
ComDEX : A Context-aware Federated

Platform for IoT-enhanced Communities

Nikolaos Papadakis

Thesis submitted in partial fulfillment of the requirements for the

Masters’ of Science degree in Computer Science and Engineering

University of Crete
School of Sciences and Engineering
Computer Science Department

Voutes University Campus, 700 13 Heraklion, Crete, Greece

Thesis Advisor: Assoc. Prof. K. Magoutis

Thesis Supervisor: Assoc. Prof. G. Bouloukakis

This work has been performed at the University of Crete, School of Sciences and Engineering,
Computer Science Department.

The work has been supported by the Foundation for Research and Technology - Hellas
(FORTH), Institute of Computer Science (ICS).

This work has been partially supported by the Greek Research Technology Development and
Innovation Action “RESEARCH - CREATE - INNOVATE”, Operational Programme on Com-
petitiveness, Entrepreneurship and Innovation (EΠAνEK) 2014–2020 through the SmartCityBus
project (T2EΔK-02848).

UNVERSITY OF CRETE

CoMPUTER SCIENCE DEPARTME e 1
ComDEX: A Context-aware Federated Platform for loT-enhanced

Communities
Thesis submitted by

Nikolaos PapadakiS

in partial fulfillment of the requirements for the

Masters' of Science degree in Computer Science

THESIS APPROVAL

Author lhk
Nikolaos Papadakis

Committee approvals:
Kostas Magoutis
Associate Professor, Thesis Advisor

Gogoe
Georgios Bouloukakis

Associate Professor, Thesis Supervisor, Committee Member

DIMITRIOS Digitally signed by DIMITRIOS

PLEXOUSAKIS

PLEXOUSAKIS Date: 2022.09.26 14:03:42 +03'00"

Dimitrios Piexousakis
Professor, Committee Member

Departmental approval:
Polyvios Pratikakis
Associate Professor, Director of Graduate Studies

Heraklion, September 2022

ComDEX : A Context-aware Federated Platform for
IoT-enhanced Communities

Abstract

This thesis presents ComDEX, a context-aware federated architecture and IoT
platform for enabling data exchange between IoT-enhanced communities. Today,
smart communities are highly heterogeneous and siloed as they can offer IoT ap-
plications and services only to their local community inhabitants. Though some
aspects of the creation of an ideal context-aware IoT platform for smart commu-
nities can be covered by existing technologies, a solution in a federation of brokers
that fully addresses the needs of a smart IoT community, as well as the solutions
proposed for individual smart spaces, has not yet been properly defined. ComDEX
relies on property graphs to represent smart community entities that include high-
level context-based information (occupancy of rooms, etc.) and are automatically
mapped to context-aware publish/subscribe messages. Such messages can be dis-
covered and exchanged between communities via a hierarchical federated topology
and an advertisement-based mechanism. The ComDEX prototype is implemented
using well-known IoT technologies such as MQTT and NGSI-LD. In order to in-
clude existing smart buildings for future experiments, an NGSI-LD smart data
model for smart spaces and devices was created to include missing entities like
rooms and to properly create their relationships. Τo enable the quick generation
of realistic NGSI-LD compatible building data, we built a parsing tool that con-
verts IFC-standardized building information to our extended NGSI-LD entities.
Finally, ComDEX is evaluated using a realistic smart port scenario and compared
against different federation topologies. The experimental results demonstrate that
the approach presented in this thesis outperforms existing HTTP-based solutions
in IoT scenarios with synthetically generated workloads, with low impact in larger
deployments where the number of hops between brokers in the federation increases.

ComDEX : Μια Κατανεμημένη Πλατφόρμα με
Επίγνωση Συμφραζομένων για Κοινότητες που

χρησιμοποιούν το Διαδίκτυο των Πραγμάτων.

Περίληψη

Καθώς οι έξυπνες κοινότητες IoT στις σύγχρονες πόλεις ωριμάζουν, αυξάνεται και
η πολυπλοκότητα τους και οι απαιτήσεις τους. Η διατήρηση σημαντικών πτυχών των

¨έξυπνων χώρων’ όπως η προστασία της ιδιωτικότητας των δεδομένων που ανταλ-

λάσσονται, η διαλειτουργικότητα, η υψηλή διαθεσιμότητα των συστημάτων καθώς και

ο εντοπισμός δεδομένων συμφραζομένων (context) σε μια συνεργασία από έξυπνες
κοινότητες, αποτελεί πρόκληση. Σήμερα, τέτοιες έξυπνες κοινότητες είναι ιδιαίτερα

ετερογενείς και απομονωμένες, και προσφέρουν τις υπηρεσίες και εφαρμογές τους

μόνο στα τμήματα της τοπικής κοινότητας τα οποία αποκλειστικά εξυπηρετούν. Πλατ-

φόρμες διαδικτύου των πραγμάτων με επίγνωση συμφραζομένων (context awareness)
υποστηρίζονται σε κάποιο βαθμό από υπάρχουσες τεχνολογίες, ωστόσο μια λύση

ομοσπονδίας “μεσιτών” δεδομένων που να καλύπτει τις όλες τις προαναφερθείσες α-
παιτήσεις σε μεγαλύτερη κλίμακα είναι ακόμα υπό διερεύνηση. Σε αυτή τη διατριβή

παρουσιάζουμε το ComDEX , μια αρχιτεκτονική και ΙοΤ πλατφόρμα. ομοσπονδίας
με επίγνωση συμφραζομένων που παρέχει την δυνατότητα ανταλλαγής πληροφορίας

μεταξύ έξυπνων κοινοτήτων. Αρχικά δημιουργήσαμε ένα NGSI-LD μοντέλο δεδο-
μένων για έξυπνους χώρους και συσκευές ΙοΤ σε συνδυασμό με έναν αναλυτή που

μετατρέπει πληροφορία κτιρίων από το διαδεδομένο σχήμα IFC στο μοντέλο μας. Τα
δεδομένα αυτά στο ComDEX δομούνται χρησιμοποιώντας ένα σχήμα που στηρίζεται
στους γράφους ιδιοτήτων με οντότητες που περιλαμβάνουν πληροφορίες που αναπα-

ριστούν πληροφορίες υψηλού επιπέδου (π.χ πληρότητα δωματίων σε ένα κτίριο). Για

την μετατροπή των οντοτήτων αυτών σε μηνύματα με επίγνωση συμφραζομένων (con-
text) χρησιμοποιήθηκε ένα σχήμα δημοσίευσης/εγγραφής που βασίζεται σε θεματικό
διαχωρισμό των μηνυμάτων. Η ανταλλαγή δεδομένων στο ComDEX γίνεται δια-

μέσου ενός ομόσπονδου συστήματος δημοσίευσης/εγγραφής όπου τα προσφερόμενα

μηνύματα γίνονται διαθέσιμα με την χρήση τεχνικών διαφήμισης πληροφορίας. Για

την προσαρμόσιμη δρομολόγηση των μηνυμάτων εισάγεται μια υβριδική και ιεραρχική

τοπολογία ομοσπονδίας για τους μεσίτες δεδομένων. Το πρωτότυπο του ComDEX
υλοποιείται με χρήση γνωστών τεχνολογιών του διαδικτύου των πραγμάτων όπως το

MQTT και το NGSI-LD. Τέλος έγινε αξιολόγηση του ComDEX χρησιμοποιώντας
ένα ρεαλιστικό σενάριο που αναπαριστά ένα έξυπνο λιμάνι σε σύγκριση με υπάρχο-

ντες μεσίτες NGSI-LD και χρησιμοποιώντας για σύγκριση διαφορετικές τοπολογίες
ομοσπονδίας. Τα πειραματικά αποτελέσματα δείχνουν ότι η προσέγγιση που παρου-

σιάζεται σε αυτή την εργασία υπερτερεί των υφιστάμενων λύσεων HTTP σε σενάρια
IoT με συνθετικά παραγόμενο φόρτο εργασίας, με μικρό αντίκτυπο σε μεγαλύτερες
υλοποιήσεις όπου ο αριθμός των δικτυακών συνδέσεων μεταξύ των μεσαζόντων στην

ομοσπονδία αυξάνεται. Το ComDEX θα μπορούσε να θεωρηθεί η αρχή μιας αρκετά
φιλόδοξης πλατφόρμας με μια πιθανή μελλοντική δυνατότητα αυτόματης διαμόρφωσης

της με βάση τις απαιτήσεις του κάθε αποδέκτη των δεδομένων που προσφέρει.

Acknowledgements

I’d want to express my gratitude to both of my supervisors for helping me in
the conception and completion of this thesis. I’d like to express my sincere thanks
to Prof. Kostas Magoutis for initially giving me the opportunity to collaborate
with him on the scope of my thesis. I’d like to express my appreciation to Prof.
Georgios Bouloukakis for his personal guidance during my research. I’d want to
convey my gratefulness to both for their encouragement, understanding, excellent
partnership, and willingness to lend their time to mentor me. I would also like
to thank Prof. Dimitris Plexousakis for partaking in the examining committee of
this thesis. Additionally, I want to thank my junior high school and high school
teachers of information technology, especially Dimitris Antonoglou and Emilianos
Evangelinos, for inspiring me to pursue a higher education in their field. Finally,
I want to convey my sincere thanks to my parents, siblings, and friends for their
unwavering support throughout my academic career. None of this would be achiev-
able without them.

Contents

1 Introduction 1

1.1 Research Contributions . 2

1.2 Thesis Outline . 3

2 Background 5

2.1 Useful Background Information . 5

3 Overview 11

3.1 Motivating scenario . 11

3.2 The ComDEX Architecture . 12

4 NGSI-LD data models for smart communities 17

4.1 Modeling of Smart Buildings . 17

4.1.1 Modeling of Spaces . 17

4.1.2 IFC2NGSI-LD parser . 21

4.2 Modeling smart vehicles for public transportation systems 23

4.2.1 The NGSI-LD Bus model 24

4.2.2 The NGSI-LD Bus Station model 26

4.3 Modeling of Devices . 27

5 The ComDEX Formal Model 31

6 The ComDEX Federation Topology 37

7 Prototype Implementation 41

7.1 NGSI-LD as ComDEX ’s information model 42

7.2 NGSI-LD to MQTT mapping . 42

7.3 ComDEX advertisements and bridging 46

7.4 Smart transportation in the port scenario 47

7.5 ComDEX ’s resilience to failure . 48

8 Experimental Evaluation 51

8.1 Comparison with other NGSI-LD brokers 51

8.1.1 Normal-case scenario . 51

8.1.2 Worst-case scenario for our system. 53

i

8.2 Evaluating ComDEX using real traces 55

9 Related Work 61

10 Conclusions and future work 65
10.1 Conclusions . 65
10.2 Future Work . 65

Bibliography 67

ii

List of Tables

3.1 Summary of the various operations of the ComDEX architecture . 15

8.1 Configuration of experimental testbed 51
8.2 Virtual data model of generated entities (§8.1) 52

9.1 Smart-city platforms with federated designs 63

iii

List of Figures

2.1 The NGSI-LD Information Model 6

2.2 Some of the most important entities of the IFC hierachy 7

2.3 Classic federation topology variations (a.tree), (b.star), (c.line), (d.mesh) 9

3.1 Smart communities in a modern city port 11

3.2 High level view of the ComDEX Architecture 13

4.1 Relationships of building model entities. 19

4.2 Mapping of .IFC data to ngsi-ld entities. 22

4.3 IFC2NGSI-LD parser . 23

4.4 The proposed NGSI-based transport bus system data model. . . . 24

4.5 Bus areas to model their entities and attributes. 25

4.6 The proposed NGSI-LD bus station model. 26

4.7 A temperature sensor on a room wall. 27

4.8 Diagram of relationships of entities depicted in Fig. 4.7. 28

4.9 Example of smart waste bin inside a room. 29

4.10 Relationship of devices in a smart space. 30

5.1 Property graph schema for smart communities 31

5.2 Entities mapped to pub/sub messages. 33

5.3 A federation broker-based model 34

6.1 Actions in a number n of connected brokers 38

6.2 The ComDEX Topology . 39

7.1 Smart Transportation Application using ComDEX 46

7.2 Advertisement messages paths. 47

7.3 An example of a system comprised of just 3 brokers. 49

8.1 Normal-case experimental setup (§8.1.1) 53

8.2 Subscription notification latencies (§8.1.1) 54

8.3 Worst-case scenario experimental setup (§8.1.2) 55

8.4 Comparison of end-to-end delays from data publication to sub-
scriber notification . 56

8.5 Advertisement-installation times for ComDEX in 1, 3, 6-broker-
wide setups . 57

iv

8.6 A more realistic setup, using real data models simulating three
smart communities . 58

8.7 Number of messages required for the creation of 15000 entities . . 59
8.8 Advertisement installation times for different topologies and adver-

tisement granularities . 59
8.9 Success rate of messages for different topologies under heavy load

(MQTT-QoS 0) . 60

v

vi

Chapter 1

Introduction

The advent of the Internet of Things (IoT) has gradually transformed cities into
intelligent communities (residential areas, universities, smart ports, smart hos-
pitals, etc.) that have changed how people approach everyday activities. Such
smart communities offer important services such as smart governance and public
safety, environmental monitoring, smart utilities, smart transportation, to name
a few. To offer such services, it is essential to build IoT applications that lever-
age diverse IoT devices (sensors/actuators), data exchange systems, IoT protocols,
Application Programming Interfaces (APIs), data models, and interoperability/-
data processing software nodes, etc. To develop such applications, the common
practice is to leverage open-source platforms (Orion-LD, RabbitMQ, EMQ), com-
mercial IoT platforms (EvryThng, Google Cloud IoT, Azure IoT, Cisco Kinetic),
as well as visual programming tools (Node-RED, ThingsBoard, IFTTT).

While the above platforms expose APIs for enabling Web or mobile clients to
access IoT data from applications, their backend APIs are usually developed to
provide IoT data access to specific spaces (a city port, university building, etc)
and IoT devices. Therefore, IoT applications are not portable but constrained to
be used in specific smart spaces. In addition, since IoT devices belong to different
individuals/organizations, a smart community typically leverages the owners’ IoT
resources to provide applications and services to the same community inhabitants
(students, port authority, etc.). This leads to the creation of vertical and siloed
communities.

Because multiple smart communities can be deployed in wide-scale areas (e.g.,
university campus, urban port), different IoT sources deployed in multiple com-
munities can be exploited to build applications. For example, an air-quality mon-
itoring application may encompass sensors deployed in the city port, smartphone
sensors from city inhabitants, or even cameras from private security companies.
Such applications are defined as widespread IoT applications. To enable the
development of such applications, different individuals/organizations must have
access to communities’ IoT data. For example, a city port collects WiFi con-
nectivity data in a management system to infer occupancy levels and provides

1

2 CHAPTER 1. INTRODUCTION

them to its port-authority personnel via a “room finder” application. In case of an
emergency, emergency responders (ERs) would like to obtain situational awareness
information (e.g., floor plans, occupancy levels, etc.) to their dashboards. How-
ever, to receive such data, ERs dashboards must exchange data with the port’s
community and automatically discover the port situation.

Exchanging information between smart communities requires the usage of com-
mon data models, IoT protocols and APIs. This is unrealistic in today’s IoT
systems due to the lack of portable and extensible IoT applications, standard
methodologies for data exchange between communities, high-level data discovery
mechanisms, and adaptable Edge infrastructures for new applications, devices and
community changes. Additionally, community administrators must be supported
with secured and trustworthy approaches when providing access to their commu-
nity IoT data. Data sharing policies for advertising specific community information
must be designed, along with discovery and data exchange mechanisms.

