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Introduction

In this work we consider the problem of detecting and imaging extended re-

flectors in a waveguide, using a vertical array of transducers with partial

aperture, i.e., an array that does not span the whole depth of the waveg-

uide. The term extended refers to reflectors that are comparable in size to

the acoustic wavelength. The current work carries on the methodology that

we have proposed in [1], in order to selectively image extended scatterers in

waveguides with the aid of a vertical full-aperture array of transducers, with

the intention to extend its applicability in the more general case where the ar-

ray has partial aperture. In both of these works we have in mind applications

in underwater acoustics where sound waves are used to probe the sea and

its echoes are recorded and analysed in order to detect objects submerged in

the sea. The marine environment that we consider is modelled as a single-

layer two-dimensional waveguide with horizontal boundaries. Although this

is a simplified and rather ideal model of a marine acoustic environment it

still carries and exhibits the main features and challenges of acoustic wave

propagation in the sea.

We now present the main features of the imaging problem that we are

interested in. We assume that an array consisting of N transducers is set

vertically in the waveguide. At first, each element of the array acts as a

point source and emits a sound pulse, whose echoes are recorded in all the

elements of the array that now act as receivers. In this way it is formed an

N ×N matrix Π̂; this is the so-called array response matrix. Specifically, we

shall consider that we are given the array response matrix for the scattered

field, where this is obtained, as usually, by subtracting the incident field from

the total field. Having these data in our hands, we want to create images

of parts of the waveguide that would assist us to decide whether a scatterer
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is present or not. Of course, it is highly desirable to be able to extract

from the image additional information about the size and the shape of the

scatterer. The usual procedure in imaging is summarised in the following

steps: a) We determine a bounded subdomain of the waveguide that is usually

called the search domain, b) we discretize the search domain, and c) in each

node of the search domain we associate the value of an imaging functional.

Then the graph of this functional forms the image that we are looking for,

where, usually, peaks that are related with the functional’s maxima indicate

the presence of the scatterer. Examples of widely used imaging functionals

include the Kirchhoff Migration functional (KM) (see [2, §9]) and thematched

field functional (see [3]).

In our previous work, [1], we have proposed an alternative functional,

that was based on Kirchhoff migration, and on a weighted modal projection

of the array response matrix denoted by P̂, for imaging extended scatterers

in waveguides using an active array of sensors which spans the whole depth

of the waveguide. Moreover, we have introduced a filtered version of this

functional, based on the singular value decomposition of P̂, in order to image

selectively on specific parts of the scatterer. This approach belongs to the

class of the so-called subspace projection methods, [4]. In [4], the subspace

projection method was employed in order to image selectively extended scat-

terers in free space. We refer also to [5] for selective imaging in clutter, i.e.,

propagation medium with inhomogeneities that are unknown, cannot be es-

timated in detail, and, are modelled as random processes. Note that the

concept of selective imaging of extended scatterers has been motivated by

the concept of selective focusing, which concerns multiple point (or small)

scatterers in the medium and, essentially, allows you to distinguish specific

scatterers by creating an image which focuses on them. Related works in-

clude [6], where Prada and Fink introduced the well-known DORT method

in order to achieve selective focusing on individual scatterers, [7, 8], [9] where

DORT was analysed with mathematical rigor in the free-space, and [10] for

a waveguide problem.

The thesis is organised as follows. In Chapter 1 we formulate the imaging

problem and briefly review the selective imaging approach that was pro-

posed in [1]. The array response matrix for the numerical results shown in
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Section 1.4 and, later, in Chapters 3 and 4, is obtained by solving numeri-

cally the wave equation in the time domain using a high-order finite element

C++ code, called Montjoie [11]. Montjoie has been developed in INRIA and

is very efficient in solving equations that arise in wave propagation problems.

In Chapter 2 we review the theoretical analysis of the imaging approach

that was carried out in [1] for a simplified model problem where the scatterer

is a crack, i.e., a vertical one-dimensional perfect reflector. The simpler na-

ture of this problem, and the Born approximation, allowed us to characterise

the spectral properties of the weighted modal projection of the array response

matrix, P̂. In particular, we have shown in [1] that the singular values of P̂,

when they are normalised with respect to the largest one, cluster near one

and zero, and just a few lie in the intermediate region. Moreover, in [1] we

were able to show that the number of significant singular values equals the

size of the scatterer divided by half the wavelength (the array resolution in

the vertical direction). Also, when we project on the singular vectors that

correspond to intermediate singular values, we are able to create an image

that focuses on the edges of the crack. All these properties are exploited in

selective imaging. Here, we push the analysis a little bit further and inves-

tigate the relation between P̂ and its singular vectors, with the well known

prolate matrix and the prolate spheroidal wave functions, respectively, which

have been analyzed in a series of outstanding papers by Slepian, Pollak and

Landau, [12, 13, 14, 15, 16].

In Chapter 3, in order to assess if the nice properties that we have obtained

for the simplified crack model-problem carry over to more general cases, we

compare imaging results for the crack problem with those concerning a square

scatterer. For the latter, in order to form the array response matrix, we have

to solve numerically the full scattering problem, i.e. we do not resort to

Born approximation. Our numerical results suggest that selective imaging

performs equally well in this more general and complex case. The comparison

between another model problem, where the scatterer is a semicircle, with a

disc shaped scatterer strengthen our confidence in that selective imaging can

be achieved for different reflector geometries.

The main objective of this thesis is to examine the behavior of imaging

functionals when the array has partial aperture, i.e., it does not span the
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whole depth of the waveguide, and this is the subject of Chapter 4. In the

case of the partial array aperture some key properties, like the orthonormal-

ity of the vertical eigenfunctions along the array, do not hold any more. In

Chapter 4 we modify the definition of the weighted projected matrix P̂ that

plays a crucial role in the construction of our imaging functional. This allows

us to extend the applicability of our methodology in the case of partial array

aperture. We first examine the performance of the proposed imaging func-

tional for the model problem of the crack and compare the results with the

ones obtained with KM as we decrease the array aperture. We observe that

our approach gives better imaging results and its superiority becomes more

significant as the array aperture decreases. We also examine numerically the

performance of our methodology in the presence of additive noise and in the

case of extended reflectors such as a square and a disc.

We close this thesis with some concluding remarks, and with a brief dis-

cussion about possible future extensions
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Chapter 1

Full array imaging

We consider the problem of detecting and imaging extended scatterers sub-

merged in the sea using acoustic waves. More precisely, we model a marine

environment as an infinite two-dimensional waveguide R × (0, D) in Carte-

sian coordinates (z, x), where z denotes the range variable, and x the depth

(cross-range) variable taken to be positive downward. Throughout this work,

vectors in Rn are denoted by boldface characters while vectors in R× (0, D)

are denoted by boldface characters with an overscript arrow. Our waveguide

consists of a single water layer, with constant density and constant sound

speed c0. A single extended scatterer denoted by O is submerged in the wa-

ter layer, see Figure 1.1. The term ‘extended’ indicates that the typical size

of the scatterer is comparable to the wavelength.
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Figure 1.1: Schematic representation of our waveguide problem and of the

active array imaging setup.

5



We assume that the total acoustic pressure field ptot(t, ~x) satisfies the

wave equation

∆ptot(t, ~x)− 1

c20

∂2ptot(t, ~x)

∂t2
= f(t, ~x), (1.1)

where the source term is of the form f(t, ~x) = − exp(iωt)δ(~x−~xs), modelling

a point-like source with time harmonic dependence located at ~xs . The scat-

terer is assumed to be sound-hard, hence a homogeneous Neumann condition

is posed on its boundary ∂O. Equation (1.1) is supplemented with pressure

release boundary conditions on the surface and the seafloor, and we also as-

sume that ptot(t, ~x) = 0 for t ≤ 0, expressing that the medium is quiescent

before emission. Taking the Fourier transform

p̂ tot(ω, ~x) =

∫
eiωtptot(t, ~x) dt,

we obtain from (1.1) the Helmholtz equation

−∆p̂ tot(ω, ~x)− k2p̂ tot(ω, ~x) = f̂(ω, ~x), (1.2)

where k = ω/c0 is the real wavenumber, ω is the angular frequency, and

λ = 2π/k is the wavelength.

Now, let {µn, Xn}n=1,2,... denote the eigenvalues and corresponding or-

thonormal eigenfunctions of the two-point vertical eigenvalue problem

X ′′(x) + µX(x) = 0, x ∈ (0, D) and X(0) = X(D) = 0,

i.e.,

µn = (nπ/D)2, Xn(x) =
√
2/D sin(

√
µnx), n = 1, 2, . . . . (1.3)

The family of eigenfunctions {Xn}n=1,2,... forms an orthonormal basis of

L2[0, D]. We assume that for each frequency there exists an index M such

that

µM < k2 < µM+1.

In other words, the wavenumber does not coincide with any of the mode

cutoff frequencies, and the first M eigenvalues correspond to the propagating
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modes, while the rest to the evanescent modes. Let us also denote the

horizontal wavenumbers by

βn =

{ √
k2 − µn, 1 ≤ n ≤M,

i
√
µn − k2, n ≥M + 1.

(1.4)

Moreover, let Ĝ(~x, ~xs) be the outgoing Green’s function of the Helmholtz

operator −∆ · −k2·, evaluated at ~x = (z, x) ∈ R × (0, D) due to a point

source located at ~xs = (zs, xs). (In the underwater acoustics community a

point source in plane geometry is usually referred to as a line source, [17].)

Then it is well known, see, e.g., [17, 10], that Ĝ admits the following normal

mode representation

Ĝ(~x, ~xs) =
i

2

∞∑

n=1

1

βn
eiβn|z−zs|Xn(x)Xn(xs), (1.5)

where {µn, Xn} and βn are defined in (1.3) and (1.4), respectively.

1.1 Array imaging setup

We consider a one-dimensional vertical active array A, spanning the whole

depth of the waveguide and located at range z = za ≥ 0, see Figure 1.1. The

array consists of N transducers which act both as sources and receivers. We

assume that they are closely spaced and uniformly distributed on the array

with an inter-element array distance h, which is usually called the array pitch.

Let, also, Π̂(ω) denote the N × N complex array response matrix in the

frequency domain, whose (r, s) entry is defined as the Fourier transform of

the time traces recorded at the r-th transducer due to a δ–function impulse

generated by the s-th transducer, for a given frequency ω. In what follows,

the data that we are going to use for imaging is the array response matrix

for the scattered field in the frequency domain, created by subtracting the

array response matrix for the incident field from the corresponding one for

the total field.
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1.2 Imaging

Let us first define the search domain S, as a bounded subdomain of our

waveguide that may contain a scatterer (see Figure 1.1). S is discretized,

using a rectangular grid, and ~y s = (zs, xs) denotes an arbitrary node in S.
We are interested in creating an image of the search domain S. A classical

imaging method is Kirchhoff migration (KM), [18, 19], defined by,

IKM(~y s, ω) =
N∑

r=1

Ĝ(~xr, ~y
s, ω)

N∑

s=1

Π̂(~xr, ~xs, ω) Ĝ(~xs, ~y
s, ω), (1.6)

for a single frequency ω and ~y s ∈ S. Here the bars denote complex conjuga-

tion. KM consists in backpropagating the signals from each receiver ~xr to a

point ~y s in the search domain and then back to the source ~xs. The image is

the sum of the backpropagated signals for all sources and receivers.

In (1.6) we have defined the imaging functional for a single frequency ω.

When we have multi-frequency data, we can compute instead,

IKM(~y s) =
∣∣∣
∑

ω

IKM(~y s, ω)
∣∣∣. (1.7)

KM is widely used in seismic imaging and exploration geophysics; in these

applications the arrays and the bandwidth are typically very large. This is

a setup in which perfect imaging resolution can be achieved. Indeed, in that

case the ideal point spread function (i.e., the image of a point scatterer),

which is a Dirac distribution, can be obtained, at least asymptotically, as

the array aperture and the bandwidth tend to infinity (cf. [18]). To be more

precise, this result is obtained for a slight modification of (1.6) that uses a

weighing factor that takes into account the source-receiver geometry.

We will assume in the following, that the scatterer and the search domain

are located far enough from the array to allow us to retain only the propa-

gating modes in (1.5). Then, replacing Ĝ, given by (1.5), into (1.6) we may

write the KM functional in the form

IKM(~y s, ω) = −1

4

N∑

s,r=1

Π̂(~xr, ~xs, ω)×

×
M∑

m,n=1

e−i(βm+βn)|za−zs|

βmβn
Xm(xs)Xm(x

s)Xn(xr)Xn(x
s).(1.8)
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Assuming that the array pitch h is small enough, we can approximate the

double sum in (1.8) by a double integral over A. In the case where the array

spans the whole waveguide depth A = [0, D], hence

IKM(~y s, ω) ≈ − 1

4h2

∫ D

0

dxs

∫ D

0

dxr Π̂(~xs, ~xr, ω)×

×
M∑

m,n=1

e−i(βm+βn)|za−zs|

βmβn
Xm(xs)Xm(x

s)Xn(xr)Xn(x
s)

= − 1

4h2

M∑

m,n=1

e−i(βm+βn)|za−zs|

βmβn
Xm(x

s)Xn(x
s)×

×
∫ D

0

∫ D

0

Π̂(~xs, ~xr, ω)Xm(xs)Xn(xr) dxr dxs. (1.9)

Now, let us introduce an M ×M matrix Q̂(ω), with entries

Q̂mn(ω) =

∫ D

0

dxs

∫ D

0

dxr Π̂(~xs, ~xr, ω)Xm(xs)Xn(xr), (1.10)

for m,n = 1, 2, . . . ,M .

In view of (1.10), (1.9) may be equivalently written as

IKM(~y s, ω) ≈ − 1

4h2

∑

m,n

e−i(βm+βn)|za−zs|

βmβn
Xn(x

s)Xm(x
s)Q̂mn(ω). (1.11)

Instead of using (1.11) we propose to use the following imaging functional

ĨKM(~y s, ω) = − 1

4h2

M∑

m,n=1

e−i(βm+βn)|za−zs|Xn(x
s)Xm(x

s)P̂mn(ω), (1.12)

where the M ×M matrix P̂ is defined as

P̂mn(ω) = βmβnQ̂mn, m, n = 1, . . . ,M. (1.13)

For multi-frequency data, we define

ĨKM(~y s) =
∣∣∣
∑

ω

ĨKM(~y s, ω)
∣∣∣. (1.14)

Note that P̂mn(ω) is a weighted modal projection of the array response

matrix. While it is not yet clear why we have introduced the functional ĨKM,

the reason behind it will be explained in the next chapter.
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1.3 Selective imaging

In selective imaging we are interested in reconstructing specific parts of the

reflector like, for example, its boundary. A way to achieve this is by means of

the subspace projection method [4], which is based on the singular value de-

composition (SVD) of the N×N array response matrix Π̂(ω) in the frequency

domain. As remarked in [4], the SVD of Π̂(ω) may serve as a filter which

enables us to identify reflections emanating from the edges of the scatterer.

Such reflections are typically weaker than, and therefore masked by, those

coming from the body of the scatterer. The SVD of Π̂(ω) is a factorization

of the form (see, for example, [20, §2.5])

Π̂(ω) = U(ω)Σ(ω)V ∗(ω),

where Σ is a diagonal matrix containing the singular values σi of Π̂(ω) in

descending order, and U, V are unitary matrices containing the left and right

singular vectors, respectively. For the rest of this section, we will occasionally

omit the ω’s for the sake of notational convenience.

