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ITepiindm

Meletdue tnv d1ddoon Yepudtntog oe Hay VTixd LA, 6Tou €youue dLo gopeic Vepuo-
NToC oL avTIdEoUV peTall Toug, ot Wwa didotaor. Ilapoucidooue tor UAXE €V ovopaTL
ahuoldeg xou oxdAeg spin, oto onola mapatneeiton piot aoUVATIC ToL UEYAAT) CUVELTPORA TRV
Hayvoviwy oty oAxr) Yepuiny| oy wyloTnTol TV UAXGY autay. Ereita, avagpépoue to
pouvouevo tou Yepuxol rectification, xatd to omolo 1 Suddoon VepudTnTaC KAUTA UTXOC
EVOC CUYXEXQUEVOL dgova e€opTdTon amd To Tpoonuo tne PBaduidag tne Yepuoxpaciog 1
Tou peduatog Yepudtntog, xou unopel va Bonidfoel otny Behtiwuévn duyelpnon tne Yep-
uotnroc. Meketrooue xdtw and molEg cLVITXES TaUPATNEEITAL AUTO TO PUUVOUEVO, XOTO-
MywvTag 6To 6Tl Yol TEENEL G Tal UAXE TTou Vol Y p1OLLOTIOLACOVUE, 1) YEQUIXT| oy OYLULOTN T
Toug va eCopTdton amd T Vepuoxpacia, ahAwg To Qawvouevo Tou VepuixoL rectification
oev mapatneeiton. ‘Emncita emxevipwifixaue oe 800 TEPITTHOOELS, TO 0TATXG YepUixd recti-
fication xou oto duvouxd Yepuixd rectification. Ltnv mpdtn nepintwon, yio va e€dyoupe
Tov mopdyovta Tou rectification yenowwonowjoaue v e&icwon tou peduotog YepudTnTaC,
eve o1 devTepn Aooaue aprduntxd Ty e€lowon Bloch-Boltzmann-Peierls yio to pwvovia
xan Tor paryvovia. Kou otig 800 mepintmoelc xatahhiEoue 6To OTL 0 UEYUADTEQOS ToRdYOV-
Tag Beédnxe 0to UAXO Tou amoteheiton amd TNV ohucida spin SreCuOs xan TNV oxdio
spin CagLasCu24041, to omola elvon xoAnuéva uetadh toug. Télog yekethoaue tny me-
elntwon 6mou egdntoupe plo ypovoelapTnuévn TNy YepUoTNTAS CTNY APLOTERT) ETLPAVELD
TOL oy YNTIX0U LAX0U Woc () TS ouoTotyiog Hory VITIXWY UNXOY) oL TOEATNEOUUE TNV
anoxplon TNe Yepuoxpaciog oTny AmévavTl ETLPAVELR, TEOOTOMOVTIS VoL XATOANEOUUE OE
TOLEC TEQINTWOELS 1) VepuoTnTa dladidetan Bariio Tixd xou mote dlayéeton. Kotarh&oue oto
OTL OTAV 0 YEOVOS BLdyUoTE TWV PuVoviwy elvon (60¢ 1 wxpdTepog and TNy neplodo TNg

TNYHS, TOTE 1) YepudtnTa dlodidetan BoahAio Tixd, aAALDS OlayEeTol.
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Abstract

The propagation of heat in magnetic materials, where we have two heat carriers that
interact with each other, is studied in one-dimension. We introduced the spin chain
and the spin ladder materials, that have an unusually large magnetic contribution to
the total thermal conductivity. After that, we present the phenomenon of thermal rec-
tification in which thermal transport along a specific axis is dependent upon the sign of
the temperature gradient or heat current and can offer improved thermal management.
We examined under which circumstances this phenomenon is observed, concluding that
the thermal conductivities of the materials that we 1l use must have temperature de-
pendence otherwise rectification does not occur.We then focused on two cases, the
static thermal rectification and the dynamical thermal rectification. In the first case,
in order to calculate the rectification factor we used the heat current equation when in
the dynamic case we solved numerically the Bloch-Boltzmann-Peierls equation for the
lattice and magnetic degrees of freedom. In both cases, we concluded that the highest
rectification is observed in a material that is composed of the spin chain SroCuO3 and
the spin ladder C'agLasCu24041, bounded together. Lastly, we study the case that we
adapt a time-dependent heat source at the left surface of our magnetic material (or a
composition of magnetic materials) and we observe the temperature response at the
opposite surface, trying to conclude in which cases heat propagates ballistically and in
which diffusively. We pointed out that if the phonons’ diffusion time is equal or smaller
than the period of the heat source then the heat propagates ballistically, otherwise
diffusively.
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Introduction

Efficient heat removal is crucial to the performance of many electronic devices, since
overheating often leads to overall system failures. In the typical silicon semiconductors,
for example, a reduction in the temperature corresponds to an exponential increase in
reliability and life expectancy of the device. Another example that shows us how cru-
cial the efficient heat removal is, is the case of the magnetic sensors in recording heads.
These heads, consist of multilayers of nanoscale thin films that are very susceptible to
failures caused by thermally activated processes, like interdiffusion. At higher temper-

atures, they can even melt.

The problem of the over-heating electronic devices is becoming more severe if we
take into consideration the current trend to miniturize electronics further and further;
by doing so, the power density is increased accordingly. Currently the energy density
increases up to 28 % per year, showing us that self-heating will become more important,
putting high pressure on research to come up with advanced cooling mechanisms and /or
materials. A possible strategy for dissipating excess the heat, while at the same time
protecting sensitive structures closeby in an electronic device, is to use a layer with
high thermal conduction perpendicular to the surface. By doing this, we guide the
heat to a heat sink and then the sensitive structures on the surface could be placed
much closer, allowing further miniturization.In order to realize such a cooling device,
one needs a material with three necessary properties, i) the thermal conductivity should
be high, i.e.> 100 Wm~' K1, ii) the thermal conductivity should be one-dimensional,



1. Introduction

iii) the compound should be electrically insulating. Except these, it would be a great
advantage if the material has a thermal conductivity that is controllable, so that the
heat transport can be adjusted.

In 1997 it was established that prototype theoretical models for one-dimensional
magnetic compounds show unconventional, dissipationless, thermal transport. Experi-
mentally, in some prototype materials (SrCuQOs, SroCuO3 and (Sr, Ca, La)14Cu24041),
especially at room temperature, an unusually large magnetic contribution to the total
thermal conductivity has been observed. The magnetic heat conduction of these of
these electrically insulating oxide materials is highly anisotropic, dwarfing the usual

lattice contribution as the temperature rises.

i _CagLaECuz“O41 .0\

0 100 200 300

Figure 1.1: Thermal conductivity of the spin ladder compound CagLasCu24041 as a
function of temperature. The direction parallel to the ladder has a contribution from both
phonons and magnons. The directions perpendicular to the ladder only have a phonon
contribution

These materials are very promising candidates for advanced cooling solutions, since
they fulfil all the criteria mentioned above. i)Heat is conducted primarily along one
crystal axis, so the material can thermally insulate in one directions and carry away heat
along the other. ii) The thermal conductivity along one-dimensional structure is as high
as Kmag ~ 100 W m~1 K~ at room temperature for spin ladder CagLasCu4041, as is
shown in figure 1. iii) These compounds are electrically insulating and can therefore be
used to simultaneously electrically insulate electronic circuits and transport heat. iv)
Heat is carried by localised spins which might can manipulated by with magnetic fields

or light. This fact, opens the possibility of having a controllable thermal conductivity



at room temperature. That can be achieved, for example, by doping the material with
magnetic defects so that we 1l be able to potentially tune the thermal conductivity.

The ideal situation for regulating heat flow would be a material in which k in-
creases when the temperature increases, such that, when used as a cooling substrate,
the efficiency increases with increased heat flux, thereby acting as a negative feedback
loop. In these materials the interaction between the magnetic excitations and the three-
dimensional lattice excitations, can be studied relatively easily, by comparing results
for different directions, since the magnetic excitations are only present in the direction
along the low-dimensional structure. The interaction can give information about the
coupling between the one-dimensional magnetic system and the three-dimensional lat-
tice, and how this prevents the material from behaving like an ideal low-dimensional
system.

The main goal of this thesis is to study the possibility of making a thermal diode
using the magnetic materials mentioned above, and to provide useful information about

how to increase the efficiency of such a rectifier.
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Spin Chains & Spin Ladders

2.1 Basic Information about Spin chain &
Ladder materials

In this chapter, we 1l give a short theoretical description of magnetic materials, focussing
on the spin ladder and spin chain materials. Both materials are are one-dimensional
quantum magnets. Important interactions in these materials are discussed, together
with the structure and the excitations.

The essential difference between three-dimensional, conventional, magnetism and
ideal two- or one- dimensional magnetism is that three- dimensional magnetism deals
with ordered domains, while in low-dimensional magnetism only short-range order can
exist at finite temperature. This is due to an interplay between quantum and thermal
fluctuations which drive the system to a disordered state, and the tendency fo the
system to be in the lowest energy state, which is ordered [3]. For the one-dimensional
systems, both quantum and thermal fluctuations diverge, so even at zero temperature
there is no longer order.

Heat transport by magnetic excitations was originally predicted in 1936 [4].However
it took almost 30 years until the first convincing experimental evidence for magnetic
heat transport by classical spin waves was found in ferromagnetic yttrium-iron-garnet

(YIG). The analysis of the magnetic heat conductivity, would give us valuable infor-
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mation about the excitation and scattering of magnons (e.g. off defects, phonons,
and electrons) as is the case for the well-understood phononic and electronic thermal
conductions. However, most of the early experiments on YIG and other materials,
showed that the magnetic heat conductions was present only at very low tempera-
tures (T' < 10K). The first material that we observed magnetic heat transport at
higher temperatures (I" > 50k), was the one-dimensional quantum antiferromagnet
KCuF3. The intense research on the heat transport of low-dimensional quantum spin
systems, was triggered by the theoretical prediction of dissipationless heat conduction
in one-dimensional antiferromagnetic Heisenberg Chains [5,6] and the discovery of huge
magnetic contributions in the quantum spin ladder material Sr14Cu2404; [7-9]. Until
now, the clearest experimental examples of low dimensional magnetic heat conduction

are found in copper oxides (cuprate) systems.

Particular examples from the wide range of possible spin structures in cuprate
systems are spin arrangements in the geometrical form of chains and the so-called

two-leg ladders. Sketches of such spin arrangements are shown in figure 2.1(a)-(b).

a) Chains

A e S B
b) Two-leg ladders
e S S B i o
=t=b=p=d—t=f=t=}

Figure 2.1: Hlustration of low-dimensional spin structures: a) a spin chain, b) a two-leg

spin ladder.Arrows represent localized S = 1/2 spin. Taken by [2]

Good examples for materials containing S = 1/2 Heisenberg chains as is shown
in figure 2.1(a) are given by the compounds SrCuOs and SroCuQOs, where straight
Cu-O-Cu bonds and hence a strong antiferromagnetic exchange only exist alone one
particular crystallographic direction; the magnetic exchange perpendicular to this di-
rection is much weaker. Low- dimensional quantum spin models are interesting from a
fundamental point of view since they give rise to very peculiar ground state properties
and elementary excitations. These vary strongly from system to system. The elemen-
tary excitations, so-called spinons, are gapless, which means that it costs no energy to
flip a spin, and carry a spin S=1/2. Spinons interact with structural defects and other

quasiparticles, such as phonons, with a certain rate.
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Figure 2.2: Spinons in a spin chain compound. By flipping one spin (middle pic),two

excitations are created,that move outward .Picture taken from [1]

In the (S, Ca, La)14Cu240y4; family of compounds, parallel pairs of such chains are
coupled to each other, producing in straight Cu-O-Cu perpendicular to the chain direc-
tion. This spin ensemble is a so-called two-leg spin ladder, the ladder legs being formed
by the two chains and the ladder rungs arising from the Cu-O-Cu bonds which connect
the chains (figure 2.1(b)). A magnetic excitation (magnon) is created by flipping one
spin so that the two spins in a rung are transformed from a singlet state to a triplet

state. This is shown in figure 2.3.

»
o
S |

Figure 2.3: A magnon in a spin ladder compound. When we flip one spin (middle

picture), an excitation is created so that the two spins on a rung are in a triplet state. This
excitation can move along the ladder in two directions. Movement to the left is shown

(lower picture). Picture taken from [1]

Concerning heat transport, little is known for all these magnetic systems. Often the
attention in theoretical works is focussed on the possibility of ballistic magnetic heat
transport in one-dimensional systems. However, in real materials scattering processes
involving defects and other quasiparticles such as phonons, must play an important

role and render K,y finite. Studying k.4 should provide us further insight into the
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nature of these scattering processes and the dissipation of heat currents.

2.2 Thermal Conductivities of the spin chain
& ladder materials

2.2.1 Thermal Conductivity of the spin chains SrCu0O; &
STQCUOg

Figure 2.4(a) presents the total heat conductivity of SrCuQOs as a function of temper-
ature. It is measured by a conventional steady state method, in which a steady heat
current flows through a brick-like sample, such that the simple equation 2.6 can be
used to extract the thermal conductivity. The c-direction is parallel to the chains and
has a contribution from both phonons and spinons, the a-direction is perpendicular to
the chain and only has phonons. It is seen that along the chain at all temperatures
above T =~ 20K, the spinon contribution to the thermal conductivity is much larger
than the phonon contribution. Furthermore, the phonon contribution is assumed to be
isotropic, making the separation of the two contribution possible.

We can understand the general behaviour of the thermal conductivity by thinking
this way: at low temperature an increase of thermal conductivity with temperature
is seen which is due to the increased amount of heat carriers (phonons, spinons) by
thermal activation. As the amount of heat carriers increases, also the contribution
of Umklapp scattering increases, leading to two processes, therefore giving a peak at
certain temperature.

Figure 2.5(a) presents the total heat conductivity of SroCuOs, measured with the
heat current parallel and perpendicular to the chains in the material. We focus first
on the temperature dependence of the thermal conductivity perpendicular to the spin
chain, k., which is shown in the inset of the figure. Along this direction, the heat
conductivity of this electrically insulating material is purely phononic: As a function of
temperature, it shows a characteristic peak at T' = 22K, and then strongly decreases
upon further raising the temperature. The height of the peak sensitively depends on
the density of impurities in the system, which generate phonon-defect scattering. This
can be clearly inferred by comparing our data for a 4N purity material with that of
2N. For this lower-purity sample the overall magnitude of k. is strongly reduced, as is
expected for typical phonon heat conductors.

The thermal conductivity parallel to the chain, &y, is shown in the main panel of
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figure 2.5(a). kjp exhibits a peak at the same position as observed for k.. However, the
peak is much broader and the overall magnitude of ky is significantly larger than that

of the purely phononic ., which is the signature of a substantial magnetic contribution

in this material.

800

600 |- &

R b o e e §

0 100 200 300
T(K)

0 100 T(K) 200 300

of (b) Magnetic conductivity of

(a) Total  conductivity
SrCuO2

SrCuO4

Figure 2.4: (a) Closed (open) symbols represent conductivity along the c-axis (a-axis),
circles (diamonds) correspond to 4N (2N) purity. Inset: crystal structure of SrCuOs;.
(b) Kimag of STCuO; for different purities. Open sumbols represent low-T' Ky,qq which is
disregarded in the further analysis. The saded areas show the uncertainty of the estimation
of Kmag due to the phononic background. Inset: &, and s, perpendicular to the chain for

both purities. Pictures taken from [4]
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Figure 2.5: (a) Thermal Conductivity of SroCuOs3 parallel to the spin chains along x; for
various purities. Inset: thermal conductivity of SroCuOs3 perpendicular to the spin chains
along k. for 2N and 4N purity. (b) Estimated magnetic thermal conductivity of SroCuOs3
for 4N (circles,squares), 3N (dash-dotted line), and 2N (dashed line) purity.
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The thermal conductivity parallel to the chain is composed of a magnetic and
phononic contribution, sy = Kmag + Kb ph, assuming that b is the axe that is parallel
to the chain. In order to extract the heat conductivity of the spin chain, the phononic
background is approximated as ky pn, & K, since at ¢ axe that is perpendicular to the
chain, the contribution to the heat conductivity is purely phononic. This assumption is
reasonable, because the phononic anisotropy between x, and k. is small. Therefore xy, py,
is not expected to be much different than these. So, the spinon heat conductivity that is

shown in figure 2.4(b) and figure 2.5(b), is calculated by the expression Kmag = Kb — Ke.

2.2.2 Thermal Conductivity of the spin ladders CagLasCus4041
& ST14CU24041

The thermal conductivity of CagLasCu24041 & Sr14Cu24041 as a function of temper-
ature, measured by a conventional steady state method, is shown in figures 2.6 and 2.7
. It is seen in both figures, that along the ladder at every temperature above T' > 50K
the magnon contribution to the thermal conductivity is much larger than the phonon
contribution, making the separation of the two contributions possible (again assuming
that the phonon contribution is isotropic). Because the peak in k. lies at lower tem-
perature for Sr14Cu24041, it is likely that the scattering processes are stronger and the
mean free path somewhat shorter.

Comparing the spin ladders to the spin chain, it is seen that the magnetic contri-
bution to the heat transport is higher at room temperature for the ladders, especially
for CagLasCu94041. Therefore, for practical applications these materials are more
promising. The spin chain however shows a much higher peak value of the thermal
conductivity, which lies unfortunately at too low temperature to be interesting for
most applications. The phonon thermal conductivity peaks at low temperature (= 30

Kelvin) and is very low at room temperature.

