , ff CG , L , bas i s , poo lob j ) ;
[ ph i l i n s im , c h i s q l i n s im ] = so lve normal (G, f t i l d e , N mol , N confs ) ;
du r a t i on l i n s im = toc ( s t a r t ) ;

b a s i s = CubicSp l ineBas i s ( x s t a r t , x end , 2∗dimension ) ;
s t a r t = t i c ;
[G, f t i l d e ] = ca l c G and f (xxp CG , ff CG , L , bas i s , poo lob j ) ;
[ phi cubsim , ch i sq cubs im ] = so lve normal (G, f t i l d e , N mol , N confs ) ;
durat ion cubs im = toc ( s t a r t ) ;

b a s i s = LJBasis ( x s t a r t , x end ) ;
s t a r t = t i c ;
[G, f t i l d e ] = ca l c G and f (xxp CG , ff CG , L , bas i s , poo lob j ) ;
[ ph i l j s im , c h i s q l j s im ] = so lve normal (G, f t i l d e , N mol , N confs ) ;
du r a t i on l j s im = toc ( s t a r t ) ;

f = @( theta ) f o r c e d e l t a (xxp CG , ff CG , L , theta , 1 , poo lob j ) ;
theta0 = [0 . 2716 1.3302 4 . 2 7 3 9 ] ; % from curve f i t t i n g
s t a r t = t i c ;
opt ions = optimoptions ( ’ l s qnon l i n ’ , ’ Display ’ , ’ i t e r ’ , ’ Jacobian ’ , ’ on ’ ) ;
opt ions . MaxFunEvals = 3000;
[ phi morsim , resnorm morsim , res idual mors im , e x i t f l a g , output ] = l s qnon l i n ( f , theta0 , [ ] , [ ] ,

opt ions ) ;
duration morsim = toc ( s t a r t ) ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SAVE RESULTS
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

fout = fopen ( ’ measure r e su l t s bu lk unwe ighted 100 .m’ , ’w ’ ) ;
f p r i n t f ( fout , ’ x s t a r t = %g ;\n ’ , x s t a r t ) ;
f p r i n t f ( fout , ’ x end = %g ;\n ’ , x end ) ;
f p r i n t f ( fout , ’ dimension = %g ;\n ’ , dimension ) ;

f p r i n t f ( fout , ’ ph i l i n s im = [ ’ ) ;
f o r i = 1 : l ength ( ph i l i n s im )

f p r i n t f ( fout , ’%g ’ , ph i l i n s im ( i ) ) ;
end
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f p r i n t f ( fout , ’ ] ; \ n ’ ) ;
f p r i n t f ( fout , ’ c h i s q l i n s im = %g ;\n ’ , c h i s q l i n s im ) ;
f p r i n t f ( fout , ’ du r a t i on l i n s im = %g ;\n ’ , du ra t i on l i n s im ) ;

f p r i n t f ( fout , ’ phi cubsim = [ ’ ) ;
f o r i = 1 : l ength ( phi cubsim )

f p r i n t f ( fout , ’%g ’ , phi cubsim ( i ) ) ;
end
f p r i n t f ( fout , ’ ] ; \ n ’ ) ;
f p r i n t f ( fout , ’ ch i sq cubs im = %g ;\n ’ , ch i sq cubs im ) ;
f p r i n t f ( fout , ’ durat ion cubs im = %g ;\n ’ , durat ion cubs im ) ;

f p r i n t f ( fout , ’ p h i l j s im = [ ’ ) ;
f o r i = 1 : l ength ( ph i l j s im )

f p r i n t f ( fout , ’%g ’ , p h i l j s im ( i ) ) ;
end
f p r i n t f ( fout , ’ ] ; \ n ’ ) ;
f p r i n t f ( fout , ’ c h i s q l j s im = %g ;\n ’ , c h i s q l j s im ) ;
f p r i n t f ( fout , ’ du r a t i on l j s im = %g ;\n ’ , du r a t i on l j s im ) ;

f p r i n t f ( fout , ’ phi morsim = [ ’ ) ;
f o r i = 1 : l ength ( phi morsim )

f p r i n t f ( fout , ’%g ’ , phi morsim ( i ) ) ;
end
f p r i n t f ( fout , ’ ] ; \ n ’ ) ;
f p r i n t f ( fout , ’ resnorm morsim = %g ;\n ’ , resnorm morsim ) ;
f p r i n t f ( fout , ’ duration morsim = %g ;\n ’ , duration morsim ) ;

f c l o s e ( fout ) ;

d e l e t e ( poo lob j ) ;

Below is the listing of load atomistic.m, that loads and arranges the atomistic tra-
jectory and forces.

Listing C.3: load atomistic.m

f unc t i on [ xxp , f f ] = l o ad a t om i s t i c ( po s i t i on s pa th , f o r c e s pa th , N at , r educe every nth )

d i sp l ay ( ’ Loading f o r c e s ’ ) ;
temp = importdata ( f o r c e s pa th ) ;
i f r educe every nth ˜= 1

d i sp l ay ( ’ Reducing f o r c e s ’ ) ;
temp = reduce con f s ( temp , N at , r educe every nth ) ;

end

N confs = s i z e ( temp , 1 ) /N at ;

d i sp l ay ( ’ Reshaping f o r c e s ’ ) ;
f f = ze ro s ( N confs , N at , 3) ;
f o r conf =1: N confs

at f rom = ( conf−1)∗N at+1;
a t t o = conf∗N at ;
f f ( conf , : , : ) = temp( at from : at to , : ) ;

end
d i sp l ay ( ’ Reshaped f o r c e s ’ ) ;

d i sp l ay ( ’ Loading po s i t i o n s ’ ) ;
temp = importdata ( po s i t i on s pa th ) ;
i f r educe every nth ˜= 1

d i sp l ay ( ’ Reducing po s i t i o n s ’ ) ;
temp = reduce con f s ( importdata ( po s i t i on s pa th ) , N at , r educe every nth ) ;

end

d i sp l ay ( ’ Reshaping po s i t i o n s ’ ) ;
xxp = ze ro s ( N confs , N at , 3) ;
f o r conf =1: N confs

at f rom = ( conf−1)∗N at+1;
a t t o = conf∗N at ;
xxp ( conf , : , : ) = temp( at from : at to , : ) ;

end
d i sp l ay ( ’ Reshaped po s i t i o n s ’ ) ;

end

Below is the listing of SimpleCH4Map.m, that maps the atomistic to the CG coor-

79



dinates.

Listing C.4: SimpleCH4Map.m

c l a s s d e f SimpleCH4Map

p r op e r t i e s
m C
m H
m Tot

end

methods

func t i on obj = SimpleCH4Map ( )
obj .m C = 12 ;
obj .m H = 1 ;
obj . m Tot = obj .m C + 4∗ obj .m H;

end

func t i on xxp CG = mapPosit ions ( obj , xxp )
N confs = s i z e ( xxp , 1 ) ;
N at = s i z e ( xxp , 2 ) ;
N mol = N at /5 ;
xxp CG = zero s ( N confs , N mol , 3) ;
f o r conf =1: N confs

f o r mol idx=1:N mol
j = ( mol idx−1)∗5+1;
xxp CG( conf , mol idx , : ) = ( xxp ( conf , j , : ) ∗obj .m C + xxp ( conf , j +1, : ) ∗obj

.m H + . . .
xxp ( conf , j +2, : ) ∗obj .m H + xxp ( conf , j +3, : ) ∗obj .m H + . . .
xxp ( conf , j +4, : ) ∗obj .m H)/ obj . m Tot ;

end
end

end

func t i on ff CG = mapForces ( obj , f f )
N confs = s i z e ( f f , 1 ) ;
N at = s i z e ( f f , 2 ) ;
N mol = N at /5 ;
ff CG = zero s ( N confs , N mol , 3) ;
f o r conf =1: N confs

f o r mol idx=1:N mol
j = ( mol idx−1)∗5+1;
ff CG ( conf , mol idx , : ) = f f ( conf , j , : ) + f f ( conf , j +1, : ) + . . .

f f ( conf , j +2, : ) + f f ( conf , j +3, : ) + f f ( conf , j +4, : ) ;
end

end
end

end

end

Below is the listing of LinearBasis.m, the linear spline basis used in the FM method.