Now, let us write the SVD of Π̂(ω) as a sum of the form:

Π̂(ω) =

ρ∑

i=1

σiUiV
∗
i ,

where ρ = rank(Π̂(ω)), so that σ1 ≥ . . . ≥ σρ > σρ+1 = . . . = σN = 0, and

Ui, Vi are the left and right singular vectors, respectively. Then a filtered

version of the response matrix may be written in the form:

D[Π̂(ω)] =

ρ∑

i=1

diσiUiV
∗
i ,

where the coefficients di are called the filter weights. We will simply consider

di ∈ {0, 1}, which amounts to saying that if di = 1 then the i-th singular

vector is taken into account in the filtered version of the response matrix,

while if di = 0 it is not.

Let us also define the functional

IKM,f(~y s, ω) =
N∑

r=1

Ĝ(~xr, ~y
s, ω)

N∑

s=1

D[Π̂(~xr, ~xs, ω)] Ĝ(~xs, ~y
s, ω), (1.15)
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derived by replacing the full response matrix by its filtered version. For

multi-frequency data, we define

IKM,f(~y s) =
∣∣∣
∑

ω

IKM,f(~y s, ω)
∣∣∣. (1.16)

Finally, we introduce the functionals

IKM
J (~y s, ω) =

N∑

r=1

Ĝ(~xr, ~y
s, ω)

N∑

s=1

(σJ(ω)UJ(ω)V
∗
J (ω))rs Ĝ(~xs, ~y

s, ω),(1.17)

and

IKM
J (~y s) =

∣∣∣
∑

ω

IKM
J (~y s, ω)

∣∣∣, (1.18)

which are derived from (1.15) and (1.16), respectively, when dJ = 1 and

di = 0 for all i 6= J ; in other words, when we consider projection on the

single J-th singular vector of the response matrix.

We also introduce selective imaging functionals for ĨKM, as we have done

in (1.15)–(1.18), using filtered versions of P̂. The only thing that changes

in this process is the size of the response matrix. Now, we are dealing with

an M × M matrix, where M denotes the number of propagating modes.

Specifically, for a single frequency ω, let

ĨKM,f(~y s, ω) = − 1

4h2

M∑

m,n=1

e−i(βn+βm)|za−zs|Xn(x
s)Xm(x

s)
(
D[P̂(ω)]

)
mn
,

(1.19)

while for multi-frequency data we define

ĨKM,f(~y s) =
∣∣∣
∑

ω

ĨKM,f(~y s, ω)
∣∣∣. (1.20)

Furthermore, we define

ĨKM
J (~y s, ω) = − 1

4h2

M∑

m,n=1

e−i(βn+βm)|za−zs|Xn(x
s)Xm(x

s)
(
σJ (ω)UJ(ω)V

∗
J (ω)

)
mn
,

(1.21)

and

ĨKM
J (~y s) =

∣∣∣
∑

ω

ĨKM
J (~y s, ω)

∣∣∣, (1.22)

where now σ, U, V denote the singular values and vectors of P̂.
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1.4 Numerical experiments

In this section we present numerical experiments for scatterers of various

shapes and sizes. In order to construct the array response matrix, which is

the data that we need for evaluating the imaging functionals, we solve numeri-

cally the wave equation problem (1.1) with appropriate initial and boundary

conditions. To this end, we use Montjoie [11], a high-order finite element

C++ code developed at INRIA, designed to solve problems arising in wave

propagation phenomena, such as acoustic, electromagnetic, aeroacoustic and

elastodynamic problems.

We consider a waveguide with depth equal toD = 200 m and sound speed

c0 = 1500 m/s. The vertical array is placed at za = 40 m and consists of

N = 39 transducers uniformly distributed in the water column with a pitch

h = 5 m, thus spanning the whole depth of the waveguide. Let us note that

in Chapter 4 we shall consider the case where the array does not span the

whole depth of the waveguide. In such case, the array response matrix may

be extracted from the matrix that corresponds to the full aperture array, by

removing the appropriate lines and columns.

Point-like sources are simulated by considering the source term in (1.1)

to be of the form f(t, ~x) = h(t) g(~x; ~xs). Here h(t) is a Ricker function of

time, given by

h(t) =
√
2f0
[
1− 4π2f 2

0 (t− tc))
2
]
exp

{
−[

√
2πf0(t− tc)]

2
}
,

where f0 is the central frequency of the pulse and tc is the time at which the

source attains its maximum. In the numerical results that follow, f0 = 75 Hz,

tc = 0.01 s and the final computation time is taken equal to T = 4 s. The

function g(~x; ~xs) is a Gaussian, given by g(~x; ~xs) =
√
α/π exp(−α|~x−~xs|2),

where α = ln(106)/r2; r determines the support of the Gaussian and is taken

equal to 10 m.

The originally infinite (in the z-direction) domain is truncated by intro-

ducing two perfectly matched layers (PML) [21, 22], see Figure 1.2. The one

near the source is confined in range in [−100, 0], while the other, far from the

source, in [500, 600] (all distances are in meters). We have checked that the

width of 100 m for the PML was enough in order to absorb the waves effi-

ciently. The resulting computational domain is discretized with quadrangles
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on which the usual basis functions of the Qn family (Qn = span{xℓym, 0 ≤
ℓ,m ≤ n}) are used. In this work, we will see imaging results for two types

of scatterers; a square scatterer and a disc shaped scatterer. We use Q8 poly-

nomials for the square scatterer, while for the disc, we use Q12. Numerical

quadrature is based on Gauss-Lobatto rules, and time discretization employs

a fourth–order Leapfrog scheme.
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Figure 1.2: Schematic representation of a waveguide truncated near and far

from the source with two perfectly matched layers.

In all cases the frequencies that are used are close to a central reference

frequency f0 = 75 Hz, for which the corresponding wavelength is equal to

λ0 = 20 m. In particular, we consider frequencies ranging from 70.5 to

79.5 Hz with an increment of 1 Hz.

In what follows we will examine the performance of the imaging function-

als IKM and ĨKM. Let us recall the results for selective imaging with IKM in

free space: it was shown in [4] that information about the edges of a reflector

is contained in those singular vectors that correspond to singular values of

the response matrix that lie in the intermediate regime between the large

ones and zero. In our numerical simulations we observe the same behaviour

for imaging in waveguides with ĨKM while this is not the case for IKM.

Test case 1: Circular scatterer with diameter δ = 40 m

We consider here a circular scatterer with diameter δ = 2λ0 = 40 m centered

at (440,100) m. Figure 1.3 depicts the singular values (normalized with

respect to the largest one) of the matrices Π̂ and P̂ for a frequency equal to

75.5 Hz. As expected, only few of the singular values are non-zero.
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Figure 1.3: Normalized singular values of Π̂ (left subplot) and P̂ (right sub-

plot) for a circle scatterer with diameter δ = 40 m.

In Figure 1.4 we plot the values of IKM and ĨKM when the full matrices Π̂

and P̂, respectively, are used. In both cases we see that the front part of the

circle is recovered, although for ĨKM the image is supported mainly around

the center of the circle at x = 100 m. Let us note here, that while the IKM

image recreates the biggest part of the left side of the circle, we also have

oscillations in the image, whose existence is explained in a resolution analysis

performed in the Appendix.
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Figure 1.4: IKM (left subplot) versus ĨKM (right subplot) for a circular scat-

terer with diameter δ = 40 m.

In Figure 1.5 we present the results of selective imaging with IKM
J and

ĨKM
J (see (1.18) and (1.22), respectively), for J = 1, 4 and 5. For J = 1, IKM

J

focuses towards the endpoints of the vertical diameter of the circle, while

ĨKM
J in the leftmost part of the circle. For J = 4, IKM

J seems to focus at the

two endpoints of the horizontal diameter of the circle and ĨKM
J towards the

endpoints of the vertical diameter. For J = 5, both IKM
J and ĨKM

J seem to

locate roughly the boundary of the circle.
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Figure 1.5: IKM
J (top row) versus ĨKM

J (bottom row) for a circular scatterer

with diameter δ = 40 m. J indicates projection on the Jth singular vector.

From left to right J = 1, J = 4 and J = 5.

As a first comment, note that selective imaging with ĨKM exhibits the

expected behaviour from the free space case (see e.g. [4]), in the sense that

the singular vector corresponding to the largest singular value is associated

to an image focused at the center of the object, while the ones correponding

to the intermediate singular values carry information about its edges.

Test case 2: Circular scatterer with diameter δ = 20 m for a single

frequency

Here we decrease the diameter of the previous circular scatterer to δ = λ0 =

20 m. In Figure 1.6 we plot the values of |IKM
1 (ω)| and |ĨKM

1 (ω)| (selective
imaging with respect to the first singular vector) for single frequencies of

73 Hz (left column) and 74 Hz (right column). For both frequencies |ĨKM
1 (ω)|

focuses towards the leftmost part of the circle, as opposed to |IKM
1 (ω)| which

focuses towards its edges for f = 73 Hz, but in the center for f = 74 Hz.

This kind of lack of robustness has initially motivated us to work with ĨKM

rather than with IKM.
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Figure 1.6: |IKM
1 (ω)| (top row) versus |ĨKM

1 (ω)| (bottom row) for a circle

shaped scatterer with diameter δ = 20 m for single frequencies of 73 Hz (left

column) and 74 Hz (right column).

Test case 3: Square scatterer with side length b = 40 m

Now, we consider a square scatterer of side length b = 2λ0 = 40 m, with its

center located at (470,100) m. In this test case we examine the behaviour

of ĨKM and its filtered version under the influence of additive noise. In order

to simulate measurement noise we proceed as in [4] and add a noise matrix

W (ω) with zero mean uncorrelated Gaussian distributed entries with variance

ǫpavg, i.e. Wr,s(ω) ∼ N (0, ǫpavg). Here the average power received per source,

receiver and frequency is given by

pavg =
1

N2Nfreq

Nfreq∑

i=1

‖Π̂(ωi)‖2F,

where ‖·‖F is the Frobenius matrix norm and Nfreq the number of frequencies.

The expected power of the noise W (ωi) over all frequencies, receivers and

sources is

E



Nfreq∑

i=1

‖W (ωi)‖2F


 = ǫN2Nfreq pavg.
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Since the total power of the signal received over all frequencies, receivers and

sources is N2Nfreq pavg, the Signal-to-Noise Ratio (SNR) in dB is −10 log10 ǫ.

As before, we use frequencies ranging from 70.5 to 79.5 Hz with an in-

crement of 1 Hz. In Figure 1.7 we plot the singular values of the matrices Π̂

and P̂ for the frequency of 75.5 Hz (normalized with respect to the largest

one) in the absence of noise and for SNR = 10, 0 and -10 dB. Notice that

the singular values that are larger than 20% of the largest one in the case of

10 dB SNR remain close to those corresponding to the unperturbed matrices,

while noise has a more profound influence in the singular values of 0 dB and

-10 dB SNR.
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Figure 1.7: Normalized singular values of Π̂ (left subplot) and P̂ (right sub-

plot) for a square scatterer with side length b = 40 m, in the abscence of

noise and by adding noise with 10, 0 and -10 dB SNR.

In Figure 1.8 we plot the images obtained with ĨKM without using any

selective imaging techniques. In all cases the left side of the scatterer is

recreated.
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Figure 1.8: ĨKM for b = 40 m, D = 200 m, c0 = 1500 m/s, f ∈ [70.5, 79.5] Hz

and SNR= ∞, 0,−10 dB.

Next, we use filtered versions of the matrix P̂ that employ more than one

singular values. These are chosen as follows, [4]:

a) we normalize the singular values with respect to the largest one,

b) we determine an interval [α, β] ⊂ (0, 1), and

c) we include in the filtered version of ĨKM,f all the singular values that lie

in [α, β].

Figures 1.9–1.10 depict the values of ĨKM,f without noise included and

when noise is included with 0 and -10 dB SNR. We do not show the images

with 10 dB SNR because they are essentially the same as the ones without

noise. Specifically, in Figure 1.9 we have employed in the computation of

ĨKM,f the singular values that are between 5% and 60% of the largest one

([α, β] = [0.05, 0.60]) and in Figure 1.10 we take [α, β] = [0.12, 0.74].
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Figure 1.9: Normalized values of ĨKM,f , for b = 40 m, D = 200 m, c0 =

1500 m/s, f ∈ [70.5, 79.5] Hz and SNR= ∞, 0,−10 dB, [α, β] = [0.05, 0.60].
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In both cases the results with 0 dB SNR are qualitatively very similar to

those obtained in the absence of noise. Note that even with −10 dB SNR,

we are still able to recreate the left side of the object, but the effect of the

noise is visible in the image.
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Figure 1.10: Normalized values of ĨKM,f , for b = 40 m, D = 200 m, c0 =

1500 m/s, f ∈ [70.5, 79.5] Hz and SNR= ∞, 0,−10 dB, [α, β] = [0.12, 0.74].

19



Chapter 2

A One-Dimensional Model

Problem

In this chapter we are going to introduce and study a simplified model prob-

lem in order to shed some light to the behaviour of the imaging functionals

IKM and ĨKM. Let us turn our attention to the case of the square scatterer

(Test Case 3) in Section 1.4. Figures 1.8 and 1.9 suggest that we are able

to locate the left side of the square. This motivates us to introduce a one-

dimensional vertical mirror as a target, and try to analyze the array response

matrix and the imaging functionals in this simpler case. Specifically, we con-

sider the following model problem: In the marine environment described in

the beginning of Chapter 1, we assume that the active array passes through

the x axis, i.e., the transducers’ coordinates are (0, xi), xi = ih, 1 ≤ i ≤ N ,

where h := D/(N + 1) is the pitch. The target, denoted by T , is assumed

to be a vertical one-dimensional perfect reflector, i.e., a ‘crack’ of width b,

located at range z = L. The center of the target is denoted by ~y ∗ = (L, x0).

Let us also denote by C the vertical section of the waveguide at range z = L,

i.e., C := {(L, x) : 0 ≤ x ≤ D}. This setup is schematically depicted in

Figure 2.1 and aims at simulating the left side of a square scatterer. We

refer to [23] for an analogous setup used to analyze the response matrix for

extended targets in the free space.
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Figure 2.1: A vertical crack, implemented in the waveguide.

2.1 Properties of the array response matrix

Assuming unit reflectivity at each point of the target we may approximate the

response in a receiver placed at ~xr = (0, xr) due to a source at ~xs = (0, xs),

r, s ∈ {1, 2, . . . , N}, as

Π̂(~xr, ~xs, ω) =

∫

T
Ĝ(~y, ~xr)Ĝ(~y, ~xs) dx, (2.1)

where ~y = (L, x), x ∈ [x0 − b/2, x0 + b/2], and Ĝ is the Green’s function

defined in (1.5). For future reference, let us also recall that µn, Xn are

the eigenvalues and corresponding eigenfunctions of the operator −d2/dx2 in
H2(0, D)∩H1

0 (0, D), defined in (1.3), and βn are the horizontal wavenumbers

defined in (1.4).

Inserting (1.5) into (2.1) shows that

Π̂(~xr; ~xs, ω) = −1

4

∞∑

m,n=1

eiβmL

βm
Xm(xs)Xn(xr)

eiβnL

βn

∫ x0+
b
2

x0− b
2

Xm(x)Xn(x)dx.