2.3 Thermal transport in Spin Chains &
Spin Ladders

In this chapter, we 1l present two theoretical descriptions of heat transport. The
first one, is the well known diffusion model, which can be used for single particle

macroscopic diffusive process and multi-particle diffusive processes when particles are

10
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Figure 2.6: Thermal conductivity of the spin ladder compound CagLasCu4041 as a
function of temperature. The c-direction is parallel to the ladder and has a contribution
from both phonons and magnons. The a-direction and b-direction are perpendicular to the

ladder and only have a phonon contribution.
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Figure 2.7: (a) Thermal conductivities of Sr14Cu2404; along all three crystallographic
directions, (b) Kmag for Sr14Cu24041 & CagLasCu24041 along the ladder. Figure taken
from [5]

in thermal equilibrium. The second one, is a macroscopic diffusion model, where he have
two different heat carriers that have different thermal diffusivities, and are converted

into one another at certain rate.

2.3.1 One-particle one-dimensional heat conduction equation

In this case, the equation that describes the heat transport of one heat carrier in 1D is:

or o*T
where
K
D= E (2.2)

11



2. Spin Chains & Spin Ladders

is called the thermal diffusion constant or thermal diffusivity (m?/s). Thermal diffu-
sicity is given from Equation [2.2) where, x is the thermal conductivity (W/(m- K)), p is
the density (Kg/m?), c is the specific heat capacity (J/(Kg- K)). However, the ther-
mal properties k, p and ¢ can depend on position and temperature.Assuming that,in
general, thermal diffusivity can depend on position and temperature, the heat equation
has to be modified to

oT 0 oT
rri %(D(ﬂ%T)%)‘

If D is a function of position only, an analytical solution exists for a variety of initial

(2.3)

and boundary conditions. If D depends on temperature, the situation becomes more

complex and a full numerical analysis has to be performed.

2.3.1.1 Steady State Solution

If we consider a linear, steady flow of one type of heat carrier in a solid bound by a pair
of parallel planes at x = 0 and x = L, the one dimensional diffusion equation becomes
d*T dT T, — Tr

— =0 = — =constant = ———— 2.4
dz? dx L (24)
where T and T}, are the temperatures at the surfaces x = 0 and © = L, respectively.

The equation that gives us the heat flux J is

dT
J=—k— 2.5
K (2.5)
and in our case becomes
T, —Tgr
= _g= Tt 2.
J K 7 (2.6)

This relation is analogous to Ohm’s law for the steady flow of electrical current. So,
if we heat our sample homogenously over a small surface at x = 0 , and a heat sink is
connected to the small surface at x = L, by measuring the temperature difference at

the two surfaces, x can directly be extracted.

2.3.1.2 Dynamic solution for flash method

In most of the experiments, the thermal conductivity is determined by measuring the

temperature change at a surface as a function of time. If we consider a sample with

12



2.3 Thermal transport in Spin Chains & Spin Ladders

two parallel surfaces at x = 0 and z = L with initial temperature distribution T'(z,t),

the temperature distribution at later time ¢ is given by [1]

2Dt
/TmOdﬂ:—}— Zexp( )XCOS@/ T:cO)cosTd:c

(2.7)
where D is the diffusion constant. If we now assume that we heat the front surface
(x = 0) with a laser pulse of energy density ), which is instantaneously and uniformly

absorbed in a small depth u. Taking these as notice, the initial conditions are given by

T(x,0)=Q/pCufor 0 <z <p
T(x,0) =0 for p<z<L.

Using these initial conditions, equation [2.7] becomes

—n2772

{1 I Z e sm(mr,u/L)

T
(z,1) = pC’,u p nmwpl

x exp( Dt)}, (2.8)

where p is the density and C' is the heat capacity. In most of times, only a few (like
20) terms are needed. If we now assume that u is very small for opaque materials,
then sin(nmp/L) ~ nmu/L. At the back surface, where © = L, the temperature can be

expressed as

2.2
L2

Ty (L, t) = Ty [1 42 Z mexp(— Dt)} (2.9)

where Tj(L,t) is the temperature at the back surface at time ¢, and T, = Q/(pCL) is
the maximum temperature at the back surface. This is the so-called Parker’s formula,
and it is only valid if there is just one type of heat carrier or if the various heat carriers

are in thermal equilibrium.

2.3.2 Two particle one-dimensional heat conduction equation

In order to fully understand the thermal transport in the spin ladder and chain materi-
als, the two-particle origin of the transport has to be taken into account. An important
point that has to be realized, is that in experiments to determine the thermal con-
ductivity, only the phonon temperature is directly accessible. Te temperature sensor,
measures the temperature of the sample surface from the strength of the transmitted

lattice vibrations. Furthermore, the heating processes mainly creates phonons, since

13



2. Spin Chains & Spin Ladders

its more efficient than creating magnons. In the case that magnons don’t interact with
phonons, the only way the directly excited magnons to contribute to the measured
temperature is by inelastic scattering at the surface, which is a weak process. But
if there is interaction between magnons and phonons and the two carriers are not in
equilibrium, the thermal conductivity measured in an experiment is not equal to the
sum of thermal conductivities of the two carriers, as would be the case in a thermal
equilibrium [12].

Lets suppose that we have a solid, that two types of heat carriers exist, which are
not in thermal equilibrium initially and they travel diffusively through the solid. Then

the coupled heat equations for the two heat carriers are given by

o1, 0*T;
B :DIW_QI(TI—Tm)‘i‘P(”J) (2.10)
Ty, 0*Ty,
ot me = gm(Tm = T1) (2.11)
where g; = Em , Om = “ and ¢ior = ¢ + ¢
Ctot Tmp Ctot Tmp

where [ stands for the lattice excitations (phonons) and m for the magnetic excitations
(magnons). P(z) is the rate at which phonons are created in the case we have a heat
source, T is the thermalization time between lattice and magnetic excitations and g
is the conversion rate between the two types of particles.

In the case that thermal diffusivity is a function of temperature, the former equa-

tions become

oT; _ 0 oT;
o ?(Dl(ﬂ)%) —aq(T; = Tn) + P(x) (2.12)
0T, _ 0 0T,

2.3.2.1 Steady State Solution

Steady state method, is used in most common experimental configurations, in which
we put a steady heat flow through a brick-shaped sample along the long axis. For this
configuration, the effective thermal conductivity k. and the temperature profiles of
magnon and phonon systems, are analyzed by Sanders and Walton [2], assuming that
thermal conductivities are constants. In a thermally isolated system, a total heat flux

Q is supplied at x = —L/2 and absorbed at * = +L/2. In general, the temperature

14



2.3 Thermal transport in Spin Chains & Spin Ladders

of the phonon system 7j(z) is different from the magnon system 7,,(x) for every .
We can find that the contribution of a small length dx to the heat flux in the magnon
system is

dP(z) c¢rem Ti(x) — Th(x)

dQm(x) = 1 o - dx (2.14)

where P is the heating power, A is the surface area, and T; and T, are the phonons’
and magnons’ temperatures, as mentioned above. We have to repeat that all the heat
is coming from the phonon system, since no magnons are inserted directly.

The total magnon heat flux at any point x is given by
ccm 1 @

— [T;(z") — T ("))’ (2.15)
CT Tmp J—L/2

Qm(z) =
In steady state, the magnon conductivity is also given by the heat flux equation

chw::—nmd?;f”. (2.16)

If we combine and differentiate the former two equations, we find a second-order dif-

ferential equation for the magnon system

d*Tn(x) cem 1
dx? cr EmTmp

[Ty(x) — T ()] = 0. (2.17)

The total heat flux @ is divided between the magnons and phonons according to the

following expression

dT;(zx) dT ()

Q= Qi+ Q= —r 5 (2.18)

From the above equation, we see that Tj(x) is related to T, ()

dT;(zx) Q  EmdTy(z)
=_x _Im>Zim\ 2.19
dx Kl K, dz ( )

and by solving the above equation with the boundary condition that at the center of the
sample (z = 0), the phonon and magnon temperatures are both equal to the average

sample temperature Ty, we get

KT Q  Km
T =—Ty— -z ——T, 2.20
o) = 201y = Lo B ), (220)
where k7 = K; + K. By substituting equation (2.20f) in equation (2.17)), we find
A>T () 2 Q
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2. Spin Chains & Spin Ladders

where .

Qom RT 2 (2.22)
CT KiEm Tmp

Equation (2.21)) is solved with the boundary condition of equal 7; and T, in the center

of the sample, and the requirement that heat flux only enters or leaves the sample

A2 =

through the phonon system, therefore the magnon heat flux must be zero at both ends.

Taking these boundary conditions into notice, we find the magnon temperature

Q sinh Ax

T, =Ty —z — —5-—. 2.23

m(2) KT (x A cosh %AL) ( )

By substituting this equation into equation ([2.20)), we find the expression for phonon
temperature

Q Km sinh Az
T =Ty—- —(r+ ——F——). 2.24
i(2) 0 KT (:1: Kk; A cosh %AL> ( )

The parameter A, as we see from equation [2.22] is related to the coupling between
magnons and phonons. If they are perfectly coupled, then 7, = 0 and A = co. In
this limit, the magnons’ and the phonons’ temperatures are the same. In the other
limit where 7,,,, = 0o and A = 0, the magnon temperature is constant over the whole
interbal and equal to Tj.

Now,the measured effective thermal conductivity xeyy is given by
Keff = —QL/AT, (2.25)

which, with AT; = T; — Ty from equation is given by

Mtanh;AL)l

2.26
K] %AL ( )

Keff = (ki + Km)(l +

As for the dynamic solution for the flash method when two heat carriers exist, there

is an analytical formula similar to Parker’s that takes into account the thermalization
time, but we 1l not mention it, since in this work a full numerical analysis is being

perfomed, that gives us the temperatures of magnons and phonons.
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Thermal Rectification

Thermal rectification is a phenomenon in which thermal transport along a specific
axis is dependent upon the sign of the temperature gradient or heat current. This
phenomenon, offers improved thermal management of electronics as size scales continue
to decrease and new technologies emerge by having directions of preferred thermal
transport. For most applications where thermally rectifying materials could be of use
they would need to exhibit one direction with high thermal conductivity to allow for
efficient transport of heat from heat generating components to a sink and one direction
with low conductivity to insulate the temperature and heat flux sensitive components.
In the process of understanding and developing these materials, multiple mechanisms
have been found which produce thermally rectifying behaviour. The one mechanism
that we 1l consider is when we have two dissimilar materials at a contact which have

difference in temperature dependence of thermal conductivity.

A thermal rectifier is a device in which heat flows in a forward direction while it
can hardly flow in the opposite direction as an analog of the diode. Devices that are
composed of materials that are capable of transporting heat along a specific path with
extremely high transfer rates (high conductivity) while at the same time insulating the
components along the same path that are sensitive, are the ideal candidate materials

for future electronic cooling applications.

We 1l now study, under which circumstances we can observe the phenomenon of

thermal rectification. It is pretty obvious that if we have only one material, which

17



3. Thermal Rectification

has a constant thermal conductivity « or its thermal conductivity has spatial or tem-
perature dependence k(x,T'), we 1l not observe the rectification phenomenon since the
temperature will propagate in exact the same way, regardless the position where we
put the heat pulse. So, the setup that we 1l study is the one that we have two bounded
materials, where each one has different thermal conductivity.

The cases that we are interested in are two: the static thermal rectification and
the dynamic thermal rectification. The main difference between these two cases is that
in the static case, we contact our sample to two heat baths (one hot and one colder)
measuring the heat current, and after that we reverse the order of the heat baths and
we measure the heat current again, when at the dynamic case we put a heat pulse at the
left surface of our material and measure the temperature change at the right surface
and then via versa. The crucial point in order to observe the thermal rectification
phenomenon is that the heat fluxes (in the static case) and the temperature change (in
the dynamic case) must differ when we reverse the order of the heat baths (static case)

or put the heat pulse at opposite surfaces (dynamic case).

3.1 Static Rectification

As we mentioned earlier, our material is composed of two other materials that are
bounded together, and each one has different thermal conductivity. We assume that
each material, has constant thermal conductivity and we 1l study if it’s possible to

observe the phenomenon of thermal rectification under this condition.

1=0 ®=L

K1 K2

Th Tm Te

J

We 1l calculate the heat flux J, by integrating the Heat Flux equation:

dr

—Iia.

Jy = (3.1)

18



3.1 Static Rectification

We first integrate the heat flux equation from x = 0 to z = L, and we get:

x=L/2 Tm
/ erx:—/ k1dT(z) =
z=0 Th

Tm
= J L/2 = —/il(Tm — Th)- (32)

J'r L/2 = —/ilT
Th

By integrating the flux equation from x = L/2 to x = L, we get :
Jr L)2 = —ko(T, — Tpy) (3.3)

and by abstracting Equation (3.3 from Equation (3.2)) we can get an expression for

the interface’s temperature:
JrL)2 — J.L)2 = —k1(Tyy — Th) + ko (T — Tp) =

JTL/Q — J,«L/Q == —/ﬂ(Tm - Th) + HQ(TC — Tm) =

K11y + kT
K1+ Ky
If we subtract Equation (3.2) and Equation (3.3)),we can get the final expression that

gives us the heat current J,:

T,, = (3.4)

JoL)2 4 J,L)2 = J.L = —ky (T — Tp) — kia(Te — T) =

JrL = 81Ty, — kol — k1T, + kT, (3.5)
and by taking Equation (3.4]) into account, Equation (3.5)) becomes:

k1T, + k2T Yk k1Th, + roTe N

JL:/-ilTh—IQQT—Kul 2
" ‘ K1+ K2 K1+ K2

JT»L(Hl + HQ) = Iﬁ;l(lﬂ + KJQ)Th — fig(lﬂ + RQ)TC — K1 (IﬂTh + K/QTC) + Kg(lilTh + KQTC) =
JTL(Iﬂ + /12) = H%Th + Kk1koTy, — K1k T, — E%TC — H%Th — K1koT. 4+ K1kaTy, + H%Tc =

N 2&1&2 (Th — Tc)

Ir = L (k1 + k2) (36)

If we now reverse the order of the heat baths, like is shown in the following figure,

and do the same calculations as before in order to find Jy we get:
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3. Thermal Rectification

=0 %=L
K1 K2
Tc T Th
J
f

_ 2/11%2 (Th — TC)

I —
f L-(Hl—i-/ﬁ}Q)

= [J¢l = |Jr]. (3.7)
So, we conclude that in the case that the two thermal conductivities are different but
constants, we don’t observe any difference in the calculated heat currents, which means
that we don’t have rectification. In the next section, we 1l study the case that the
thermal conductivities have temperature dependence, and we Il try to conclude if we

can achieve thermal rectification in this case.

3.2 Dynamic Rectification

In this subsection we 1l try to conclude under which circumstances we can achieve
dynamic thermal rectification. In this case, we have our material and we put a heat
pulse at the left surface and we measure the temperature change at the right surface,
and via versa. If we observe difference in the two measured temperatures (one when we
put the heat pulse at the left surface, and one when we put at the right) then we have
achieved dynamic thermal rectification. In order to show which are the circumstances
in order to achieve dynamic thermal rectification, we have to introduce the concept of
"Reciprocity of Green’s function".

The phenomenon of reciprocity, which is known in physics, also occurs in the case
of heat propagation in a solid. To be more specific, if the heat source is at point 1 and
at point 2 causes a temperature change AT, then when the source is shifted to point 2,
at point 1 there occurs the same change in temperature AT. In this section , we want
to study and conclude what form must the diffusion coefficient have in order to get a

different temperature change AT when we shift the heat source from point 1 to point
2.
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3.2 Dynamic Rectification

First, we assume that our diffusion coefficient has only spatial dependence and it’s

independent of temperature, so the diffusion equation becomes:

oT(x,t) 0 OT (x,t)
If we suppose that temperature has the following form:
T(z,t) = eMT(z) (3.9)
then, Equation [3.§ becomes
0 OT(z,t), |
%(D(m‘) e ) =AeMT(z) =
LT(z,t) = \T'(z,1). (3.10)
This is a Sturm-Liouville eigenvalue problem, where the differential operator has the
form: (@) )
d d dD(x) d d
= — —) = — —. 1
L dx (D(w)dx) dz dx + D(@) dz? (3.11)

This differential operator is linear and second order.We will now check if this operator

is self-adjoint:

Y] de = F@D()g (2)

titg) = [ T D@ ' [ FEID@ @) 312)

and similarly we get

R
(5.0 = [ (D@ D) g(x) dr = D) Fg()

a

b
_ / D) f(@)g () de. (3.13)

We now calculate the following expression,

(f.Lg) — (Lf.g) = F@D(@)d ()|

a

- b
- D@)f@)g(x)| =

= f(b)D(b)g'(b) — f(a)D(a)g'(a) — D(b)f'(b)g(b) + D(a)f'(a)g(a) =
(

=D®)[f(0)g'(0) = f'(0)g()] — D(a)[f(a)g'(a) = f(a)g(a)]. (3.14)

Assuming that functions f, g obey the same boundary conditions (mixed Dirichlet-

Neumann):

caf(a) +dof'(a) =0 cof(a) +dof'(a) =0 (3.15)
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3. Thermal Rectification

cag(a) +dag'(a) =0 (3.16)

we Ccan prove

f'(a)g(a) — f(a)g'(a) = 0. (3.17)
Similarly we get

F/()g(b) — F(b)g'(b) = 0. (3.18)
After these results, Equation becomes

(fiLg) —(Lf,g9) =0=(f,Lg) = (Lf,g) (3.19)

which means that operator L is self-adjoint on Hilbert space = L is a Sturm-Liouville
operator.

