
Exploitation of noisy automatic data
annotation for CNN training and its

application to hand posture classification

Georgios Lydakis

Thesis submitted in partial fulfillment of the requirements for the

Masters’ of Science degree in Computer Science and Engineering

University of Crete
School of Sciences and Engineering
Computer Science Department

Voutes University Campus, 700 13 Heraklion, Crete, Greece

Thesis Advisor: Professor Antonis Argyros

This work has been performed at the University of Crete, School of Sciences and Engineering,
Computer Science Department.

The work has been supported by the Foundation for Research and Technology - Hellas
(FORTH), Institute of Computer Science (ICS).
This thesis has been supported by the European Regional Development Fund of the Euro-

pean Union and Greek national funds through the Operational Program Competitiveness, En-
trepreneurship and Innovation, under the call RESEARCH – CREATE - INNOVATE (project
code: Τ1ΕΔΚ-01299-HealthSign).
This thesis has been supported by the Hellenic Foundation for Research and Innovation (HFRI)

and the General Secretariat for Research and Technology (GSRT), under the 1st Call for HFRI
Research Projects to support Postdoctoral Researchers (GA. no. 188-SoCoLa).

University of Crete
Computer Science Department

Exploitation of noisy automatic data annotation for CNN training and
its application to hand posture classification

Thesis submitted by
Georgios Lydakis

in partial fulfillment of the requirements for the
Masters’ of Science degree in Computer Science

THESIS APPROVAL

Author:
Georgios Lydakis

Committee approvals:
Antonis Argyros
Professor, Thesis Supervisor

Panagiotis Tsakalides
Professor, Committee Member

Anastasios (Tassos) Roussos
Principal Researcher, Committee Member

Departmental approval:
Polyvios Pratikakis
Assistant Professor, Director of Graduate Studies

Heraklion, July 2021

Exploitation of noisy automatic data annotation for
CNN training and its application to hand posture

classification

Abstract

In recent years, advances in deep learning have resulted in a large-scale rev-
olution in the field of Artificial Intelligence. Deep learning methods have been
successfully applied to a variety of research topics, ranging from natural language
processing and bioinformatics to speech recognition and computer vision, with the
common goal of inferring a function which maps an input domain to a target one.
However, the success of deep models at inferring such a function usually relies on
the existence of a large amount of annotated training data, that is, input samples
for which the output is specified. Due to the requirement for this kind of large
training datasets, significant research is being conducted on methods for reducing
the human effort that is necessary for their annotation.

Semi-supervised approaches, methods for synthetic data generation, and tech-
niques for generating and handling automatic annotation are receiving increasing
attention. In this work, we investigate a technique for utilizing automatically anno-
tated data in classification problems. Using a small number of manually annotated
samples, and a large set of data that feature automatically created, noisy labels,
our approach trains a Convolutional Neural Network (CNN) in an iterative man-
ner. The automatic annotations are combined with the predictions of the network
in order to gradually expand the training set. This expansion attempts to select
automatically annotated samples for which the label is deemed to be correct.

The proposed approach is generic and can be applied to any classification prob-
lem. In order to evaluate its performance, we apply it to the problem of hand
posture recognition from RGB images. In general, the observation and interpreta-
tion of the human hand is highly useful in several application areas, so significant
research has been carried out in the topics of 3-D hand tracking, observation of
interaction of hands with objects as well as hand posture and gesture recognition.
Sign Language Recognition is one area where hand posture recognition is especially
useful, as the postures of a signer’s hands are essential features in the translation
of a sign language.

Motivated by the usefulness and impact of Sign Language Recognition, we
develop a method for automatically annotating images or videos of hand postures,
and apply it to the problem of classifying 19 postures that are common in the Greek
Sign Language. The manual annotation of such data is a time-consuming process.
Their automatic annotation is based on associating 3D joint configurations of hands
with classes (hand posture labels), and yields noisy labels which can be used to
train a Convolutional Neural Network. These characteristics of the problem make
it a suitable candidate for applying our proposed method for automatic expansion
of training datasets. We compare the results of training a CNN classifier with
and without the use of our technique. Our method yields a significant increase in

average classification accuracy, and also decreases the deviation in class accuracies,
thus indicating the validity and the usefulness of the proposed approach.

Εκμετάλλευση αυτόματης επισημείωσης δεδομένων

για εκπαίδευση Συνελικτικών Νευρωνικών

Δικτύων και εφαρμογή στην κατηγοριοποίηση

χειρομορφών

Περίληψη

Τα τελευταία χρόνια, η πρόοδος σε τεχνικές βαθιάς μάθησης έχει επιφέρει μια

επανάσταση μεγάλης κλίμακας στο πεδίο της Τεχνητής Νοημοσύνης. Μέθοδοι βα-

θιάς μάθησης έχουν εφαρμοστεί επιτυχώς σε μια πληθώρα ερευνητικών τομέων, από

επεξεργασία φυσικών γλωσσών και βιοπληροφορική μέχρι αναγνώριση ομιλίας και υ-

πολογιστική όραση, με κοινό στόχο την αυτόματη εκτίμηση μιας συνάρτησης που

απεικονίζει ένα πεδίο εισόδου σε ένα πεδίο επιθυμητού αποτελέσματος. Ωστόσο, η ε-

πιτυχία των μεθόδων αυτών στο να εξάγουν μια τέτοια συνάρτηση συνήθως εξαρτάται

από την ύπαρξη ενός μεγάλου όγκου επισημειωμένων δεδομένων εκπαίδευσης, δηλαδή

δειγμάτων εισόδου για τα οποία η έξοδος είναι καθορισμένη. Λόγω της απαίτησης για

μεγάλα σύνολα τέτοιων δεδομένων, σημαντική έρευνα διεξάγεται πάνω σε μεθόδους

που μειώνουν το κόστος σε ανθρώπινη προσπάθεια που απαιτείται για την επισημείωση

αυτών των δεδομένων.

Προσεγγίσεις ημιεπίβλεψης, μέθοδοι δημιουργίας συνθετικών δεδομένων και τε-

χνικές για δημιουργία και χειρισμό αυτόματης επισημείωσης συγκεντρώνουν αυξα-

νόμενο ενδιαφέρον. Σε αυτή την εργασία, διερευνούμε μια τεχνική για αξιοποίηση

αυτόματα επισημειωμένων δεδομένων σε προβλήματα κατηγοριοποίησης. Χρησιμοποι-

ώντας έναν μικρό αριθμό δεδομένων που έχουν επισημειωθεί από κάποιο ειδικό, και

ένα μεγάλο σύνολο δεδομένων που χαρακτηρίζονται από αυτόματα εκτιμημένες, θο-

ρυβώδεις ετικέτες, η προσέγγισή μας εκπαιδεύει ένα Συνελικτικό Νευρωνικό Δίκτυο

(CNN) με επαναληπτικό τρόπο. Οι αυτόματες επισημειώσεις συνδυάζονται με τις προ-
βλέψεις του δικτύου ώστε να επεκταθεί σταδιακά το σύνολο δεδομένων εκπαίδευσης.

Αυτή η επέκταση επιχειρεί να επιλέξει αυτόματα επισημειωμένα δείγματα των οποίων

η ετικέτα κρίνεται σωστή.

Η προτεινόμενη προσέγγιση είναι γενική και μπορεί να εφαρμοστεί σε οποιοδήπο-

τε πρόβλημα κατηγοριοποίησης. Προκειμένου να αποτιμήσουμε την απόδοσή της, την

εφαρμόζουμε στο πρόβλημα της αναγνώρισης χειρομορφών από έγχρωμες (RGB) ει-
κόνες εισόδου. Γενικά, η παρατήρηση και η ερμηνεία του ανθρώπινου χεριού είναι

πολύ χρήσιμη σε ποικίλες εφαρμογές, οπότε και έχει αναπτυχθεί σημαντική έρευνα

στα θέματα της τριδιάστατης παρακολούθησης του χεριού, της παρατήρησης των αλ-

ληλεπιδράσεων του χεριού με αντικείμενα, καθώς και της αναγνώρισης χειρομορφών

και χειρονομιών. Η Αναγνώριση Νοηματικής Γλώσσας είναι μια περιοχή όπου η α-

ναγνώριση χειρομορφών είναι ιδιαζόντως χρήσιμη, επειδή οι μορφές των χεριών ενός

νοηματιστή είναι κρίσιμα χαρακτηριστικά για την μετάφραση μιας νοηματικής γλώσ-

σας.

Παρακινημένοι από την χρησιμότητα και τον αντίκτυπο της Αναγνώρισης Νοηματι-

κής Γλώσσας, αναπτύσσουμε μια μέθοδο για αυτόματη επισημείωση εικόνων η βίντεο

χειρομορφών, και την εφαρμόζουμε στο πρόβλημα της κατηγοριοποίησης 19 χειρομορ-

φών κοινών στην Ελληνική Νοηματική Γλώσσα. Η χειροκίνητη επισημείωση τέτοιων

δεδομένων είναι μια χρονοβόρα διαδικασία. Η αυτόματη επισημείωσή τους βασίζεται

στο συσχετισμό τριδιάστατων αναπαραστάσεων των χεριών με τις κλάσεις (ετικέτες

χειρομορφών), και δημιουργεί θορυβώδεις ετικέτες που μπορούν να χρησιμοποιηθούν

για την εκπαίδευση Συνελικτικών Νευρωνικών Δικτύων. Αυτά τα χαρακτηριστικά

του προβλήματος το καθιστούν υποψήφιο για την εφαρμογή της μεθόδου που προτε-

ίνουμε για την αυτόματη επέκταση συνόλων δεδομένων εκπαίδευσης. Συγκρίνουμε τα

αποτελέσματα εκπαίδευσης ενός CNN με και χωρίς τη χρήση της τεχνικής μας. Η
μέθοδός μας επιφέρει σημαντική αύξηση στην μέση ακρίβεια κατηγοριοποίησης, και

επιπλέον μειώνει την απόκλιση της ακρίβειας ανά κλάση, καταδεικνύοντας έτσι την

εγκυρότητα και τη χρησιμότητα της προτεινόμενης προσέγγισης.

Acknowledgements

First and foremost, I would like to thank my supervisor, Prof. Antonis Argyros,
for his guidance and support since the beginning of my Master’s studies. Our
frequent discussions were invaluable both for defining the direction of this thesis,
as well as instrumenting its execution in practice. Also, I would like to thank Dr.
Iason Oikonomidis, for his advice and insights, and our many discussions of ideas
that failed or succeeded. Without their contributions, the completion of this work
would not have been possible.

I am grateful to my family, for supporting me and encouraging me during my
studies. I would especially like to thank my parents, for teaching me the value of
perseverance. I am also thankful to my friends, and to Eirini, for making my life
better during these studies. Finally, I would like to thank everyone who provided
hand posture data for this project: Alexandros, Dimitra, Dionysis, Eleutheria,
Kyriakos, Manos, Myron, Nikos, Olia, Spyros, Alexandros, Zina, this work would
have been much harder without your help.

στους γονείς μου

Contents

Table of Contents i

List of Tables iii

List of Figures v

1 Introduction 1

2 Related work 5
2.1 Annotation effort reduction . 5
2.2 Hand observation and interpretation 8
2.3 Sign language recognition . 11
2.4 Our approach . 15

3 Methods 17
3.1 Methods for exploiting automatic ground truth 17
3.2 Hand posture recognition - problem definition 20
3.3 The HealthSign dataset . 22
3.4 Automatic ground truth extraction 24

3.4.1 Measuring the distance of hand postures 24
3.4.2 Determining the validity and usefulness of each frame . . . 27
3.4.3 Assigning class labels to postures 29

3.5 Classifier architecture . 30
3.6 The role of automatic ground truth 32

3.6.1 Manually annotated training data 33
3.6.2 Gathering and automatically annotating more data 34

4 Experimental evaluation 37
4.1 Creation of validation and test sets 37
4.2 Training details . 38

4.2.1 Data augmentation . 39
4.3 Training on manually annotated data only 40
4.4 Combining manual and automatic data 41
4.5 Combining data with G-IDEA . 44

i

4.6 Combining data with C-IDEA . 47
4.7 Results summary . 50

5 Discussion 55
5.1 Summary . 55
5.2 Future work . 55

Bibliography 57

ii

List of Tables

4.1 Validation accuracy achieved when using a variable number of im-
ages per signer class. 41

4.2 Summary of validation and test accuracies achieved by each method
of training. 53

iii

iv

List of Figures

3.1 Three example frames from the HealthSign dataset, featuring three
different signers. 22

3.2 illustration of the hand postures employed in the considered hand
posture classification problem. 23

3.3 Locations of the 21 joints determining the articulated structure of a
human hand (figure from [82]). 24

3.4 Greek letters “H”, “Z”, “Π′′ (left to right). An example of postures
that our system treats as being in the same class, by design. 25

3.5 Two different hands performing approximately the same posture,
shown on the right. The dotted black lines connect corresponding
base and tip joints of the hands’ fingers. 26

3.6 Applying all transformations to the postures of figure 3.5. Corre-
sponding palm joints now coincide, and corresponding finger bones
have the same length. Again, dotted black lines connect correspond-
ing fingertips. 28

3.7 Two examples of frames where signers are idle. Observe that the
right signer maintains his hands near the area where signing pre-
dominantly takes place. 29

3.8 Example of an error in 3-D pose estimation. Note that the little
finger has not been detected as being extended. 35

4.1 Three examples of images included in the validation set for the pos-
ture “Y”. Note differences in background, lighting and rotation. . . 38

4.2 Three examples of images included in the test set for the posture
“Y”, from three different signers. 39

4.3 Transforming the background of HealthSign images. On the left,
one of the original images. On the right, the same image augmented
with a random background . 40

4.4 Validation set confusion matrix for the CNN trained on manually
annotated data only. 42

4.5 Test set confusion matrix for the CNN trained on manually anno-
tated data only. 43

4.6 Validation set confusion matrix for the CNN trained on both man-
ually and automatically annotated data. 45

v

4.7 Test set confusion matrix for the CNN trained on both manually
and automatically annotated data. 46

4.8 Validation accuracy achieved on each iteration when using G-IDEA. 47
4.9 Validation set confusion matrix for the CNN trained with G-IDEA 48
4.10 Test set confusion matrix for the CNN trained with G-IDEA . . . 49
4.11 Validation accuracy achieved on each iteration when using C-IDEA 50
4.12 Validation set confusion matrix for the CNN trained with C-IDEA 51
4.13 Test set confusion matrix for the CNN trained with C-IDEA . . . 52
4.14 Validation (top) and test (bottom) class accuracy histograms for all

methods (scaled for visualization). 54

vi

Chapter 1

Introduction

In the past few years, deep learning methods have revolutionized the field of Artifi-
cial Intelligence (AI), achieving previously unattainable performance on a plethora
of challenging tasks. Examples include image recognition [34], object detection in
images [27], scene understanding [88], generation of novel images of a particular
domain [72], natural language processing and machine translation [18] and speech
recognition [30].

Part of the success of deep learning methods is attributed to the fact that their
architectures allow the models to automatically extract useful features from their
training data [50]. This allows them to discover how to efficiently solve a problem
without the need for complex feature extraction techniques developed by humans.
However, in order for deep models to successfully extract features, a large amount of
training data must be available. This is due to the fact that such models comprise
a large number of trainable parameters, often in the order of millions. Therefore, if
only a limited number of samples is available, deep models tend to overfit on them,
essentially memorizing each sample. This leads to poor performance on data that
the model has not been trained on.

Machine learning refers to the problem of inferring a function that maps input
of one domain to output of another. Among many approaches to it, supervised
learning is a commonly employed one. In this approach, learning the function is
performed by training on a set of samples, where each sample is an input-output
pair. Deep models adopting this approach have been quite successful in many
tasks. For example, image classification is a supervised learning task, where the
input is an image and the expected output is a label that describes the content
of the image, chosen from a predefined set of labels. The traditional approach
for training a deep model on a supervised learning task is to manually annotate
a set of input samples with their corresponding ground truth. Manual annotation
involves human effort, since each sample must be examined prior to providing the
associated ground truth information.

Another common approach is semi-supervised learning, in which the available
data is usually a combination of a small number of manually annotated samples

1

2 CHAPTER 1. INTRODUCTION

and a large number of samples for which the labels are unknown. In most cases,
semi-supervised approaches assume that both labeled and unlabeled data follow a
common distribution. For example, points that are near each other in the feature
space are considered more likely to share the same label. In the general case,
semi-supervised learning attempts to devise methods which require less manually
annotated data, and as such, less human effort. Unsupervised learning is a third
approach to machine learning, in which all samples are unlabeled. Unsupervised
learning algorithms aim to discover underlying patterns in the data, by employing
techniques such as clustering.

In the case of supervised learning, annotating large amounts of data can quickly
become very expensive in terms of human effort, especially so if the annotation pro-
cedure is itself difficult to perform, for example, creating pixel-level segmentation
masks. For this reason, besides semi-supervised and unsupervised learning, re-
search is also highly active in the field of reducing the annotation effort required for
training deep models in a supervised manner. In this work, we propose a technique
for utilizing a large number of samples that have been automatically annotated
with labels for a classification task. Given that the annotation is automatic, it is
possible that the extracted labels may be noisy.

The method we develop is generic in nature, and can be tailored to address
any classification problem. It assumes the existence of a small number of manually
annotated samples, as well as a large set of automatically annotated ones, whose
labels might be noisy. We begin by training a Convolutional Neural Network (CNN)
on the manually annotated data, resulting in a classifier that might not generalize
well, given the small number of samples.

Then, we compare the predictions of the network for all automatically anno-
tated samples with the noisy ground truth labels. We incorporate in the training
set a subset of those, for which the predictions of the classifier agrees with the
labels. The intuition is that the agreement of the two predictors (classifier, noisy
automatic annotation) is probably not coincidental. The network is then trained
again on the new dataset, and the procedure is iteratively repeated until there is
no improvement in validation accuracy. We experiment with two variations of the
method, based on how conservatively/aggressively we expand the training dataset
with automatically annotated data.