Existing state-of-the-art approaches have adopted federated designs to cre-
ate smart-city platforms such as MARGOT [26], Fogflow [11], Trustyfeer [21],
ALMANAC [10], CPaaS.io [12], and WiseIoT [16]. However, these mainly provide
cross-domain communication, interoperability, and IoT resource discovery for spe-
cific communities/cities. The Space Broker [3] and the SemIoTic [35] framework
define smart space characteristics and contextual data such as spatial represen-
tation of spaces. However, both works have focused on a single smart space and
do not offer a solution for all of these important qualities in a federation of smart
communities/smart spaces.

This thesis introduces ComDEX, a context-aware federated architecture and
IoT platform for enabling data exchange between smart communities. In ComDEX,
smart community data are structured using a property graph schema [5] with enti-
ties that include high-level context-based information (occupancy of rooms, etc.).
A topic/type-based publish/subscribe subscription scheme [13] is leveraged to con-
vert entities to context-aware messages. Data exchange between communities is
enabled by relying on a federated publish/subscribe system where offered mes-
sages (smart community entities) are shared via advertisement techniques.For the
adaptable routing of messages a hybrid and hierarchical federation topology is
introduced.

1.1 Research Contributions

The main contributions of this thesis can be briefly displayed as follows:

1. The mapping of property graphs to topic/type-based subscriptions for en-
abling context-aware data exchange in smart communities via a publish/subscribe-
based advertisement-based policy.

2. A hybrid and hierarchical federation topology, as well as an algorithm for
message routing between brokers and support for the deployment of widespread

1.2. THESIS OUTLINE 3

IoT applications in smart communities.

3. The creation of NGSI-LD data models for smart spaces (buildings, trans-
portation systems) combined with a parser from IFC data entities and the
formation of NGSI-LD data models for smart devices.

4. A prototype implementation of ComDEX and its federation architecture
using state-of-the-art technologies such as NGSI-LD, MQTT and existing
message broker implementations.

5. An evaluation of the ComDEX prototype and topology using emulated data
for realistic communities in a smart port scenario.

1.2 Thesis Outline

This thesis is organized as follows:

We begin Chapter 2 by providing a background on the important concepts and
technologies that facilitate this thesis. In this chapter, we also acknowledge the
existing technologies that exist and can be used to satisfy some objectives that
have been outlined expressly for the development of the optimum context-aware
IoT platform for smart communities. We additionally, point out the limitations of
such endeavors, and explain how our work is going to differ by handling all these
highlighted limitations.

We resume in chapter 3 by presenting a scenario involving communication
between different organizations on the scope of handling of a smart port in order
to showcase the benefits of achieving cross-smart-community data exchange as a
main motivation of ComDEX. A high-level overview of the architecture of our
system is outlined, with the function of its various components explained.

In chapter 4, we continue with the representation of the data within ComDEX
and, more specifically, with the modeling of smart spaces and devices. In summary,
we present a new NGSI-LD data model for smart buildings that we accompany with
a parser from the IFC schema to our data model. Next, we present similarly made
models for smart public transportation, in particular for buses. Lastly, we present
a data model for devices, in which we separate the modeling of the device itself
from its observations, and we showcase with examples how the previous models
can be conjoined with this one to model certain aspects of a smart community.

In chapter 5 the ComDEX formal model, which consists of a property graph
based data schema linked to a publish/subscribe subscription mechanism for the
production of context-aware messages, is provided. The formal definitions of a
federated system for data exchange among smart communities are then outlined.
Then, formally presented are the actions that can be carried out in such a system.

Continuing in chapter 6 from the formal model, we present the ComDEX fed-
eration topology, whose featured architectural solution is based on propagating
advertisements of context-aware messages in the federation.

4 CHAPTER 1. INTRODUCTION

In chapter 7, having the previous 2 sections covering the system design, we
proceed with the description of an implemented prototype, which is based on
technologies such as NGSI-LD (the models we created in chapter §4) and MQTT
as the main communication protocol, using mosquitto as the underlying broker.
We explain how the prototype would work in the port example, and how the
federation can be modified to enable resilience.

In the last of the main chapters, chapter 8, we evaluate ComDEX and the
overall design approach using our prototype presented the previous chapter. Us-
ing straightforward synthetic data models of a typical NGSI-LD entity, we first
assess the performance of the ComDEX prototype with various topology sizes and
compare it to existing NGSI-LD brokers in both a best- and worst-case scenario.
On the basis of current NGSI-LD data models and actual IoT device traces, we
then assess the effects of altering the federation topology and advertisement granu-
larity using randomly created entities of smart buildings. Our findings from every
experiment confirm that our current ComDEX prototype performs well under a
variety of deployment configurations and generated workloads.

Finally, in chapter 10 this thesis is briefly concluded and related future work
is also described.

Chapter 2

Background

2.1 Useful Background Information

The following section contains a collection of useful background information re-
lated to this thesis, for the interested reader that is not well versed in the pub/sub
domain. An experienced reader can skip this chapter to go directly to section 9.
The concept of hypertext links, which allow a link on one web page to direct the
browser to loading another page from a known location, should be recognizable to
readers. While computers can comprehend relationship discoverability and how
links function, they find this to be considerably challenging and need a clear proto-
col to go from one data element to another stored in a different location. Linked
Data is such a method of connecting disparate documents and Web sites through
a network of machine-interpretable data based on industry standards. It enables
an application to start with one piece of Linked Data and then follow embedded
links to other pieces of Linked Data located on various sites throughout the Inter-
net.
JSON-LD [30] is a simple JSON syntax for serializing Linked Data. Its de-
sign makes it easy to convert existing JSON to Linked Data with little changes.
JSON-LD is primarily intended for usage in Web-based programming environ-
ments, the development of interoperable Web services, and the storing of Linked
Data in JSON-based storage engines. The enormous number of JSON parsers and
libraries available today can be reused since JSON-LD is 100 percent compatible
with JSON.
TheNGSI-LD specification [1] has been proposed by the ETSI Industry Specifica-
tion Group for CrossCutting Context Information Management (ISG CIM), which
comprises an information model with semantic characteristics connected to Linked
Data and ontologies. In short it is an API and data model for publishing, querying,
and subscribing to context data. Its purpose is to make the open exchange and
sharing of structured data amongst various parties easier. It’s utilized in Smart
Cities, Smart Industry, and Smart Agriculture, as well as the Internet of Things,
Cyber-Physical Systems, Systems of Systems, and Digital Twins more generally.

5

6 CHAPTER 2. BACKGROUND

Entities, relationships and properties are the key components of the NGSI-LD in-
formation model Fig. 2.1. A real-world item, such as a building or a person, is
represented by an entity. A relationship connects two or more entities, such as a
person who works in a building. A property connects values to elements,[4] such
as identifying that an entity corresponds to a real person. JSONLD is used to
represent NGSI-LD entities. Instead of using RDF triples, which is typically used
in Linked Data, JSON-LD tries to serialize entity data in a simple and effective
method.

Figure 2.1: The NGSI-LD Information Model

The Industry Foundation Classes (IFC) 1 is a digital standard for de-
scribing the building asset domain. It supports vendor-neutral, or agnostic, and
usable capabilities across a wide range of hardware devices, software platforms,
and interfaces for many different use cases and is an open, international standard
(ISO 16739-1:2018). It offers a comprehensive, standardized data format for the
vendor-neutral interchange of digital building models, are a crucial foundation [9].
for the development of Big Open BIM (Building Information Models)

It is a sophisticated data model Fig. 2.2 that enables object-oriented repre-
sentation of a building model’s geometry and semantic structure. The structure
is divided into its structural elements and its interior spaces, both of which are
thoroughly delineated along with how they correlate to one another.

More explicitly, the IFC schema is a standardized data model that logically
codifies numerous aspects of buildings and their parts, such as identity and se-
mantics (name, machine-readable id, object type or function), characteristics or
attributes (like material, color, and thermal properties), and relationships (in-
cluding locations, connections, and ownership) of objects (like doors,windows), as
well as abstract concepts (performance, costing) and people (owners, designers,
contractors, suppliers, etc.).

1https://www.buildingsmart.org/standards/bsi-standards/industry-foundation-classes/

2.1. USEFUL BACKGROUND INFORMATION 7

Figure 2.2: Some of the most important entities of the IFC hierachy

It may be utilized for practically any data exchange situation throughout the
life cycle of a building due to this extensive data structure. Message brokers
are commonly used to assist message collection and delivery to IoT services and
applications in real time. There are several message broker implementations that
can be used to implement such data collection brokers. Mosquitto is a lightweight
broker written in C that is mostly used for prototyping. It allows data to be ex-
changed with MQTT-based clients but does not allow for clustering. RabbitMQ
is the most extensively used Erlang-based open source message broker. It has
clustering capabilities and supports MQTT and AMQP data exchange protocols.
Apache Kafka is a centralized data pipeline with scalability, durability, and high
throughput (millions of messages). Consumers subscribe to a specific topic and
partition, while producers publish data to the topics of their choice.
Context brokers are considered to be context aware messaging middle-ware.
Context aware is when a system uses context to give relevant information and/or
services to a user, relevancy is determined by the user’s task. [2].
Pub/Sub systems [13] are systems in which subscribers can indicate their in-
terest in an event or a pattern of events using the publish/subscribe interaction
paradigm, and they will be alerted of each event generated by a publisher that
matches their registered interest. In other words, producers publish data on a
software bus (an event manager), and consumers subscribe to the data they want
to receive from that bus. The term event is commonly used to describe this infor-
mation, while notification is used to describe the act of sending it.
NGSI-LD context brokers are Pub/Sub brokers that allow for the management
and requesting context of information in a structured manner based on linked data

8 CHAPTER 2. BACKGROUND

standards following the NGSI-LD specification of the ETSI standard. However the
specification is a living, changing document (on version 1.5 as of July 2021), with
features added in a pace that is hard for the NGSI-LD implementations to keep up.
Currently there are 4 different NGSI-LD broker implementations, namely Scorpio,
Orion-LD, Djane and Stellio. Orion-LD is the only context broker which can cur-
rently service both NGSI-v2 and NGSI-LD.
Broker federations
In broker federations [14] message routes in one broker (the source broker) are
automatically routed to another broker, allowing messaging networks to be built
by constructing message routes (the destination broker). These routes can be de-
fined between two brokers’ exchanges (the source exchange and the destination
exchange), or between a queue in the source broker (the source queue) and an
exchange in the destination broker. When bidirectional flow is required, one route
in each direction is built. Routes might be long-lasting or just exist for a short
period of time. A durable route survives broker restarts, allowing it to be restored
as soon as both the source and destination brokers are available. The destination
for a route is always a destination broker exchange. Message routes are formed by
default by specifying the destination broker, which then contacts the source broker
to subscribe to the source queue. This is referred to as a pull route. A route can
also be built by specifying the source broker, which then contacts the destination
broker to send messages. This is known as a push route, and it’s especially ben-
eficial when the destination broker isn’t available at the time the messaging route
is set up, or when a large number of routes with the same destination exchange
are set up. Broker Federation can be used to establish huge communications net-
works, one route at a time, with numerous brokers. A full distributed messaging
network can be configured from a single place if network connectivity allows it.
Routing rules can be updated dynamically as servers, responsibilities, and times
of day vary, as well as to accommodate other changing conditions.

Context providers and consumers may be geographically dispersed in a real-
world deployment of a broker-based context aware system [19]. Multiple brokers
in the system split into administrative, network, geographic, contextual, or load-
based domains are preferable to reduce administration and communication over-
heads. Context providers and consumers can be set up to only communicate with
the brokers who are closest, most relevant, and most convenient to them. This
system, however, necessitates inter-broker federation so that providers and con-
sumers affiliated with different brokers can work together effortlessly.
As for the topologies,[14] federated network is typically shaped as a tree, star, or
line Fig. 2.3, with bidirectional linkages (implemented as two unidirectional links)
connecting any two brokers. If just unidirectional linkages are employed, a ring
topology is also viable. It takes time to send and receive messages (number of
”hops”). The number of brokers between the message origin and final destination
should be kept to a minimum for optimum performance. Tree or star topologies
work best in most applications. In a federated network, usually there should be
only one path from A to B for any pair of nodes A,B. Message loops can produce

2.1. USEFUL BACKGROUND INFORMATION 9

Figure 2.3: Classic federation topology variations (a.tree), (b.star), (c.line),
(d.mesh)

redundant message transmission and overload the federated network if there are
several paths. Message loops are not present in the topologies described above.
Due to the fact that a given broker can receive the same message from two sep-
arate brokers, a ring topology with bidirectional linkages or a mesh topology are
examples of a topology that does cause this problem.
This concludes the background information chapter.

10 CHAPTER 2. BACKGROUND

Chapter 3

Overview

3.1 Motivating scenario

Figure 3.1: Smart communities in a modern city port

Large city ports such as shown in Fig. 3.1 comprise a variety of different or-
ganizations (e.g., maritime authority, port authority, city authorities, etc.) and
communities that own or manage data, sensors, and applications. Modern such
ports are already evolving into smart communities [25, 29] that stand to benefit
from IoT applications, such as monitoring the occupancy of passenger stations,
monitoring air quality using environmental sensors, marine and urban traffic man-
agement applications, etc. In such a heterogeneous environment, diverse sensors
and actuators transmit data relevant to discrete data recipients. An example of

11

12 CHAPTER 3. OVERVIEW

an application relevant to a smart port is smart urban transportation. In what
follows, the benefits of achieving cross-smart-community communication in this
context will be highlighted, as a motivation for ComDEX.

For simplicity, lets assume the participation of just 3 different stakeholders in
a smart port (Fig. 3.1): the port authority (zone A○), city firefighting department
(zone B○), and Smart InterCity Bus organization (zone D○), each storing and man-
aging the IoT data they own. The smart transportation application could benefit
from information-sharing between these different stakeholders. Each of them how-
ever would only want to share the part of their data that it considers relevant.
The Intercity bus organization and port authority would benefit by exchanging
information (such as real-time vehicle and ship positions); the firefighting depart-
ment may at times want to request information, such as the current occupancy
of the passenger station in case there is a fire emergency, but not necessarily pro-
vide any to others. The connection topology between the various brokers should
be one that helps in maintaining this. Information exchange would require data
format standards to ensure interoperability and data discovery of dynamic smart
transportation properties. Lastly, there ought to be ways to handle data and
applications differently according to specific context information or data critical-
ity. Considering the wealth of diverse static and dynamic contextual information
available across smart communities, a key goal is to allow multiple IoT-enhanced
communities/stakeholders to collaborate by exchanging information across their
(currently siloed) IoT systems efficiently and in a QoS-aware manner, while pre-
serving data sovereignty.

The main motivation for this work is to design a federated IoT platform ar-
chitecture for smart communities that addresses this goal, building upon state-of-
the-art technologies. Section 7.5 of chapter 7 provides details on how the proposed
architecture, ComDEX, achieves these objectives in a smart port deployment. As
a result, ComDEX was born.

3.2 The ComDEX Architecture

Here a high-level overview of the architecture of ComDEX, a context-aware feder-
ated platform for IoT-enhanced Communities, is provided. The ComDEX proto-
type implementation is provided as an open-source platform at https://github.
com/SAMSGBLab/\textit{ComDEX}--ngsi2mqtt. The high-level architecture of
ComDEX (see Fig. 3.2) consists of multiple components that are directly corre-
lated with the port example in §3.1. The architecture presented here, facilitates
the data exchange between IoT devices and IoT applications in smart communities
based on three major components: i) The Federation Topology component, which
handles the connection between various brokers; ii) the knowledge base component,
which corresponds to the information model of ComDEX ; and iii) the Action Han-
dler component, along with its sub-components, which interacts with clients for
various data exchange operations.