Since operator L is self-adjoint, we can check the reciprocity and the symmetry of
the Green’s function. We use the Green’s identity in 1D for the ODE with operators

in S-L form:

L= 2 (o)) + alo),
which is: o
(u, Lv) — (Lu,v) = [p(:c)(ﬂ% - v%)]z (3.20)

which is equal to zero when L is a self adjoint operator, as we showed earlier.

We now take v = G(z, z1) and u = G(z, z2), which both satisfy boundary conditions
of the form of Equation Furthermore , since Lv = §(z — x1), we use Green’s
identity and we get:

(G(x,x9), LG(z,x1)) — (LG(z,x2), G(z,21)) =

—/ G(x,9) LG (z,x1) — LG(z,22)G(x,21)]dx = 0 &

<:>/ (,22)0(x — 21) — LG (2, 22)G(z,21)]dz = 0 &

& /b G(z,x2)0(x — x1)dx = /b LG(z,22)G(z, x1)dx. (3.21)

Therefore, from the sifting property of the Dirac function, we get:
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3.2 Dynamic Rectification

b b
G(xl,xg):/ LG(:U,xg)G(x,wl)d;r:/ LG(x,22)G(x,x1)dx =

= /b (5($ — 1:2) = G(332,x1) = G(:Cg,l‘l) A

=4 G($1,JI2) = G(xg,.%‘l). (3.22)

Physically, the above result says that the response at z; due to a concentrated source
at xo is the same as the response at x5 due to a concentrated source at x1. Of course,
we would have concluded to the same result if the Diffusion coefficient was a constant.

Note that, this is all reliant on the fact that the operator is fully self-adjoint.If the
given problem is self-adjoint, the operators L and L coincide. In this case the Green’s
function G of the adjoint problem must coincide with G since the solution of the given
differential equation is unique and allows the existence of a single Green’s function only.

Concluding, we just showed that when the diffusion equation is linear, shifting the
heat source from point 1 to point 2, gives us the same temperature change AT at points
2 and 1 respectively. So if we want to see different temperature change when we shift
the heat source, the differential operator (Equation must be non-linear, which is
achieved when the diffusion coefficient is temperature dependent.

Assuming that the diffusion coefficient has the following form:
D(T) = Dy +nT (3.23)

the differential operator (Equation [3.11]) becomes:

d d dD(T) d d?
b _ dD(T)

L:@( ()@)— e dr D(T)w

(3.24)

which is clearly a non-linear operator. So our problem is not self-adjoint anymore,

which leads us to two different Green’s functions that do not coincide,

G(.’El,l’Q) 7& G(xg,:rl). (3.25)

The above result says that the response at x; due to a concentrated source at xo is

different as the response at zs due to a concentrated source at x.
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Static Thermal Rectification

In the previous chapter we showed that if our two bounded materials have constant
thermal conductivities, then we can’t observe the phenomenon of thermal rectification.
So, our next move is to study if we 1l achieve thermal rectification in the case where
our two materials’ thermal conductivities are not constants, but they have dependence

on temperature.

4.1 Static Thermal Rectification

We demonstrate the thermal rectification in a device made of two magnetic materials,
one is spin chain material and the other is spin ladder (we 1l examine several cases of
different materials). We consider the heat current density J through the bar made of
materials A and B bonded at the center. J is described by Fourier’s law,
dT'(z)

dx

where k represents the thermal conductivity as a function of position T'(x). Here,

J = —r(T(x)) (4.1)

we suppose that the material A exhibits a high x at low temperature 17, and a rel-
atively low k at high temperature Ty, while the material B displays the opposite
property. Then, we provide two heat baths with T and 77,. When the materials A and
B are connected to the heat baths with 77, and T}y, respectively, a total thermal con-
ductance of the sample should be relatively high leading to a high heat current density
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4. Static Thermal Rectification

Jy through Eq. (we call this direction the forward direction, see the lower left panel

in figure 4.1). On the other hand, if the boundary conditions are reversed, the total

thermal conductance becomes smaller than the other one, resulting in a smaller heat

current density J, than Jy. Thus, the rectifying coefficient defined by the ratio of |J¢|

to |J,,

_ 1yl
| Jr|”

should be above one. If its value is one, then the values of the heat fluxes are equal

R (4.2)

and no rectification occurs.

K (WimK)

T I Tw Ty . T
x=0 ﬁ;:

Figure 4.1: Top panels: Schematic figures of the thermal conductivity that is required
for thermal rectification. Bottom panels: conceptual diagrams of the thermal rectification
in bonded materials. Picture taken from [10]

We 1l examine 2 special cases of thermal conductivity’s form: the first one is when

the thermal conductivity has linear dependence of temperature and the other is when

has quadratic dependence of temperature.
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4.1 Static Thermal Rectification

4.1.1 Thermal Conductivity - Linear Form

At this point, we assume that material’s A thermal conductivity can be written as
k1 = k10 + AT — Tp) (4.3)

and material’s B as
Ky = koo + u(T —Tp), (4.4)

where K19, K20, A, 1t and Ty are constants. These constants have to be found from
the figures that give us the temperature dependence of the thermal conductivity of
these materials.More specifically, assume the case of Equation [£.3] x1¢ is the thermal
conductivity of the sample when T = Ty, where Ty is the initial temperature of our
material,before the connection with the heat baths. When we talk about material
A,we are referring to a spin chain material and when we talk about material B, we are
referring to a spin ladder material.

The main point is to find analytical expressions for J; and J,, as described before,
when thermal conductivity is not constant but depends from temperature. The next
step after this one is to calculate the Rectification factor R, which was represented in
Equation [£.2l We now introduce T, which is the temperature at the centre of our
bounded material and L which of course is the length of our bounded material. We 11

first find J; and then we 1l do the analogous calculations to find .J,.
So, for J, from Eq. (4.1]) we get

Jpdr = —k(T) T(z). (4.5)

Next step is to integrate Equation from z = 0 to x = L, but to simplify the
calculations we 1l split this integration into 2 parts. First, we 1l integrate from x = 0
to x = L/2 (which is the center of our material where temperature is 7},) and then we
11 do a second integration from x = L/2 to x = L. After these two steps, we 1l have
2 equations with 2 unknown parameters, J,. and T;,.We 1l then solve them to find 7T,
and after that step, we 1l get the final expression for J,. From z = 0 to z = L/2 we
have the material A, so we 1l use k1 (Equation[4.3)) as the thermal conductivity (7)) in
Equation Similarly, we 1l use ko (Equation as k(T) when we 1l integrate from
x=1L/2tox=L.

So, our first move is to integrate Equation from x = 0 to z = L/2, taking notice
that since we examine the forward direction, the hot heat bath T} is at x = 0 and the
cold heat bath is at x = L,
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4. Static Thermal Rectification

1=0 ®=L
K1 K2
Th Tm Te
J
"

e=L/2 Trm
/ T, dr = — / k1 (T) dT(z) =

=0 T,
T Tm Tm
T, LJ2 = —/ (k10 + N(T — Ty)) dT(z) = —m/ aT(@)=A [ (T=To)dT(z) =
T, T, T,
m Tm T
J.L)2=—k1oT| —=T?  +XLT| =
T, T,
A 2 2
Ir L)2 = —k10(Tm = Th) + ATo(Tin — Tn) — 5 (Tr = Ti). (4.6)

If we now integrate Equation from x = L/2 to x = L, we get

=L Te
/ Jodo=— [ ke(T) dT(z) >
z=L/2 T

Te
J, L)2 = —/T (k20 + AT — Tp)) dT(z) =

Jr L)2 = —koo(Ty — Tp) + pTo(Ts — Tpn) — %(TQ —T2). (4.7)

C

Our next move is to abstract Equation from Equation (4.6

A
JoL)2 — JL/2 = —k10(Trm — Th) + Ao (T, — T) — §(T,3L )

+ H2O(Tc - Tm) - MTO(TC - Tm) + %(TE - TT?@) =

A
— k10(Trm — Th) + Mo (Ty — Tp) — §(T31 —T3)

+ koo(Te — Tpn) — pTo(Te — Tpp) + (T2 ~T2) =0 =

N =
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4.1 Static Thermal Rectification

1
- 5(# + NT2 + (—K10 — Ko + ATy + pT0) T+
A
+ (—)\T() Tyn — pIoT,. + ET}% + k10T + chQ + /{20TC) = 0. (4.8)

The Equation [4.§] can be simplified to the following form

T2 + BT+~ =0, (4.9)
where
S+ )
oa=—=
9 1%
B = —kK19 — koo + N1y + p1p
_ NTn T A 2 M2
Y= odp — ,U,T()Tc + §Th + Iil()Th + §Tc + /ig()Tc.

Equation / is a quadratic equation and it’s roots are given by

_ P+ V2'i2 — 4oy (4.10)

Tm:l:

Every parameter that is in the coefficients a, 8 and v is known, so it is very easy to
extract Tp,4 and Tp,— from Equation .10} As we 1l see later, when we 1l put the real
values of these parameters in Equation [£.10] only one of the two values of T, will be
acceptable, since the second one is either bigger than T} or smaller than 7. T,, is the
temperature at the center of our bounded material, so it’s pretty logical to have a value
between our two heat baths 73, and 1.

Next step after finding the right 7}, value, is to find the final expression for J.. By
adding the corresponding sides of Equations and [4.7] together, we form the following

equation

A
JrL = —k10(To — Th) + Mo (T — Th,) — §(T,31 —T7)
— ia0(Te = Tn) + WIO(Te = Top) = S(T2 = T2), (4.11)
which is the final expression that gives us J,., since all the parameters are known.
We 1l now find J; using the previous method, but now we integrate from x = L to
x = 0, taking notice that the heat baths are the same, in reversed order (the hot heat
bath T}, is at © = L and the cold heat bath is at = = 0).
So,by integrating Eq. (4.5)) from x = L to x = L/2, we get:
I

Jt L)2 = —koo(Tyy — Th) + pTo(Tr — Ty) — E(T;i, —TP). (4.12)
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4. Static Thermal Rectification

=0 %=L
K1 K2
Tc T Th
J
f

By integrating Equation from x = L/2 to x = 0, we get

A
Jp L)2 = —k10(Te — Trr) + ATo(Te — T ) — 5(TC2 —T2)). (4.13)
If we abstract Equation [£.13] from Equation [£.12] we get the expression that gives us
Th:
1 2
— i(u + )\)Tm/ + (—Iﬂo — Koo + Ao + ,UTO)Tm’
A
+ (=ATo Ty — uToTh + 5Tf + k0T + gT,f + hooTh) = 0. (4.14)
The Equation can be simplified to the following form

T2, + B'Th ++' =0, (4.15)
where .
o = —i(ﬂ +A)

B = —k10 — K20 + NTp + pTo

A
’y' =Nl T, — puIoTy + §T02 + k10T, + %T;? + KkooTp,.

Equation / is a quadratic equation and its roots are given by

_ /Iy

20/

Ty s (4.16)

Every parameter that is in the coefficients o/, 3" and +/ is known, so it is very easy to
extract T,y and T,,,,_ from Equation[£.16}] If we put the real values of these parameters
in Equation [£.16] only one of the two values of T,,» will be acceptable, since the second
one is either bigger than T} or smaller than T,.. T, is the temperature at the center of

our bounded material, so it’s pretty logical to have a value between our two heat baths
Ty, and T..
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4.1 Static Thermal Rectification

Next step and final step after finding the right 7,/ value, is to find the final expres-
sion for J;. By adding the corresponding sides of Equations and together, we

form the following equation
JL = —rao(Tpy — Th) + o (T — Th) — g(T%, — T2
A
— k10(Te — Tpy) + NTo(Te — Trr) — §(TC2 —T2)), (4.17)

which is the final expression that gives us Jy, since all the parameters are known.
Finally, we can calculate the Rectification factor, Equation [4.2] since we got the
expressions for heat current for both directions (Equations & 4.17).

4.1.2 Thermal Conductivity - Linear & Quadratic Form

We consider another special case, where material A’s thermal conductivity has linear
dependence on temperature (same as before), but material B’s thermal conductivity
has quadratic dependence on temperature. More specifically, the thermal conductivities

have the following forms:

K1 = K19 + /\(T — To) (4.18)

and material’s B as
Ko = Koo + (T — Tp)?, (4.19)

where k19, Kog, A, u and Ty are known constants.

We are following the same formalism as the one we used in the previous paragraph,
wanting to export analytical expressions for J; (heat pulse propagates in forward di-
rection) and J, (heat pulse propagates in backward direction) in order to calculate the
Rectification coefficient R, Equation [4.2}

So,we 1l start with the forward direction, integrating Equation from x = 0 to
x = L/2, where we can use the result of Equation

A
Jr L)2 = —k10(Ty — Tp) + MNTo(Tr, — Tp,) — §(Tn{ —T2). (4.20)

Our next step is to integrate Equation from z = L/2 to x = L. In that case, we
1l obtain the same result as Equation

=L Te
/ Ty dr = — / ko(T) dT(z) =
z=L/2 m
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4. Static Thermal Rectification

=L

x=0
K1 K2
Th Tm Te
—>
X
Te Te
JTL/Q:—/T (ko + (T —Tp)?) dT (x) = —kao . dT (x u/ (T —Tp)?dT(z) =
Te Te

J.L)2 = —kag dT(z) — (T? = 2T Ty + Tp?) dT(z) =
m Tm
T

=

J, L2 = —KQOT‘ T3‘T by ] CWTT

m

(T T3) + ,UJTO(T — T m) — MTO2 (T, — Ton). (4.21)

W=

JT L/2 = —KZQ()(TC - Tm) -

We now abstract Equation from Equation [4.20]in order to get an expression,where

our only unknown parameter is T,,,

A
JoL)2 — J.L)2 = —k10(Ty — T1) + ANTo(Tyn — T) — §(T31 —T3)

+/<;20(T0—Tm)+§(TC3—T3) pTo(T2 = T2) + pT(T, — Tpy) =

p

— £+ (uTo — )T + (=ka0 + My = pI — ko) T
A

+ (k1oTh + %Tf’ — WIVT? + WIS T, + kT + ST —

ATOTy) = 0. (4.22)

Equation can be rewritten to the simpler form

oT3 + BT + Ty +36=0 (4.23)

where
K
3
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4.1 Static Thermal Rectification

A

BZMTO—§

v = —kio + Ao — pT§ — kao

e
3

Equation is a cubic equation that has 3 roots. When we find the 3 roots, we keep

A
6 = k1oTh + =T2 — pToT? + pI3T, + kooTe + §T,§ — \ToTh,.

the one that satisfies the following inequality, T}, > T}, > T.. After finding the value of
T, our final move for obtaining the expression which gives us the value of the forward
heat current, is to subtract Equation and Equation getting

A
Jr - L =—k10(Tm — Th) + \To(Tp — Th) — 5(T,i —T3)
— (T = Ton) = E(T3 — T3) + wTo(T2 = T2) — WT3(T ~ Trn). - (420
We obtained the expression for J,. and now we Il find the corresponding expression
for Jy, where the heat pulse propagates forward.

In order to find the J¢, we set our heat baths in reversed order (7}, is at = L and
T. is at = 0) and we integrate Equation from z = L to x = 0.

x=0 %=L
K1 K2
Te T Th
J
f

Our first move is to integrate from x = L to x = L/2 and the result we 1l get, is the
same as Equation [£.2T}

Jp L)2 = —koo(Trr — Tp) — %(TE;L, — T3) + uTo(T2, — T?) — pTE (T — Tp).  (4.25)

We continue with the integration from z = L/2 to = 0, which will have the same
result as Equation

A
Jy L)2 = —k10(Te — Trr) + ATo(Te — Tyr) — 5(Tc2 —T2)). (4.26)
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4. Static Thermal Rectification

We now abstract Equation from Equation in order to get an expression,where

our only unknown parameter is 7T,

JrL)2 = JfL)2 = —rkigo(Tpy — Th) — g(Tg/ — T3 + pTo (T2, — T2) — pT2 (T — Th)

A
+ k1o(Te = Tow) = MTo(Te = Tor) + (T2 = T3)) =

_HK

A
3T,i, + (uTy — §)T31, + (=Ko + ATy — pTE — k10) Ty

A
+ (kooTh + %T,f — WToT? + pT3Ty, + k0T + 5Tf — MpT,) =0. (4.27)

Equation [£:22] can be rewritten to the simpler form

T3, + BT ++/ Ty + 6 =0 (4.28)

where

A
5/:MT0—§

v = —koo + Mo — pT¢ — k1o
A
5" = kaoTh + %T,f — WV} + WI§ Ty + ka0 T+ 512 = NI L.