(2.2)

Moreover, let gm(xi) := i
2
eiβmL

βm
Xm(xi) =

(
Ĝ(·, ~xi), Xm

)
L2(C)

, where the

outer parentheses in the second equality denote the standard L2 inner product

on C. Let us also define G to be the matrix

G :=




g1(x1) g2(x1) . . . gM(x1) gM+1(x1) . . .

g1(x2) g2(x2) . . . gM(x2) gM+1(x2) . . .
...

...
...

...

g1(xN ) g2(xN) . . . gM(xN) gM+1(xN ) . . .
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and Ainf the (infinite) matrix with entries

amn =

∫ x0+
b
2

x0− b
2

Xm(x)Xn(x)dx, m, n = 1, 2, . . . . (2.3)

Then, using (2.2), we may write the array response matrix Π̂ as a matrix

product of the form

Π̂ = GAinfGT . (2.4)

We point out that if L is sufficiently large and m ≥M + 1, then

gm(xi) =
i

2

eiβmL

βm
Xm(xi) =

1

2

e−
√

µn−k2L

√
µn − k2

Xm(xi) ≃ 0,

or, equivalently, only the principal N ×M part of G is practically non-zero;

thus, in practice, instead of Ainf we work with its M × M principal part

denoted by AM . At this point let us remark that although Π̂ is associated

with Ainf (and, in practice, with AM) through (2.4), we cannot infer from

this formula an explicit relation between their singular values.

It is now natural to ask how AM is related to the matrix P̂ that results

when we project the array response matrix Π̂ on the propagating modes.

Recalling the definition of P̂ (1.13), and using the orthonormality of the

eigenfunctions {Xn}n=1,2,..., one may immediately see that

P̂mn = −1

4
ei(βm+βn)Lamn, m, n = 1, . . . ,M, (2.5)

or, in matrix form,

P̂ = −1

4
QAMQ, (2.6)

where Q is the diagonal matrix diag(eiβ1L, . . . , eiβML). Hence P̂ is unitarily

equivalent to AM , since Q∗Q = I, therefore the spectral properties of P̂ are

determined by those of of the real symmetric matrix AM .

In what follows, for an arbitrary positive integer n we shall denote by

An the principal n × n submatrix of Ainf, and we will refer to either the

eigenvalues/eigenvectors of An or to its singular values/vectors, since the

latter are just the former written in descending order.
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For ℓ,m ≥ 1, and in view of the simple trigonometric identity 2 sin a sin b =

cos(a− b)− cos(a+ b), it holds that

aℓm =

∫ x0+
b
2

x0− b
2

Xℓ(x)Xm(x)dx =
2

D

∫ x0+
b
2

x0− b
2

sin
ℓπx

D
sin

mπx

D
dx

=
1

D

∫ x0+
b
2

x0− b
2

cos
(ℓ−m)πx

D
dx− 1

D

∫ x0+
b
2

x0− b
2

cos
(ℓ+m)πx

D
dx.

Hence

An = Tn −Hn, where Tn := (tℓ−m)
n
ℓ,m=1, Hn := (tℓ+m)

n
ℓ,m=1,

and

tm =
1

D

∫ D

0

1T (x) cos
mπx

D
dx, (2.7)

where 1T (x) is the indicator function of T and An is the principal n × n

submatrix of Ainf. Note that 1T (x) is the so called generating function of the

matrices An, Tn and Hn. One may immediately recognise Tn as a (real sym-

metric) Toeplitz matrix, i.e., a matrix with constant entries along the diago-

nals, and Hn as a Hankel matrix, i.e., a matrix with constant skew-diagonals

(these are the diagonals that are perpendicular to the main diagonal). Hence

An has a special structure: It is a Toeplitz–minus–Hankel matrix.

As we shall briefly discuss next, the spectral properties of An are deter-

mined by the Toeplitz part Tn. This can be seen, for example, by modifying

appropriately the proofs in the work of Fasino [24], who studies the spectral

properties of Toeplitz-plus-Hankel matrices, or by tracing back to the work of

Trench [25], who studies the spectral properties of the real symmetric Toepliz

matrix

Tn = (tr−s)
n
r,s=1, where tr =

1

π

∫ π

0

f(x) cos rx dx,

and the generating function f ∈ L2[0, π]. Following Trench’s notation, a

vector x ∈ Rn is called symmetric if Jx = x and skew-symmetric if Jx = −x,

where J is the flip matrix (i.e. the matrix that has ones on the secondary

diagonal and zeros elsewhere); see also [26]. Moreover, an eigenvalue λ of

T is defined to be even (odd) if T has a symmetric (skew-symmetric) λ–

eigenvector.
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Now, let λ(n)

1 ≤ λ(n)

2 ≤ · · · ≤ λ(n)
n be the eigenvalues of Tn, and let ν(n)

1 ≤
ν(n)

2 ≤ · · · ≤ ν(n)
n be the eigenvalues of An. Since, in our case, the generating

function f of the matrices An, Tn, and Hn, is the indicator function of T , its

essential lower and upper bounds are simply 0 and 1, respectively. A result

of Szegő [27, pp. 64-65], guarantees that (i) 0 ≤ λ(n)

i ≤ 1 for all i = 1, . . . , n;

(ii) for any fixed integer k, λ(n)

k → 0, λ(n)

n−k → 1 as n → ∞; and (iii) if G is

any continuous function defined in [0,1], we have

lim
n→∞

1

n

n∑

i=1

G(λ(n)

i ) =
1

D

∫ D

0

G(f(x))dx. (2.8)

Moreover, the following theorem specializes results stated in [25] to our

case, where we work on [0, D], the entries of our matrix are given in (2.7),

and f = 1T .

Theorem 1 (a) The odd eigenvalues κ(2n+1)

1 ≤ κ(2n+1)

2 ≤ · · · ≤ κ(2n+1)
n of

T2n+1 are the eigenvalues of An [25, Thm. 2].

(b) Since f is bounded, the sets {λ(n)

i }ni=1 and {κ(2n+1)

i }ni=1 are absolutely

equally distributed [25, Def. 1, Th. 5].

(c) Since f is bounded, (2.8) also holds for ν(n)

i instead of λ(n)

i . Moreover,

if for ǫ > 0 C(ǫ, 1− ǫ, n) is the cardinality of the set {i : ǫ ≤ κ(2n+1)

i ≤
1− ǫ}, then

lim
n→∞

1

n
C(ǫ, 1− ǫ, n) = 0

[25, Lem. 2 and Thm. 6].

Summarizing, the eigenvalues of the matrix An (which are the odd eigen-

values of T2n+1 are clustered near 0 and 1, and considering the function G to

be the identity on [0, 1], we immediately see that

lim
n→∞

1

n

n∑

i=1

ν(n)

i =
1

D

∫ D

0

1T (x) dx =
b

D
.

This indicates that asymptotically, as n → ∞, the ratio of the nonzero

eigenvalues of An to the total number of eigenvalues is equal to b/D. In our

case, where n is equal to the number of propagating modes M =
⌊
2D
λ

⌋
, it is
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expected that the number of ‘significant’ singular values for our matrix AM

is [
M

b

D

]
≈
[
2b

λ

]
. (2.9)

Moreover, if u = (u1, . . . , uM)T is an orthonormal eigenvector of AM that

corresponds to an eigenvalue λ, then v = 1√
2
(u, 0,−Ju)T is an orthonormal

skew-symmetric λ–eigenvector of T2M+1 and vice versa.

To conclude, we have shown that the number of nonzero singular values

is related to the size of the object. In particular, by performing a standard

resolution analysis, one may deduce that the cross-range resolution is λ/2,

therefore the rank of the matrix is roughly equal to the size of the object

divided by the “array resolution.” The same result has been obtained in the

free space case (see [4, §4.5.2]).

In the next subsection we explore the form of the eigenvectors of AM in

order to gain some insight about the behaviour of the functionals that we

are using for selective imaging.

2.1.1 Selective imaging for the model problem

Next, we explore the form of the singular vectors of AM . To this end, we

consider the imaging functional ĨKM
J , where the subscript J indicates that the

matrix P̂ is approximated by means of the J-th singular vector for selective

imaging. Then, for a search point ~y s = (L, xs) located at the correct range

L, (1.21) and (2.5) imply that

ĨKM
J (~y s) =

1

16h2

M∑

m,n=1

Xm(x
s)Xn(x

s)σJu
m
J u

n
J = σJ

(
1

4h

M∑

n=1

unJXn(x
s)

)2

,

(2.10)

where uJ = (u1J , u
2
J , . . . , u

M
J )T is the singular vector of AM that corresponds

to the singular value σJ . Recalling the definition of Xn in (1.3), and sup-

pressing constants, we associate to uJ the trigonometric polynomial

sJ(x) =
M∑

n=1

unJ sin
nπx

D
. (2.11)

Therefore, the behaviour of ĨKM
J is in fact determined by the properties of

sJ(x), that we shall illustrate in the following example: Consider a waveguide
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with depth equal to D = 200 m and constant sound speed equal to c0 =

1500 m/s. In Figure 2.2 (left subplot) we plot the singular values of AM for a

frequency of 74 Hz, for which the number of propagating modesM = 19, the

wavelength λ ≈ 20.27 m, and T is centered at x0 = 70 m while its width is

taken equal to b = 40 m ≈ 2λ. According to (2.9) the number of ‘significant’

singular values equals 4. Indeed, one may see that the first three remain

very close to 1, the fourth one is approximately 0.65 and the fifth lies in the

transition layer between 0 and 1 close to 0.3. The sixth one is less than 0.1

while the rest are very close to zero. In the right subplot of Figure 2.2 we plot
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Figure 2.2: Left: The singular values of AM (M = 19). Right: The graphs of

(sJ(x))
2, x ∈ [0, 200], for J = 1, 5, 8, normalized with respect to their largest

values.

the square of the values of the trigonometric polynomials sJ(x) for J = 1, 5

and 8, normalized with respect to their largest values. The relevant singular

vectors uJ , J = 1, 5, 8 have been computed with MATLAB. The red circle in

these figures indicates the center x0 of T and the red dashed lines the width b.

Note that s1(x) that corresponds to the first singular value is supported in T
and exhibits a peak at the center x0, s5(x) exhibits peaks near the endpoints

of T , while s8(x) is approximately zero for x ∈ T . These remind us the

spectral properties and the band-limited behaviour of the so called prolate

matrix, see [16, 28, 29]. As remarked in [29] for the prolate matrix, one may

characterize the eigenspace corresponding to the eigenvalue cluster near 1 as

the signal subspace, the eigenspace corresponding to the eigenvalue cluster

near 0 as the noise subspace and the eigenspace corresponding to eigenvalues
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in the intermediate layer as the transient subspace; the terminology is adopted

from [29].

In the following sections we shall investigate further the properties of the

eigenvectors of the matrix AM , depending on the position of the target T ,

and their relation with the behaviour of the imaging functional ĨKM.

2.2 Spectral properties of AM (revisited)

For notational convenience let us denote the upper and lower endpoints of

the crack T as

α = x0 −
b

2
and β = x0 +

b

2
,

respectively. Then, of course, b = β − α and x0 = (α + β)/2. Moreover, the

entries of the matrix AM , defined in (2.3), may be written explicitly in the

form

amn =
1

(m− n)π

(
sin

(m− n)πβ

D
− sin

(m− n)πα

D

)

− 1

(m+ n)π

(
sin

(m+ n)πβ

D
− sin

(m+ n)πα

D

)
.

The first part of this difference corresponds to the Toeplitz matrix T , while

the second to the Hankel matrix H .

Now, let u = (u1, u2, . . . , u2M+1)
T be a µ–eigenvector of the (2M + 1)×

(2M + 1) Toeplitz matrix T2M+1. Then

2M+1∑

n=1

Tmnum = µum, m = 1, 2, . . . , 2M + 1

⇔
2M+1∑

n=1

1

(m− n)π

(
sin

(m− n)πβ

D
− sin

(m− n)πα

D

)
un = µum. (2.12)

Letting

yn =
λ(n− (M + 1))

D
and xm =

λ(m− (M + 1))

D
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we may interpret the sum (2.12) as a Riemann sum over (−1, 1), thus (2.12)

may be seen as an approximation of the following integral equation

∫ 1

−1

1

π(x− y)

[
sin
(2πβ
λ

(x− y)
)
− sin

(2πα
λ

(x− y)
)]

u(y) dy = µu(x).

(2.13)

In the following paragraphs we examine the properties of (2.13), i.e. prop-

erties of the eigenvalues and eigenfunctions of the integral operator

K1u(x) =

∫ 1

−1

sin
(
β̃(x− y)

)
− sin

(
α̃(x− y)

)

π(x− y)
u(y) dy, (2.14)

where α̃ = 2πα/λ and β̃ = 2πβ/λ, and the way they depend on the position

of the crack in the waveguide.

2.2.1 A crack with an endpoint fixed on the surface

In this case we have α = 0 and β = b. Therefore the Toeplitz part of the

matrix AM is the prolate matrix, and the Toeplitz matrix T2M+1 has entries

tmn = tm−n, m,n = 1, 2, . . . , 2M + 1, where

t0 =
β̃

π
=

2b

λ
, tj =

sin
(
β̃ j
)

πj
=

sin
(
2πb
λ
j
)

πj
, j = 1, 2, . . . , 2M.

Moreover, the integral operator defined in (2.14) takes the special form

K2u(x) =

∫ 1

−1

sin
(
β̃(x− y)

)

π(x− y)
u(y) dy, where β̃ =

2πb

λ
. (2.15)

A great deal of information about the spectrum of K2 is contained in a series

of outstanding papers by Slepian, Pollak and Landau, [12, 13, 14, 15, 16],

where they have studied the so-called concentration problem. (This, in short,

amounts to determine those signals in L2(−∞,∞) that retain their largest

fraction of energy, when they are first ‘time limited’ and then ‘band limited’.)

Specifically, for β̃ large enough, the spectrum of K2 is known to consist

of three parts:

• Approximately 2β̃/π = 4b/λ eigenvalues are close to 1,

• order log(β̃) eigenvalues decay very fast from 1 to 0,
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• and the rest remain very close to zero.

Keeping in mind that the odd eigenvalues of the matrix T2M+1 are the eigen-

values of the matrix AM , we recover the results described in Section 2.1.

A remarkable fact is that the eigenfunctions of (2.15), ψ0, ψ1, . . . , ψn, . . .,

which form a complete orthonormal basis in L2[−1, 1], turn out to be the

well-known prolate spheroidal wave functions (PSWFs). To be precise, the

differential eigenvalue problem

Lψ(x) = d

dx

[
(1− x2)

dψ(x)

dx

]
− β̃2x2ψ(x) = −χψ(x), (2.16)

is such that the operators L and K2 commute, i.e. LK2 = K2L, and they have

an identical complete set of eigenfunctions {ψn}n≥0 in L2(−1, 1). Moreover,

using (2.15) to extend naturally each ψn(x), for x 6∈ [−1, 1], one may show

that the set {ψn}n≥0 is orthogonal on (−∞,∞) as well as on (−1, 1).