In order to evaluate our technique, we apply it to the problem of hand posture
recognition from RGB images. In general, the ability of a computer system to
understand and monitor the structure of a human hand can be useful in a variety of
applications. For example, Jang et al. [39] develop a system that allows the user to
interact with Virtual Reality objects by using their hands, and Markussen et al. [56]
present a virtual mid-air keyboard, the use of which is based on tracking the hands
in 3-D space. Another important area of application is Sign Language Recognition.
The posture and motion of hands play an important role in conveying information
in sign languages, when combined with other non-manual features. Additionally, in
the case of finger spelling, each letter of the alphabet is represented with a specific
hand posture [65], and thus entire words can be communicated from a deaf user to

3

a computer system solely via hand posture recognition.
Motivated by the domain of Sign Language Recognition, we formulate a classi-

fication problem for hand postures used in Greek Sign Language. More specifically,
we aim to develop a lightweight yet robust hand posture classifier, in the context
of the HealthSign project [63]. This project aspires to create a system for the au-
tomatic translation of Greek Sign Language in the context of healthcare services.
No definitive formal documentation exists for Greek Sign Language [2], however,
54 postures are estimated to be in use today, 24 of which are also used to represent
the letters of the Greek alphabet [64]. Our posture recognition problem is defined
on a subset of 19 commonly used postures. We present a method that processes
unlabeled videos of subjects signing, and automatically assigns ground truth labels
to the frames. This is based on using a 3D hand pose estimation tool, in our case,
Google’s MediaPipe [97], for estimating the posture in each frame, and comparing
the 3D configurations of joints to those corresponding to the problem’s classes.
Precisely because the annotation produced in this manner features noise, this is a
suitable problem on which to apply the techniques we present for handling noisy
ground truth data. Our experiments indicate that our method shows promising re-
sults when used in a problem that features a small number of manually annotated
samples and a large number of noisy, automatically annotated samples. Its use
yields significant improvements over training on the manual data only, and over
treating all automatic annotations as correct.

The rest of this thesis is organized as follows. Chapter 2 provides an overview
of research work in the three broad areas relevant to our topic: observation and
interpretation of the structure and motion of hands, sign language recognition and
automatic annotation of data as well as methods for reducing annotation effort.
Chapter 3 gives a detailed description of the proposed method for handling noisy
ground truth, as well as the techniques developed specifically for the problem of
hand posture recognition. An evaluation of our methods is available in Chapter 4,
and chapter 5 summarizes our conclusions and proposes possible future work.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Related work

The work presented in this thesis is relevant to three highly active fields of research.
Firstly, the main element being studied is a method for utilization of automatic
ground truth, which is in fact applicable to classification problems in general. As
such, research in the field of annotation effort reduction and automatic ground truth
utilization is highly relevant. Secondly, since we tackle the problem of hand posture
recognition, and since we employ the use of a 3-D hand posture estimation method,
our work is related to the general area of hand observation and interpretation. This
area includes the subdomains of hand tracking and posture or gesture recognition.
Thirdly, because we develop an application that recognizes postures important in
Greek Sign Language, an overview of work done in the field of Sign Language
Recognition is also pertinent.

Therefore, in the following sections we proceed to present an overview of each
of these three research fields.

2.1 Annotation effort reduction

The successful application of a deep learning method on a problem requires a
large amount of training data, generally much larger than the amount required for
traditional machine learning techniques. This is due to the fact that deep learning
models can have a very large number of trainable parameters, and thus can easily
overfit on a small number of samples. Annotating large amounts of data, that is,
specifying the ground truth associated with each sample, is a process that requires
significant human effort. Therefore, it is clear that techniques which reduce this
effort either by automating a part of it or by decreasing the amount of necessary
data are of great interest in the general area of deep learning.

Techniques for reducing annotation effort can either be general or problem-
specific in nature. A general technique which has proven invaluable is data augmen-
tation [81], i.e. the application of randomized transformations on already annotated
data. This process yields new data samples, for which, however, the transforma-
tions ensure that the original ground truth is still applicable. One example of a

5

6 CHAPTER 2. RELATED WORK

domain-specific technique is the work of Voigtlaender et al. [89], in the problem
of semi-supervised video object segmentation. This refers to the task of segment-
ing objects in all frames of a video, given their ground truth pixel masks in the
first frame in which each object appears. Clearly, manually creating pixel masks
requires a significant amount of human effort, and is a task that does not scale
well when a large number of annotated frames is desirable. The authors attempt
to reduce this effort by creating a CNN that can extract pixel-level pseudo-labels
given only bounding box annotations. This method can significantly reduce the
necessary human effort, since it is much easier to annotate object segmentation at
the coarser level of bounding boxes.

Reducing annotation effort is also desirable in the field of active learning, i.e.
the field of machine learning where an algorithm repeatedly queries a user, known
as the oracle, for labeling new data. Sun et al. [84] argue that even though sev-
eral automatic or semi-automatic annotation methods can reduce the number of
instances that need to be labeled, the queries to the oracle which offer the most
to the learning algorithm remain the most difficult cases to label. The authors
attempt to alleviate this issue by leveraging available metadata that can give the
oracle “hints” for the labeling process, by clustering data points with similar meta-
data attributes.

The work of Mueller et al. [60], an overview of which is available in section 2.2,
is also an example of automatic annotation, in the problem of 3-D hand pose
estimation. It is based on generating a plethora of synthetic hand images for
which the 3-D pose is known, and used in the generation process. These images
are crucial for the successful training of the paper’s 3-D hand tracker. In the same
field, Tang et al. [86] present a semi-supervised method for RGB-D based 3-D hand
pose estimation. Semi-supervision refers to a family of machine learning techniques
which operate on a small set of manually labeled data combined with a larger set
of unlabeled data. The method presented in this paper uses transductive transfer
learning [66], a technique where a model is trained on one domain, in order to gain
knowledge useful in a different, related domain. In this case, the authors train a
Regression Forest on synthetic images of hands, which are, by design, fully labeled,
as well as on a small number of manually labeled real images. Furthermore, by
leveraging transduction, the training process also exploits a larger set of unlabeled
real images. This is made possible by knowledge acquired from the synthetic data,
which feature a plethora of different poses, assisted by some domain knowledge
acquired from the small set of manually annotated real images.

The general approach of semi-supervised learning is also closely related to the
problem of reducing annotation effort. The term semi-supervised learning refers
to methods that are trained on a combination of a small amount of manually
annotated data and a large amount of unlabeled data. In essence, semi-supervised
approaches attempt to leverage any existing ground truth, while also benefiting
from a collection of data for which annotation would be impractical. The work
of Tang et al. [86], which has been previously analyzed, features elements of semi-
supervised learning: a large set of unlabeled real images of hands is used as training

2.1. ANNOTATION EFFORT REDUCTION 7

data in combination with a small, labeled set of real images and a larger, also
labeled set of synthetic images.

Honari et al. [36] develop two techniques for landmark localization based on
partially annotated datasets. Landmark localization refers to detecting precise
locations of specific parts in an image, for example, joints that comprise the human
hand or skeleton, or a set of points that describe important facial features. Their
approach does not depend on the specific nature of these landmarks. Essentially,
the authors leverage the limited samples where landmark annotation exists, as well
as a more abundant set of samples for which only a more general, high-level label
is available. This label can be related either to a classification or regression task,
and serves as an auxiliary guide towards localization of landmarks on the unlabeled
data.

In a work closely related to the ones presented in section 2.2, Wan et al. [91]
present a semi-supervised approach for 3-D hand posture estimation from single
depth images. The approach is based on creating two generative models which
share a feature space, such that any point in this space can be mapped to a unique
depth image, and a unique 3-D hand pose. Then, estimating the hand pose present
in a depth image is performed with the use of a model that estimates posterior
probabilities of poses given depth maps. The nature of the architecture allows the
exploitation of unlabeled depth images: the authors develop a generative model
that maps between the feature space and the hand pose space. Furthermore, an
unlabeled depth image is, by definition, a valid point in the depth map space, and
therefore the corresponding ground truth pose can be recovered.

One of the oldest techniques in semi-supervised learning is self-learning, or self-
training [17], which is based on the repeated use of a supervised method. Initially,
the supervised algorithm is trained on labeled data only, and on each step some
subset of the unlabeled data is labeled by using the trained model. The procedure
is repeated, and the training set gradually expands to feature data labeled by the
algorithm itself.

Also relevant to the topic of reduced annotation effort is the concept of learn-
ing from data where the ground truth is noisy. The proximity of the two topics
arises from the fact that automatically created ground truth has a greater chance
of featuring noise. Therefore, techniques that tackle this issue also facilitate the
use of automatic annotation methods. Jiang et al. [40] develop a strategy for train-
ing on noisy ground truth based on Curriculum Learning. Curriculum Learning,
developed by Bengio et al. [9], is a technique for guiding the optimization of a
neural network by presenting the training examples in an order which encourages
it to progressively learn more complex features. Jiang et al. [40] apply this concept
by simultaneously training two networks, one which learns the actual task featur-
ing the noisy ground truth, and another which learns how to guide the first by
presenting samples that are deemed correct. Note that, since the second network
undergoes a training process, the curriculum adapts to the data at hand.

Hacohen et al. [31] investigate Curriculum Learning with two strategies. The
first strategy involves a second, “teacher” network, which transfers knowledge it

8 CHAPTER 2. RELATED WORK

has accumulated from some other dataset. The second strategy is a type of boot-
strapping, where the network is first trained on the target dataset without any
curriculum. Then, the resulting classifier is used to determine an estimate of how
beneficial each sample is in the problem, and retrain the network via the resulting
curriculum.

Han et al. [33] also tackle the problem by coining a method known as “Co-
teaching”. It involves training two networks simultaneously, where each one teaches
the other about what data it considers correctly labeled. The intuition behind their
method is based on the fact that a network tends to learn correct samples in the
first stages of optimization, and memorize the wrong ones at a later point [4]. The
reason for this effect is that correct samples are easier to learn, since they are
described by meaningful patterns, whereas wrongly labeled ones require explicit
memorization by the network.

Mirzasoleiman et al. [57] address the same issues by developing a method that
can select subsets of the data that are likely to be free of noise. Their selection is
based on inspecting the Jacobian matrix of the loss function being optimized, and
choosing medoid data points in the gradient space. A medoid of a set is a point
of the set that minimizes dissimilarity to a cluster of data points of this set. By
choosing the samples in this fashion, they avoid overfitting on parts of the dataset
featuring corrupted ground truth.

2.2 Hand observation and interpretation

The capability to track the motions of a human hand in 3-D space can prove highly
valuable for a plethora of systems where humans interact with computers. Recent
advances in the field of computer vision have yielded techniques that facilitate
this process without the need for expensive wearable sensors or other specialized
hardware.

Applications of such estimation methods include Augmented Reality (AR) and
Virtual Reality (VR) systems where the primary mode of interaction is hand ges-
tures. For example, Jang et al. [39] present a system that tracks the user’s hands
from an egocentric viewpoint and allows interactions with VR objects. Markussen
et al. [56] develop a mid-air keyboard, with which the user interacts via hand
motions tracked in 3-D space. Besides human-computer interaction, other appli-
cations include activity recognition, and sign language recognition. An example of
use in activity recognition is the work of Rohrbach [74] for recognition of activities
related to cooking, where subtle hand movements play an important role in the
identification of a particular activity. For sign language recognition, a more ex-
tensive overview is available in section 2.3, where the importance of hand-related
features in this task is highlighted through multiple relevant research works.

Due to the increased interest in the area, a great number of research works have
emerged in recent years, involving hand tracking in situations that have progres-
sively become more challenging. Although older works required depth information

2.2. HAND OBSERVATION AND INTERPRETATION 9

as input, nowadays estimation from RGB images has become more and more com-
mon. Zimmermann et al. [100] present one of the first works in the area, which
is based on a deep network that learns a 3-D pose prior describing poses that are
feasible for an articulated hand. This works in tandem with the detection of 2-D
hand joints on the image to produce a pose that is simultaneously feasible as a
configuration and consistent with the image itself. The network was trained on
synthetic hand data from 3-D models of humans, since the 3-D joint positions were
readily available. Iqbal et al. [38] tackle the problem by creating a convolutional
neural network (CNN) architecture that learns depth maps and heatmap distribu-
tions for potential positions of the joints on an image, and results in a 2.5-D pose
representation. This means that joint depths are expressed relative to the wrist
joint, and poses are estimated up to a scaling factor, which can be determined if a
hand size prior is available.

A general issue for training deep learning models on the task of 3-D pose esti-
mation has always been the need for large amounts of training data, e.g in the form
of RGB images with 3-D annotations [3]. Mueller et al. [60] attempt to solve this
problem by generating large amounts of synthetic training data with a modifica-
tion of a CycleGAN [99]. A CycleGAN is a neural network capable of transforming
images from one domain to another while preserving their content (e.g. photos to
paintings of a particular art style). The authors use a CycleGAN modified with a
geometric consistency loss in order to be able to translate images of 3-D rendered
hands into synthetic images that approach the appearance of real hands. The
generated images maintain the 3-D pose, and therefore a large number of training
samples can be produced. The images are used to train a CNN, whose output is
combined with a kinematic 3-D hand model in order to produce more natural pose
results during tracking.

Zhang et al. [97] develop a pipeline that can compute estimations for 2.5-D
hand joints at real-time speeds on mobile devices. They first use a CNN for palm
detection, then use its cropped outputs to localize 2.5-D hand joints via another
deep model. Their training data combines real images of hands with synthetically
generated images. These images are rendered using a hand model of variable finger
and palm thickness as well as variable skin tone.

There has also been recent work on even more challenging variations of the
problem. For example, Hampali et al. [32] tackle the case of two hands closely
interacting with each other and Kwon et al. [49] work on the problem of two
hands interacting with objects in a first-person viewpoint. Rudnev et al. [75]
propose a method for 3-D hand tracking from event camera feed. Event cameras are
specialized sensors that react to events like brightness changes and whose temporal
resolutions can vary, depending on the speed of changes which take place in the
scene [54, 75].

Besides the general problem of 3-D hand pose estimation, another common
problem in the literature is hand posture and gesture recognition. In posture recog-
nition, we are interested in recognizing a specific set of hand postures, i.e. static
configurations of hands. In gesture recognition we are interested in recognizing a

10 CHAPTER 2. RELATED WORK

particular sequence of postures, i.e. the problem also has a temporal dimension.
Barros et al. [7] present a CNN for hand posture recognition, which works on

three different channels of information: grayscale images, and two channels which
result from the application of horizontal and vertical Sobel filters for edge detection.
Tang et al. [85] propose a method that uses a Kinect sensor to detect and track
hands, and a CNN to classify hand postures. Their detection method relies on
skin color and depth to track and segment hands, and the images of the isolated
hands are used as input to a small convolutional network. Nai et al. [61] present
an algorithm for hand posture classification from depth images, which is based
on extracting features from randomly positioned line segments. Each segment
essentially serves as a sort of "scan line" over the depth image, detecting depth
disparities which indicate the presence and orientation of fingers. These extracted
low-level features are then used in a Random Forest classifier.

De Smedt et al. [23] present an approach for gesture recognition that is based
on extracting a feature representation from skeleton joints sourced from a depth
camera. Their feature descriptor is based on the vectors which connect hand joints
to each other, and attempts to be invariant to hand rotations and translations.
Although this approach tackles gesture recognition, one could use the features
extracted for each frame in the closely related problem of posture recognition,
which does not have a temporal component. Similar strategies could be used for
exploiting other works in gesture recognition.

Asadi-Aghbolaghi et al. [5] present a survey of deep learning methods for ges-
ture recognition, and more generally action recognition in image sequences. Their
taxonomy divides approaches in three groups. The first group uses 3-D convolu-
tional filters, i.e. filters on both spatial and temporal dimensions. The second
group uses as input to the networks features that are two-dimensional in nature,
but relate to motion, such as optical flow. The third group uses 2-D convolutions
in combination with some technique for temporal modeling (e.g. Hidden Markov
Models).

Evangelidis et al. [25] approach the problem as an assignment of per-frame la-
bels for gestures. The assignment has to obey certain temporal smoothness prop-
erties. Their method makes use of articulated posture data as well as color in-
formation. The per-frame feature vectors are classified with an SVM [80]. Their
classifications are then used in a dynamic programming approach for solving the
optimization problem of assigning labels that also obey the temporal smoothness
criterion. Neverona et al. [62] approach the same problem via multi-modal deep
learning. Specifically, they use different spatial scales to capture information about
posture movement of various “grains” (e.g. body, hand movement), and different
temporal scales to capture variations in gesture speed. Their combination of modal-
ities is performed with a dropout training strategy for modalities, so as to achieve
more robust performance and learn correlations between modalities. Wu et al. [93]
describe a method for multimodal gesture recognition, where the modalities are
skeleton information and RGB-D images. Their method uses different types of
neural networks for the different modalities, tailoring their architecture to the type

2.3. SIGN LANGUAGE RECOGNITION 11

of the specific input. The networks are integrated in a Hidden Markov Model
(HMM) framework, for tackling the temporal aspects of the problem. Temporal
segmentation and recognition of the gestures are thus performed simultaneously.

2.3 Sign language recognition

Sign languages are the main means of communication for deaf individuals, and
have been developed in parallel with spoken languages [78]. Although there is no
single universal sign language, as a general rule in most sign languages the signs are
composed of features related to hand posture, movement and orientation, as well
as features related to body posture and facial expressions. A gloss is a description
of the manual and non-manual features necessary to convey a specific meaning in
sign language [94]. Adaloglou et al. [1], as well as Rastgoo et al. [73], present two
comprehensive overviews of the significant body of work on Sign Language Recog-
nition (SLR). The task is highly complicated in nature, due to the fact that some
of the features involved can be very subtle (e.g. small movements, or differences in
speed may hold meaning), as well as due to the lack of standardization even within
the same sign language [1].