Listing C.5: LinearBasis.m

c l a s s d e f L inearBas i s < Bas i s

p r op e r t i e s
dx
dxi
x d i s c r

end

methods
func t i on obj = LinearBas i s ( x s t a r t , x end , dimension )

obj@Basis ( x s t a r t , x end , dimension ) ;
obj . t i t l e = ’ Linear ’ ;
obj . dx = ( obj . x end−obj . x s t a r t ) /( dimension−1) ;
obj . dxi = 1.0/ obj . dx ;
obj . x d i s c r = obj . x s t a r t : obj . dx : obj . x end ;

end

func t i on va l = fElementValues ( obj , xs )
va l = ze ro s ( l ength ( xs ) , obj . dimension ) ;

f o r x i =1: s i z e ( xs , 1 )
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x = xs ( x i ) ;

i f x >= obj . x s t a r t && x <= obj . x end
f o r d=1: obj . dimension

i f x <= obj . x d i s c r (d) && d > 1 && obj . x d i s c r (d−1) < x
va l ( xi , d ) = (x − obj . x d i s c r (d−1) ) ∗ obj . dxi ;

e l s e i f x > obj . x d i s c r (d) && d < obj . dimension && x <= obj . x d i s c r (d+1)
va l ( xi , d ) = ( obj . x d i s c r (d+1) − x ) ∗ obj . dxi ;

e l s e
va l ( xi , d ) = 0 ;

end
end

e l s e
f o r d=1: obj . dimension

va l ( xi , d ) = 0 ;
end

end
end

end

func t i on va l = uElementValues ( obj , xs )
va l = ze ro s ( l ength ( xs ) , obj . dimension ) ;

f o r x i =1: s i z e ( xs , 1 )
x = xs ( x i ) ;

i f x >= obj . x s t a r t && x <= obj . x end
f o r d=1: obj . dimension

l = 0 ;
r = 0 ;
b = min( obj . x d i s c r (d) , x ) ;

i f d > 1
a = min( obj . x d i s c r (d−1) , x ) ;
l = − ( 0 . 5∗ ( b∗b−a∗a ) − obj . x d i s c r (d−1)∗(b−a ) ) ∗ obj . dxi ;

end

i f d < obj . dimension
g = min( obj . x d i s c r (d+1) , x ) ;
r = − ( obj . x d i s c r (d+1)∗(g−b) − 0 .5∗ ( g∗g−b∗b) ) ∗ obj . dxi ;

end

va l ( xi , d ) = l + r ;
end

e l s e
f o r d=1: obj . dimension

va l ( xi , d ) = 0 ;
end

end

end
end

end

end

Below is the listing of Basis.m, the base class of all basis functions used in the FM
method.

Listing C.6: Basis.m

c l a s s d e f Bas i s

p r op e r t i e s
x s t a r t
x end
dimension
t i t l e

end

methods

func t i on obj = Bas i s ( x s t a r t , x end , dimension )
i f c e i l ( dimension ) ˜= f l o o r ( dimension )

e r r o r ( ’ dimension should be an i n t e g e r ’ ) ;
end
obj . dimension = dimension ;
obj . x s t a r t = x s t a r t ;
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obj . x end = x end ;
obj . t i t l e = ’ Bas i s ’ ;

end

func t i on va l = fValue ( obj , x , phi )
va l = obj . fElementValues (x ) ∗ phi ;

end

func t i on va l = uValue ( obj , x , phi )
va l = obj . uElementValues (x ) ∗ phi ;

end

func t i on [ a , b , c ] = ex t r apo l a t e u ( obj , phi , e s ta r t , eend , n f i t )
x f i t = ze ro s (1 , n f i t ) ;
y f i t = ze ro s (1 , n f i t ) ;
f o r i =1: n f i t

x f i t ( i ) = e s t a r t + ( eend−e s t a r t )∗ i / n f i t ;
y f i t ( i ) = obj . uValue ( x f i t ( i ) , phi ) ;

end
f = @(q , x )q (1) ∗exp(−q (2) ∗x )+q (3) ;
opt ions = optimset ( ’MaxFunEvals ’ ,1 e5 ) ;
q0 = [1 1 0 ] ;
q = l s q c u r v e f i t ( f , q0 , x f i t , y f i t , [ ] , [ ] , opt ions ) ;
a = q (1) ;
b = q (2) ;
c = q (3) ;

end

func t i on [ a , b , c ] = e x t r a p o l a t e f ( obj , phi , e s ta r t , eend , n f i t )
x f i t = ze ro s (1 , n f i t ) ;
y f i t = ze ro s (1 , n f i t ) ;
f o r i =1: n f i t

x f i t ( i ) = e s t a r t + ( eend−e s t a r t )∗ i / n f i t ;
y f i t ( i ) = obj . fValue ( x f i t ( i ) , phi ) ;

end
f = @(q , x )q (1) ∗exp(−q (2) ∗x )+q (3) ;
opt ions = optimset ( ’MaxFunEvals ’ ,1 e5 ) ;
q0 = [1 1 0 ] ;
q = l s q c u r v e f i t ( f , q0 , x f i t , y f i t , [ ] , [ ] , opt ions ) ;
a = q (1) ;
b = q (2) ;
c = q (3) ;

end

end

methods ( Abstract )
va l = fElementValues ( obj , xs ) ;
va l = uElementValues ( obj , xs ) ;

end

end

Below is the listing of calc G and f.m, the function that calculates the G matrix
(equation 2.19) and the f̃ vector (equation ) of the FM method in parallel.

Listing C.7: calc G and f.m

f unc t i on [ GG, f t i l d e ] = ca l c G and f ( xxp CG , ff CG , L , bas i s , poo lob j )

N confs = s i z e (xxp CG , 1) ;
N mol = s i z e (xxp CG , 2) ;

t i c ;

G = ze ro s ( N confs , 3∗N mol , ba s i s . dimension ) ;

s t a r t = t i c ;

% at l e a s t 100K data f o r each worker
con f s p e r ba t ch = c e i l (10ˆ5/(3∗N mol∗ ba s i s . dimension ) ) ;
d i sp l ay ( [ ’ Ca l cu la t ing batches o f ’ num2str ( c on f s p e r ba t ch ) ’ con f s ’ ] ) ;

i f i s e qua l ( poolobj , f a l s e )
% s e r i a l execut ion , no p a r a l l e l pool a v a i l a b l e

con f s done = 0 ;
cur rent batch = 1 ;
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whi le con f s done < N confs
conf f rom = ( current batch −1)∗ con f s p e r ba t ch +1;
c on f t o = min ( cur rent batch ∗ con f s pe r batch , N confs ) ;

xxps = xxp CG( conf f rom : con f to , 1 : N mol , 1 : 3 ) ;
G( conf f rom : con f to , : , : ) = ca l c G con f s ( xxps , L , ba s i s ) ;

cur r ent batch = current batch + 1 ;
con f s done = conf s done + con f t o − conf f rom + 1 ;

durat ion = toc ( s t a r t ) / 6 0 . 0 ;
speed = durat ion / conf s done ;
d i sp l ay ( [ ’Did ’ num2str ( con f s done ) ’ c on f i gu ra t i on s , speed = ’ . . .