Equation is a cubic equation that has 3 roots. When we find the 3 roots, we
keep the one that satisfies the following inequality, T, > 15,y > T.. After finding the
value of T,,/, our final move for obtaining the expression which gives us the value of
the backward heat current, is to subtract Equation and Equation getting:

Jp L= —kigg(Th — Th) — %(T;j;, —T3) + puTo(T2, — T2) — pT2(Tyw — Th)

10T~ T) + ATo(Te — Ty) = S(T2 ~T2,). (4.29)

Using Equation we can calculate the Rectification factor, since we got the expres-
sions for heat current for both directions (Equations & 4.29).
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4.2 Experimental Static Rectification

4.2 Experimental Static Rectification

We 1l now put real values in the above equations and we 1l calculate the rectification

that some bounded spin chain-ladder materials present.

4.2.1 case 1: SryCuO;3 - CagLasCuesO41 compound

The first case that we 1l study, is the SroCuO3 (Spin chain - Material A) - C'ag LasCu24041
(Spin ladder - Material B) bounded material.

140 |-0)
500 “,\ L
120 |-
400f g
. tfe 100 |
EE . _‘_A = K
“5 300 _‘M 80 - €
v i = 60 4
i O L L3 CaCu O
. 0 % dk aF
100 4 20k i
'-5,__‘_.__ L y_—phonon fit K;.
) 0 ST STeRtasadauadasd sl an
% 100 200 300 0 100 200
T(K) Temperature (K)
(a) Total thermal conductivity of (b) Total thermal conductivity of
STQCUO:j CagLa5C’uz4O41

Figure 4.2: The blue boxes in the above figures, show us the range of temperatures that
we 1l take into account when we 1l calculate the thermal rectification. The left surface of
each box, corresponds to the low temperature heat bath T, = 75 K and the right surface
the high temperature heat bath 73, = 125 K.

As we see in figure 4.2, these two materials fulfil the 2 criteria that we mentioned
above. Material A (the spin chain) exhibits a high x at low temperatures (near the Tt)
and low k at high temperatures (near T}), when material B exhibits low x near T, and
high x near Tj. From the above figure, we can extract the thermal conductivity for

cach material, in the form of Equations [4.2] and [£.3]So, we get:

w

w

(4.30)
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4. Static Thermal Rectification

w
m K?’

where Ty = 100 K for both materials. Now, since both materials have thermal conduc-

w
=63—— +1.7- (T — T, 4.31
K2 63mK+ 7 0) (4.31)

tivities that have linear dependence on temperature, we can use the results and
.17 in order to calculate the two heat currents, J. and Jy. After this calculation, we

can easily extract the rectification factor from Equation In order to calculate J,

w
from Equation [4.11} we have to find T3, first. Taking into account that k19 = 135——,

1% 1% mi
Koo = 63@, A = —2W and n = +17m we get:
1 w
=—= A) =015 ——=
a 2(u + ) =0.15 1
w
B = —ki0 — koo + ATo + pTo = =228 —
m K
A w
Y= =Ty Ty — WL+ 5T + maoTh + ng + ool = 23006.25 —.
m
By putting «, 8 and « into equation we get Ty and Th,—:
—B £ VB —day
Tt = =
2c0
Ty = 1411.33 K, (4.32)
Tm— = 108.67 K. (4.33)

Only T;,,— is acceptable since T, < T,— < Tj, when T, > Ty, which is not logical.
Now from Equation since we found T,,, we can find J, which is

w
JiL = 3308.40 . (4.34)

Similarly, we 1l calculate J;. From Equation we will find T),, taking into notice
that:

1 w

'=—Z A) =015 ——

of = =3+ m K2
, B w
B = —K10 — k2o + N1y + plp = —228 ——
m K

A\ W
Y = =XTy T = pIy T + 512 + kaoTe + %T,f + kiooTh, = 19406.25 —.
m

By putting o/, 3’ and v/ into Equation we get

T = 1429.50 K (4.35)
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4.2 Experimental Static Rectification

Tp— = 90.50 K. (4.36)

As before, only T,/ is acceptable since T, < T, < Ty, when T,/ > T}, which is
not logical. Now from Equation since we found T}, we can find Jy which is

JrL = 5255.71 % (4.37)

Now, since we know J, and J;, we can calculate the rectification factor from Equation

which is equal to:

|Jg|  5255.71
|J.|  3308.40

=1.59 (4.38)

R =

4.2.2 case 2: SroCuQO;3 - Sr14Cu9404 compound

The second case that we will study is the SroCuOs (Spin chain - Material A) -
S114Cu24041 (Spin ladder - Material B) bounded material.

T T
500f .\ E‘ 100 - SI‘MCU2 041
200 ..: “ 80 ,f‘ "
. Ko E= . %
- B : ; "
*E soof _E 8011 :- -‘.
s | 5 r ,
“ O 4ol K3 .
200f w %
: E I \
&
£ 20 =
100 1 &= -
\"—&—n_ 0 L d - |
u " 0 50 100 150 200 250 300
0 100 200 300
T(K) Temperature (K)
(a) Total thermal conductivity of (b) Total thermal conductivity of
ST2CU03 ST14CU24041

Figure 4.3: The blue boxes in the above figures, show us the range of temperatures that
we 1l take into account when we 1l calculate the thermal rectification. The left surface of
each box, corresponds to the low temperature heat bath T, = 75 K and the right surface
the high temperature heat bath T}, = 125 K.
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4. Static Thermal Rectification

From the figure 4.3, we can extract the thermal conductivity for each material, in
the form of Equations [4.2] and [£.3]So, we get:

w w
w w

where T = 100 K for both materials. In order to calculate the thermal rectification

factor we follow the same procedure as before.We will first find 7}, and then we will
w w
calculate J,. from Equation|d.11{taking into account that k19 = 135——, ko9 = 7Th——,
m K m K
. We 1l now find the coefficients of Equation [4.10

w

m K2

1 W
a 2(,u+ ) 055mK2

w
B8 =—K10 — k2o + AT + 1o = —320 ——
m K

A W
Y= ATy Ty — W Te + 513 + raoTh + ng + koo T = 27656.25 .
m

By putting «, 8 and ~ into Equation we get Tyt and Tj,_:

—8+/B7—day
Tt = =
2
Ty = 476.23 K, (4.41)
Ty = 105.59 K. (4.42)

Only T;,,— is acceptable since T, < Tp,— < Tj, when T,,+ > Ty, which is not logical.
Now from Equation [£.11] since we found 7T,,, we can find J, which is

W
JiL = 405375 . (4.43)

Similarly, we 1l calculate Jy. From Equation @ we will find 7,,/ taking into notice
that:
w

1
/I = _ o
o = 2(,u+)\)—0.55mK2

w
ﬁ/ = —K10 — koo + ATy + plp = —320 ——
m K

A W
Y = =XTy T = pIy T + 512 + kaoTe + gT,% + kooT) = 24656.25 —.
m
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4.2 Experimental Static Rectification

By putting o/, 8’ and 7/ into equation we get

Ty = 490.40 K (4.44)

Ty = 91.41 K. (4.45)

As before, only T,,/_ is acceptable since T, < T,,_ < Ty, when T,/ > T}, which is
not logical. Now from Equation since we found T},, we can find Jy which is

1
JpL = 553414 —. (4.46)

Now, since we know .J,. and J¢, we can calculate the rectification factor from Equation
[4:2] which is equal to:

| Jy| 553414
~|Je| 4053.75

As we notice, the rectification factor in the second case of materials, is smaller than

1.37. (4.47)

the first case.

4.2.3 case 3: SrCu0Oy - CagLasCu9,O4 compound

The third case that we will study is the STrCuO; (Spin chain - Material A) - CagLasCu24041
(Spin ladder - Material B) bounded material.

so0 - /N ' ' ' ] 140 |-D)
'J[ 120 i !
0T 7 100 - s
= e = [
& =< 80 Kc . ]
é 400 | 4 £
e z 60f ]
I » L3 Ca Cu O
40| s il il
200 - pu
20 i
""W L - — phonon fit Kﬂ
0 " I : 1 A 0 LTI B T T T I YT
0 100 200 300 0 100 200
T(K) Temperature (K)
(a) Total thermal conductivity of (b) Total thermal conductivity of
STCUOQ CagLa5CU24041

Figure 4.4: The left surface of each blue box, corresponds to the low temperature heat
bath T, = 75 K and the right surface the high temperature heat bath T, = 125K.
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4. Static Thermal Rectification

From the figure 4.4, we can extract the thermal conductivity for each material, in
the form of Equations [4.2] and [£.3]So, we get:

w

w
W w

where T = 100 K for both materials. In order to calculate the thermal rectification

factor we follow the same procedure as before.We will first find 7}, and then we will

W W
calculate J,. from Equation|d.11|taking into account that k19 = 1907, Koo = 63—,
m m

w w
A=—-21—— and p=+1.7———. We ll now find the coefficients of Equation |4.10
m K2 m K2

1 w
=—= A)=02——
“ 2(M+ ) =0 m K?

w
B =—K10 — koo + AT + 1o = —293 ——
m K

ad
2
By putting «, 8 and « into Equation 4.10 we get 15+ and Tp,—:

e
2

A W
v ==Xy T), — pToT, + §T§ + k10Th + =T2 + kooT, = 30350.0 —.
m

Tm:l: =
Tpny = 1352.83 K, (4.50)

T = 11217 K. (4.51)

Only T;,,— is acceptable since T, < Tp,— < Tj, when T,,+ > Ty, which is not logical.

Now from Equation [£.11] since we found 7T,,, we can find J, which is

W
JiL = 387312 . (4.52)

Similarly, we 1l calculate J;. From equation .15 we will find T, taking into notice

that:
w

m K2

1
o = —§(u+)\) =0.2
;- _ w
B = —k19 — koo + ATy + uTy = —293 ——
m K

by W
Y = =XTp T — pToTh + 512 + k10T + %Tﬁ + oo Th = 24000.0 —.
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4.2 Experimental Static Rectification

By putting o/, 3 and 7/ into Equation we get
Yy g

Ty = 1377.91 K (4.53)

Ty = 87.09 K. (4.54)

As before, only T,,/_ is acceptable since T, < T,,_ < Ty, when T,/ > T}, which is
not logical. Now from equation since we found T}, we can find Jy which is

W
JyL = 5555.96 . (4.55)

Now, since we know .J, and J, we can calculate the rectification factor from Equation
[4:2] which is equal to:
|Jf|  5555.96

R — _
|J.]  3873.12

= 1.43. (4.56)

4.2.4 case 4: SrCuOy - Sr14Cu9404 compound

The third case that we will study is the SrCuOs (Spin chain - Material A) - Sr14Cu24041
(Spin ladder - Material B) bounded material.

T T T T T T T
800 |- . =
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'.. _ r
M 0 ] L : L |
0 N A L 1 L 0 50 100 150 200 250 300
0 Wk 300 Temperature (K)
(a) Total thermal conductivity of (b) Total thermal conductivity of
STCUOQ ST’14CUQ4041

Figure 4.5: The left surface of each blue box, corresponds to the low temperature heat
bath T, = 75 K and the right surface the high temperature heat bath T, = 125K.
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4. Static Thermal Rectification

From the figure 4.5, we can extract the thermal conductivity for each material, in
the form of equations [£.2 and [4.3]So, we get:

w

w
W w

where T = 100 K for both materials. In order to calculate the thermal rectification

factor we follow the same procedure as before.We will first find 7}, and then we will

W W
calculate J,. from Equation|d.11|taking into account that k19 = 1907, Koo = 15—,
m m

w w
A=—-21—— and p=+0.9——. We ll now find the coefficients of Equation |4.10
m K2 m K2

1 1%
=——(p+A)=06—mo
o 2(u ) 06m 3

w
B =—K10 — koo + AT + 1o = —385 ——
m K

H
2
By putting «, 8 and ~ into Equation we get Tyt and Tj,_:

e
2

A W
v ==Xy T), — pToT, + §T§ + k10Th + =T2 + kooT, = 35000.0 —.
m

Tm:l: =
Tpy = 532.02 K, (4.59)

T = 109.64 K. (4.60)

Only T;,,— is acceptable since T, < Tp,— < Tj, when T,,+ > Ty, which is not logical.

Now from Equation [£.11] since we found 7T,,, we can find J, which is

W
JrL = 4T17.90 . (4.61)

Similarly, we 1l calculate J;. From Equation {.15 we will find T,/ taking into notice

that:
w

m K2

1
a’:—i(u+)\):0.6
e _ 3355 WV
B = —k19 — Koo + ATy + uTy = —385
m K

by W
Y = =Xy T = pIoTh + 5T2 + raoTe + %Tﬁ + raoTh = 29250.0 —.
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4.2 Experimental Static Rectification

By putting o/, 3 and 7/ into Equation we get

Ty s = 553.61 K (4.62)

Ty = 88.06 K. (4.63)

As before, only T,,/_ is acceptable since T, < T, < T}, when T,/ > T},, which is
not logical. Now from equation since we found 77, we can find Jy which is

W
JyL = 5975.36 - . (4.64)

Now, since we know J,. and J;, we can calculate the rectification factor from equation
which is equal to:

gy 5975.36

R = = =
|7, ~ 4717.90

1.27. (4.65)

We will now study two more cases, in which the ladder’s material thermal con-
ductivity has quadratic dependence on temperature, when chain’s material has linear

dependence on temperature.

4.2.5 case 5: SroCuO;3 - Sr14Cu9404 compound

The fifth case that we will study is the SroCuOs3 (Spin chain - Material A) - S714Cu2404;
(Spin ladder - Material B) bounded material, but now the spin ladder’s thermal con-
ductivity has quadratic dependence on temperature.

From the figure 4.6, we can extract the thermal conductivity for each material, in
the form of equations [4.18| and [£.19}So, we get:

W 1474
w w
iy = 94—z — 0.01- (T — Tp)? — (4.67)

where Ty = 140 K for both materials.
We will first find 7}, from Equation[4.23)and then we will calculate J, from Equation

4.24| taking Ii;to account that kg = 80%, Koo = 94%’ A= —0.8% and
W= —0.01?. We 1l now find the coefficients of equation |4.23]):
m
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Figure 4.6: The left surface of each blue box, corresponds to the low temperature heat
bath T, = 125 K and the right surface the high temperature heat bath T, = 175K.

__H_ W
a=-5=0003—c3
A w
f=ulo—5="10"1%
v = —kio + XTp — MTg—@O:—gomL

pY W
§ = k1oTh, + %Tf — WIVT? + WIGT. + rooTe + ST = XTTh = 2396458 —
m

By putting «, 8, v and § into equation [£.23] and solving it, we get T},,1, T2 and T)p,3:

Ty = —161.03 K, (4.68)
T2 = 139.98 K. (4.69)
Trns = 354.38 K (4.70)

Only T2 is acceptable since T, < T,,2 < T}y, when T;,3 > T} and T},1 < T, which
are not logical. Now from equation (4.24)), since we found 7,,, we can find J, which is

J.L = 3708.47 % (4.71)
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4.2 Experimental Static Rectification

Similarly, we 1l calculate Jy. From Equation we will find T, taking into notice

that: W
o = —g = 0.003—;
5'=MT0—%=—1%
v = —koo + Mo — T — k10 = —90%

A W
§' = kaoTh + %T,? — WV + WIS Ty + rao T + ST2 = NG T, = 2491042

By putting o/, #’, 7/ and ¢’ into Equatio we get

Ty = —163.04 K (4.72)
Ty = 144.90 K. (4.73)
T3 = 351.47 K. (4.74)

As before, only T, is acceptable since T, < T,9 < Tj, when T,,,3 > T and
T1 < Te, which are not logical. Now from Equation since we found T),, we can
find Jy which is

JrL = 4359.27 w (4.75)
m

Now, since we know J,. and J¢, we can calculate the rectification factor from equation
[4:2] which is equal to:

|Jp|  4359.27
|J.|  3708.47

R= 1.18. (4.76)

4.2.6 case 6: SrCuOy - CagLa;Cus404 compound

The sixth and the last case that we will study is the SrCuO3 (Spin chain - Material A) -
CagLasCu2404; (Spin ladder - Material B) bounded material, but now the spin ladder’s
thermal conductivity has quadratic dependence on temperature, as the previous case.

From the figure 4.7, we can extract the thermal conductivity for each material, in
the form of Equations and [£.19/So, we get:

w

m K2

45



4. Static Thermal Rectification

800 |- -

600

® 0% am
1
= - -
S B £
T T |c
.....
..h‘)
//f.

:E [ _TM 80 | Icc ]
é a0 I . E F
PR z 6of .
[ » Lia Ca|Cu
0l g A ]
200 -
20 -
! 1 | o, phonen fit %
. ) ; K 0 Ty TS mes Reema e aAAA A S ARE I
0 100 200 300 0 100 200
T(K) Temperature (K)
(a) Total thermal conductivity of (b) Total thermal conductivity of
STCUOQ CagLa5C’LL24041

Figure 4.7: The left surface of each blue box, corresponds to the low temperature heat
bath T, = 140 K and the right surface the high temperature heat bath T, = 200K.