Most of the work in the area uses visual input, although exceptions exist, such
as haptic sensors [42]. Useful categorizations can be defined over this body of work.
The taxonomy presented in that survey [1] yields three categories of tasks related
to the general problem:

• Isolated SLR, where the task is classifying video segments that have already
been ensured to contain a single gloss. Kadous [42] presents an early ex-
ample of Australian Sign Language recognition through the use of a haptic
glove (Power Glove). The work proposes machine learning techniques applied
on sensor data from the glove, in order to recognize 95 glosses, using only
hand-related features. Camgoz et al. [11] study the results of using 3D Con-
volutional Neural Networks for gesture recognition. Although this is not done
strictly in the context of SLR, the work presents a technique for recognizing
video segments of gestures, through the use of spatiotemporal convolutions.
Cooper et al. [19] explore the use of “linguistic sub-units”, that is, features
related to the location of the hands relevant to the signer, the motion of
the hands and their relative positions to each other. The paper experiments
with sub-units based on appearance (i.e. RGB data), as well as 2-D and 3-D
pose tracking data. The combination of these features, in such a way as to
encode temporal information as well, is explored, through the use of Markov
Models and a boosting technique. Tests are conducted on datasets featuring
examples of German Sign Language signs.

• Sign detection in continuous streams, where the task is the detection of pre-
determined glosses in a video, without the segmentation assumed in isolated
SLR tasks. Therefore, segmentation and recognition must be jointly tackled.

12 CHAPTER 2. RELATED WORK

The works mentioned in section 2.2 regarding gesture recognition [25, 62, 93]
can be categorized as belonging in this research domain. Although they ap-
proach gesture recognition in a context that is not necessarily SLR, their
methods could certainly be applied in sign detection in continuous streams.

• Continuous SLR, where the input is a video without segmentation, and the
glosses that are present are not known a priori. This is, by definition, the
task that is closest to real-life applications. Methods developed for this task
must, by necessity, somehow deal with the temporal component of signing.

To this end, they make use of various techniques that have been devel-
oped. Examples include Hidden Markov Models, Dynamic Time Warping
(DTW, [76], and a differentiable variation, soft-DTW [22]), an algorithm for
detecting similarities in time sequences despite speed differences, Connec-
tionist Temporal Classification (CTC, [29]), a method for training recurrent
neural networks with unsegmented sequences. LSTMs [35], a type of recur-
rent neural network capable of learning sequences, are also used. A different
approach is through the use of spatiotemporal convolutional networks, which
directly learn features from videos, e.g. the work of Tran et al. [87], which
uses 3-D convolutions on video data. Another architecture (I3D) similar to
3-D convolutional networks is presented by Carreira et al. [16], in a way
that allows the use of 2-D architectural designs that have been successful in
tasks such as ImageNet [24]. Encoder-decoder architectures have also been
utilized, starting from their successful application in the field of machine
translation [6], since SLR is itself a kind of translation process.

Koller et al. [45] present a classifier that can learn frame-labels for hand pos-
tures from videos with only sequence-level annotations. They achieve this
by using a CNN with an iterative training process in the style of Expecta-
tion Mazimization [58]. Koller et al. [46] use a CNN in combination with
an HMM, in order to be able to train end-to-end on sequences (therefore,
recognize glosses). Pu et al. [69] use two data channels, RGB videos of ges-
tures and a feature representation of joint trajectories. The RGB videos are
processed with a 3-D CNN to extract gesture variations, while the shape
contexts [8] of joint trajectories are fed to another CNN to extract a robust
representation. The output of these networks is combined in a feature vector,
for the classification of which an SVM is used. Camgoz et al. [12] present
an architecture combining CNNs, LSTMs and a CTC loss. Essentially, the
CNNs extract image-level features, the LSTMs are used to add a temporal
dimension to these spatial features, and the CTC layer allows training on
sequences of variable lengths. The work of Cui et al. [20] yields an architec-
ture for SLR which assumes knowledge of the order of appearance of glosses
in the test data, but no exact segmentation of the test video. They use re-
current networks coupled with CTC in order to learn sequences end-to-end
and extract an approximate temporal segmentation of the video based on

2.3. SIGN LANGUAGE RECOGNITION 13

the labels. Then, they tune their features using this information and regu-
larize sequence predictions with a sign detection network. Koller et al. [47]
expand their previous work [46] by combining their CNN-HMM model with
LSTMs, in order to address the issue of noise in the labels of training videos.
They treat them as weak labels, which their method can realign in order to
achieve better consistency with the actual frames. Huang et al. [37] use a 3-D
CNN that receives as input both full frames as well as frames cropped around
hands, and a Hierarchical Attention Network (HAN, extension to LSTM with
attention mechanism) that works on a latent feature space. This allows them
to avoid explicit temporal segmentation.

Joze et al. [41] use the aforementioned I3D architecture, in a work with em-
phasis on realistic settings, leading in the creation of a dataset with 200
signers and 1000 signs. Pu et al. [70] present another example of 3-D archi-
tecture, by using a 3-D ResNet [34] for feature extraction, and a CTC for
learning sequence-to-label mappings. For end-to-end training they use an
iterative strategy with intermediate pseudo-labels for the 3-D CNN, which
are generated by the CTC from the sequences. These two steps are executed
alternately. Koller et al. [44] further explore the idea of weak supervision on
multiple input data streams, each handled with a HMM and a CNN-LSTM
combination. The input streams consist of full frame RGB data, frames
cropped around the hands, and frames cropped around the mouth, in such a
way as to discover features which would otherwise be harder to discriminate.
Cui et al. [21] extend their work in [20], by using CNNs for feature extraction
and recurrent models for sequence learning, with an iterative training strategy
where sequence alignment and feature tuning are performed alternately, until
no improvement is observed on the validation set. Also, they explore the use
of a combination of RGB information and optical flow in SLR. Zhou et al. [98]
tweak the idea of CNNs combined with recurrent networks and CTC, by using
the I3D architecture and a dynamic programming approach to intermediate
pseudo-label generation. Yang et al. [94] propose SF-Net, which attempts to
learn features for multiple levels (frame, gloss and sentence level). To this
end, they combine 2-D and 3-D CNNs, LSTMs and CTC for extraction of
both spatial and temporal features. Another work by Pu et al. [71] combines
two modules, a 3-D ResNet and an encoder-decoder. The encoder-decoder
module uses an LSTM and a CTC decoder, both of which require soft-DTW
during training to quantify the alignment agreement between predicted and
ground truth labels. The alignment is then used to tune the 3-D ResNet
feature extractor, which is used to tune the sequence learning, leading in an
alternating training process.

Another interesting subdomain of SLR is Sign Language Translation, which
focuses on the extraction of entire, grammatically structured sentences from
videos, instead of simple gloss annotations. Camgoz et al [13] address the
problem with an approach that uses an encoder-decoder architecture for

14 CHAPTER 2. RELATED WORK

translation. They use a CNN to learn spatial embeddings for glosses, that
is, feature representations where glosses with similar meanings are close to
each other. Li et al. [53] present a method for translating signing video
sequences into text-based natural language. The method is based on a rep-
resentation of video segments that features multiple temporal granularities,
combined with a technique for hierarchical feature learning. This hierarchical
learning uses attention mechanisms to detect both local semantic information
from segments, as well as context information that can resolve ambiguities in
word meanings. Yin et al. [95] develop a transformer-based approach that is
trained end-to-end to map sign language videos to sentences. Their method
exploits spatial features from multiple cues: faces, hands, and entire body
postures. Furthermore, it is capable of learning temporal relationships for
features originating from the same or different cues. They compare their
end-to-end approach with approaches that use gloss annotation as an inter-
mediate step. Stoll et al. [83] present a work that tackles the problem of
generation of signing videos from text sentences. This is essentially the in-
verse of the problem of Sign Language Translation. They present a two-step
method that first translates sentences into pose sequences, and then uses this
pose information as input to a GAN that produces photorealistic videos.

Due to the increased interest the area of SLR has garnered, several datasets
have also been created. Some of them are:

• Signum [90], a dataset featuring RGB data of German Sign Language in
laboratory conditions (20 signers).

• RWTH-Phoenix [26], [13], also an RGB dataset in German Sign Language,
extracted from weather forecasts (9 signers).

• The Chinese Sign Language (CSL) datasets [37], [69] for isolated and con-
tinuous sign language, which feature RGB-D data for daily conversations in
laboratory conditions (50 signers).

• The American Sign Language (ASL) dataset [41], recorded in real-life settings
and, as such, featuring greater variability. The videos originate from many
online sources and feature 222 signers, with RGB video data where the sign
labels where created with OCR from video subtitles.

• BosphorusSign [14], with signs from the domains of health, finance and every-
day life in Turkish Sign Language. It features RGB-D data from 10 different
signers in laboratory conditions.

• The GSL dataset [1], featuring interactions of signers with public services,
such as the police, hospital and citizen service centers. The dataset provides
RGB-D data in Greek Sign Language for 7 signers, both for isolated and
continuous SLR.

2.4. OUR APPROACH 15

• HealthSign [48], which features scenarios from interactions of signers with
mental health professionals. Currently, it features 8 signers, and provides
RGB-D data as well as 2-D pose information for the body and 3-D hand pose
information, as well as 2-D facial data.

• The WLASL dataset [52], which is a dataset of American Sign Language,
featuring 2000 different words, performed by approximately 120 signers. The
creators aim to feature significant diversity in signer-specific characteristics
by collecting and annotating a plethora of RGB videos from the Internet.

For a more detailed comparison of these datasets see Adaloglou et al. [1] and
Kosmopoulos et al. [48].

2.4 Our approach

This work investigates an approach for working with noisy ground truth data that
have been automatically annotated. Our approach, presented in section 3.1, ex-
hibits similarities to the approaches presented here, especially to Curriculum Learn-
ing and self-training approaches. This is due to the fact that it attempts to select
appropriate subsets of the automatically annotated training data. Furthermore,
this is done in an iterative manner which involves the predictions of the trained
classifier itself. In addition to presenting this approach, we evaluate its use on the
problem of hand posture recognition from RGB images, for a set of hand postures
which convey meaning in Greek Sign Language.

16 CHAPTER 2. RELATED WORK

Chapter 3

Methods

3.1 Methods for exploiting automatic ground truth

This work is primarily concerned with investigating techniques which can be used
to efficiently utilize automatically annotated data for training CNNs on classifi-
cation tasks. Although these methods are studied and evaluated on a particular
application, i.e. hand posture classification from RGB images, they are generic in
nature.

Assume a classification problem featuring K classes, and a method which is
capable of classifying a sample in one of these classes. However, it is assumed that
the annotations produced by the method are imperfect: given a set of unlabeled
samples, each of which may or may not belong in one of the classes, the method
may occasionally err in one of two ways. First, it may label samples of one class
as belonging to another. Second, since some of the unlabeled samples may not
belong in any of the classes, the method may assign a class label to an out-of-
problem sample. Clearly, training a CNN on a dataset where such failure cases are
somewhat common will affect its ability to discriminate between the classes of the
problem.

Manually annotating a large set of data for training a CNN is a task that re-
quires a significant amount of human effort. Furthermore, it must be performed
anew for every different task. On the other hand, methods for automatic annota-
tion often suffer from the imperfections described above, and would have adverse
effects on the performance of the resulting classifier. It is therefore useful to in-
vestigate techniques that can reduce the necessary human effort by exploiting the
noisy automatic labeling in a better way than simply using all the automatically
annotated data as a training set.

Among all candidate techniques, the simplest way to utilize automatically an-
notated data is to consolidate large numbers of such samples, potentially reducing
the impact of failure cases on the performance of the classifier. One could also treat
those samples as completely unlabeled, combining them with a small number of
manually annotated samples and thus adopt a semi-supervised approach. However,

17

18 CHAPTER 3. METHODS

it is our intuition that the utilization of a noisy ground truth label can be beneficial,
and assuming we can annotate a small number of samples, a more sophisticated
approach can be devised. We now have at our disposal a large dataset, Dauto for
which automatically produced ground truth labels are available. We also have a
small set of samples, Dmanual which we have annotated manually, and thus their
labels are expected to be significantly less noisy.

Observe that in this case, it is likely that training a CNN on Dmanual will yield
a classifier that does not generalize effectively. However, it can still provide a noisy
estimate of the likelihood of a sample belonging in a particular class. In common
practice, CNNs trained on classification tasks of K classes are designed to output
K values. The network is trained so that given a training sample of class i the i-th
value is 1 and the remaining K − 1 values are 0 (one-hot encoding). In practice,
these values end up somewhere between 0 and 1, effectively approximating the
likelihood of a sample belonging in each of the classes (section 3.5). Furthermore,
as previously explained, the automatic annotation method also provides a noisy
labeling for the samples.

Therefore, we can train a CNN on Dmanual, compute its predictions on all
samples of Dauto, and select only those samples where the prediction agrees with
the labeling produced by automatic annotation. This yields Dauto,0 ⊆ Dauto, a set
of samples which are more likely to be correctly labeled, since we are conservatively
selecting only the samples for which two noisy predictors agree. If we were then
to train a CNN on Dmanual ∪ Dauto,0, we expect it to generalize better than the
one trained on Dmanual only, since it has a larger number of samples from which to
extract useful classification features. Furthermore, the increased number of samples
is more likely to prevent overfitting.

We can then use the predictions of the CNN on Dauto \Dauto,0, and again select
the samples where the prediction agrees with the automatic labeling. This yields
Dauto,1, and we can then form a new training set Dmanual ∪Dauto,0 ∪Dauto,1. By
continuing this iterative process, increasingly robust classifiers are formed, and we
expect a better utilization of Dauto, since the combination of the two predictors
will filter out some of the noise of the automatic annotation. Provided we have
a validation set for estimating classifier accuracy, we can continue this iterative
process until the validation accuracy of the classifier trained on the selected data
no longer increases, or starts to decrease. The latter could potentially occur if the
automatic labeling results in many similar samples which share the same incorrect
label. In that case, if the process happens to include even a few of those samples
in the training set, the capacity of the CNN to memorize samples could result in
many more of them “contaminating” the training set later on.

Henceforth we shall call this method “Greedy Iterative Dataset Expansion Algo-
rithm”, or “G-IDEA”. The pseudocode implementing it is summarized in algorithm
“ G-IDEA” (it assumes a classification problem of Kclasses).

Note that in practice, on each iteration, mnew is selected to be the model which
achieves the highest validation accuracy on Dvalidation during training.

A second important observation is that we expect the classifier’s predictions

3.1. METHODS FOR EXPLOITING AUTOMATIC GROUND TRUTH 19

Algorithm G-IDEA Train a CNN on a combination of manually and automati-
cally annotated data, attempting to avoid noisy samples
Input:
Dmanual, a set of manually annotated samples
Dauto, a set of automatically annotated samples
Dvalidation, a set of manually annotated samples to be used as a validation set
Output:
m, a CNN model trained on some of the input data
Dselected, the corresponding training data
mnew ← train a CNN on Dmanual

Dselected ← Dmanual

val_acc← compute accuracy of m on Dvalidation

prev_acc← −∞
D0 ← Dmanual

i← 0
while val_acc > prev_acc do
i← i+ 1
m← mnew

Dselected ← Di

new_data ← all samples of Dauto \Di−1 where the class output of m agrees
with the label given in Dauto

Di ← Di−1 ∪ new_data
mnew ← train a CNN on Di

prev_acc← val_acc
val_acc← compute accuracy of mnew on Dvalidation

return m,Dselected

20 CHAPTER 3. METHODS

to become more trustworthy as the iterations progress, since it has more data
available for training. Following this logic, we observe that during the early stages
of this algorithm it is easier for incorrect samples to be introduced into the dataset.
Furthermore, as previously discussed, if many similar incorrect samples exist in
Dauto, a CNN trained on a few of them can end up memorizing them. Subsequently,
it has a greater probability of introducing an increasing number of similar incorrect
samples in its dataset as the iterations progress.

Motivated by these observations, we can modify algorithm G-IDEA so that
on each iteration only a portion of the data where the predictions agree with
the automatic labeling is included in the training set. To select this portion, we
assume that the CNN outputs K numbers representing the likelihoods of a sample
belonging in each of the K classes, more specifically log-likelihoods, as detailed
in section 3.5. For each of the classes we can then order the predicted samples
by decreasing likelihood. Intuitively, we are ordering the samples by a measure of
how certain the CNN is of its prediction. We can then select only a conservative
percentage of each class’ data, and then gradually increase this percentage as the
iterations progress. We shall call this modification “Conservative Iterative Dataset
Expansion Algorithm”, or “C-IDEA”, as described in algorithm C-IDEA.

Note that both of these algorithms are generic in nature, and could be applied
to any classification problem. In this work, we evaluate their use on the problem
of hand posture recognition from RGB images. The following sections of chapter 3
are concerned with the details of devising an automatic annotation scheme for
this problem, and with the application of these methods on the resulting data.
Chapter 4 is concerned with evaluating and comparing the effectiveness of the
algorithms presented in this section.

3.2 Hand posture recognition - problem definition

As mentioned, the algorithms of the previous section are applicable in any classi-
fication problem. For the work presented here, we choose to apply and evaluate
them on the problem of hand posture recognition from RGB images. Given a single
RGB image of a human hand, which is performing one of K different postures, the
task here is to output a label indicating which of the K postures appears on the
image.