3.2. THE COMDEX ARCHITECTURE 13

Figure 3.2: High level view of the ComDEX Architecture

ComDEX works with a federation of brokers, a group of autonomous bro-
kers that collaborate to conduct data discovery operations. To connect and co-
operate, brokers must follow a predefined topology. ComDEX proposes a hier-
archical based hybrid topology for the system architecture. This topology is
comprised of a collection of hierarchical/tree sub-topologies belonging to different
data stakeholders, connected to each other at appropriate hierarchical levels based
on either smart domain separation, geographical areas, or both. This topology is
presented in detail in chapter 6.

The knowledge base is made up of schema files that specify the concepts/-
data models that make up ComDEX ’s information model, which is in turn based
on property graphs. As a starting point, new data models can be developed by
extending existing ones, although certain values may be redundant while other
needed elements may be lacking. To produce proper digital twins specific to the
scenario being modeled, the base models will need to be adjusted. Another thing
the knowledge base offers is information about the current broker topology that
can be used by new brokers that wish to join the system and for any potential
modification. There is also an optional mapping of brokers to extra metadata,

14 CHAPTER 3. OVERVIEW

which is useful for grouping brokers based on virtual or geographical areas. For
example, in Fig. 6.2 brokers B1,B2,B3 belong to the same community, and thus
this metadata can be something like B1,B2,B3 belong to the smart port authority
organization.

The Action Handler provides an API for the various clients (producers/con-
sumers) to conduct diverse ”Actions”. ”Action” can be defined as any operation
inside the architecture that is necessary for the exchange of information between
clients and the brokers. It offers high-level functions like data context discovery,
both synchronous and asynchronous. It is responsible for executing commands and
managing data flows using various sub-components, such as the message routing
component (handles the different data flows), the provider lookup compo-
nent (enables the discovery of remote data providers when requesting data), and
the policy manager, which could affect the provider lookup and message routing
components by taking into account certain policies, such as a change in the network
or an emergency scenario. Although defined in the ComDEX architecture, deter-
mining how to approach the handling of different QoS requirements of applications
in different scenarios (e.g. emergencies) in the general case is out of context for this
thesis and part of future work. Other actions include the publish-data action,
which is performed using the message routing component. Each time a content
producer creates data at an edge broker, the data is stored locally at the edge,
and in the hierarchical network of brokers, a provider-registration operation
is also performed to showcase what data are available at which broker. Finally the
request/subscribe-to-data action is performed using the provider lookup
and message routing components. The provider lookup action is used to find
where in the topology is the information required by the client, in order to route
the client command to the appropriate broker for data exchange.

3.2. THE COMDEX ARCHITECTURE 15

Action Components Description

Choose Action Action Handler Main
Chooses which operation to execute
and components to use according to
client input.

Publish Data Message Routing

Each time a content producer creates
data at an edge broker the data is
stored locally at the edge and in the
hierarchical network of brokers, a
provider registration operation is
also performed.

Provider Registration Message Routing

Stores and showcases which data
information is available at which
broker. These provider registrations
can also be propagated to brokers
of the topology in accordance with
a federation contract.

Provider Lookup Provider Lookup
Used by clients to find where in
the topology is which data.

Request/Subscriber to Data
(synchronous/asynchronous)

Provider Lookup
Message Routing

Use provider lookup to find where
in the topology is the information
requested by the client, to route the
client command to the appropriate
broker to get the information
requested.

Table 3.1: Summary of the various operations of the ComDEX architecture

16 CHAPTER 3. OVERVIEW

Chapter 4

NGSI-LD data models for
smart communities

4.1 Modeling of Smart Buildings

We found the NGSI-LD information model to be fitting to our initial ComDEX
architecture design (see previous section 3.2). When we first started looking into
NGSI-LD as a technology, one of the first things we did was look at the data mod-
els available from the NGSI-LD community, specifically the Smart Data Models
project 1. While there are many ”official” data models provided by the NGSI-LD
community as openly available information, a lot of them are still in an incubation
stage and lack important elements. One such example was the data models re-
lated to the modelling of buildings. While buildings have been properly defined in
great detail as entities with a generic model that can cover different building types,
from farms to office buildings, the various sub-structural elements of a building
have not been considered as a proper entity yet. The only entity that has been
contemplated as of the time this thesis was written is the floor entity, which is still
in an incubation stage. Since we wanted to have information that corresponded
to smart buildings, we needed to extend this data model to include everything
we considered missing and meet our needs. Obviously, not every building in a
community will be ”smart,” and not every room will have devices, so the elements
of a building must be modeled regardless of the presence or absence of sensors/ac-
tuators. Thus, we consider separating the modeling of smart buildings into the
modeling of the structures and spaces and the modeling of the devices (sensors
and actuators) present in a smart building.

4.1.1 Modeling of Spaces

The first thing is what entities we want to be able to represent with our data
model. It is surely important to have a separation of the various main components

1https://smartdatamodels.org/

17

18 CHAPTER 4. NGSI-LD DATA MODELS FOR SMART COMMUNITIES

of a building to allow for easier querying of different entity types. While pondering
what information one should have about the buildings, there are a few clear-cut
distinct elements we want to be able to depict:

• The building as a whole.

• The surrounding community where the building is located.

• The floors.

• The zones.

• The rooms and their sub-elements (doors, windows, and stairs).

The digital depiction of those entities in our data model needs to contain
various relationships between the different entities. These relationships should
allow for easy querying of important distinct information. For example, let’s say
that we have a floor entity type and a building entity type. If only the relationship
”Building has Floors” exists, having a floor with only its id and searching for what
building that room belongs to would require searching all the buildings present
in a broker and doing a content check of the ”Building has floors” relationship in
order to find it. By establishing bidirectional relationships wherever logical and
possible, such as ”Floor is in Building,” one can avoid unnecessary processing. The
relationships of the previously identified smart building structural components can
be seen in Fig. 4.1

Let us now see the various entities of our model in greater detail, from the
broadest in scope to the smallest. First we examine the community that a build-
ing is located. We have been talking about the idea of a platform for smart
communities since the beginning of our work, so it makes sense that we start with
this division. The ability to categorize buildings in different communities for pre-
sentation and a more distinct division of the different structures makes it vital to
have as well. A real smart community would have many more buildings than the
one we have in the ”HasBuildings” relationship in the example of listing 4.1. Also
take note that obviously the GPS position features do not match reality because
the listings presented in this section deliberately do not much real information.

1 "id": "urn:ngsi -ld:Community:Test:SmartCitiesdomain:SmartBuildings:

ExampleCommunity",

2 "type": "Community",

3 "HasBuildings": ["urn:ngsi -ld:Building:Test:SmartCitiesdomain:

SmartBuildings :3 isw_NcDz2ghLEYGeHmBHm"]

4 "location": {

5 "coordinates": [

6 [

7 [25.0750599,35.3070706],[25.0704902,35.3069743],[25.0705004,35.3

041812],[25.0753909,35.3044001],[25.0750476,35.3070881],[25.

0750599,35.3070706]

8]

9],

10 "type": "Polygon"

4.1. MODELING OF SMART BUILDINGS 19

Figure 4.1: Relationships of building model entities.

11 }

12 },

13 "name": "Test Building Community Area"

14 ...

Listing 4.1: Community example

Then we have the building entity which as the name suggests is the general in-
formation about the entirety of a building. This model is pretty much derived from
the building data model 2 of the smart-data-models project, with the main exten-
sions by us being the addition of the relationships with the various entities listed
before (InCommunity,HasRooms,HasZones,HasFloors). A simplified example of a
building with our NGSI-LD data model can be seen in listing .4.2

1 "id": "urn:ngsi -ld:Building:Test:SmartCitiesdomain:SmartBuildings :3

isw_NcDz2ghLEYGeHmBHm",

2 "type": "Building",

3 "name": "Default Building",

4 "category": ["civic"],

5 "dataProvider": "ICS_Forth",

6 "description": "A fake office building",

7 "floorsAboveGround": 3,

8 "floorsBelowGround": 1,

2https://github.com/smart-data-models/dataModel.Building/tree/master/Building

20 CHAPTER 4. NGSI-LD DATA MODELS FOR SMART COMMUNITIES

9 "InCommunity": ["urn:ngsi -ld:Community:Test:SmartCitiesdomain:

SmartBuildings:ExampleCommunity"],

10 "HasFloors": ["urn:ngsi -ld:Floor:Test:SmartCitiesdomain:SmartBuildings :38

vC2rMpPDpQ1cy52XqxrF" ,...],

11 "HasZones": ["urn:ngsi -ld:Zone:Test:SmartCitiesdomain:SmartBuildings :0

aJ7egOIn66uiXCDk6uTq7" ,...],

12 "HasRooms": ["urn:ngsi -ld:Room:Test:SmartCitiesdomain:SmartBuildings :1

OKccvw796O94cljFtqofp" ,...]

13 ...

Listing 4.2: Building example

Next we have floors and zones, which like the community entity, are brand new
entities not present in the smart data models repository. Floor, as the name
reflects, is the entity that models each floor of a building. Its main relationships
include the building the floor is contained in and the rooms the floor encompasses.
Zones are areas within a floor or across multiple floors that belong in the same
category. There are multiple zoning techniques. Normally, a house (a smart home)
is not divided into zones, but because we are discussing smart buildings in general,
an office building, for example, could have many zones, each of which could possibly
correspond to offices of the same lab group, and so on. As with the floor entity, the
zone entity has a relationship that points to what building it is in and a relationship
that shows what rooms are included in each zone.

The most intriguing of the bunch is the room entity . Rooms are the smallest
depiction of spaces in a building, therefore having information about every room
in a building means having practically most of its information—all but high-level
metadata. We also regard hallways as rooms, and consider that rooms can be
found in different zones. There can be a geometrical depiction of the shape of each
component of a building entity. Since many buildings have a 3D representation,
we permit rooms to have an attribute called ”relative position” that covers both
the 3D and 2D depiction of a room.We refer to it as such because each point in
the geometry corresponds to a point relative to the coordinates of its surroundings
rather than a GPS coordinate (in this case, relative to the building). The room
has relationships with its sub-elements (doors,stairs,windows) and with the floor
and zone(s) it belongs to. There is no need to have a relationship directly with
the building it belongs to, as the 1-1 relationship ”onFloor” also leads to a 1-1
relationship ”WithinBuilding”. In Listing . 4.3 we can see an example of a specific
room.

1
2 "id": "urn:ngsi -ld:Room:Test:SmartCitiesdomain:SmartBuildings :1

OKccvw796O94cljFtqofp",

3 "type": "Room",

4 "name": "K-3",

5 "onFloor": "urn:ngsi -ld:Floor:Test:SmartCitiesdomain:SmartBuildings :38

vC2rMpPDpQ1cy52XqxrF",

6 "inZone": ["urn:ngsi -ld:Zone:Test:SmartCitiesdomain:SmartBuildings :0

aJ7egOIn66uiXCDk6uTq7"],

7 "relativePosition": {

8 "type": "Trimesh",

9 "measurementUnit": "m",

10 "Dimensions": "3D",

4.1. MODELING OF SMART BUILDINGS 21

11 "coordinates": [[0.35,9.68,-2.685],[0.35,9.68,-0.18000000000000016],[3

.575,9.68,-2.685],[3.575,9.68,-0.18000000000000016],[3.575,9.075,-

2.685],[3.575,9.075,-0.18000000000000016],[4.85,9.075,-2.685],[4.8

5,9.075,-0.18000000000000016],[4.85,6.055,-2.685],[4.85,6.055,-0.1

8000000000000016],[0.35,6.055,-2.685],[0.35,6.055,-0.1800000000000

0016]],

12 "faces": [[2,0,1],[2,1,3],[4,2,3],[4,3,5],[6,4,5],[6,5,7],[8,6,7],[8,7

,9],[10,8,9],[10,9,11],[0,10,11],[0,11,1],[4,6,8],[10,4,8],[0,2,4

],[0,4,10],[9,7,5],[9,5,11],[5,3,1],[11,5,1]]

13 } ,

14 "DoorsInRoom":["urn:ngsi -ld:Door:Test:SmartCitiesdomain:SmartBuildings :10

ELxINu1AtQJwHiDxs4mK"] ,

15 "windowsInRoom":["urn:ngsi -ld:Window:Test:SmartCitiesdomain:SmartBuildings

:1 romkx9sb2mfYEttxEHWPc"] ,

16 "numberOfDoors": 1 ,

17 "numberOfWindows": 1 ,

18 ...

Listing 4.3: Room example

Finally we have the “smallest” entities which correspond to various important
entities present in rooms, such as windows,doors and staircases. Their model
mostly consists of their geometrical representation in space (either 2D or 3D).

The Building data models presented here are publicly available at https://

github.com/SAMSGBLab/iotspaces-DataModels/tree/main/Building

4.1.2 IFC2NGSI-LD parser

Following on from the previous subsection, we now have a way to properly represent
smart buildings using NGSI-LD. But there was a small caveat in our building
modeling endeavors. Do we want to manually create data models of existing
buildings from scratch? Obviously, such a thing is very time-consuming and prone
to human errors. For this reason, we started to lookup in what data form we could
find existing buildings and what is a popular data type for buildings in general.
Thus, we ended up finding the Industry Foundation Classes (IFC) 3 (see
chapter 2) which is a digital standard for describing the building asset domain. It
supports vendor-neutral, or agnostic, and usable capabilities across a wide range
of hardware devices, software platforms, and interfaces for many different use cases
and is an open, international standard. Consequently, we decided that a solution to
quickly generating data compatible with our data models, derived from information
from existing smart buildings, was to create a parser from .IFC to our NGSI-LD
data models. Handling directly .IFC data from textual STEP physical files isn’t
easy, however, as it requires extensive knowledge of all the different entities in
the IFC schema, their relationships and their hierarchies. We decided to work
with the ifcOpenShell 4 library to process this format more easily. This is an
open source (LGPL) software library that makes it easier for users and software
developers to work with the IFC file format. The biggest advantage of using this
library is that IFC entities and relationships can be queried and retrieved by name,

3https://www.buildingsmart.org/standards/bsi-standards/industry-foundation-classes/
4http://www.ifcopenshell.org/

22 CHAPTER 4. NGSI-LD DATA MODELS FOR SMART COMMUNITIES

without requiring to search around a bunch of nested elements in the original text
file. For example, to get the windows present in an IFC file, a simple ”windows
= ifc.by type(’IfcWindows’)” function can be used. Skimming through the list
of entities present in the IFC schema, one can correspond them to the entities
present in our data model. This can be seen in Fig. 4.2 The inner workings of

Figure 4.2: Mapping of .IFC data to ngsi-ld entities.

our parser are fairly simple. Basically, we query for every different entity that
we are interested in 4.2 from the ”largest” entity ”Building” to the ”small ones”
(doors,windows,stairs), we create new NGSI-LD entities and for each relationship
between them or attribute they contain, we create a matching NGSI-LD property
(attribute or relationship) using the function that can be seen in listing 4.4

def create_ngsi_ld_attribute(Dictionary ,Key ,Value ,Attribute_type):

if(Value !=’’ and Value !=[]):

if(Attribute_type =="Relationship"):

Dictionary.update ({Key: {"type":"Relationship","object":Value }})

elif(Attribute_type =="Property"):

Dictionary.update ({Key: {"type":"Property","value":Value }})

else:

print("This␣is␣an␣error␣message")

Listing 4.4: Creation of NGSI-LD attributes from IFC attributes

Each different entity type is then ”packaged” in the same file Fig. 4.3 (e.g all
Room entities are written in a Rooms.ngsi-ld file). In hindsight, because we first
created the data models and then considered the IFC format, our data model
doesn’t contain all the information a IFC file is supposed to contain, and this

4.2. MODELING SMARTVEHICLES FOR PUBLIC TRANSPORTATION SYSTEMS23

Figure 4.3: IFC2NGSI-LD parser

leads to a loss of information from the IFC file. This means that while our parser
is capable of converting IFC to NGSI-LD files compatible with our data model, the
reverse operation would lead to a much more barebones IFC file than the original.
A one-to-one mapping from IFC to a fully compliant NGSI-LD data model can be
done in the future, but would require designing a much more complex data model
in order to include every potential piece of information such a file might contain.

