
A Dialogue System for Human-Robot Interaction

Christoforos Prasatzakis

Thesis submitted in partial fulfillment of the requirements for the

Masters’ of Science degree in Computer Science and Engineering

University of Crete
School of Sciences and Engineering

Computer Science Department
Voutes University Campus, 700 13 Heraklion, Crete, Greece

Thesis Advisor: Prof. Dimitris Plexousakis

This work has been performed at the University of Crete, School of Sciences and Engineering,
Computer Science Department.

The work has been supported by the Foundation for Research and Technology -
Hellas (FORTH), Institute of Computer Science (ICS)

A Dialogue System for Human-Robot Interaction

Abstract

Human-machine interaction and communication is one of the “hottest” topics in Computer
Science. As technological advancements are getting closer to the non-expert human, the
need for implementing free-form verbal communication between a user and an intelligent
system is becoming more important, due to its simplicity and naturalness of interaction.
One method of human-computer communication appropriate for non-expert users is
“robotic conversation agents”, the job of which is to engage in conversation with the
human: the user asks questions in a natural language (e.g., English), and the chatbot
answers the user’s question in the same natural language as the question itself.

In this thesis, we designed a chatbot architecture (which we will call P-Chat), which uses
the Event Calculus, a formal action language, in order to represent the chatbot’s
knowledge. It relies on the Clingo reasoner, which implements ASP (Answer Set
Programming) rules, in order to infer new knowledge about the robot’s world and about the
agents inhabiting it, exploiting causal, temporal and epistemic reasoning.

Our architecture is adaptable to diverse domains that require chatbots for human
interaction with machines. It enables users to ask questions not only about the chatbot’s
environment, but also about other agents’ beliefs (epistemic questions) or about
retrospective events, thus enabling users to form a more complete picture about the world
and the events that occur and modify it. Finally, when it comes to training our system, we
present a rigorous training method, so that a question can be reused with different
agents/objects/domains, reducing the cost of retraining from scratch for each individual
query.

We present the implementation of a dialogue system for the interactions between two
agents – a human and a robot – which interact with other objects in the environment. All
participating agents have partial observability of the world, therefore may possess
incomplete or erroneous beliefs about the current world state or about the events that took
place. The implemented system supports a wide variety of query types, ranging from polar

to wh- questions, being either non-epistemic (i.e., about the state of the world), 1st order

epistemic (i.e., about what the robot believes the state of the world may be), or 2nd order
epistemic (i.e., about what the robot believes that other agents believe the state of the
world is).

Keywords: Event Calculus, Answer Set Programming, Chatbots, Clingo, Knowledge
Reasoning, Epistemic Questions, Human-Machine Interaction.

Ένα Διαλογικό Σύστημα Ανθρώπου-Ρομπότ

Περίληψη

Η επικοινωνία μεταξύ ανθρώπου και μηχανής είναι ένα από τα πιο “καυτά” θέματα στην
Επιστήμη των Υπολογιστών. Όσο η τεχνολογία εξελίσσεται ολοένα και πιο πολύ προς την
πλευρά του απλού ανθρώπου, η ανάγκη για τη διενέργεια ελεύθερου διάλογου μεταξύ
ανθρώπου και μηχανής γίνεται ολοένα και πιο σημαντική, λόγω της απλότητας του και της
“φυσικότητας” της αλληλεπίδρασης. Μία μέθοδος που εφαρμόζεται για επικοινωνία
ανθρώπου-μηχανής με γνώμονα τον απλό και μη-ειδικευμένο χρήστη είναι τα “συστήματα
ρομποτικού διαλόγου”, ή αλλιώς chatbots, των οποίων δουλειά είναι να συνδιαλέγονται με
τον άνθρωπο σε φυσική γλώσσα (π. χ. Αγγλικά) δίνοντας κατάλληλες απαντήσεις στην ίδια
φυσική γλώσσα με τις ερωτήσεις.

Σε αυτήν την εργασία σχεδιάσαμε μία αρχιτεκτονική για chatbot (την οποία ονομάζουμε P-
Chat) η οποία χρησιμοποιεί Event Calculus – μία τυπική γλώσσα περιγραφής γεγονότων -
για να αναπαραστήσει τη γνώση που κατέχει το chatbot. Η αρχιτεκτονική μας βασίζεται στο
εργαλείο συλλογιστικής Clingo, το οποίο υλοποιεί κανόνες ASP (Answer Set Programming)
για να συμπεράνει νέες γνώσεις για τον κόσμο και για τους πράκτορες που τον κατοικούν,
χρησιμοποιώντας συλλογιστική αιτιότητας, χρόνου και γνώσης.

Η αρχιτεκτονική προσαρμόζεται σε διάφορα πεδία που απαιτούν τη χρήση chatbot για
απάντηση ερωτήσεων από ανθρώπους. Επιτρέπει στο χρήστη να πραγματοποιήσει
ερωτήσεις όχι μόνο πάνω στη γνώση του “κόσμου” του chatbot, αλλά και πάνω στη γνώση
κάθε εμπλεκόμενου πράκτορα ξεχωριστά, είτε για αυτά που πιστεύει είτε για γεγονότα σε
προηγούμενες χρονικές στιγμές (επιστημικές ερωτήσεις), επιτρέποντας έτσι στους χρήστες
να αποκτούν μια πιο ολοκληρωμένη εικόνα του κόσμου και των γεγονότων που λαμβάνουν
χώρα σε αυτόν και τον επηρεάζουν. Όσον αφορά στην εκπαίδευση του συστήματος,
παρουσιάζουμε μια δυναμική μέθοδο “εκπαίδευσης”, τέτοια ώστε μια ερώτηση να μπορεί
να επαναχρησιμοποιηθεί με διαφορετικούς πράκτορες/αντικείμενα/τομείς, μειώνοντας έτσι
το κόστος για να εκπαιδευτεί ξανά μια ερώτηση από την αρχή.

Παρουσιάζουμε την υλοποίηση ενός συστήματος διαλόγου για την αλληλεπίδραση δύο
πρακτόρων – ενός ανθρώπου και ενός ρομπότ - οι οποίοι επίσης αλληλεπιδρούν με
διάφορα αντικείμενα στο περιβάλλον αυτό. Οι πράκτορες έχουν μερική αντίληψη του
κόσμου, δηλαδή μπορούν να έχουν ατελή ή λανθασμένη αντίληψη για τον κόσμο ή τα
γεγονότα που λαμβάνουν χώρα σε αυτόν. Το υλοποιημένο σύστημα υποστηρίζει μια
μεγάλη γκάμα από τύπους ερωτήσεων, από απλές ερωτήσεις ναι/όχι ή ερωτήσεις του
τύπου “που” και “πότε”, είτε μη-επιστημικές (για την κατάσταση του κόσμου), επιστημικές
πρώτου βαθμού (τι πιστεύει το ρομπότ για την κατάσταση του κόσμου), ή δευτέρου
βαθμού (τι πιστεύει το ρομπότ για το τι πιστεύουν άλλοι πράκτορες για την κατάσταση του
κόσμου).

Λέξεις κλειδιά: Λογισμός Συμβάντων, Answer Set Programming, Chatbots, Clingo,
Συμπερασμός Γνώσεων, Επιστημική Λογική, Επικοινωνία Ανθρώπου-Μηχανής.

Thanks

I would like to thank the following people for helping me fulfill this thesis:

• Prof. Dimitris Plexousakis for giving me the knowledge to understand the main
theories involved with the subject of this thesis, and for offering me his support
throughout the process of writing it.

• Researcher B of ICS-FORTH Theodore Patkos for the same reasons.

• All the people in the Computer Science Department of the University of Crete and
ICS-FORTH for their support.

• And finally, all my friends and family, who advised me to move on and never give up
in the face of failures and other setbacks.

INDEX OF CHAPTERS (pages)

Chapter 1. Introduction…………………………………………………………………………………1

Chapter 2. Background…………………………………………………………………………………3
Section 2.1. Chatbot and Visual Chatbot Basics…………………………………….…....3
Section 2.2. An Introduction to Event Calculus……………………………………….…..3
Section 2.3. ASP, Clingo and Reasoning Basics…………………………………….….…4
Section 2.4. Epistemic vs Polar statements and reasoning……………………….……5
Section 2.5. And it all boils down to…………………………………….…………………...5

Chapter 3. Related Work…………………………………………………………….…….…….……...6
Section 3.1. Works related to our domain………………………………….….……………6
Section 3.2. Works related to reasoning…………………………………….….…………..7
Section 3.3. Works related to dialog handling……………………………….….…………7
Section 3.4. An extended look on Visual Dialog…………………………….…….………8
Section 3.5. PathVQA and our system…………………………….………………….…….9

.
Chapter 4. Architecture…………………………………………………………………………….….11

Section 4.1. Architecture Workflow……………………………………………………..….11
Section 4.1.1. Wit.ai: the main chatbot component……………………….……12
Section 4.1.2. Clingo: our system's "mind"………………………………….…..12

Section 4.1.2.1. The Application of Event Calculus in our pipeline...13
Section 4.1.3. What the user sees: the Graphical User Interface…………....13
Section 4.1.4. The Controller – the heart of the system……………….………14

Section 4.2. Types of questions the system can handle………………………….……15
Section 4.3. Summing the architecture up………………………………………….…….16

Chapter 5. Methodology………………………………………………………………………………18
Section 5.1. General description of our system………………….……………………...18
Section 5.2. Training the system……………………………….…………………………..18

Section 5.2.1. What kinds of utterances can we train?…………………,…….18
Section 5.2.2. Entities………………………………………………………,……….18
Section 5.2.3. Polar questions……………………………………………….……..19

Section 5.2.4. When questions………………………………………………,.……21

Section 5.2.5. Where questions………………………………………………,…...22

Section 5.2.6. Epistemic question types for polars…………………………,…23
Section 5.2.7. Epistemic when questions…………………………………,…….24

Section 5.2.8. “What if” questions…………………………………………,……..25
Section 5.3. Defining a new question type (with an example)………………………...25
Section 5.4. Training a new (polar) question…………………………………….……….27

Section 5.4.1. Wit.ai training……………………………………….……………….27
Section 5.4.2. Controller training………………………………………………….32
Section 5.4.3. Training epistemic questions……………………………….……35

Section 5.5. Information flow during runtime……………………………….…………...36
Section 5.6. The architecture in action: running example………………….………….37
Section 5.7. Summing up……………………………………………………….……………38

Chapter 6. Scenarios and Use Cases……………………………………………………………....40
Section 6.1. Case 1: Typical non-epistemic questions……………………….………...40
Section 6.2. Case 2: Level 1 epistemic questions…………………………….…………49
Section 6.3. Case 3: Level 2 epistemic questions……………………………….………53
Section 6.4. Case 4: A small, dynamic scenario………….………………………….…..56

Chapter 7. Implementation………………………………………………………………...…………67
Section 7.1. Some words about the implementation……………………………….…..67
Section 7.2. The controller……………………………………………….……...……….….67
Section 7.3. The chatbot: Wit.ai……………………………………………….……...….…68
Section 7.4. The Graphical User Interface…………………………………………….…..68
Section 7.5. Clingo - the system’s reasoner………………………………………….…..69

Chapter 8. Conclusions……………………………………………………………………………….70

Chapter 9. References…………………………………………………………………………………71

Chapter 10. Online Resources……………………………………………………………………….72

Chapter 1. Introduction

Human and computer interaction is a rather “hot” topic in modern computer science research.
To be precise, researchers always look for new and revolutionary methods of aiding the
communication between humans and machines, every time proposing new methods and
practices that make this feasible.

One of the many applications of human-computer communication technologies are chatbots -
computer programs that engage in dialogue with human operators, who can ask them questions
and receive appropriate answers. Especially in the area of human-robot interaction, where
various entities observe, interact and potentially alter the environment they inhabit in, chatbots
intend to offer a natural means of knowledge exchange. This is proven particularly useful when
the humans that communicate with the artificial agents are non-experts and the environment is
open, limiting the ability for the involved entities to maintain a clear and complete picture of what
is happening or how current observations relate to past events.

A closely related area of chatbot research is that of visual chatbots. These chatbots present an
image or video to the user, who can then ask questions on what they see and receive
appropriate answers. These chatbots perform reasoning operations on the images they “see”,
so that they have a “computerized” picture of what the picture shows. Such chatbots can be
deployed in a vast variety of areas, such as navigation and medical applications.