num2str ( speed ) ’ mins/ conf = ’ num2str (1 . 0/ speed ) ’ con f s /min ’ ] ) ;
end

e l s e
% p a r a l l e l execut ion

% send i n i t i a l conf batches to workers

cur rent batch = 1 ;

f o r worker = 1 : poo lob j . NumWorkers
conf f rom = ( current batch −1)∗ con f s p e r ba t ch +1;
c on f t o = min ( cur rent batch ∗ con f s pe r batch , N confs ) ;

i f conf f rom <= N confs
xxps = xxp CG( conf f rom : con f to , 1 : N mol , 1 : 3 ) ;
%h( worker ) = pa r f e va l ( poolobj , @calc G confs , 1 , xxps , L , ba s i s ) ;
h ( worker ) = pa r f eva l ( poolobj , @calc G confs , 1 , xxps , L , ba s i s ) ;

batch ( worker ) = cur rent batch ;
cur rent batch = current batch + 1 ;

end
end

% r e c e i v e r e s u l t s and send more

con f s done = 0 ;

whi le con f s done < N confs

% r e c e i v e r e s u l t s

[ worker , r e s u l t ] = fetchNext (h) ;

worker batch = batch ( worker ) ;
conf f rom = ( worker batch−1)∗ con f s p e r ba t ch +1;
c on f t o = min ( worker batch∗ con f s pe r batch , N confs ) ;

G( conf f rom : con f to , : , : ) = r e s u l t ;
con f s done = conf s done + con f t o − conf f rom + 1 ;

durat ion = toc ( s t a r t ) / 6 0 . 0 ;
speed = durat ion / conf s done ;
d i sp l ay ( [ ’Did ’ num2str ( con f s done ) ’ c on f i gu ra t i on s , speed = ’ . . .

num2str ( speed ) ’ mins/ conf = ’ num2str (1 . 0/ speed ) ’ con f s /min ’ ] ) ;

% send more

conf f rom = ( current batch −1)∗ con f s p e r ba t ch +1;
c on f t o = min ( cur rent batch ∗ con f s pe r batch , N confs ) ;

i f conf f rom <= N confs
xxps = xxp CG( conf f rom : con f to , 1 : N mol , 1 : 3 ) ;
h ( worker ) = pa r f eva l ( poolobj , @calc G confs , 1 , xxps , L , ba s i s ) ;

batch ( worker ) = cur rent batch ;
cur rent batch = current batch +1;

end

end

end

durat ion = toc / 6 0 . 0 ;
d i sp l ay ( [ ’ mins / conf = ’ num2str ( durat ion /4) ] ) ;

GG = zero s (3∗N mol∗N confs , b a s i s . dimension ) ;
f o r conf =1: N confs

rfrom = ( conf−1)∗3∗N mol+1;
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r to = conf ∗3∗N mol ;
GG( rfrom : rto , : ) = G( conf , : , : ) ;

end

% Reformulate ff CG to f ˆ{ t i l d e } under sco re which i s a column vector o f
% dimension 3∗N mol∗ N confs (we don ’ t have e l e c t r o s t a t i c s so
% f ˆ{ t i l d e } == f )

d i sp l ay ( ’ Ca l cu la t ing f t i l d e ’ ) ;

f t i l d e = ze ro s (3 ∗ N mol ∗ N confs , 1) ;

% NAIVE. Might use reshape ( ) f o r speed . . .
f o r conf = 1 : N confs

f o r i = 1 : N mol
idx = ( conf−1) ∗ (3 ∗ N mol ) + ( i −1) ∗ 3 + 1 ;
f t i l d e ( idx ) = ff CG ( conf , i , 1) ;
f t i l d e ( idx+1) = ff CG ( conf , i , 2) ;
f t i l d e ( idx+2) = ff CG ( conf , i , 3) ;

end
end

end

Below is the listing of calc G confs.m, the function that calculates the part of the
G matrix (equation 2.19) that corresponds to a few atomistic configurations of the FM
method.

Listing C.8: calc G confs.m

f unc t i on [ G confs ] = ca l c G con f s ( xxps , L , ba s i s )

N confs = s i z e ( xxps , 1 ) ;
N mol = s i z e ( xxps , 2 ) ;
G confs = ze ro s ( N confs , 3∗N mol , ba s i s . dimension ) ;

f o r conf =1: s i z e ( xxps , 1 )
xxp ( : , : ) = xxps ( conf , : , : ) ;
G confs ( conf , : , : ) = ca l c G con f b (xxp , L , ba s i s ) ;

end

end

Below is the listing of calc G conf b.m, the function that calculates the part of the
G matrix (equation 2.19) that corresponds to a single atomistic configuration of the FM
method.

Listing C.9: calc G conf b.m

f unc t i on [ G conf ] = ca l c G con f b ( xxp , L , ba s i s )

N mol = s i z e ( xxp , 1 ) ;
g r ad i j = ze ro s (1 , 3) ;
L inv = 1 .0 . / L ;
G conf = ze ro s (3∗N mol , ba s i s . dimension ) ;

f o r I = 1 : N mol − 1
f o r J = I+1 : N mol

% vector d i s t ance
g r ad i j ( : ) = xxp ( I , : ) − xxp (J , : ) ;
% minimum image convent ion
g r ad i j ( 1 : 3 ) = g r ad i j ( 1 : 3 ) − L( 1 : 3 ) .∗ round ( g r ad i j ( 1 : 3 ) .∗ L inv ( 1 : 3 ) ) ;
% metr ic d i s t ance
d i s t i j = sq r t ( g r ad i j (1 ) ∗ g r ad i j (1 ) + g r ad i j (2 ) ∗ g r ad i j (2 ) + g r ad i j (3 ) ∗ g r ad i j (3 ) ) ;
% grad i ent o f vec tor d i s t ance Ri−Rj
% ( note that grad ( un i tary (Rj−Ri ) ) = − grad ( un i tary (Ri−Rj ) )
g r ad i j ( 1 : 3 ) = g r ad i j ( 1 : 3 ) / d i s t i j ;

% then c a l c u l a t e f z i d f o r a l l d i s t anc e s and d ’ s

f z i d = ba s i s . fElementValues ( d i s t i j ) ;
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% G i s 3 ∗ N ∗ N confs x d
% G conf i s 3 ∗ N x d

%f ind index and symmetric index
idx x = 3∗( I−1)+1; %1−s t mol in rows 1−3, 2−nd in rows 4−6 etc . . .
idx sym x = 3∗(J−1)+1; %1−s t mol in rows 1−3, 2−nd in rows 4−6 etc . . .

%ca l c G { I ;D}
%============

G conf ( idx x , : ) = G conf ( idx x , : ) + f z i d ( 1 , : ) ∗ g r ad i j (1 ) ;
G conf ( idx x+1, : ) = G conf ( idx x+1, : ) + f z i d ( 1 , : ) ∗ g r ad i j (2 ) ;
G conf ( idx x+2, : ) = G conf ( idx x+2, : ) + f z i d ( 1 , : ) ∗ g r ad i j (3 ) ;

G conf ( idx sym x , : ) = G conf ( idx sym x , : ) − f z i d ( 1 , : ) ∗ g r ad i j (1 ) ;
G conf ( idx sym x+1, : ) = G conf ( idx sym x+1, : ) − f z i d ( 1 , : ) ∗ g r ad i j (2 ) ;
G conf ( idx sym x+2, : ) = G conf ( idx sym x+2, : ) − f z i d ( 1 , : ) ∗ g r ad i j (3 ) ;

end
end

end

C.3 Relative Entropy

Below is the listing of the main Python script that performs the RE iterations, for the
methane system at 100K.