4.2 Modeling smart vehicles for public transportation
systems

Smart buildings was not the only NGSI-LD data model domain we explored. Sim-
ilarly to the previous NGSI-LD models, we decided to extend what we considered
to be a very generic model for smart vehicles. While existing NGSI-LD models
provide models for vehicles, these are too generic to be used for modeling more
specific smart vehicle types, for example buses. Thus, bus transportation sys-
tem developers have to arbitrarily define properties related to buses. We extend
the NGSI-LD Transportation models by adding properties related to static and
dynamic properties of the interior bus space, as well as to the space of bus sta-
tions.Our properties enable the use of existing IoT devices that can sense and
actuate dynamic properties of bus transportation systems while having their ob-
served properties decoupled. While the relationship diagrams of the smart spaces
relevant to this section contain a glimpse of the device data model design, the
decisions concerning the modeling of devices are thoroughly explained in section
4.3. It is very important to note that system designers can follow the approach
presented in this thesis to introduce similar models for other smart vehicle types.

24 CHAPTER 4. NGSI-LD DATA MODELS FOR SMART COMMUNITIES

4.2.1 The NGSI-LD Bus model

We use the NGSI-LD Transportation data model 5 to extend the following entities:
(i) Vehicle Model : to model a particular vehicle model, including all properties
which are common to multiple vehicle instances; (ii) Vehicle: to model a specific
vehicle. Fig. 4.4 presents the extended Bus Models6 and their relationships with
other existing as well as with new entities.

Figure 4.4: The proposed NGSI-based transport bus system data model.

The Bus Vehicle Model entity includes all properties (length, width, etc.) which
are common to multiple buses belonging to the same model. The Bus entity
includes properties for a specific bus (e.g., the Citaro G Centre Bus in Roma
3). To accurately model specific areas of buses, we must take into consideration
the vehicle types used in the targeted region. In Europe, buses constructed for
urban transportation must follow strict standards [32]. In this work, we select
the Mercedes Citaro G (3 door) version since it is commonly used in EU bus
transportation systems.

As depicted in Fig. 4.5, we first define the bus extent (i.e., its spatial properties)
which corresponds to the busExtent property. To make this property flexible and
generic, each extent can be defined using diverse coordinates such as 2D, 25D and
3D (see Listing 4.5 lines [4-9]). Then, the Bus entity has relationships to entities
used to further define specific areas (hasAvailableAreas relationship) of the bus
(e.g., driver area, seating areas, doors, etc., see Listing 4.5 lines [10-12]), as well
as IoT devices placed in specific locations of the bus (e.g., WiFi, GPS, etc., see
Listing 4.5 lines [14-16]). Finally, a Bus static (capacity) and dynamic (occupancy)
attributes. Dynamic attributes can be associated with observations captured from
IoT devices (Listing 4.5 lines [18-21]).

1

2 "type": "Bus",

3 "name": "Centre Bus Roma 3",

4 "busExtent": {

5 "type": "Polygon",

6 "measurementUnit": "m",

5https://github.com/smart-data-models/dataModel.Transportation
6https://github.com/SAMSGBLab/iotspaces-DataModels/tree/main/bus-models

4.2. MODELING SMARTVEHICLES FOR PUBLIC TRANSPORTATION SYSTEMS25

Figure 4.5: Bus areas to model their entities and attributes.

7 "dimensions": "2D",

8 "coordinates":

9 [[[0,0],[18.125,0],[18.125,2.55],[0,2.55],[0,0]]] },

10 "hasAvailableAreas": [

11 "urn:ngsild:Area:id:1",

12 "urn:ngsild:Area:id:door1"],

13 "RefBusVehicle Model": [urn:ngsild:BusVehicleModel:YZX02],

14 "Devices": [

15 "urn:ngsild:device_N01","urn:ngsild:device_N02",

16 "urn:ngsild:device_N03"],

17 "capacity": "117",

18 "Observations": [

19 "urn:ngsild:observation_N01",

20 "urn:ngsild:observation_N02",

21 "urn:ngsild:observation_N03"],

22 ...

Listing 4.5: The NGSI-LD Bus Entity.

Bus Area7 entities are used to define multiple areas of the bus (driver area,
door area, etc.). As depicted in Fig. 4.5, such entities can be defined using the
relativePosition property (polygon extent for the driver area, see Listing 4.6 lines
[4-9]; or line extent for the door 3 area, see Listing 4.6 lines [13-20]). Finally,
similar to Bus entities, bus areas have dynamic attributes that can be associated
with observations (e.g., occupancy, people count, etc.) captured from IoT devices
(Listing 4.6 lines [10-11]).

1 ...

2 "type": "Bus Area",

7https://github.com/SAMSGBLab/iotspaces-DataModels/tree/main/bus-models/BusArea

26 CHAPTER 4. NGSI-LD DATA MODELS FOR SMART COMMUNITIES

3 "name": "Driver Area",

4 "relativePosition": {

5 "type": "Polygon",

6 "measurementUnit": "m",

7 "dimensions": "2D",

8 "coordinates":

9 [[[17.5,0],[18.125,0],[18.125,1],[17.5,1],[17.5,0]]] },

10 "Observations": [

11 "urn:ngsild:observation_N01"],

12 ...

13 "type": "Bus Area",

14 "name": "Door_3",

15 "relativePosition": {

16 "type": "line",

17 "measurementUnit": "m",

18 "dimensions": "2D",

19 "coordinates":

20 [[[5.5,2.55],[7,2.55]] }

21 ...

Listing 4.6: The NGSI-LD Bus Area Entity (driver example).

4.2.2 The NGSI-LD Bus Station model

Figure 4.6: The proposed NGSI-LD bus station model.

By following a similar approach as the one presented in the previous subsec-
tions, we now extend the Transport Station entity of the NGSI Transportation
data model. In a bus transportation system, this entity could represent a bus
station or a bus stop and thus, we introduce the Bus Station entity. The extent of
a bus station can be splitted to multiple areas such as bus stop, ticket booth, bus
parking, etc., using the Bus Station Area entity. Then, static and dynamic prop-
erties can be assigned to a Bus Station8 or Bus Station Area9 entities. Dynamic
properties are updated using IoT devices and their observed attributes.

8https://github.com/SAMSGBLab/iotspaces-DataModels/tree/main/bus-
models/BusStation

9https://github.com/SAMSGBLab/iotspaces-DataModels/tree/main/bus-
models/BusStationArea

4.3. MODELING OF DEVICES 27

4.3 Modeling of Devices

We cannot discuss smart spaces (smart buildings,smart vehicles) without consid-
ering what makes them smart, the various devices (sensors/actuators) that ac-
company them. The devices present in smart spaces vary in type and function [7]
and many differences can be found even between devices of the same variety. For
example, an environmental humidity sensor from two different manufacturers may
vary in physical characteristics and the technology used to send the information
(LoRaWAN,MQTT). The thing these two sensors both measure is the same. The
humidity reading is the observed attribute of these 2 devices. There is a need to
separate the physical device from the thing it measures or does. Developers will be
able to create portable apps utilizing high-level observations rather than proper-
ties of particular devices by treating an observation of a device as an independent
object. Multiple observations can also be associated with current or upcoming
IoT devices. Thus, we want in our model to have a separation between the physi-
cal device properties and its observations/actuation. For this reason, we promote
the observation/actuation attribute to a full-blown entity and create appropriate
relationships with the device it originates from and the smart space it belongs to.

To clarify what we have been saying, let us examine a specific example of a
temperature sensor in a room Fig .4.7. The physical device is obviously the device
that can be seen mounted on the wall of the room. The observation of the device is
the temperature reading, and the space it belongs to is the room entity. Obviously,

Figure 4.7: A temperature sensor on a room wall.

proper relationships need to be created between these entities. Allow us to include

28 CHAPTER 4. NGSI-LD DATA MODELS FOR SMART COMMUNITIES

a camera in this room to demonstrate how multiple device, observation, and smart
space relationships are handled Fig .4.8 .

Figure 4.8: Diagram of relationships of entities depicted in Fig. 4.7.

First we have the smart space, which in this example is the room. The room
has a relationship called Devices that shows which physical devices are present in
the room (Thermometer, Camera). The room also has the high-level observations
that are derived from the devices. These are showcased with the Observations
relationship, in this case (Temperature Reading,Occupancy). The devices have
the Inspace relationship, which points to the smart space the devices are in and,
similarly to the room, the observation relationship. Our NGSI-LD model represen-
tations of this example can be seen in listings: (.4.7, .4.8, .4.9) If one looks back
to the previous section’s figures, one can see how the relationships between smart
spaces, devices, and observations are handled similarly in smart public transporta-
tion modeling.

1 "id": "urn:ngsi -ld:thermometer:example:dw1ds245f01",

2 "type": "Thermometer",

3 "ControlledObservations": ["Temperature"],

4 "Observations": ["urn:ngsi -ld:Observation:example:obs314s12"],

5 "InSpace": "urn:ngsi -ld:Room:Test:SmartCitiesdomain:SmartBuildings :1

OKccvw796O94cljFtqofp"

6

Listing 4.7: Temperature Sensor Device

1 "id":"urn:ngsi -ld:Observation:example:obs314s12",

2 "type": "Observation",

3 "MeasurementType":" Temperature",

4 "Measurement": {"value":"34"," Unit":"’C"}

5 "description": "Measurement of the temperature of a room",

6 "Coverage": "65%",

7

Listing 4.8: Temperature Measurement of room

1 "id": "urn:ngsi -ld:Room:Test:SmartCitiesdomain:SmartBuildings :1

OKccvw796O94cljFtqofp",

2 "type": "Room",

3 "name": "K-3",

4 "onFloor": "urn:ngsi -ld:Floor:Test:SmartCitiesdomain:SmartBuildings :38

vC2rMpPDpQ1cy52XqxrF"

5 "inZone": "urn:ngsi -ld:Zone:Test:SmartCitiesdomain:SmartBuildings :0

aJ7egOIn66uiXCDk6uTq7"

4.3. MODELING OF DEVICES 29

6 "DoorsInRoom": "urn:ngsi -ld:Door:Test:SmartCitiesdomain:SmartBuildings :10

ELxINu1AtQJwHiDxs4mK"

7 "windowsInRoom": "urn:ngsi -ld:Window:Test:SmartCitiesdomain:SmartBuildings

:1 romkx9sb2mfYEttxEHWPc"

8 "numberOfDoors": 1,

9 "numberOfWindows": 1,

10 "Observations": ["urn:ngsi -ld:Observation:example:obs314s12","urn:ngsi -ld:

Observation:example:occupancy7421wwa"],

11 "Devices":["urn:ngsi -ld:thermometer:example:dw1ds245f01","urn:ngsi -ld:

camera:example:as31312d"]

12 ...

Listing 4.9: Smart Space that houses the temperature sensor

As it can be obviously deduced, there has been the decision to not have a generic
device model that covers every device but a dedicated model for each different
device. For example, having a screen size attribute might be relevant for a smart-
phone device, but for a simple motion sensor, that would be a redundant attribute.

In addition, we consider that not every device is just a sensor of sorts, some
devices could be used for actuations. For instance, there could be a panel on a
smart waste bin that lights up red when the bin is almost full Fig .4.9.

Figure 4.9: Example of smart waste bin inside a room.

Considering all the above and specifically the various relationships present in
the device data model can be summarised in the following figure Fig .4.10

In essence, the observations the device makes and any applications that utilise
these measurements won’t be impacted by altering the physical device (which will
probably lead to new device attributes). With the necessary entities for our system
being modelled there was a need to define the whole architecture formally before
continuing with utilizing these data models.

30 CHAPTER 4. NGSI-LD DATA MODELS FOR SMART COMMUNITIES

Figure 4.10: Relationship of devices in a smart space.

Chapter 5

The ComDEX Formal Model

In this chapter the formal model of ComDEX is provided, which consists of a
data schema that is mapped to a publish/subscribe subscription scheme for the
creation of context-aware messages. Then, the formal definitions of a federated
system for the data exchange between smart communities are presented. Finally,
the actions that can be performed in such a system are formally presented. In
smart communities, information can be represented via separation into entities.
To model entities in smart communities, ComDEX relies on property graphs.
Property graphs [28] are a type of graph data model that focuses on a graph
structure. In such data models, each graph consists of a collection of elements:
vertices connected by a set of directed, labeled edges. Every element has a unique
identifier and can have any number of key-value pairs called properties annotated
on it [5]. A data schema is a strong data modeling feature that enables describing
data structures and enforcing consistency. In this way, a graph schema allows
establishing the graph structure by identifying the types of nodes, edges, and their
properties.

Figure 5.1: Property graph schema for smart communities

Using property graph schema, the information of an entity, is modeled using
three aspects: entity details (static and dynamic attributes), entity type, and entity

31

32 CHAPTER 5. THE COMDEX FORMAL MODEL

relationships (see Fig. 5.1A). An entity’s ”entity type” is a word or phrase in the
information of the relevant knowledge base that indicates the entity’s category
information. Relationships between entities are known as ”entity connections”.
Let E = {ϵj : j ∈ [1..|E|]} be the set of entities where each ϵj has features
{id, type, attr}. Each ϵj ’s feature (e.g., type) is referred as ϵj .type. Let ϵj .attr =
{ϵj .attr.eai : i ∈ [1..|ϵj .attr|]} be a set of attributes with features {type, value}.
ϵj .attr.eai.type = {stprop, dnprop, rel} is denoted as the specific types of the ith
attribute that an entity ϵj can have static properties (stprop), dynamic (dnprop)
properties and/or relationships with other entities (rel). The notation of attributes
for an entity ϵj simplified and ϵj .attr.eai is referred as eai. For example, suppose
that a building entity exists, ϵn6 shown in Fig. 5.1B with information about its
occupancy (dynamic property, eai.type = dnprop), its address (static property,
eai.type = stprop) and that it is related to a room (HasRoom, eai.type = rel).

In order to continue working on ComDEX, a specific pub/sub data detec-
tion technique had to be chosen. Different approaches of defining the data of
interest have resulted in the discovery of distinct pub/sub variations [6]. The ex-
pressive power of the subscription models that have surfaced in the literature is
distinguished by their ability to precisely match subscribers’ interests, i.e. getting
just the messages that they are interested in. In topic-based pub/sub systems,
notifications are grouped in topics i.e., a context subscriber declares its interest
for a particular topic and will receive messages related to that topic. Let T =
{tj : j ∈ [1..|T|]} be the set of topics available in the system. By relying on pub/-
sub, ComDEX represents entities as stored messages that have been published to
certain topics. Let M = {mj : i ∈ [1..|T|]} be the set of ComDEX messages where
each mj has features {topic, payload}.

To enable clients performing context-aware actions (data requests and sub-
scriptions), entities representing the context of smart communities are mapped to
ComDEX messages. For this, it is essential to define a general rule as follows:

For every entity ϵj with static and dynamic properties, as well as with its
relationships, a message is created and stored using Αlgorithm 1. In this way,
ComDEX messages are now context-aware. For instance, given as input the build-
ing entity of Fig. 5.1B in Algorithm 1, messages are created as shown:

1 "message1" : {

2 "topic" : "Building/Entity_n6/HasDynamicProperty/Occupancy"

3 "payload" : "value :32" }

4 "message2" : {

5 "topic" : "Building/Entity_n6/HasStaticProperty/address"

6 "payload" : "value:Street_1" |

7 "message3" : {

8 "topic" : "Building/Entity_n6/HasRelationshipWIth/HasRoom"

9 "payload" : "id:Entity_n36"

Listing 5.1: Entities mapped to pub/sub messages

Note that topics mapped from dynamic properties aim to be updated by IoT
devices attached to the corresponding entity.