In what follows we give some of the basic properties of the PSWFs ψn(x)

and the eigenvalues µn:

µ0 > µ1 > µ2 > . . . ,

ψn(x) is even or odd with n,

ψn(x) has exactly n zeros in (−1, 1), (2.17)

ψn(x) ∼ kn
sin β̃x

x
, as x→ ∞,

∫ 1

−1

e−2πixtψn(t) dt = anψn(2πx/β̃), −∞ < x <∞, (2.18)

where kn and an are independent of x. The dependence of ψn(x) and µn on

the parameter β̃ is of particular interest. In Figure 2.3, we see the eigenvalues

µn in the top row and in the bottom row the amplitude of the function ψ4(x)

for β̃ = 5, 10, 20, 30. We observe that for β̃ = 5 that µ4 < 1 which means

that the eigenfunction is not fully concentrated inside our interval (−1, 1)

and this is apparent by the corresponding plot of ψ4. For β̃ = 10, 20, 30 we

see that all the energy of ψ4 is contained within our interval. Note here that

there are 4 zeros of ψ4 in our interval, in accordance with (2.17) and as β̃

increases the zeros move closer to the origin.
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Figure 2.3: Eigenvalues µn (top) and values of the eigenfunction ψ4(x), for

β̃ = 5, 10, 20, 30.

Now, let us go back to the discrete case and recall that the Toeplitz matrix

T2M+1 is exactly the prolate matrix, while the eigenvalues of AM are the odd

eigenvalues of T2M+1. Moreover, if v = 1√
2
(u, 0,−Ju)T is an orthonormal

skew-symmetric eigenvector of T2M+1 corresponding to an odd eigenvalue of

T2M+1, then u = (u1, . . . , uM)T is an orthonormal eigenvector of AM .

In Figure 2.4, we plot the odd eigenvalues and the first four odd eigenvec-

tors of T2M+1. The eigenvectors of T2M+1 are the discrete prolate spheroidal

sequences ψ(k), and we compute them using the MATLAB function dpss.
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Figure 2.4: Odd eigenvalues (top) and the first four odd eigenvectors (bot-

tom) of T2M+1.
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2.2.2 A crack with endpoints α, β ∈ (0, D], (α < β)

In this general case instead of having the integral operator K2 defined in

(2.15) we have to deal with K1, see (2.14). Then, it cannot be found, in

general, a nice second or fourth order differential operator with polynomial

coefficients that commutes with K1, []. Nevertheless, K1 is a compact, sym-

metric, positive definite operator from L2[−1, 1] to L2[−1, 1], cf. [], hence it

has countably many positive eigenvalues (possibly degenerate)

ν0 ≥ ν1 ≥ · · · ≥ νn ≥ · · · → 0,

and its corresponding orthonormal eigenfunctions are complete in L2[−1, 1].

On the other hand, we cannot any more identify them as PSWFs.

In the case where the crack is placed symmetrically in the middle of the

waveguide, i.e., x0 = D/2, we use the identity sin a− sin b = 2 sin a−b
2

cos a+b
2

to show that the entries of the Toeplitz matrix T2M+1 are

Tmn =
2

(m− n)π
sin

(m− n)πb

2D
cos(m− n)

π

2
.

Consider the prolate matrix P with entries Pmn = pm−n, where

p0 = 2w and pk =
sin(2πwk)

pk
, k = 1, 2, . . . , for w =

b

2D
.

Note that the entries of T2M+1 are equal to the corresponding ones of P2M+1

multiplied by the term cos(m− n)π
2
, which takes the values 0,±1 depending

on the diagonal we are looking at.

In Figure 2.5, we compare the eigenvalues and corresponding eigenvectors

of AM (blue circles) with the odd ones of P2M+1 (red asterisks). Now, we

see that the eigenvalues are different, something that did not happen in

the previous case, while the eigenvectors of AM seem to have no apparent

similarities to those of P2M+1.
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Figure 2.5: Comparison of eigenvalues (top) and the first four eigenvectors

(bottom) of AM (blue circles) vs. the first four odd eigenvectors of P2M+1

(red asterisks).

2.3 Selective imaging for the model problem

revisited

In Section 2.1.1, we have associated the eigenvectors of AM with the trigono-

metric polynomial

sJ(x) =
M∑

n=1

unJXn(x) =

√
2

D

M∑

n=1

unJ sin
nπx

D
, (2.19)

and observed that their behavior is similar to the prolate spheroidal wave

functions. Next, in Section 2.2.1 we saw that in the special case where the

crack is adjacent to the surface of the waveguide we may identify the eigen-

vectors uJ of the matrix AM as the M-first coordinates of the eigenvectors

of the prolate matrix P2M+1.

Seeing as the vertical eigenfunctions Xn are a base of [0, D], we may see

equation (2.19) as a projection of the unJ on a different base. Note also that we

have a finite sum, which means that the tail of the series will determine our

error in the approximation. In Figure 2.6 we see a comparison between the

prolate spheroidal wave functions ψ0(x), ψ1(x), ψ2(x), ψ3(x) and the restric-

tion on the crack of the trigonometric polynomials s1(x), s2(x), s3(x), s4(x)

as described in equation (2.19), for a crack fixed on the top of the waveguide.
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We have shifted the calculation of the sJ ’s in the interval [−1, 1] in order to

compare them properly with the ψJ ’s. We see that the trigonometric polyno-

mials sJ(x) are indeed similar to the prolate spheroidal wave functions and

we attribute their discrepancy to the finite sum in our expression.
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Figure 2.6: The first four prolate spheroidal wave functions (blue circles) and

the first four trigonometric polynomials (red asterisks).

In Figure 2.7, we now plot the first four trigonometric polynomials sJ ,

for a crack that is centered at x0 = 73 with a blue line, for x0 = 100 m with

a red line and x0 = 143 m with a black line. We have shifted all our results

to [−1, 1], similar to what we have done previously. Here, we see that even

though in these cases we do not recover the discrete PSWFs, we still have

the prolate-like behavior in our image. It also interesting to note that while

the positions of the crack differ a lot, we have good agreement for the sJ .

We see that for x0 = 73 m and x0 = 143 m the polynomials have very good

agreement, with only the case where the crack is centered in the middle of

the waveguide having slight differences.
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Figure 2.7: The first four trigonometric polynomials for x0 = 73 m (blue

circles), x0 = 100 m (red asterisks) and x0 = 143 m (black rhombi) for

f = 75.5 Hz.

Next, we review the steps that we have followed in [1] in order to gain some

insight regarding the form of the singular vectors (eigenvectors) of AM , and
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of the related trigonometric polynomial sJ(x). To this end, we consider an

orthonormal basis {Yj(x)}∞j=1 of L
2[x0−b/2, x0+b/2]; specifically, let Yj(x) =√

2
b
sin
(

(x−x0+
b
2
)jπ

b

)
, j = 1, 2, . . .. Then, the restriction of the eigenfunctions

Xn ∈ L2[0, D] on the crack T may be written as

Xn(x)|[x0−b/2,x0+b/2] =
∞∑

j=1

vnj Yj(x), where v
n
j =

∫ x0+
b
2

x0− b
2

Xn(x)Yj(x) dx.

The orthonormality of the Yi’s and Parseval’s relation imply that

amn = (Xm, Xn)L2(T ) =
∑

i

(Xm, Yi)L2(T )(Xn, Yi)L2(T ) =
∞∑

i=1

vmi v
n
i . (2.20)

Let us define

vi = (v1i , v
2
i , . . . , v

M
i , . . .)

T , (2.21)

and note that the sequences vi ∈ l2, for every i. Then the infinite matrix Ainf

may be written as

Ainf =

∞∑

i=1

vi v
T
i . (2.22)

Moreover, the vi are orthonormal. Indeed, let 〈·, ·〉 denote the standard inner

product in l2, and Ỹi the extension by zero of Yi on [0, D]. Then

〈vi, vj〉 =
∞∑

n=1

vni v
n
j =

∑

n

(Xn, Yi)L2(T )(Xn, Yj)L2(T )

=
∑

n

(Ỹi, Xn)L2[0,D](Ỹj, Xn)L2[0,D]

Parseval
= (Ỹi, Ỹj)L2[0,D] = (Yi, Yj)L2(T ) = δij .

Let V be the closure of span{vi}i=1,2,.... Then l2 = V ⊕ V ⊥, and Ainf is a

projection operator whose eigenvalues are 0 and 1.

It remains to investigate the relation between the eigenvectors uj of AM

that correspond to eigenvalues close to 1, and the eigenvectors vj of Ainf

corresponding to the eigenvalue 1. Let us multiply, for example, AM by the

vector consisting of the M first components of vj , (i.e.,
(
v1j , v

2
j , . . . , v

M
j

)T
).
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The i-th component of the resulting vector is equal to

M∑

k=1

aikv
k
j =

∞∑

k=1

aikv
k
j −

∞∑

k=M+1

aikv
k
j

=

∞∑

k=1

(Xi, Xk)L2(T )(Xk, Yj)L2(T ) −
∞∑

k=M+1

aikv
k
j

=
∞∑

k=1

(Xi1T , Xk)L2[0,D](Ỹj, Xk)L2[0,D] −
∞∑

k=M+1

aikv
k
j

= (Xi1T , Ỹj)L2[0,D] −
∞∑

k=M+1

aikv
k
j = vij −

( ∞∑

k=M+1

aikv
k
j

)
.

The last term above in the parenthesis depends on i, j, b and D, and is in

general small (this has been checked numerically in all the test cases that we

have considered). Hence if the j-th singular value is approximately 1, then(
v1j , v

2
j , . . . , v

M
j

)T
approximates uj, i.e., the j-th singular vector of AM . This

is illustrated in Figure 2.8 where we plot the components of the first two

singular vectors uJ , J = 1, 2, of AM and the M first terms of the sequences

vJ , J = 1, 2, for the parameters of the previous example for which M = 19.
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Figure 2.8: The singular vector uJ of AM (its components are marked with

red squares) vs. the M first terms of vJ marked with blue circles, for J = 1

(top) and J = 2 (bottom).

Hence, as long as J is associated to a singular vector that lies in the signal
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subspace, one may approximate ĨKM
J as

ĨKM
J (~y s) ≈

M∑

m,n=1

Xm(x
s)Xn(x

s)vmJ v
n
J =

(
M∑

n=1

vnJ Xn(x
s)

)2

, (2.23)

where constants are once more suppressed. Moreover, for M large enough,

we formally get

(ĨKM
J (~y s))1/2 ≈

∣∣∣
∞∑

n=1

vnJXn(x
s)
∣∣∣ =

∣∣∣
∑

n

(Xn, YJ)L2(T )Xn(x
s)
∣∣∣

=
∣∣∣
∑

n

(ỸJ , Xn)L2[0,D]Xn(x
s)
∣∣∣ = |ỸJ(xs)|. (2.24)

Using the specific form of the YJ we deduce that, as long as the J-th singular

value is close to one,

ĨKM
J (~y s) ≈ 2

b
sin2

(
(xs − x0 +

b
2
)Jπ

b

)
. (2.25)

In the next section, we will compare these asymptotic results with numerical

simulations.

2.4 Numerical experiments

In this section, we present numerical results for the simplified model of the

vertical one dimensional scatterer (the crack) and specifically, we compare

results of selective imaging with ĨKM
J with those obtained using the asymp-

totic formulae (2.23), (2.25). In the following examples the sound speed

is taken equal to c0 = 1500 m/s and the depth of the waveguide is equal

to D = 200 m. First, we consider a single frequency f = 74 Hz, hence

the wavelength λ ≈ 20.27 m. The array has N = 39 receivers, the pitch

h = 5 m ≃ λ/4 and the crack, centered at (L, x0) = (410, 70) m, has length

b = 40 m ≃ 2λ. The number of propagating modes in the waveguide is

M = 19. The singular values of AM are shown in Figure 2.2. We have seen

previously that AM and, consequently, the matrix P̂ defined in (2.5), have

[2b/λ] = 4 significant singular values. In other words, and with reference to

Figure 2.2, it is expected that the first three singular vectors comprise the
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signal subspace, the fourth and the fifth lie in the transient subspace, and

the rest correspond to the noise subspace.

We now turn to check the validity of the asymptotic expressions (2.23)

and (2.25). In Figure 2.9 we plot superimposed the normalized graphs of

ĨKM
J (~x s, ω) (see (1.21)), of (2.23) and of (2.25), for ~x s that are located at

the correct range L, and for J = 1 and 2. The subscript J indicates that

only the J-th singular vector is employed in the filtered version of the matrix

P̂, defined in (2.5). As one may immediately see there is good agreement

between the numerics and the asymptotic expressions.
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Figure 2.9: The graph of ĨKM
J ((L, xs), ω) (solid black line) normalized and su-

perimposed on the graphs of (2.23) (dash-dotted red line) and (2.25) (dashed

blue line). J indicates projection on the Jth singular vector. The ordinates

x0−b/2 and x0+b/2 are in dashed green lines, and x0 is marked with a green

circle. Here c0 = 1500 m/s, f = 74 Hz, D = 200 m, b = 40 m, x0 = 70 m

and J = 1 (left subplot), J = 2 (right subplot).

In Figure 2.10 we show analogous results for selective imaging with ĨKM
J (~x s, ω)

and (2.23), based on the third to the sixth singular vectors. Now, one may

notice somewhat larger discrepancies but, in general, the asymptotic expres-

sion agrees well with the numerical results for J = 3, 4 and 5. For J = 6

there is a clear mismatch, with ĨKM
J focusing approximately 4.5 m below the

lower endpoint of the crack, since now the corresponding singular vector be-

longs to the noise subspace. (The discrepancies, as expected, are even larger

between the results of ĨKM
J (~x s, ω) and (2.25), and we do not include them

in the figure. These discrepancies may be attributed to the fact that the

asymptotic analysis is based on matrices of order n, where n→ ∞, while in

37



the numerics only their principal M ×M part has been taken into account.

For example, the orthogonality of the vi is valid only for the infinite matrix

Ainf and is expected to hold only approximately for fixed n.
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Figure 2.10: The graph of ĨKM
J ((L, xs), ω) (solid black line) superimposed

on the graph of (2.23) (dash-dotted red line). J indicates projection on the

Jth singular vector and the ordinate x0 − b/2 and x0 + b/2 are in dashed

green lines, while x0 is marked with a green circle. Here J = 3, 4, 5 and 6,

c0 = 1500 m/s, f = 74 Hz, D = 200 m, b = 40 m, x0 = 70 m.

Figures 2.9 and 2.10, suggest that selective imaging with ĨKM
J (ω) by means

of the first singular vector focuses in the middle of the object, while the fourth

and the fifth singular vectors are focusing mainly in the lower and the upper

endpoint of the crack, respectively.
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Chapter 3

Model problems vs. full objects

In chapter 2, we examined properties of the response matrix for the model

problem with the crack. In this chapter, we want to compare imaging results

between the full object, where we retrieve the response matrix by solving the

wave equation in our domain, and the model problem, which simulates the

boundary of the object that is facing the array, where in this case we construct

Π̂sc using the Born approximation. We will also examine the comparison

between another model problem of a semicircle and its respective full object,

a disc shaped scatterer. The reason behind these comparisons is to examine

if the behavior of ĨKM for the model problem with the crack remains the same

when we move to the square and, also, we want to see if this is also the case

in other geometries. For all the numerical results we present in this chapter,

we consider a waveguide with depth equal to D = 200 m and sound speed

c0 = 1500 m/s. We use a single frequency of f = 73 Hz for all our results.