Thus, we find ourselves having the need to take the already-existing chatbot context and
expand it further, by adding new functionalities and concepts to it. We want to create a (visual)
chatbot that can adhere to all of the above principles, while having a simple and intuitive way of
describing the knowledge it receives from the outer world. And, while the above may seem
rather menial tasks for chatbot research, we want even more. We do not just want a chatbot that
can “read” its world and extract knowledge out of it. We want to answer the following questions:
if the chatbot’s world has more than one agent, how do they interact with each other? What
does each agent believe about the world? And also, how does past interactions and/or beliefs
affect what the agents perceive and communicate now?

To answer the above questions - and many more - we introduce a system that can both handle
this knowledge, as well as an expanding spectrum of user questions on it, while at the same
time offering support for inferring new knowledge from an already-existing knowledge collection.
To achieve this, the system integrates two things: a powerful chatbot along with a strong
reasoner. In this thesis, we shall present the benefits that such an integration can have. Unlike
other chatbot systems, that answer direct and simple questions, our system is able to go much
further: it is able to answer complex questions based on knowledge it infers from what it already
“knows” using the reasoner (not just what it perceives with its camera); more importantly, it can
handle retrospective questions of the type “what if you did this in the past”; finally, it can answer
questions about other agents’ individual beliefs - a functionality that existing systems do not pay

1

much attention to.

In this thesis, we will introduce P-Chat, an experimental ICS-FORTH chatbot system, a sample
application of which uses a camera to observe an area and “reason” on what it sees, so that it
may answer users’ questions on what they observe or believe. To be precise, in the application
scenario covered here, it monitors a table with an assortment of objects, upon which a human
and a robotic agent interact. P-Chat reasons on the state of the world, as well as what the two
agents notice and believe. Out project contributes to the following:

● We introduce an innovative way of reasoning on visual data using the Event Calculus,
an easy-to-understand formal language for describing causal events in dynamic
domains.

● We present an innovative chatbot architecture, which can be used with virtually any
visual chatbot application.

● We also present an in-depth application of Event Calculus, showing how we can
manipulate it better in order to describe a world, real or otherwise.

● We also introduce a rather interesting-for-a-visual-chatbot functionality; the ability to ask
questions on what other agents believe and observe and receive appropriate answers to
them (epistemic questions).

● Finally, we present a rigorous training method, so that a question trained once can be
applied to a wide range of objects and entities, without the need to train it again for new
objects/entities.

Certain queries supported may look simple and trivial at first, but our proposed system, in fact,
is rather powerful and has lots of room for innovation and improvement in more than one areas.
Our work opens the door for a rather intuitive chatbot framework, which is easy to implement
and maintain thanks to its modular architecture and open-source nature, as well as improve and
debug. In this thesis, we will first present an overview of the entire system and present related-
to-it works, before we delve into its architectural design and describe how each of its
components work. Then, we will present an assortment of use cases, in which our architecture
will be evaluated on a vast array of applications and scenarios. Finally, we shall discuss
implementation details for our application, such as what every component is made of and how
they are set up to interact with each other, providing details on the exact nature of their inner
workings and processes.

2

Chapter 2. Background

Section 2.1. Chatbot and Visual Chatbot Basics

Let’s begin by explaining some chatbot basics first. Chatbots, also called Dialogue Systems or
Conversational Agents are an integral part in human-computer interaction. The user engages in
conversation with them in a Natural Language (NL) and the chatbot will have to answer in a
Natural Language as well. Chatbot theory dates back to the 1950s, when Alan Turing tested
whenever a machine can behave or converse like an actual human [LN6]. Chatbots can be utilized
in many professional areas, such as medicine and shopping assistance, and come in many
types, depending on the desired application. One such type of chatbot is the “visual chatbot”.

The history of visual chatbots (of which the implementation we will present in this thesis is one)
is rather new, and essentially, it’s an expansion of the already known chatbot principles. Since
the beginning, chatbot developers always wanted to add vision abilities to existing chatbots, so
that they may be able to extract data from the real world as they see it. Despite the research
however, it was until the 2010s when these technologies were starting to be adopted to then-
current chatbot research and development.

One step in such research is the Visual Dialog[1] framework, developed in 2016. Visual Dialog’s
concept is pretty simple: given an image, a dialog history, and a question about the image, the
chatbot has to ground the question in image, infer context from history, and answer the question
accurately. Visual Dialog is essentially a standard for chatbot development, presenting a good
framework that can be used to develop any kind of chatbot.

Section 2.2. An Introduction to Event Calculus

Now, how can a chatbot extract the information it needs from the image? This can be done
through a variety of Computer Vision algorithms and methods. But even then, how can it
describe it? A good way for a chatbot to programmatically describe events and situations as
they happen is the Event Calculus[2]. The Event Calculus is a formal approach for reasoning
about events and time within a logic programming framework. The notion of event is taken to be
more primitive than that of time and both are represented explicitly by means of statements
expressed in some logic-based language. Apart from events, Event Calculus (which we will also
refer to as EC) can also describe fluents. A fluent is not something which happens on the spot
at a given timepoint, but rather something that holds for a given period of time. An example of a
fluent is the state of a lightbulb during a given time period. Lightbulbs can be either on or off.
Therefore, if the lightbulb is on between two timepoints, we can say that the fluent that dictates
that the lightbulb is on holds between them. If it’s off, the fluent doesn’t hold. This flexibility of
EC allows us to use it to describe the knowledge the chatbot extracts from visual data in an
accurate and intuitive way. In many recent implementations, the Event Calculus is written in the

3

Answer Set Programming (ASP) language and is processed by an ASP reasoner, such as
Clingo (see next subsection).

It must also be noted that, in this project, the Event Calculus dialect that we are using is the
Discrete Event Calculus[3], where we have a sort E of events (things that happen
spontaneously), a sort of fluents F (properties that exist for a given time frame) and a sort of
time points T (points in the time line, used to implement a linear time line). It also makes use of
the inertia principle, which states that a fluent “holds” over time until an action causes it to hold
no more. DEC also specifies domain-independent axioms that define events, fluents and
enforce inertia in the reasoning process, while the specific domain is defined by a domain
axiomization, which includes domain-specific axioms, world properties and initial state
observations.

Section 2.3. ASP, Clingo and Reasoning Basics

ASP stands for Answer Set Programming[4]. It is a form of declarative programming oriented
towards difficult search problems. As an outgrowth of research on the use of non-monotonic
reasoning in knowledge representation, it is particularly useful in knowledge-intensive
applications. ASP programs consist of rules that look like Prolog rules, but the computational
mechanisms used in ASP are different: they are based on the ideas
that have led to the creation of fast satisfiability solvers for propositional logic. When basic EC
rules are expressed in ASP, they are capable of creating a wide range of EC statements and
predicates, capable of describing an entire domain in a powerful yet easy-to-understand
manner. ASP, and by extent, EC rules and predicates can be processed by a solver program
that, given an initial state, a set of predicates and a set of rules, can reason about what can
happen in future time points and return appropriate predicates for those time points. Clingo is
such a reasoner for ASP and EC.

Clingo[5], which is a part of the Potassco (Potsdam Answer Set Solving Collection) answer set
solving tools, is such a solver app. Clingo essentially merges grounding with solving; by
grounding we mean the ability to remove variables from an ASP program, since current answer-
set solvers work on grounded(variable-free) programs. After the grounding process, the solver
can assume the rules, the initial state, and generate models that predict future changes in our
world. This functionality results in programs that can easily change their logic over time, as well
as an advanced control interface for the reasoner, that can be accessed by a huge number of
scripting languages, such as Python. Thus, we can use the reasoner to its maximum
capabilities, providing powerful reasoning capabilities to any chatbot that may require them.

4

Section 2.4. Epistemic vs Non-epistemic statements and reasoning

What is also noteworthy is the ability to ask agents about what other agents notice or believe. In
most traditional chatbots, the users always directly ask about what the state of the world is. This
kind of question is called non-epistemic questions. In a non-epistemic question, we ask a
system directly about the world state; in contrast, when we ask an agent about what it believes
the world state is or what it believes other agents believe etc., , then we issue an epistemic
question. Epistemic questions are just like non-epistemic questions, with the only difference that
we now ask an agent about what it believes or notices. The usage of epistemic questions in a
chatbot is a rather new concept, since most chatbots do not tackle the area of answering user
questions about agents, but mostly, about the world they observe.

Unlike non-epistemic questions, epistemic questions can be leveled. By leveling means
whenever we are asking an agent (level 1 observer) about another agent (level 2 observer). In
this work, we will cover epistemic questions up to level 2. That is, questions of the type “Did
agent A notice…”, which are level 1, and “Did agent A notice that agent B noticed…”, or
similarly “Does agent A believe that agent B does not believe that..”, which are level 2.

We have already described what we need in order to perform reasoning for non-epistemic
axioms. When it comes to epistemic axioms, however, we have to expand our already-existing
non-epistemic axiomization, in order to account for epistemic reasoning as well. In order to do
so, according to [3], we need to use the Discrete time Event Calculus Knowledge Theory
(DECKT, Patkos and Plexousakis, 2009), which defines meta-axioms for the following: I) when
an action occurs, if all preconditions of an effect axiom triggered by this action are known, the
effect will also become known, ii) if at least one precondition is known not to hold, no belief
change regarding the effect will occur; iii) in all other cases, i.e., when at least one precondition
is unknown, but none is known not to hold, then the state of the effect will become unknown too.
While the DECKT theory is sound and complete, the epistemic reasoning done is approximate;
since the task is non-trivial for possible world-based implementations, the inferences are sound
but potentially incomplete (since we only compute level 2 epistemic inferences). This is to
alleviate computational complexity issues; we sacrifice completeness for less complexity.

Section 2.5. And it all boils down to…

Thus, we come to an application of the above principles, which is no other than our chatbot
which uses EC to describe what it “sees” on a camera (in this sample implementation). And with
the ability to answer epistemic questions, it has the ability to “read” what agents have observed
or believe, allowing us to ask agent-specific questions, in addition to image-specific ones. This
way, we provide a framework for a chatbot that can use an intuitive way of describing the
knowledge it receives from the environment - presented in the form of events and fluents, while
also allowing us to question individual agents on their own knowledge.

5

Chapter 3. Related Work

The works related to ours can be split into three categories: those that are related to the
domain, the reasoner and the way the dialogue is handled.

Section 3.1. Works related to our domain

Domain-wise, the most relevant paper we are aware of is “Cut & Recombine”[6]. In this paper,
the researchers propose a method for generalizing robotic manipulation actions in an ever-
changing domain. They propose an ontology-based system that receives textual instructions on
manipulating objects, then it generalizes them so that individual manipulation scenarios can
apply in situations with different objects. The paper’s domain is very close to ours; we have a
robot that has to learn information about objects in an ever-changing environment, which means
that it has to notice vital details such as their positions and forms, as well as its own position
perpendicular to the objects. Their approach is to define three data structures and two
procedures. The data structures consist of an instruction ontology (with verbs and nouns for
actions and objects for synonymy and instruction parsing issues), and ADT (action data table)
database (a structure containing information from previous robot executions down to control
level parameters) and an action template library (which holds abstract action encodings for a set
of actions). The procedures used are symbolic processing (recognize action and objects in user
question) and sub-symbolic processing (look for ADTs for actions similar to what the user
asked). The purpose of the procedure is not only for the robot to perform an action, but also
define a new ADT for future executions of the same action set. The aforementioned “Cut and
Recombine” method is used to filter essential information from existing ADTs and then
recombine it in order to produce the new ADT. The pro in this approach is that the symbolic
processing produces mistakes, yet they are isolated. Also, it makes the instructions more clear
for the robot to perform, resulting in better actions. The con, however, is that this procedure is
more specific for a robotic arm; while it can be also used (in combination) with a chatbot, the
general architecture is somewhat domain-specific, in particular, that of a robot with a camera
and and arm. Still, domain-wise, this is a pretty good application of basic reasoning for a robot –
and a chatbot of course, since it’s essentially a robot. But yet, it will have to be somewhat
modified in respect to the data structures if it’s to be used in a chatbot application (use ADTs for
question answering instead of performing general actions), since it mostly concerns a generic
type of robotic agents.