Experimental evaluation of the proposed techniques requires us to specify a set
of hand postures which we are interested in recognizing. Motivated by the general
problem of Sign Language Recognition, we apply our methods to a set of hand pos-
tures that convey semantic information in Greek Sign Language (GSL). Although
recognition and translation of GSL cannot be performed with hand posture infor-
mation only, the configuration of each hand can serve as a useful feature in the
general task. Furthermore, for the case of finger spelling, a number of different
hand postures represent the letters of the alphabet [65]. Therefore, hand posture
recognition can potentially be used as a module of a system which aims to recognize

3.2. HAND POSTURE RECOGNITION - PROBLEM DEFINITION 21

Algorithm C-IDEA Train a CNN on a combination of manually and automati-
cally annotated data, attempting to avoid noisy samples
Input:
Dmanual, a set of manually annotated samples
Dauto, a set of automatically annotated samples
Dvalidation, a set of manually annotated samples to be used as a validation set
selection_percent, initial percentage of training data to be selected per class
increase_factor, factor by which to increase selection percentage on each iteration
Output:
m, a CNN model trained on the input data
Dselected, the corresponding training data
mnew ← train a CNN on Dmanual

Dselected ← Dmanual

val_acc← compute accuracy of m on Dvalidation

prev_acc← −∞
D0 ← Dmanual

i← 0
while val_acc > prev_acc do
i← i+ 1
m← mnew

Dselected ← Di

new_data ← all samples of Dauto \Di−1 where the class output of m agrees
with the label given in Dauto

l← likelihoods of each sample belonging in the predicted class
sel_data←<>
for each class c of all K classes do
class_data← all samples of new_data whose class is c
lclass ← corresponding likelihoods of l for class_data
class_data← permute class_data by the descending order of lclass
add the first bselection_percent ·size(class_data)c elements of class_data
to sel_data

Di ← Di−1 ∪ sel_data
mnew ← train a CNN on Di

prev_acc← val_acc
val_acc← compute accuracy of mnew on Dvalidation

selection_percent← min(1, selection_percent · increase_factor)
return m,Dselected

22 CHAPTER 3. METHODS

Figure 3.1: Three example frames from the HealthSign dataset, featuring three
different signers.

sign language.

3.3 The HealthSign dataset

The initial basis for determining the postures we would like our system to recognize
was the HealthSign dataset, which is detailed in the work of Kosmopoulos et al. [48].
This is a dataset focused on communication of deaf patients with mental health
professionals. Namely, it features 21 different scripts in GSL, in which a deaf
patient communicates with a health professional about issues related to stress and
depression. Eight different speakers (four male and four female) of GSL enact these
scenarios. Figure 3.1 shows three example frames from the dataset. The dataset
features gloss-level annotation, which means that for every video there exists a
mapping (fstart, fend) → W , where fstart, fend are the initial and final frames of a
segment of each video respectively, and W is the Greek word to which the signing
sequence of this segment corresponds.

Although GSL is the primary means of communication of deaf individuals in
Greece, there exists no definitive formal documentation of it [2]. It is estimated
that there are 54 different hand postures in use today. Better documented is the
case of the postures which comprise the fingerspelling alphabet: 24 hand postures
are used, one for each of the letters of the Greek alphabet [64]. The frequency of
use for these postures varies, i.e. some postures are used in many more glosses than
others, as is common in other sign languages [10, 59] (see also Zipf’s law [101, 92]).

From an analysis of the 450 most common glosses in the HealthSign dataset
(see 3.6.1), we found 38 postures being used at least once. From these 38 pos-
tures, we selected 19, for which the process described in 3.6.1 had yielded some
initial, manually annotated data more easily. In figure 3.2, one can see the selected
postures. All of the work described from this section onward was performed with
these postures acting as the classes of the hand posture classification problem.
Note, however, that the general methodology being presented can be used on any
other hand posture classification problem. The only factor affecting our choice of
postures was data availability.

3.3. THE HEALTHSIGN DATASET 23

5_1 5_2 A_1 A_2

B_1 B_2 B_4 B_6

F_1 G_1 G_2 G_4

G_6 H_3 K_1 middle_finger_2

V_1 V_4 Y_1

Figure 3.2: illustration of the hand postures employed in the considered hand
posture classification problem.

24 CHAPTER 3. METHODS

Figure 3.3: Locations of the 21 joints determining the articulated structure of a
human hand (figure from [82]).

3.4 Automatic ground truth extraction

The available data is in the form of RGB videos or images. There is no frame-level
annotations that indicates the hand postures present on each frame. Producing this
information manually would require substantial human effort, and thus it appears
imperative to extract this information in an automatic manner. Our approach is
based on extracting the 3-D keypoint structure of the hands in every frame, and
assigning the frame a ground truth label by matching this structure to one of the
postures we are interested in recognizing.

3.4.1 Measuring the distance of hand postures

In order to represent 3-D hand postures, we adopt a hand model commonly used in
relevant literature [67], [97], [82]. This model consists of 21 keypoints that map to
the joints of the palm and fingers. See figure 3.3 for an illustration of this scheme.

Assuming we are interested in recognizing K different classes (hand postures)
and haveN available frames, the first step in assigning one ofK labels to any subset
of the frames is extracting this 3-D structure for all classes and all frames. In our
initial investigations, we utilized the method developed by Panteleris et al. [67], for
extracting 3-D keypoints from monocular RGB videos. This method uses OpenPose
[15] for estimating the 2-D hand joints, and fits a three-dimensional hand model on
these estimations through non-linear least-squares minimization. Ideally, for this
method to yield accurate results, precise camera calibration information should be
available. The estimation results were deemed inaccurate to be relied upon for
matching frames to classes, possibly due to the lack of the required calibration
information. Therefore, we used MediaPipe Hands [97], a software developed by
Google capable of extracting 2.5-D hand landmarks from RGB images. When
using the term “2.5-D landmarks”, we refer to a representation where the depth
coordinate is relative. By a qualitative comparison of the results, this method
seemed to perform more accurately than [67] for this task.

3.4. AUTOMATIC GROUND TRUTH EXTRACTION 25

Figure 3.4: Greek letters “H”, “Z”, “Π′′ (left to right). An example of postures
that our system treats as being in the same class, by design.

Given an input image of dimensions W ×H, the scheme [55] utilized by Medi-
apipe represents each hand posture as a 21-tuple of 3-tuples,

P = ((x1, y1, z1), (x2, y2, z2), . . . , (x21, y21, z21)).

All xi, yi are in the range [0, 1], and xiW , yiH equal the horizontal and vertical pixel
coordinates of landmark i in the image, respectively. Furthermore, zi represents
the relative depth of landmark i: the wrist joint (1, in figure 3.3) by convention is
positioned at depth 0, and the depth of the landmarks increases monotonically with
their distance from the camera. This is, then, a scheme where the z coordinate is a
relative representation of depth, and the magnitude of the x, y coordinates depends
on the dimensions of each individual hand, and the overall distance of the hand
from the camera. The aforementioned conventions followed by Mediapipe imply
that an estimation for a 3-D hand posture P can be located anywhere in three-
dimensional space, and be characterized by an arbitrary orientation. At this point,
a comparison of two different hands cannot be achieved by directly comparing
corresponding joints. Therefore, the first step towards rendering different postures
comparable is to translate them to a common point in space, such as the origin,
and rotate them to a common orientation.

For this work, we make the simplifying assumption that no two classes can
differ from one another solely by a rotation of all their landmarks. This means, for
example, that “thumbs-up” and “thumbs-down” are considered identical postures.
For the case of Greek Sign Language this is not always true: the Greek letters
“H”, “Z”, “Π′′ for example, only differ by an in-plane rotational change (see figure
3.4). However, including such cases would not alter the proposed methodology
significantly. In fact, most of the necessary changes would only affect the posture
preprocessing described in this section.

We deal with the task of translation and rotation normalization in the following
way. Let P = (j0, j1, . . . , j21) be a hand posture in an image of dimensions W ×H
as described previously, with ji = (xi, yi, zi) corresponding to the i-th landmark as
depicted in figure 3.3. Then, P ′ = (j0− j0, j1− j0, . . . , j21− j0) is the same posture
translated so that the wrist lies at the origin. Let n1 = j10×j6

‖j10×j6‖ be a vector normal

26 CHAPTER 3. METHODS

Figure 3.5: Two different hands performing approximately the same posture,
shown on the right. The dotted black lines connect corresponding base and tip

joints of the hands’ fingers.

to the plane defined by the middle and index finger base joints, and n2 = j10×n1

‖j10×n1‖
be a vector that lies in this plane and is perpendicular to j10. To illustrate, n2

approximates the thumb when it is extended, and lying on the palm plane. Then,
n2,

j10
‖j10‖ , n1 can be thought of as the i, j, k unit vectors of a local coordinate system

where the middle finger lies on the positive y′y semi-axis, and the normal vector
n1 lies on the positive z′z semi-axis. Let R ∈ R3 be the rotation matrix that
transforms this coordinate system to the standard basis of R3, and P

′′ be the
hand posture that results from applying R to P ′ . By transforming every posture
P to its corresponding P ′′ , we ensure that all postures are now at a common point
in space, and have the same orientation. It is now meaningful to define the distance
of two hand postures, P1 = (j1,1, j1,2, . . . , j1,21), P2 = (j2,1, j2,2, . . . , j2,21) as

d(P1, P2) =
21∑
k=1

‖j1,k − j2,k‖, (3.1)

that is, as the sum of the Euclidean distances of all corresponding joints. However,
the characteristics of each individual hand (e.g. finger lengths) can affect this sum
in an undesirable way: two different hands performing the same posture may end
up having a distance significantly larger than zero if their anatomical structures
are different. An example of this can be seen in figure 3.5: the three-dimensional
representations of both the green and red hand are performing approximately the
same posture, shown on the right image, and yet differences in their scale will result
in the metric of equation 3.1 having a larger value than expected.

Therefore, it is necessary to normalize, as much as possible, the individual
hand characteristics. To this end, we chose a predefined hand model, H0 =
(j0,1, j0,2, . . . , j0,21), and applied the following transformation on all postures, in
order to match their structure with H0. First, observe that the the wrist joint and

3.4. AUTOMATIC GROUND TRUTH EXTRACTION 27

the base joints of all fingers and thumb can be considered approximately rigid in
the human hand. Therefore, information about a posture P ′′ = (j

′′
1 , j

′′
2 , . . . , j

′′
21)

is not lost if each finger is transformed so that each base joint is aligned with the
corresponding base joint of H0.

This can be achieved by setting j2 = j0,2, j6 = j0,6, j10 = j0,10, j14 = j0,14, j18 =
j0,18 (changing P

′′ ’s palm structure to match H0’s), and then translating each
finger to its new base joint. Furthermore, we want every “bone” (that is, every
segment connecting two joints in the scheme of figure 3.3) to have magnitude equal
to its corresponding bone in H0. For example, the bone connecting joints 10 and
11 has magnitude ‖j0,10− j0,11‖ in H0, and ‖j

′′
10− j

′′
11‖ in P

′′ . Again, this does not
affect posture information, since it is only the hand’s dimensions that are being
changed. The entirety of this transformation for the middle finger, comprised of
joints 10, 11, 12, 13, is described by the following recurrence relation:j

′′′
k = j

′′
0,k k = 10

j
′′′
k = j

′′′
k−1 +

(j
′′
k−j

′′
k−1)

‖j′′k−j
′′
k−1‖
‖j0,k − j0,k−1‖ k = 11, 12, 13

, (3.2)

effectively transforming the bone lengths to the ones of H0.
Similar relations can be defined for all other fingers. At this point, we have

eliminated, to a large extent, the differences that arise from variability in hand
structure and dimensions. Denoting with F the composition of all transformations
described in the paragraph, which maps every hand posture P to its corresponding
P
′′′ , postures F (P1), F (P2) can be reliably compared with the metric of equation

3.1, for any P1, P2. See figure 3.6 for an illustration of how the transformation
renders the postures of figure 3.5 comparable.

With respect to the distance metric that should be used to compare postures,
it is worth noting that besides the metric of equation 3.1 we experimented with
the alternative metric defined as

d
′
(P1, P2) = max

k
‖j1,k − j2,k‖, (3.3)

which is based on the infinity norm. However, preliminary experiments similar
to those presented in Section 4 indicated that it did not provide an advantage.

3.4.2 Determining the validity and usefulness of each frame

Having developed a method for comparing postures present in each frame to the
postures that correspond to the classes of the problem, we must now determine
a criterion for determining whether the posture estimated in a frame is actually
correct. The need for this arises due to two reasons. Firstly, in the videos of the
HealthSign dataset, a signer signing GSL may not necessarily be signing for the
entirety of the video. In the case of HealthSign, for example, the signers were
following scripts describing the sentences they should sign, and as such there were
significant intervals where the signers were still, waiting for the next sentence to be

28 CHAPTER 3. METHODS

Figure 3.6: Applying all transformations to the postures of figure 3.5.
Corresponding palm joints now coincide, and corresponding finger bones have the

same length. Again, dotted black lines connect corresponding fingertips.

recited to them. Additionally, in the general case of signing GSL the non-dominant
hand is frequently held still, since many signs feature only the dominant hand.
Postures estimated for those frames (commonly referred to as neutral postures)
likely do not hold meaning in GSL, and should not be taken into account. Secondly,
the method that is used for estimating the 3-D landmarks could result in occasional
false detections. In the case of our method of choice, MediaPipe [97], the estimator
provides a confidence score in the range [0, 1] for every detection it reports, and
thus this information can be useful in isolating postures that are more likely to be
valid. For this confidence score, a threshold in the range of [0.8, 0.9] was empirically
found to be adequate, i.e. it did not discard many true detections, nor did it select
many false ones.

For detecting frames where the signer is still, a useful observation is that, in
general, sign language tends to be signed relatively close to the face and torso [51],
whereas when a signer is idling, their hands are more likely to be closer to their
pelvis. This was true for quite a few cases in HealthSign videos, but not all (see
figure 3.7). It was therefore found that, in practice, rejecting all postures where
the mean of all 2-D landmarks of the hand lied in the lower 20% of the frame is an
effective criterion for detecting cases where the signer’s hand is still. In order to
also detect cases of signers whose stance when still resembles that of the signer on
the right of figure 3.7 (i.e. they rest their hands near their torso, an area in which
they could well be signing), a slightly more sophisticated approach is needed.

First, let li = (xi,k, yi,k) be the mean 2-D landmark of a signer’s hand (e.g.
his right one) in pixel coordinates for the i-th frame of a video (k refers to the 21
landmarks). Then, let ∆xi = li,1 − li−1,1,∆yi = li,2 − li−1,2 be the difference of
this mean landmark in x, y coordinates from frame i− 1 to frame i. The quantity

3.4. AUTOMATIC GROUND TRUTH EXTRACTION 29

Figure 3.7: Two examples of frames where signers are idle. Observe that the right
signer maintains his hands near the area where signing predominantly takes place.

∆li =
√

∆x2
i + ∆y2

i is the pixel distance traversed by the mean landmark between

the two frames. The hand of frame i is then judged to be still if
∑i+w

k=i−w ∆lk
2w+1 < T , i.e.

when the mean value of the distance traversed in each frame in a window around
frame i is less than some threshold. In practice, values of w = 0.75 · framerate,
i.e. so that the window corresponds to 0.75 · 2 = 1.5 seconds, and T = 0.7 appear
to adequately detect segments where the signers are still adequately.

The logical conjunction of score thresholding and stillness status (each described
in the paragraphs above) yields a criterion for determining whether a particular
hand in a particular frame can be considered as being in valid posture. This
criterion shall be referred to as C in all sections that follow.

3.4.3 Assigning class labels to postures

At this point, we have established a way of comparing every hand posture of every
frame with the postures that correspond to the classes of our problem. Further-
more, we can determine which hand postures should not be taken into account for
further processing.

To restate the problem, we are given K input images, each corresponding to a
particular hand posture (that is, to a class of the problem) and a set of N videos,
every one of which features one of S subjects performing these hand postures. The
end goal is to select a subset of the frames that can be useful in forming a part of
the training dataset of the classifier we are designing. Note that this dataset can
also feature manually annotated samples. This classifier should receive as input an
RGB image of a hand, and output one of K labels, indicating which hand posture
is present in the image. In our particular case, the postures hold meaning in GSL,
but the problem could be defined over an arbitrary set of hand postures.

30 CHAPTER 3. METHODS

It is desirable to create a classifier that is invariant to human-specific character-
istics of the hand, such as skin color. Therefore, it is crucial to populate the classes
of the dataset with samples that feature enough diversity in such characteristics.
This will allow the classifier to better generalize over images not present in the
training set, by only focusing on relevant features.

As such, the frame subset that is chosen should feature hand postures that are
similar to the problem’s class postures. Also, it should, as much as possible, consist
of frames with diversity in all image features irrelevant to the classification problem.
To this end, we apply algorithm ASSIGN_LABELS for choosing the frame subset
and assigning a class label to every one of its members. The pseudocode assumes
that the normalization operation F of section 3.4.1, the filtering criterion C of
section 3.4.2, as well as the MediaPipe estimator mentioned in section 3.4.1 are
all callable functions. Furthermore, besides returning 3-D postures, MediaPipe
also returns a confidence score for each detection, which can be used by C. For
presentation clarity, handedness information is not handled in the pseudocode, i.e.
we only process the signer’s right hand. Also, the pseudocode assumes that the
list of videos it operates on feature only one signer. In practice, this algorithm is
executed for all signers in the dataset.

In an actual implementation, it is preferable to separate this algorithm in steps
which can be performed independently. The first step is the extraction of all frames
from the videos, and the estimation of 3-D landmarks via MediaPipe or any other
estimator. At this point, the results are saved as arrays containing information
about the 3-D points, the corresponding frames, videos and handedness. Then,
normalization and filtering can be applied at a later time, potentially using some
other filtering method that the one described in 3.4.2, if the problem calls for it.
As a third step, the distances of all estimated postures from all reference postures
are calculated (with the metric of equation 3.1, or any other), and also saved as
arrays. Finally, the results of the filtering process and the distance calculations
are combined in order to obtain a sorting of the postures in the classes, and then
select a predefined number of postures per class.This information is then used to
crop the proper part of each frame that contains the hand, and store the cropped
images in the actual dataset, separated by class.

3.5 Classifier architecture

At this point, we are capable of creating a training set of annotated RGB images
of hand postures, simply by providing the system we described in 3.4 with videos
of various signers performing any desired set of postures. Furthermore, we have in
our disposal the methods presented in section 3.1, for utilization of automatically
annotated data. We can, therefore, train CNNs for hand posture recognition by
using either manually annotated data, automatically annotated data, or a combi-
nation of the two. In this section, we examine the architecture we shall be using
for our CNN.