To enable the exchange of context-aware topic-based messages among smart

33

Algorithm 1 Algorithm to split of data in property graph into messages on
specific topics

1: //Input: Property Graph //Output: ComDEX Messages

2: procedure Splitting P.Graph:
3: for each node x where nodetype equals ”Entity” do
4: ϵj ← x
5: ϵj .attr.eax ← edges.of.x
6: for each ϵj .attr.eax do
7: tj ← ϵj .type+ ϵj .id+ eax.type+ eax.id
8: mj .topic← tj
9: mj .payload← eax.value

10: print(mj)
11: end for
12: end for
13: end procedure

Figure 5.2: Entities mapped to pub/sub messages.

communities, ComDEX is built based on a distributed pub/sub system where
context-related components serve as context brokers, publishers and subscribers
(see Fig. 5.3). Let P = {pi : i ∈ [1..|P|]} be the set of publishers that correspond
to IoT devices placed in smart communities publishing entities to a set of topics.
Mpi ⊆M are denoted as the set of context-aware messages (i.e., entity values) that
pi publishes to a set of topics Tpi ⊆ T (i.e., characterized by entity types). Similarly
S = {sj : j ∈ [1..|S|]} are denoted as the set of subscribers that correspond to
community occupants interested in receiving messages. They subscribe to a set
of topics, denoted by Tsj ⊆ T (including entity types, attributes and values) or
perform direct on-demand queries.

A context broker can be deployed in a smart community providing context-
aware messages. For the cooperation between brokers (i.e., communities), such
brokers can form a federation offering routing, message management, query res-
olution and service discovery. Context brokers may be geographically dispersed
in a real-world deployment. Multiple brokers split into administrative, network,

34 CHAPTER 5. THE COMDEX FORMAL MODEL

Figure 5.3: A federation broker-based model

geographic, contextual, or load-based domains are ideal to reduce administration
and communication overheads. ComDEX necessitates inter-broker federation so
that data providers and clients affiliated with various brokers can communicate
with one another. This requirement can be met using a basic message system for
data relaying implemented by an overlay network of distributed brokers.

B = {bk : k ∈ [1..|B|]} are denoted as, the set of federation brokers. A broker
forwards messages from publishers to interested subscribers or to other brokers (in
this case advertisement messages, more details below). An assumption is made,
that each publisher/subscriber connects with a single broker that it is referred
to as its home broker : bpi in case of publisher pi, bsj in case of subscriber sj .
Furthermore, the set of publishers and subscribers connected with bk is defined as
Pbk = {pi ∈ P : bk == bpi} and Sbk = {sj ∈ S : bk == bsj}. In addition the set of
Brokers connected in the federation to a bk is defined as Bbl = {bl ∈ B : bk == bbl}

In ComDEX, message routing between federated brokers is accomplished by
relying on advertisements. Let A = {aj : j ∈ [1..|A|]} be the set of advertise-
ments that are disseminated and stored in the broker federation. Advertisements
are used by subscribers to find a broker that offers context-aware messages. An
aj is basically information about a broker that has messages published (entity
types, attributes and values). Advertisements are composed from the following
features: (i) aj .addr is the broker connection information-address where the ad-
vertisement was originally generated and (ii) aj .type is the entity type it adver-
tises. An advertisement is created for each distinct entity type published in a
broker. The set of topics matching an advertisement aj is denoted as Taj ⊆ T
and the entities matching aj as Eaj ⊆ E. To make clear how many adver-
tisements a singular broker has at most, in the case that it receives advertise-
ments from every other broker (e.g., mesh topology), the following is defined,

35

|Amax| =
∑B

k=1 bk ∗ (distinct.ϵj .type : j ∈ [1..|E|]). To evaluate the efficacy of
ComDEX, the following performance metrics are defined: Let ∆gen(aj , pi, be) be
the generation time of an advertisement aj by a pi at an edge broker, be. Let
∆rec(aj , sj , bt) be the reception time of an advertisement aj by a sj a a top broker
bt. The time taking for an advertisement to be installed in the entire federation of
ComDEX is ∆ins = ∆rec(aj , sj , bt)−∆gen(aj , pi, be). The subscription notification
latency metric is defined as the time, from the creation of a Publication πj at a
broker bk until its reception by an interested subscriber sj

When ComDEX federation is setup (e.g., brokers in smart communities), com-
munity inhabitants can leverage the provided IoT devices and applications. A set
of diverse actions is used to push/pull or subscribe to receive context-aware mes-
sages in the smart community (see Fig. 6.1). To enable the registration of context
information (buildings, vehicles, etc.), community inhabitants can advertise the
entity types that they provide to their home broker. Let REG(aj) be the provider
registration action which creates an advertisement to a context broker. Then,
publication actions including the advertised information may be performed. Let
Π = {πj : j ∈ [1..|Π|]} be the set of publications with context-aware messages
related to the smart community (e.g., Buildings of the port community). Publi-
cations are assumed to be generated from real-world activity or traces of existing
IoT devices deployed in smart communities.

Now the definition of actions used from data subscribers willing to discover
entities in a smart community is presented. Let LUP (aj) be the provider lookup
action with which a context subscriber can discover what kind of data is available
and where. A subscriber performs this using the stored advertisements in its local
broker. Having discovered the community entities, a subscriber can setup a sub-
scription action which defines the required instances of entities and the validity
period of the subscription. Let Σ = {σi : i ∈ [1..|Σ|]} be the set of subscriptions.
To satisfy a subscription, each broker filters the entity type generated by the pub-
lishers based on the topics locally, and forwards the subscriptions to other com-
munity brokers that have relevant information according to the provider lookup
action. Subscriptions are usually made to entities with dynamic properties (e.g.,
the temperature of a room). To receive the messages stored in brokers and espe-
cially entities with static properties,the data request action is defined. Let D =
{di : i ∈ [1..|D|]} be the set of data requests. This is the action where a subscriber
requests data synchronously from its home broker. Similarly, to satisfy the request
the broker will also forward the inquiry to community brokers that have relevant
information according to provider lookup.

Having defined the ComDEX system model, the basic design principles and
IoT platform requirements presented in chapter 3 have been matched and thus
proceeding a working Context-aware Federated Platform can be created for IoT-
enhanced Communities.

36 CHAPTER 5. THE COMDEX FORMAL MODEL

Chapter 6

The ComDEX Federation
Topology

To design ComDEX ’s federation topology, the displayed architecture solution is
based on advertising context-aware messages in the federation.

Existing pub/sub distributed systems usually rely on naive event/message
flooding across the broker overlay. In flooding-based routing [6], each message
from the publisher is propagated to all the brokers in the system. Filtering-based
routing [6], in which subscription tables are shared across a collective of brokers,
cannot be used for this situation since it assumes a push-only based architecture.
While a publisher using the subscription tables can route its information to in-
terested subscribers, a context subscriber that wants to get the latest state of a
message stored in a remote broker, would have to subscribe and wait for a publisher
to push the message to the topic of interest. A rendezvous-based algorithm [6] is
also not suitable, since it does not handle well dynamicality over a broker-based
architecture.

In ComDEX, instead of subscribers conveying the topics they are interested
in, each broker advertises the context-aware messages it can provide. When a new
message is pushed, the ComDEX action handler creates a provider advertisement
message. Brokers forward these advertisements subject to topic restrictions to
allow broker owners to limit what advertisements are propagated and where.

Using Fig. 6.1, how the federation model operates is now described for the
following sets of brokers: (i) one broker; (ii) two brokers and; (iii) n brokers. Ebk

⊆ E are defined as the entities stored at a broker bk; Abk ⊆ A as the advertisements
stored at a broker bk; and FWD(aj , bk, bl) as the action with which a broker bk
forwards an advertisement aj to one of its connected brokers bl ∈ bbk .

For the trivial case of a single broker, consider that the local subscriber s1 of
broker b1 requests messages via a subscription on topic t1. A publisher p1 pub-
lishes j messages of various entity types in different topics, and creates appropriate
advertisements (if they do not exist) using the provider registration action. When
a message is published to a topic and it matches the subscription, it notifies the

37

38 CHAPTER 6. THE COMDEX FEDERATION TOPOLOGY

Figure 6.1: Actions in a number n of connected brokers

subscriber and sends it the match context-aware messages.

For the case of 2 brokers, consider that there is one more broker (b2) connected
to the previous broker and a context subscriber s2 which requests messages using di
on a specific topic (i.e., entity type) Ts2 . Advertisements are now propagated along
connected brokers. When the data request action is performed in b2, the broker
first checks for available messages stored locally that match the request. Then,
using the provider lookup, b2 searches for advertisements matching the messages
requested. If a matching advertisement is found, then it forwards the data request
to the relevant broker. If matching messages are found in b1, these are sent to s2.

Finally, for the case of n brokers, consider an arbitrary number of brokers
connected along with the previous ones. When a message is published to b1, its
matching advertisement is propagated along the federation of brokers. Consider
now a subscriber sm and a publisher ph connected to bn. Since the advertisements
are forwarded in one-way, from ”left to right”, clients connected to broker b1 are
not aware of the available messages in bn. Similarly, a subscriber sm becomes
aware of the messages stored at bn and the provider of messages that matches
their subscribed topic, through the stored advertisements at broker bn.

Distributed solutions are better than centralised ones in big cross-community
deployments, as they help with: flexibility, since brokers can be inserted and re-
moved on the fly; modularity, as a stakeholder modifying their broker set will
not affect the entire system; and privacy aspects of a system, since the data is
maintained in their owner’s machines. As for topology [14], federated systems are
typically shaped as a tree, star, or mesh with bidirectional linkages (implemented
as two unidirectional links) connecting any two brokers. A ring topology is also
viable if just unidirectional linkages are employed. As the number of ”hops” affects
the time to send and receive messages, in most cases for optimum performance the
number of brokers between the message origin and the final destination should be
kept to a minimum. In a mesh topology, every broker is connected to one another
via dedicated direct connections. In a star topology, all brokers are connected to

39

a single broker. The tree topology can be seen as a variation of this (multiple
star topologies) that has a hierarchical flow of data. As already mentioned in
section 3, ComDEX ’s topology is a hierarchical-based hybrid topology. Having
hierarchies when exchanging data flows is convenient as it resembles the reality of
smart communities, -e.g., a community has buildings, a building has floors, etc.
In addition, context information can be separated in a privacy-preserving man-
ner - e.g., each community chooses what data to advertise to the upper levels of
communities. The proposed topology maintains the disadvantages inherent to a
tree/hierarchical topology. As the system becomes more complex and the number
of ”hierarchical levels” increases, so does the number of hops for the traversal of
information. As levels increase, so does the complexity of handling the entire sys-
tem. If a node at one level is erroneous, nodes at higher levels could face issues
as well. Having multiple nodes in order to separate the data flows can also be
quite costly. On the other hand, a mesh topology would require that every data
provider in a community share its (possibly private) information with every other
community, which is not realistic. Lastly, as the complexity and number of brokers
increase, adding new brokers to a mesh topology becomes a complex task.

Figure 6.2: The ComDEX Topology

In Fig. 6.2 a generic example of the proposed topology can be seen, matched
with the port application example from section 3. Community A is the Smart
Port Authority Community, with a central broker b1 and two sub-brokers b2 and
b3 that cover different geographical areas in the smart port. Community B is the
InterCityBus Transit Community and the separation between brokers is by smart
domain, e.g., b5 as the smart buildings broker, b6 as the smart transportation
broker, etc. Lastly, community C is the Firefighting Community, with broker b7
its central broker. Advertisements are forwarded according to connections, e.g., b2
forwards to b1, b1 forwards to b4.

The algorithm for advertisement propagation in the federation (Alg. 2) is pretty
straightforward: Suppose there is a broker bk that has a set of directly connected
brokers bbk in the federation (e.g, b1 → b2 in Fig. 6.2). Broker bk has a process

40 CHAPTER 6. THE COMDEX FEDERATION TOPOLOGY

that runs in parallel with all its other operations, which simply waits for an ad-
vertisement aj to arrive. When an advertisement arrives at the broker, it checks
all its connections with other brokers. These connections may have restrictions:
For example, b7 could only want to exchange information about specific entity
types (e.g., smart building), not all its information. It checks if the advertise-
ment, in each connection, passes the connection’s restriction, and if it does, the
advertisement aj is propagated to the appropriate connected brokers.

Algorithm 2 Algorithm for advertisement management by broker

1: procedure Advertisement Propagation at bk:
2: while 1 do
3: aj ← wait.for.advertisement.arrival()
4: Abk ← Abk + aj
5: for each bl ∈ bbk do
6: pass← Restriction.Check(aj , bl)
7: if (pass == TRUE) then
8: FWD(aj , bk, bl)
9: end if

10: end for
11: end while
12: end procedure

The main advantage of the presented approach over a purely hierarchical one
is the ability to connect high-level brokers of different smart communities while
treating them as ”first-class citizens” (the existing hierarchy of the highest in each
community broker does not change) and avoiding creating new higher-level nodes
in the hierarchy. For example, b1, b4 and b7 (highest in hierarchy brokers in each
community) can be connected directly without necessarily having to create a new
b8 broker at a higher hierarchy level to connect them. Applications of existing
communities will discover new entities without having to connect to a new central
broker. It is important to note that if no bidirectional connections exist throughout
the topology (i.e. see community A sub-topology as the whole topology), it is no
different than the standard hierarchical topology, since that would mean that there
is a root node.

Chapter 7

Prototype Implementation

In chapter 5, ComDEX ’s model was defined as a property graph of entities that
are mapped and stored using a topic-based messaging scheme. This model was
implemented, taking as a basis the NGSI-LD specification [1], which combines
linked-data entities with property graphs and defines an API that covers most
actions required by ComDEX. MQTT was chosen as a lightweight topic-based
pub-sub message communication protocol to use in ComDEX due to its broad
deployment and acceptance in IoT applications. The ComDEX implementation
includes a lightweight NGSI-LD federated broker harnessing open-source MQTT
brokers at its core. This prototype improves upon existing heavyweight NGSI-LD
brokers. This is because the NGSI-LD specification currently favors HTTP as a
communication protocol with NGSI-LD CRUD operations naturally mapping to
HTTP verbs. This means that current NGSI-LD brokers lack end-to-end MQTT
capabilities such as QoS delivery guarantees (forcing them to use IoT-Agents for
MQTT compatibility).

To enable context-aware data exchange among smart communities, ComDEX
implements a federated architecture. The NGSI-LD specification aims to support
federated and distributed broker topologies through definitions of context sources
and context-source registrations. Context-source registrations include details on
the types of context information a context-source can provide, but not actual
values. While the context-information API operations are supported by many
existing NGSI-LD brokers, context-source registrations and discovery operations
are not yet there. Without data discovery and forwarding, federation topologies
cannot yet be supported by existing NGSI-LD implementations. What is more,
the different solutions put in place by current NGSI-LD broker implementations,
still under heavy development, could be dismissed by the NGSI-LD community
if/when an official forwarding solution is defined. As ComDEX proves however,
the implementation of federation in an NGSI-LD service naturally fits and can be
embedded into a native MQTT topic-based architecture.

The ComDEX prototype implementation is provided as an open-source plat-
form at https://github.com/SAMSGBLab/\textit{ComDEX}--ngsi2mqtt.