3.1 Square scatterer vs. crack

First, we want to compare the results we get when we use selective imaging

with ĨKM when the scatterer is a crack, with the corresponding ones for the

square. The side length of the square and the width of the crack is taken

equal to b = 40 m. The square is centered at x0 = (470, 70) m, while the

crack is centered at x0 = (450, 70) m so that the left side of the square and

the body of the crack coincide.
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First, in Figure 3.1 we see imaging results for ĨKM, for the square scatterer

in the left, and for the crack in the right. As we have explained in Chapter

2, the model problem with the crack was motivated by the fact that imaging

the square locates the left side of it.
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Figure 3.1: Values of ĨKM for the square scatterer (left) and for the crack

(right), for b = 40 m, D = 200 m, c0 = 1500 m/s, f = 73 Hz.

In Figure 3.2, we plot the singular values of P̂ for the square on the left

subplot, and for the crack on the right. For the square we observe that

we have that the 3 first singular values are above 0.7, while for the crack

case they are clustered closer to 1, and are above 0.9. As we have shown in

Chapter 2 and specifically in (2.9) , for our current setup we have 4 significant

singular values, that give us information about the object.
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Figure 3.2: Normalized singular values of P̂ for the square scatterer (left) and

for the crack (right), for b = 40 m, D = 200 m, c0 = 1500 m/s, f = 73 Hz.

Next, in Figure 3.3 we have the results for selective imaging with ĨKM
J

for the square scatterer in the top row and for the crack in the bottom row,

for J = 1, 2, 3, 4. We observe that when we project on the first singular

vector, both images seem to focus on the center of the illuminated edge,
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while when projecting on the next singular vectors, we see that the focusing

moves towards the edges of the objects, as predicted by the theory.
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Figure 3.3: Values of ĨKM
J for the square scatterer (top) and for the crack

(bottom), for b = 40 m, D = 200 m, c0 = 1500 m/s, f = 73 Hz, for

J = 1, 2, 3, 4.

What is of particular interest here, is the fact that while the way we

acquire the response matrix for the model problem and the square varies

greatly, we see that our numerical results match the theory and the focusing

behavior of ĨKM
J is preserved when moving from the model problem to the

square.

3.2 Disc shaped scatterer vs. semicircle

Next, we want to compare the results we get when we use selective imaging

with ĨKM for another scatterer geometry with the ones we just showed. In

this case, we want to see the results when imaging a disc shaped scatterer

and the equivalent of the crack in this case, a semicircle. First, let us present

a brief analysis of the semicircle problem, similar to what we did for the

crack.

We assume that the target T is a semicircular arc (with diameter parallel

to the x axis) of radius ρ, centered at y∗ = (L + ρ, x0). Let us also denote

y
∗
1 = (L+ ρ, x0 − ρ) and y

∗
2 = (L+ ρ, x0 + ρ) the endpoints of the arc.

We approximate the response in a receiver placed at ~xr = (0, xr) due to
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Figure 3.4: Schematic representation of the waveguide and basic notation.

a point source at ~xs = (0, xs), r, s ∈ {1, 2, . . . , N}, as

Π̂(~xr, ~xs, ω) =

∫

T
Ĝ(~y, ~xr)Ĝ(~y, ~xs) dσ, (3.1)

where ~y ∈ T . We parametrize T as follows. Let

z = L+ ρ− ρ sin t = L+ ρ(1− sin t), x = x0 − ρ cos t.
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Then the line integral (3.1) with respect to arc length equals

Π̂(~xr, ~xs, ω) =

∫ π

0

Ĝ
(
(L+ ρ(1− sin t), x0 − ρ cos t); (0, xr)

)

× Ĝ
(
(L+ ρ(1− sin t), x0 − ρ cos t); (0, xs)

)
√(

dz

dt

)2

+

(
dx

dt

)2

dt

= −1

4

∫ π

0

∞∑

m=1

∞∑

n=1

1

βm
eiβm(L+ρ(1−sin t))Xm(x0 − ρ cos t)Xm(xr)

× 1

βn
eiβn(L+ρ(1−sin t))Xn(x0 − ρ cos t)Xn(xs) ρ dt

= −1

4

∞∑

m=1

∞∑

n=1

1

βm

1

βn
Xm(xr)Xn(xs)

×
∫ π

0

ei(βm+βn)(L+ρ(1−sin t))Xm(x0 − ρ cos t)Xn(x0 − ρ cos t) ρ dt

= −1

4

∞∑

m=1

∞∑

n=1

1

βm

1

βn
Xm(xr)Xn(xs)

×
∫ π

0

eiβm(L+ρ(1−sin t))Xm(x0 − ρ cos t) eiβn(L+ρ(1−sin t))Xn(x0 − ρ cos t) ρ dt

Passing the terms eiβmL and eiβnL outside the integral and we get

Π̂(~xr, ~xs, ω) = −1

4

∞∑

m=1

∞∑

n=1

eiβmL

βm

eiβnL

βn
Xm(xr)Xn(xs)

×
∫ π

0

ei(βm+βn)ρ(1−sin t)Xm(x0 − ρ cos t)Xn(x0 − ρ cos t) ρ dt.

Now, let B be the matrix with entries

Bmn =

∫ π

0

ei(βm+βn)ρ(1−sin t)Xm(x0−ρ cos t)Xn(x0−ρ cos t) ρ dt, m, n = 1, 2, . . . .

Then Π̂ may be written as

Π̂ = GBGT , (3.2)

where G is the same matrix as in (2.4), which describes the scattered field

for the crack but now B does not possess the special Toeplitz-minus-Hankel

structure, as was the case for A in the crack problem.
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In our experiment, the diameter of both the disc and the semicircle is

taken equal to δ = 40 m and their centers are placed at x0 = (440, 100) m. In

Figure 3.5 we plot the imaging results for ĨKM, for the disc shaped scatterer

in the left and for the semicircle in the right. We observe again that our

images are mainly focused on the leftmost side of our objects and we have a

good agreement between the image for the semicircle and the disc.
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Figure 3.5: Values of ĨKM
J for the circular scatterer (top) and for the semi-

circle (bottom), for δ = 40 m, D = 200 m, c0 = 1500 m/s, f = 73 Hz.

In Figure 3.6, we plot the singular values of P̂ for the disc on the left

subplot, and for the semicircle on the right. Now we see that for the disc we

seem to have 3 singular values that are above 0.5, while the rest lie below 0.2.

For the semicircle, the first 3 singular values are above 0.7 and there are also

2 singular values above 0.3. While for the crack we had a special form for A,

we could identify the number of significant singular values. However, since

this is not the case for the semicircle, we cannot have an explicit relation

between the size of the object and the number of significant singular values.
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Figure 3.6: Normalized singular values of P̂ for the disc shaped scatterer (left)

and for the semicircle (right), for δ = 40 m, D = 200 m, c0 = 1500 m/s,

f = 73 Hz.
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In Figure 3.7 we have the results for selective imaging with ĨKM
J for the

circular scatterer in the top row and for the semicircle in the bottom row, for

J = 1, 2, 3, 4. We see that the selective imaging results in this case, remind

us of the ones we obtained for the square and the crack in the previous case,

in the sense that when we project on the first singular vector we locate the

center of the target, while the following singular vectors focus towards the

edges of the object.

In this case, using selective imaging was more helpful than in the square

case, since, alongside focusing on specific parts of the object, we have the

added benefit of getting information about parts of the object that are not

illuminated when we use the full matrix to create an image. We see that

although in Figure 3.5 we recover the leftmost part of the scatterers, when

we do selective imaging with ĨKM
J we have focusing further towards the edges

of the vertical diameter of the objects for J = 2, 3. This illustrates the

benefits of selective imaging that allows us to focus at the edges of the object

and therefore obtain more information about its shape and size. Also, for

J = 4 we seem to have a focusing on the right side of the disc, which could

be misleading, if not for the fact that the same image is present for the

semicircle, which has no body on that side, so we regard that focusing as an

accident.
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Figure 3.7: Values of ĨKM
J for the circular scatterer (top) and for the semi-

circle (bottom), for δ = 40 m, D = 200 m, c0 = 1500 m/s, f = 73 Hz, for

J = 1, 2, 3, 4.
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Chapter 4

Partial array imaging

In this chapter, we discuss the problem of imaging an extended reflector when

the array A has partial aperture, i.e., it does not span the whole depth of the

waveguide. As remarked in Chapter 1, and further investigated in Chapter 2

in the case of the crack model-problem, the assumption that the array spans

the whole depth of the waveguide allows us to exploit the orthonormality of

the vertical eigenfunctions Xn along the array in order to study the spectral

properties of matrix P̂. Let us remind that P̂ is a weighted modal projection

of the original array response matrix and that the construction and behaviour

of the proposed imaging functional ĨKM depends crucially on P̂. However, as

expected, in the case of the partial array aperture the Xn’s are not any longer

orthonormal along the array. In this chapter we propose a modification in the

definition of P̂ which allows us to extend the applicability of ĨKM in the case

of partial array aperture. Let us also note that imaging with IKM does not

require any modification for partial array aperture imaging and therefore it is

interesting to assess its performance and compare it with ĨKM as the array’s

aperture becomes smaller.

4.1 The weighted modal projection for the

partial array case

In this work, as already mentioned in Chapter 1, we assume that our data for

the scattered field is given in the form of the so-called array response matrix
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Π̂; its size is N ×N where N is the number of the transducers in the array.

Moreover, recall that in order to construct the imaging functionals ĨKM we

have introduced through (1.13) anM ×M matrix P̂, where M is the number

of propagating modes, with entries

P̂mn(ω) = βmβn

∫ D

0

dxs

∫ D

0

dxr Π̂(~xs, ~xr, ω)Xm(xs)Xn(xr), (4.1)

where m,n = 1, 2, . . . ,M . In what follows we assume that N ≥ M , unless

stated otherwise.

Now, we approximate the integrals in (4.1) using the composite trape-

zoidal rule in the partition of [0, D] that is induced by the array’s transducers.

Thus, we may write down the following relation between P̂ and Π̂:

P̂ = −h
2

4
D−1

β V T Π̂V D−1
β , (4.2)

where h is the inter-element array distance (pitch), V is the N ×M matrix

with entries

Vkℓ =

√
2

D
sin

(
ℓπxk
D

)
, k = 1, . . . , N, ℓ = 1, . . . ,M, (4.3)

and Dβ is the M ×M diagonal matrix diag
(

1
β1
, 1
β2
, . . . , 1

βM

)
.

At this point, in order to gain some understanding in the case where the

array has partial aperture, let us bring back to our minds the crack model

problem where the Born approximation allows us to write the array response

matrix Π̂ as in (2.4). Alternatively, in view of the above notation, we may

write Π̂ as

Π̂ = −1

4
V DβQAMQDβV

T , (4.4)

where AM is the principal M ×M part of Ainf, cf. (2.3), and

Q = diag(eiβ1L, . . . , eiβML).

Next, we insert (4.4) into (4.2) to deduce that P̂ may be written in the

form

P̂ = −h
2

4
D−1

β V TV DβQAMQDβV
TV D−1

β . (4.5)

Note that when the array has full aperture, i.e. A = [0, D], the or-

thonormality of Xn along the array implies that the matrix hV TV , which
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eventually may be viewed as an approximation of the matrix with entries∫
AXn(x)Xm(x)dx, m,n = 1, . . . ,M , will be practically equal to IM , where

IM is the identity M ×M matrix. Then (4.5) simplifies to

P̂ = −1

4
QAMQ,

and we conclude that P̂ is unitarily equivalent to AM , see also (2.6).

Hoewever, when the array does not span the whole depth of the waveg-

uide, i.e., A ⊂ [0, D], then it does not hold any longer that hV TV is ap-

proximately equal to IM , and P̂ does not necessarily have the same spectral

properties as AM . As a remedy to this we propose to modify (4.2) as follows:

We multiply Π̂ from the left with V + instead of V T , and from the right with

(V T )+ instead of V , where V + denotes the Moore–Penrose pseudoinverse of

V .

Hence we define P̂ as

P̂ = D−1
β V +Π̂ (V T )+D−1

β .

Now, inserting (4.4) into (4.7) leads to

P̂ = −1

4
D−1

β V +V DβQAMQDβV
T
(
V T
)+
D−1

β . (4.6)

If rank(V ) = M then V + = (V TV )−1V T , see for example [20, p. 257].

Moreover, it is then obvious that V +V = V T
(
V T
)+

= IM , which in turn

implies that (4.6) simplifies to

P̂ = −1

4
QAMQ.

Thus we conclude that although P̂ is defined differently than before it is still

unitarily equivalent to AM as long as V is a matrix of full column rank. To

summarise, we propose the following definition.

Definition 1 Given the array response matrix Π̂ for the scattered field, we

propose to define the matrix P̂ by

P̂ = D−1
β V +Π̂ (V T )+D−1

β , (4.7)
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and then use it in ĨKM (as defined in (1.12))

ĨKM(~y s, ω) = − 1

4h2

M∑

m,n=1

e−i(βm+βn)|za−zs|Xn(x
s)Xm(x

s)P̂mn(ω),

for imaging.

Remark 1 For the crack model problem, as long as rank(V ) =M , we have

shown that the spectral properties of P̂ (as defined by (4.7)) are determined

by those of AM , thus we expect ĨKM to perform in exactly the same way as if

we were using an array of full aperture.

Moreover, for the full aperture array, it is immediate to check that V + =

hV T , hence (4.7) is identical to (4.2).

A question that arises naturally is whether and when V has full column rank

or, equivalently, V TV is invertible, and how is this related to the length of

the array A?
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Figure 4.1: Singular values of Aarr (blue) and of h(V TV ) (red) for h =

10, 5, 2.5, 2, 1, 0.5 m (from top left to bottom right). The array’s length equals

80 m and is placed between 40 m and 120 m in a waveguide with depth equal

to 200 m. The frequency is f = 73 Hz.

An important remark in this direction is that V TV may be considered as an
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approximation of the M ×M matrix Aarr with entries defined by

(Aarr)mn =
1

h

∫

A
Xn(x)Xm(x)dx, ∀m,n = 1, 2, . . . ,M.

This is illustrated in Figure 4.1 where we superimpose the singular values for

the matrices Aarr and hV
TV as the pitch h decreases, for an 80 m long array

that is located between 40 and 120 meters. The source frequency is 73 Hz

and the depth of the waveguide is 200 m, hence M = 19 modes propagate.

The reference wavelength is taken equal to λ0 = 20 m. The top left subplot

corresponds to a pitch h = λ0/2 = 10 m and while we move to the right

we decrease h until the value h = λ0/40 = 0.5 m that corresponds to the

bottom right subplot. These figures indicate that as h is getting smaller

we have a very good agreement between the singular values of these two

matrices. Note that, as we have seen in Chapter 2, the matrix Aarr is a

Toeplitz-minus-Hankel matrix, hence its singular values cluster near 0 and

1. Specifically, if larr is the length of the array, then the number of singular

values that lie near 1 is roughly [larr/(λ/2)], while the rest M − [larr/(λ/2)]

are approaching zero and comprise the so-called noise subspace of the matrix

Aarr. The number of the singular values of Aarr that are small in magnitude

increases as the length of the array decreases. At this point, let us remark

that, in practice, the rank of the matrix V TV is computed numerically and

specifically is determined by the number of singular values of V TV that lie

above a certain threshold, which, of course, depends on the precision that

we use. Therefore as larr decreases more singular values tend to zero, and in

fact V TV will become practically singular as soon as its minimum singular

value µmin falls below the previously mentioned threshold.

