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Περὶληψη

Μελετάμε την διάδοση θερμότητας σε μαγνητικά υλικά, όπου έχουμε δύο φορείς θερμό-

τητας που αντιδρούν μεταξύ τους, σε μία διάσταση. Παρουσιάσαμε τα υλικά εν ονόματι

αλυσίδες και σκάλες spin, στα οποία παρατηρείται μία ασυνήθιστα μεγάλη συνεισφορά των
μαγνονίων στην ολική θερμική αγωγιμότητα των υλικών αυτών. ΄Επειτα, αναφέραμε το

φαινόμενο του θερμικού rectification, κατά το οποίο η διάδοση θερμότητας κατά μήκος
ενός συγκεκριμένου άξονα εξαρτάται από το πρόσημο της βαθμίδας της θερμοκρασίας ή

του ρεύματος θερμότητας, και μπορεί να βοηθήσει στην βελτιωμένη διαχείρηση της θερ-

μότητας. Μελετήσαμε κάτω από ποιές συνθήκες παρατηρείται αυτό το φαινόμενο, κατα-

λήγωντας στο ότι θα πρέπει στα υλικά που θα χρησιμοποιήσουμε, η θερμική αγωγιμότητα

τους να εξαρτάται από τη θερμοκρασία, αλλιώς το φαινόμενο του θερμικού rectification
δεν παρατηρείται. ΄Επειτα επικεντρωθήκαμε σε δύο περιπτώσεις, το στατικό θερμικό recti-
fication και στο δυναμικό θερμικό rectification. Στην πρώτη περίπτωση, για να εξάγουμε
τον παράγοντα του rectification χρησιμοποιήσαμε την εξίσωση του ρεύματος θερμότητας,
ενώ στη δεύτερη λύσαμε αριθμητικά την εξίσωση Bloch-Boltzmann-Peierls για τα φωνόνια
και τα μαγνόνια. Και στις δύο περιπτώσεις καταλήξαμε στο ότι ο μεγαλύτερος παράγον-

τας βρέθηκε στο υλικό που αποτελείται από την αλυσίδα spin Sr2CuO3 και την σκάλα

spin Ca9La5Cu24O41, τα οποία είναι κολλημένα μεταξύ τους. Τέλος μελετήσαμε την πε-

ρίπτωση όπου εφάπτουμε μία χρονοεξαρτημένη πηγή θερμότητας στην αριστερή επιφάνεια

του μαγνητικού υλικού μας (ή της συστοιχίας μαγνητικών υλικών) και παρατηρούμε την

απόκριση της θερμοκρασίας στην απέναντι επιφάνεια, προσπαθώντας να καταλήξουμε σε

ποιές περιπτώσεις η θερμότητα διαδίδεται βαλλιστικά και πότε διαχέεται. Καταλήξαμε στο

ότι όταν ο χρόνος διάχυσης των φωνονίων είναι ίσος ή μικρότερος από την περίοδο της

πηγής, τότε η θερμότητα διαδίδεται βαλλιστικά, αλλιώς διαχέεται.



Abstract

The propagation of heat in magnetic materials, where we have two heat carriers that
interact with each other, is studied in one-dimension. We introduced the spin chain
and the spin ladder materials, that have an unusually large magnetic contribution to
the total thermal conductivity. After that, we present the phenomenon of thermal rec-
tification in which thermal transport along a specific axis is dependent upon the sign of
the temperature gradient or heat current and can offer improved thermal management.
We examined under which circumstances this phenomenon is observed, concluding that
the thermal conductivities of the materials that we ll use must have temperature de-
pendence otherwise rectification does not occur.We then focused on two cases, the
static thermal rectification and the dynamical thermal rectification. In the first case,
in order to calculate the rectification factor we used the heat current equation when in
the dynamic case we solved numerically the Bloch-Boltzmann-Peierls equation for the
lattice and magnetic degrees of freedom. In both cases, we concluded that the highest
rectification is observed in a material that is composed of the spin chain Sr2CuO3 and
the spin ladder Ca9La5Cu24O41, bounded together. Lastly, we study the case that we
adapt a time-dependent heat source at the left surface of our magnetic material (or a
composition of magnetic materials) and we observe the temperature response at the
opposite surface, trying to conclude in which cases heat propagates ballistically and in
which diffusively. We pointed out that if the phonons’ diffusion time is equal or smaller
than the period of the heat source then the heat propagates ballistically, otherwise
diffusively.
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1
Introduction