W
=138—— —0.02- (T — Tp)? 4.78
2 mK ( 0) m K3’ ( )
where Ty = 170 K for both materials.
We will first find T3, from Equation and then we will calculate J,. from Equation
W W
4.24 taking into account that k19 = 60—, kg9 = 138——, A = —0.3———= and
m K m m K2
p = —0.02——. We Il now find the coefficients of Equation {4.23
m
_ W
a=-3= 0.()07m 703
A W
=uly — - =—-325——
f=nlo 2 3 5m K?
W
v = —kio+ Ny — ,uT02 — Kopg = 329m7

A W
§ = rioTh + %Tj’ — WIVT? + WIS T, + koo T + ST — NIy Tj, = 2046.67—
m

By putting «, 8, v and § into equation [£.23] and solving it, we get T},,1, T2 and T)p3:

T = —8.27T K, (4.79)

Tino = 166.14 K. (4.80)
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Tyns = 306.42 K (4.81)

Only T}, is acceptable since T, < Tyo < Tp, when T3 > Tj, and T),1 < T, which
are not logical. Now from Equation since we found T}, we can find .J, which is

W
JoL = 532654 . (4.82)

Similarly, we 1l calculate J;. From Equation @ we will find T, taking into notice
that:

/ H w
=——=0.007T——=
“T73 m K3
A w
"= uTy — = =—-3.2——
Fr=ulo—5==325 "
W
7/:—/€20+)\T0—MT()2—/€10:3297
m K

A W
8 = riooTh + %T,f — WV}, + WT3 Ty + ki e+ ST7 = NTTe = 7266.67—
m

By putting o/, ', 4/ and ¢’ into Equation we get

Ty = —18.55 K (4.83)
Toro = 193.19 K. (4.84)
Tz = 289.64 K. (4.85)

As before, only T, is acceptable since T, < T,o < Tp, when T,,,3 > T} and
Tyn1 < Te, which are not logical. Now from Equation since we found T),, we can
find Jy which is

W
JyL = 4088.65 . (4.86)

This is not the result that we were waiting because, as we mentioned before, we
expect that Jy will be bigger than .J.. The reason that this is not happening is that
these two materials that are bounded together, don’t fulfil the two criteria that are
needed for thermal rectification. To be more specific, material B that should present
high « at high temperatures and low k at low temperatures (when material A should

present the opposite properties), presents high x at both low and high temperatures.

w
As we see, the conductivity of material B near the T, is k &~ 120——— which is way
m .
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4. Static Thermal Rectification

higher than material’s A at low temperatures (k ~ 7OW). So, the last compound
that we studied is not a good candidate for thermal rectifier.

Concluding, we notice that the higher rectification factor is achieved in case 1.
The reason why the rectification factor in case 1 is higher than in the case 2 when
the spin ladder material is the same, is the difference in the conductivities in the spin
chain materials. We remind that in order to achieve rectification, as for the spin chain
material, it must has high x at low temperatures and low x at high temperatures.
We notice that the spin chain material in case 3, has a very large conductance (k =
140L) even at high temperatures, which at the same time is even higher than
spinnﬂia'bdder’s conductance at high temperatures in the same material, which is x =~

W
1057. This doesn’t happen in case 1, where spin chain’s thermal conductance at
m .
W
high temperatures (k ~ 807) is lower than spin ladder’s conductance at the same
m .

temperature range (k ~ 1107).

The most crucial point that makes the materials good or bad candidates for thermal
rectifier, is the non-linear’s term coefficient. When the coefficient is big, then we notice
biggest difference in thermal conductivity’s values at high and low temperatures. We
have to clarify at this point, that when thermal conductivity has the form of Equation
[4:3] it has linear dependence on temperature, but in general the thermal conductivity
is non-linear, since ~ T term in heat flux equation, is non-linear. To be more specific,

we have the heat flux equation:

dr dr dT dr

J=—r(T .
() dx dx
It is clear now, that heat flux equation that we are solving in order to calculate the

dT
thermal rectification is non-linear, since ~ T—d is non-linear term.
T

4.3 Static Rectification Study via Sander’s
& Walton’s method

In the previous section, we calculated the static rectification in a material which was

composed of two other materials bounded together, by integrating the heat flux equa-
tion from z = 0 to x = L , and from x = L to x = 0 respectively. The point here is
that by doing so, we didn’t take into consideration many valuable parameters of the 2

materials and the fact that the heat in these materials propagates via two heat carriers,
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4.3 Static Rectification Study via Sander’s & Walton’s method

the magnons and the phonons. As we mentioned in previous sections, the total thermal
conductivity in each material can be separated into two thermal conductivities, one is
for the magnon system and the other for the phonon system. The sum of these two
different conductivities gives us the total one. The parameters that we didnt take into
consideration before, is the specific heat of the two heat carriers (which is different in
each material for each heat carrier) and the thermalization time 7, between the two
carriers.

First, lets assume that we have only one material (spin chain or spin ladder), and
we 1l try to find an analytical expression that will give us the temperature profile of
each carrier, taking into consideration all these parameters mentioned above. If that’s
possible, we 1l continue to find the temperature profile in a material that is composed

of two others and we 1l calculate the thermal rectification.

Expressing the total conductivity as a simple sum of the magnon and phonon con-
ductivities, implicitly assumes that the temperature gradient in the phonon system
is the same as that in the magnon system. Since thermal transport is inherently a
nonequilibrium phenomenon, that is not necessarily the case. In a thermally isolated
system, the difference between the magnon and the phonon temperatures, 7}, and 7,

would decay exponentially. The magnon-phonon relaxation time 7,,, is defined by

d AT
—AT = —— (4.88)
dt Tmp

where AT =T, — T),. It is easy to show from Equation that 75, and T}, approach

each other. Especially, in the case that 7T}, approaches T},, we have

AT,  dT,  dT, ¢, dT,
_ — _— = _— 4.89
o T P dt e dt (4.89)
From the left-hand side expression of the Equation we can take
d d dT, dT, AT
—AT = —(T, - T, = —2_ T __ - 4.90
dt dt( b~ Tn) dt dt Tinp (4.90)
so if we enter Equation into Equation we will have
dT, ( Cp alT;,,)_dTp(1 cp)_dTp(cp—l—cm)
dt e dt 7 dt cm’  dt Cm,
dT, AT dT; T, — T,
Tty 22 o T miIm T (4.91)

dt a Tmp dt Cr  Tmp
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4. Static Thermal Rectification

where ¢, and ¢, are the specific heats of the magnon and phonon systems, and c¢7 =
¢p + ¢m. Using the same logic, we can derive a similar equation for the case that T,

approaches T;,

dT,, ¢, Ty — T

4.92
dt CT  Tmp (4.92)

Now consider a thermal conductivity sample of length L and cross-sectional area A,
with the heat flow along the x direction. A total heat flux @ is supplied at = = —%L,
and absorbed at z = %L. In general, the temperature of the magnon system T),(x) at
any point x will differ from that of the phonons T},(x). If there were no heat flow down
the sample through the magnon system, the magnon temperature at each point would
come into equilibrium with the phonon temperature, as in Equation [4.92

Therefore, in volume element A dx of the sample, the amount of heat per unit time
flowing into the magnon system from the phonon system would be
Tnl@) y g — 9@ Tol@) = Tnl@) 4 4 (4.93)

dt cr Trmp

dPy,(x) = ¢,

where the specific heat is now explicitly the heat capacity per unit volume.

However, if the magnon system has a finite conductivity k., the heat which flows
into it will be conducted along the sample and a steady state will be reached. The
contribution of a small length dx to the heat flux in the magnon system is

dPp(z)  cpem Tp(z) — Tin(x)

dQm(x) = 1 o - dx. (4.94)

Therefore, the total magnon heat flux at any point x is given by

cpCm 1 z , , ,
Qm(x) = I;T — _L/Q[Tp(az ) — Tin(2")] dx'. (4.95)

But, by definition of the magnon conductivity,

(4.96)

This is the point where we stray from Mr D.J. Sanders’ and Mr D. Walton’s way
of finding the phonon and magnon temperature distribution profile. Mr Sanders and
Mr Walton considered that magnon’s thermal conductivity is a constant k,,, when we

consider that it has a temperature dependence, ky,(T},).
Combining Equations and we get

AT,  cmep 1 z , , ,
—_ —_ T, — T dr' =0 =
ot [ ) = T da’ =0

km(Tm)
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4.3 Static Rectification Study via Sander’s & Walton’s method

km(Tm) dTp, 4 Cfpi/m

T,(x') — T (2))] da’ =
o o |, @) - Tu@ e =0 =

dTm+cp 1 x

Do (Ty) 5 4 2 2
( ) dx CT Tmp J—L/2

[T, (z') — T(2')] da’ = 0, (4.97)

As we know, thermal diffusivity is the thermal conductivity divided by density and
specific heat capacity at constant pressure. Therefore, the product of density and
specific heat capacity can be considered as the volumteric heat capacity. In a more

mathematical language,

p-F _F
pcp ¢

In our case, we considered the following expression

Dy (Tin) = (4.98)

in order to get Equation [£.97] At this point, we have to emphasize that we assumed
that only magnon thermal diffusivity has a spatial dependence. Phonon thermal con-
ductivity on the other hand, is constant.
By differentiating Equation [£.97 we get
d DT dTm(az))+ op 1

2 P (D=, (Ty(x) = T (x)) = 0. (4.99)

CT Tmp

The total heat flux @ is divided between the magnons and the phonons according to

dT,(z) dT ()
Q= Qp() + OQm(z) = —kpgT —km(2)— — =
dT,(x) dT,(x)
Q= —kpic’l’x — cmDm(Tm)idx . (4.100)
Therefore, T (z) is related to T}, (z) by

dT, Q cm dT,,
—L == D (T —=, 4.101
dx kyp  kp (Tn) dx ( )

with the boundary condition that at the center of the sample, the phonon and magnon

temperatures are both equal to the average sample temperature Tp; i.e.,
T (0) = T,(0) = Tp. (4.102)

We will now solve Equation (4.101))
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4. Static Thermal Rectification

T, (z) = —Z:L’ _ (ZZ / Do (T )T (). (4.103)

At this point, we consider that magnon thermal diffusivity D,,(x) has the following
form

Dun(Tin) = Do + T (), (4.104)

where Dy and « are constants. Now,we put Equation [£.104] into [£.103] and we get

Tp(z) = —ka Zm (Do + Ty (x))dT () =
P
Tp(x):—]?p —%:DOT —/T 2)dT(z) + C =
T(2) = — Lo = Do) — SSm72 (1) 1 (4.105)
k£ ky 2k,

We 1l use the boundary condition in order to neglect the constant of integration
C that exists in Equation [£.105]

Cm o Cm
P
C « C
To=—"DyTp— = —Tg+C =
kp 2k,
C o C
C =T+ 2DyT Ly S
o+ kp 0 0ty kp
C = To( (Do + To) + 1) (4.106)
kp 2

Substituting 4.104] & [4.105|into [4.99] the differential equation for 7}, (x) becomes

d dT,,(x) o 1 Q Cm, O Cm o
D,, — —x— —D¢T, —T —Tm =0.
2 (P = )+cwmp< Ry &y 0T (@) = g (@) O @) =0
term #1
(4.107)
We work Term #1 separately
d dTn(z),  dDy(z) dTp () d*T,, ()
%(Dm(a:) dz )= dx dx + Din(@) dz?
d AT (z), d dT, dQTm(x)
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4.3 Static Rectification Study via Sander’s & Walton’s method

d dT, () dT, > d*T, d>T,
—(Dy, =a(=2) 4 Dop——2 + aly——2 . 4.108
dx( () dx ) = o dx ) +Do dx? to dx? ( )

Substituting Equation [£.108]into [£.107 we get the final form of the equation that gives
us Tp, ()

dT,, > a7, T, ¢, 1 Q o «C,
—n T, L~ (—Fr— DT ()~ = T2 C-T, =0.
gy ) 00 gyt Tmp< by ey DTl g g T (@)
(4.109)
Equation [£.109] can be written in a simpler form
y? +ay" +yy' + Br+y + 0y’ ey +(=0 (4.110)
where
~ Dy
a=—
o
o 1 @1
e Tmpkpa

Equation is a non-linear equation that cannot be solved analytically. So, we
can’t continue to study the static thermal rectification in these materials by using this
method, that was first used from D. J. Sanders and D. Walton. In the next section we
1l calculate numerically the dynamic rectification in these materials, taking in mind all

the microscopic parameters that we mentioned earlier.
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Dynamic Thermal Rectification

5.1 Thermal Rectification

In this section, we 1l study the dynamic heat transfer in the magnetic materials that
we were talking in the previous paragraph. We have, as we mentioned from the start
of this work, two bounded magnetic materials, in which we 1l put a heat pulse at the
one surface and then we 1l calculate the temperature change over time, at the opposite
surface. By doing this twice (one for the left surface , calculating the temperature
change at the right surface and via versa), we 1l calculate the thermal rectification
factor, which we 1l compare it with the one that we extracted in the static heat transfer
in each case.

The heat transport in these compounds that we are referring to, can be described
by a two-temperature (2T) model, obtained by phase space integration of the Bloch-
Boltzmann-Peierls equation for the lattice (I, phonons) and magnetic (m,magnons)

degrees of freedom:

oT 0 oL, Cp-Cp 1
Clﬁ - Oz () 833) Ci+ Cry Tip (Th = Tm) (5.1)
oT,, 0 0T, C-Cp 1
Ot = w50 )~ G T o g 1) (52)

Here, ¢ is time; x is the coordinate alone the spin ladder or chain; T; ,,, Cj ,,, and ki ,,, are
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5. Dynamic Thermal Rectification

the temperature, specific heat, and thermal conductivity for the lattice and magnetic

Cl cLUm
subsystems; and the ———— L term is the coupling constant.
y Y Cl + Cm Tmp p g
The reduced equations that we solve in this toy model, taking into account that
2

L
[D] = 7 can be found:

on, 9, . Oh, CCp 1
Clﬁ—%(kl(x)%) m%(ﬂ Twm) =
oM _ 0 k) 0T a1
o~ 900 ) Tt apry T I =
T o or,.  Cn 1
o~ o D) T at Gy T )
oT, & , Dy(x) OTi C 1
ot 8x(L2/L2 8:1c> Cl—l—C'mep(Tl Tn) =
T, &  Dy(x) T, Cn 1
il - (T -T,) =
ot = 5 @) T G Gy L
8(L) 3(L) P
O _ 0 10m, G 1
ot 65(77 85) Cr+ Cpy Trnp (Ti = Tn) (5:3)
and similarly for magnons,
T, 0, 10T, a1
W—gg(a J¢ ) CleCme(Tm 1), (5.4)

where § = z/L and 0 < £ < 1.

5.1.1 Tridiagonal System

If we use the backward difference at time ¢;1 and a second-order central difference for
space derivative at position x; (The Backward Time, Centered Space Method "BTCS")

and the equation that gives us the heat current:

dT;
J = —k:l(x)d—xl = —C,- Dy(x)

an
dx’

from Equations [5.1] and [5.2) we get the recurrence equation:

. T  Jun—Jii  Ci-Cm 1
! dt h Cir+Cn Tmp

(T} - T3,). (5.5)

m
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5.1 Thermal Rectification

This is an implicit method for solving the one-dimensional diffusion equation. Implicit
methods find a solution by solving an equation involving both the current state of
the system and the later one. Mathematically if Y (¢) is the current system state and
Y (t+dt) is the state at the later time (dt is a small time step), for the implicit method
one solves the equation:

GY(@®),Y({t+dt)=0

in order to find Y (¢ + dt).

Figure 5.1: The stencil of our problem

From Equation [5.5| we get:

it it T/ -]
. . 1 i+1 g l ? i—1
G T/ Y _ (C - D(i+1/2)f) — (G- D(ifl/Q)T)_
dt h
C;-C 1 i i
_brbm L opi iy o
C+Cp, 7'mzu( L m,z)
i+l il T/t it
. . i+1 7 7 i—1
dt B h
Co 1 .
___Tm (7T ) =
C+Cp, 7—mp( be m,z)
j+1 j_dt i+1 j+1 j+1 +1
T = h? {<D€i+1/2)(ﬂ?:1 =T = Dl (T = T, )} B
Co 1 0
—__Tm (7 T ) =
C) + Cn, Tmp( i = Tm)
. Chn 1 4 . 1 dtr - -
) m%(ﬂj’i -T)=T" - 2 {(D(i+l/2)(7—;']+l -7 -

7

- Déi—l/Q) (TjH - jl'j—ﬁl)} =

o7



5. Dynamic Thermal Rectification

i G 1 it

. . "
i T aron Cmfm(TzJ,i —- 1) =T, (—ﬁ Dii1/2)+

1+ L pl D! rit 5.6

+T) (1 + 12 (D) + (i—1/2)) + T ( 12 Dii-1j2)) = (5.6)

() = (1) (177 o

where A is a tridiagonal matrix (which is known), Tij is the "current" Temperature
which is also known, and we solve numerically this tridiagonal system in order to
find the later Temperature Tij 1At this point, emphasize the fact that we solve this
tridiagonal system twice, once for phonons’ system and once for magnons’ system, since
these two systems are coupled. Another useful notation is that in the Equation 5.6,
wherever we see the diffusion coefficient, we replace it with the diffusion time of each
carrier, according with the equation D; = —, as we showed in the reduced dynamic
Equations 5.3 and 5.4 . "

5.1.2 Energy Conservation

Energy in a system like these that we are studying is conserved, since it’s closed system.
We will now prove it analytically, assuming that at first we have only one magnetic

material.

The heat transport in the materials, as we mentioned earlier, are given by Equations

b1 and 6.2

CnC; 1

Ty o Zm™ 2 -1,
8z) Cm-l-Clep( ! )

o, 0 0T, CuCi 1
"ot Ox (Fm () Ox ) Cn + Tmp(Tl ).