In order to give the reader a sense of how fast µmin decreases, as larr

decreases, we plot the related values in Figure 4.2. Specifically, values on the

x-axis refer to the portion of the array, in meters, that is removed from a

200 m-long array of full aperture, and a logarithmic scale is used for the y-

axis. In the left subplot the length of the array is reduced symmetrically with

respect to the mid-depth of the waveguide, while in the right one the lower

part of the array is removed. The different markers (also typed in different

colours) shown in Figure 4.2 correspond to arrays with different densities;

the pitch h that corresponds to each marker is reported in the legend of the
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figure in terms of a reference wavelength λ0 = 20 m.
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Figure 4.2: Behavior of the minimum singular value of V TV , when we remove

elements from the array symmetrically (left subplot) and from the bottom of

the array (right subplot), for f = 73 Hz.

The results shown in Figure 4.2 suggest that µmin drops below the machine

epsilon ε (indicated here as a blue dashed line, and implemented in MATLAB

by the constant eps in double precision) much faster in the non-symmetric

case (right subplot) than in the symmetric one (left). Moreover, the density

of the array also plays a role in the rate at which µmin drops below ε. For

example, µmin is already less than ε in the case where we remove 40 m

from the array with pitch h = λ0/2, while it is considerably larger than

ε for denser arrays. However, in most cases for a given partial array, an

array pitch h = λ0/4 seems to suffice in order to assess the behavior of the

smaller singular values of V TV ; in other words h = λ0/4 is enough in order

to determine whether V TV has numerically full column rank. This is of

some importance: When µmin < ε, V TV turns to be practically singular,

hence many properties that hold in theory, such as rank(V TV ) = rank(V ),

or V +V = IM , are not expected to hold any more. For example, in the crack

model problem this fact does not allow us any more to deduce from equation

(4.6) that AM and P̂ are unitarily equivalent. Furthermore, the fact that the

minimum singular value of V tends to zero as the length of the array decreases

has another interesting consequence: The modulus of the entries of matrix

V + increase. For example, since ‖V ‖2 = maximum singular value of V, it is
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immediate to check that

‖V +‖2 = (minimum singular value of V)−1.

Given that in (4.7), V + multiplies from the left (and its transpose from the

right) the matrix Π̂, this may probably cause a significant loss of accuracy.

For example, when we remove 160 m from an array with pitch h = 2 m the

minimum singular value of V equals 2.51×10−15, hence ‖V +‖2 = 3.98×1014,

‖Π̂‖2 ≈ 14.3, while ‖P̂‖2 ≈ 1.05 × 1012, whereas normally we would expect

it to be approximately equal to ‖AM‖2 = 1. (All these computations were

performed with MATLAB.)

We close this section with a general comment: When we deal with more

realistic problems that entail general shaped scatterers we cannot, in general,

determine a particular expression for Π̂, e.g. in the form of (4.4), that would

allow us to investigate its connection with the modified array response matrix

P̂ that is defined in (4.2) for an array with full aperture, or in (4.7) for an

array with partial aperture. However, in the case of the full array-aperture

we have seen that the use of P̂, and its associated imaging functional ĨKM,

yield better results than the conventional Kirchhoff migration functional IKM,

cf. [1] and, also, Chapter 1. In the following sections we will find that this

is also true in the partial array-aperture case.

4.2 Imaging with IKM for the model problem

In Chapter 1, we have seen for a full array-aperture that imaging with IKM

compared to ĨKM has some disadvantages: Images produced with IKM exhibit

many oscillations (see for example Figure 1.4), and selective imaging with

IKM
J does not demonstrate the expected from the free-space case ordering.

The term ‘expected ordering’ is used in the sense that projection on the

singular vector that corresponds to the largest singular value is associated to

an image focused on the center of the object, while the ones that correspond

to smaller singular values carry information about its edges. In this section

we will assess the performance of IKM in the crack model problem as we

reduce the length of the array.

52



The setting for the numerical experiments that we are going to per-

form next is the same as in Section 2.4. Specifically, the sound speed is

c0 = 1500 m/s, the reference frequency is f0 = 75 Hz, hence the reference

wavelength λ0 = 20 m, and the depth of the waveguide is equal toD = 200 m.

We consider a single frequency f = 73 Hz, hence the wavelength λ ≈ 20.55 m,

and M = 19 modes propagate. The scatterer, i.e. the crack, is centered at

(L, x0) = (450, 100) m and its length is b = 40 m = 2λ0. The pitch of the

array is equal to h = λ0/4 = 5 m, unless stated otherwise.

To begin, we reduce the length of the full aperture array by 20 m = 1λ0

symmetrically, i.e. we cut 10 m from each side of the array. The image

obtained with IKM is shown in Figure 4.3. The crack is depicted by a white

vertical line, and as we may see it is clearly detected although some oscilla-

tions are also present. Let us note that in order to produce all IKM images

shown in this section we do not include the last propagating mode during the

computation of the Green’s function that is necessary to evaluate IKM, since

its presence results in some numerical instabilities that add a lot of extra

noise in the image.

One way to assess the noise level of an image, is to look at the image’s

Signal-to-Noise Ratio (SNR), which here is defined as

SNR =

max
~x

s
∈R

|IKM(~xs)|

max
~x

s
∈S,~x

s
/∈R

|IKM(~xs)| ,

where R is usually determined according to what the image indicates with

regard to the location of the scatterer. Here we use the SNR value as a

quantitative measure that corroborates the qualitative characteristics of the

image and, since the location of the scatterer is known, we fixR as a 6λ0×6λ0

box with the scatterer lying at its center. In Figure 4.3, and in what follows,

R is drawn in red.
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Removing 20 m symmetrically.
 SNR = 1.8187
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Figure 4.3: Imaging with IKM for the crack, when we remove 20 m from the

array symmetrically, for f = 73 Hz.

Next, in Figure 4.4, we present the outcome of selective imaging with

the functional IKM
J , for J = 1, 2, 3, 4. We observe that the IKM

J images are

again quite noisy, while the IKM
J image for J = 1 is too noisy to allow us

to locate the position of the scatterer. The images for J = 2 and 4 seem to

provide information about the edges of the object with a good SNR above

1.5, however the image for J = 2 exhibits many oscillations, while for J = 4

the focusing is quite spread and does not give clear information about the

object. On the other hand, IKM for J = 3 clearly focuses on the center of

the crack; the good quality of this image is also supported by its high SNR

value.

Removing 20 m symmetrically
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Figure 4.4: Imaging with IKM
J for the crack, for J = 1, 2, 3, 4 when we remove

20 m from the array symmetrically, for f = 73 Hz.

When we remove 40 m = (2λ0) from the array, the resulting images are

similar to those shown in Figure 4.4, yet of slightly worse quality. Our next

step is to remove 60 m = (3λ0) from the array. Figure 4.5 depicts the image

created with IKM. We see now that the IKM image has deteriorated a lot and

based on its SNR we cannot be certain of the presence of an object in our

search domain.
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Removing 60 m symmetrically.
 SNR = 1.3608
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Figure 4.5: Imaging with IKM for the crack, when we remove 60 m from the

array symmetrically, for f = 73 Hz.

This can be also seen in Figure 4.6, where selective imaging with IKM
J

yields only one image, the one that corresponds to J = 4, that focuses on

the middle of the crack, while the rest of the images are too noisy to be

useful. Notice that in this example one should probably combine the IKM

image shown in Figure 4.5 with the one created by IKM
J for J = 4, and is

shown in the rightmost subplot in Figure 4.6, in order to detect the location

of the scatterer with some confidence.

However, we should here remark that a reasonable process would be to

consider selective imaging only if the IKM (or, later, the ĨKM) image provides

some strong indications regarding the presence and the location of a scat-

terer. Henceforth, we will not pursue selective imaging techniques unless the

qualitative characteristics of the IKM image, and a quantitative index of of

an SNR around 1.4, suggest the presence and location of a scatterer.
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Figure 4.6: Imaging with IKM
J for the crack, for J = 1, 2, 3, 4 when we remove

60 m from the array symmetrically, for f = 73 Hz.

Now, if we further reduce the length of the array the resulting IKM images

are of a very bad quality. In the next section we will examine the performance

of ĨKM under the same circumstances.
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4.3 Imaging with ĨKM for the model problem

In this section, we assess the performance of the imaging functional ĨKM in

the crack model problem as we reduce gradually the length of the array. The

physical and technical parameters that we consider in the experiments of this

section are the same as those in Section 4.2. The image we obtain with the

ĨKM functional when we reduce symmetrically the length of the array by 20 m

(= λ0) is depicted in Figure 4.7. This compared with Figure 4.3 exhibits a

much clearer view of the crack with much better SNR.

Removing 20 m symmetrically.
Imax = 0.095162 SNR = 2.902
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Figure 4.7: Imaging with ĨKM for the crack, when we remove 20 m from the

array symmetrically, for f = 73 Hz.

Next, in Figure 4.8, we plot selective imaging results obtained with the

functional ĨKM
J , for J = 1, 2, 3, 4. We now observe that selective imaging with

ĨKM
J performs as if we were using a full-aperture array; all four images are

very good with high SNR > 1.9, and projection on the first singular vector

results in focusing on the middle of the crack while projection on the second

to fourth singular vectors provides information about the edges of the crack.

Removing 20 m symmetrically
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Figure 4.8: Imaging with ĨKM
J for the crack, for J = 1, 2, 3, 4 when we remove

20 m from the array symmetrically, for f = 73 Hz.
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Next, we remove 60 m (= 3λ0) from the array symmetrically. Here, as

we may immediately verify by comparing Figure 4.9 to Figure 4.7, the ĨKM

image remains unchanged; even its SNR value coincides with the previous

one reported in Figure 4.7.

Removing 60 m symmetrically.
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Figure 4.9: Imaging with ĨKM for the crack, when we remove 60 m from the

array symmetrically, for f = 73 Hz.

Moreover, as one may see in Figure 4.10, selective imaging with ĨKM
J is

in perfect agreement with the results that were obtained for the previous

array length; compare to Figure 4.8. In both of these examples it holds that

rank(V TV ) = rank(V ) = 19, where we want to make clear that the rank is

computed numerically with MATLAB that returns the number of singular

values of V that are larger than some tolerance (its default value for some

matrix C is max(size(C)) · ε(‖C‖2), where ε(c) is the positive distance from

|c| to the next largest floating-point number of the same precision as c).

These examples, and other that we do not show here, strengthen the case

that as long as rank(V TV ) = M (thus P̂ is still unitarily equivalent to AM)

our images are as good as those created with an array that spans the whole

depth of the waveguide.
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Figure 4.10: Imaging with ĨKM
J for the crack, for J = 1, 2, 3, 4 when we

remove 60 m from the array symmetrically, for f = 73 Hz.
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Now, we want to proceed with the case where it does no longer hold that

rank(V TV ) = 19, with the current array density suggested by a pitch equal to

h = λ0/4. To this end we remove 120 m from the array symmetrically, hence

the number of the transducers in the array is N = 17, i.e. it is less than the

number of propagating modes M = 19. Then rank(V TV ) = rank(V ) = 17

and V TV is not invertible, so it does not hold that V +V = IM , and we do

not expect P̂ and AM to be unitarily equivalent. However, irrespectively of

this fact, the ĨKM image in Figure 4.11 remains good, and is certainly much

better than the corresponding IKM image which we did not show in Section 2

because it exhibits so many oscillations that do not allow us to locate the

scatterer.

Removing 120 m symmetrically.
Imax = 0.074384 SNR = 2.8702
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Figure 4.11: Imaging with ĨKM for the crack, when we remove 120 m from

the array symmetrically, for f = 73 Hz.

Next, in Figure 4.12, we plot the results of selective imaging. Here, the

ĨKM
J images are not ordered in the sense that, now, projection on the third

singular vector seems to focus on the center of the object whereas this should

be expected for J = 1. Furthermore, the quality of the images is worsened

with respect to the ones of Figure 4.10.

Removing 120 m symmetrically
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Figure 4.12: Imaging with ĨKM
J for the crack, for J = 1, 2, 3, 4 when we

remove 120 m from the array symmetrically, for f = 73 Hz.
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Now, looking back to Figure 4.2, we realise that if we make the array

denser by using a pitch of h = λ0/8 meters, then the minimum singular

value of V TV , µmin, is lifted a bit, enough to be above machine ε. Now,

N = 33, M = 19 and rank(V TV ) = rank(V ) = 19 in the sense that 19

singular values of the corresponding matrices are larger than ε ≈ 2.2×10−16.

Figure 4.13, presents the ĨKM imaging when we remove 120 m from the array

symmetrically, but now for h = λ0/8 = 2.5 m. We observe that by making

the array denser the ĨKM image is better, and resembles to the images we

have seen for smaller cuts in the array, with an SNR almost the same as

before.

Removing 120 m symmetrically.
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Figure 4.13: Imaging with ĨKM for the crack, when removing 120 m from the

array symmetrically, for f = 73 Hz.

Moreover, selective imaging with ĨKM
J , as shown in Figure 4.14, exhibits

the expected ordering, and better quality corroborated by better SNR values.

Removing 120 m symmetrically
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Figure 4.14: Imaging with ĨKM
J for the crack, for J = 1, 2, 3, 4 when removing

120 m from the array symmetrically, for f = 73 Hz.

To summarize, we have seen here that, in this specific model problem, as

long as the unitary equivalence between P̂ and AM is preserved, we expect to

obtain very good images with ĨKM. This is the case even if we remove almost
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60% of the length of a quite fine array, symmetrically. However, as Figure 4.2

indicates, this will not be possible to hold for larger and/or non-symmetric

cuts and this is the case that we will examine in the next subsection.

4.3.1 Using a regularized pseudoinverse

Turning back to Figure 4.2 and to the discussion in Section 4.1 about the

behavior of the singular values of the matrix V TV , we realise that, as the

array becomes smaller, the small in magnitude singular values of V TV will

become inevitably less than some very small positive number, say, ε. As a

result, even if we consider a very fine array ensuring that N > M , at some

time rank(V TV ) 6= M numerically. However, since the singular values of V

are equal to the square root of the corresponding ones of V TV , it might be

the case that numerically rank(V ) 6= rank(V TV ).

At this point we introduce an auxiliary tolerance ε+ such that the number

of singular values that are larger than ε+ will be equal to the number of

singular values of V TV that are larger than ε. (Note that ε+ ≈ √
ε.) This is

going to ensure numerically that rank(V ) = rank(V TV ).

Let us go on with some numerical experiments using the same parameter

set as in the previous section. To start with, we remove 140 m from the array

symmetrically, i.e. its endpoints are at 70 m and 130 m, respectively. The

density of the array is determined by a pitch equal to h = λ0/8 = 2.5 m, hence

the number of transducers N = 25, whileM = 19. Then, we find numerically

that rank(V TV ) = 16 < 19 = rank(V ). Note that the minimum singular

value of V is approximately equal to 1.59× 10−11 and ‖V +‖2 = 6.28× 1010.

In the bottom left subplot of Figure 4.15 we plot the image obtained

with ĨKM, which is very bad, depicts only noise, and does not give us any

indication of the presence of a scatterer.