A similar paper by Hatori and Kikuchi[7] deals with exactly the same problem; once again, we
have a robot that has to manipulate objects in the environment, and it has to learn about them in
order to do so, something which may not require reasoning, but it has a similar domain to ours.
Here, the authors use a robotic arm and a camera as well, and the arm has to grab or move
different objects on a tray. Apart from a dataset containing images of objects that the robot will

6

have to interact with (along with the objects’ bounding boxes), Training is done with CNN neural
networks, and, unlike the previous paper, where new knowledge is inferred, here we are using a
dataset to train the robot in the new knowledge. And yes, while this may offer better training for
robots that operate in domains with objects (in particular, robots that also interact with such
objects), it has the con of not using reasoning, something that may conflict with chatbot (or
other) tasks that use reasoners. Still, this paper is similar domain-wise to our work, and can
provide a useful insight on how a robotic agent should see its world and how should it recognize
entities within it.

Section 3.2. Works related to reasoning

In the reasoning field, CORPP[8] is the reasoning-related work that is closest to ours. The paper
proposes a domain-independent approach to robotic reasoning in an ever-changing world using
Answer Set Programming (ASP) and Partially Observable Markov Decision Processes
(POMDPs). The way the paper represents ASP predicates is pretty much similar to our Event
Calculus approach; in fact, with little-to-no modifications, the proposed system can be used to
build a fully functional reasoner that can offer the same functionality and results just like ours.
The theories proposed by “Cut & Recombine” can be also used to fine-tune Event Calculus
instances in order for them to be reused in a more flexible manner.

The authors’ approach here is to collect facts about the world, calculate possible worlds using
an ASP-based logical reasoner that uses domain-specific axioms and the facts in order to
generate new worlds for the agent to work into. It also makes use of P-log for probabilistic
reasoning (random selection rules) and POMDPs for probabilistic planning (generate policies
and models specific to actions, while also maximizing the reward values). The pros of this
approach is that reasoning takes as little time as possible and it also offers high accuracy with
as little cost as possible. It has also been tested in an actual robot (a shopping assistant), with
the results being that the robot was able to fulfill a set of requests efficiently, and becoming
more confident as its actions were approved. As for cons, the only thing we can note is that the
procedure is somewhat complex, yet it’s powerful enough to produce viable and reliable results
for any kind of robotic task.

Compared to our reasoning approach, while their approach is a lot more different than ours –
and it does not utilize Event Calculus at all, it’s definitely a good insight on probabilistic robotic
reasoning, and while our approach does not use probability, it can still be a worthy alternative to
the Clingo Reasoner that we currently use; it may not use Event Calculus, but it can be further
extended to utilize it. In other words, CORPP can be a valuable addition to our framework, if we
ever have need to compare the already state-of-the-art Clingo and DEC(KT) with more
probabilistic methods.

7

Section 3.3. Works related to dialog handling

When it comes to dialog handling, one of the closest papers is, again, [7], since it makes use of
an external service (Chrome Web Speech API) in order to tokenize dialog and receive it in a
parseable form. Our approach is somewhat similar both in premise and setup, only that we are
using Facebook’s wit.ai platform to perform the dialog handling job, whereas the Chrome Web
Speech API used by this system is closed-source, whereas wit.ai is open-source, and the
“robot” only observes how the world changes – it does not interact with it directly Also, apart
from Machine Learning processes used to “train” the robotic arm, the system lacks reasoning
abilities, therefore, being somewhat unable to answer certain questions that require reasoning
(such as “what would happen if the arm put object A on top of object B?”), resorting solely on
direct orders (e.g “Get me the tissue box”). While this may look like a good system for
recognizing user questions and answering them based on already-trained information (of a
certain kind), its lack of reasoning functionality may make it somewhat hard to use in ever-
changing environments, where new situations happen and entities change.

Another paper that handles dialog in a similar manner is PathVQA[9]. PathVQA uses Stanford’s
CoreNLP toolkit in order to process dialogue and identify entities in the text it receives. Unlike
[7] and our approach, however, PathVQA does not only match the parsed dialog to visual
information, but it also uses it to form answers to any possible questions on it. This way,
PathVQA can offer directed and more informative answers to users’ questions, unlike other
approaches, that offer generic-type answers with only different values. Just like [7]. however,
PathVQA has the con of lack of reasoning abilities (which in the case of PathVQA’s domain
would enable a doctor to predict the progress of a disease), and therefore is not that suitable for
asking questions that predict changes in the domain. This can be further reinforced by the fact
that it offers answers it learns along with the questions on images in the training set. Thus,
compared with the above two papers, we can see how our system achieves novelty by offering
state-of-the-art reasoning abilities, while also utilizing a free and open source Natural Language
processing platform in order to pre-process users’ queries for proper question answering in both
static and ever-changing environments.

Section 3.4. An extended look on Visual Dialog

In the area of dialog handling, it would be also noteworthy to analyze Visual Dialog as well, as
it’s one of the basic principles on which our architecture is based on. Visual Dialog is not
essentially a chatbot, but rather, an Artificial Intelligence (AI) task where humans ask the bot
about details on a picture and the bot answers the questions by identifying entities in the picture
and evaluating them according to the question’s context. This task is used to build a simple
visual chatbot. The chatbot’s role is pretty much obvious: it is the agent that accepts the user’s
questions, analyzes them and offers proper answers.

8

The task is trained using a dataset (VisDial) that consists of pictures and questions on the
entities that appear in them. The system then uses a series of Neural Network answerer models
in order to generate the answer that will be returned to the user. It uses three encoders to
transform image input and answers into a vector space: Late Fusion (LF), Hierarchical
Recurrent Encoder (HRE) and Memory Network (MN). After the image is encoded into vectors,
the system will have to return an answer listing, sorted on whenever the answers answer the
given question (in vectorized form too). The best answer is the one that will be returned to the
user.

The difference between this system and ours is that there is no reasoner; all predicates are
extracted from the images as vectors, and those vectors are then used to answer the question.
It also has a wider range of applications, not just for conversion between a human and a robot;
this means that it’s rather context-free – any image can be used. This flexibility is what gives it
its characteristic wide range of applications, which means that it can be used in our sample
implementation's context as well.

Overall, Visual Dialog presents an essential task when it comes to visual question answering. Its
flexibility allows adaptation to any possible context, including ours, with the robot and the
objects. While it definitely offers infinite possibilities, it seems that it still has some room for
improvement, especially when it comes to efficiency - which can be improved by tweaking
certain parameters in the encoders. Nevertheless, improvement or not, it’s a system worthy of
any application and interesting to research thoroughly.

Section 3.5. PathVQA and our system

While not technically a chatbot itself, PathVQA is a dataset that can be used to answer
questions on medical images, in particular, pathology images. The need for the dataset arises
from the need to automate pathological diagnosis, as well as the need to develop new, cutting-
edge technologies that would prove beneficial for the medical area.

The dataset can be used to create a chatbot that, given a pathology image of a patient, can
accurately describe everything associated with it, identify possible diseases, and, in general, act
as an “AI Pathologist”. Much detail is used in the generation of the dataset, so that a possible
chatbot that utilizes it could pass the American Board of Pathologists exams.

For the generation of dataset, the first task is to extract images from pathology media, along
with their captions. This is done with tools such as PyPDF2 and PDFMiner. Using Stanford’s
CoreNLP toolkit, long sentences in the captions are simplified into shorter ones, and all their
components (subjects, verbs, clauses, etc.) are then rearranged - using Tregex from the
CoreNLP toolkit - into questions. Each question is then mapped to its respective answer, and
both are mapped to their respective image. Many question types are used throughout the
dataset, with the most popular being “Yes/No” ones, “whats”, “wheres” and “hows”. In a nutshell,
the data is represented as such: every image is accompanied by questions on it, along with their
answers.

9

We can see some similarities with our proposal here, despite the project being just a dataset.
First, just like the sample implementation covered here, we need to answer questions on an
image. And then, we can use “where” and “what” questions, as well as “Yes/No” questions,
although in a completely different context. We also notice that the dataset is completely
generated automatically, whereas in our project’s case, it has to be trained by supplying
questions and identifying entities in them manually (although the finished dataset can be
extracted and imported later as-is). Also, given that still images are used, there is no mention of
reasoning of any kind, implying that this is a task that should be handled by the chatbot that will
use the dataset (although a third-party reasoner can be considered, if needed).

To sum up, PathVQA may not be a chatbot, yet, theoretically, it sets the foundation for a basic
visual chatbot task (perform pathological diagnoses based on patient images). What is also
interesting, given the way the questions and answers are represented, is that if we represent the
answers as Event Calculus instances, and then train the questions in wit.ai (in an automatic
manner, of course), we can set the bases for a “virtual pathologist” that can answer questions
on medical images (providing that we have a reasoner that can analyze new images as well).
While this may seem a bit “haphazard”, it nevertheless presents a chance to test and use P-
chat’s abilities in a more advanced and purposeful field.

10

Chapter 4. Architecture

We begin this chapter with an analysis of each component comprising our system, whose
architecture is shown in the diagram that follows (in section 4.1).

Section 4.1. Architecture, Workflow and Component Analysis

Before we describe the architecture workflow of the P-Chat system, we should first specify what
types of users are involved in its operation. Running and using a chatbot system involves many
people, each with their own role, assigned to individual tasks. In our project, we can distinguish
users in three types. The first type is the knowledge engineer (KE). The KE is responsible for
writing the Event Calculus theorems and functions that define the chatbot’s domain. As we have
specified earlier, the domain may be different from setup to setup, so the KE has to account for
each and every object, agent or any other tangible entity associated with the domain (as well as
the domain’s environment) so that they may represent the domain in EC as accurately as
possible. The second type of user is the chatbot engineer, whose job is to train the chatbot in
the Natural Language utterances it should handle, as well as their respective question types. In
order for the chatbot engineer to train the correct utterances and question types, they must
know what EC theorems represent the given domain, so as to “match” these theorems to their
respective Natural Language questions. Thus, the chatbot engineer’s job requires that the KE
should also do their job correctly, since they need their theorems in order to train the
appropriate questions. And finally, we have the end user, who uses the trained chatbot once it
has been set up and is online.

In the implementation described in this thesis, we assume that we have a robot that operates in
a specific domain and interacts with other users in it. This robot can infer knowledge (which it
represents using EC) using its own reasoning capabilities. Users can then ask questions to this
robot about what it has inferred, whenever this knowledge is about the world it observes or the
agents’ individual knowledge.

The figure below shows the architecture of our project in a nutshell:

11

Section 4.1.1. Wit.ai: the main chatbot component

We first discuss the chatbot. What the chatbot does in our system is rather straightforward: it
receives a user query written in a Natural Language (English, for now), recognizes possible
entities in the query (objects, agents, time points, etc.), recognizes the query’s intent (whenever
it’s a question on knowledge, a question of what would happen if something, a greeting, a
question on what an agent observes, etc.) and assigns the query a trait (a boolean variable,
often with the “true” value) that describes what exactly does the question concern (whenever it
is about an object’s position, whenever an agent moved, whenever an object is in a position
relative to another object, etc).

Once the chatbot has recognized everything of the above, it prepares a JSON object which
contains all of this info and returns it to the client that sent the query in the first place. This way,
the client receives the query fully analyzed with everything represented in a clear format, ready
to be processed by any code running in the client. Thus, the chatbot handles the job of pointing
out the main points of a Natural Language question, so that a client code can manipulate them
in order to “understand” what exactly the user asked.

Section 4.1.2. Clingo: our system's "mind"

Another crucial component in our architecture is the reasoner, in our system, clingo. Clingo
handles the job of reasoning new knowledge from already existing ones. Which means that, it

12

takes the knowledge our system currently knows and expands it with new knowledge, which it
generates by inferring on the already known knowledge. In our system, knowledge is stored in a
set of files, which clingo processes. These are:

● A DEC (Discrete Event Calculus) file containing general-purpose Event Calculus
predicates.

● DECKT files: these contain predicates and functions for epistemic queries (queries on
other agents’ knowledge).

● A file containing domain-specific EC predicates. This may be different from domain to
domain.

● A file containing an initial state, which is a snapshot of the world that will be loaded when
the chatbot starts. The system can modify it for “what would happen if” questions.

The reasoner is called when the system starts (in order to compute the initial state) or when
questions of the “what if” kind are asked, in which case the initial state (mostly) is modified with
new predicates (in a temporary file) and then the reasoner reloads it with the new predicates, in
order to answer the user’s question.