In the Equations [5.1] and [5.2] we can go from temperatures to energies, knowing that:

D) = L) (538)
and
Ci-T;=E; (5.9)

where D;(z) is the diffusion coefficient, E; is the energy and the subscript i can be

equal to [ if we are referring to lattice, or m if we are referring to magnons. So from
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5.1 Thermal Rectification

Equation [5.1] using Equations [5.§ and [5.9, we can get:

aC-T) 0 ACi-T), CuCi 1
22U 2 (D _ —
D) ==5) = G 1 G

= T, — T
0F; 0 0F; CnCr 1
T (D)2 o ml ~
o~ o PG —E g o
and similarly from Equation we get:

OB, 0 OB,  CwC 1

T A et Aals e

(T; — Tn) (5.10)

(Ti = T) - (5.11)

By adding the last 2 equations together, we have as result:

o0E; oFE,, 8(El + FE, ) 0 o0E; 0 oE,,
ot T ot o~ s D@5 0) + 5 (Dm(x) 5 7)

OE 0 OB, 0 O,

where FE is the total Energy of our system.

In order to find if our energy is conserved, we integrate Equation [5.12] with respect

to x, assuming that our material’s length is L :

9 rL L 9 OE; L9 OFE,,
o Edz_/o (D)5 dot 7 (Do) ) da =

OF;|L OF,, L
/ Eds = Di(@) 5| "+ D)™

0F; 0E; 8Em 8Em
Edx =D, — Di(0)— . (513
/ v l()G:rL l()8xo ‘ ‘0 ( )
Knowing that the magnons are insulated on the surfaces x = 0 and z = L:
8Em ) 8Em ‘
Equation ({5.13]) becomes:
0F; 0E;
Edx =D, —Di(0)—1 . 5.14
/ v =DilL)5 o Ox L 0) ox lo (5.14)
By using the heat current equation, the above equation becomes
OF; 0E;
Edr = D)(L —Di0)—| =J|,—J|, =0 5.15
o [ par=p)o| ~p@%2| =l =0, 613

since the materlal is not attached to any heat baths and that means that we don’t have

heat current flowing along our material.
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5. Dynamic Thermal Rectification

We 1l now examine the case where our sample consists of 2 materials that are
bounded together. Each material has both phonons and magnons as heat transport
carriers, so, in general the diffusion coefficients and the specific heats are different for
each carrier in each material. Coupling or thermalization time 7,,, 1l be different in

each material too, since the one material can be spin ladder and the other spin chain.

1=0 ®=L

Di - Dm D' ’ D'm

In this case, our results for each material will be similar to what we showed earlier
(Equation but now the integration limits will be different and there will be extra
boundary conditions in the interface, where x = L/2. For the first material, where
0 <z < L/2, from Equation we get:

L2
0 de_Dl(L/2)aEl — D0 aE" + Dy (L/2

9 )aEm‘
ot Jo x 1L/2

8Em
o™ Pm O

516

Magnons, as we said before, are insulated on the surfaces at x = 0 and x = L, but not

0E,,
in the interface, which has as result that the term —— L) isn’t equal to zero. After

ox
that notation, Equation [5.16] becomes:

o L/2 0E; oL, 8Em
— Edx=D;(L/2 —D —
5 = DUL2)H = D05+ ]

(5.17)

Similarly, for the second material, where L/2 < z < L, from Equation we get:

9" B = Dl(L)@ — Dy(L/2)

OE; ~ aEm 8Em
ot Jr2 Oox 'L ‘ ’

Oz L/2 L2’

(5 18)

but as we explained before, magnons are insulated on the surfaces so:

~ GEm

and because of this statement, Equation (5.18]) becomes:

o (L - OB, o~ OF
a L/2Ed$ Dl(L)E L—DZ(L/2)E L/2

B aEm

]L/ (5.19)
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By adding Equations [5.17] and [5.19] we get

o [L/2 OF, BEl
o) Edrtg / Bde=DiL/2)5 | = Difo) ]+
(9Em (9 l ~ aEl =~ 6Em
Du(L/2) 75|, + DD G| = DL/ | = DL/ | =
B OF, OE, OF,,
8t/ Edz = Di(L/2)5 Oz 'L/2 — Di(0) Ox 0+Dm(L/2) L/2
N OE, _ OB,
+DZ<L>@|L—Dl<L/ Vo s~ DL/ (5:20)

Taking in mind that in the interface the heat current for each carrier must be continuous,

then from the following equation that gives us the current:

dl; dT; dE;
dw Z(x) CZ de' Z(x> d.r ’

Ji = —ki(z)

we get the following boundary conditions on the interface of our material (z = L/2):

8El ~ 0E;
e Dy(L/2 ) L2 DZ(L/2)% L2
oE,, ~ oE,,
Dn(L/2) 752, = DunlL/2)75|

By using these 2 boundaries conditions, Equation [5.20] becomes:

OE, OE,

(‘9t/ Edr = Di(L) 5= ox L_DZ(O)%IO

=J|,—J|, =0 (5.21)

| 0 L

since our material is not contacted to any heat baths, so we don’t have heat current

flowing along our material. As we see, energy is conserved in our system, as we expected.

5.2 Dynamic Rectification Results

We 1l now study the same cases that we studied in the Static rectification section,
solving the toy model we mentioned earlier numerically. Then, we 1l extract a thermal
rectification factor for each case, and we 1l compare it with the static one.

The main differences between static and dynamic rectification are:
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e in the static rectification our sample is contacted to two heat baths (one hot heat
bath at the left surface and one cold at the right surface) that leads to a heat
current that flows along our material, when in the dynamic rectification case, we
have no heat baths but we put a heat pulse at the left surface and we measure

the temperature at the right surface and via versa

e in the static case, we solve the heat flux equation, when at at the dynamic case

we solve Bloch-Boltzmann-Peierls equation for each heat carrier (Equations

and

e in the static case we only need the each material’s total thermal conductivity in
order to extract the rectification factor, when at the dynamic case, we need the
thermal diffusivity (which is extracted by the thermal conductivity as we 1l show
below), the specific heats for each heat carrier (phonons and magnons) in each
material (these parameters are different in spin chain and spin ladder materials)
and the thermalization time between the two heat carriers, which is different in

each material too

e in static case the rectification factor is defined by the ratio of |J¢| to |J,|, when in
the dynamic case we define the rectification factor as the ratio 77 to 7., where 7 in
each case (r refers to backward heat propagation when f to forward propagation)
is the the time of 1/2 increase of T} at £ = 1.
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5.2 Dynamic Rectification Results

5.2.1 case 1: SroCuO3 - CagLasCusyO4 compound

The first case that we will study is the SroCuOs (Spin chain - Material A) -
CagLasCu24041 (Spin ladder - Material B) bounded material.

eI

500 f»

L) DEDEDEUD:U_vm

(i}

K,
mag
[Sn yu|

50

100 =

o L L L "
0 100 200 30 0 100 200 300
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(a) Total thermal conductivity of (b) Magnetic thermal conductivity of

SraCuO3 SraCuO3

Figure 5.2: These two diagrams show us the total and the magnetic conductivity of
SraCuOs. In order to extract the phononic conductivity, we abstract the magnetic con-

ductivity from the total one and the remaining is the phononic since K ~ Kpmag + Kph-

T T
140 |-0) -
120 ’ E
.
100 | s |
—~ °
% st Kc . 4
z 60f g
L La_Ca Cu O
0t e Bl Tl
20 H
§’_— phonon fit K.q
i i
0 100 200

Temperature (K)

Figure 5.3: This diagram shows us the total and the phononic conductivity of
CagLasCus404;. To find the magnetic contribution to total conductivity, we just abstract

the phononic from the total.
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5. Dynamic Thermal Rectification

The bounded material is in equilibrium at Ty = 100K and in order to make our
numerical calculations, we have to extract the phononic and the magnetic diffusivities
from the corresponding thermal conductivities. To accomplish this, we have first to
extract the magnetic and phononic conductivity in each material.

We can find from the figure 5.2 that in the temperature range of 75 K to 125 K
for the spin chain material (Sr2CuQ3), the phononic and the magnetic conductivities

have the linear form:

w
W w
m=80———1.6-(T —-Tp) —. .2
K 80mK 6-( 0) e (5.23)
The specific heats for the two heat carriers in the spin chain material are:
_ 6
Cp,=1283-10 s (5.24)
and
C =310 (5.25)
me Km3’ '

Knowing these two parameters, we can extract each carrier’s thermal diffusivity from

the equation k; = C; - D;. So, starting from phononic conductivity we have:

w W
b = 55—z =08+ (T = To) =5 =

K m K2
J 55  m?2 0.8 m?
=2.83-10° —_ — (T -Tp)) =
Foph Kod 58310 s 283 105 K 0))
55 106 mm? 0.8 10 mm?
=C. — T —-Ty)) =
foh = Cp(5 g3 16— 5 283106 sK | 0))
mm2 mm2
fiph = Cp(19.47— =03 (T = Ty) == ).
Dy

By doing the same calculation for the magnetic diffusivity using the Equations [5.23]
and we get :

2 2

~53.(T — Tp) 2

mm )
sK 7

Fom = Cn (2666.6

D,
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So the phonon and magnetic diffusivities of the spin chain material are

mm2 mm2
D, =194""" _03.(T - T4 5.26
: (- T0) ™" (5.26)
Dy, = 266667 _ 53 (T - T4 )mm2 (5.27)
e s VK '

We notice that there is a huge value difference between the magnetic and phononic
diffusivities and this is explained by the fact that magnetic specific heat is 2 magnitudes
of order smaller than the phononic specific heat, which results in higher values when we
calculate the ratios. The last parameter that we 1l put into our numerical calculations,
regarding the spin chain material, is the thermalization time which is 7,,,, = 10~ 2.

We 1l now do the same calculations for the spin ladder (CagLasCu24041) material,
in order to extract the phonons’ and magnons’ diffusivities that we Il put into our
numerical calculations.

From figure 5.3, we can extract the magnon and phonon thermal conductivity in

the temperature range of 75K to 125K, which are:

w w
—4 —0.02- — - .
Fiph = A = 0.02 (T —To) —=o5 (5.28)
w w

The specific heats of the two heat carriers in the spin ladder material are different from

these in the spin chain material, and have the values:

Cp =2.86- 106K — (5.30)
J
Cp=1.5- 105K 3 (5.31)

By using the specific heats, we can extract the diffusivities from the thermal conduc-

tivities, as we did before for the spin chain material, so we get:

me mm2

D, =14 —0.07-(T-T, 5.32
b . ( 0% (5.32)
mm2 mm2
Dy, = 400 +8 (T = To)—— (5.33)
S

The last parameter that we need for our numerical analysis is the thermalization time of

the two heat carriers in the spin ladder material, which can be found in the bibliography
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5. Dynamic Thermal Rectification

and has the value 7, = 4 - 10~%s. As we notice, the coupling time between the two
carrier is much smaller in the spin chain material than the ladder one.

We put all these parameters (the thermal diffusivities, the specific heats and the
thermalization times for both materials) into our fortran program that solves the tridi-
agonal system (Equation that we mentioned earlier, and by applying a heat pulse
at the left surface of our material, we measure the temperature change at the right
surface and via versa. Then, we measure the time of 1/2 increase of T; in both surfaces

and we calculate the rectification factor.
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Figure 5.4: This figure shows us the phonons’ temperature change when we put a heat
pulse at the right surface and we measure the change at the left surface of our material
(Forward direction - Green line) and via versa (Backward/Reversed direction - Red line).

We can see the 1/2 temperature increase time for each direction, 7; and 7,.

We can find the 1/2 temperature increase time for each direction from the plot
data, and their values are 7y = 0.0538s and 7, = 0.0494s. So we can find the dynamic
rectification factor which is

75 0.0538s

Rayn = 7. 0.0494s

= 1.089 ~ 1.09. (5.34)
5.2.2 case 2: SroCuO3 - Sr14Cus404 compound

The second case that we will study is the SroCuOs (Spin chain - Material A) -
S114Cu24041 (Spin ladder - Material B) bounded material.
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5.2 Dynamic Rectification Results
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Figure 5.5: These two diagrams show us the total and the magnetic conductivity of
SroCu03. In order to extract the phononic conductivity, we abstract the magnetic con-

ductivity from the total one and the remaining is the phononic since & = Kmag + Kph-
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Figure 5.6: The diagram (a) shows us the total and the phononic conductivity of

S114Cu24041 when the diagram (b) shows us the magnetic contribution to the total con-

ductivity.

The spin chain material (Sr2CuQO3) is the same as in the case 1, so we know all
the parameters (Specific heats, thermal diffusivities for the two heat carriers and the

thermalization time) we need for our numerical calculation:

J
=92.83-10°
C, 83-10 et
J
m = -10*
C,,=3-10 et
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5. Dynamic Thermal Rectification

2 2

mm mm

D, =194""" 3. (1 — 1)
P S ( O)SK’
Dy, = 2666.6™" _ 53 (T T)”ﬁ‘—m2
m — . 0 8K7

and
Tmp = 107125

These thermal diffusivities, as we mentioned in case 1, correspond to the temperature
range of 75K to 125k.

The spin ladder (SR14Cu24041) material is different from the one in case 1, so we
have to do all the calculations that we did before in order to extract the phonons’ and
magnons’ diffusivities that we 1l put into our numerical calculations.

From figure 5.6, we can extract the magnon and phonon thermal conductivity in

the temperature range of 75K to 125K, which are:

%4 W
W w

The specific heats of the two heat carriers in the spin ladder material are (as we men-

tioned in case 1):

— 6
Cp=2.86-10°2"—
J
_ 5
O = 151072

By using the specific heats, we can extract the diffusivities from the thermal conduc-

tivities, so we get:

1474 1174
ﬁph:21m—03(T—To)m =
J 21 m? 0.3 m?2
=2.86-10° — - —(T-T,
fiph = 286 10° g (5o 06y~ a6 100 s KL o) =
21 105 mm?2 0.3 105 mm?
=C. — T —-Ty)) =
fon = Col5 53 106 583 106 sK . 0))
mm2 mm2
Koph = Cp( 7.3 ; —0.1- (T —Tp) T ).
DP
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5.2 Dynamic Rectification Results

By doing the same calculation for the magnetic diffusivity using the Equations
and we get :

mm2 mm2

+6.6- (1 = Tp) = ).

S S
D

Kom = Cin (346.6

So, the thermal diffusivities for our two heat carriers in the spin ladder material, are:

mm2 mm2
D, =73"" 01T T4 5.37
' 1) ™% (5.37)
Dy = 346.6™™ 4 6.6 (T—T)mm2 (5.38)
_—— . 5 . 0 SK .

The thermalization time for the spin ladder is 7,,, = 4- 105,50 by solving numerically
the tridiagonal system (Equation we get the figure that shows us the temperature

change in our material, when we put a heat pulse in each surface.
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Figure 5.7: This figure shows us the phonons’ temperature change when we put a heat
pulse at the right surface and we measure the change at the left surface of our material
(Forward direction - Green line) and via versa (Backward/Reversed direction - Red line).

We can see the 1/2 temperature increase time for each direction, 7y and 7,.

As we see in the figure 5.7, the heat propagates the same way for both directions.
The 1/2 temperature increase time for each direction is the same, 74 = 7, = 0.0127s,
that leads to a rectification factor R4y, = 1, which means that we have no rectification.
In the static case, we found a Rectification factor whose value is Ry = 1.37, and as

we see, in the static study rectification occurs, when in the dynamic study does not.
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5. Dynamic Thermal Rectification

5.2.3 case 3: SrCuOy - CagLasCusy04 compound

The third case that we will study is the SrCuO2 (Spin chain - Material A) - CagLasCu2404;
(Spin ladder - Material B) bounded material.
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Figure 5.8: These two diagrams show us the total and the magnetic conductivity of
SrCuQs. In order to extract the phononic conductivity, we abstract the magnetic conduc-
tivity from the total one and the remaining is the phononic since £ = Kpag + kpn. We are

interested for the 4N purity’s conductivity.
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Figure 5.9: The diagram (a) shows us the total and the phononic conductivity of
CagLasCug404; when the diagram (b) shows us the magnetic contribution to the total

conductivity.
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5.2 Dynamic Rectification Results

We can find from the figure 5.8 that in the temperature range of 75 K to 125 K for
the spin chain material (SrCuQ2), the phononic and the magnetic conductivities have

the linear form:

w w
—30—— — 0.3 (T = Tp) —— .
fiph = 30— =03+ (T~ Ty) —— (5.39)
w w

The specific heats for the two heat carriers in the spin chain material are:

C,=2.83- 106K — (5.41)
and
. J
Cm =3-10" . (5.42)

Knowing these two parameters, we can extract each carrier’s thermal diffusivity from

the equation k; = C; - D;, as we did before. So, starting from phononic conductivity

we have:
W
th:30ﬁ—03(T—T0)m =
J 30 m2 03 m2
=2.83-10° — " (T-Tp)) =
Foph Ko?\ 283106 5 283 1005 K\ 0))
30 105 mm? 0.3  10% mm?
=C — T—-1Ty)) =
foh = Cp (3 g5 106 s 583106 sK 0))
mm2 mm2
#iph = Cp(10.6 , —O.l-(T—TO)SK ).
DP

By doing the same calculation for the magnetic diffusivity using the Equations [5.40]
and we get :

2 2

mm mm
m=Cm . —62- (T — T, A4
K Cn(5333.0 . 62 - ( O)SK) (5.43)
Dy,
So the phonon and magnetic diffusivities of the spin chain material are
mm? mm?
D, =10.6 —0.1-(T = Tp) (5.44)
s K
Dy = 5333.0™™ _ 62 (T —T, )mm2 (5.45)
"o s VTS K '
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5. Dynamic Thermal Rectification

The last parameter that we 1l put into our numerical calculations, regarding the spin
chain material, is the thermalization time which is 7,,, = 10~ 12s.
We have made the calculations for the spin ladder (CagLas;Cu24041) material in

case 1, so the thermal diffusivites are:

2 2
D, =147 —0.07 (T — Tp) = (5.46)
s K
Dy = 400" 4 5 (T —T, )mm2 (5.47)
e s VTSR '

The last parameter that we need for our numerical analysis is the thermalization time of
the two heat carriers in the spin ladder material, which can be found in the bibliography
and has the value 7,,,;, = 4 - 10~ 4s.