3.5. CLASSIFIER ARCHITECTURE 31

Algorithm ASSIGN_LABELS Extract a set of images featuring the problem’s
specified hand posture classes
Input:
V , a list of videos featuring a uniquely identified signer
ref_images, a list of K images where a signer is signing each one of K reference
postures (classes) with their right hand
N , integer denoting the maximum number of images to be selected for every class
Output:
selected_images, a list of tuples of the form (image, posture class)

ref_poses_3d← MediaPipe(ref_images)
ref_poses_3d← F (ref_poses_3d)
selected_images←< empty list >
images_per_class← < empty list >
for i = 1 . . .K do
images_per_class[i]←< empty list >

estim_3d← MediaPipe(V)
normalized_3d← F (estim_3d)
is_valid_frame← C(estim_3d)
for every index i where is_valid_frame[i] == true do
nearest_class← argmin

k
(d(normalized_3d[i], ref_poses_3d[k]))

distance← min
k

(d(normalized_3d[i], ref_poses_3d[k]))

cropped_img ← crop corresponding frame around 2-D landmarks
annotation_tuple← (cropped_img, distance)
append annotation_tuple to images_per_class[nearest_class]

for i = 1 : K do
sort images_per_class[i] in ascending order of distance
append first min(N, images_per_class[i].length) elements of
images_per_class to selected_images

return selected_images

32 CHAPTER 3. METHODS

As was mentioned in the introductory chapter, it is desirable for the classifier to
be fairly lightweight in terms of the computational power it requires. In the general
domain of image recognition, deep convolutional neural networks have proven to
exhibit high accuracies and generalization capabilities [50]. Furthermore, they
can be trained end-to-end, with their only input being RGB images and their
corresponding classes. In particular, the MobileNet v2 network [77] is a classifier
of this kind that can be used in real-time conditions on smartphones, while also
achieving high accuracy (e.g. on the ImageNet dataset [24]).

Therefore, a MobileNet network is a reasonable choice for a problem like the
one tackled here. In particular, we use a MobileNet v2 model that has already been
trained on the ImageNet dataset. The intuition behind using a pretrained model
is that the low-level image features it has learned to recognize (e.g. edges, corners)
will also be useful in our problem. In order to adapt the model to our classification
problem, we add a fully connected linear layer at the end of the standard MobileNet
architecture. Each of its neurons has as inputs all outputs of the final layer of the
MobileNet architecture, and there are as many neurons as the K classes of the
problem. Finally, the K outputs (x1, x2, . . . , xK) are fed through a log-softmax
layer which outputs K values as:

yi = log
exi∑K
j=1 e

xj
(3.4)

yi is a sort of measurement of how "confident" the classifier is of its input image
belonging in class i. For the final classification result, the class i which maximizes
yi is chosen as the class of the input image.

During training, the objective function that we attempt to minimize is the
negative log likelihood loss function, since this is a classification problem:

l(y, actual_class) =
N∑

n=1

−yn,actual_classn , (3.5)

where N is the batch size, y is a N ×K matrix the i-th row of which is equal to
the softmax layer output for sample image i, and actual_class is a vector of size
N whose i-th element is the ground truth class index of sample image i.

3.6 The role of automatic ground truth

One way to evaluate the effectiveness of our automatic annotation schemes would
be to compare performances of classifiers trained on different datasets, created with
manual annotation, automatic annotation, or a combination of the two. At first
glance, achieving a better performance than a manually annotated dataset appears
unlikely, provided of course that the manually annotated samples are sufficient in
number for generalization. After all, human annotation, when performed with care,
sets a very high standard for any automatic method.

3.6. THE ROLE OF AUTOMATIC GROUND TRUTH 33

Note, however, that as the number of postures increases, the effort required to
annotate a dataset manually becomes non-trivial. This is especially true because
enough sample variability must be ensured for the generalization of the classifier.
Therefore, it is likely that an automatic annotation scheme could prove useful, or
even necessary, as a tool for augmenting a small, manually annotated dataset. It
would provide more samples, automatically annotated, thus improving the gener-
alization of a classifier trained on the dataset.

3.6.1 Manually annotated training data

To establish a baseline for judging automatic annotation schemes, we created a
small, manually annotated dataset from the videos of the HealthSign dataset. For
the 8 signers featured in this dataset, a target goal of selecting approximately 15
images per hand posture of every signer was set. This would result in approxi-
mately 120 images in total for every hand posture. Since per-frame annotation for
hand postures was unavailable, even for rather small numbers of images per class
like these, the task required a fair amount of human effort. The only available
annotation was gloss-level, and it was utilized by making the following observa-
tion. For every gloss, the annotation ensures that every signer signs it in the same
fashion, i.e. with the same sequence of hand postures signed with the dominant,
and possibly non-dominant, hand. Therefore, the frames of a video segment cor-
responding to gloss X can only feature the postures that comprise S. With this
observation, the frame-level annotation effort was performed as follows:

• First, we performed an analysis of the frequency with which each gloss ap-
pears in the dataset. We found that approximately the 450 most commonly
appearing glosses cover about 90% of all gloss instances. Since most glosses
have a rather short duration (a few seconds), we can assume that this also
covers about 90% of all frames.

• Then, we map each one of these glosses to its corresponding postures in GSL.
This mapping is a time consuming task, regardless if it is done via consulting
a sign language interpreter or via inspecting the corresponding video parts
and matching the postures with those provided in a compiled reference of
GSL postures.

• For every frame present in a video segment featuring a gloss mapped in the
previous step, we utilize MediaPipe’s hand posture estimations to determine
which of the gloss’ postures is the closest match for the hand of that frame.
Essentially, this is a modified version of the algorithm presented in section
3.4.3, where the number of possible postures a frame can be matched with is
limited.

• Finally, we group all cropped hand images by the class posture to which they
were assigned, and sort them in ascending order of their posture’s distance
from its assigned class. Then, human effort is required once again, in order

34 CHAPTER 3. METHODS

to inspect some of the selected images, and select 15 images for every class of
every signer, ensuring -to the degree possible- that they are not too similar
to one another.

From the description of the procedure, it becomes clear that a significant
amount of effort is required for manually annotating even a small set of images. An
alternative would be the creation of data specifically tailored for this problem, i.e.
photographing a number of people signing all different postures, thus knowing a
priori the label of each image. This is also a procedure that requires a fair amount
of human effort. Furthermore, for the general problem of sign language recognition,
this implies the need for additional annotated frames besides the gloss-annotated
videos.

Having created the manually annotated dataset, the first experiments to gauge
the accuracy achieved by a classifier trained on it were performed with cross val-
idation. Specifically, since the dataset is comprised of eight different signers, we
used 8-fold cross validation, where in each fold one of the signers was kept as a
validation set, and the other seven as a training set. The classifier managed to
achieve an average accuracy of 90% across folds, with no per-class accuracy being
lower than 80%.

However, before proceeding to compare with classifiers that use automatically
annotated data in any way, we first tested the performance of this particular trained
model on the validation set we created (described in 4.1). There, the classifier ex-
hibited a significant decrease in accuracy: the recorded average validation accuracy
was approximately 45%, with the lowest per-class accuracy being approximately
15%. Similar accuracies were observed on the test set as well.

Clearly, despite the high accuracies estimated by cross-validation, and despite
the data augmentation procedure, this classifier has overfitted on the characteris-
tics of the HealthSign dataset. We speculate that this is due to the fact that all
videos were filmed in the same conditions, i.e. in the same room, with the same
background and lighting. Although we attempted to alleviate the problem with
the augmentations described in 4.2.1, the efforts were not enough to ensure gener-
alization. Therefore, the problem appears to be a good candidate for testing the
effects of automatically annotating a potentially much greater amount of data, in
the hope of achieving generalization.

3.6.2 Gathering and automatically annotating more data

Due to the apparent need for more training data, we proceeded to gather video
data from sources other than HealthSign. Firstly, we enlisted the help of 10 sub-
jects, both male and female, each one of which was asked to record a short video
(approximately 10 to 12 minutes). They are asked to perform all of the problem’s
hand postures in various rotations of the hands, and in an arbitrary environment.
Furthermore, they are asked to perform the postures in front of their face and body,
as well as in front of the background. It should be noted that these subjects did

3.6. THE ROLE OF AUTOMATIC GROUND TRUTH 35

Figure 3.8: Example of an error in 3-D pose estimation. Note that the little finger
has not been detected as being extended.

not know GSL, but instead performed the postures by following an example video
of a person iterating through all of them. Data collection is, therefore, fairly simple
in terms of human effort. Secondly, we gathered several videos of signers signing in
GSL from YouTube (35 videos of 7 signers). Again, the only human effort involved
here is a selection of videos that are deemed appropriate, e.g. have an acceptable
image quality.

All of this data is then processed with the system of 3.4, in order to extract
a ground truth label for a number of different frames. For the algorithm of 3.4.3,
we use a value of N = 500, meaning that we extract at most 500 hand images for
every class of every signer. Due to the number of different signers, this creates a
large pool of data available for training our classifier.

The simplest way to utilize this large dataset is to consolidate it, either in
its entirety, or by further limiting the number of images per signer class, with
the manually annotated dataset described in 3.6.1, and use the result to train
a new model. This allows for much greater variation for each class, and would
provide the network with a large number of training examples from which to extract
classification features. However, it is at this point that the accuracy of the 3-D hand
posture estimation method comes into play. MediaPipe’s estimations may be fairly
accurate, but they are not always perfect, and the more nuanced the differences
between class postures become, the more important estimation accuracy becomes
for the creation of an effective training set. This is due to the fact that in such
cases, it becomes easier for training samples of one class to be mislabeled as training
samples of another. Should this happen to a significant degree, the network may
very well have trouble differentiating between the two classes, even if it manages
to extract features relevant to classification. This is purely due to the fact that the
training set itself does not properly encode class differences.

One example of error that MediaPipe seems to repeat can be seen in figure 3.8.

36 CHAPTER 3. METHODS

Specifically, at certain points during tracking, it appears to have difficulty estimat-
ing the position of the hand’s little finger. Our problem features two classes, “A_2”
and “Y_1” in figure 3.2, whose only differences are found in the joints of the little
finger. As a result, the automatic annotation of 3.4 may well result in a training
set where sample images from one of these classes are labeled as belonging to the
other. This and other similar cases, which stem from the fact that quite a few
classes in our GSL-defined problem are characterized by rather small differences in
hand posture, indicate that MediaPipe’s annotations cannot be completely trusted.

Therefore, this is a case that resembles the general task which is analyzed in
section 3.1: we have a classification problem for which a small number of manually
annotated samples is available. Also available is a large number of automatically
annotated samples, for which the produced ground truth contains noise, as de-
scribed above. We can therefore test the two algorithms presented in section 3.1,
and compare the resulting classifiers with a classifier trained without the use of
such a technique.

Chapter 4

Experimental evaluation

This chapter presents an evaluation of our proposed methods applied to the problem
of hand posture recognition from RGB images. We begin by describing the datasets
that are used for model selection (validation set) and performance estimation (test
set). We then present the details of the training procedure, with respect to the
network’s hyperparameters and data augmentation process. Finally, we compare
the performance of CNNs trained with and without the use of the algorithms of
section 3.1.

4.1 Creation of validation and test sets

To the best of our knowledge, as already outlined in section 2.3, there is no large
corpus of annotated images for GSL postures. Therefore, we found it necessary to
manually annotate a small dataset for testing our algorithms. It is considered good
practice to evaluate a classifier’s accuracy on data that have been kept separate
from its training set. To this end, the validation set which we created features a
male signer not present in any of the training videos, performing all hand postures
in a room which the classifier has also never encountered in its training samples.
To further attempt to diversify the validation set, the hand postures are performed
in front of the signer’s body, face and the room in which he is located. Various
rotations and viewpoints were also recorded for each posture. Ideally, the validation
set would be even more diverse, by featuring data from many different signers.
However, the variability that already exists in the aforementioned factors, combined
with the disjoint nature of training and validation sets, provides a fairly reliable
estimation of generalization capabilities.

More specifically, for each of the 19 postures we have chosen to include in our
problem definition, approximately 100 images of a right hand performing them
were recorded, in the conditions described above. See figure 4.1 for example im-
ages belonging in one class, showcasing some of the variability we have tried to
incorporate in our dataset. With respect to the classifier, we chose to train it for
right hands only, in order to slightly simplify its task. For this reason, all images in

37

38 CHAPTER 4. EXPERIMENTAL EVALUATION

Figure 4.1: Three examples of images included in the validation set for the
posture “Y”. Note differences in background, lighting and rotation.

the validation set feature right hands only. If detection of hand posture is desirable
for a left hand, the image simply has to be horizontally flipped before being given
as input to the classifier. Therefore, in a real-world scenario one must only be
aware of whether each image they would like to use the classifier on comes from a
left or right hand.

Because we use the accuracy achieved on the validation set as a guideline for
choosing the best model during a training session, we run the risk of overestimating
the resulting classifier’s accuracy. To this end, we also created a test set, which
is never observed in any way during training. Accuracies on the test set are only
measured after determining the best model based on validation accuracy. The
created test set features images predominantly from three different signers, two
male and one female. A small number of samples are also sourced from three
other signers, one male and two female. This dataset features lower variability in
rotations, but higher variability in signer-specific characteristics, e.g. skin tone.
Furthermore, it features higher variability in image resolution. Figure 4.2 shows
three example images for posture “Y” from the test set, each from a different
signer. As with the validation set, approximately 100 right hand images comprise
each class.

4.2 Training details

The CNN architecture we employ is described in section 3.5. For feeding images
to the network, we use a batch size of 64 during training. For iteratively adjust-
ing the parameters of the network to minimize the negative log-likelihood loss,
an optimizing strategy must be chosen. We tried both the AdaDelta [96] and
Adam [43] optimizers, with the PyTorch [68] default learning rates 1 and 10−3

respectively, and preliminary experiments determined that the Adam optimizer
generalized marginally better. The experiments detailed in this chapter were all
performed with the Adam optimizer.

In every experiment presented in this chapter, the corresponding CNN was
trained for 120 epochs. At the end of each epoch, the accuracy of the classifier
on the validation set was measured, and the final model for that experiment was
chosen to be the one which achieved maximum validation accuracy.

4.2. TRAINING DETAILS 39

Figure 4.2: Three examples of images included in the test set for the posture “Y”,
from three different signers.

4.2.1 Data augmentation

Applying augmentation techniques on the training data has proven to assist convo-
lutional neural networks in generalizing to unseen samples [81]. Data augmentation
can range from geometrical transforms of the input (e.g. rotating or scaling im-
ages) to transforms applied on the color profile (e.g. varying the contrast or hue)
to more application-specific transforms.

In our case, the fact that the classes are rotationally invariant allows us to use a
random rotation between 0◦ and 360◦ as augmentation. Before applying a rotation
augmentation, input images are padded so that they are square, in order for the
aspect ratio to be maintained when the image is rotated. Since the images fed to
the network are already tightly cropped around the hand, we avoid using random
cropping as augmentation, since it could result in obscuring parts of the image
that contain useful information for classification. We do, however, use a random
translation augmentation of up to 10% of the image’s dimensions.

After applying all transforms, each image that is fed to the network is al-
ways scaled to be 224 × 224 pixels in size, and also normalized so that its pixel
values have a mean of µ = (0.485, 0.456, 0.406) and standard deviation of σ =
(0.229, 0.224, 0.225) (values computed on the ImageNet dataset, and recommended
for use with a pretrained MobileNet model). The same scaling to 224×224 and the
same normalization is performed for images of the validation set. However, these
do not undergo the random transformations applied on the training set, in order
to ensure that performance estimation is always applied on exactly the same data.

For the case of training images that originate from the HealthSign dataset,
we also apply one custom transformation before applying any of the others de-
scribed above. Specifically, because the HealthSign videos were recorded in a room
with a mostly green background, we can determine an approximate pixel value
(rbg, gbg, bbg) for the background color in an offline preprocessing step. Then, dur-
ing training, we can perform a crude segmentation of the background by selecting
those pixels with an RGB value (r, g, b) such that ‖(r, g, b) − (rbg, gbg, bbg)‖ < T ,
where T is a threshold. Assuming that each color value is in the range [0, 255], we
found that a value of T = 63 serves well enough to select most of the background,
while not selecting parts of the foreground.

40 CHAPTER 4. EXPERIMENTAL EVALUATION

Figure 4.3: Transforming the background of HealthSign images. On the left, one
of the original images. On the right, the same image augmented with a random

background

Having selected the background pixels, we then replace them with the corre-
sponding pixels from an image randomly sampled from the Stanford backgrounds
dataset [28]. Figure 4.3 shows the results of applying this transformation to an
example image. We apply this transformation with a probability of 0.7 on any
HealthSign training image that is fed to the network. This serves to provide greater
variety to the HealthSign data, reducing the probability of overfitting on irrelevant
features, such as learning to expect a green background around some or all hand
postures.

4.3 Training on manually annotated data only

As mentioned in section 3.6.1, the first experiments on the validation and test set
were performed with a CNN that was trained on manually annotated data, only.
Details on the classifier architecture and the augmentation applied on the data can
be found in sections 3.5 and 4.2, respectively.

In this case, the resulting CNN achieves an average accuracy of 46.5% on the
validation set, and 41.5% on the test set. Figures 4.4 and 4.5 show the confusion
matrices for the validation and test set, respectively. For these confusion matrices,
as well as for every other confusion matrix presented in this chapter, the value of
the i-th row and j-th column is the percentage

number of samples of class i predicted as class j
number of samples of class i

· 100%

On its training set, the network achieves almost 100% accuracy. Therefore,
from the average validation (46.5%) and test (41.5%) accuracies, as well as the
characteristics of the confusion matrix, we observe that the network overfits: there
is a large discrepancy between training and testing accuracies. Furthermore, the

4.4. COMBINING MANUAL AND AUTOMATIC DATA 41

Images per signer class 15 30 60 120 500
Validation accuracy 69.06% 71.33% 70.4% 72.3% 73.38%

Table 4.1: Validation accuracy achieved when using a variable number of images
per signer class.

network tends to prefer some classes over others in many cases. This is especially
clear in the case of the class “G_1”. We speculate that the network has learned
relatively simple features for these classes from the training set, which it can often
detect in test images, and as a result it also ends up predicting these classes more
frequently.