Efficient heat removal is crucial to the performance of many electronic devices, since
overheating often leads to overall system failures. In the typical silicon semiconductors,
for example, a reduction in the temperature corresponds to an exponential increase in
reliability and life expectancy of the device. Another example that shows us how cru-
cial the efficient heat removal is, is the case of the magnetic sensors in recording heads.
These heads, consist of multilayers of nanoscale thin films that are very susceptible to
failures caused by thermally activated processes, like interdiffusion. At higher temper-
atures, they can even melt.

The problem of the over-heating electronic devices is becoming more severe if we
take into consideration the current trend to miniturize electronics further and further;
by doing so, the power density is increased accordingly. Currently the energy density
increases up to 28 % per year, showing us that self-heating will become more important,
putting high pressure on research to come up with advanced cooling mechanisms and/or
materials. A possible strategy for dissipating excess the heat, while at the same time
protecting sensitive structures closeby in an electronic device, is to use a layer with
high thermal conduction perpendicular to the surface. By doing this, we guide the
heat to a heat sink and then the sensitive structures on the surface could be placed
much closer, allowing further miniturization.In order to realize such a cooling device,
one needs a material with three necessary properties, i) the thermal conductivity should
be high, i.e.≥ 100Wm−1K−1, ii) the thermal conductivity should be one-dimensional,
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1. Introduction

iii) the compound should be electrically insulating. Except these, it would be a great
advantage if the material has a thermal conductivity that is controllable, so that the
heat transport can be adjusted.

In 1997 it was established that prototype theoretical models for one-dimensional
magnetic compounds show unconventional, dissipationless, thermal transport. Experi-
mentally, in some prototype materials (SrCuO2, Sr2CuO3 and (Sr,Ca, La)14Cu24O41),
especially at room temperature, an unusually large magnetic contribution to the total
thermal conductivity has been observed. The magnetic heat conduction of these of
these electrically insulating oxide materials is highly anisotropic, dwarfing the usual
lattice contribution as the temperature rises.

Figure 1.1: Thermal conductivity of the spin ladder compound Ca9La5Cu24O41 as a
function of temperature. The direction parallel to the ladder has a contribution from both
phonons and magnons. The directions perpendicular to the ladder only have a phonon
contribution

These materials are very promising candidates for advanced cooling solutions, since
they fulfil all the criteria mentioned above. i)Heat is conducted primarily along one
crystal axis, so the material can thermally insulate in one directions and carry away heat
along the other. ii) The thermal conductivity along one-dimensional structure is as high
as κmag ≈ 100 W m−1K−1 at room temperature for spin ladder Ca9La5Cu24O41, as is
shown in figure 1. iii) These compounds are electrically insulating and can therefore be
used to simultaneously electrically insulate electronic circuits and transport heat. iv)
Heat is carried by localised spins which might can manipulated by with magnetic fields
or light. This fact, opens the possibility of having a controllable thermal conductivity

2



at room temperature. That can be achieved, for example, by doping the material with
magnetic defects so that we ll be able to potentially tune the thermal conductivity.

The ideal situation for regulating heat flow would be a material in which κ in-
creases when the temperature increases, such that, when used as a cooling substrate,
the efficiency increases with increased heat flux, thereby acting as a negative feedback
loop. In these materials the interaction between the magnetic excitations and the three-
dimensional lattice excitations, can be studied relatively easily, by comparing results
for different directions, since the magnetic excitations are only present in the direction
along the low-dimensional structure. The interaction can give information about the
coupling between the one-dimensional magnetic system and the three-dimensional lat-
tice, and how this prevents the material from behaving like an ideal low-dimensional
system.