We put all these parameters (the thermal diffusivities, the specific heats and the
thermalization times for both materials) into our fortran program that solves the tridi-
agonal system (Equation that we mentioned earlier, and by applying a heat pulse
at the left surface of our material, we measure the temperature change at the right
surface and via versa. Then, we measure the time of 1/2 increase of 7; in both surfaces

and we calculate the rectification factor.
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Figure 5.10: This figure shows us the phonons’ temperature change when we put a heat
pulse at the right surface and we measure the change at the left surface of our material
(Forward direction - Green line) and via versa (Backward/Reversed direction - Red line).

We can see the 1/2 temperature increase time for each direction, 7; and 7,.

We can find the 1/2 temperature increase time for each direction from the plot

data, and their values are 7y = 0.0561s and 7. = 0.0518s. So we can find the dynamic
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5.2 Dynamic Rectification Results

rectification factor which is

77 0.0561s
n= =20 1,083 ~ 1.08. 4
Ragn = = 5 o51g. = 1083~ 1.08 (5.48)

5.2.4 case 4: SrCuQOsy - Sr14Cus404 compound

The fourth case that we will study is the SrCuOs (Spin chain - Material A) - S114Cu2404;
(Spin ladder - Material B) bounded material.
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Figure 5.11: These two diagrams show us the total and the magnetic conductivity of
SrCuQOs. In order to extract the phononic conductivity, we abstract the magnetic conduc-

tivity from the total one and the remaining is the phononic since k& & Kmag + kpn. We are
interested for the 4N purity’s conductivity.
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Figure 5.12: The diagram (a) shows us the total and the phononic conductivity of
S114Cu24041 when the diagram (b) shows us the magnetic contribution to the total con-
ductivity.

We have made the calculations and found the thermal diffusivities for both materi-
als, within the 75 K-125K range, which are for the chain material

mm2 mm2
D, = 10. ~0.1-(T - T 4
p =106 0.1+ (T —Ty) ™% (5.49)
mm2 me
Dy, = 5333.000 — 62 (T — Ty) . (5.50)
s K
and for the ladder material:
mm2 mm2
D,=T. —0.1-(T - T 51
p =730 01 (T~ Ty) (5.51)
Dy = 346.6™7% 4 6.6 (7 — 1) (5.52)
= . p . 0 TK .

We put all these parameters (the thermal diffusivities, the specific heats and the
thermalization times for both materials) into our fortran program that solves the tridi-
agonal system (Equation that we mentioned earlier, and by applying a heat pulse
at the left surface of our material, we measure the temperature change at the right
surface and via versa. Then, we measure the time of 1/2 increase of 7; in both surfaces
and we calculate the rectification factor.

As we see from the figure 5.13, the 1/2 temperature increase time, is the same for
both directions of propagation, 7, = 7y = 0.0163s which leads to a rectification factor
Rgyn = 1. That means that we haven’t rectification in this case, when at the static

study rectification occurs for this compound.
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Figure 5.13: This figure shows us the phonons’ temperature change when we put a heat
pulse at the right surface and we measure the change at the left surface of our material
(Forward direction - Green line) and via versa (Backward/Reversed direction - Red line).

We can see the 1/2 temperature increase time for each direction, 7; and 7,.

5.2.5 case 5: SroCuO3 - Sr14Cuss0O4 compound

The fifth case that we will study is the SrCuO3 (Spin chain - Material A) - S114Cu24041
(Spin ladder - Material B) bounded material. The differences between this case and the
previous, is that in this one, spin ladder’s magnetic thermal conductivity has quadratic
dependence on temperature and that the temperature range, where we study the ther-
mal rectification, is between 125K-175K.

From the Figures 5.14 and 5.15, we can extract the thermal conductivity for each
heat carrier, for both materials. We start from the spin chain material, and the thermal
conductivities within the range of 125K - 175K are:

W
w w

where Ty = 140K. Knowing the specific heats for the two heat carriers in the spin

chain material, we calculate the thermal diffusivities like we did in the previous cases:

W w
Iﬁph—25ﬁ—03(T—T0)m:>
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Figure 5.14: These two diagrams show us the total and the magnetic conductivity of
SroCuQ3. In order to extract the phononic conductivity, we abstract the magnetic con-
ductivity from the total one and the remaining is the phononic since k¥ ~ Kmag + Kpn. We

are interested for the 4N purity’s conductivity.
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Figure 5.15: The diagram (a) shows us the total and the phononic conductivity of
S114Cu24041 when the diagram (b) shows us the magnetic contribution to the total con-

ductivity.
J 25  m? 0.3 m?2
=2.83-10° — - —(T - Tp)) =
Foph Km3(2.83 105 s 283 1065 K )
25 105 mm?2 0.3 10 mm?
= — T—-1Ty)) =
fon = Col5 g3 106 283 106 5K . 0))
mm2 mm2
Foph = (Jp(ss.gT —0.1-(T —Tp) e )

Dy
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5.2 Dynamic Rectification Results

Doing the same calculation for the magnetic thermal conductivity in the spin chain

material, results:

mm mm

—17-(T = Ty)

Kom = Cr (1833 ;

where Ty = 140K.

As for the spin ladder material, Sr14Cu24041, we can extract the thermal conduc-
tivity for each heat carrier from figure 5.15 within the 125K-175K temperature range,

which are:

w

w w
m = T8—— —0.01- (T — Tp)? . .
fim = T8 = = 001+ (T = T)? —— (5.56)

By knowing that in the spin ladder, the specific heats for phonons and magnons are
Cp, = 2.86 - 10°J/K - m3 and Cp, = 1.5-105J/K - m?, using the previous method to

extract the thermal diffusivities leads us to the results:

mm2 mm2
D, =5. —0.04- (T T, .
p = 5670 — 0.04- (T = Ty) = (5.57)
Dy = 5200™™ 0,06 (T—T)Zmm2 (5.58)
m — . s . 0 SKZ. .

As we mentioned at the start of this case study, all thermal diffusivities except the
magnons’ one in the spin ladder that has quadratic dependence on temperature, depend
linearly on temperature. We now put all these parameters (the thermal diffusivities, the
specific heats and the thermalization times for both materials) into our fortran program
that solves the tridiagonal system (Equation that we mentioned earlier, and by
applying a heat pulse at the left surface of our material, we measure the temperature
change at the right surface and via versa. Then, we measure the time of 1/2 increase

of T} in both surfaces and we calculate the rectification factor.
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Figure 5.16: This figure shows us the phonons’ temperature change when we put a heat
pulse at the right surface and we measure the change at the left surface of our material
(Forward direction - Green line) and via versa (Backward/Reversed direction - Red line).

We can see the 1/2 temperature increase time for each direction, 7; and 7,.

As we see from the figure 5.16, the 1/2 temperature increase time, is the same for
both directions of propagation, 7, = 7y = 0.0186s which leads to a rectification factor
Rgyn = 1. That means that we haven’t rectification in this case, when at the static

study, rectification occurs for this compound.

5.2.6 Discussion

Why dynamic rectification factors are much smaller that the static ones?

At this point, we have to emphasize the main difference between the static and the
dynamic rectification. In the static one, we only use the total thermal conductivity
for each material, and we integrate the heat flux equation. On the other hand, in the
dynamic rectification, we solve numerically a coupled system of two diffusion equations,
taking in mind the dynamic parameters that we know from the microscopic study of
the materials, such as the thermal conductivity of each heat carrier in both materials,
the specific heats of the heat carriers and the coupling time that shows us how much
time is needed for the two heat carriers to interact. As we see, in the static we neglect
a lot of information about our materials and maybe this is a reason that we see much
divergence in our results between the static and the dynamic case, which leads in much

more "promising" results.
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5.2 Dynamic Rectification Results

But let’s try to explain why in the dynamic rectification study, we observe that
the heat propagates, in almost every case, by the same way in both directions. We 11
show moments of the heat that propagates (for both directions) in our material due
to the phonons and magnons and we 1l try to explain why the 1/2 increase time of
T; is almost the same in both directions. The following figures correspond to case’s 1

thermal diffusivities.
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Figure 5.17: Phonons’ Temperature versus reduced length £ = /L, at time ¢t = 0s
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Figure 5.18: Temperature of each carrier versus reduced length & = x/L,at time ¢ =
0.0001s

Figure 5.17 shows us the moment when ¢ = Os, which is when we put the heat pulse
at the surfaces. We have to point out that these are two different subcases, one is when
we put the heat pulse at the left surface and measure the temperature increase at the
opposite and via versa, that are plotted simultaneously. The next moment is when ¢ =
0.0001s (figure 5.18), and as we see, when the heat pulse is putted at the chain material,
the phonons’ temperature (figure 5.18(a)) diffuses faster than when is putted in the

ladder material where temperature’s diffusion is extremely small. This happens for two
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5. Dynamic Thermal Rectification

reasons, the first one is because of the difference in the phonons’ thermal diffusivity in
the two bounded materials (in the chain material D, ~ 19 mm?/s when in the ladder
material D, &~ 1.4mm?/s) and the second reason is because of the thermalization time
in these two materials. The thermalization time in the chain material is much smaller
than in the ladder material, Tepgin << Tiadder, and that leads the heat to transfer from
the phonon system to the magnon one faster in the chain material, as it is shown in
figure 5.18(a), where we observe a 3-degrees increase in magnons’ temperature when
the pulse is putted at the chain material. At the same time, we observe that when
the heat pulse is putted at the ladder material, magnons’ temperature increase for less
than 0.1 degrees. We notice that in the magnon system, the heat diffuses extremely
fast and that is because of the big values of the magnons’ diffusivities in both materials

(D, = 2500mm? /s in the chain material and D,, ~ 400mm? /s in the ladder material).
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Figure 5.19: Temperature of each carrier versus reduced length & = z/L,at time t =
0.001s

By observing the figures 5.19 and 5.20, we can see that when the heat pulse is
putted in the chain material, the heat diffuses much faster than when is putted in the
ladder material, and the two reasons that cause this is the bigger phonon diffusivity
in the chain material and the smaller thermalization time in the chain material that
leads the heat to the magnon system, as we mentioned earlier. At the two moments
that are shown in these two figures, we notice that there is a big difference in the
temperature in the magnon systems for the two directions. This happens because at
the chain material the coupling time is much more smaller than the ladder’s one, so
the heat transfers faster in the magnon system and diffuses pretty fast due to the high
magnon diffusivities.At the same time in the ladder material, the coupling time is way

bigger that the 7.pqn and if we add the fact that the phonon’s system diffusivity is
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way too small;most of the heat stays in the phonon system that diffuses too slowly

(comparing to the chain material) and only a small part of it transfers to the magnon

system causing the magnons’ temperature to increase for 0.2 Kelvin degrees.

As for the phonon system , which interests us the most since we measure the phonon

temperature increase at the opposite surfaces, we observe something interesting that we

have to point it out. Despite the fact that in the chain material the heat diffuses pretty

fast in the phonon system, when it reaches the interface (where the ladder material
begins, at £ = 0.5) the heat there diffuses very slowly (due to the small D, in the

ladder material) causing the phonon’s temperature to slowly increase. So, we don’t

still see an increase in the phonons’ temperature at the opposite surfaces since despite

the direction, the phonons’ temperature increases slowly at the opposite surfaces.
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5. Dynamic Thermal Rectification

The last figure (Figure 5.21), corresponds to a moment where we observe a difference
in the phonons’ temperature at the two opposite surfaces. As we see, despite the fact
that the two bounded materials have different dynamic parameters, the heat reaches
the opposite surface from the one that we put the heat pulse, in almost the same time
for both directions. The result is to observe a very small rectification for all the cases
we studied for these 4 materials (every case’s moment figures are similar to these we
showed).

After we studied these cases, a new question arises. "Which dynamic parameter is
crucial for seeing intense rectification phenomena?'. The answer to this question lies
at the "Reciprocity and symmetry of the Green’s function" section, where we showed
that in order to observe thermal rectification, our diffusion coefficients must be non
linear. That means that they must have the following form : D = Dy + n-T, which
depends linearly on temperature, but in general D is non linear. So, the bigger the non
linear coefficient n becomes, the bigger the linearity is, which leads to a big rectification
factor.

Lets study the following setup of spin chain-ladder bounded material:

Spin Chain Material Spin Ladder Material
mm? mm? mm? mm?
D ) 20 - (T — T, 100 —4.9- (T — T,
P + ( 0) s K s ( 0) s- K
Do |57 4 90 (T T)mm2 01" 15 (T T)mm2
" VK | s Vs K

where as we see, the non linear coefficients are much bigger than these in cases 1-5.
These coefficients values aren’t random and the logic behind this choice will explained
now. In the static rectification study, we studied cases of two bounded materials,where
the one exhibits a high x at low temperatures and high  at high temperatures and the
second material had the opposite properties. This leads us to two different heat fluxes
when we place a hot heat bath at the left surface and a cold heat bath at the right
surface and via versa, and because of that we observed the rectification phenomenon.
The difference now is that in each material we have two heat carriers, each one having
its own thermal conductivity, so we have to think a little different. We want our chain
material, which is a material with very small thermalization time if we compare it
with the one in the ladder material (Tehain < Tiadder), to exhibit high diffusivity in
both phonons’ and magnons’ system at high temperatures and low diffusivity at low
temperatures. On the other hand we want our ladder’s material phonons’ system to

exhibit low diffusivity at high temperatures and high diffusivity at low temperatures,
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5.2 Dynamic Rectification Results

when the magnons’ system should exhibit low diffusivity at low temperatures and high

diffusivity at high temperatures.

When we put the heat pulse at the spin chain material, we expect to diffuse pretty
fast since the D), is big in high temperatures and at the same time, since the coupling
time is pretty small and a big portion of the heat will be transfered to magnons’ systen,
magnons will diffuse pretty fast too (D, is big in high T'). At the time that the heat
pulse will reach the interface (at the start the temperature at the interface will be
small but it will keep increasing), it will diffuse fast since the ladder’s D, is high at
low temperatures causing the heat to reach the opposite surface in short time. If we
now put the heat pulse at the spin ladder material, we observe that the phonons will
diffuse at very slow rates, since D), is small at high temperatures. At the same time,
the coupling time is much bigger in the ladder material, so the heat will remain much
more time in the phonon system that diffuses slowly. At a time, the heat will reach
the interface, where the spin chain ladder exhibits low diffusivity at low temperatures

in both phonons’ and magnons’ system, which will stall the heat propagation.

So in general we expect that in the backward direction (when we put the heat
pulse at the chain material) the heat pulse will propagate faster than in the forward
direction (when we put the heat pulse at the ladder material). We will put these
thermal diffusivities that are shown in the above table into our program and we 1l see

if the result agrees with our speculations.
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Figure 5.22: This figure shows us the phonons’ temperature change when we put a heat
pulse at the right surface and we measure the change at the left surface of our material
(Forward direction - Green line) and via versa (Backward/Reversed direction - Red line).

We can see the 1/2 temperature increase time for each direction, 7y and 7,.
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5. Dynamic Thermal Rectification

From figure 5.22, we can measure the 1/2 temperature increase times for both
directions which are 7; = 0.00340s for the forward direction and 7 = 0.002165s for the

backward /reversed direction. The rectification factor is:

74 0.00340s

M e N .
= 0002165 7 (5.59)

Rdyn =

As we see, the setup we studied leads to a high rectification factor, if we compare it
with the previous dynamical results (cases 1-5). This results shows us that we have to
search for materials that their thermal conductivities have steeper slopes, which means
that the thermal diffusivity’s non linear term coefficient will be high in value. The last
case we studied, we showed that the bigger the non linear’s term coefficient is, results
to more intense non linear phenomena, which in our case is the phenomenon of thermal
rectification.

The question that arises now is: "Are there materials whose thermal conductivity’s
slope is as steep as we mentioned in the last case that we studied?'. The answer to this
question is yes. Recently, the family of vanadium oxides has been studied in some works,
where they used these materials to study the thermal rectification phenomenon. The
heat in these materials is carried by two heat carriers, the phonons and the electrons.
The interesting thing that they showed in these materials, is that when the insulator-to-
metal transition occurs in thin films of polycrystalline VO, the thermal conductance
is increased by 60% due to the phase transition (which occurs close to ~ 340 K). So
the thermal conductance’s slope is pretty steep, thing that we are searching for.