Section 4.1.2.1. The Application of Event Calculus in our pipeline

In order to perform reasoning, Clingo needs to consult a set of files containing domain-specific
and domain-independent Event Calculus and ASP predicates. In this project, it needs the
following files (i.e., rulesets): a DEC (Discrete Event Calculus) axioms, DECKT files for first and
second order epistemic inferencing (described later on), a domain axiomatization, which
contains the domain-specific information, and an initial state file. The DEC file contains domain-
independent Event Calculus axioms, which can be applied to any domain that works with Event
Calculus without the need for modifications. The DECKT files - one for level 1 and one for level
2 epistemic queries - contain rules defining epistemic predicates. The domain axiomatization
specifies the dynamics and causal properties of domain that the robot operates in; it defines
rules and axioms about everything in the robot’s environment (agents, objects, etc.) and
handles domain-specific fluent and event operations. P-Chat should be able to interpret all
these knowledge, in order to respond to queries issued by the end user with respect to the
domain. Finally, the initial state contains predicates for the state the robot will find the world
when it comes online, and it acts as the “base” that the reasoner will use to generate knowledge
up to the time point the user will specify.

Section 4.1.3. What the end user sees: the Graphical User Interface

Another vital component of our architecture is the Graphical User Interface. This is the main
component the user uses to communicate with the chatbot. The users can input their queries on
the GUI and receive possible answers on them. Apart from the users themselves, the GUI also
communicates with the control/processing unit, sending queries to it and receiving results from
it. Essentially, it is the “middleman” between the user and the control and processing unit, which
is the “core” of the architecture. It receives the user’s query, forwards it to the controller for

13

further processing and then takes the answer from the controller and shows it to the user. The
GUI also holds the current state of the world and what agents believe about the world and other
agents. This information is shared with the other components in the architecture when
requested. Here’s an example GUI session, with a sample initial state:

Let’s take a closer look at what we have here. In the leftmost area, we see an image captured
by the chatbot’s camera, and it shows the world as the chatbot sees it: the objects, the agents
and the environment in general. Right below it, we have a Facebook Messenger-style chat
interface. This is where the users ask their questions and receive their answers.

In the right area, we have four windows. Each of this windows contains Event Calculus
predicates that describe the current and past states of the world, as well as what the human and
the robot (our primary agents) believe and observe. We have a window for the state of the
world, two windows for what the human and the robot believe and observe, as well as a window
about what the robot believes and observes about the human.

Let’s see some predicates seen in the above picture. The holdsAt(agentAtPos(human,180),0)
seen in the “Actual World” window states that in the actual world, agent “human” was at position
180 at time 0. In a similar vein, happens(notices(placesAdjacent(raspie,boxA,leftOf,boxB),0) in
the “Robot’s Beliefs” window states that the robot noticed that the raspie (the robot itself, raspie
is an alias for the robot) placed boxA left of boxB at time 0. In this manner, we can easily
organize predicates not just about the state of the world, but also predicates about what every
individual agent believes or notices.

Section 4.1.4. The Controller – the heart of the system

The last component in our diagram is the controller, which is the “heart” of the entire

14

architecture, seeing as every component sends and receives information from it. The controller
handles the job of sending the user’s raw question to wit.ai, receiving the processed output,
creating an Event Calculus predicate out of the question’s intent and entities and then looking
into the predicates representing the current world knowledge to find all predicates that match
with what it generated from the user’s question.

If the user’s question concerns what would happen if something happened, it appends the EC
predicate resulting from the user’s question into a temporary copy of the initial state and then
calls the reasoner in order to get knowledge on how the world would look if the action the user
described happened. It then looks for the answer in this new knowledge.

In any case, if the controller has an answer for the user, it sends it to the GUI, which then
displays it for the user. If there is no answer to the user’s question, it just sends a negative
response to the GUI.

To sum it up, the controller is the main action hub of our architecture. It has the greatest degree
of responsibility in our system, seeing what information it processes and how it interacts with
each other component in the architecture. And while this may look centralized a lot, it enables
for a higher degree of independence for the other components, which means that modifying a
component other than the controller will have little to no consequences in the operation of the
system as a whole, something which also enables us to intervene other components in the
pipeline as well, with minimum consequence (for example, we can add a “swear filter” between
the controller and wit.ai that can filter out expletive words - something which will not have any
consequence in the system’s operation). We can see, this way, that this centralization opens the
door for a great degree of modularity, which is crucial for ever-evolving systems like ours.

Section 4.2. Types of questions the system can handle
In this subsection, we describe the types of questions our architecture can handle. These
questions are written in a controlled language, which specifies keywords and NL query
architecture for different kinds of questions. Controlled language keywords include mostly
domain-specific information, such as agents, objects, angles, etc., and given that they are
domain-specific, they can be defined by the user. Currently, our architecture supports the
following kinds of domain-independent questions (we will analyze them in detail in later
sections):

● Polar questions: These non-epistemic questions are direct questions on events and
fluents on the actual world. When asking a polar question (or a non-epistemic question
in general), the user asks the system what happened in the actual world, not what the
agents believe or observe. An example of a polar question is: “Was the door open at
time 1?”. Here, we are asking the system on what happened in the actual world at a
certain time point, therefore, the answershould be in the “Actual world” knowledge

15

section, as seen in the GUI above. A polar question’s answer is either a “Yes” or a “No”,
sometimes followed by additional information (such as the time points where the
question’s answer is a “Yes”). As we will see later, like all non-epistemic questions, polar
questions can become epistemic as well.

● Epistemic questions: these questions concern what agents believe and observe - their
individual knowledge. An epistemic question has two principal parts; the epistemic part
and the non-epistemic part (which can be a polar question, a “where” question or any
other kind of non-epistemic question). For example: “Does the doctor believe that the
cancerous cell mutated at time 2?”. Here, the epistemic part is “Does the doctor believe
that” and the non-epistemic part is “the cancerous cell mutated at time 2”. The non-
epistemic part corresponds to an already trained non-epistemic question type - which
means that epistemic questions are not a separate kind of questions, as seen by wit.ai,
but rather an extension of non-epistemic questions. In the epistemic part, the agent
specified is the one whose knowledge we explore, and is called the observing agent. If
the non-epistemic part also concerns another agent’s actions or beliefs, this agent on the
non-epistemic part is called the actuating agent. It must be also noted that epistemic
questions can be nested, that is, we can interrogate agents on what other agents have
seen or believe. In the above example, a nested variant could be this: “Does the nurse
(observing agent 1) believe that the doctor (observing agent 2) believes that the
cancerous cell mutated at time 1?”. In this case, the answer lies in the first observing
agent’s knowledge, which holds knowledge about the second agent’s knowledge.

● “When” questions: These non-epistemic questions ask at what time something
happened (or a fluent held) in the actual world. The answer to this question type should
always be a time point on which what the user asks for happened - if it did. Being a
subcategory of non-epistemic questions, the same rules as with non-epistemic questions
apply here.

● “Where” questions: This kind of question is non-epistemic as well, and it asks where an
agent or object is (or was) at a certain time point. The answer here should be a location.
This question type is rather domain-specific (for applications where locations are
needed), thus, it does not apply to all use cases of our architecture, only in
implementations where it’s needed.

● WHATIF questions: These questions ask the system what would happen if a certain
event happened (or a fluent held) in a past or future time. When processing these
questions, the system forms an event/fluent predicate out of the user’s question,
appends it to a new initial state and then calls the reasoner, which computes models on
that new initial state and returns an answer to the user’s question from those models. An
example of this question would be: “What if agent A had pushed the button at time 4?”

Section 4.3. Summing the architecture up…

When it comes to forming a general picture of the system, this architecture describes a modular
system for a chatbot that answers users’ questions on knowledge gathered by a robotic agent.

16

Our sample implementation here belongs to a special chatbot category called “visual chatbots”;
chatbots that answer users’ questions on a picture or a video. The architecture described here
is to a large extent context free and can be applied to any kind of chatbot implementation. For
example, we can use it to implement a visual chatbot that answers doctors’ question on medical
imagery, or we can use it to build a system that tasks users with a virtual “treasure hunt”.
Implementation requires only trivial use of wit.ai and JSON objects, it can be “installed” easily
and it can be modified easily as well - all components are independent of each other, which
means that we can add new ones or change existing ones with minimal consequence.

As for the users, all they have to do is to enter their questions on the system’s GUI and get their
answers on the spot, on the same GUI. The implementation covered here is targeted mostly at
chatbot/AI/ML researchers that investigate how does a chatbot make its reasoning and
language handling, but other implementations can be catered to an even larger audience, as
described in the two implementation examples above.

It must be noted, however, that our system has certain limitations, that may make it “far from
perfect”. Namely, it will answer user questions only if these questions belong to a question type
that has already been trained; anything else will just return an error message. Also, the
accuracy of the answer is dependent on the degree of training for the respective question type –
if the question type is not trained well enough (for example, if it’s not trained with a sufficient
number of example questions), wit.ai may “misjudge” the question type it receives and return an
answer for a wrong EC predicate or set thereof; it may also fail and return an error message
instead. Speaking of which, if users ask questions that are of types not yet trained in wit.ai, the
chatbot makes suggestions for further training of such questions, but it’s not done automatically;
the chatbot engineer should do this by hand – a somewhat tedious process. Error recovery is
also an issue – if the system recognizes a question wrongly and it fails with an error message
(unlike a case where it may return a wrong answer), the system will block and continue to
provide the same wrong answer until restarted.

In spite, however, of the above limitations and “bugs”, we believe that our system has a high
enough potential for improvement and further expansion, allowing us to address the above
limitations the best way possible, as well as add further functionality that may help it become a
“state-of-the-art” chatbot system.

17

Chapter 5. Methodology

Section 5.1. General methodology idea
Our system is a chatbot that observes the world and describes events and situations that
happen on it using Event Calculus (an ASP-based language designed for describing events),
along with what the agents (world actors) see and believe - their knowledge, described in Event
Calculus as well. The user can then ask questions on what the chatbot “sees” in the world and
the agents’ knowledge. Apart from events, the system can also describe “fluents”, assumptions
that hold for a time period between two time points. Our system is not solely restricted to visual
chatbots; it can be used to implement one, but it can be used for implementing any kind of
chatbot in general.

Section 5.2. Training the system

Training the system, in order to recognize different categories of questions, different types of
questions of a given category, or to accurately identify entities and intents within a given query,
is an important aspect of this work. The training process of our system concerns two
components: wit.ai and the controller. What makes the training procedure for this system ideal is
the fact that no code needs to be modified. The only thing the user has to do is to train new
utterances in wit.ai and then add these new utterances in the controller’s parameter file. This
way, the controller can automatically detect the new utterance’s properties and work
accordingly. Let’s see how this training can be done.

Section 5.2.1. What kinds of utterances can we train?

Before we start describing the training process step-by-step, we need to specify what kinds of
utterances our system can support, and how these utterances are specified. Our system
complies to a controlled language, that is, a certain coded syntax that defines the kind of
questions we can ask in our domain. Each question has a different type and meaning, and they
have both non-epistemic and epistemic versions, with both versions having the same intent. The
controller language also specifies the entities a question can have, that is, every object that can
appear in our domain, such as time points and agents. In the following controlled language
specification, we will use the “PFQ” code to refer to polar (P) question types that refer to fluents
(F), i.e., world aspects that hold for a certain time range, and “PEQ” for questions that refer to
events (E), i.e., changes in world aspects at given times. Now, let’s present the controlled
language for our implementation’s domain:

Section 5.2.2. Entities

In a question, entities represent objects, agents, and in general, everything that can be

18

described in our world. These also include other non-visible data, such as time, an object’s or
agent’s position in the world, the world’s weather and other information. An entity can be easily
realized as a variable that accepts a certain set of values. For example, an entity called
“daytime”, that can describe whenever it’s day or night in the chatbot’s world, can be defined as
<daytime> = {day, night}, where <daytime> is the entity’s name, and {day, night} are the
keywords that the chatbot will associate with them. Below we have the entities for our
implementation’s domain:

<agent> = {agent, human, raspie, robot}
<time> = {0, 1, …}
<angle> = {0, 90, 180, 270}
<object> = {table, boxA, boxB, laptop, pen}
<spatialRel> = {onTopOf, leftOf, behindOf}

Section 5.2.3. Polar questions

A polar question is a non-epistemic direct question on the world’s state. When users ask a non-
epistemic question, they inquire about what they currently see in the world, not what an agent
believes. Polar questions are the simplest non-epistemic questions that P-Chat can handle, and
are likely the first questions a user may ask, so, it is important that we train as many polar
question categories as possible. An example of a polar question could be: “Are the lights on?”.
In this question, we are asking directly about the lights, which is an entity in the chatbot’s world.
We can further generalize this question if we replace “lights” with any other valid entity keyword
for this question. For example, we can say “Are the monitors on?” or “Are the fans on?”. The
answer to a polar question should either be a “Yes” or a “No”. As we can see, our question
model allows for question boilerplates, which can accept a wide range of entity values as
arguments.