Listing C.10: Main Python script that performs the RE iterations.

import numpy as np
import matp lo t l ib . pyplot as p l t
from sc ipy . i n t e r p o l a t e import interp1d
from dbi import dbi from g smoothed
from ext rapo l a t e import ext rapo la te u nb p law
from LinearBas i s import L inearBas i s
from phi f rom u import phi f rom u
from sgo lay import s av i t zky go l ay
from f f rom u import f f r om u
from c r e a t e md p o t e n t i a l f i l e import c r e a t e md p o t e n t i a l f i l e
from c a l c j a c h e s s import c a l c j a c
from c a l c j a c h e s s import c a l c j a c h e s s
import subprocess
from cg s t ep s import c g s t ep s
import os
import s h u t i l

de f ak (k ) :
a = 1 .0
a cap = 0.0
p = 1.0
return a / ( a cap + k)∗∗p

def f l a t t e n pk ( ar r ) :
r e s u l t = np . z e ro s ( ( a r r . s i z e ) )
i = 0
whi le i < ar r . s i z e :

r e s u l t [ i ] = ar r [ i , 0 ]
i += 1

return r e s u l t

de f f l a t t e n j a c ( a r r ) :
r e s u l t = np . z e ro s ( ( a r r . s i z e ) )
i = 0
whi le i < ar r . s i z e :

r e s u l t [ i ] = ar r [ i , 0 ]
i += 1

return r e s u l t

# c lean output
subprocess . c a l l ( [ ’ . / c l ean saved data ’ ] )

# i n i t params
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Kb = 0.00198588 ; # kca l /(mol K)
T = 100 ; # K
beta = 1 .0/ (Kb ∗ T)
g t o l = 1e−2
use dp i = 300
md xstart = 0 .5
npoints = 1000

ja c cpus = 6
md cpus = 6

# i n i t ba s i s
x s t a r t = 3.34
x end = 12.0
dimension = 80
lb = LinearBas i s ( x s t a r t , x end , dimension )

i f not os . path . i s f i l e ( ’ p h i s t a r t . txt ’ ) :
i f not os . path . i s f i l e ( ’ u s t a r t . txt ’ ) :

# load g ( r )
g = np . l oadtxt ( ’ g o f r . txt ’ )
g [ : , 0 ] = g [ : , 0 ]

# c r ea t e dbi
u0 = dbi from g smoothed (g , g to l , Kb, T) ;

# ext rapo l a t e beg inning
u = ext rapo la te u nb p law ( u0 , md xstart , npo ints )
np . savetxt ( ’ saved data / nosteps / u dbi . txt ’ , u )

e l s e :
u = np . l oadtxt ( ’ u s t a r t . txt ’ )

# sample ba s i s r eg ion from dbi
n f i t = 400
u f i t = np . z e ro s ( ( n f i t , 2) )
x f i t = np . l i n s pa c e ( x s t a r t , x end , n f i t )
yy = interp1d (u [ : , 0 ] , u [ : , 1 ] )
i = 0
whi le i < n f i t :

u f i t [ i , 0 ] = x f i t [ i ]
u f i t [ i , 1 ] = yy ( x f i t [ i ] )
i += 1

# f ind phi to reproduce dbi from ba s i s
phi = phi f rom u ( u f i t , lb )

e l s e :
phi = np . l oadtxt ( ’ p h i s t a r t . txt ’ )
p r in t ”STARTING FROM PHI” , phi

# cr ea t e ba s i s p o t en t i a l and p lo t i t vs input to v e r i f y good phis
u ba s i s = lb . c r e a t e u t a b l e ( phi , npo ints )

u md = lb . c r ea t e md pot en t i a l ( phi , md xstart , npo ints )

smooth npoints = 21
u md [ : , 1 ] = sav i t zky go l ay (u md [ : , 1 ] , smooth npoints , 3)

# ca l c u l a t e f o r c e

f md = f f rom u (u md , 1e−4)

i s t a r t = 0
whi le u md [ i s t a r t , 0 ] < 3 . 0 :

i s t a r t += 1

# crea t e md po t en t i a l
c r e a t e md p o t e n t i a l f i l e (u md , f md , 2000 , ’md run/ l j . t ab l e ’ , ’AA’ ) ;

p o s i t i on s pa th = ’ coords angstrom . txt ’ ;
nat = 512
L = np . z e ro s ( ( 3 ) )
L [ 0 ] = 33.403
L [ 1 ] = 33.422
L [ 2 ] = 31.935
c u t o f f = 12 .0

# ca l c u l a t e the f i n e part o f the jacob ian
j a c f i n e = c a l c j a c ( po s i t i on s pa th , nat , L , cu to f f , x s t a r t , x end , dimension , j a c cpus )
np . savetxt ( ’ saved data / nosteps / j a c o b i a n f i n e . txt ’ , j a c f i n e )
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s tep = 1

whi le s tep < 100 :
# save po t en t i a l and f o r c e

np . savetxt ( ’ saved data / s t ep s /u md %03d . txt ’ % step , u md)
np . savetxt ( ’ saved data / s t ep s / f md %03d . txt ’ % step , f md )

# run md
c l = [ ’ . / makerun ’ , s t r (md cpus ) ]
p r i n t c l
subprocess . c a l l ( c l )

# ca l c jabobian and hes s i an
( jac cg , hess ) = c a l c j a c h e s s ( ’md run/ ou t c oo rd s p l a i n . txt ’ , nat , L , cu to f f , x s t a r t , x end ,

dimension , j a c cpus )
s h u t i l . c o p y f i l e ( ’md run/ ou t c oo rd s p l a i n . txt ’ , ’ saved data / s t ep s / t r a j %03d . txt ’ % step )
s h u t i l . c o p y f i l e ( ’ ou t j a c . txt ’ , ’ saved data / s t ep s / c a l c j a c %03d . txt ’ % step )

j a c = beta ∗ ( j a c f i n e − j a c c g )
hess = beta ∗ beta ∗ hess

# ca l c pk
p0 = np . asmatr ix (np . z e ro s ( j a c . shape ) )
pk = cg s t ep s ( hess , jac , p0 , 70 , 1e−4)

pk = f l a t t e n pk (pk )

# save step data
np . savetxt ( ’ saved data / s t ep s / j a c %03d . txt ’ % step , j a c )
np . savetxt ( ’ saved data / s t ep s / he s s %03d . txt ’ % step , hess )
np . savetxt ( ’ saved data / s t ep s /pk %03d . txt ’ % step , pk )
np . savetxt ( ’ saved data / s t ep s / ph i %03d . txt ’ % step , phi )

# ca l c phi
phi = phi − ak ( step ) ∗ pk
#phi = phi − 0 .5 ∗ pk

jac = f l a t t e n j a c ( j a c )

p r in t ’ phi new ’ , phi . shape
np . savetxt ( ’ saved data / s t ep s / phi new %03d . txt ’ % step , phi )

# in c r e a s e step
step += 1

# crea t e new md po t en t i a l and f o r c e
u md = lb . c r ea t e md pot en t i a l ( phi , md xstart , npo ints )
u md [ : , 1 ] = sav i t zky go l ay (u md [ : , 1 ] , smooth npoints , 3)
f md = f f rom u (u md , 1e−4)
c r e a t e md p o t e n t i a l f i l e (u md , f md , 2000 , ’md run/ l j . t ab l e ’ , ’AA’ )

Below is the listing of the header of the Jacobian calculation C++ class. This is the
calculation of a single configuration contribution to the Jacobian.