The main goal of this thesis is to study the possibility of making a thermal diode
using the magnetic materials mentioned above, and to provide useful information about
how to increase the efficiency of such a rectifier.
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1. Introduction
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2
Spin Chains & Spin Ladders

2.1 Basic Information about Spin chain &
Ladder materials
In this chapter, we ll give a short theoretical description of magnetic materials, focussing
on the spin ladder and spin chain materials. Both materials are are one-dimensional
quantum magnets. Important interactions in these materials are discussed, together
with the structure and the excitations.

The essential difference between three-dimensional, conventional, magnetism and
ideal two- or one- dimensional magnetism is that three- dimensional magnetism deals
with ordered domains, while in low-dimensional magnetism only short-range order can
exist at finite temperature. This is due to an interplay between quantum and thermal
fluctuations which drive the system to a disordered state, and the tendency fo the
system to be in the lowest energy state, which is ordered [3]. For the one-dimensional
systems, both quantum and thermal fluctuations diverge, so even at zero temperature
there is no longer order.

Heat transport by magnetic excitations was originally predicted in 1936 [4].However
it took almost 30 years until the first convincing experimental evidence for magnetic
heat transport by classical spin waves was found in ferromagnetic yttrium-iron-garnet
(YIG). The analysis of the magnetic heat conductivity, would give us valuable infor-
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2. Spin Chains & Spin Ladders

mation about the excitation and scattering of magnons (e.g. off defects, phonons,
and electrons) as is the case for the well-understood phononic and electronic thermal
conductions. However, most of the early experiments on YIG and other materials,
showed that the magnetic heat conductions was present only at very low tempera-
tures (T < 10K). The first material that we observed magnetic heat transport at
higher temperatures (T > 50k), was the one-dimensional quantum antiferromagnet
KCuF3. The intense research on the heat transport of low-dimensional quantum spin
systems, was triggered by the theoretical prediction of dissipationless heat conduction
in one-dimensional antiferromagnetic Heisenberg Chains [5,6] and the discovery of huge
magnetic contributions in the quantum spin ladder material Sr14Cu24O41 [7-9]. Until
now, the clearest experimental examples of low dimensional magnetic heat conduction
are found in copper oxides (cuprate) systems.

Particular examples from the wide range of possible spin structures in cuprate
systems are spin arrangements in the geometrical form of chains and the so-called
two-leg ladders. Sketches of such spin arrangements are shown in figure 2.1(a)-(b).

Figure 2.1: Illustration of low-dimensional spin structures: a) a spin chain, b) a two-leg
spin ladder.Arrows represent localized S = 1/2 spin. Taken by [2]

Good examples for materials containing S = 1/2 Heisenberg chains as is shown
in figure 2.1(a) are given by the compounds SrCuO2 and Sr2CuO3, where straight
Cu-O-Cu bonds and hence a strong antiferromagnetic exchange only exist alone one
particular crystallographic direction; the magnetic exchange perpendicular to this di-
rection is much weaker. Low- dimensional quantum spin models are interesting from a
fundamental point of view since they give rise to very peculiar ground state properties
and elementary excitations. These vary strongly from system to system. The elemen-
tary excitations, so-called spinons, are gapless, which means that it costs no energy to
flip a spin, and carry a spin S=1/2. Spinons interact with structural defects and other
quasiparticles, such as phonons, with a certain rate.
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2.1 Basic Information about Spin chain & Ladder materials

Figure 2.2: Spinons in a spin chain compound. By flipping one spin (middle pic),two
excitations are created,that move outward .Picture taken from [1]

In the (Sr,Ca, La)14Cu24O41 family of compounds, parallel pairs of such chains are
coupled to each other, producing in straight Cu-O-Cu perpendicular to the chain direc-
tion. This spin ensemble is a so-called two-leg spin ladder, the ladder legs being formed
by the two chains and the ladder rungs arising from the Cu-O-Cu bonds which connect
the chains (figure 2.1(b)). A magnetic excitation (magnon) is created by flipping one
spin so that the two spins in a rung are transformed from a singlet state to a triplet
state. This is shown in figure 2.3.