Below are some polar question types our implementation can handle, along with their possible
answer values (since every question may return a different type of answer depending on its
context). Remember that PEQ questions are questions about events (which happen at a certain
time point and no other) and PFQ questions are questions about fluents (which ask about a
state that is valid between two time points). All polar questions begin with the “P” prefix,
specifying that the question is a polar:

PFQ1.

Is/was <agent/arg1>
located at <angle/arg2>
[at time/timepoint <time>]?

19

Answer:
Yes
Yes, at times T = 3, 4, …

PFQ2.

Is/was <object/arg1>
<spatialRel/relation> <object/arg2>
[as seen from <angle/arg3>]
[at time/timepoint <time>]?

Answer:
Yes
Yes, at times T = 3, 4, …

PFQ3. Combination of observations

Is/was <object/arg1>
occluded
[by <object/arg3>]
to the <agent/arg2>
[at time/timepoint <time>]?

Answer:
Yes
Yes, at times T = 3, 4, …

It is important to note here that the general pattern of a question is only given for reference. The
chatbot can be trained to recognize a given PFQ type, even if a different phrasing or wording is
used by the end user. For example, instead of “occluded” in PFQ3, the user may use the word
“hidden”; the better the training is, the higher the confidence is that the question type has been
correctly recognized. Section 4.X later on provides more details about how proper training can
be performed.

PEQ1.
Did <agent/arg1> change its/her position [towards <angle/arg2>] [at time <time>]?

e.g
Did human change her position at time 12?
Did the agent change its position towards 90?
Did the agent change its position towards 90 at time 2?

Answer

20

Yes.
Yes, towards angle X1 at time T1, towards angle X2 at time T2, etc

PEQ11.
Did <agent>
put/place <obj1>
<spRel> <obj2>
[at time <time>]

e.g
Did the raspie place boxA leftOf boxB at time 15?
Did the human place the laptop behindOf the pen at time 3?
Did the agent place the pen onTopOf boxA?
Did the robot place boxA leftOf the pen?

Answer
Yes, at time(s) <time>

PEQ2.
Did <agent/arg1>
pick up <object/arg2>
[at time <time>]?

e.g
Did human pick up boxA?
Did robot pick up laptop at time 7?
Did raspie pick up boxB at time 11?

Answer:
Yes.
Yes, at time <time>.
No.

Section 5.2.4. When questions

“When” questions are non-epistemic questions that don’t ask about just anything in the world,
but about when something happens or holds - that is, they’re asking about a certain time point
or intervals of time points. These questions - whose codes always start with “WN” - in order to
be clear in terms of format, always start with the keyword “when”. An example of such a

21

question is “When did the window open?”. Here, we want to learn at what time point(s) did the
action of opening the window take place, not how it opened or who opened it. Below we have
sample categories of “when” questions handled by our implementation.

WNEQ1.
When did <agent/arg1>
change its/her position
[towards [angle] <angle/arg2>]?

Answer: a timepoint or a set of timepoints.

Examples:
When did the robot change its position towards 90?
When did the human change her position towards angle 180?
When did the human change her position?

WNFQ1.
When was <agent/arg1>
located at [angle] <angle/arg2>?

Answer: a timepoint or a set of timepoints.

Examples:
When was the human located at angle 90?
When was the robot located at 180?

Section 5.2.5. Where questions

These questions are also a type of non-epistemic questions that ask “where” was an agent or
object during a certain time point or period, and as such, their codes always start with the “WR”
prefix. The answer to these questions is a relevant agent/object position (or a set of them).
These questions are rather domain-specific, as they concern domains that involve asking
questions on agents’/objects’ positions. These questions, just like “when” ones, have the main
characteristic that they always start with the keyword “where”. An example would be “Where is
the pen?”. Sample “where” question types that our implementation supports follow:

WRFQ1.
Where <is/was>
the <agent/object>
located at time <time>?

22

NOTE: if “is” is used after “Where”, the “time <time>” part is omitted, since we are talking about
the current timepoint.

Answer: the agent’s location at timepoint <time> (or the current timepoint)

Examples:
Where was the robot located at time 5?
Where was the human located at time 12?
Where is the robot located at? (current timepoint)
Where was boxA located at time 1?

Section 5.2.6. Epistemic Question types for polars

An epistemic question is a question that does not ask directly about something in the world, but
about something a certain agent (observer) sees or believes (at a certain time point). They
consist of two parts: an epistemic and a non-epistemic part. The epistemic part specifies who
the observing agent is, while the non-epistemic part is a non-epistemic question, which is what
we are asking the observer about.

Currently, our system supports two levels of epistemic questions: 1 and 2. 1st order epistemic
questions are about asking a single observer about what it believes or sees. 2nd order epistemic
questions are about asking an observer about what another agent (actuator) believes or sees.
These are also called “nested” epistemic questions, since we are asking someone about
someone else. It is possible in future revisions of this project to add support for greater levels of
epistemic nesting, given the degree of flexibility our question model offers.

All the aforementioned question types can become epistemic, if the question starts with
statements, as the ones below, maybe with some rephrasing. The answer remains the same.
Below we present two intents for level 1 and level 2 epistemic, which can apply to all of the
above PFQ and PEQ queries. Keep in mind that EpF refers to questions about fluents (PFQs)
and EpE refers to questions about events (PEQs)

EpFLv1.

Does [the] <observing agent> believe that/According to [the] <observing agent>
PFQxxx

Some trained examples (non case sensitive):
● Does the agent believe that the human is located at angle 90? (PFQ1) ● Does the robot
believe that the laptop was ontopof the table at time 0? (PFQ2) ● Αccording to agent is the
pen leftof the laptop as seen from angle 0 at time 0? (PFQ2)

23

● Does the robot believe that the pen was occluded by the table to the human at time 2?
(PFQ3)

● According to the robot is boxa behindof boxb as seen from angle 0? (PFQ2) ●
According to raspie, is the laptop occluded by boxb to the human? (PFQ3)

EpFLv2.

According to [the] <observing agent>, does [the] <acting agent> believe that
PFQxxx

EpELv1 and EpELv2

EpELv[1,2] are defined the same way as EpFLv[1,2], but since we are asking about events, the
agents don’t believe, but notice. That is, EpELv1 will be “Did [the] <agent> notice that <PEQ>”
and EpELv2 will be “Did [the] <observing agent> notice that [the] <acting agent> <PEQ>”.

Section 5.2.7. Epistemic when questions

“When” questions can also become epistemic. The rules for this are the same as with any other
type of question. Below we have some examples of such epistemic questions from our domain:

WNEpEQ1.
According to the <observer/arg1>,
<WNEQ1>

Answer: a timepoint or a set of timepoints.

Examples:
According to the robot, when did the human change her position towards angle 90?
According to the human, when did the robot change its position towards 180?
According to the robot, when did the robot change its position?

WNEpFQ1.
According to the <observer/arg1>,
<WNFQ2>

Answer: a timepoint or a set of timepoints.

Examples:
According to the human, when was the robot located at angle 90?
According to the robot, when was the human located at 90?

24

Section 5.2.8. “What if” questions

“What if” questions (which always start with the WHATIF prefix) constitute an important type of
question that most systems fall short in handling, as they require retrospective reasoning. These
questions ask “what would happen if…” types of hypotheses, where the user wonders what
would happen to the world if something happened or held (at a certain time point) in the world.
An example of such a question would be “What if the fans turned off?”.

These questions are also unique in the way they are answered. In any other kind of question,
epistemic or not, the controller searches the set of Event Calculus predicates that the user
currently sees in order to procure an answer. In the case of “what if” however, the user is asking
about a “hypothetical” state of the world - which is not directly available to the controller. In order
to generate this world state, the controller has to generate an EC predicate corresponding to the
event or fluent the user asks, append it to a temporary initial state, and then run the reasoner in
order to generate EC predicates for this hypothetical world. It’s within those predicates that the
controller will look for the proper answer to the user’s question. Below we have an
(implemented) example of such a “what if” question:

WHATIF1
What if <agent/arg1>
Moves <obj1/arg2>
<position/arg3>
<obj2/arg4>
[at time <time>]?

Answer:
The chatbot should run the reasoner and generate predicates for the event that the object is
moved towards the designated position at the designated time (if no time supplied, assume
current time). Those predicates are the result that the user should receive. If the question is
invalid, it returns an error message instead.

Section 5.3. Definition of a new question type (with an example)

In all of the above paragraphs, we saw different examples of question types that our system can
handle. But what if an operator desires to implement their own question types in order to match
their needs? In this section, we will present a methodology for developing new question types
suitable for any kind of use of our architecture.

Before we declare our new question type, there are some key points that we must keep in our
mind:

● What will be the type of the question we want to implement? Will it be a polar question?
A “when”? A “where”? An epistemic version of the above? Or a “what if”? The above

25

decision will be the cornerstone of our question type, as we essentially define its context.
● Will our question be about an event (something that happens instantly) or a fluent

(something that “holds” between two time points)? This is the second integral part of our
decisions, since we define what kind of objective the question is about.

● What entities will we involve in our question? To be more specific, what entity is our
question about? All questions are about something, and this something is obviously
something that cannot be left out of our thinking. This also involves any possible
keywords that define these entities, as well as the fact that we may have more than one
of a certain entity in the question.

● How shall the system respond to such a question? Not all questions have a “yes/no”
answer, and not all accept the same type of answer. Every question has a different type
of answer, and that’s something we have to account for when defining new question
types.

● Is it possible to omit entities from our question? If yes, what entities can be optionally
omitted?

Once we have thought of all of the above, it’s time to realize what we have in mind. We begin by
defining some examples of our desired question. Suppose that we have a question whenever
something is open. Let’s see some examples of such questions:

Is the door open?
Is the window open?
Is the bag open?
Is the drawer open?
Is the water tap open?

We then go through the examples and try to form a general “boilerplate” for this question type.
As we can clearly see, all of the above examples have this boilerplate: Is the X open?, where X
is an object that can “open”. This X is an entity, so we need its entity name. Let’s say this name
is <openable>. Thus, our boilerplate becomes Is the <openable> open?.

Then, we have to define an appropriate answer for our question. This answer must be what the
user expects to hear from our system. If, for instance, the user asks about when something
happened, the answer should be a time point (or a set thereof), not a “yes” or “no”. This answer
should also offer as much information as possible to the user, so as to satisfy any possible
information need. In our example above, since we are asking whenever something is open or
not, the answer to this question should be either a “yes” or a “no”.

Finally, we have to decide on an identifier for our question type. This will also serve as the
question’s intent during the training phase later on. This identifier should fully define our
question. It should start with a prefix that defines its type: this being either a “P” (polar), “WN”
(when), “WR” (where), “Ep” (epistemic) or “WHATIF” (what if). This will be followed by either “E”
or “F”, which defines whenever our question is about an event or a fluent respectively. And
finally, the code ends with the “Qx” suffix, where “Qx” stands for “Question X”, where X is a
number unique to this question type identifier. If the question type is epistemic, we may want to
use LVx instead of Qx as a suffix, where LVx stands for “Level X” (see the definition of
epistemic questions above for more information). Keep in mind that the above process is not

26

always the norm; we have seen question types such as WnEpELvX or WHATIF that do not
conform with it - this norm will work with most common question types. In general, we want our
identifier to define these key integral parts about our question: the exact type, whenever it’s
about an event or fluent and an unique number or if it’s an epistemic, it’s level of nesting. In our
example above, which is a polar question about an event, let’s give it the identifier PEQ7.

And now that we have all needed information, let’s present a formal definition of our question
question type:

Polar question PEQ7: Is the <openable> open?
Answer: “Yes” or “No”
Examples:
Is the door open?
Is the window open?
Is the bag open?
Is the drawer open?
Is the water tap open?

As we can see, defining new question types is a pretty straightforward thinking process, which
allows for great flexibility in terms of defining question variations. Question types, along with
entity definitions define the chatbot’s domain, which is the context on which it will operate.
Although here we presented our domain in the examples, a client that will use our architecture
will find it rather easy to define their own domain in order to suit their particular needs. Defining
the domain is only the first part of setting up the chatbot; the other most important part of the
setup process is training. That is, we have the theory - let’s now jump to practice.