4.4 Combining manual and automatic data

Motivated by the lack of proper generalization, we begin to experiment with
the use of automatically annotated data as a complement for our small set of
manually annotated images. In the first experiment of this sort, we use algo-
rithm ASSIGN_LABELS of section 3.4.3 on the data we describe in section 3.6.2.
This is a large pool of samples from 17 signers. The aforementioned algorithm
requires as a parameter the number of samples to select for every class of every
signer. As we increase this number, if the automatic annotation was perfect we’d
expect the accuracy to increase, since more training samples become available to
the network. However, the fact that the automatic labeling is noisy leads to the
conjecture that this increase may not be monotonic: an introduction of a large
number of noisy samples could potentially affect prediction accuracy in an adverse
manner. The effects of the noise could nullify or perhaps even outweigh the benefits
of introducing new correct samples.

We experiment with several values for the number of samples per class for every
signer, beginning with 15 images per signer class. By the term signer class we refer
to all the images belonging in a particular class which feature the same signer.
This number is chosen so that each new signer has a contribution equal to that of
every signer from the original, manually annotated set (see section 3.6.1). Then, we
experiment with the values of 30, 60, 120 and 500 images per signer class. Table 4.1
summarizes the highest validation accuracies recorded with each configuration.

We observe that, even with 15 images per signer class, there is a significant
improvement (25%-30%) over using manually annotated data only. Furthermore,
increasing the number of images per signer class is, in general, beneficial to vali-
dation accuracy. We record the highest validation accuracy of 73.38% when using
500 images per signer class. However, we also observe that the increase in accuracy
is rather small in proportion to the increase in training set size. Considering that
a large number of new, correctly labeled samples are introduced, one would expect
a larger increase in accuracy. This hints that a significant amount of mislabeled
samples are gradually being introduced in the dataset as well.

42 CHAPTER 4. EXPERIMENTAL EVALUATION
5_

1

G_
1

G_
2

F_
1

5_
2

B_
1

B_
2

A_
1

A_
2

H_
3

V_
1

B_
6

B_
4

G_
6

G_
4

K_
1

m
id

2 V
4

Y_
1

5_1

G_1

G_2

F_1

5_2

B_1

B_2

A_1

A_2

H_3

V_1

B_6

B_4

G_6

G_4

K_1

mid_2

V_4

Y_1

77 1.8 0.92 0.92 4.6 0.92 0.92 0 0 0 0 0 0 0 0 5.5 4.6 0 2.8

0 75 0 0 0.95 13 0 0.95 0 0 0.95 4.8 0.95 0 0.95 0 0 0.95 0.95

0.98 16 57 0 3.9 0.98 0 0 2 0 0 0 2.9 2 0.98 7.8 0 0 5.9

24 2.9 0.98 31 12 11 0 0 0 0.98 3.9 0 0 0 0.98 8.8 3.9 0 0

2.9 0 0 0 52 3.8 4.8 0.95 0 6.7 0.95 9.5 1.9 3.8 0.95 3.8 3.8 3.8 0

0 0 0 0 0 81 3 0 0 3 0 12 0 0 0 0 0 0 0.99

5.8 2.9 0 0.96 4.8 25 14 3.8 6.7 0 0 17 12 1.9 1.9 0 0 0.96 0.96

0 4.9 0 0 0 8.8 2.9 48 4.9 12 0 3.9 0.98 0 0 2 0 12 0

0 41 2.9 0 0 7.8 0 4.9 16 2 0 9.8 6.9 0.98 2 2 0 0 3.9

0 1.9 0 1.9 2.9 7.6 0 12 0 57 0 14 0 0 0 0 0 1.9 0

2.9 15 1.9 3.9 3.9 0 0 0 0 0 50 1.9 0 1.9 0.97 15 2.9 0.97 0

0 0 0 0 0 3.9 2.6 1.3 1.3 1.3 0 84 1.3 0 0 1.3 0 0 2.6

0 14 0 0 0 32 0 0.95 0.95 3.8 0.95 9.5 30 0 0 0.95 0 1.9 4.8

1.9 10 0 0 8.5 0 0 0 0 0 0 0.94 4.7 50 4.7 3.8 7.5 3.8 3.8

0 18 0 0 12 0 0 1.9 0 4.8 0 4.8 9.6 1.9 28 1.9 0.96 14 0.96

0 24 6.8 0 0.97 0 0 0 0 1.9 3.9 0 0 0 0 61 0 0 0.97

13 6.7 4.8 7.7 4.8 6.7 1.9 0 0 0 2.9 0 1.9 1.9 0 9.6 34 0.96 2.9

0 15 0 0 21 0 0 1.9 0.96 12 4.8 2.9 0 0 7.7 4.8 6.7 20 0.96

0 47 4.8 0 0 0.96 1.9 0 4.8 1.9 0 1.9 0 1.9 1.9 5.8 0 0.96 26

Average accuracy: 46.45426515930113%

0%

10%

20%

30%

40%

50%

60%

70%

80%

Figure 4.4: Validation set confusion matrix for the CNN trained on manually
annotated data only.

4.4. COMBINING MANUAL AND AUTOMATIC DATA 43

5_
1

G_
1

G_
2

F_
1

5_
2

B_
1

B_
2

A_
1

A_
2

H_
3

V_
1

B_
6

B_
4

G_
6

G_
4

K_
1

m
id

2 V
4

Y_
1

5_1

G_1

G_2

F_1

5_2

B_1

B_2

A_1

A_2

H_3

V_1

B_6

B_4

G_6

G_4

K_1

mid_2

V_4

Y_1

51 6.1 0 0 7.1 1 0 0 2 0 0 1 1 5.1 2 6.1 3.1 0 14

0 63 0 0 0 2.1 0 12 6.2 8.2 1 1 3.1 0 0 2.1 0 1 0

0 35 30 0 3.1 0 0 0 2 0 1 0 3.1 14 2 3.1 0 0 7.1

2 24 0 17 7.1 1 0 1 3 1 8.1 0 0 0 1 29 4 1 0

0 8.2 0 0 37 0 0 10 1 0 0 0 7.1 2 5.1 2 3.1 23 1

0 3.2 0 1.1 0 53 1.1 22 5.3 12 1.1 0 1.1 0 0 0 0 1.1 0

2.2 8.7 0 0 2.2 11 9.8 3.3 7.6 4.3 0 35 7.6 2.2 3.3 0 0 0 3.3

0 3.1 0 0 2 1 0 82 0 4.1 0 0 2 0 5.1 1 0 0 0

0 4.2 0 0 2.1 0 0 27 49 1 0 0 3.1 2.1 4.2 2.1 0 1 4.2

0 4 0 0 0 6 0 31 1 51 1 0 1 0 0 2 0 3 0

0 40 0 0 0.99 5 0 5.9 5 2 38 0 0 0 0 2 0 0.99 0.99

0 0 0 0 0 3 1 5.1 2 0 0 82 5.1 0 0 0 0 0 2

0 2.1 0 0 1 6.2 0 14 0 19 0 5.2 48 0 3.1 1 0 0 1

0 46 0 0 0 0 0 9.2 1 6.1 0 0 2 6.1 22 6.1 0 1 0

0 22 0 0 2.1 0 0 25 1 5.2 0 2.1 0 0 40 2.1 0 1 0

0 43 0 0 0 3 0 0 0 2 0 0 1 0 1 48 0 0 1

0 30 1.9 0.95 2.9 1.9 0 14 0.95 0 2.9 0 1.9 1.9 5.7 8.6 17 4.8 3.8

0 31 0 0 2 2 0 30 0 0 3 0 0 0 7.1 2 0 22 0

0 24 1 0 0 0 0 1 15 0 0 0 1 3 3 4 0 1 47

Average accuracy: 41.52360515021459%

0%

10%

20%

30%

40%

50%

60%

70%

80%

Figure 4.5: Test set confusion matrix for the CNN trained on manually annotated
data only.

44 CHAPTER 4. EXPERIMENTAL EVALUATION

In figures 4.6 and 4.7, we can see the confusion matrices for the classifier that
achieves maximum validation accuracy. Clearly, the addition of automatically an-
notated data greatly improves generalization. We observe an increase in the order
of 30% both in validation and test accuracy. Furthermore, the confusion between
classes is now much more localized, and reflects noise patterns present in the au-
tomatic labeling, as well as inherent similarities between classes.

As an example, in both the validation and test confusion matrix there is a sig-
nificant percentage of samples that belong to class “A_2” for which the prediction
is “A_1” or “Y_1”. As mentioned in section 3.6.2, errors in 3-D tracking can often
result in samples of “Y_1” being mislabeled as “A_2”, or the opposite. For the case
of confusion between “A_1” and “A_2”, similar tracking problems can occur for
the thumb joints (see figure 3.2). Another example is the pair of classes “G_4” and
“G_6”, which also differ only in the position of the thumb, and thus tracking errors
can easily end up being the cause of mislabeled samples for these classes. Addition-
ally, by visually inspecting some of the images that were automatically annotated,
we confirmed that such cases of mislabeling are indeed relatively common.

4.5 Combining data with G-IDEA

Even though the classifier trained on both manually and automatically annotated
data achieves a much higher average accuracy, we can still observe specific failure
cases for some classes. These can be at least partially attributed to the noisy nature
of the automatic ground truth. For this reason, we proceed to apply the techniques
presented in section 3.1.

Therefore, we experiment with G-IDEA of section 3.1, which is designed to
be used for training CNNs on datasets that feature a small number of manually
annotated samples and a large number of automatically annotated samples. In this
case, the training samples are iteratively selected by using both the automatic labels
and the predictions of a CNN trained on a smaller dataset. For this reason, we
expect the method to result in a less noisy dataset. Consequently, we also expect
improvements on validation and test accuracy. Figure 4.8 shows the evolution
of validation accuracy on each iteration of the algorithm. Maximum accuracy
is reached on iteration 2, and the algorithm terminates on iteration 3, since the
accuracy no longer increases. Additionally, we verified that if we run the algorithm
for two more iterations, validation accuracy continues to decrease very slowly.

4.5. COMBINING DATA WITH G-IDEA 45

5_
1

G_
1

G_
2

F_
1

5_
2

B_
1

B_
2

A_
1

A_
2

H_
3

V_
1

B_
6

B_
4

G_
6

G_
4

K_
1

m
id

2 V
4

Y_
1

5_1

G_1

G_2

F_1

5_2

B_1

B_2

A_1

A_2

H_3

V_1

B_6

B_4

G_6

G_4

K_1

mid_2

V_4

Y_1

75 0 0 0 0 17 7.3 0 0 0 0 0 0 0 0 0 0.92 0 0

0 41 30 0 0 1.9 0 7.6 1.9 0 0 0 0 4.8 7.6 2.9 0 0 2.9

0 0.98 97 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0

4.9 0 0 81 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0

1.9 0 0.95 0.95 83 5.7 5.7 0 0 0 0 0.95 0 0 0 0 0.95 0 0

0 0 0 0 0 89 7.9 0 0 0.99 0 2 0 0 0 0 0 0 0

3.8 0 0 0 0.96 19 74 0 0 0 0 0.96 0 0 0 0 0 0 0.96

0 0 0 0 0 0.98 0 85 12 0.98 0 0 0.98 0 0 0 0 0 0

0 0 2 0 0 0 0.98 20 63 0 0 0 0 0 0 0 0 0 15

0 0 0 0 0 0.95 0 0.95 0.95 84 0 0.95 9.5 0 0 0.95 0 0.95 0.95

0.97 0 2.9 0 0 0.97 0 0 0 1.9 81 1.9 0 0 0 7.8 0 2.9 0

1.3 0 1.3 0 0 0 7.9 0 6.6 0 0 74 9.2 0 0 0 0 0 0

1.9 0 0 0 0 7.6 0 2.9 0 3.8 0.95 5.7 68 2.9 0 3.8 0 1.9 0.95

0 0.94 13 0 1.9 0 0 0.94 0 1.9 0 0 0 25 21 0.94 5.7 2.8 25

0 14 1.9 0 0 0 0 0.96 2.9 0 0 0.96 0 32 41 0 0 1.9 3.8

0 17 4.9 0 0 0 0 0 0 0 1.9 0 0 2.9 0 73 0 0.97 0

2.9 0 3.8 3.8 0 8.7 0.96 0 0 0 0.96 0.96 0 0 0 0.96 77 0 0

0 0.96 0 0 0.96 0 1.9 0 0 0.96 1.9 0 0 0.96 0 1.9 0 90 0

0 0 0 0 0 0 0 0.96 2.9 0 0 0 0 0 0 0 0.96 0 95

Average accuracy: 73.38129496402878%

0%

20%

40%

60%

80%

Figure 4.6: Validation set confusion matrix for the CNN trained on both
manually and automatically annotated data.

46 CHAPTER 4. EXPERIMENTAL EVALUATION
5_

1

G_
1

G_
2

F_
1

5_
2

B_
1

B_
2

A_
1

A_
2

H_
3

V_
1

B_
6

B_
4

G_
6

G_
4

K_
1

m
id

2 V
4

Y_
1

5_1

G_1

G_2

F_1

5_2

B_1

B_2

A_1

A_2

H_3

V_1

B_6

B_4

G_6

G_4

K_1

mid_2

V_4

Y_1

98 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 43 14 0 0 0 0 1 5.2 1 0 0 1 1 8.2 4.1 0 0 21

0 1 80 0 2 0 0 0 0 0 0 0 0 13 1 3.1 0 0 0

4 0 0 92 0 2 1 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 95 3.1 1 0 0 0 0 0 0 0 0 0 0 1 0

3.2 0 0 0 0 89 1.1 3.2 0 0 1.1 2.1 0 0 0 0 0 0 0

3.3 0 0 0 0 3.3 93 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 78 14 1 0 3.1 0 4.1 0 0 0 0 0

0 0 0 0 0 0 0 11 62 0 0 0 0 0 0 0 0 0 26

0 0 1 0 0 1 0 0 0 80 1 3 13 0 0 1 0 0 0

0 0.99 3 0 0 2 0 0 0 6.9 76 0.99 0 0 0 9.9 0 0 0

0 0 6.1 0 0 3 15 0 10 0 0 56 9.1 0 0 0 0 0 1

5.2 0 0 0 0 0 2.1 5.2 6.2 0 0 24 57 0 0 0 0 0 0

0 12 2 0 0 0 0 0 2 0 0 0 0 36 44 0 0 0 4.1

0 23 0 0 0 1 0 0 2.1 0 0 0 0 20 43 0 0 10 1

0 8.1 12 0 0 1 0 0 1 2 1 0 0 0 0 73 2 0 0

1.9 0 0.95 3.8 0 16 2.9 0.95 0 0.95 0 0.95 0 0 0 0 70 0.95 0

0 1 0 0 0 0 2 0 0 0 0 0 0 0 2 0 0 95 0

0 0 0 0 0 0 1 1 5 0 0 0 0 0 0 0 0 0 93

Average accuracy: 74.19527896995707%

0%

20%

40%

60%

80%

Figure 4.7: Test set confusion matrix for the CNN trained on both manually and
automatically annotated data.

4.6. COMBINING DATA WITH C-IDEA 47

0 1 2 3
Iteration count

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Va
lid

at
io

n
ac

cu
ra

cy

0.4388

0.7133
0.7883 0.7775

Figure 4.8: Validation accuracy achieved on each iteration when using G-IDEA.

Average accuracy is indeed increased by approximately 5% both on the valida-
tion and test set. Furthermore, as we can see in the confusion matrices of figures 4.9
and 4.10, the cases of confusion between specific classes have also decreased. We
also note that, without the use of this algorithm the lowest class accuracy recorded
on both validation and test sets was 25%, even if the average accuracy was in the
order of 70%. When using the algorithm, the lowest class accuracy is 44%. Fil-
tering noisy ground truth samples therefore contributes to the performance of a
trained classifier, although there is still potential for further improvement.

4.6 Combining data with C-IDEA

We now proceed to investigate C-IDEA of section 3.1, which also selects new train-
ing samples iteratively, but makes its selections in a more conservative manner. We
assess whether this more conservative strategy yields improvements. In particular,
we use the aforementioned algorithm with arguments selection_percent = 0.1 and
increase_factor = 0.15. The evolution of validation accuracy as the iterations
progress is shown on figure 4.11. Compared to G-IDEA, accuracy increases at
a slower rate, which is to be expected, since the increase of training data is also
slower. However, from iteration 5 onward, C-IDEA achieves accuracies higher than
the ones recorded in the previous experiment, culminating in a validation accuracy
of 83.81%.