Listing C.11: Header of the Jacobian calculation C++ class.

#i f n d e f SRC JACOBIAN H
#de f i n e SRC JACOBIAN H

#inc lude <e igen3 /Eigen/Dense>
c l a s s Bas i s ;

namespace re
{

Eigen : : VectorXd JacobianConf ( const Eigen : : MatrixXd &xxp , const Eigen : : Vector3d &L , const double
&cuto f f , const Bas i s ∗ ba s i s ) ;

void JacobianHessianConf ( const Eigen : : MatrixXd &xxp , const Eigen : : Vector3d &L , const double &
cuto f f , const Bas i s ∗bas i s , Eigen : : VectorXd &jac , Eigen : : MatrixXd &hes a , Eigen : : MatrixXd
&hes b , Eigen : : MatrixXd &hes c ) ;

}

#end i f /∗ SRC JACOBIAN H ∗/

Below is the listing of the code of the Jacobian calculation C++ class. This is the
calculation of a single configuration contribution to the Jacobian.
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Listing C.12: Code of the Jacobian calculation C++ class.

#inc lude <e igen3 /Eigen/Dense>
#inc lude ”Bas i s . h”
#inc lude ”Common. h”

us ing namespace Eigen ;

namespace re
{

VectorXd JacobianConf ( const MatrixXd &xxp , const Vector3d &L , const double &cuto f f , const Bas i s
∗ ba s i s )

{
unsigned nmol = xxp . rows ( ) ;
VectorXd jac ( bas i s−>dimension ( ) ) ;
MatrixXd d ja c ;
j a c = VectorXd : : Zero ( bas i s−>dimension ( ) ) ;

Vector3d x1 ;
Vector3d x2 ;
double d i s t i j ;
VectorXd d i s t v e c (1 ) ;

f o r ( unsigned i =0; i<nmol−1; ++i ) {
f o r ( unsigned j=i +1; j<nmol ; ++j ) {

x1 = xxp . row ( i ) . t ranspose ( ) ;
x2 = xxp . row ( j ) . t ranspose ( ) ;
d i s t i j = pe r i od i cD i s t ance ( x1 , x2 ,L) ;

i f ( d i s t i j <= cu t o f f ) {
d i s t v e c (0 ) = d i s t i j ;
bas i s−>uElementValues ( d i s t v e c , d j a c ) ;

j a c += d jac . t ranspose ( ) ;
}

}
}

re turn jac ;
}

void JacobianHessianConf ( const MatrixXd &xxp , const Vector3d &L , const double &cuto f f , const
Bas i s ∗bas i s , VectorXd &jac , MatrixXd &hes a , MatrixXd &hes b , MatrixXd &hes c )

{
unsigned nmol = xxp . rows ( ) ;
j a c = VectorXd : : Zero ( bas i s−>dimension ( ) ) ;
hes a = MatrixXd : : Zero ( bas i s−>dimension ( ) , bas i s−>dimension ( ) ) ;
hes b = MatrixXd : : Zero ( bas i s−>dimension ( ) , bas i s−>dimension ( ) ) ;
he s c = MatrixXd : : Zero ( bas i s−>dimension ( ) , bas i s−>dimension ( ) ) ;

MatrixXd du dgamma ;

Vector3d x1 ;
Vector3d x2 ;
double d i s t i j ;
VectorXd d i s t v e c (1 ) ;

f o r ( unsigned i =0; i<nmol−1; ++i ) {
f o r ( unsigned j=i +1; j<nmol ; ++j ) {

x1 = xxp . row ( i ) . t ranspose ( ) ;
x2 = xxp . row ( j ) . t ranspose ( ) ;
d i s t i j = pe r i od i cD i s t ance ( x1 , x2 ,L) ;

i f ( d i s t i j <= cu t o f f ) {
d i s t v e c (0 ) = d i s t i j ;
bas i s−>uElementValues ( d i s t v e c , du dgamma) ;

j a c += du dgamma . t ranspose ( ) ;
f o r ( unsigned hi =0; hi<bas i s−>dimension ( ) ; ++hi ) {

f o r ( unsigned hj=0; hj<bas i s−>dimension ( ) ; ++hj ) {
hes a ( hi , hj ) = hes a ( hi , hj ) + du dgamma( hi ) ∗ du dgamma( hj ) ;
hes b ( hi , hj ) = hes b ( hi , hj ) + du dgamma( hi ) ;
he s c ( hi , hj ) = hes c ( hi , hj ) + du dgamma( hj ) ;
}

}
}

}
}

}

}
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Below is the listing of the header of the trajectory Jacobian calculation C++ class.

Listing C.13: Header of the trajectory Jacobian calculation C++ class.

#i f n d e f SRC JACOBIANTRAJ H
#de f i n e SRC JACOBIANTRAJ H

#inc lude <e igen3 /Eigen/Dense>
#inc lude <mpi . h>

namespace re
{

void JacobianTraj ( const Eigen : : MatrixXd &tra j , const unsigned &n ats , const Eigen : : Vector3d & L
, const double &cuto f f , const re : : Bas i s ∗bas i s , Eigen : : VectorXd &r e s u l t j a c , i n t root ,
MPI Comm at comm) ;

void JacobianHess ianTraj ( const Eigen : : MatrixXd &tra j , const unsigned &n ats , const Eigen : :
Vector3d & L , const double &cuto f f , const re : : Bas i s ∗bas i s , Eigen : : VectorXd &r e s u l t j a c ,
Eigen : : MatrixXd &r e s u l t h e s s , i n t root , MPI Comm at comm) ;

}

#end i f /∗ SRC JACOBIANTRAJ H ∗/

Below is the listing of the code of the trajectory Jacobian calculation C++ class.

Listing C.14: Code of the trajectory Jacobian calculation C++ class.

#inc lude <e igen3 /Eigen/Dense>
#inc lude <mpi . h>
#inc lude <vector>

#inc lude ”Bas i s . h”
#inc lude ”my mpi . h”
#inc lude ”Common. h”
#inc lude ” Jacobian . h”

#inc lude <iostream>

us ing namespace std ;

us ing namespace Eigen ;

namespace re
{

void JacobianTraj ( const MatrixXd &tra j , const unsigned &n ats , const Vector3d & L , const double
&cuto f f , const re : : Bas i s ∗bas i s , VectorXd &r e s u l t j a c , i n t root , MPI Comm at comm) {

MPI Comm comm;
in t my rank , num ranks ;

MPI Comm dup(at comm , &comm) ;
MPI Comm rank(comm, &my rank ) ;
MPI Comm size (comm, &num ranks ) ;

i f ( num ranks < 2)
throw ”Need at l e a s t 2 ranks , a d i spa t che r and a worker” ;

unsigned u s e n a t s = n at s ;
Vector3d use L = L ;
double u s e c u t o f f = cu t o f f ;
re : : Bas i s ∗ u s e ba s i s = ( re : : Bas i s ∗) ba s i s ;