Section 5.4. Training a new (polar) question

As we stated above, training a new question comes in two parts: in the first one, the question
must be trained in the chatbot (wit.ai), and in the second, its Event Calculus predicate (and
some other information) have to be defined in the controller’s parameter file. Let’s begin by
showing how can we train a new question in wit.ai

Section 5.4.1. Wit.ai training

The first and most integral part of training a new question is to train the chatbot to recognize it. If
we do not do this, the chatbot will not recognize the new question at all. Our “chatbot” here is
wit.ai, and we have to train the question there.

First, we go to http://wit.ai and log in with our Facebook account. Once we do this, we see what
apps we have already created:

27

In our case, our app is socola_finaldemo. We click it, and then click on “Understanding” in the
left-hand pane. We will be greeted by this training interface:

Here, we can enter a new question that complies to the controlled language specified above,
define its intent, entities and traits and then hit the “Train and validate” button. Let’s input a
sample question: Did the human change her position towards 180 at time 10? (Remember that

28

in this example, training is done in our test domain; in an actual application, the domain may be
different):

Once we do this, we need to specify the intent, the entities and the trait of the question. We click
on the intent menu and choose the question’s intent, which is its PEQ or PFQ code (epistemics
use an epistemic code such as an EpELv - we will see that later). Here, we choose PEQ1. If the
intent isn’t in the list, we create it (“Create Intent” button).

Then, we have to specify the question’s entities, according to the controlled language. In this
question, we have the following: an agent (human), an angle (180) and a time point (10). If we
mark one of these, we shall get a drop-down menu with entity types. If the desired entity type is
not in the list, we create it. Here, we have “agent” for “human”, “angle” for “180” and “time” for
“10”:

29

That’s all we need entity-wise. Now, for the trait. Clicking the “Add trait” option will present us
with just another drop-down menu. We select the trait with the same name as the question’s
intent (if there is no such trait, we create it). Then, we will have to assign a value to that trait.
Clicking on the area beneath “Value” will give us a list of possible trait values. We select “true”
(if it doesn’t exist, we create it). This trait will be used by the controller to determine the type of
the question after it has received its processed version from wit.ai.

30

Once everything is set, we hit the “Train and Validate” button, and our utterance will be entered
in a training quota, to which more utterances can be added.

In order for wit.ai to understand our utterance better, one instance is not enough. We have to
train lots of variations of this utterance, each time with the same intent, entities (it is possible to
skip some, depending on the question’s nature) and traits. The entities, however (as well as
some parts in the question’s structure) will have to have different values per variation. Let’s see
some variations of our example utterance:

Did the human change her position towards 180?
Did the human change her position at time 10?
Did the robot change its position towards 90 at time 1?
Did the human change her position towards 270?
Did the human change her position towards 0 at time 3?
Did the robot change its position towards 90 at time 23?
Did the robot change its position towards 0?
Did the robot change its position towards 270 at time 15?
Did the robot change its position at time 0?
Did the human change her position at time 5?

We train as many variations as possible, so as to make wit.ai understand our question, no
matter how we specify it. This way, if the controller receives our question and an entity value is
missing (for example, some variations above do not have a value for the angle), the controller
will put a “wildcard” on the user question’s missing values and match it with whatever matches
with the other entity values, therefore, giving the user more general answers to their question.

If we train enough variations, in the end, wit.ai will be able to recognize our question’s intent,
entities and traits at once. In our example, after we have trained enough variations, this is what
we will get if we enter the question in the “Understanding” tab:

31

We see now how wit.ai has instantly recognized our question, with the correct entities, intent
and traits. Now, if the controller sends “Did the human change her position towards 180 at time
10?” to wit.ai, the platform will return a JSON to the controller, specifying the questions intent,
entities and traits accurately. Now that we have successfully trained our question in wit.ai, let’s see
how we can get the controller to recognize it.

Section 5.4.2. Controller training

Training the controller to recognize a new question type is not a hard job either. All we have to do is
to specify the question’s intent and Event Calculus predicate in the controller’s parameter file, along
with some other information, for example, what kind of answer it returns. First things first, let’s take a
look at the controller’s parameter file (socolaParameters.py):

32

Let’s see it line-by-line. On top, we have a maxStep value for starting up the system. This is a
deprecated value we don’t need, however, we keep it there for testing purposes (we give the
maxStep when running the reasoner on the initial state from the command line). Then, we have a set
of domain symbols. These symbols match with wit.ai entity names, and are domain-specific. And
below, we have exactly what we need: a JSON object defining all question intents. As we can see,
each intent has a number of properties, and these are:

“Type”: The exact type of the question. Currently, our system supports these types:
● WHATIF: Questions asking “what if <some event occurrence>”. These questions are the only

ones that make use of the reasoner in order to find proper answers by appending their
predicate in a copy of the initial state and then running the reasoner in order to get a new set
of predicates, from which they find the appropriate ones that answer them.

● POLAR: Polar questions, like the one we trained above. These questions have either a PFQ
or PEQ code and the answer is either a “Yes” or a “No”.

● WHERE: Questions asking “where was”. These are rather domain-specific for certain
domains. The answer to this kind of question is (almost) always a positional argument, such
as an angle or a position in the world in general.

● WHEN: Questions asking “when something happened”. The answer is (almost) always a
time point or a set of time points.

● PRESP: Another kind of domain-specific question that asks how an object is seen from a
certain angle. This type of question is specific to our domain, although it can be also used in
similar domains.

“predType”: The kind of event our predicate refers to. It can be either a “fluent” or an “event”.
“Predicate”: An Event Calculus predicate that corresponds to what the controller has to look up in the
predicate list (it has received from the GUI) in order to answer our question.

33

“Ans”: What kind of answer (entity type) will the controller return to the user if it finds matching
predicates. A value of “NA” indicates that the question returns no discrete answer (for example,
WHATIF questions). A value of “YN” indicates a “Yes/No” type of answer.
“Whatiftype”: What kind of event happens on a certain what if question. It can either be “happens”
(will an event happen if) or “holds” (will a fluent hold if).
“currTime”: If no time point is specified in the question, do we refer to the current time (the latest time
point)? If no (or if not defined), return matching answers regardless of time point.

Now that we know exactly what to define in the parameter file, let’s put an entry for our newly-trained
question. First of all, it’s a polar question, so its type is “POLAR”. Also, it’s an event. Its predicate, if
we mind the predicate list, is changesPos(agent,angle). In our domain notation, it should be
chagesPos(A,An). As an answer, according to the controlled language, it returns a time point or a
set of time points, so its answer is “T”. And, if we don’t specify a time point, we want to return
answers for all possible time points, therefore, we don’t need to specify the “currTime” property (as
well as the “whatIfType” property, since it’s not a WHATIF question). Thus, it all boils down to this:

"PEQ1":{"type":"POLAR","predType":"event","predicate":"changesPos(A,An)","ans":"T"}

And we append it to the “intents” JSON as such:

And this concludes the second part of the training process, where we define the newly-trained
question in the controller’s parameter file. Now, our controller will be able to handle such questions
appropriately, without the need to modify a single line of code in the controller’s executable file.

34

Section 5.4.3. Training epistemic questions

Training an epistemic question is the same as training a non-epistemic one. The difference here is
that we are not asking a question about the world, but we are asking a question on an individual
agent’s knowledge. As we have noted above, an epistemic question consists of an epistemic part
(e.g Did the agent notice…) and a non-epistemic part (an already-trained polar, WHEN or WHERE
question).

Let’s say that we have this question: Did the robot notice that the human changed her position
towards 90 at time 3? This is a level 1 epistemic question, with robot being the observing agent. We
input this to wit.ai as above, and we specify entities, intents and traits:

Compared to the non-epistemic question, there are many differences here. First of all, we need to
use an intent that expresses a level 1 epistemic question about an event (the non-epistemic part is a
PEQ1, which is an event). According to the controlled language, that should be EpELv1. Also, in
addition to the non-epistemic question’s agent (human), we now have another agent, the robot.
Since we are asking a question on a certain agent’s knowledge, we will have to designate that agent
as an observer. Thus, we click on the robot’s role and select “observer”. We also designate the
human as an actuator, since it does something. Level 2 epistemic questions are about asking an
agent about what another agent believes, in which case, the first two agents are both observers. As
for entities other than the agents and the trait, it’s all the same as with the original non-epistemic
question.

When it comes to the controller part, since we have already trained the non-epistemic part of the
question, no changes are needed to the controller’s parameter file. If so, how will our controller know

35

that it has received an epistemic version of our question?

The answer lies in the controller’s programming itself. When it receives a processed question, it
checks the intent to determine whenever it’s an epistemic. It does so by looking for the “Ep” prefix in
the intent’s text. If it finds it, it treats the question as an epistemic. As for the level, it checks
whenever in addition to the “Ep” prefix it also contains a “1” or a “2”, upon which it treats it as a level
1 or a level 2 epistemic question respectively. It then encloses the respective non-epistemic
question’s predicate in an epistemic wrapper, which it determines whenever the question is about an
observation (notices) or a belief (believes). For instance, for an event question with predicate
pred(X,Y,Z), if it receives a level 1 epistemic, it should look for this:

happens(notices(observer1,pred(X,Y,Z)),timepoint).

If it’s a level 2:

happens(notices(observer1,notices(observer2,pred(X,Y,Z))),timepoint).

If it’s a fluent, it just replaces happens with holdsAt and notices with believes. This way, our
controller can easily adapt the non-epistemic predicate to an epistemic one and answer epistemic
questions with accuracy and validity.

Section 5.5. Information flow during runtime

Now, let's see how the information flows from component to component when the user asks a
question. We will describe the exact paths the information takes from the initial stages, from when
the user asks the question until the final answer is delivered to the user.

First, the user asks their question in the GUI. When the user clicks the "Send" button, the raw
question is first sent to the controller (along with the current state of the world in Event Calculus,
which is kept in the controller's memory), which then forwards it to the chatbot (wit.ai). The chatbot
then proceeds to analyze the question and identify its intent, entities and traits. Once this is done, it
responds to the controller with a JSON object that contains all of the above information.

The controller then proceeds to use this information to generate an Event Calculus predicate that
corresponds to what the user is asking for. It then searches all world predicates and finds the ones
that match with this one. If it finds any, it compiles an answer, with the exact information the user
asked for (e.g a time point or an angle). If there are no matches, then the answer is a "No results
found" message. In any case, the controller sends the answer to the GUI, which then shows it to the
user.

The above procedure is the standard procedure for all kinds of questions, non-epistemic and
epistemic alike. In the case however of WHATIF questions, things are a lot more different. Here, we
want to answer a question in a hypothetical world where what the user asks for happens at a certain
time. To create this hypothetical world, we need to modify the initial state by adding the user's

36

desired event or fluent in Event Calculus notation and then running the reasoner in order to create
predicates that describe the state of this hypothetical world.

In this case, the controller calls clingo in order to perform reasoning operations (after adding the
user's desired Event Calculus predicate in the initial state) in order to generate the hypothetical world
that will be after the user's event happens. Clingo performs its reasoning operations and returns a
set of Event Calculus predicates to the controller, which then looks inside it for the answer to the
user's question. The answer will be found the same way like other types of questions, albeit the
predicates searched will be those of the hypothetical world. The answer will be then delivered in the
same manner as with other questions.

Section 5.6. The architecture in action: running example

Now we’ll take a look at the information flow during runtime step-by-step and part-by-part. First,
the user enters the question in the GUI and hits the “Send” button.

The controller then receives the natural language question and forwards it to wit.ai for
processing. Wit.ai receives the natural language question and marks its intent, entities and
traits. Suppose the user gave what we trained above. If it’s trained correctly, this is what the
JSON wit.ai will send to the controller look like:

{“intent”:”PEQ0”,”entities”:{“agent”:[“A”],”object”:[“B”,”C”],”spatialRel”:[“onTopOf”]},”traits”:
[“PEQ0”]}

Now, the controller knows exactly what the user asked for, so it opens the parameter file and
gets the entry for “PEQ0” - seen above. It now has the following knowledge about the user’s
request: it’s a polar question, asking about an event, corresponding to predicate move(A,O,R,O)
and with the entities and traits described above. Also, it should check the latest timepoint for
possible answers. Thus, the controller proceeds to find the latest timepoint in the environment,
as well as replace arguments in the EC predicate with the user-given values. It must then form
the EC predicate it must look for (or at least, whatever matches it the best). Since it’s an event
question, and an event happens, it should enclose it in a happens(, thus, the controller will have
to look for happens(move(A,B,onTopOf,C),T), where T is the latest timepoint. The above
process can be summarized in the following diagram:

In step 1, the user gives the question in a natural language, conforming to a Controlled
Language rule. Step 2 is where wit.ai recognizes the question and processes it. In step 3, it
sends a JSON with the processed question to the controller and in step 4 the controller forms
the query it must look for.