41

42 CHAPTER 7. PROTOTYPE IMPLEMENTATION

7.1 NGSI-LD as ComDEX ’s information model

Recall that the ComDEX information model consists of modeling entities, their
static and dynamic properties, and relationships using property graphs. The
NGSI-LD information model is a good fit for it as it also derives from property
graphs [27]: The core element is the entity (known as a node in property-graph
language), which corresponds to a real-world concept. Every entity must have
a unique identifier, which must be a URI (typically a URN), as well as a type,
likewise a URI. This URI should point to a Web-based data model. Entities are
associated with properties and relationships. To enable context awareness, each
property’s name should ideally be a well-defined URI that corresponds to a widely
used notion on the Web. This knowledge graph is well-defined and infinitely ex-
pandable. Property graphs are versatile, scalable representations that have been
widely used in the IT industry.

7.2 NGSI-LD to MQTT mapping

Moving from theory to practice in mapping from a property-graph data repre-
sentation to MQTT topic messages raised a number of design choices. From the
NGSI-LD specification, it has indeed been understood that API ”Actions” can be
mapped to the previously presented architecture. However, to ensure an efficient
implementation the granularity of various NGSI-LD API commands had to be
considered.

NGSI-LD data entities can be managed via a namespace structured hierarchi-
cally as /NGSI-LD/v1/entities/<entity-id>/attrs/<attr-id>, offering four
endpoints upon which one can apply fine-grain or coarser-grain CRUD actions
(e.g., modify an individual entity or attribute, or query all entities of a certain
type). NGSI-LD context information API operations are divided into two main
categories: provision (creating entities and modifying their attributes) and con-
sumption (querying and subscribing to entities).

All NGSI-LD entities necessarily have an id, a type, attributes that describe
the entity, and what is called ”context”, derived from JSON-LD. A context is a
URL that points to the description of the data model used/requested and is used to
expand and compact the shortnames that are part of the payload data. Requesting
entities of the short-type ”vehicle”, for example, without specifying the context in
which the vehicle entity is described will not work.

To describe the scheme for mapping NGSI-LD operations to MQTT and how
NGSI-LD data map to MQTT messages the following example from a smart-city
application reporting air-quality (entity) is used, with three attributes, the level
of NO2, the date it was observed and a reference to a point of interest:

1 NGSI -LD entity:

2 {

3 "id": "urn:NGSI -LD:AirQualityObserved:RZ:Obsv4567",

4 "type": "AirQualityObserved",

7.2. NGSI-LD TO MQTT MAPPING 43

5 "dateObserved": {

6 "type": "Property",

7 "value": {

8 "@type": "DateTime",

9 "@value": "2018 -08 -07 T12 :00:00Z"

10 }

11 },

12 "NO2": {

13 "type": "Property",

14 "value": 22,

15 "unitCode": "GP"

16 },

17 "refPointOfInterest": {

18 "type": "Relationship",

19 "object": "urn:NGSI -LD:PointOfInterest:RZ:MainSquare"

20 },

21 "@context": [

22 "https :// schema.lab.fiware.org/ld/context",

23 "https ://uri.etsi.org/NGSI -LD/v1/NGSI -LD -core -context.jsonld"

24]

25 }

26
27 ---

28 MQTT Messages:

29 "message1":

30 topic: unknown_area/entities/https%3A%2F%2Fschema.lab.fiware.org/

AirQualityObserved/urn:NGSI -LD:AirQualityObserved:RZ:Obsv4567/

dateObserved

31 payload:

32 "type": "Property", "value": {

33 "@type": "DateTime",

34 "@value": "2018 -08 -07 T12 :00:00Z" }

35
36 "message2":

37 topic: unknown_area/entities/https%3A%2F%2Fschema.lab.fiware.org/

AirQualityObserved/urn:NGSI -LD:AirQualityObserved:RZ:Obsv4567/NO2

38 payload:

39 "type": "Property",

40 "value": 22,

41 "unitCode": "GP"

42
43 "message3":

44 topic: unknown_area/entities/https%3A%2F%2Fschema.lab.fiware.org/

AirQualityObserved/urn:NGSI -LD:AirQualityObserved:RZ:Obsv4567/

refPointOfInterest

45 payload:

46 "type": "Relationship",

47 "object": "urn:NGSI -LD:PointOfInterest:RZ:MainSquare"

48
49 "Advertisement":

50 topic:provider/broker_address/broker_port/https%3A%2F%2Fschema.lab.fiware.

org/AirQualityObserved

Listing 7.1: NGSI-LD entity message separation

An entity in NGSI-LD format is mapped to a number of MQTT messages,
one for each attribute as shown in Listing 7.1. In this example, the name of the
MQTT topic for each message is (area + ’/entities/’ + context + type +

id +’/’+ attribute) and the value of the attribute is the payload of the mes-
sage. The term ”area” defines (in a human-friendly way, as a simple string) the

44 CHAPTER 7. PROTOTYPE IMPLEMENTATION

geographical scope of the broker, for example, CommunityA CityB. Each Action
Handler-Broker pair is assumed to be aware of the name of the ”area” it covers.
The area value is nonetheless optional and may be omitted. The string ”entities”
is just to convey that that the information described by this message is part of an
entity. This is useful as a self-reference to NGSI-LD endpoints in the development
and maintenance of the prototype. It is also useful to determine when informa-
tion that does not correspond to entities is inserted at a broker, as in the future
information about context other than entities might be available (e.g. which sub-
scriptions are currently active in the broker). Context, type, id, and attribute are
all (one-to-one) parts of the entity described above. When requesting for entities,
messages that fit a specified request are recombined back into whole parts using
the entity-id part of the topic to recognise that a message represents the same
entity. This is the reverse of the data split. Since there is a message for each
different attribute, operations can be performed at the attribute level as needed.

In general, the aim was to achieve close compliance with the latest NGSI-
LD specification. This means supporting pull-based applications (i.e., those issue
GETs for data) as specified by the NGSI-LD API. This raised an issue as in MQTT
typically if a publisher publishes a message to a topic with no-one subscribed to
it, the message is simply discarded by the broker. Thus MQTT brokers had to
be configured to store entities by having the data publisher instruct the broker to
keep the last message on that topic (setting the retained message flag). Deletion
of these messages can be then performed with an empty-payload message.

In what follows the implementation of key NGSI-LD API commands, also
known as Actions, are described in detail: Creation of an entity happens with
the ”POST” entity command (PUSH DATA Action,Provider Registration Action)
to an NGSI-LD broker, in the format: ’POST’ ’http://broker-address/:port/

NGSI-LD/v1/entities/’ ’entity data.file’. The prototype uses a similar for-
mat for the selection of every possible command, e.g python3 actionhandler.py

-b broker-address -p port -c POST/entities -f ’entity data.file’. The
action handler first checks if the command/action inserted is valid (here, the
POST/entities command is a valid command). Next, it tries to connect with
the broker specified to check if the file given for entity creation is valid JSON, and
if necessary parts of an entity (id, type, context) are included. Then it checks if the
entity with the specified entity-id already exists in the broker. If so, it notifies the
publisher. An advertisement1, a notification of new context information available
in a federated ComDEX service, should also be created for this entity if it does not
already exist for this broker. A new advertisement is created and published with
the topic "provider/’ + broker address + broker port + /area + /entity

context + /entity type + (/entity id)" according to the configured adver-
tisement granularity (§6.3). Finally, for each different attribute present in the
entity a new MQTT message is created (Listing 7.1), with payload the content

1The creation of advertisements, an important aspect of the federation solution implementa-
tion, is thoroughly covered in section 6.3

7.2. NGSI-LD TO MQTT MAPPING 45

of each attribute and the topic area+’/entities/’ +entity context+entity

type+entity id+’/’+ attribute. To also enable temporal queries for each at-
tribute, messages for attributes createdAt and modifiedAt are created.

Listing 7.2 provides pseudocode of this process.

1 def Action_handler(argv):

2 if(command ==POST/entities):

3 connect(broker ,port)

4 file=open_file("entity_data.file")

5 if(is_valid_json(file) and is_valid_ngsild(file):

6 if(entity_exists(entity.id)):

7 print("already␣exists")

8 exit()

9 if(! advert_exists(broker ,port ,entity.context ,entity.type)):

10 publish(advertisement)

11 for each attribute in entity_file:

12 publish(attribute.message)

13 publish(attribute.time_message)

14 close_connection ()

15 else:

16 print("invalid_file")

17 exit()

Listing 7.2: POST/entities command

Creation of a subscription happens with a ’POST’ (GET Data Action,
Provider Lookup Action) ’http://broker-address/:port/NGSI-LD/v1/Subscriptions/
’ ’subscription.file’ , which follows the same logic as the creation of an entity with
some additional complexity. A client interested to find information about entities
must check the advertisements to find where this information is located. Thus,
in the creation of a subscription the action handler first checks if the command
inserted is valid and then if the file given for entity creation is valid JSON with all
parts of a subscription (at least one of the following: id, type, watched attributes)
are included. It then tries to connect with the specified broker to subscribe to
the provider messages of the broker that correspond to the subscription file. For
every provider-message/advertisement that is received and has not been received
previously, a new parallel connection/subscription is created to the broker that
advertised that has relevant information. If an advertisement is deleted while a
subscriber is still connected, terminate the relevant subscription. The received
data is recreated accordingly, and exit is performed if a subscription exceeds a
timeout.

Listing 7.3 provides the pseudocode of this process.

1 def Action_handler(argv):

2 if(command ==POST/Subscriptions):

3 file=open_file("subscription.file")

4 if(is_valid_json(file) and is_valid_ngsild_sub(file):

5 subscribe_for_advert_notif(broker ,port ,sub_data)

6
7 def subscribe_for_advert_notif(broker ,port ,sub_data):

8 known_adverts =[]

9 connect(broker ,port)

10 subscribe(advertisements)

11 on_message ():

12 advert=message.topic

46 CHAPTER 7. PROTOTYPE IMPLEMENTATION

Figure 7.1: Smart Transportation Application using ComDEX

13 if(message.payload ==Null):

14 known_adverts.remove(advert)

15 close_appropriate_connection ()

16 if(! advertisement_already_known(message.topic)):

17 known_adverts.add(advert)

18 create_sub(advert.broker ,advert.port ,sub_data)

Listing 7.3: POST/Subscriptions command

The implementation of ComDEX prototype is in Python. While a C implemen-
tation may have resulted to a more efficient system, with python a fully functional
federated NGSI-LD broker was able to be prtotyped according to ComDEX design
principles. The prototype is nonetheless easily re-targetable to other programming
languages.

7.3 ComDEX advertisements and bridging

The implementation of broker federation is based on advertisements of exported
context, which (just like entities) are propagated as MQTT messages. An ad-
vertisement message is composed of a topic in the following form: (provider/’ +
broker address + broker port + area + NGSI-LD entity context + NGSI-LD entity
type), in accordance with the mappings described in §7.2. The ’provider/’ string
at the start of the topic is used to denote a data-provider advertisement message.
The broker address and broker port identify the broker that has the data described
by the context and type, and area (a string) is the region the data provider covers.
A client interested in specific context information uses the advertisements available

7.4. SMART TRANSPORTATION IN THE PORT SCENARIO 47

at the broker it initially connects with to create new connections and get all the
information it is interested in, which could be at a remote broker. The subscription
is described in §7.2 and formally in §5. Advertisements follow paths summarily to
Fig. 6.1. Advertisements may be created for new each entity type, or (at a finer
grain) for each new entity id. The prototype allows selection of advertisement
granularity (type or id). Advertisement per-type is currently the default.

Figure 7.2: Advertisement messages paths.

Provider messages are propagated throughout the federation of brokers with
the use of MQTT bridges. For example, ’topic provider/# out 2 ”” ””’ can
be used as a bridge that propagates all the provider messages that are created at
the broker to the address specified. Filtering the data that moves between each
bridge is also an important part of this type of bridging. Care should be taken
when creating MQTT bridges, as bidirectional linkages can produce redundant
message transmissions and overload the federated network. Using the bridge ’topic
provider/# both 2 ”” ””’ from a bA to a bB, is an example of a bad bidirectional
bridge as bA would send a message to the bB and vice versa. An alternative
to the automated advertisement system described would be to perform manual
context source registration by simply creating advertisements manually (akin to
what NGSI-LD dictates) according to the context source information they wish
to ”register”. The showcased automated advertisement system has clear usability
advantages leading to an all-around functional NGSI-LD broker federation.

7.4 Smart transportation in the port scenario

The ComDEX prototype implementation can support deployment of the smart
transportation motivational scenario (section 3) depicted in Fig. 7.1. In this sce-
nario, the brokers of each stakeholder (firefighters, port community, InterCity
buses) are connected in a hierarchical manner with the use of MQTT bridges,
with high-level brokers ”seeing” all the information-provider sources advertised to

48 CHAPTER 7. PROTOTYPE IMPLEMENTATION

them via these bridges. In the interest of simplicity, let us assume there is only
one data publisher and only one subscriber.

The data publisher (e.g., a bus GPS) sends NGSI-LD data about a vehicle to
the action-handler-broker (SmartTransit). The action-handler converts the NGSI-
LD information into appropriate MQTT messages and sends them to the MQTT
broker. The brokers can be any MQTT compliant broker (for example, Mosquito).
At the same time, it checks if an entity of type vehicle (a type defined within the
smart transportation data context) has already been advertised to this broker. If
not, it creates a data-provider-advertisement message and pushes it to the broker
as described in §7.2.

The broker receives the messages and through bridging, forwards the adver-
tisement to the IntercityBus and on to the Port Community Broker, where it is
stored. The paths that advertisements can traverse are visible with dotted lines
in Fig. 7.1. A subscriber (e.g., a mobile application) wants to receive information
about all the buses available throughout the federation, and it happens that the
closest broker is the Port Community Broker. It issues the relevant NGSI-LD
query to the Port Community Broker with the use of the action handler, which
checks the query and searches for provider advertisements matching the entity-
type requested and, if specified, the location of an entity or area of interest (e.g.,
Port Area A). The interface finds out that the InterCityBus Broker has informa-
tion about buses, so it connects to it to receive the relevant data. The messages
are structured back as NGSI-LD entities; ultimately, the information requested is
returned to the subscriber.

7.5 ComDEX ’s resilience to failure

While fault tolerance isn’t directly explored in the scope of this work, there are
numerous ways a system designer can connect the various components in their com-
munity and a federation of communities to as mentioned in §9, enable resistance
to system errors if a node or multiple, for some reason, terminate, are unrespon-
sive, or their network is unreachable. This can be achieved using backup MQTT
bridges. The clients probe the brokers in order to determine whether the brokers
are reachable and able to publish or subscribe to their messages. The backup link
to the next broker is automatically used if such a check for a connection to a broker
fails. [24].