MPI Bcast(&use n at s , 1 , MPI UNSIGNED, root , comm) ;
MPI Bcast ( use L . data ( ) , 3 , MPI DOUBLE, root , comm) ;
MPI Bcast(&us e cu t o f f , 1 , MPI DOUBLE, root , comm) ;
b c a s t b a s i s (&use ba s i s , root , comm) ;

r e s u l t j a c = VectorXd : : Zero ( u s e ba s i s−>dimension ( ) ) ;

i f (my rank == root ) {
i f ( t r a j . rows ( )%us e n a t s != 0)

throw ”Matrix s i z e incompat ib le to number o f atoms” ;

vector<char> mpi bu f f e r ;
i n t mp i bu f f e r s i z e ;

mp i bu f f e r s i z e = num ranks∗ u s e n a t s ∗3∗ s i z e o f ( double ) + MPI BSEND OVERHEAD;
mpi bu f f e r . r e s i z e ( mp i bu f f e r s i z e ) ;
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MPI Buffer attach ( mpi bu f f e r . data ( ) , mp i bu f f e r s i z e ) ;

unsigned num confs = t r a j . rows ( ) / u s e n a t s ;
unsigned c on f s s e n t = 0 ;
unsigned c on f s r e c e i v e d = 0 ;
bool wa i t i n g r e s u l t [ num ranks ] ;
i n t rank ;

f o r ( i n t i =0; i<num ranks ; ++i )
wa i t i n g r e s u l t [ i ] = f a l s e ;

whi le ( c on f s s e n t < num confs | | c on f s r e c e i v e d < num confs ) {
rank = 0 ;
whi le ( c on f s s e n t < num confs && rank < num ranks ) {

i f ( rank != root && wa i t i n g r e s u l t [ rank ] == f a l s e ) {
unsigned s ta r t row = con f s s e n t ∗ u s e n a t s ;
MatrixXd conf = t r a j . b lock ( s tar t row , 0 , u se n at s , 3) ;
MPI Bsend ( conf . data ( ) , conf . s i z e ( ) , MPI DOUBLE, rank , CALC CONF JAC TAG, comm) ;
++con f s s e n t ;
wa i t i n g r e s u l t [ rank ] = true ;

}
++rank ;

}

rank = 0 ;
whi le ( c on f s r e c e i v e d < num confs && rank < num ranks ) {

i f ( rank != root && wa i t i n g r e s u l t [ rank ] == true ) {
i n t f l a g ;
MPI Status s t a tu s ;
MPI Iprobe ( rank , RESULT CONF JAC TAG, comm, &f l ag , &s ta tu s ) ;
i f ( f l a g ) {

VectorXd jac ( bas i s−>dimension ( ) ) ;
MPI Recv ( j a c . data ( ) , j a c . s i z e ( ) , MPI DOUBLE, rank , RESULT CONF JAC TAG, comm, &

s ta tu s ) ;
r e s u l t j a c += jac ;
wa i t i n g r e s u l t [ rank ] = f a l s e ;
++con f s r e c e i v e d ;

}
}
++rank ;

}

MySleep (10) ;
}

f o r ( rank=0; rank<num ranks ; ++rank ) {
i f ( rank != root )

MPI Bsend (0 , 0 , MPI CHAR, rank , ABORT TAG, comm) ;
}

MPI Buffer detach ( mpi bu f f e r . data ( ) , &mp i bu f f e r s i z e ) ;

r e s u l t j a c /= num confs ;
}
e l s e { // not root rank

in t f l a g ;
MPI Status s t a tu s ;

whi le ( t rue ) {
MPI Iprobe ( root , CALC CONF JAC TAG, comm, &f l ag , &s ta tu s ) ;
i f ( f l a g ) {

MatrixXd conf ( use n at s , 3) ;
VectorXd jac ( u s e ba s i s−>dimension ( ) ) ;
MPI Recv ( conf . data ( ) , conf . s i z e ( ) , MPI DOUBLE, root , CALC CONF JAC TAG, comm, &sta tu s ) ;
j a c = JacobianConf ( conf , use L , u s e cu t o f f , u s e b a s i s ) ;
MPI Bsend ( j a c . data ( ) , j a c . s i z e ( ) , MPI DOUBLE, root , RESULT CONF JAC TAG, comm) ;

}

MPI Iprobe ( root , ABORT TAG, comm, &f l ag , &s ta tu s ) ;
i f ( f l a g )

break ;

MySleep (10) ;
}

}

MPI Bcast ( r e s u l t j a c . data ( ) , r e s u l t j a c . s i z e ( ) , MPI DOUBLE, root , comm) ;

MPI Comm free(&comm) ;
}
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void JacobianHess ianTraj ( const MatrixXd &tra j , const unsigned &n ats , const Vector3d & L , const
double &cuto f f , const re : : Bas i s ∗bas i s , VectorXd &r e s u l t j a c , MatrixXd &r e s u l t h e s s , i n t

root , MPI Comm at comm) {
MPI Comm comm;
in t my rank , num ranks ;

MPI Comm dup(at comm , &comm) ;
MPI Comm rank(comm, &my rank ) ;
MPI Comm size (comm, &num ranks ) ;

i f ( num ranks < 2)
throw ”Need at l e a s t 2 ranks , a d i spa t che r and a worker” ;

unsigned u s e n a t s = n at s ;
Vector3d use L = L ;
double u s e c u t o f f = cu t o f f ;
re : : Bas i s ∗ u s e ba s i s = ( re : : Bas i s ∗) ba s i s ;

MPI Bcast(&use n at s , 1 , MPI UNSIGNED, root , comm) ;
MPI Bcast ( use L . data ( ) , 3 , MPI DOUBLE, root , comm) ;
MPI Bcast(&us e cu t o f f , 1 , MPI DOUBLE, root , comm) ;
b c a s t b a s i s (&use ba s i s , root , comm) ;

unsigned dim = use ba s i s−>dimension ( ) ;

r e s u l t j a c = VectorXd : : Zero (dim) ;
r e s u l t h e s s = MatrixXd : : Zero (dim , dim) ;

i f (my rank == root ) {
i f ( t r a j . rows ( )%us e n a t s != 0)

throw ”Matrix s i z e incompat ib le to number o f atoms” ;

MatrixXd r e s u l t h e s s a , r e s u l t h e s s b , r e s u l t h e s s c ;
r e s u l t h e s s a = MatrixXd : : Zero (dim , dim) ;
r e s u l t h e s s b = MatrixXd : : Zero (dim , dim) ;
r e s u l t h e s s c = MatrixXd : : Zero (dim , dim) ;

vector<char> mpi bu f f e r ;
i n t mp i bu f f e r s i z e ;

mp i bu f f e r s i z e = num ranks∗ u s e n a t s ∗3∗ s i z e o f ( double ) + MPI BSEND OVERHEAD;
mpi bu f f e r . r e s i z e ( mp i bu f f e r s i z e ) ;

MPI Buffer attach ( mpi bu f f e r . data ( ) , mp i bu f f e r s i z e ) ;

unsigned num confs = t r a j . rows ( ) / u s e n a t s ;
unsigned c on f s s e n t = 0 ;
unsigned c on f s r e c e i v e d = 0 ;
bool wa i t i n g r e s u l t [ num ranks ] ;
i n t rank ;

f o r ( i n t i =0; i<num ranks ; ++i )
wa i t i n g r e s u l t [ i ] = f a l s e ;

whi le ( c on f s s e n t < num confs | | c on f s r e c e i v e d < num confs ) {
rank = 0 ;
whi le ( c on f s s e n t < num confs && rank < num ranks ) {

i f ( rank != root && wa i t i n g r e s u l t [ rank ] == f a l s e ) {
unsigned s ta r t row = con f s s e n t ∗ u s e n a t s ;
MatrixXd conf = t r a j . b lock ( s tar t row , 0 , u se n at s , 3) ;
MPI Bsend ( conf . data ( ) , conf . s i z e ( ) , MPI DOUBLE, rank , CALC CONF JAC HES TAG, comm) ;
// cout << ” sent ” << endl ;
++con f s s e n t ;
wa i t i n g r e s u l t [ rank ] = true ;