48 CHAPTER 4. EXPERIMENTAL EVALUATION
5_

1

G_
1

G_
2

F_
1

5_
2

B_
1

B_
2

A_
1

A_
2

H_
3

V_
1

B_
6

B_
4

G_
6

G_
4

K_
1

m
id

2 V
4

Y_
1

5_1

G_1

G_2

F_1

5_2

B_1

B_2

A_1

A_2

H_3

V_1

B_6

B_4

G_6

G_4

K_1

mid_2

V_4

Y_1

93 0 0 0.92 0 0.92 4.6 0 0 0 0 0.92 0 0 0 0 0 0 0

0 60 13 0 0 4.8 0 0 7.6 1.9 0 0 0 0 3.8 2.9 0 0 5.7

0 0.98 97 0.98 0 0 0 0 0 0 0 0 0 0.98 0 0 0 0 0

0 0 0 98 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0

1.9 0 0.95 3.8 77 0.95 2.9 0.95 0.95 1.9 0 4.8 2.9 0 0 0 0 0 0.95

0 0 0 0 2 84 6.9 0 0 0 0 5 2 0 0 0 0 0 0

4.8 0 0 0 1.9 0.96 82 0 0.96 0 0 6.7 1.9 0.96 0 0 0 0 0

0 0 0 0 0 0 0 97 0.98 2 0 0 0 0 0 0 0 0 0

0 0.98 5.9 0 0 0 0 13 73 0 0 2.9 0.98 0.98 0.98 0 0 0 2

0 0 0 0 0 0 0.95 0.95 3.8 87 0.95 3.8 2.9 0 0 0 0 0 0

0 0 0.97 0.97 0.97 0 0 0 0 5.8 90 0 0 0 0 0.97 0 0 0

1.3 0 0 0 0 0 6.6 0 2.6 0 0 83 6.6 0 0 0 0 0 0

0 3.8 0 0 0 6.7 0.95 3.8 0 1.9 0 2.9 80 0 0 0 0 0 0

0 0 14 0 2.8 0 0 2.8 0 0 1.9 0 0.94 59 10 0.94 0 3.8 2.8

0 8.7 0 0 0 0 0 0 1.9 3.8 0 0 2.9 16 60 0.96 0 3.8 1.9

0 40 6.8 0 0 0 0 0 0 0 1.9 0.97 0 2.9 0 48 0 0 0

1.9 0 0.96 14 4.8 11 0 0 0 0 0.96 0 1.9 0 0 0.96 61 0 2.9

0 0 0 0 0.96 0 0 0 0 8.7 1.9 0 0 0 2.9 1.9 0 84 0

0 0.96 3.8 0 0 0.96 0 0.96 4.8 0 0 0 0 0 0 0 0 0 88

Average accuracy: 78.82836587872559%

0%

20%

40%

60%

80%

Figure 4.9: Validation set confusion matrix for the CNN trained with G-IDEA

4.6. COMBINING DATA WITH C-IDEA 49

5_
1

G_
1

G_
2

F_
1

5_
2

B_
1

B_
2

A_
1

A_
2

H_
3

V_
1

B_
6

B_
4

G_
6

G_
4

K_
1

m
id

2 V
4

Y_
1

5_1

G_1

G_2

F_1

5_2

B_1

B_2

A_1

A_2

H_3

V_1

B_6

B_4

G_6

G_4

K_1

mid_2

V_4

Y_1

96 0 0 3.1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 66 4.1 0 0 0 0 0 24 3.1 0 2.1 0 0 1 0 0 0 0

0 0 90 0 0 0 0 0 4.1 0 0 1 0 3.1 0 2 0 0 0

0 0 0 96 0 0 0 0 0 0 3 0 0 0 0 0 1 0 0

0 0 0 0 85 4.1 0 1 2 1 0 0 3.1 0 0 0 0 4.1 0

0 0 0 0 0 93 0 1.1 2.1 1.1 0 2.1 1.1 0 0 0 0 0 0

1.1 0 0 0 1.1 0 93 0 0 0 0 4.3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 97 3.1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 2.1 96 0 0 2.1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 3 94 0 0 2 0 0 0 0 0 0

0 5.9 2 0 0 0.99 0 0 0.99 7.9 77 0 0 0 0 5 0 0 0

0 1 1 0 0 1 0 0 3 0 0 88 6.1 0 0 0 0 0 0

0 1 0 0 0 1 0 4.2 1 4.2 0 5.2 83 0 0 0 0 0 0

0 3.1 6.1 0 0 1 0 0 2 0 0 0 1 49 37 0 0 0 1

0 7.3 0 0 0 1 0 1 3.1 2.1 0 0 0 0 83 0 0 2.1 0

0 47 4 0 0 2 0 0 0 2 0 0 0 0 0 44 0 0 0

0 0 0 8.6 0 11 0 1.9 0 3.8 20 1.9 0 0 0 0 50 1.9 0.95

0 3 0 0 0 0 0 7.1 2 13 3 0 0 0 3 0 0 69 0

0 0 3 0 0 0 0 1 20 0 0 0 0 0 0 0 0 0 76

Average accuracy: 80.04291845493562%

0%

20%

40%

60%

80%

Figure 4.10: Test set confusion matrix for the CNN trained with G-IDEA

50 CHAPTER 4. EXPERIMENTAL EVALUATION

0 1 2 3 4 5 6 7 8
Iteration count

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Va
lid

at
io

n
ac

cu
ra

cy

0.4589

0.63
0.71170.7461

0.7847 0.812 0.816 0.83810.8068

Figure 4.11: Validation accuracy achieved on each iteration when using C-IDEA

Figures 4.12 and 4.13 show the confusion matrices that result from using this
method. We achieve an accuracy of 83.81% on the validation set, and 85.72% on the
test set, thus improving by approximately 5% in comparison with the experiment of
section 4.5. Perhaps more importantly, the lowest class accuracy recorded on both
validation and test set is now 65%, and we observe once again a decreased number
of cases where one class is significantly confused with another. Therefore, C-IDEA
appears capable of selecting mostly correct samples. This is true even in cases
where the experiment of section 4.4 indicated a significant amount of confusion
between classes in the automatic labeling.

4.7 Results summary

The experimental analysis presented in this section proves that automatically anno-
tated data can be highly beneficial in our problem. The mere inclusion of automat-
ically labeled samples contributes significantly to the generalization of the network,
increasing average accuracy on unseen data from the range of 40%-45% to 73%-
74%. Furthermore, the cost in human effort for gathering the data is rather small,
as described in section 3.6.2. Additionally, the use of the techniques proposed in
section 3.1 further increases accuracy to 83%-85%. These results are summarized
in table 4.2.

4.7. RESULTS SUMMARY 51

5_
1

G_
1

G_
2

F_
1

5_
2

B_
1

B_
2

A_
1

A_
2

H_
3

V_
1

B_
6

B_
4

G_
6

G_
4

K_
1

m
id

2 V
4

Y_
1

5_1

G_1

G_2

F_1

5_2

B_1

B_2

A_1

A_2

H_3

V_1

B_6

B_4

G_6

G_4

K_1

mid_2

V_4

Y_1

91 0 0.92 0 0 7.3 0.92 0 0 0 0 0 0 0 0 0 0 0 0

0 74 6.7 0 0 1.9 0 0.95 4.8 0 0 0 0.95 0 0.95 2.9 0.95 0 5.7

0 0.98 99 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 88 0 9.8 0 0 0 0 0 0 0 0 0 0 0 2 0

0.95 0 0.95 0 88 4.8 0 0.95 0 0 0 0 0 0 0 0 2.9 1.9 0

0 0 0 0 0.99 95 0 0 0 0 0 0 4 0 0 0 0 0 0

1.9 0 0 0 0 5.8 87 0 0.96 0 0 0 3.8 0 0 0 0 0 0.96

0 0.98 0 0 0 0.98 0 84 3.9 0.98 0 0 8.8 0 0 0 0 0 0

0 2 2 0 0 0 0 19 73 0 0 3.9 0 0 0 0 0 0.98 0

0 0 0 0.95 0.95 0.95 0 0.95 0.95 85 0 0 8.6 0 0 0 0 1.9 0

0 0.97 4.9 1.9 0 1.9 0 0 0 0.97 83 0 0 0 0 5.8 0 0 0

1.3 0 0 0 0 0 1.3 0 7.9 0 0 84 3.9 0 0 0 0 0 1.3

0 0.95 0 0 0 8.6 0 0 0 0.95 0 1.9 85 0 0 2.9 0 0 0

0 0 6.6 0 4.7 0.94 0 1.9 0 0 0 0 1.9 73 3.8 0 0 1.9 5.7

0 7.7 0 0 0.96 0 0 1.9 0 0 0 0 2.9 2.9 70 0 0.96 4.8 7.7

0 17 3.9 0 0 0 0 0.97 0 0 7.8 0 0.97 0.97 0 69 0 0 0

0 0 1.9 7.7 0 9.6 0 0 0 0 0.96 0 0.96 0 0 1.9 73 0 3.8

0 0 0 0 0 0 0 0 0 2.9 2.9 0 0 0 1.9 0 0 92 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1e+02

Average accuracy: 83.81294964028777%

0%

20%

40%

60%

80%

100%

Figure 4.12: Validation set confusion matrix for the CNN trained with C-IDEA

52 CHAPTER 4. EXPERIMENTAL EVALUATION
5_

1

G_
1

G_
2

F_
1

5_
2

B_
1

B_
2

A_
1

A_
2

H_
3

V_
1

B_
6

B_
4

G_
6

G_
4

K_
1

m
id

2 V
4

Y_
1

5_1

G_1

G_2

F_1

5_2

B_1

B_2

A_1

A_2

H_3

V_1

B_6

B_4

G_6

G_4

K_1

mid_2

V_4

Y_1

96 0 0 0 2 1 0 0 0 0 0 1 0 0 0 0 0 0 0

0 82 3.1 0 0 1 0 1 6.2 2.1 0 0 4.1 0 0 0 0 0 0

0 2 95 0 0 0 0 0 1 0 0 0 0 2 0 0 0 0 0

4 0 0 96 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 2 0 91 0 0 1 0 0 0 0 0 2 0 0 0 3.1 0

0 1.1 0 0 0 95 0 1.1 2.1 0 0 0 1.1 0 0 0 0 0 0

11 0 0 0 1.1 1.1 83 0 0 0 0 4.3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 96 2 0 0 0 2 0 0 0 0 0 0

0 0 0 0 0 0 0 8.3 92 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 1 0 3 0 90 0 0 5 0 0 0 0 0 0

0 2 4 0 0 0.99 0 0 0 6.9 77 0 0 0 0 5 0 4 0

0 0 0 0 0 3 5.1 0 13 0 0 67 12 0 0 0 0 0 0

0 0 0 0 0 2.1 0 6.2 0 2.1 0 0 90 0 0 0 0 0 0

0 4.1 1 0 0 1 0 2 0 0 0 0 2 76 11 0 0 3.1 0

0 7.3 0 0 0 0 0 2.1 1 0 0 0 2.1 4.2 77 0 0 6.2 0

0 17 1 0 0 2 0 0 1 2 0 0 0 0 0 77 0 0 0

1.9 0 0.95 13 0 9.5 0 1.9 0 0 1.9 0 0.95 0 0 0.95 65 3.8 0

0 1 0 0 0 1 0 0 0 1 1 0 0 0 2 0 0 94 0

0 0 0 0 0 0 0 3 2 0 0 0 0 1 0 0 0 0 94

Average accuracy: 85.72961373390558%

0%

20%

40%

60%

80%

Figure 4.13: Test set confusion matrix for the CNN trained with C-IDEA

4.7. RESULTS SUMMARY 53

Technique Manual
data

Manual & auto-
matic data

G-IDEA C-IDEA

Validation accu-
racy

46.45% 73.38% 78.83% 83.81%

Test accuracy 41.52% 74.19% 80.04% 85.73%

Table 4.2: Summary of validation and test accuracies achieved by each method of
training.

Of the two algorithms presented in section 3.1, C-IDEA appears to be supe-
rior. We attribute the success of the method to the following factors. First, the
small corpus of manually annotated data provides indicative examples for each
class which are practically guaranteed to be correct. Second, the larger set of
automatically annotated samples may be noisy, but also features a much greater
variety in individual-specific characteristics of the hand, in lighting conditions and
in backgrounds. Third, the automatically annotated samples are not fed blindly
to the network, but are subjected to a test which verifies that the initially noisy
predictions of the network agree with the noisy automatic labels. Fourth, from
the subset of samples where the predictions agree with the labels, only a small
percentage for which the network is more confident is selected.

Applying this procedure iteratively allows the network to gradually include
more diverse samples in its training set, while simultaneously avoiding a significant
percentage of the noisy data. Figure 4.14 provides a qualitative comparison of the
distribution of class accuracies for each method. We present a stacked histogram
of the class accuracy distribution for all four methods. A smoothed probability
distribution function is fitted on the underlying distribution of class accuracy data
for each method. Additionally, the height of the bars is scaled for visualization
purposes. Visually, as we improve the method of utilization for the automatically
annotated data, the curves become steeper and their mode increases. This illus-
trates the fact that as the method improves, not only does the average accuracy
increase, but, perhaps more importantly, the network achieves a more consistent
performance across the various classes of the problem.

54 CHAPTER 4. EXPERIMENTAL EVALUATION

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
Validation class accuracy

0.0

0.2

0.4

0.6

0.8

Pr
ob

ab
ilit

y

Method
Manual data
Manual & automatic data
G-IDEA
C-IDEA

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
Test class accuracy

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

Method
Manual data
Manual & automatic data
G-IDEA
C-IDEA

Figure 4.14: Validation (top) and test (bottom) class accuracy histograms for all
methods (scaled for visualization).

Chapter 5

Discussion

5.1 Summary

We presented a method for utilizing automatically annotated data in training CNNs
on classification problems. The method is based on training the network on a
small subset of manually annotated data, and then iteratively selecting subsets of
the automatically annotated data for which the prediction of the network agrees
with the automatic label. On each iteration, the network is retrained on its new
training set, and gradually becomes more robust in its predictions. We propose two
variants of the same method, one more conservative than the other with respect to
the selection criteria.

We then proceeded to apply these techniques on the problem of hand posture
recognition from RGB images. In this context, we also presented a method for
extracting automatic ground truth labels from the images, by estimating the cor-
responding 3-D hand postures and comparing them to the postures that comprise
the classes of our problem. Compared to the simple approach of using all automati-
cally annotated samples, the application of our techniques on these labels increases
the average test accuracy, and decreases the variance of the per-class accuracies.
The results are, therefore, promising, and indicate a significant contribution to the
generalization capability of the trained CNN.

5.2 Future work

In this work, we investigated methods for utilization of automatically annotated
data in classification problems. We evaluated the use of these methods on the
problem of hand posture recognition from RGB images, specifically for a set of
hand postures that convey meaning in GSL. The work could, therefore, be extended
in a number of directions.

Firstly, with respect to the algorithms themselves, further work is possible in
the direction of determining the most appropriate samples for training. The more
conservative approach of C-IDEA appears to yield an improvement over G-IDEA.

55

56 CHAPTER 5. DISCUSSION

It is therefore possible that the introduction of some measure of certainty for the
automatic labeling itself, and the combination of it with the network’s likelihood
predictions could yield further improvements.

Secondly, with respect to the problem of sign language recognition, the work
presented here utilizes a subset of postures that are meaningful in GSL. Extending
this set to feature more postures would both explore the generalization capability
of the approach presented here, and result in a system that would be more useful
in a practical application. Furthermore, since hand posture information is integral
in the understanding of sign language, it would be interesting to study the useful-
ness of the extracted postures as features of a complete pipeline for sign language
recognition.

On a third axis, specifically for the problem of hand posture recognition, we
have stressed the importance of the 3-D hand posture estimation method on the
quality of the ground truth labeling (section 3.6.2). One could experiment with
different 3-D hand trackers, or possibly with the notion of combining results of
multiple hand tracking methods, in a boosting [79] approach. This approach could
potentially reduce the failure cases of the combined 3-D landmark estimation, and
yield a less noisy ground truth labeling.

Lastly, since the algorithms of section 3.1 are generic in nature, they can be
used in any classification problem. Therefore, one could evaluate their usefulness in
other tasks that feature a small amount of manually annotated data, and a larger
amount of automatically annotated data with noisy ground truth labels.

Bibliography

[1] Nikolaos M. Adaloglou, Theocharis Chatzis, Ilias Papastratis, Andreas Ster-
gioulas, Georgios Th Papadopoulos, Vassia Zacharopoulou, George Xydopou-
los, Klimis Antzakas, Dimitris Papazachariou, and Petros none Daras. A
comprehensive study on deep learning-based methods for sign language recog-
nition. IEEE Transactions on Multimedia, page 1–1, 2021.

[2] Klimis Antzakas. The use of negative head movements in greek sign language.
Interrogative and negative constructions in sign languages, pages 258–269,
2006.

[3] Anil Armagan, Guillermo Garcia-Hernando, Seungryul Baek, Shreyas Ham-
pali, Mahdi Rad, Zhaohui Zhang, Shipeng Xie, MingXiu Chen, Boshen
Zhang, Fu Xiong, et al. Measuring generalisation to unseen viewpoints, artic-
ulations, shapes and objects for 3d hand pose estimation under hand-object
interaction. arXiv preprint arXiv:2003.13764, 2020.

[4] Devansh Arpit, Stanisław Jastrzębski, Nicolas Ballas, David Krueger, Em-
manuel Bengio, Maxinder S Kanwal, Tegan Maharaj, Asja Fischer, Aaron
Courville, Yoshua Bengio, et al. A closer look at memorization in deep net-
works. In International Conference on Machine Learning, pages 233–242.
PMLR, 2017.

[5] Maryam Asadi-Aghbolaghi, Albert Clapes, Marco Bellantonio, Hugo Jair Es-
calante, Víctor Ponce-López, Xavier Baró, Isabelle Guyon, Shohreh Kasaei,
and Sergio Escalera. A survey on deep learning based approaches for action
and gesture recognition in image sequences. In 2017 12th IEEE interna-
tional conference on automatic face & gesture recognition (FG 2017), pages
476–483. IEEE, 2017.

[6] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine
translation by jointly learning to align and translate, 2016.

[7] Pablo Barros, Sven Magg, Cornelius Weber, and Stefan Wermter. A multi-
channel convolutional neural network for hand posture recognition. In Inter-
national Conference on Artificial Neural Networks, pages 403–410. Springer,
2014.

57

58 BIBLIOGRAPHY

[8] Serge Belongie, Greg Mori, and Jitendra Malik. Matching with shape con-
texts. In Statistics and Analysis of Shapes, pages 81–105. Springer, 2006.

[9] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston.
Curriculum learning. In Proceedings of the 26th annual international confer-
ence on machine learning, pages 41–48, 2009.

[10] Carl Börstell, Thomas Hörberg, and Robert Östling. Distribution and dura-
tion of signs and parts of speech in swedish sign language. Sign Language &
Linguistics, 19(2):143–196, 2016.