Our next attempt, is to employ the tolerance ε+ in the computation of

the pseudoinverse V + of V which is based on the SVD of V and treats any

singular values of V less than ε+ as zero. In this way the matrix Π̂, in (4.7),

is multiplied from the left and from the right with regularised pseudo inverses

of V and V T , respectively. Specifically, using an ε+ that removes the last

3 singular values of V we obtain the ĨKM image shown in the bottom right
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subplot of Figure 4.15, which clearly focuses on the crack. Note that now

‖V +‖2 ≈ 9.6× 105.

Removing 140 m symmetrically
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Figure 4.15: Top: SVD of V (left) and V TV (right). Middle: SVD of P̂

without tolerance (left) and with tolerance that removes the last 3 singular

values. Bottom: Imaging with ĨKM without tolerance (left) and with toler-

ance that removes the last 3 singular values (right), when we remove 140 m

from the array symmetrically, for h = λ0/8 and f = 73 Hz.

Figure 4.16 depicts selective imaging results with ĨKM
J , where in the course

of constructing P̂ we employ the tolerance ε+ in the computation of the

pseudoinverse V + of V . We observe that although the usual sense of ordering

is lost, the images for J = 2, 3 and 4 have good SNR and provide useful

information about the object.
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Removing 140 m symmetrically
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Figure 4.16: Imaging with ĨKM
J for the crack, for J = 1, 2, 3, 4 when removing

140 m from the array symmetrically, for h = λ0/8 and f = 73 Hz.

Our next move is to push ĨKM to the limit for this model problem. In

Figure 4.17 we see the imaging results with ĨKM (top row), when we remove

180 m from the array symmetrically. In this case, we make the array denser,

by setting the pitch h = λ0/32 = 0.625 m, in order to have N > M and we

choose an ε+ that removes the last 9 singular values of V . We observe that

the ĨKM image gives us very good information about the object, although its

SNR value is quite low, around 1.1, due to a ghost behind the crack. In the

bottom row of Figure 4.17 we show selective imaging results with ĨKM
J . Now

only the image for J = 1 gives us good information, with higher SNR than

the ĨKM image.

Removing 180 m symmetrically, h = λ0/32.
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Figure 4.17: Imaging with ĨKM for the crack (top), and ĨKM
J for J = 1, 2, 3, 4

(bottom) when removing 180 m from the array symmetrically, for f = 73 Hz.

We close this section with another experiment. As in the beginning of

this section, we consider an array with length equal to 60 m, i.e. we remove

140 m symmetrically. The difference is that we keep the value of the pitch
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equal to h = λ0/4 = 5 m, thus the number of the transducers in the array is

N = 13 < 19 = M . Here numerically, as well as analytically, we have that

rank(V TV ) = rank(V ) = 13 < M . Now, we do not employ any tolerance in

the computation of V +. In Figure 4.18 we plot from left to right the SVD of

V , V TV and P̂ and the image created with ĨKM.
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Figure 4.18: From left to right: SVD of V , V TV , P̂ and imaging with ĨKM

without tolerance (right), when we remove 140 m from the array symmetri-

cally, for f = 73 Hz.

Next, in Figure 4.19 we plot the results of selective imaging with ĨKM
J .

We have that the images for J = 2, 3 give us information about the object

with a higher SNR that the full matrix image, while the rest of the images

have a low SNR. These figures have slightly poorer quality compared with

the corresponding ones in Figures 4.15, 4.16. Nevertheless, and despite the

fact that we work in this ideal model problem, it is interesting that although

the matrix V TV is rank deficient, this seems to regularise the matrix V +

enough in order to make this approach to give satisfactory results.

Removing 140 m symmetrically
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Figure 4.19: Imaging with ĨKM
J for the crack, for J = 1, 2, 3, 4 when we

remove 140 m from the array symmetrically, for f = 73 Hz.

63



4.3.2 Adding noise in the data

In the previous subsection, we have noticed that ĨKM for the model problem

seems to work very well, even when removing ninety percent of our array!

Of course, this concerns the crack model problem in which, under the Born

approximation, it is possible to derive Π̂ and P̂ in the special forms (4.4) and

(4.6), respectively. Then, under the assumption that all required operations

are carried out exactly we obtain that P̂ is unitarily equivalent with AM .

However, in the previous subsection we have seen that in practice, where

almost everything is computed numerically, things are more complicated and

extra care has to be taken, as the length of the array is reduced, in order to

take into account inevitable loss of accuracy due to floating point operations.

As a step forward to a less ideal case, where it is not possible to express

the array response matrix for the scattered field in an explicit form, we add

noise to Π̂. This is succeeded by the same process as we did in Section 1.4.

We start by adding 20 dB noise in our data, and we consider an array

where we have removed 60 m, symmetrically, and the pitch h = λ0/4 = 5 m.

The rest of the parameters remain the same as in the previous sections. In

Figure 4.20 we have on the top row the SVD of V on the left and the SVD

of V TV on the right. On the bottom row, we have the SVD of P̂ and image

that we obtain with ĨKM. In this case we do not remove any singular value

from V during the computation of V +, since there are no singular values of

V TV smaller than machine ε. We observe that in this case, there is only one

singular value that is high and in fact we have that the first singular value

lies at 1.64 ·103, the second at 1.1 ·102, while the rest are below 1. As a result,

the image we get is just noise. Our next attempt is to employ some tolerance

ε+ during the computation of V + in order to remove singular values from V .
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Removing 60 m symmetrically
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Figure 4.20: Top row: SVD of V (left) and V TV (right). Bottom row: SVD

of P̂ (left) and imaging with ĨKM without regularization (right), when we

remove 60 m from the array symmetrically, for f = 73 Hz.

With reference to the top right subplot in Figure 4.20, and using the

same terminology as in Sections 2.1.1 and 4.1, we may say that the last four

singular values of V TV correspond to its noise subspace. Hence one may try

to compute V + with some regularization by imposing a tolerance ε+ that will

remove from V as many small singular values as the number of singular values

of V TV that lie in its noise subspace dictates. However, we prefer to be more

cautious and remove gradually one singular value at the time. The results

are shown in Figure 4.21, where we observe that when choose ε+ in order to

remove just the minimum singular value of V during the computation of V +,

we still get only noise in the image. When we remove the last two singular

values we get an image that locates the object, but the SVD of P̂ has only

one significant singular value. When we remove another singular value, we

see that the image has reduced SNR, but the SVD of P̂ is closer to the full

array case. Finally, when we remove the last four singular values of V , the

result seems to be equally good. To summarize, implementing a tolerance

ε+ that removes from V as many small singular values as the number of

singular values of V TV that lie in its noise subspace, seems to be a good

practice in order to obtain a good image. This has also been verified by

other experiments for different array lengths, and for the same noise level.
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Removing 60 m symmetrically
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Figure 4.21: SVD of P̂ (top) and imaging with ĨKM (bottom) for the crack,

with tolerance that removes the 1,2,3,4 last singular values (from left to

right), when removing 60 m from the array symmetrically, for f = 73 Hz.

Next we want to examine the effect of adding more noise to the data on

the images. So, we now add 10 dB of noise, and in Figure 4.22 we start

with the case where we have removed the last 3 singular values of V (in all

previous cases the image was bad, exhibiting just noise). We observe that

when we remove the last 3 singular values we are able to locate the crack,

but the singular values of P̂ are not distributed well. By removing 4 singular

values we see that they are better separated and we now see the effect of

the noise on the smaller singular values, much like what we have observed in

Figure 1.7. Removing another singular value seems to help with separating

the singular value subspaces more clearly and it has also increased the image’s

SNR. However, if we remove one more, we observe a descrease in the values

of the second and third singular values that drop below 0.8 and the image is

mainly focused around the center of the crack.
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Removing 60 m symmetrically
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Figure 4.22: SVD of P̂ (top) and imaging with ĨKM (bottom) for the crack,

with tolerance that removes the 3, 4, 5, 6 last singular values (from left to

right), when we remove 60 m from the array symmetrically, for f = 73 Hz.

So, we may comment that as the noise level increases it is not clear

that removing only those singular values of V that correspond to the noise

subspace of V TV would give the best image.

4.3.3 Algorithm for imaging with partial aperture ar-

rays

So far, in this chapter, we have tried to assess the performance of the imaging

functionals ĨKM and ĨKM
J in the crack model problem when the array has

partial aperture. Based on the experience that we have gained, and in an

attempt to describe systematically the procedure of imaging with a partial-

aperture array, we summarise the basic steps of the proposed approach in the

form of an algorithm. Specifically, the steps that we use are the following:

1. We form the matrix V defined in (4.3), its corresponding Gram matrix

V TV , and we compute their SVD.

2. We compute the pseudoinverse V + using a suitable tolerance ε+ that

removes from V singular values that are less than ε+.

3. We form the matrix P̂ that is defined in (4.7).
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4. We create an image with ĨKM.

5. If the quality and the SNR of the image are good, then we proceed to

try selective imaging with ĨKM
J .

Let us remark here that ε+ is the regularization parameter of our approach

and its determination is not given by a universal formula as is often the case

in inverse problems. We summarize below the insight we have gained so far

with our numerical simulations.

In the crack model problem, and for the noiseless case, we found that

it suffices to choose an ε+ which guarantees that rank(V ) = rank(V TV ).

When we had noise in our data, we determined ε+ in order to remove from

V a number of its smallest singular values that is equal to the number of

singular values that correspond to the noise subspace of V TV . However, as

we have already discussed, this is not necessarily true for higher levels of

noise. Moreover, the so-called noise subspace of V TV is only affected by the

length and the position of the array and not by the noise level in the data.

In general, it would be safer to follow a more conservative approach, and

remove gradually the smaller singular values from V , one at the time, until

we get a sufficiently good image and a reasonable SVD of P̂. On the other

hand, it could be more effective to try first to remove from V the number

of its smallest singular values that is equal to the number of singular values

that correspond to the noise subspace of V TV , and then, if the results are

acceptable, resort to some ‘fine tuning’ by adding or removing singular values.

4.4 Application of the algorithm

In this section we want to assess the performance of ĨKM for an array with

partial aperture, in the case where the scatterer is a square or a disc. Now,

the array response matrix for the scattered field Π̂ is evaluated numerically

as it is described in Section 1.4.

In our experiments, we use a single frequency f = 73 Hz, the square is

centered at (470, 100) m and has side length b = 40 m = (2λ0), while the

disc is centered at (440, 100) m and its diameter δ = 40 m. The rest of the

parameters remain the same as in previous sections.
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To begin with, we remove 20 m from the array symmetrically. In Figure

4.23 we plot on the top row the SVD of V on the left and of V TV on the

right. Based on the singular values of V TV , it seems that there is no need

to remove any singular values in the computation of V +. Indeed, the ĨKM

images for the square and the disc, that are shown in the bottom row of

Figure 4.23, are both very good. The image for the square focuses on the

left side of the scatterer, while for the disc we have a focus mainly around

the leftmost part of the scatterer.
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Figure 4.23: Top row: SVD of V (left) and V TV (right). Bottom row:

Imaging with ĨKM for the square (left) and the disc (right), when we remove

20 m from the array symmetrically, for f = 73 Hz.

Next, in Figure 4.24, we present the results of selective imaging with ĨKM
J

for the square on the top row and for the disc on the bottom row. The images

are very similar to the ones we have seen for the full array case in Chapter

3, with only a slight loss in SNR.
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Removing 20 m symmetrically
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Figure 4.24: Imaging with IKM
J (top) and ĨKM

J (bottom) for the square, for

J = 1, 2, 3, 4 when we remove 20 m from the array symmetrically, for f =

73 Hz.

Next, we remove 40 meters from the array, symmetrically. Now, the SVD

of V TV is shown in the right subplot of Figure 4.25 and suggests that the last

two singular values are quite small, in fact are of the order of 10−2. This is

an indication that we may need to employ a tolerance ε+ in order to exclude

some singular values of V during the computation of V +.
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Figure 4.25: SVD of V (left) and V TV (right), when we remove 40 m from

the array symmetrically, for f = 73 Hz.

Indeed, the bad images shown in the left column of Figure 4.26, are the

outcome of using ĨKM without imposing any tolerance in the computation of

V +; the results we get are just noise. The same happens when we remove

the last singular value, as one may verify by looking at the middle column

of Figure 4.26. However, if we use a tolerance that discards the last two

singular values of V from the computation of V +, we get the good images in

the right column of Figure 4.26.
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In the results we will present next, we will always impose a tolerance in

the computation of V + that removes the smallest singular values of V that

are dictated by the number of the singular values of V TV that correspond

to its noise subspace.
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Figure 4.26: Imaging with ĨKM without tolerance (left) and with tolerance

that removes the last (middle) and the 2 last singular values (right) for the

square (top) and the disc (bottom), when we remove 40 m from the array

symmetrically, for f = 73 Hz.

Next, in Figure 4.27, we plot the results of selective imaging with ĨKM
J

for the square on the top row and for the disc on the bottom row. The

fact that the images follow the usual ordering, while we have imposed some

tolerance during the computation of V +, is regarded as a lucky accident. Let

us note here that the ĨKM
J image for J = 3 gives us good information about

the object, but its SNR is around 1, which means that the level of noise in

the picture is almost the same at the peaks of the image on the object. Also,

the image for J = 4 for the square and the image for J = 3 for the disc

have very similar SNR, but the disc image has significantly less oscillations.

The point here is that while images with high SNR are usually very good,

there are cases where images with SNR less than 1.4 may also provide useful

information about the object.
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Removing 40 m symmetrically
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Figure 4.27: Imaging with IKM
J (top) and ĨKM

J (bottom) for the square, for

J = 1, 2, 3, 4 when we remove 40 m from the array symmetrically, for f =

73 Hz.

Following the same steps, we remove 60 meters from the array, symmet-

rically. Then the quality of the images is slightly deteriorated, but they are

still similar to the ones we just saw so we do not present them.

We continue decreasing the length of the array, where now we remove 80

meters, symmetrically. In Figure 4.28, we see that the image for the disc

only has a peak on the leftmost part of the scatterer, while the image for

the square continues to have a clear focusing on the whole left side of the

scatterer. Our hope is that selective imaging will reveal more information

about the body of the disc, as it did in the previous cases.
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Removing 80 m symmetrically
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Figure 4.28: Top row: SVD of V (left) and V TV (right). Bottom row:

Imaging with IKM (left) and ĨKM with tolerance (right) for the square, when

we remove 80 m from the array symmetrically, for f = 73 Hz.

In Figure 4.29, we have now that the selective images are too noisy to

use, with the exception of the image for J = 3, for the square and J = 1 for

the disc, which have a clear focusing in the middle of the objects with higher

SNR that their respective full matrix images. Here, doing selective imaging

for the disc gave us an image similar to the IKM one, but with better SNR,

contrary to the square case where the IKM image already had information

about the object. In this case, we will consider that removing 80 meters from

the array symmetrically is a limiting case for the disc.
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Removing 80 m symmetrically
Imax = 8.8463e−06 SNR = 1.3816
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Figure 4.29: Imaging with ĨKM
J for the square (top) and the disc (bottom),

for J = 1, 2, 3, 4 when we remove 80 m from the array symmetrically, for

f = 73 Hz.

If we remove a larger part of the array, imaging with ĨKM fails to give us

information about the square as well. Here, we do not have the option to

make the array denser and see if this would affect the quality of our image.

This is due to the fact that in order to create the scattered field we now have

to solve the wave equation numerically. This is a computationally intensive

task and its cost increases with the number of elements in the array.