While it might not be the most optimal solution due to the fact that to achieve
a semi robust federation, one would need a backup for each advertisement bridge
in the federation, it is fairly simple to setup. For simplicity, let us explore a small
example. On the left hand side of Fig. 7.3 are 3 brokers, 2 connected with data
producers A○ B○ at the bottom of the hierarchy and 1 C○ connected with the data
consumers at the top of the hierarchy. This could also be a small part of a much
larger system with brokers even higher in the hierarchy. On the right hand side of
Fig. 7.3 we can see that there is a backup MQTT bridge for every connection, both

7.5. COMDEX’S RESILIENCE TO FAILURE 49

for connections that transfer publisher information and for advertisements. Each

Figure 7.3: An example of a system comprised of just 3 brokers.

broker has a ”partner” backup broker which keeps a copy of everything the initial
broker has by subscribing to the ’#’ topic, which is a wildcard that includes every
single topic message. Let us examine broker A○ and backup broker A’○ . First, there
is the connection between the two brokers. The Broker A’○ subscribes to everything
that is published/stored in the Broker large A○ thus being an exact replica. Then
there is the connection between A’○ and the publishers. The publishers that publish
in the area covered by broker A○ consider him the primary broker and broker A’○ the
fallback broker. For the advertisements in the federation, broker A○ is bridged with
broker C○ and has a backup bridge with broker C’○ which is broker’s C○ ”partner”.
Now the connection that requires the most care is between the backup broker A’○
and its higher ups. Since everything it receives is a carbon copy of what broker A○
has, handling the bridges of advertisements is somewhat tricky. A way to deal with
this is to remap the advertisement topics so that the advertisements that arrive
from broker A○ and have its address in the topic are changed to have broker’s A’○
address, for example topic ”provider/+ broker A address + / broker A port +/...”
is converted to ””provider/+ broker A’ address + / broker A’ port +/...”. If the
advertisements remained unchanged, in case broker A○ failed, broker A’○ which is
supposed to replace him in the downtime, would also propagate advertisements
that point to an unavailable broker. We also want to avoid having broker A’○ from
propagating advertisements to brokers C○ or C’○ while broker A○ is still available,
as it would be an unnecessary load and might lead to duplicate information. Thus
broker A’○ sends its advertisements to broker A○ as a primary MQTT bridge (which
broker A○ discards) and by having backup advertisement bridges with brokers C○
and C’○, propagates advertisements when it considers broker A○ to be unavailable.
For all this to be better understood, let us see what happens in 2 scenarios. First
scenario: Broker C○ malfunctions and becomes unavailable. Subscribers that are
interested in the information provided by the whole system try to contact broker

50 CHAPTER 7. PROTOTYPE IMPLEMENTATION

C○. Since they fail to connect, they fallback to broker C’○. Broker C’○ has all the
data that was available in C○ and thus the subscribers can be serviced as if nothing
happened. Second scenario: Broker A○ fails. This means that publishers that want
to publish data to broker A○ can’t reach it and they fallback to sending data to
broker A’○. Broker A’○ tries to send its new advertisements to broker A○ but fails
and thus propagates the advertisements to broker C○ and if that is also unavailable
(scenario 1) then to broker C’○. Subscribers that are connected to the top broker
(either C○ or C’○) become aware that there is a new source of information via the
advertisements received from A’○.

Of course the design of the connections of the MQTT backup bridges ultimately
falls to the choice of the system designer. For example if the edge brokers are
unavailable the sensor information could be directly sent to the next in hierarchy
broker of the federation, in this case brokers C○,C’○

Chapter 8

Experimental Evaluation

Here we evaluate ComDEX and overall design approach using our prototype. We
utilise multiple AWS EC2 VM instances within a single region, with each broker,
publisher and subscriber hosted on a different VM with the specifications listed in
Table 8.1. Each broker is a c5.large instance and each subscriber or producer is
a t3.nano instance. For consistent time measurements, the VMs are synchronized
using AWS’s Time Sync Service over the Network Time Protocol (NTP).

Functionallity
Instance
Type

Instance
Family

Instance
Size

VCPUs
Memory
(GIB)

Network
Performace

Brokers c5.large c5 large 2 4 Up to 10 Gigabit
Subscribers/Publishers t3.nano t3 nano 2 0.5 Up to 5 Gigabit
Publisher (§8.2) t3.large t3 large 2 8 Up to 5 Gigabit

Table 8.1: Configuration of experimental testbed

We first evaluate the performance of the ComDEX prototype with different
topology sizes and compare it against other NGSI-LD brokers, for a normal case
and a worst-case scenario, using simple synthetic data models of a generic NGSI-
LD entity. Then, we evaluate the impact of changing the federation topology and
advertisement granularity using randomly generated entities of smart buildings
based on existing NGSI-LD data models and real IoT device traces. Our results
throughout all experiments validate the performance of our current ComDEX pro-
totype under a broad range of deployment configurations and generated workloads.

8.1 Comparison with other NGSI-LD brokers

8.1.1 Normal-case scenario

We first evaluate the performance of the ComDEX prototype with various topology
sizes against current state-of-the-art NGSI-LD brokers: Orion-LD1 and Scorpio2.

1https://github.com/FIWARE/context.Orion-LD
2https://github.com/ScorpioBroker/ScorpioBroker

51

52 CHAPTER 8. EXPERIMENTAL EVALUATION

Name Type Generation Strategy

id URN
A urn string generated by concatenating “urn:ngsi-ld:entity” and
a unique number between 0 to total number of entities
requested.

Type String
A type that represent various different entity types,
it is generated by concatenating the string ”Dummy entity” and
a random number between 0 and 10

Attribute1 String
A string value generated by contacting “value”
and a randomly generated number between 0 to
total number of entities requested.

Attribute2 Integer
Random Integer between 0 and total number of
entities requested

Attribute3 Interger
Random Integer between 0 and total number of
entities requested

Context NGSI-LD context Use the default NGSI-LD context.

Table 8.2: Virtual data model of generated entities (§8.1)

While the NGSI-LD specification is still evolving, these two brokers incorporate
most up-to-date functionalities of the NGSI-LD specification. ComDEX adopts
1, 3, 6 broker-wide topologies, where width is the distance (network hops) from
the broker where the data is published to the broker where interested subscribers
connect.

For this set of experiments, we created a data model with simple attributes
with no semantic meaning, following a similar approach to [15]. The structure
of the data model can be seen in Table 8.2. Developing and using a simple data
generator in Python that creates entities of the above data model, we generate
2000 entities with 10 different entity types and 3 different attributes.

The generated entities are entered into the system and stored at the edge bro-
kers. Advertisements for each of the entity types are generated and propagated
through each setup seen in Fig. 8.1. We then deploy a workload generating syn-
thetic sensor requests on 10 VMs with each selecting a random attribute of a
random entity approximately every 100ms and patching its value to a random
value (e.g., entity 500, Attribute3, 42) on every different edge broker of each con-
figuration (Orion-LD, Scorpio, ComDEX (Mosquitto) 1-, 3- and 6-broker-wide).
In each setup we deploy one subscriber VM for each data type (e.g., Orion-LD
has 10 different subscribers). We consider this a ”normal scenario” in the sense
that it is setup in a way where the load isn’t very big and data transfers between
publishers and subscribers are performed without any special circumstances or
settings.

We let the experiment run for a few hours to warm up the system. We then
modify the code of both the sensors and subscribers as follows: instead of patching
the value of the attribute of a random entity to a random value, we patch it to
the current time T1 and immediately send it. Then, as soon as a subscriber
receives a notification about an entity, it marks the current time T2 and exports
T1, T2 along with the entity, to calculate subscription notification latency. Fig. 8.2

8.1. COMPARISON WITH OTHER NGSI-LD BROKERS 53

Figure 8.1: Normal-case experimental setup (§8.1.1)

reports a random sample of 50 observations of the subscription notification latency
in milliseconds.

We observe that ComDEX performs better in comparison with native HTTP
NGSI-LD solutions since MQTT is used as the data exchange protocol,. This result
is in line with previous comparisons of HTTP and MQTT [33, 34] and highlights
an advantage of the ComDEX design. We can also notice from Fig. 8.2 that since
the system has been running for a while and all the advertisements have been
installed, there is no substantial difference between different-sized topologies of
ComDEX, another one of its advantages. The same result can also be seen in the
first half of Fig .8.4 (nc) which shows the mean subscription notification latency
across multiple runs.

8.1.2 Worst-case scenario for our system.

Next, we examined a worst-case scenario, performance-wise, for our prototype.
This happens when a client needs to ”re-discover” the data source and connect to
it for every piece of information published to a broker. Recall from §7.2 that each
time a subscriber connects to a broker searching for available data throughout
the system, it must search through the existing advertisements to find where to
connect. One way to emulate such a scenario is to have all data requested be
composed of single entities of different types, which is feasible but not directly
compatible with the single type subscription of NGSI-LD. Another way to emulate

54 CHAPTER 8. EXPERIMENTAL EVALUATION

Figure 8.2: Subscription notification latencies (§8.1.1)

this is to have the data requested (subscribed to) be comprised of an entity-type for
which its data and subsequently its advertisement are constantly being deleted and
reinserted, which is the direction we chose for this experiment (shown in Fig. 8.3).
These worst-case emulated setups are luckily not expected in realistic systems.
Again, we compare ComDEX to Orion-LD and Scorpio in similar conditions; since
the latter two do not use advertisements, we expect them to not be affected as
much.

We use the data generator from the first experiment to create an entity of
type ”DummyEntity”. This entity is then inserted into each broker along with a
timestamp of when it was sent. The subscribers receive this information and mark
the time it arrives. The entity is then deleted from the broker it was inserted into,
and consequently, the advertisement for that entity type is also removed from the
entire system. We repeat the process a large number of times and report our
results in Fig. 8.4, where the metrics from experiment 2 (wc, §8.1.2) are displayed
side by side in comparison with the first experiment (nc, §8.1.1). We observe that
the performance of our prototype in the worst-case scenario declines, as expected.
This delay can only happen when a subscriber consistently wants an entity whose
type does not exist and waits for its advertisement to arrive to discover it. We
also use the setup to monitor the ComDEX advertisement installation3 times, as

3Advertisement installation time is the time it takes for an advertisement from its reception

8.2. EVALUATING COMDEX USING REAL TRACES 55

Figure 8.3: Worst-case scenario experimental setup (§8.1.2)

depicted in Fig. 8.5. As expected, when the distance between the edge broker and
the top broker increases, advertisement installation time increases as well, but not
dramatically.

8.2 Evaluating ComDEX using diverse advertisement
granularities and real IoT device traces

Next, we examine the impact of topology and advertisement granularity on the
performance of our prototype. We consider type-based advertisement granularity,
where an advertisement is created and propagated for every different entity type,
and id-based granularity, where an advertisement is created for each different entity
(§7.3). Being able to discover exact entities with their id allows for greater flexibil-
ity, such as remote actions on single entities. Having only advertisements on entity
types reduces the number of advertisement messages, lowering traffic through sys-
tem brokers. The downside of this is having to check if an advertisement already
exists when creating an entity, which takes time. For this experiment, we imple-
mented a generator of smart-building entities and IoT devices. The tool receives
as input the number of federated brokers and generates communities, buildings,
floors, rooms, and devices, each contained in the other in a logical way, by relying
on an extended NGSI-LD based building and device data models. To create a real-
istic scenario for the experiment, the IoT devices and publishers are modeled using

from the edge broker to arrive at the highest broker in the hierarchy

56 CHAPTER 8. EXPERIMENTAL EVALUATION

Figure 8.4: Comparison of end-to-end delays from data publication to subscriber
notification

the characteristics of devices in the work by Kumar et al. [20] where a dataset
of 20 days of network traces generated by 20 IoT devices, is processed and their
significant features extracted.

Here we simulate the environment described in the motivating scenario using
3 different topologies (mesh, ComDEX topology, and a single central broker). In
the mesh topology, the brokers are connected to each other, thus every broker is
aware of entities present in the other brokers through direct advertisements, unlike
ComDEX where there is a hierarchy between brokers. Each of the different com-
munities in each setup has a set of subscribers that are interested in changes in
the values of devices across all smart communities. Such a subscriber could be, for
example, a firefighting application that wants to know if a smoke detector detects
a fire in a building regardless of location. The synthetic device sensors in this
experiment work as follows: the devices are generated with a set of characteristics
(message size, message frequency) taken from real device traces. Each device sends

8.2. EVALUATING COMDEX USING REAL TRACES 57

Figure 8.5: Advertisement-installation times for ComDEX in 1, 3, 6-broker-wide
setups

a message to its value in the appropriate broker according to these features con-
tinuously. To calculate the various metrics of this experiment, we used the tshark4

network monitoring tool at each broker, similar to Bertrand-Martinez et al.[8], to
avoid modifying the content of the entities as we did in previous experiments.

The results of this experiment are depicted in Figs. 8.7-8.9. In Fig. 8.7, we
observe the difference in the number of messages needed for the creation of the
entities of each community, clearly seeing the impact of topology. In the mesh
topology where ”everyone knows everything”, especially in the case of id granu-
larity where the advertisements are equal to the number of entities inserted, the
number of messages exchanged between brokers increases, since in this case every
advertisement must be propagated to every broker.

In Fig. 8.8 we observe advertisement-installation times for different topologies and
advertisement granularities. As expected, there is not much variance between
topologies since the difference in the number of hops of each advertisement prop-
agation does not exceed 2. The difference between the single broker and the two
topologies (mesh,ComDEX) is similar to the difference between “broker widths”

4https://tshark.dev/

58 CHAPTER 8. EXPERIMENTAL EVALUATION

Figure 8.6: A more realistic setup, using real data models simulating three smart
communities

in Fig. 8.5. The variability between granularities is not significant and the slight
difference between them can be attributed to the larger sample inherent to the
nature of the id granularity (1 advertisement for each entity).

Lastly, we evaluated how each system performs under intense load conditions
when MQTT is set for QoS 0 (at-most-once delivery). Note that the QoS of the
propagation of advertisement messages from broker to broker remains the same
across all experiments (QoS 2, exactly once). To create stress-testing conditions
we increased the number of generated devices across all communities. Our results
in Fig. 8.9 show that under heavy load all systems drop messages. ComDEX out-
performs the others, while the single-broker case performs the worst. ComDEX
achieved better message-delivery rate compared to the mesh topology since in
ComDEX, a subscriber requests information about where to connect (advertise-
ments) from a high-level broker that in this experiment does not deal directly with
generated data and thus has a lighter load. In the mesh topology, the subscribers
interact directly with the brokers that are under heavy load, and that is causing

8.2. EVALUATING COMDEX USING REAL TRACES 59

Figure 8.7: Number of messages required for the creation of 15000 entities

Figure 8.8: Advertisement installation times for different topologies and advertise-
ment granularities

advertisement messages requested by the subscriber to get dropped (QoS 0), lead-
ing in turn to the subscriber missing out on data that interests them (does not
know where to connect to get it).

60 CHAPTER 8. EXPERIMENTAL EVALUATION

Figure 8.9: Success rate of messages for different topologies under heavy load
(MQTT-QoS 0)

Chapter 9

Related Work

As smart IoT communities mature, so do their complexity and overall require-
ments. Maintaining important aspects of smart spaces, such as data privacy,
interoperability, high availability, and context data discovery, across a partnership
of diverse smart communities becomes a challenging endeavor. IoT platforms have
been characterized by the distributed deployment of real-time applications and
high-speed data dissemination. For asynchronous and cross-platform communi-
cation, IoT applications most commonly use publish/subscribe middleware [18].
However, in traditional pub/sub solutions, data exchange between brokers is un-
restricted as their main goal is to maximize performance. ComDEX acknowledges
the limitations of traditional pub/sub when designing a cross-community collabo-
ration platform and builds upon this.

For this cross-community collaboration, many initiatives connected to the cre-
ation of smart-city platforms have adopted federated designs. For example,
to establish optimal and sustainable infrastructures for city occupants, existing
smart city platforms such as MARGOT [26], Fogflow [11], Trustyfeer [21], AL-
MANAC [10], CPaaS.io [12], and WiseIoT [16] provide a method for cross-domain
communication, interoperability, and IoT resource discovery. Cloud federation,
context broker federations, and service orchestration are some of the techniques/tech-
nologies used to support such interoperable and wide-scale deployments. Μost of
these platforms either lack service programming models or specify a programming
model solely based on their own private data model and interfaces, limiting their
openness and interoperability as smart community platforms. ComDEX tack-
les this lack of openness by using property graphs combined with Semantic Web
domain models.