37

Once the controller has the EC predicate ready - and has received the environment’s EC
predicates along with the user’s question in step 1 - it proceeds to look for anything that may
match with the “user-provided” EC predicate. If it finds anything that matches, it checks for what
the answer requires. If it requires a timepoint, it records the match’s timepoint. If it asks for
something else - e.g an angle - it checks the matching predicate for the value of what the
answer calls for and records it. Once it finishes searching for matches, it prepares an answer on
what it found and if. This answer is sent to the GUI, and the user reads it.

Note that in this case, we did not use the reasoner. The reasoner is used only if the user’s
question requires reasoning to be done, such as if the user asks what would happen if someone
changed something at a certain timepoint. In this case, the EC predicate from the user’s
question is added to the initial state, the reasoner is run on it and the ensuing search - and
answer formation - is done on what the reasoner returns, not what the controller received from
the GUI. The answer is sent to the GUI regardless.

Section 5.7. Summing up

In this section, we took a total look at our system and described in detail how one can train new
question types for use with our system, along with a detailed example of how a question is
processed. As we saw, the training process is pretty much straightforward and requires no changes
to the controller’s (or any other component’s) code, since the controller can modify predicates to
match certain question types by itself, thus saving user time when it comes to training the system to
recognize new questions. This degree of flexibility also enables one to train huge volumes of
questions in a short time, resulting in powerful chatbots with a panoply of capabilities. We can now
see how our pipeline exploits flexibility and ease of use to create state-of-the-art chatbot systems,
capable of any task that requires human-computer dialogue.

38

And thanks to our system’s modular nature, there are opportunities for a vast number of
improvements in future revisions, allowing us to add and remove new components at will,
without the fear of breaking everything. If something malfunctions, it’s pretty easy to isolate the
defect and debug it. This adds an additional degree of security, making debugging and
maintenance an easy task.

39

Chapter 6. Scenarios and Use Cases

We will now present a number of usage cases that all pertain to a common scenario: one where
the user asks a repertoire of questions about the world and the agents. We assume that the
user is familiar to some extent with the domain that the chatbot can explain, meaning that the
questions will contain references that the chatbot can correlate with the predicates of the
underlying logic-based axiomatization; yet, we do not require the user to know exactly the
names or the signature of these predicates. Proper training of the chatbot is a key factor of any
chatbot system, as it both enables end users to express themselves in a free style, while also
helps the system recognize more accurately the query’s intentions. These use cases
demonstrate the chatbot’s abilities to their maximum extent, testing both epistemic and non-
epistemic question answering capabilities, as well as the ability to form scenarios based on user
input (“What if?” questions).

Section 6.1. Case 1: Typical non-epistemic questions

In this first scenario, we ask for information regarding the placement of an object, and how other
agents perceive it. Suppose that the object in question is boxA. The questions we are going to
ask here will demonstrate how each question receives a proper answer. We may ask some of
the following questions:

Polar questions
-Is boxA leftOf boxB as seen from 180 at time 3?
-Is boxA leftOf boxB as seen from 180?
-Did the robot place boxA left of boxB at time 0?
-Did the robot pick up boxA at time 1?
-Did the human change her position at time 1?
-Did the robot pick up boxA at time 2?
-Did the human place boxA on top of boxB at time 2?

Where questions
-Where is the human located?
-Where is the robot located?

Counterfactual questions (occlusions)
-Is boxA occluded by boxB to the human?
-Is boxA occluded by boxB to the robot?

What if questions
-What if the human moves boxA behind of boxB?
-What if the robot moves boxA left of boxB?

40

-What if the human moves boxA on top of boxB at time 2?
-What if the human moves boxA left of boxB at time 1?

When questions
-When did the human change her position towards 0?
-When was the human located at 90?
-When was the human located at 180?
-When was the robot located at 0?

Notice that, in the aforementioned questions, regardless of their type, the user may ask either
about an event occurrence or about the state of a fluent; it is the chatbot’s responsibility to
understand what the user is looking for.

Let’s begin with the polar questions. We fire up the GUI and run the reasoner in order to load up
the predicates describing our world after a given narrative of actions has taken place. In these
running examples, we have run the reasoner with max time point 10. After that, we run the
chatbot’s controller and proceed to ask the questions. Let’s start with this: Is boxA leftOf boxB
as seen from 180 at time 3?

As we can see, our system locates the appropriate predicate (we manually marked it in the
“Actual World” field) and returns an answer which tells us at what time point was boxA left of
boxB. If it couldn’t find such a predicate, it would return a “No results found!” message. If it could
find more than one of the predicates that matches with the question, the answer would include
multiple time points. We will see this in action later on.

41

We then ask the same question without specifying a time point, that is: Is boxA leftOf boxB as
seen from 180?. Technically, this should return any timepoint where boxA is left of boxB as
seen from angle 180:

And, as we can see, the system returns all time points where boxA is left of boxB as seen from
angle 180. Never mind about the error above, connection issues…

Now we are going to ask two questions about the robot: when it placed boxA left of boxB at time
0 and when it picked up boxA at time 1:

42

As we can see, our system is capable of handling this type of questions as well. So far, so good.
Now, let’s ask whenever the human changed her position at a certain time point: Did the human
change her position at time 1? As we can see, there is no such predicate that describes such an
event in the “Actual World” field, therefore, we are expecting nothing to be found. Let’s see:

43

Just as we expected it, no predicate, no results. Asking “Did the robot pick up boxA at time 2?”
and “Did the human place boxA on top of boxB at time 2?” should yield the same answer as
well:

And that’s all in this case with the simple polar questions. Now, let’s check out the “where”
questions. We are going to ask wherever the human and the robot are currently (that is, the
latest time point) located, therefore, the questions are pretty much obvious:

44

Now, two counterfactual questions: we are going to ask whenever boxA is currently occluded by
boxB from the human’s or the robot’s point of view, that is “Is boxA occluded by boxB to the
human/robot?”. Let’s check this out:

We expected “No” in both cases. BoxA is indeed occluded by boxB, but this is as seen from
angle 90. As we saw earlier, the robot is located at angle 0 and the human at 180 - that is,

45

neither is located at 90. Were one of these agents located at 90, one of the answers (or both, if
both agents were at 90) would be a “Yes”.

And then we have “when” questions, where we expect a time point (or a set of time points) as
an answer. We’re first going to ask when did the human move to angle 0 (don’t mind that I
asked this question three times, just testing). Since no such event happened, we should get no
results:

Then we ask when was the human at angle 90, when was the human at angle 180 and when
was the robot at angle 0. If we check the facts, the human never was at 90, therefore, we should
get no results here. However, the human was at 180 at all time points, and ditto for the robot
who was at 0. Therefore, the latter two should return all time points as an answer.

46

And, as we can clearly see, the “when” questions work well, too.

Finally, let’s check out “what if” questions. As we mentioned earlier, these questions append a
predicate corresponding to “what would happen if…” to the initial state and then run the
reasoner in order to create an “imaginary” world where the desired event has happened. In our
implementation, “what if” questions ask whenever there will be occlusions between objects if an

47

agent placed them adjacent in some spatial position (behind of, left of, etc.). Let’s begin by
wondering: what would happen if the human moved boxA behind of boxB at the current time
point? Thus: What if the human moves boxA behind of boxB?

So, there will be no occlusions if the human moves boxA behind of boxB at the latest timepoint.
What if the robot moves boxA left of boxB?

48

Still, no occlusions. OK. And what if the human moves boxA on top of boxB at time 2 and boxA
left of boxB at time 1?

No occlusions as well. If there were any occlusions, the system would obviously let us know
about them. The “what if” questions seem to be handled by our system appropriately, so they’re
good as well.

And this concludes the first usage case of our system, where we showcase its basic question
answering abilities with sets of simple questions. In the next cases, we’re going to test it on
epistemic questions - both levels 1 and 2 - as well as how the system handles dynamic usage
scenarios (where the reasoner updates the states in regular intervals, unlike other cases, where
the state is static - that is, the initial state and just that).

Section 6.2. Case 2: Level 1 epistemic questions

Here, we are going to ask the agents on what they noticed and what they believe about the
world. We are repeating exactly the same process as with Case 1, only this time we are asking
other agents what they notice and believe, not the actual world.

-Did the robot notice that the robot changed her position at time 1?
-Did the human notice that the robot picked up boxA at time 2?
-Does the robot believe that the human was located at 180 at time 3?

49

-Does the robot believe that the human is located at 90? //Prepei na dw to currtime sta
parameters
-Does the robot believe that boxB was behindOf boxA as seen from 90 at time 3?
-Does the human believe that boxB was left of boxA as seen from 180 at time 3?
-Did the robot notice that the human changed her position towards 180?

Let’s start with the first question: is the raspie aware that it changed its position at a given time
point (here, 1)? Let’s ask away and find out:

As we can see, the raspie knows that it changed its position at time 1 (there is a respective
predicate in the “Robot’s Beliefs” area), so the chatbot returns the appropriate answer. Good
enough. Now, let’s try something else. Does the raspie believe that the human was at angle 180
at time 3? Oh yes, it does, since we have a predicate for this.

50

But, what about angle 90? Was the human there at some time? Nope.

Now, let’s ask the robot its opinion on the placement of boxes A and B. If the robot was at angle
90 at time 3, how would the placement of the two boxes look like to it? Simple enough…

51

So, the raspie believes box B would be left of box A as seen from angle 90. Does the human
believe the same as seen from angle 180? Yes, and we have a predicate for that.

And finally, one last question to the robot: did it notice, at any time, that the human changed her
position towards 180? There is no such predicate in the robot’s “mind”, so the answer we should
get would be a “no”. And a “no” it is.

52

And so, this usage case showcases how easily P-Chat can handle (relatively simple) level 1
epistemic questions - that is, what does one observer observes or believes. The ability of P-
Chat to answer level 1 epistemic questions can be further expanded in the following case,
where it answers level 2 epistemic questions - that is, questions that ask an observer what they
notice/believe about another observer about what that other observer notices or believes about
the world. When we have examined that next scenario as well, we may consider P-Chat ready
for action in a dynamic usage case - where the world and the agents’ beliefs and observations
change over time.

Section 6.3. Case 3: Level 2 epistemic questions

Here, we are going to ask agents questions about what other agents believe/notice. It's exactly
the same as Case 2, only this time, we are asking an agent on what it notices/believes about
another agent.

-Did the robot notice that the human noticed that the robot changed its position at time 1?
-Does the robot believe that the human believes that the robot was located at 180?
-Does the robot believe that the human believes that the robot was located at 90 at time 5?
-Did the robot notice that the human noticed that the robot changed its position towards 0 at
time 3?
-Does the robot believe that the human believes that the robot was located at 180 at time 2?

53

Alright, let’s get started. The robot changed its position at time 1. Did it notice that the human
noticed that? Let’s see…

The robot was also at angle 180 at time point 2. Does it believe that the human believes that the
robot was at 180 at time 2? Yes, it does.

54

Ditto for time point 5, where it was at angle 90…

Now, the user may think that the robot changed its position towards angle 0 at time point 3. If
this did happen, did the robot notice that the human noticed that change?

No. This means that the robot did not change its position towards 0 at time point 3. Had it done
so, the human would have noticed it, and so the robot would have noticed it as well. But since

55

nobody noticed anything, nothing happened (like in the real world). And finally, we learned
earlier that the robot was at angle 180 at time point 2. Was it really that way? The answer is yes.

So, we can now see how our system can handle level 2 epistemic questions as well, in addition
to level 1 ones. The only limitation here is that the only subdomain that such questions are
applicable is the one that concerns the robot’s thoughts about the human. However, given the
flexible nature of the GUI (and the system’s implementation in general), it’s possible that other
combinations may be included in future revisions of the project as well. The matter, however, is
that our system can handle both epistemic question levels easily, so, let’s sum up everything in
a final combined and dynamic usage scenario…

Section 6.4. Case 4: A small, dynamic scenario

In this scenario, we are going to make some observations about the world and the agents.
Then, we will run the reasoner with a new event entry. After this, we will repeat the
observations, after this new event has happened. What we want to do here is demonstrate how
the reasoner works in an actual usage scenario, that is, how we can trust it in order to answer
different kinds of user questions.

We initially have maxstep=10.