[11] Necati Cihan Camgoz, Simon Hadfield, Oscar Koller, and Richard Bowden.
Using convolutional 3d neural networks for user-independent continuous ges-
ture recognition. In 2016 23rd International Conference on Pattern Recogni-
tion (ICPR), pages 49–54. IEEE, 2016.

[12] Necati Cihan Camgoz, Simon Hadfield, Oscar Koller, and Richard Bowden.
Subunets: End-to-end hand shape and continuous sign language recognition.
In 2017 IEEE International Conference on Computer Vision (ICCV), pages
3075–3084. IEEE, 2017.

[13] Necati Cihan Camgoz, Simon Hadfield, Oscar Koller, Hermann Ney, and
Richard Bowden. Neural sign language translation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 7784–
7793, 2018.

[14] Necati Cihan Camgöz, Ahmet Alp Kındıroğlu, Serpil Karabüklü, Meltem
Kelepir, Ayşe Sumru Özsoy, and Lale Akarun. Bosphorussign: a turkish sign
language recognition corpus in health and finance domains. In Proceedings of
the Tenth International Conference on Language Resources and Evaluation
(LREC’16), pages 1383–1388, 2016.

[15] Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh. Realtime multi-
person 2d pose estimation using part affinity fields, 2017.

[16] Joao Carreira and Andrew Zisserman. Quo vadis, action recognition? a new
model and the kinetics dataset, 2018.

[17] Olivier Chapelle, Bernhard Scholkopf, and Alexander Zien. Semi-supervised
learning (chapelle, o. et al., eds.; 2006)[book reviews]. IEEE Transactions on
Neural Networks, 20(3):542–542, 2009.

[18] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bah-
danau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase
representations using rnn encoder-decoder for statistical machine translation,
2014.

BIBLIOGRAPHY 59

[19] HM Cooper, Eng-Jon Ong, Nicolas Pugeault, and Richard Bowden. Sign
language recognition using sub-units. Journal of Machine Learning Research,
13:2205–2231, 2012.

[20] Runpeng Cui, Hu Liu, and Changshui Zhang. Recurrent convolutional neural
networks for continuous sign language recognition by staged optimization.
In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 7361–7369, 2017.

[21] Runpeng Cui, Hu Liu, and Changshui Zhang. A deep neural framework for
continuous sign language recognition by iterative training. IEEE Transac-
tions on Multimedia, 21(7):1880–1891, 2019.

[22] Marco Cuturi and Mathieu Blondel. Soft-dtw: a differentiable loss function
for time-series. In International Conference on Machine Learning, pages 894–
903. PMLR, 2017.

[23] Quentin De Smedt, Hazem Wannous, and Jean-Philippe Vandeborre.
Skeleton-based dynamic hand gesture recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops, pages
1–9, 2016.

[24] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Im-
agenet: A large-scale hierarchical image database. In 2009 IEEE conference
on computer vision and pattern recognition, pages 248–255. Ieee, 2009.

[25] Georgios D Evangelidis, Gurkirt Singh, and Radu Horaud. Continuous ges-
ture recognition from articulated poses. In European Conference on Computer
Vision, pages 595–607. Springer, 2014.

[26] Jens Forster, Christoph Schmidt, Oscar Koller, Martin Bellgardt, and Her-
mann Ney. Extensions of the sign language recognition and translation corpus
rwth-phoenix-weather. In LREC, pages 1911–1916, 2014.

[27] Ross Girshick. Fast r-cnn, 2015.

[28] Stephen Gould, Richard Fulton, and Daphne Koller. Decomposing a scene
into geometric and semantically consistent regions. In 2009 IEEE 12th In-
ternational Conference on Computer Vision, pages 1–8, 2009.

[29] Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen Schmidhuber.
Connectionist temporal classification: labelling unsegmented sequence data
with recurrent neural networks. In Proceedings of the 23rd international
conference on Machine learning, pages 369–376, 2006.

[30] Alex Graves, Abdel rahman Mohamed, and Geoffrey Hinton. Speech recog-
nition with deep recurrent neural networks, 2013.

60 BIBLIOGRAPHY

[31] Guy Hacohen and Daphna Weinshall. On the power of curriculum learning
in training deep networks. In International Conference on Machine Learning,
pages 2535–2544. PMLR, 2019.

[32] Shreyas Hampali, Sayan Deb Sarkar, Mahdi Rad, and Vincent Lepetit.
Handsformer: Keypoint transformer for monocular 3d pose estimation
ofhands and object in interaction, 2021.

[33] Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu, Ivor
Tsang, and Masashi Sugiyama. Co-teaching: Robust training of deep neural
networks with extremely noisy labels. arXiv preprint arXiv:1804.06872, 2018.

[34] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition, 2015.

[35] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[36] Sina Honari, Pavlo Molchanov, Stephen Tyree, Pascal Vincent, Christopher
Pal, and Jan Kautz. Improving landmark localization with semi-supervised
learning. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 1546–1555, 2018.

[37] Jie Huang, Wengang Zhou, Qilin Zhang, Houqiang Li, andWeiping Li. Video-
based sign language recognition without temporal segmentation. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

[38] Umar Iqbal, Pavlo Molchanov, Thomas Breuel, Juergen Gall, and Jan Kautz.
Hand pose estimation via latent 2.5d heatmap regression, 2018.

[39] Youngkyoon Jang, Seung-Tak Noh, Hyung Jin Chang, Tae-Kyun Kim, and
Woontack Woo. 3d finger cape: Clicking action and position estimation under
self-occlusions in egocentric viewpoint. IEEE Transactions on Visualization
and Computer Graphics, 21(4):501–510, 2015.

[40] Lu Jiang, Zhengyuan Zhou, Thomas Leung, Li-Jia Li, and Li Fei-Fei. Men-
tornet: Learning data-driven curriculum for very deep neural networks on
corrupted labels. In International Conference on Machine Learning, pages
2304–2313. PMLR, 2018.

[41] Hamid Reza Vaezi Joze and Oscar Koller. Ms-asl: A large-scale data set
and benchmark for understanding american sign language. arXiv preprint
arXiv:1812.01053, 2018.

[42] Mohammed Waleed Kadous et al. Machine recognition of auslan signs using
powergloves: Towards large-lexicon recognition of sign language. In Proceed-
ings of the Workshop on the Integration of Gesture in Language and Speech,
volume 165, 1996.

BIBLIOGRAPHY 61

[43] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic opti-
mization, 2017.

[44] Oscar Koller, Necati Cihan Camgoz, Hermann Ney, and Richard Bowden.
Weakly supervised learning with multi-stream cnn-lstm-hmms to discover
sequential parallelism in sign language videos. IEEE transactions on pattern
analysis and machine intelligence, 42(9):2306–2320, 2019.

[45] Oscar Koller, Hermann Ney, and Richard Bowden. Deep hand: How to train
a cnn on 1 million hand images when your data is continuous and weakly
labelled. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 3793–3802, 2016.

[46] Oscar Koller, O Zargaran, Hermann Ney, and Richard Bowden. Deep sign:
Hybrid cnn-hmm for continuous sign language recognition. In Proceedings of
the British Machine Vision Conference 2016, 2016.

[47] Oscar Koller, Sepehr Zargaran, and Hermann Ney. Re-sign: Re-aligned end-
to-end sequence modelling with deep recurrent cnn-hmms. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages
4297–4305, 2017.

[48] Dimitrios Kosmopoulos, Iasonas Oikonomidis, Constantinos Constantinopou-
los, Nikolaos Arvanitis, K Antzakas, A Bifis, G Lydakis, A Roussos, and
A Argyros. Towards a visual sign language dataset for home care services.
In 2020 15th IEEE International Conference on Automatic Face and Gesture
Recognition (FG 2020), pages 520–524. IEEE, 2020.

[49] Taein Kwon, Bugra Tekin, Jan Stuhmer, Federica Bogo, and Marc Pollefeys.
H2o: Two hands manipulating objects for first person interaction recognition,
2021.

[50] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature,
521(7553):436–444, 2015.

[51] Boris Lenseigne and Patrice Dalle. Using signing space as a representation for
sign language processing. In International Gesture Workshop, pages 25–36.
Springer, 2005.

[52] Dongxu Li, Cristian Rodriguez, Xin Yu, and Hongdong Li. Word-level deep
sign language recognition from video: A new large-scale dataset and methods
comparison. In The IEEE Winter Conference on Applications of Computer
Vision, pages 1459–1469, 2020.

[53] Dongxu Li, Chenchen Xu, Xin Yu, Kaihao Zhang, Ben Swift, Hanna
Suominen, and Hongdong Li. Tspnet: Hierarchical feature learning via
temporal semantic pyramid for sign language translation. arXiv preprint
arXiv:2010.05468, 2020.

62 BIBLIOGRAPHY

[54] Patrick Lichtsteiner, Christoph Posch, and Tobi Delbruck. A 128×128 120
db 15µs latency asynchronous temporal contrast vision sensor. IEEE journal
of solid-state circuits, 43(2):566–576, 2008.

[55] Google LLC. Mediapipe hands. https://google.github.io/mediapipe/
solutions/hands.html#output. Accessed: Nov. 2020.

[56] Anders Markussen, Mikkel Rønne Jakobsen, and Kasper Hornbæk. Vulture:
a mid-air word-gesture keyboard. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, pages 1073–1082, 2014.

[57] Baharan Mirzasoleiman, Kaidi Cao, and Jure Leskovec. Coresets for robust
training of deep neural networks against noisy labels. Advances in Neural
Information Processing Systems, 33, 2020.

[58] Todd K Moon. The expectation-maximization algorithm. IEEE Signal pro-
cessing magazine, 13(6):47–60, 1996.

[59] Jill P Morford and James MacFarlane. Frequency characteristics of american
sign language. Sign Language Studies, pages 213–225, 2003.

[60] Franziska Mueller, Florian Bernard, Oleksandr Sotnychenko, Dushyant
Mehta, Srinath Sridhar, Dan Casas, and Christian Theobalt. Ganerated
hands for real-time 3d hand tracking from monocular rgb, 2017.

[61] Weizhi Nai, Yue Liu, David Rempel, and Yongtian Wang. Fast hand pos-
ture classification using depth features extracted from random line segments.
Pattern Recognition, 65:1–10, 2017.

[62] Natalia Neverova, Christian Wolf, Graham Taylor, and Florian Nebout. Mod-
drop: adaptive multi-modal gesture recognition. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 38(8):1692–1706, 2015.

[63] University of Patras. The healthsign project. http://xanthippi.ceid.
upatras.gr/HealthSign/EN/HealthSign.html. Accessed: Sept. 2020.

[64] Hellenic Pedagogical Institute Department of Special Education. The
greek sign language. http://www.pi-schools.gr/special_education_
new/html/gr/8emata/ekp_yliko/kofosi.htm. Accessed: Jun. 2020.

[65] Carol A Padden and Darline Clark Gunsauls. How the alphabet came to be
used in a sign language. Sign Language Studies, pages 10–33, 2003.

[66] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE
Transactions on knowledge and data engineering, 22(10):1345–1359, 2009.

[67] Paschalis Panteleris, Iason Oikonomidis, and Antonis A Argyros. Using a
single rgb frame for real time 3d hand pose estimation in the wild. In IEEE

BIBLIOGRAPHY 63

Winter Conference on Applications of Computer Vision (WACV 2018), also
available at CoRR, arXiv, pages 436–445, lake Tahoe, NV, USA, March 2018.
IEEE.

[68] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary De-
Vito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative
style, high-performance deep learning library. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances
in Neural Information Processing Systems 32, pages 8024–8035. Curran As-
sociates, Inc., 2019.

[69] Junfu Pu, Wengang Zhou, and Houqiang Li. Sign language recognition with
multi-modal features. In Pacific Rim Conference on Multimedia, pages 252–
261. Springer, 2016.

[70] Junfu Pu, Wengang Zhou, and Houqiang Li. Dilated convolutional network
with iterative optimization for continuous sign language recognition. In IJ-
CAI, volume 3, page 7, 2018.

[71] Junfu Pu, Wengang Zhou, and Houqiang Li. Iterative alignment network
for continuous sign language recognition. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 4165–4174,
2019.

[72] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representa-
tion learning with deep convolutional generative adversarial networks, 2016.

[73] Razieh Rastgoo, Kourosh Kiani, and Sergio Escalera. Sign language recog-
nition: A deep survey. Expert Systems with Applications, 164:113794, 08
2020.

[74] Marcus Rohrbach, Sikandar Amin, Mykhaylo Andriluka, and Bernt Schiele.
A database for fine grained activity detection of cooking activities. In 2012
IEEE Conference on Computer Vision and Pattern Recognition, pages 1194–
1201. IEEE, 2012.

[75] Viktor Rudnev, Vladislav Golyanik, Jiayi Wang, Hans-Peter Seidel, Franziska
Mueller, Mohamed Elgharib, and Christian Theobalt. Eventhands: Real-time
neural 3d hand reconstruction from an event stream, 2020.

[76] Hiroaki Sakoe and Seibi Chiba. Dynamic programming algorithm optimiza-
tion for spoken word recognition. IEEE transactions on acoustics, speech,
and signal processing, 26(1):43–49, 1978.

64 BIBLIOGRAPHY

[77] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and
Liang-Chieh Chen. Mobilenetv2: Inverted residuals and linear bottlenecks,
2019.

[78] Wendy Sandler and Diane Lillo-Martin. Sign language and linguistic univer-
sals. Cambridge University Press, 2006.

[79] Robert E Schapire. The strength of weak learnability. Machine learning,
5(2):197–227, 1990.

[80] John Shawe-Taylor and N Cristianini. An introduction to support vector
machines and other kernel-based learning methods, volume 204. Volume,
2000.

[81] Connor Shorten and Taghi M Khoshgoftaar. A survey on image data aug-
mentation for deep learning. Journal of Big Data, 6(1):1–48, 2019.

[82] Tomas Simon, Hanbyul Joo, Iain Matthews, and Yaser Sheikh. Hand key-
point detection in single images using multiview bootstrapping, 2017.

[83] Stephanie Stoll, Necati Cihan Camgoz, Simon Hadfield, and Richard Bow-
den. Text2sign: Towards sign language production using neural machine
translation and generative adversarial networks. International Journal of
Computer Vision, 128(4):891–908, 2020.

[84] Yingcheng Sun and Kenneth Loparo. Context aware image annotation in
active learning. arXiv preprint arXiv:2002.02775, 2020.

[85] Ao Tang, Ke Lu, Yufei Wang, Jie Huang, and Houqiang Li. A real-time hand
posture recognition system using deep neural networks. ACM Transactions
on Intelligent Systems and Technology (TIST), 6(2):1–23, 2015.

[86] Danhang Tang, Tsz-Ho Yu, and Tae-Kyun Kim. Real-time articulated hand
pose estimation using semi-supervised transductive regression forests. In
Proceedings of the IEEE international conference on computer vision, pages
3224–3231, 2013.

[87] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar
Paluri. Learning spatiotemporal features with 3d convolutional networks. In
Proceedings of the IEEE international conference on computer vision, pages
4489–4497, 2015.

[88] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show
and tell: A neural image caption generator, 2015.

[89] Paul Voigtlaender, Lishu Luo, Chun Yuan, Yong Jiang, and Bastian Leibe.
Reducing the annotation effort for video object segmentation datasets. In
Proceedings of the IEEE/CVF Winter Conference on Applications of Com-
puter Vision, pages 3060–3069, 2021.

BIBLIOGRAPHY 65

[90] Ulrich Von Agris, Moritz Knorr, and Karl-Friedrich Kraiss. The significance
of facial features for automatic sign language recognition. In 2008 8th IEEE
International Conference on Automatic Face & Gesture Recognition, pages
1–6. IEEE, 2008.

[91] Chengde Wan, Thomas Probst, Luc Van Gool, and Angela Yao. Crossing
nets: Dual generative models with a shared latent space for hand pose estima-
tion. In Conference on Computer Vision and Pattern Recognition, volume 7,
2017.

[92] Wikipedia. Zipf’s law. https://en.wikipedia.org/wiki/Zipf’s_law. Ac-
cessed: Jun. 2020.

[93] Di Wu, Lionel Pigou, Pieter-Jan Kindermans, Nam Do-Hoang Le, Ling Shao,
Joni Dambre, and Jean-Marc Odobez. Deep dynamic neural networks for
multimodal gesture segmentation and recognition. IEEE transactions on
pattern analysis and machine intelligence, 38(8):1583–1597, 2016.

[94] Zhaoyang Yang, Zhenmei Shi, Xiaoyong Shen, and Yu-Wing Tai. Sf-net:
Structured feature network for continuous sign language recognition. arXiv
preprint arXiv:1908.01341, 2019.

[95] Kayo Yin and Jesse Read. Better sign language translation with stmc-
transformer, 2020.

[96] Matthew D. Zeiler. Adadelta: An adaptive learning rate method, 2012.

[97] Fan Zhang, Valentin Bazarevsky, Andrey Vakunov, Andrei Tkachenka,
George Sung, Chuo-Ling Chang, and Matthias Grundmann. Mediapipe
hands: On-device real-time hand tracking, 2020.

[98] Hao Zhou, Wengang Zhou, and Houqiang Li. Dynamic pseudo label decod-
ing for continuous sign language recognition. In 2019 IEEE International
Conference on Multimedia and Expo (ICME), pages 1282–1287. IEEE, 2019.

[99] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. Unpaired
image-to-image translation using cycle-consistent adversarial networks, 2020.

[100] Christian Zimmermann and Thomas Brox. Learning to estimate 3d hand
pose from single rgb images, 2017.

[101] George Kingsley Zipf. Human behavior and the principle of least effort: An
introduction to human ecology. Ravenio Books, 2016.

		2021-07-09T13:16:45+0300
	Georgios Lydakis

		2021-07-09T14:21:45+0300
	ANTONIOS ARGYROS

		2021-07-09T16:12:48+0300
	ANASTASIOS ROUSSOS

		2021-07-09T18:19:19+0300
	Panagiotis Tsakalidis

		2021-07-12T10:15:34+0300
	Polyvios Pratikakis