The NGSI-LD standard [1] is used as the basis of the information model of
ComDEX and the API for publishing, querying, and subscribing to context data.
Its purpose is to make the open exchange and sharing of structured data amongst
various parties easier. It is utilized in multiple smart city domains. It has also been
discussed in many recent research publications, such as the the CityDataHub [17]
project, which is an online platform that is under trial in several South Korean

61

62 CHAPTER 9. RELATED WORK

cities that provides a communication window for sharing various policies promoted
by the public and the Demeter [23] project, which is a large-scale deployment of
farmer-driven, interoperable smart farming-IoT based platforms. On the other
hand, NGSI-LD has its limitations such as limited federation and forwarding sup-
port. Unlike other NGSI-LD solutions, ComDEX handles these limitations by
implementing a novel forwarding scheme.

Regarding smart IoT platforms, FogFlow introduces a fog computing based
framework for designing and implementing city-scale IoT applications. Tricomi et
al. [31], introduce a software-defined platform that uses a city infrastructure to
develop applications on top while dealing with numerous administrative domains
through federated architectures. High availability disaster recovery (HADR) is
supported in the MARGOT [26] platform by exploiting caching capabilities in fed-
erated nodes. HADR scenarios are also supported in city-scale deployments by the
Pradhan federated platform [24], which leverages the lightweight MQTT protocol
for its support of different QoS message delivery modes. Finally, Trustyfeer [21] re-
lies on federated cloud environments to improve the number of services exchanged
by cloud providers that conform to SLAs. ComDEX deals with QoS in the aspect
of end-to-end delivery guarantees, taking advantage of the MQTT [22] communi-
cation protocol. Fault tolerance is also considered and enabled in ComDEX with
the use of backup MQTT bridges that connect the federation.

The Space Broker [3] defines a smart space based on contextual data, spatial
attributes, and user-specified application requirements. Interoperability capabil-
ities, reusability (smart apps reused in many settings), user privacy and data
sovereignty are all crucial characteristics of IoT smart spaces that SemIoTic [35]
addresses. However, both of these works are focused on a single smart space and
do not offer a solution for all of these important qualities in a federation of smart
communities/smart spaces, contrary to ComDEX.

While existing technologies can be utilized to cover certain requirements specif-
ically defined for the creation of an optimal context-aware IoT platform for smart
communities as well as the solutions proposed for singular smart spaces, a solution
in a federation of brokers that covers all the requirements of a smart IoT commu-
nity has not been properly defined yet. Overall, ComDEX can be described as a
distributed context-aware federation architecture platform for enabling widespread
IoT applications that implements novel federation topology and information prop-
agation techniques, facilitating data sovereignty while still enabling open collabo-
ration between smart communities. A small overview of the use of federation and
the capabilities of the systems of the various works referenced in this section can
be found in the table 9.1.

63

Methodology
Security
Mentioned

Interoperability Resilience Scalability Discovery Prototype
Federation
Usage

Carvajal et al.
2015
(ALMANAC)

Adapts the context
of cloud federation
to create a custom
smart city platform.

SAML
Authentication

✓ ✓ X X ✓ -Interoperability

Morelli et al.
2020
(MARGOT)

Uses federation
services and ABE
for the development
of a smart city
platform.

Attribute Based
Encryption
(ABE)

✓ ✓ X ✓ ✓

-Interoperability
-Resilience/Fault
Tolerance.
-Security/Isolation

Cirillo et al.
2019
(Cipaas.io)

Smart City platform,
using Fiware based
components.

Key-Rock,
Pep-proxy

✓ X X ✓ X
- Interoperability
- Discovery

Cheng et al.
2018
(Fogflow)

IoT edge computing
framework using an
intent-based
programming model
and context-driven
service orchestration

Fiware Iot
Stack’s Security
Mechanisms

✓ X ✓ ✓ ✓
- Interoperability
- Scalability
- Discovery

Jaeyoung Hwang
et al.
2017
(WiseIoT)

Leveraging semantics
and federation to build
interoperabillity
between smart city
platforms.

X ✓ X X ✓ X
- Interoperability
- Discovery

Heba Kurdi et al.
2018
(Trustyfeer)

Usage of subjective
logic equations based
on SLAs and CSP’s
global reputation to
create a trust
management system
for P2P federated
clouds

Trustyfeer’s
Security

✓ X ✓ ✓ ✓
- Interoperability
- Scalability
- Discovery

Tricomi et al.
2019

Extends the vision
of the SOC paradigm
with the concept of
federation

X ✓ X X ✓ ✓
-Interoperability
-Discovery

Pradhan Manas
2021

Communication
between agencies in
HADR scenarios using
federation of MQTT
brokers.

X

(unencrypted
mqtt
communication)

✓ ✓ X ✓ ✓
-Interoperability
-Discovery
-Resilience

ComDEX

Context aware
Intercommunication between
different smart commu-
nities using advertisements
and MQTT bridges
to create federations.

X ✓ ✓ ✓ ✓ ✓

-Interoperability
-Scalability
-Discovery
-Resilience

Table 9.1: Smart-city platforms with federated designs

64 CHAPTER 9. RELATED WORK

Chapter 10

Conclusions and future work

10.1 Conclusions

While smart communities can be established using existing platforms, a standard
IoT platform architecture does not exist. This thesis, introduces ComDEX, an ap-
proach for creating federated context-aware IoT platforms for smart communities.
A federation architecture, is proposed, that represents data as property graphs
for smart community entities. Context-aware messages are subsequently created,
using a topic/type-based pub/sub subscription scheme. While some might argue
that it should not be considered a true federation as it requires participants to have
similar technologies, it is important to point out that NGSI-LD provides various
”gateways” such as IoT-agents to facilitate easier intercommunication/coopera-
tion between different existing platforms. Such messages are exchanged between
smart communities via the ComDEX hybrid and hierarchical federation topol-
ogy. ComDEX ’s architecture is evaluated by creating and using a prototype that
utilizes technologies such as NGSI-LD and MQTT, qualitative and quantitative
comparisons are performed with other existing solutions.

10.2 Future Work

We believe that ComDEX as it is in its current form, can be the start of a much
more ambitious platform. Firstly, as NGSI-LD is a technology that is still evolving
with new features being added at a pace that is difficult to keep up with, it would
take a lot of resources to end up with a fairly compliant platform to the latest
NGSI-LD specification, but we believe that it is something that a future version of
ComDEX could take more seriously into consideration. Secondly, while QoS guar-
antees are briefly mentioned and implemented by our decision to utilize MQTT as
the main messaging protocol, it only concerns the MQTT delivery guarantees and
not the various different QoS that might be required by different data recipients.
For example, applications operating under normal circumstances or emergency re-
sponse cases. Optimally, there should be ways to enable the dynamic configuration

65

66 CHAPTER 10. CONCLUSIONS AND FUTURE WORK

of the platform, using different routes or message handling mechanisms, based on
the requirements of data recipients (e.g., emergency responders) or the deployed
IoT applications of each community. Cross-layer optimization mechanisms can
be leveraged to tune such a federated system. The policy manager component
mentioned in section 3.2 while not implemented, was added to the overall design
with the aforementioned prospective dynamic configuration capabilities in mind.
Additionally, as of the time of writing this thesis, the prototype implementation
has no real concern about secure communication between the various nodes. A
version of ComDEX with a component that handles certifications is something to
be seriously examined in future work. In the future, we could also examine how
well and with how much difficulty ComDEX can be integrated with existing smart
city platforms, so that we can prove that ComDEX can be considered a federated
platform with the whole meaning of the word. Lastly, more experiments could
be performed with real sensors and over a longer period of time to get a proper
evaluation of the system under realistic scenarios.

Bibliography

[1] Context information management (cim) ngsi-ld api v1.4.2, 04 2021.

[2] Abowd. Towards a better understanding of context and context-awareness.
01 1999.

[3] Hamim Md Adal, Colin Milhaupt, Jie Hua, Christine Julien, and Gruia-
Catalin Roman. The space broker: A middleware for mediating interactions in
smart iot spaces. In Proceedings of the 8th ACM International Conference on
Systems for Energy-Efficient Buildings, Cities, and Transportation, BuildSys
’21, page 101–110, New York, NY, USA, 2021. Association for Computing
Machinery.

[4] João Almeida, Jorge Silva, and Tháıs Batista. A linked data-based service
for integrating heterogeneous data sources in smart cities. pages 205–212, 01
2020.

[5] Renzo Angles. The property graph database model. In AMW, 2018.

[6] R Baldoni, Leonardo Querzoni, Sasu Tarkoma, and Antonino Virgillito. Dis-
tributed Event Routing in Publish/Subscribe Communication Systems. 02
2009.

[7] Nazmiye Balta-Ozkan, Rosemary Davidson, Martha Bicket, and Lorraine
Whitmarsh. The development of smart homes market in the uk. Energy,
60:361–372, 10 2013.

[8] Eddas Bertrand[U+2010]Martinez, Phelipe Feio, Vagner Nascimento, Fabio
Kon, and Antônio Abelém. Classification and evaluation of iot brokers: A
methodology. International Journal of Network Management, 31, 06 2020.

[9] Andre Borrmann, Jakob Beetz, Christian Koch, T. Liebich, and Sergej Muhic.
Industry Foundation Classes: A Standardized Data Model for the Vendor-
Neutral Exchange of Digital Building Models, pages 81–126. 09 2018.

[10] José Carvajal Soto, Otilia Werner-Kytölä, Marco Jahn, Pullman J., Dario
Bonino, Claudio Pastrone, and Maurizio Spirito. Towards a federation of
smart city services. 11 2015.

67

68 BIBLIOGRAPHY

[11] Bin Cheng, Gürkan Solmaz, Flavio Cirillo, Ernö Kovacs, Kazuyuki Terasawa,
and Atsushi Kitazawa. Fogflow: Easy programming of iot services over cloud
and edges for smart cities. IEEE Internet of Things Journal, 5(2):696–707,
2018.

[12] Flavio Cirillo, Gurkan Solmaz, Everton Luis Berz, Martin Bauer, Bin Cheng,
and Erno Kovacs. A standard-based open source iot platform: Fiware. IEEE
Internet of Things Magazine, 2(3):12–18, Sep 2019.

[13] Patrick Eugster, Pascal Felber, Rachid Guerraoui, and Anne-Marie Kermar-
rec. The many faces of publish/subscribe. ACM Comput. Surv., 35:114–131,
06 2003.

[14] The Apache Software Foundation. Apache qpid, messaging built on amq,
2015.

[15] Alireza Hassani, Alexey Medvedev, Arkady Zaslavsky, Pari Delir Haghighi,
Prem Prakash Jayaraman, and Sea Ling. Efficient execution of complex con-
text queries to enable near real-time smart iot applications. Sensors, 19(24),
2019.

[16] Jaeyoung Hwang, JongGwan An, Hotaek Joo, ChanHyung Lee, and Jaeseung
Song. Development and application of interoperability techniques with se-
mantics for global internet of things (giots). The Journal of Korean Institute
of Communications and Information Sciences, 42:2208–2216, 11 2017.

[17] Seungmyeong Jeong, Seongyun Kim, and Jaeho Kim. City data hub: Im-
plementation of standard-based smart city data platform for interoperability.
Sensors, 20:7000, 12 2020.

[18] Zhuangwei Kang, Robert Canady, Abhishek Dubey, Aniruddha Gokhale,
Shashank Shekhar, and Matous Sedlacek. A study of publish/subscribe mid-
dleware under different iot traffic conditions. M4IoT’20, page 7–12, New York,
NY, USA, 2020. Association for Computing Machinery.

[19] Saad Liaquat Kiani, Ashiq Anjum, Michael Knappmeyer, Nik Bessis, and
Nikolaos Antonopoulos. Federated broker system for pervasive context pro-
visioning. Journal of Systems and Software, 86(4):1107–1123, 2013. SI :
Software Engineering in Brazil: Retrospective and Prospective Views.

[20] Rakesh Kumar, Mayank Swarnkar, Gaurav Singal, and Neeraj Kumar. Iot
network traffic classification using machine learning algorithms: An experi-
mental analysis. IEEE Internet of Things Journal, 9(2):989–1008, 2022.

[21] Heba Kurdi, Bushra Alshayban, Lina Altoaimy, and Shada Alsalamah.
Trustyfeer: A subjective logic trust model for smart city peer-to-peer fed-
erated clouds. Wireless Communications and Mobile Computing, 2018:1–13,
02 2018.

BIBLIOGRAPHY 69

[22] Shinho Lee, Hyeonwoo Kim, Dong-Kweon Hong, and Hongtaek Ju. Correla-
tion analysis of mqtt loss and delay according to qos level. pages 714–717, 01
2013.

[23] Juan A. López-Morales, Juan A. Mart́ınez, and Antonio F. Skarmeta. Im-
proving energy efficiency of irrigation wells by using an iot-based platform.
Electronics, 10(3), 2021.

[24] Pradhan Manas. Federation based on mqtt for urban humanitarian assistance
and disaster recovery operations. IEEE Communications Magazine, 59(2):43–
49, 2021.

[25] Anahita Molavi, Gino Lim, and Bruce Race. A framework for building a smart
port and smart port index. International Journal of Sustainable Transporta-
tion, 04 2019.

[26] Alessandro Morelli, Lorenzo Campioni, Niccolò Fontana, Niranjan Suri, and
Mauro Tortonesi. A federated platform to support iot discovery in smart cities
and hadr scenarios. pages 511–519, 09 2020.

[27] Gilles Privat. Guidelines for modelling with ngsi-ld (etsi white paper), 03
2021.

[28] Marko A. Rodriguez and Peter Neubauer. Constructions from dots and lines.
CoRR, abs/1006.2361, 2010.

[29] Bessid Sahbia, Alaeddine Zouari, Frikha Ahmed, and Benabdelhafid Abdel-
latif. Smart ports design features analysis: A systematic literature review. 11
2020.

[30] Manu Sporny, Gregg Kellogg, and Markus Lanthaler. Json-ld 1.0 - a json-
based serialization for linked data. W3C Recommendation, 01 2014.

[31] Giuseppe Tricomi, Giovanni Merlino, Francesco Longo, Distefano Salvatore,
and Antonio Puliafito. Software-defined city infrastructure: A control plane
for rewireable smart cities. In 2019 IEEE International Conference on Smart
Computing (SMARTCOMP), pages 180–185, 2019.

[32] UN/ECE. Regulation no 107 of the economic commission for europe of the
united nations (unece) — uniform provisions concerning the approval of cat-
egory m2 or m3 vehicles with regard to their general construction. Official
Journal of the European Union, pages 1–115, 2015.

[33] Bharati Wukkadada, Kirti Wankhede, Ramith Nambiar, and Amala Nair.
Comparison with http and mqtt in internet of things (iot). In 2018 In-
ternational Conference on Inventive Research in Computing Applications
(ICIRCA), pages 249–253, 2018.

70 BIBLIOGRAPHY

[34] Tetsuya Yokotani and Yuya Sasaki. Comparison with http and mqtt on re-
quired network resources for iot. pages 1–6, 09 2016.

[35] Roberto Yus, Georgios Bouloukakis, Sharad Mehrotra, and Nalini Venkata-
subramanian. The semiotic ecosystem: A semantic bridge between iot devices
and smart spaces. ACM Transactions on Internet Technology – TOIT, 2022.

	73c3d78809f82927e0052eebd8f5853c5afce856733db2c332dbf9f1e5212de0.pdf
	73c3d78809f82927e0052eebd8f5853c5afce856733db2c332dbf9f1e5212de0.pdf
	73c3d78809f82927e0052eebd8f5853c5afce856733db2c332dbf9f1e5212de0.pdf