4.4.1 Off-centered cuts

In this section we repeat the experiments that we have performed in the

previous one, but now the array is not reduced symmetrically, but we rather

remove elements from the bottom of the array.

First, in Figure 4.30 we plot on the top row the singular values of V and

V TV . From the SVD of V TV , we estimate that we now have to impose

a tolerance in the computation of V + earlier than when we were removing

elements from the array symmetrically. Indeed, in the middle row, imaging

without implementing a tolerance gives us only noise. In the bottom row we

see imaging with ĨKM for the square on the left and for the disc on the right.

We observe that the images have lost quality, compared to the case where

we have removed 20 meters symmetrically, as it may be seen in Figure 4.23,

with their focus being shifted slightly to the top.
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Removing 20 m from the bottom of the array
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Figure 4.30: Top row: SVD of V (left) and V TV (right). Middle row: Imag-

ing with ĨKM for the square (left) and the disc (right) without tolerance.

Bottom row: Imaging with ĨKM for the square (left) and the disc (right)

when we remove the last singular value, when we remove 20 m from the

bottom of the array, for f = 73 Hz.

Next, in Figure 4.31 we plot the results of selective imaging with ĨKM
J for

the square on the top and the respective images for the disc on the bottom.

In both cases we observe that for J = 1, the focusing has shifted slightly

from the middle of the object, while when we focus towards the edges of the

object, we do not get the symmetric results we had for the previous case.
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Removing 20 m from the bottom of the array
Imax = 2.3852e−05 SNR = 1.9085
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Figure 4.31: Imaging with ĨKM
J for the square (top) and the disc (bottom),

for J = 1, 2, 3, 4 when we remove 20 m from the bottom of the array, for

f = 73 Hz.

Lastly, we move to the limiting case where we remove 80 meters from the

bottom of the array. In Figure 4.32 we observe that the image for the square

seems to focus mostly on the top side of the object, while for the disc we

have a skewed focus in the middle, much like what we saw in Figure 4.28 for

the symmetric case. Our hope is that doing selective imaging will give us

more information about the object.

Removing 80 m from the bottom of the array
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Figure 4.32: Imaging with ĨKM for the square (left) and the disc (right) when

we remove 80 m from the bottom of the array, for f = 73 Hz.

Next, in Figure 4.33 we plot the results of selective imaging with ĨKM
J for

the square on the top row and for the disc on the bottom. For the square we

have that images for J = 1, 2 have good quality, while the image for J = 3

which focuses on the bottom of the object has very low SNR. For the disc

however, we observe that the image for J = 2 gives us information about the

bottom of the disc, which is an improvement over the IKM image.
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Removing 80 m from the bottom of the array
Imax = 1.6109e−05 SNR = 2.3523
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Figure 4.33: From top to bottom: Selective imaging with ĨKM
J for the crack

and the square, for J = 1, 2, 3, 4 (from left to right), when we remove 80 m

from the bottom of the array, for f = 73 Hz.
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Conclusion

In this work we considered the problem of selective imaging of extended re-

flectors in a waveguide using an active array of sensors. We have briefly

discussed the full array case, which was presented in [1]. In particular, in

[1] we have introduced a novel imaging functional, ĨKM, that is a variation

of Kirchhoff migration where instead of back propagating the array response

matrix , Π̂, we back propagate a weighted modal projection of this, denoted

P̂. To analyse the properties of ĨKM we have considered a simplified model

problem where the scatterer is a vertical ‘crack’. In this thesis we further

investigated this problem and showed that there is a relation between the sin-

gular vectors of P̂ and the prolate spheroidal wave functions. More precisely,

we observed that when the crack is fixed on the surface of the waveguide,

we recover exactly the prolate spheroidal wave functions. Although this is

not the case for other positions of the crack, selective imaging with ĨKM still

exhibits a prolate-like behavior, in the sense that projection on the singular

vectors that correspond to the largest singular values results in an image that

focuses on the bulk of the crack, projection on singular vectors that corre-

spond to intermediate singular values results in an image that focuses on the

endpoints of the crack, while projection on singular vectors that correspond

to very small in magnitude singular values does not provide any information

about the position and the size of the crack.

The main difference of our work compared to [1], lies in the fact that in

this thesis we have considered partial array-aperture. We have extended the

applicability of ĨKM in this case, by proposing an alternative way to define

P̂. The new definition of P̂ uses the regularized Moore-Penrose pseudoinverse

of the matrix V , whose element Vkl is the value of the vertical eigenfunction

Xl at the k-th array element. For the full array case, no regularization is
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needed and we recover the same result as before. However, as the array

aperture decreases the matrix V becomes ill-conditioned and some type of

regularization is required.

We have seen that for the crack model problem, imaging with ĨKM greatly

outperforms imaging with the conventional Kirchhoff migration functional

IKM. Despite the fact that this is a quite ideal model, it is very interesting

that even if we remove half of the length of the originally full array, ĨKM still

creates images that are as good as those created with a full array-aperture.

Furthermore, ĨKM is able to locate the crack with an array that has length

equal to 10% of the waveguide’s depth. We have also determined a limit

that, if we exceed it, selective imaging with ĨKM
J fails, in the sense that the

usual ordering in focusing does not hold anymore. (To be precise, this means

that we loose the property that projection on the singular vector that corre-

sponds to the largest singular value is associated to an image focused on the

bulk of the object, while projection on the ones that correspond to smaller

singular values carry information about its edges.) We have also examined

the performance of the proposed imaging functionals in the presence of ad-

ditive noise, and in the case of extended reflectors such as a square and a

disc. In these cases the need for regularization during the computation of

V + emerged earlier than in the crack case, since we have moved away from

the ideal conditions of the model problem. However, we can still successfully

image our scatterers even when we remove almost half of the array in length.

Further extensions of this work include the investigation of the case

where we have an inhomogeneous waveguide. In the special case of a depth-

dependent sound speed profile, the vertical eigenfunctions Xn are not known

analytically, but they may be found numerically; this is not expected to af-

fect the whole process. Also, it would be interesting to see if the presence of

a larger scatterer in the waveguide would affect the quality of the images as

the length of the array decreases.
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Appendix A

Resolution analysis for a point

scatterer

Resolution analysis is a classical way to assess the performance of an imaging

method and relies on studying the behaviour of the point spread function

(PSF), i.e., of the imaging functional for a point scatterer. We consider here

an array passing through the x axis and a point scatterer placed far enough

from the array at ~x∗ = (z∗, x∗). Then, for a source located at ~xs = (0, xs)

and a receiver at ~xr = (0, xr) we may approximate the (r, s) entry of the

response matrix for the scattered field by

Π̂(~xr, ~xs, ω) = τ(ω)Ĝ(~x∗, ~xs, ω)Ĝ(~xr, ~x
∗, ω). (A.1)

In (A.1), we ignore the direct waves going from ~xs to ~xr and assume that

the scattered field is simply the Green’s function from ~xs to ~x∗ multiplied

by the scattering coefficient τ(ω) and then by the Green’s function from ~x∗

to ~xr. In what follows, we assume for simplicity that our scatterer is an

isotropic point reflector with τ(ω) = 1. Next, we replace the expression for

the Green’s function given by (1.5) into (A.1) taking into account only the

propagating modes, and get

Π̂(~xr, ~xs, ω) = −1

4

M∑

k=1

M∑

ℓ=1

eiβkz
∗

βk
Xk(xs)

eiβℓz
∗

βℓ
Xℓ(xr)Xk(x

∗)Xℓ(x
∗). (A.2)
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For a ~y s = (zs, xs) in our search domain, the imaging functional (1.6) becomes

IKM(~y s, ω) =
1

16

∑N
s,r=1

∑M
m,n=1

∑M
m′,n′=1

ei(βm+βn)z∗

βmβn
Xm(xs)Xn(xr)Xm(x

∗)Xn(x
∗)×

× e−i(β
m′+β

n′ )z
s

βm′βn′

Xm′(xs)Xn′(xr)Xm′(xs)Xn′(xs). (A.3)

Assuming that the array spans the whole depth of the waveguide with

an array pitch h small enough, we can approximate the double sum with

respect to s and r in (A.3), by a double integral over xs and xr, and use the

orthonormality of the eigenfunctions Xn to obtain

IKM(~y s, ω) ≈
(

1

4h

M∑

n=1

eiβn(z∗−zs)

β2
n

Xn(x
∗)Xn(x

s)

)2

. (A.4)

On the other hand, using (A.2) the matrix P̂, defined in (1.13), takes the

form

P̂mn(ω) = −1

4
eiβmz∗eiβnz∗Xm(x

∗)Xn(x
∗).

Hence, in view of the above relation, (1.12) reduces to

ĨKM(~y s, ω) =

(
1

4h

M∑

n=1

eiβn(z∗−zs)Xn(x
∗)Xn(x

s)

)2

. (A.5)

A.1 Cross-range resolution for ĨKM(ω)

To examine the resolution in cross-range, we assume that the wavelength λ

is much smaller than the depth (λ≪ D) and that the search point is located

at the correct range, i.e., zs = z∗. Then, recalling (1.3), (A.4) simplifies to

IKM(~y s;ω) =

(
1

2Dh

M∑

n=1

1

β2
n

sin
nπx∗

D
sin

nπxs

D

)2

, (A.6)

while (A.5) takes the form

ĨKM(~y s;ω) =

(
1

2Dh

M∑

n=1

sin
nπx∗

D
sin

nπxs

D

)2

. (A.7)

We have the following result:
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Lemma 1 (A.7) can be approximated by

ĨKM(~y s;ω) ≈
[

1

2λh

(
sinc

(
2
λ
(x∗ − xs)

)
− sinc

(
2
λ
(x∗ + xs)

))]2
, (A.8)

where sinc(x) = (sin(πx))/(πx).

Proof 1 Letting ξn = λn/(2D) we approximate the sum over n in (A.7) by

an integral. Therefore, from (A.7) we have

ĨKM(~y s;ω) ≈
[
1

λh

∫ 1

0

sin

(
2πx∗ξn
λ

)
sin

(
2πxsξn
λ

)
dξn

]2

=

{
1

2λh

∫ 1

0

[
cos

(
2π(x∗ − xs)

λ
x

)
− cos

(
2π(x∗ + xs)

λ
x

)]
dx

}2

=

[
1

2λh

(
sinc

(
2
λ
(x∗ − xs)

)
− sinc

(
2
λ
(x∗ + xs)

))]2
. (A.9)
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Figure A.1: Left subplot: The graph of (A.6) for D = 200 m, f = 100 Hz,

c0 = 1500 m/s, x∗ = 120 m. Right subplot: The graph of (A.7) (solid blue

line) superimposed on the graph of (A.8) (dashed red line), for the same

parameters.

In the left subplot of Figure A.1 we plot the normalized modulus of the

imaging functional (A.6) for D = 200 m, c0 = 1500 m/s, x∗ = 120 m and

frequency 100 Hz, in the cross-range window [40,200] (in meters). In the

right subplot we superimpose for the same parameters the graphs of (A.7)

and (A.8), normalized with respect to their maximum values. As one may

see ĨKM exhibits considerably lower side lobes than IKM, albeit IKM’s main

lobe is slightly narrower than that in ĨKM.
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A.2 Range resolution for ĨKM(ω)

In order to estimate the resolution in range we assume that the search point

is located at the correct depth, i.e. at ~y s = (zs, x∗), and, for simplicity, that

the scatterer is placed at half the depth of the waveguide, i.e., xs = x∗ = D/2.

Then, the imaging functional (A.4) takes the form

IKM(~y s, ω) =


 1

2Dh

⌈M
2
⌉−1∑

n=0

ei β2n+1(z∗−zs)

β2
2n+1




2

, (A.10)

and similarly, (A.5) becomes

ĨKM(~y s, ω) =


 1

2Dh

⌈M
2
⌉−1∑

n=0

ei β2n+1(z∗−zs)




2

. (A.11)

Lemma 2 (A.11) can be approximated by

ĨKM(~y s, ω) ≈
{

1

2λh

[
1− π

2
H1

(
2π
λ
(z∗ − zs)

)
+ i π

2
J1

(
2π
λ
(z∗ − zs)

)]}2

,

(A.12)

where J1(x) and H1(x) denote the Bessel and Struve function of order one,

respectively, [1].

Proof 2 Let
(
n+ 1

2

)
λ
D

= ξn. Then β2n+1 =
2π
λ

√
1− ξ2n and the sum in the

right-hand side of (A.11) may be approximated by

IKM(~y s, ω) ≈
(

1

2λh

∫ 1

0

ei
2π
λ
(z∗−zs)

√
1−x2

dx

)2

. (A.13)

Letting α = 2π(z∗ − zs)/λ, we want to evaluate the integral
∫ 1

0
eiα

√
1−x2

dx.

To this end, letting x = sin θ we have

∫ 1

0

eiα
√
1−x2

dx ≈
∫ π/2

0

eiα cos θ cos θ dθ

=

∫ π/2

0

cos(α cos θ) cos θ dθ + i

∫ π/2

0

sin(α cos θ) cos θ dθ =: I1 + i I2
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In I2 we change variables θ = π
2
− x to obtain

I2 =

∫ π/2

0

sin(α sin x) sin x dx =
π

2
J1(α),

where the integral is found in [?, (3.715.2)].

For I1 we integrate by parts

I1 =

∫ π/2

0

cos(α cos θ)
(
sin θ

)′
dθ = 1−α

∫ π/2

0

sin(α cos θ) sin2 θ dθ = 1−π
2
H1(α).

For the last integral above see [?, (3.716.16)]. Finally, we have that

ĨKM(~y s, ω) ≈
[

1

2λh

(
1− π

2
H1(α) + i

π

2
J1(α)

)]2
. (A.14)

In Figure A.2 we plot the modulus of the imaging functional (A.10) (left

subplot) and the modulus of (A.11) versus the modulus of the graph of

(A.12) (right subplot), normalized with respect to their maximum values, for

D = 200 m, c0 = 1500 m/s, z∗ = 480 m and frequency 100 Hz, in the range

window [380,580] (in meters).
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Figure A.2: Left subplot: The graph of (A.10) for D = 200 m, f = 100 Hz,

c0 = 1500 m/s, z∗ = 480 m. Right subplot: The graph of (A.11) (solid blue

line) superimposed on the graph of (A.12) (dashed red line), for the same

parameters.

Note that for IKM the width of the PSF is about 2λ at less than 10% of

its maximum value, while for ĨKM the width becomes 2λ at about 20% of its

maximum value.
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Remark 2 The plots in Figures A.1 and A.2 show the point spread function

(PSF) of IKM and ĨKM as a function of cross-range and range, respectively.

We observe that the PSF is centered at the correct location of the scatterer.

The resolution of the imaging method can be determined using these plots.

If we define, for example, the resolution as the width of the PSF at half its

maximal value we obtain a cross-range resolution of λ/2 (see Figure A.1)

and a range resolution of λ (see Figure A.2).
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[27] U. Grenander and G. Szegő. Toeplitz forms and their applications.

Chelsea Publishing Co., New York, second edition, 1984.

[28] J. M. Varah. The prolate matrix. Linear Algebra Appl., 187:269–278,

1993.

88



[29] M. Hanke and J. Nagy. Inverse Toeplitz preconditioners for ill-posed

problems. Linear Algebra Appl., 284(1-3):137–156, 1998. ILAS Sym-

posium on Fast Algorithms for Control, Signals and Image Processing

(Winnipeg, MB, 1997).

89