}
++rank ;

}

rank = 0 ;
whi le ( c on f s r e c e i v e d < num confs && rank < num ranks ) {

i f ( rank != root && wa i t i n g r e s u l t [ rank ] == true ) {
i n t f l a g ;
MPI Status s t a tu s ;
MPI Iprobe ( rank , RESULT CONF JAC HES TAG, comm, &f l ag , &s ta tu s ) ;
i f ( f l a g ) {

unsigned dim = use ba s i s−>dimension ( ) ;
vector<char> data ;
data . r e s i z e ( ( dim + dim∗dim∗3)∗ s i z e o f ( double ) ) ;

MPI Recv ( data . data ( ) , data . s i z e ( ) , MPI DOUBLE, rank , RESULT CONF JAC HES TAG, comm,
&sta tu s ) ;

VectorXd jac (dim) ;
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MatrixXd hes s a (dim , dim) ;
MatrixXd hess b (dim , dim) ;
MatrixXd he s s c (dim , dim) ;
i n t po s i t i o n =0;

// cout << ” root unpacking” << endl ;

MPI Unpack ( data . data ( ) , data . s i z e ( ) , &pos i t i on , j a c . data ( ) , j a c . s i z e ( ) , MPI DOUBLE,
comm) ;

MPI Unpack ( data . data ( ) , data . s i z e ( ) , &pos i t i on , he s s a . data ( ) , he s s a . s i z e ( ) ,
MPI DOUBLE, comm) ;

MPI Unpack ( data . data ( ) , data . s i z e ( ) , &pos i t i on , hes s b . data ( ) , hes s b . s i z e ( ) ,
MPI DOUBLE, comm) ;

MPI Unpack ( data . data ( ) , data . s i z e ( ) , &pos i t i on , h e s s c . data ( ) , h e s s c . s i z e ( ) ,
MPI DOUBLE, comm) ;

// cout << ” root unpacked” << endl ;

r e s u l t j a c += jac ;
r e s u l t h e s s a += hes s a ;
r e s u l t h e s s b += hess b ;
r e s u l t h e s s c += he s s c ;

wa i t i n g r e s u l t [ rank ] = f a l s e ;
++con f s r e c e i v e d ;

// cout << ” recv r e s u l t ” << endl ;
}

}
++rank ;

}

MySleep (10) ;
}

f o r ( rank=0; rank<num ranks ; ++rank ) {
i f ( rank != root )

MPI Bsend (0 , 0 , MPI CHAR, rank , ABORT TAG, comm) ;
}

MPI Buffer detach ( mpi bu f f e r . data ( ) , &mp i bu f f e r s i z e ) ;

r e s u l t j a c /= num confs ;
r e s u l t h e s s a /= num confs ;
r e s u l t h e s s b /= num confs ;
r e s u l t h e s s c /= num confs ;

f o r ( unsigned i =0; i<r e s u l t h e s s b . rows ( ) ; ++i ) {
f o r ( unsigned j =0; j<r e s u l t h e s s b . c o l s ( ) ; ++j ) {

r e s u l t h e s s ( i , j ) = r e s u l t h e s s a ( i , j ) − r e s u l t h e s s b ( i , j ) ∗ r e s u l t h e s s c ( i , j ) ;
}

}
}
e l s e { // not root rank

unsigned dim = use ba s i s−>dimension ( ) ;
vector<char> mpi bu f f e r ;
i n t mp i bu f f e r s i z e = (dim + 3∗dim∗dim)∗ s i z e o f ( double ) + MPI BSEND OVERHEAD;
mpi bu f f e r . r e s i z e ( mp i bu f f e r s i z e ) ;
MPI Buffer attach ( mpi bu f f e r . data ( ) , mp i bu f f e r s i z e ) ;

i n t f l a g ;
MPI Status s t a tu s ;

whi le ( t rue ) {
MPI Iprobe ( root , CALC CONF JAC HES TAG, comm, &f l ag , &s ta tu s ) ;
i f ( f l a g ) {

MatrixXd conf ( use n at s , 3) ;
VectorXd jac ;
MatrixXd hess a , hess b , h e s s c ;

MPI Recv ( conf . data ( ) , conf . s i z e ( ) , MPI DOUBLE, root , CALC CONF JAC HES TAG, comm, &
s ta tu s ) ;

// cout << ” got ” << endl ;

JacobianHessianConf ( conf , use L , u s e cu t o f f , u s e ba s i s , jac , hess a , hess b , h e s s c ) ;

// cout << ”done” << endl ;

i n t sz , to t =0;

MPI Pack size ( j a c . s i z e ( ) , MPI DOUBLE, comm, &sz ) ;
to t += sz ;
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MPI Pack size ( he s s a . s i z e ( ) , MPI DOUBLE, comm, &sz ) ;
to t += sz ;
MPI Pack size ( hes s b . s i z e ( ) , MPI DOUBLE, comm, &sz ) ;
to t += sz ;
MPI Pack size ( h e s s c . s i z e ( ) , MPI DOUBLE, comm, &sz ) ;
to t += sz ;

vector<char> data ;
data . r e s i z e ( to t ) ;
i n t po s i t i o n = 0 ;

MPI Pack ( j a c . data ( ) , j a c . s i z e ( ) , MPI DOUBLE, data . data ( ) , data . s i z e ( ) , &pos i t i on , comm)
;

MPI Pack ( he s s a . data ( ) , he s s a . s i z e ( ) , MPI DOUBLE, data . data ( ) , data . s i z e ( ) , &pos i t i on ,
comm) ;

MPI Pack ( hes s b . data ( ) , hes s b . s i z e ( ) , MPI DOUBLE, data . data ( ) , data . s i z e ( ) , &pos i t i on ,
comm) ;

MPI Pack ( he s s c . data ( ) , h e s s c . s i z e ( ) , MPI DOUBLE, data . data ( ) , data . s i z e ( ) , &pos i t i on ,
comm) ;

// cout << ”packed” << endl ;

MPI Bsend ( data . data ( ) , data . s i z e ( ) , MPI CHAR, root , RESULT CONF JAC HES TAG, comm) ;

// cout << ” bsent r e s u l t ” << endl ;
}

MPI Iprobe ( root , ABORT TAG, comm, &f l ag , &s ta tu s ) ;
i f ( f l a g )

break ;

MySleep (10) ;
}

MPI Buffer detach ( mpi bu f f e r . data ( ) , &mp i bu f f e r s i z e ) ;
}

MPI Bcast ( r e s u l t j a c . data ( ) , r e s u l t j a c . s i z e ( ) , MPI DOUBLE, root , comm) ;
MPI Bcast ( r e s u l t h e s s . data ( ) , r e s u l t h e s s . s i z e ( ) , MPI DOUBLE, root , comm) ;

MPI Comm free(&comm) ;
}

}

Below is the listing of the header of the linear spline basis C++ class.

Listing C.15: Header of the linear spline basis C++ class.