-Where is the human located?
-Is boxA occluded to the human as seen from 180?

56

-Where is the robot located?
-Does the robot believe that the human believes that the robot was located at 180 at time 2?
-Is boxA occluded to the robot as seen from 0?
-Did the human place boxA behind of boxB?
-Does the robot believe that boxB is behind of boxA as seen from 90?
-What if the human moves boxA behind of boxB?

Now, we add an event where the human changes her position towards 0 at time 5 and run the
reasoner with maxstep=15. Then, we ask our questions again.

-Where is the human located?
-Is boxA occluded to the human as seen from 180?
-Where is the robot located?
-Is boxA occluded to the robot as seen from 0?
-Did the robot pick up boxA at time 1? //Mhpws na to balw nia pianei ola ta timepoints?
-Does the robot believe that boxB was behind of boxA as seen from 90 at time 4?
-Did the robot notice that the human changed her position at time 5?
-Does the robot believe that the human believes that the robot changed its position towards 180
at time 1?

Let’s get this case running. We start at max timepoint=10 and we first ask a simple question:
where is the human located right now?

Now that we know the human’s angle, let’s ask another one: is boxA occluded to the human?

57

Given that at time point 10 there is no occludedBy(for angle 180 (the human’s angle), the
answer should be a “No”.

So far, so good. Now we need to learn the location of the robot...

58

...and ask it whenever it believes that the human believes that the robot was located at angle
180 at time 2.

Again, a question about occlusions. Now we are asking whenever boxA is occluded to the robot
as seen from angle 0. It should be not.

59

And yet another polar. Did the human place boxA behind of boxB. No predicates, answer is
“No”.

60

Yet another epistemic question on item positioning: does the robot believe that boxB is behind
of boxA as seen from 90 at the current moment? Yes, it does.

And a hypothesis: What if the human moves boxA behind of boxB at the current time point?

61

Now, we do as promised in the initial case description. We add a new predicate in the initial
state and run the reasoner again so as to simulate a dynamic change in the world state. The
predicate we add is: happens(changesPos(human,0),5), which means that the human changes
her position towards angle 0 at time point 5. We run the reasoner again, this time with max
timepoint = 15. We repeat some of the questions before:

62

63

Now for something different: did the robot pick up boxA at time 1? It definitely did.

Yet another question on item positions...

64

...and an epistemic question on whenever the robot notice that the human changed her position
at time 5. Oddly enough, it returns a “no”. Given that the human did indeed change her position
at time 5, as per our modification to the initial state, shouldn’t it say “Yes”, which means, should
there be the appropriate “notices” predicate in the “Robot’s Beliefs” area?

It does however believe that the human believes that the robot changed its position towards 180

65

at time 1. “Notices” should be a more convincing keyword...

To sum up, we can now see how our system handles dynamic usage scenarios, where the state
of the world and the agents’ minds changes over time. This, in fact, is closer to a real-world
setting, where the state could change anytime. Sufficient to say, this demonstrates how
efficiently can our architecture handle real-world usage cases that develop over time, without
any hassle.

66

Chapter 7. Implementation

Section 7.1. Some words about the implementation

We have seen the architectural design of our system and how it works. Now, it’s time to get
deeper inside each component and examine how exactly it works. Our project is modular, which
means that each component uses different technologies and procedures in order to accomplish
its individual goal. To this end, we need to know how exactly each of these components
accomplishes its functionality, so as to have a greater picture of the whole system as a pipeline
– because this is what it essentially is. This examination also enables us to sugggest changes
and tweaks in the components, so as to expand their functionality and solve bugs wherever they
appear. Thus, examining the components is crucial, since it enables a developer to better
understand the system in detail and modify it according to their needs.

Section 7.2. The controller

We shall start from the controller, which is the "heart" of the entire architecture. The controller
has the following “duty”: It receives processed data from wit.ai, forms Event Calculus queries
based on them, performs reasoning if needed, records results and returns them to the user, if it
finds any. The "heart" of the controller is a dispatcher function that calls appropriate handling
functions based on what kind of user question it received from wit.ai. In pseudocode, it looks
something like this:

function dispatcher(userData):
 if (userData.type = POLAR):
 handlePolar(userData)
 else if (userData.type = WHATIF):
 handleWhatif(userData)
 else if (userData.type = WHEN):
 handleWhen(userData)
 …

As we can see, the dispatcher calls different functions based on the type of the user question.
Each of these functions handles the user question in a different manner. What all of them have
in common is that they implement the same predicate functionality: they form an Event Calculus
predicate based on the question's intent and entities, search for what matches with it (as closely
as possible) among all EC predicates (either existing ones or reasoned), record everything that
matches and then return the matched predicates as results to the user. The controller is fully
implemented in Python, and thus, can run in any system that can support the Python language.
In our experimental setup, it ran on a Windows 10 system running the Anaconda Python
environment. The code for the controller can be found in https://gitlab.isl.ics.forth.gr/socola/p-

67

https://gitlab.isl.ics.forth.gr/socola/p-chat

chat (registration with ISL ICS-FORTH GitLab required)

Section 7.3. The chatbot: Wit.ai[LN1]

The second most important component of our architecture is the chatbot itself. The chatbot
takes the user’s Natural Language query and marks its intent, as well as any entities found
within it. Essentially, it provides a more “objectized” version of the user’s query to the code that
calls it. In our implementation, we use Wit.ai as our chatbot. Wit.ai, an open source chatbot
project, was developed by Meta (formerly Facebook) as a platform for user-assisted Natural
Language recognition. Apps developed using this platform utilize supervised machine learning
in order to “learn” new intents, entities and utterances that suit each app’s purpose. It supports
both text and speech recognition, opening the door for a vast variety of chatbot applications and
implementations.

Apart from its rather intuitive learning interface, Wit.ai also supplies APIs to app developers in
order to call its functionality from within their code. While it has support for the traditional HTTP
API (called through standard HTTP requests), it also provides client APIs for Node.js, Ruby and
Python, a client API for iOS apps and many more APIs for a variety of languages and clients.
Apart from sending NL questions and receiving processed answers (mostly in the form of JSON
objects), the APIs also allow one to import or export app data from Wit.ai, enabling easier
backup and restore procedures in the event something goes south.

Those degrees of flexibility and adaptivity were the main reasons we chose wit.ai for our
system. At first, we considered other similar-function platforms, such as Deeppavlov[LN2] and
RASA[LN3], however, it was wit.ai’s intuitiveness that won us over in the end. It may not be as
advanced as other platforms, but its ease of use and expressiveness can open doors to very
powerful chatbot apps, for any kind of purpose, and whenever input is text or voice.

Section 7.4. The Graphical User Interface[LN4]

Now let’s move on to the GUI, which was implemented earlier than the controller. It’s built with
Node.js, with the addition of Express, a Node.js framework that assists in quick server creation.
Under the hood, it utilizes the Websockets API, which implements real-time functionality by
allowing the unilateral exchange of small data chunks over a persistent connection. The
Websockets API is built-in into browsers, but the server requires a backend app in order to
utilize it for communications.

The GUI also utilizes a controller, which assists in communication between the GUI and every
other component in the architecture. The controller is a simple message routing server, that
receives JSON messages from all components,forwards them to the appropriate channel, and
responds with ack messages. It is implemented in Python3. It communicates with all
components with the use of ZeroMQ2[LN5], a high performance universal mes-saging library that

68

https://gitlab.isl.ics.forth.gr/socola/p-chat

supports common messaging patterns like Publisher/Subscriber(PUB/SUB),
Re-quest/Reply(REQ/REP), Pipeline and others, over a variety of transports and keeps the
code modular and easy to scale. The Controller communicates with each component over a
distinct connection, using the TCP message transport, and a dedicated message pattern for
each component that best suits the conversation’s purpose. All of the messages between the
components are in the form of JSON messages.

Section 7.5. Clingo - the system’s reasoner5]

Clingo is an ASP processor that, as described in above sections, merges the grounding and
solving processes into one. One of its strong points is that it offers APIs for every common
programming language that utilizes ASP, those being C, C++, Lua and Python (the latter of
which is the main language that is used throughout our project). All APIs offer the same
functionality, and offer control over the three principal processes clingo performs: parsing,
grounding and solving.

69

Chapter 8. Conclusions

In this paper, we saw an intuitive chatbot architecture proposal capable of modular expansion,
with enhanced abilities such as the ability to ask epistemic questions, as well as reason new
situations using data of already known ones. We saw in detail what our system is made out of
and how every component in the architecture connects with each other and interacts with them,
as well as how exactly each component is implemented. That is, what technologies are used in
its implementation, how exactly it works on an algorithmic level, as well as specifications for a
real-world application of our system. While the results of testing our work are rather informative
and satisfactory, they only concern an in-depth application of our system. A third-party that may
use our architecture will likely implement it in another context, which means that while it will
work for their purpose, the results may be a little bit different than the ones showcased in this
paper.

As we have stated many times before, our architecture’s modular architecture makes it easy to
test or modify individual components, as well as add new ones or remove existing ones. In this
manner, we can discuss many ways in which our architecture may be improved in the future. An
example would be a filter between the controller and wit.ai, which removes non-question-
specific words from the user’s input, making it easier for wit.ai to properly recognize entities and
intents.

Another future improvement may be the introduction of new reasoner rule sets in order to
provide more accurate reasoning when needed. It would also be a good idea to split the
controller into multiple modules (programs), controlled by a central dispatcher program, for the
sake of simplicity (e.g one module will be handling non-epistemic questions, another will be
handling epistemic questions, another will be handling the negotiations with wit.ai, and so on).
Also, while wit.ai is pretty much versatile, it may not be the best-of-the-best choices for natural
language processing, which means that we may either replace it with something else, or add
another NLP platform in the pipeline so that we may get more precise and better NL recognition.
We may also choose to extend Event Calculus by adding new event and fluent types, such as
whenever an agent is unsure of a situation or whenever it accepts a change in the environment
or not.

The list of improvements can, in fact, go on forever, given our proposal’s endless possibilities.
The bottom line, however, is that we have proposed a chatbot architecture that is inherently
powerful, expansible, and easy to maintain and modify. While these traits may not make it the-
best-out-there, they definitely add to it a huge degree of flexibility, which is definitely a plus on
such chatbot architectures. This flexibility enables it to be improved and upgraded easily,
allowing for a vast choice of improvements and customizations - possibly more than any other
chatbot architecture can allow.

70

Chapter 9. References

[1] Das, Abhishek, et al. "Visual dialog." Proceedings of the IEEE conference on computer
vision and pattern recognition. 2017.

[2] Kowalski, R., Sergot, M. A logic-based calculus of events. New Gener Comput 4, 67–95
(1986). https://doi.org/10.1007/BF03037383

[3] Gouidis F., Vassiliades A., Basina N. and Patkos T. (2022). Towards a Formal Framework
for Social Robots with Theory of Mind. In Proceedings of the 14th International Conference on
Agents and Artificial Intelligence - Volume 3: ICAART, ISBN 978-989-758-547-0, pages 689-
696. DOI: 10.5220/0010893300003116

[4] Vladimir, Lifschitz. "What is answer set programming." AAAI. Vol. 8. 2008.

[5] Gebser, Martin, et al. "Multi-shot ASP solving with clingo." Theory and Practice of Logic
Programming 19.1 (2019): 27-82.

[6] Tamosiunaite M, Aein MJ, Braun JM, et al. Cut & recombine: reuse of robot action
components based on simple language instructions. The International Journal of Robotics
Research. 2019;38(10-11):1179-1207. doi:10.1177/0278364919865594

[7] Hatori, Jun, et al. "Interactively picking real-world objects with unconstrained spoken
language instructions." 2018 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2018.

[8] Zhang, Shiqi, and Peter Stone. "CORPP: Commonsense reasoning and probabilistic
planning, as applied to dialog with a mobile robot." Proceedings of the AAAI Conference on
Artificial Intelligence. Vol. 29. No. 1. 2015.

[9] He, Xuehai, et al. "Pathvqa: 30000+ questions for medical visual question answering." arXiv
preprint arXiv:2003.10286 (2020).

71

Chapter 10. Online Resources

[LN1] https://wit.ai/

[LN2] https://deeppavlov.ai/

[LN3] https://rasa.com

[LN4] https://www.dropbox.com/s/6hklgnc11hot0er/D7.4_Demos.pdf?dl=0

[LN5] https://zeromq.org/

[LN6] https://en.wikipedia.org/wiki/Turing_test

72

https://deeppavlov.ai/
https://zeromq.org/