As we just showed, thermal rectification is a subject that is being studied by a lot of
scientific teams, and the discovery of materials that their thermal conductivity’s slopes
are as steep as possible, will help us to get more promising results at creating a thermal

rectifier.
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Temperature Response due to
time-dependent heat source

In the last chapter of this work, we 1l study the temperature response at the right
surface of a material, when at the left surface we have adapted a time-dependent heat

source.

6.1 1 Material

6.1.1 One heat carrier

At first, we suppose that we have one material, tha has only one heat carrier, phonons.
Our material is at Equilibrium at 7' = 100K and we adapt at the left surface a time

dependent heat source that has the following form

2
Source =5 - sm(% - 1), (6.1)

where 5 is the amplitude (the peak deviation of the function from zero) and T is the
period. By doing our numerical calculations, we observe the temperature response at
the opposite surface versus time, wanting to see in which cases the heat propagates

diffusivily and in which ballistically.
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6. Temperature Response due to time-dependent heat source

case i:

We suppose that the period of the heat source is T' = 0.1s and the diffusion constant
2

m

of the phonons is D, = 100 —— which corresponds ,as we showed in the Dynamic
s

Rectification section when we showed the reduced dynamic equations, to a diffusion

1
time of 7, = Do = 0.01s.
P
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Figure 6.1: Temperature response at the opposite surface from the one that we adapted
the heat source, versus time.

As we see from figure 6.1, when the diffusion time 7, is smaller than the period T'

of the heat source, then the heat propagates ballistically.

case 1i:
The heat source we adapt is the same in all cases. The only thing that we change is
the diffusion time of the phonons in respect to the heat source period, and we see the

results. Lets suppose that out diffusion time 7, is equal to the heat source’s period.
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Figure 6.2: Temperature response at the opposite surface from the one that we adapted
the heat source, versus time.

86



6.1 1 Material

In this case, where 7, = T" we notice that the propagation is mostly ballistic, with

a small diffusive character.

case i:
In this case we suppose that the diffusion time 7, is bigger than the period T', and more

specifically we choose 7, = 1s.
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Figure 6.3: Temperature response at the opposite surface from the one that we adapted

the heat source, versus time.

We observe that in this case, the heat propagates diffusivily in our material.

Concluding, in the case that we have one material with only phonons as heat carrier,
we observe that when 7, < T the heat propagates ballistically, but when 7, > T' the
diffusive character is becoming more and more intense as the diffusion time 7, becomes

bigger than the period of the heat source.

6.1.2 Two heat carriers

Now we suppose that we still have one material but we have two heat carriers (phonons
and magnons) in comparison with before that we had only phonons. So the new param-
eter that joins the study is the coupling/thermalization time 7,,,. Additional, we have
to point out that the heat source transfers the heat into the phonon system, not the
magnon one (but still can transferred to the magnon system via the phonon-magnon
coupling). So, we consider that our heat source has the form of Equation the ther-
malization time equals to 7,,, = 0.01s and now we 1l study 3 different cases where we

1l change the heat source period 7' in respect to Ty,.
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6. Temperature Response due to time-dependent heat source

case 1:

In the first case, we suppose that the period of the heat source is T' = 0.001s < 7.
At first we set the diffusion times of phonons and magnons equal to 7, = 0.0001s

and 7, = 0.1s respectively.
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Figure 6.4: Phonons’ (Red) and Magnons’ (Green) temperature response at the opposite

surface from the one that we adapted the heat source, versus time.

As we observe, the heat that is in the phonon system propagates ballistically when
the heat that is in the magnon system diffusivily. This is a result that we were waiting
since 7, < T and 7, > T , and as we showed in the previous subsection, when the
diffusion time is smaller than the period of the heat source we have ballistic transport,
on the other hand when it is equal or bigger than the period we have diffusive transport.

Lets change the diffusion time of magnons to check what changes will occur and
if magnons’ diffusion time affects the way of how heat is propagated in the phonon
system. We assume that 7,,, = 0.0001s and after our numerical calculations, the figure
that we get is exact the same as the figure 6.4 . So this results shows us that the
magnon system has nothing to do with how heat propagates in the phonon system,
and despite the value of 7, the heat in the magnon system will propagate diffusively.

At this point, we have to point out that if we set the 7, to be bigger than the
period T, the heat will propagate diffusively in the phonon system, as we showed in
the previous subsection where we had only phonons as heat carrier. This means, that
at least for the case that we have only one material, tau,,, doesn’t affect the way that

heat propagates in the phonon system, only 7, and 7' do.
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6.1 1 Material

case 1:

We now set T' = 7,,, = 0.01s and the diffusion times of phonons and magnons are

tau, = 0.001s and 7,,, = 0.001s respectively.
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Figure 6.5: Phonons’ (Red) and Magnons’ (Green) temperature response at the opposite
surface from the one that we adapted the heat source, versus time.

When T' = 7, the heat in the phonon system will still propagate, as it is shown
in the figure 6.5, ballistically (if 7, < T', otherwise if 7, > T" will propagate diffusively),
and as for the magnon system the heat will propagate diffusively, as in the previous
case (despite the value ot 7).

So the crucial result that we get from case 7 and 7, is that the heat in the phonon
system will propagate ballistically if 7, < T" and doesn’t get affected by the coupling
with magnons, when at the same time the heat that is being transferred in the magnon

system will propagate diffusively, no matter what the value of 7., is, as long as T" < 7.
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6. Temperature Response due to time-dependent heat source

case 111:

In the last case, we set the period of the heat source to be equal to T" = 0.1s, so
that T > 7,,,. The phonons’ and the magnons’ diffusion times are 7, = 0.01s = 7,,.

We now notice that both phonons and magnons propagate ballistically. In this case
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Figure 6.6: Phonons’ (Red) and Magnons’ (Green) temperature response at the opposite

surface from the one that we adapted the heat source, versus time.

the magnons’ diffusion time 7, affects the way the heat propagates in the magnon sys-
tem. If 7,,, then the heat in the magnon system will propagate ballistically otherwise
diffusively.

So, to conclude, in these three cases, where we have only 1 material, we get the

following useful results:

e the way the phonons will propagate, depends only on the phonons’ diffusion time
and the period of the heat source T'. If we have 7, < T then heat will propagate
ballistically, on the other hand if we have 7, > T', the heat 1l propagate diffusively.

e magnons’ diffusion time doesn’t affect the way that heat propagates in the magnon

system.

e thermalization time 7,,, doesn’t affect the heat propagation in the phonon system,
but only in the magnon system. If 7,,,, > T" then the heat in the magnon system
will propagate diffusively, otherwise if 7,,, < 7T then the heat in the magnon

system will propagate ballistically if 7,,, < T and diffusively if 7,,, > T.

The last result can be explained by thinking that in the first two cases where
T < Tpp, the period that the source is inserting/removing heat to/from our system

is smaller than the coupling time, so a big part of the heat "doesn’t make it in time"
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6.2 2 Materials

to get transferred to magnon system, since the coupling is slower. That’s why we
observe a diffusive response in the magnon system. But in the third case where the
coupling time is smaller than the period of the source, a big part of the heat is getting
transferred in the magnon system via the phonon-magnon coupling, and is transferred
out by the same mechanism, following the frequency of the heat source in the case

where tau,, < T.

6.2 2 Materials

Let’s suppose that we have two materials bounded together, the first one has two heat
carriers (phonons and magnons that interact) and the second one has only phonons.
We adapt a heat source (same heat source as Equation at the left surface of the
material and we measure the temperature response at the opposite surface, wanting
to check in which cases the heat propagates ballistically and in which diffusively. We
set the thermalization time 7, = 0.01s (which only exists in first material since in
the second we have only phonons as heat carrier) and the parameters that we change
are the diffusion times of phonons in both materials (7,1 and tau,ys), the diffusion time

of magnons (7,,,) that only exist in the first material and the period 7" of the heat source.
case i:

In our first case we set, the period of the heat source 7" = 0.001s < 7y, the phonons’
diffusion times equal to 7,1 = 0.01s and 7,2 = 0.0001s, and the magnons’ diffusion time
in the first material equal to 7, = 0.0001s. As we notice, we chose the first’s mate-
rial phonon diffusion time bigger than the period of the heat source and the second’s

material phonon diffusion time smaller than period.
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6. Temperature Response due to time-dependent heat source
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Figure 6.7: Phonons’ temperature response at the opposite surface from the one that we

adapted the heat source, versus time.

As we see from figure 6.7, if one’s material phonon diffusion time is bigger than the
period of the heat source, the heat propagation is mostly diffusive. If we change the
magnons’ diffusion time and set it 7,,, = 1s we observer that this change doesn’t affect
the phonons’ heat propagation. So, we can say that the way of heat’s propagation
depends only on the two diffusion times of the phonons.

Lets now set 7,1 to be equal to 7,1 = 0.1s and keep 72 as it was before.
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Figure 6.8: Phonons’ temperature response at the opposite surface from the one that we

adapted the heat source, versus time.

The interesting thing that we notice from figure 6.8 is that if one of the two phonons’

diffusion time is more than one order of magnitude bigger than the heat period T, then

the heat propagates full diffusively.
The next subcase we 1l see, is when both phonons’ diffusion times are smaller than

the heat source’s period T'.
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6.2 2 Materials
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Figure 6.9: Phonons’ temperature response at the opposite surface from the one that we

adapted the heat source, versus time.

From figure 6.9, we observe what we expect, and that is that the heat, when 7,; =

Tp2 < T, propagates fully ballistically. This result comes to agree with the previous

results that we extracted when we studied the 1 material case.

In the case now that the two phonons’ diffusion times are 7,1 = 72 = 0.01s (one

order of magnitude bigger than T'), then we get the following figure:
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Figure 6.10: Phonons’ temperature response at the opposite surface from the one that

we adapted the heat source, versus time.

where as we see, the propagation is almost fully diffusive. So, if at least one 7, is

bigger than T" then we see diffusive propagation.

The last 3 subcases of case 1 that we 1l study are when 7,1

=T and 7,2 = 0.0001s,

T, 0.01s (in the first subcase the 7 is one order of magnitude smaller than 7', in the

second both 7,1 and 7p2 are equal to T, and in the third 72 is one order of magnitude

bigger than 7). We 1l present the three figures altogether and then we 11 discuss the
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6. Temperature Response due to time-dependent heat source

results.
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Figure 6.11: Phonons’ temperature response at the opposite surface from the one that

we adapted the heat source, versus time. In this subcase 7,1 = T and 7,2 = 0.0001s.
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Figure 6.12: Phonons’ temperature response at the opposite surface from the one that

we adapted the heat source, versus time.In this subcase 71 = 72 =T

From the above 3 figures (figures 6.9-6.11), we observe that in the case where 7, = T'
and 7,2 goes from one order of magnitude below 7" to one order of magnitude above T,
the only subcase that we saw diffusive propagation was when 7,0 = 0.01s > T'. So, we
can conclude to the result that if one of the two phonon diffusion time is equal to the
period of the heat source, and the second one is equal or smaller to the period, then
we observe ballistic transport. Otherwise, if the second one is bigger than the period,
we observe diffusive transport. A useful notice that we should mention is that, as we
see in figures 6.11 and 6.12, when phonons’ diffusion times become smaller than T, the
propagation tends to be purely ballistic, but when one or both of the 7, have the same

value with T', we observe mostly ballistic propagation and partly diffusive.
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6.2 2 Materials
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Figure 6.13: Phonons’ temperature response at the opposite surface from the one that

we adapted the heat source, versus time.In this subcase 7,; =T and 7,2 = 0.01s.

case ii: | case tii:
In the second case of the study of heat propagation in a material that is composed of
two others that are bounded together, we set the heat source period T to be equal to
the thermalization time 7,,, when in the third case we set period 1" to be one order of
magnitude lower than 7,,,. By changing the two phonons’ diffusion times we 1l try to
observe in which cases we see ballistic or diffusive heat propagation, as we did before.
In order to avoid posting the same figures as the previous case, we have to say that
in both cases (7 and 7ii), we get the same results as case 1. More specifically, in order
to see ballistic propagation, both phonons’ diffusion times must be < T'. In other cases
we have diffusive propagation, as we had in case 1 too.
Concluding, in the case that we have two materials bounded together, where in
the first one we have both phonons and magnons, when at the second we have only

phonons, we observed the following:

e to observe ballistic propagation, the phonons’ diffusion time in both materials
must be < T'. If both 7, < T we observe fully ballistic transport, when if at
least one is equal to T, then we observe mostly ballistic, and partly diffusive

propagation

e if one 7, is < T and the other is > T, then we observe mostly diffusive and partly

ballistic propagation (see figure 6.7)
e if both 7, are > T then we observe fully diffusive propagation

e lastly, we noticed that the magnons’ diffusion time and the thermalization time

in the first material, don’t affect the way that the heat propagates.

95



6. Temperature Response due to time-dependent heat source
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Summary

Efficient heat removal is crucial to the performance of many electronic devices, since
overheating often leads to a number of performance problems. If we take in mind that
electronics are being miniturized more and more every year, then we conclude that we
have to find a way to dissipate the heat in order to avoid system failures. The main
goal of this thesis is to propose a possible device, a thermal diode, that allows the heat

to flow in a forward direction while it can hardly flow in the opposite direction.

In this thesis, two types of one-dimensional quantum magnets are investigated,
the spin chain system and the spin ladder system, in which the magnetic structure
forms a chain and ladder, respectively. These are chosen because of their potential
in applications in advanced thermal management. The spin ladder and spin chain
materials are promising candidates for advanced cooling mechanisms, because of their
advantageous properties. First of all, heat is conducted primarily along one crystal
axis, hence the material can thermally insulate in one direction and carry away heat
along another. Second, the thermal conductivity along the one-dimensional structure
iS Kmag = 100W/m- K, i.e. comparable to a metal. The anisotropy in between different
crystallographic directions is about 40. Third, these compounds are electrically insulat-
ing and can therefore be used to simultaneously electrically insulate electronic circuits
and transport heat. Finally, heat is carried by localised spins which can be manipulated
with magnetic fields or light. This opens the possibility of having a controllable ther-

mal conductivity at room temperature. For example, doping with switchable magnetic
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7. Summary

defects potentially makes tuning of the thermal conductivity achievable.

In chapter 2 the specific spin chain SrCuQOz, SroCuOs3 and spin ladder systems
CagLasCu24041 and SrigLaysCue40,1, that are investigated in this thesis, are intro-
duced. The temperature dependence of the steady state thermal conductivity for spin
chains and ladders i, as is described in the chapter, shows a huge magnetic contri-
bution along the ladder/chain that dwarfs the lattice contribution, leading to a large
anisotropy between the ladder/chain direction and the other directions. After the intro-
duction of the spin chain and ladder materials, we present a mathematical description
of (anisotropic) heat diffusion. Along the one-dimensional spin system both magnetic
and lattice excitations participate in the heat transport. During a thermal conductiv-
ity experiment, only the energy of the lattice excitations can be measured, therefore
only the lattice excitations are contributing to the temperature measured. A standard
macroscopic diffusion model can be used when the magnetic and lattice excitations
reach thermal equilibrium at a time scale much faster than the time scale of the ex-
periment. If this is not the case, both excitations have to be taken into account and a
microscopic two-temperature diffusion model is needed to describe the problem. If in
such case the macroscopic diffusion model is used, an effective thermal conductivity is
obtained, of which the size depends on the degree of thermalization between the lattice

and magnetic excitations.

In chapter 3, we introduce the concept of Thermal Rectification, that is a phe-
nomenon in which thermal transport along a specific axis is dependent upon the sign
of the temperature gradient or heat current. Furthermore, we examine under which
circumstances we can achieve thermal rectification, in two independent cases, the static
thermal rectification and the dynamic one. Our material consists of two other materials
that are bounded together, each one having its own thermal conductivity. The main
thing that we concluded is that, in order to observe thermal rectification phenomena,
the thermal conductivities of these two materials must not be constants, but they must
have temperature dependence. In chapter 4 and 5, we studied the cases of Static and
Dynamic thermal rectification, respectively, for various combinations of bounded spin
chain and ladders materials. The highest rectification factor for both cases is found in
the SroCuO3 - CagLasCu4041 compound.

Lastly, in chapter 6, we study the case where we have a material and we adapt a
time-dependent heat source at its left surface, measuring the temperature response at
the opposite surface. The heat in this material, in most of the cases that we study,
propagates via two heat carriers, the phonons and the magnons. So, in this chapter

we want to conclude under which circumstances the heat propagates ballistically or
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diffusively. The interesting thing that we pointed out is that if the phonons’ diffusion
time 7, is equal or smaller than the heat source’s period, then the heat propagates
ballistically, otherwise diffusively.

In this work we showed that in a composite material with different temperature
dependent thermal conductivities, thermal rectification is possible to occur. Thermal
rectification exists at the macro and micro scales and a better understanding is be-
ing developed in both, which will eventually lead to efficient thermal rectifiers/diodes.
Currently the many mechanisms that are known to exist in solid systems have shown
only small levels of rectification and are not predictable, but theoretical and analytical
models have predicted large rectification possible and are becoming more and more
accurate. Experimental validation and realization of some of these mechanisms is cru-
cial to the future application involving thermal rectifiers even if only a fraction of the
predicted levels of rectification are achieved. Researchers are only now starting to think
about what devices can be fabricated, what quantities can be measured and whether the
theoretical systems can be realized in the lab. In fact, experimental study of thermal

rectification is said to be ongoing in quite a few research labs.
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