#i f n d e f LINEARBASIS H
#de f i n e LINEARBASIS H

#inc lude ”Bas i s . h”
#inc lude <e igen3 /Eigen/Dense>
#inc lude <mpi . h>

namespace re {

c l a s s L inearBas i s : pub l i c Bas i s {
protec ted :

double m dx , m dxi ;
Eigen : : VectorXd m x di sc r ;

pub l i c :
L inearBas i s ( ) ;
L inearBas i s ( double x s t a r t , double x end , unsigned dimension ) ;
v i r t u a l ˜ L inearBas i s ( ) ;
v i r t u a l void uElementValues ( const Eigen : : VectorXd &at xs , Eigen : : MatrixXd &r e t v a l s ) const ;
const double & dx ( ) const ;
const Eigen : : VectorXd & x d i s c r ( ) const ;

v i r t u a l i n t packSize (MPI Comm comm) const ;
v i r t u a l void pack ( void ∗outbuf , i n t out s i z e , i n t ∗ pos i t i on , MPI Comm comm) ;
v i r t u a l void unpack ( void ∗ inbuf , i n t i n s i z e , i n t ∗ pos i t i on , MPI Comm comm) ;

} ;

} /∗ namespace re ∗/

#end i f /∗ LINEARBASIS H ∗/

93



Below is the listing of the code of the linear spline basis C++ class.

Listing C.16: Code of the linear spline basis C++ class.

#inc lude ” L inearBas i s . h”

us ing namespace Eigen ;

namespace re {

LinearBas i s : : L inearBas i s ( ) : Bas i s ( ) {
m t i t l e = ” LinearBas i s ” ;

}

LinearBas i s : : L inearBas i s ( double x s t a r t , double x end , unsigned dimension )
: Bas i s ( x s t a r t , x end , dimension ) {

m t i t l e = ” LinearBas i s ” ;
m dx = (m x end−m x star t ) /(m dimension−1) ;
m dxi = 1.0/m dx ;
m x di sc r . r e s i z e ( m dimension ) ;
unsigned i ;
f o r ( i =0; i<m dimension−1; ++i ) {

m x disc r ( i ) = m x star t + i ∗m dx ;
}
m x disc r ( i ) = m x end ;

}

LinearBas i s : : ˜ L inearBas i s ( ) {
// TODO Auto−generated de s t ruc to r stub

}

void L inearBas i s : : uElementValues ( const Eigen : : VectorXd &at xs , Eigen : : MatrixXd &r e t v a l s ) const
{

r e t v a l s . r e s i z e ( a t x s . s i z e ( ) , m dimension ) ;
// s e t to zero ?

f o r ( unsigned x i =0; x i < a t x s . s i z e ( ) ; ++xi ) {
double x = at x s ( x i ) ;

i f ( x >= m x star t && x <= m x end ) {
f o r ( unsigned d=0; d<m dimension ; ++d) {

i f ( x <= m x disc r (d) && d > 0 && m x disc r (d−1) <= x) {
// matlab code : va l = (x − obj . x d i s c r (d−1) ) / ( obj . x d i s c r (d) − obj .

x d i s c r (d−1) ) ;
r e t v a l s ( xi , d ) = (x − m x disc r (d−1) ) ∗ m dxi ;

}
e l s e i f ( x >= m x disc r (d) && d < m dimension−1 && x <= m x disc r (d+1) ) {

// matlab code : va l = ( obj . x d i s c r (d+1) − x ) / ( obj . x d i s c r (d+1) − obj .
x d i s c r (d) ) ;

r e t v a l s ( xi , d ) = ( m x di sc r (d+1) − x ) ∗ m dxi ;
}
e l s e {

r e t v a l s ( xi , d ) = 0 . 0 ;
}

}
}
e l s e {

f o r ( unsigned d=0; d < m dimension ; ++d) {
r e t v a l s ( xi , d ) = 0 . 0 ;

}
}

}
}

const double & LinearBas i s : : dx ( ) const {
re turn m dx ;

}

const Eigen : : VectorXd & LinearBas i s : : x d i s c r ( ) const {
re turn m x di sc r ;

}

i n t L inearBas i s : : packSize (MPI Comm comm) const {
i n t sz , to t =0;
MPI Pack size (4 ,MPI DOUBLE,comm,& sz ) ;
to t+=sz ;
MPI Pack size (2 ,MPI UNSIGNED,comm,& sz ) ;
to t+=sz ;
MPI Pack size ( m x di sc r . s i z e ( ) ,MPI DOUBLE,comm,& sz ) ;
to t+=sz ;
re turn tot ;

}
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void L inearBas i s : : pack ( void ∗outbuf , i n t out s i z e , i n t ∗ pos i t i on , MPI Comm comm) {
unsigned x d i s c r s z = m x di sc r . s i z e ( ) ;

MPI Pack(&m x start , 1 , MPI DOUBLE, outbuf , out s i z e , po s i t i on , comm) ;
MPI Pack(&m x end , 1 , MPI DOUBLE, outbuf , out s i z e , po s i t i on , comm) ;
MPI Pack(&m dx , 1 , MPI DOUBLE, outbuf , out s i z e , po s i t i on , comm) ;
MPI Pack(&m dxi , 1 , MPI DOUBLE, outbuf , out s i z e , po s i t i on , comm) ;
MPI Pack(&m dimension , 1 , MPI UNSIGNED, outbuf , out s i z e , po s i t i on , comm) ;
MPI Pack(&x d i s c r s z , 1 , MPI UNSIGNED, outbuf , out s i z e , po s i t i on , comm) ;
MPI Pack ( m x di sc r . data ( ) , m x di sc r . s i z e ( ) , MPI DOUBLE, outbuf , out s i z e , po s i t i on , comm) ;

}

void L inearBas i s : : unpack ( void ∗ inbuf , i n t i n s i z e , i n t ∗ pos i t i on , MPI Comm comm) {
MPI Unpack ( inbuf , i n s i z e , po s i t i on , &m x start , 1 , MPI DOUBLE, comm) ;
MPI Unpack ( inbuf , i n s i z e , po s i t i on , &m x end , 1 , MPI DOUBLE, comm) ;
MPI Unpack ( inbuf , i n s i z e , po s i t i on , &m dx , 1 , MPI DOUBLE, comm) ;
MPI Unpack ( inbuf , i n s i z e , po s i t i on , &m dxi , 1 , MPI DOUBLE, comm) ;
MPI Unpack ( inbuf , i n s i z e , po s i t i on , &m dimension , 1 , MPI UNSIGNED, comm) ;
unsigned x d i s c r s z ;
MPI Unpack ( inbuf , i n s i z e , po s i t i on , &x d i s c r s z , 1 , MPI UNSIGNED, comm) ;
m x di sc r . r e s i z e ( x d i s c r s z ) ;
MPI Unpack ( inbuf , i n s i z e , po s i t i on , m x di sc r . data ( ) , x d i s c r s z , MPI DOUBLE, comm) ;

}

} /∗ namespace re ∗/
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Plecháč. Path-space variational inference for non-equilibrium coarse-grained sys-
tems. Journal of Computational Physics, 314:355–383, 2016.

[13] R.L. Henderson. A uniqueness theorem for fluid pair correlation functions. Physics
Letters A, 49(3):197 – 198, 1974.

[14] William G. Hoover. Canonical dynamics: Equilibrium phase-space distributions.
Phys. Rev. A, 31:1695–1697, Mar 1985.

[15] William G. Hoover. Constant-pressure equations of motion. Phys. Rev. A, 34:2499–
2500, Sep 1986.

[16] Sergei Izvekov and Gregory A. Voth. Multiscale coarse graining of liquid-state
systems. The Journal of Chemical Physics, 123(13):134105, 2005.

[17] E. Kalligiannaki, A. Chazirakis, A. Tsourtis, M.A. Katsoulakis, P. Plecháč, and
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