Figure 2.3: A magnon in a spin ladder compound. When we flip one spin (middle
picture), an excitation is created so that the two spins on a rung are in a triplet state. This
excitation can move along the ladder in two directions. Movement to the left is shown
(lower picture). Picture taken from [1]

Concerning heat transport, little is known for all these magnetic systems. Often the
attention in theoretical works is focussed on the possibility of ballistic magnetic heat
transport in one-dimensional systems. However, in real materials scattering processes
involving defects and other quasiparticles such as phonons, must play an important
role and render κmag finite. Studying κmag should provide us further insight into the
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2. Spin Chains & Spin Ladders

nature of these scattering processes and the dissipation of heat currents.

2.2 Thermal Conductivities of the spin chain
& ladder materials

2.2.1 Thermal Conductivity of the spin chains SrCuO2 &
Sr2CuO3

Figure 2.4(a) presents the total heat conductivity of SrCuO2 as a function of temper-
ature. It is measured by a conventional steady state method, in which a steady heat
current flows through a brick-like sample, such that the simple equation 2.6 can be
used to extract the thermal conductivity. The c-direction is parallel to the chains and
has a contribution from both phonons and spinons, the a-direction is perpendicular to
the chain and only has phonons. It is seen that along the chain at all temperatures
above T ≈ 20K, the spinon contribution to the thermal conductivity is much larger
than the phonon contribution. Furthermore, the phonon contribution is assumed to be
isotropic, making the separation of the two contribution possible.

We can understand the general behaviour of the thermal conductivity by thinking
this way: at low temperature an increase of thermal conductivity with temperature
is seen which is due to the increased amount of heat carriers (phonons, spinons) by
thermal activation. As the amount of heat carriers increases, also the contribution
of Umklapp scattering increases, leading to two processes, therefore giving a peak at
certain temperature.

Figure 2.5(a) presents the total heat conductivity of Sr2CuO3, measured with the
heat current parallel and perpendicular to the chains in the material. We focus first
on the temperature dependence of the thermal conductivity perpendicular to the spin
chain, κc, which is shown in the inset of the figure. Along this direction, the heat
conductivity of this electrically insulating material is purely phononic: As a function of
temperature, it shows a characteristic peak at T = 22K, and then strongly decreases
upon further raising the temperature. The height of the peak sensitively depends on
the density of impurities in the system, which generate phonon-defect scattering. This
can be clearly inferred by comparing our data for a 4N purity material with that of
2N. For this lower-purity sample the overall magnitude of κc is strongly reduced, as is
expected for typical phonon heat conductors.

The thermal conductivity parallel to the chain, κb, is shown in the main panel of
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2.2 Thermal Conductivities of the spin chain & ladder materials

figure 2.5(a). κb exhibits a peak at the same position as observed for κc. However, the
peak is much broader and the overall magnitude of κb is significantly larger than that
of the purely phononic κc, which is the signature of a substantial magnetic contribution
in this material.

(a) Total conductivity of
SrCuO2

(b) Magnetic conductivity of
SrCuO2

Figure 2.4: (a) Closed (open) symbols represent conductivity along the c-axis (a-axis),
circles (diamonds) correspond to 4N (2N) purity. Inset: crystal structure of SrCuO2.
(b) κmag of SrCuO2 for different purities. Open sumbols represent low-T κmag which is
disregarded in the further analysis. The saded areas show the uncertainty of the estimation
of κmag due to the phononic background. Inset: κa and κb perpendicular to the chain for
both purities. Pictures taken from [4]

(a) Total conductivity of
Sr2CuO3

(b) Magnetic conductivity of
Sr2CuO3

Figure 2.5: (a) Thermal Conductivity of Sr2CuO3 parallel to the spin chains along κb for
various purities. Inset: thermal conductivity of Sr2CuO3 perpendicular to the spin chains
along κc for 2N and 4N purity. (b) Estimated magnetic thermal conductivity of Sr2CuO3

for 4N (circles,squares), 3N (dash-dotted line), and 2N (dashed line) purity.
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2. Spin Chains & Spin Ladders

The thermal conductivity parallel to the chain is composed of a magnetic and
phononic contribution, κb = κmag + κb,ph, assuming that b is the axe that is parallel
to the chain. In order to extract the heat conductivity of the spin chain, the phononic
background is approximated as κb,ph ≈ κc, since at c axe that is perpendicular to the
chain, the contribution to the heat conductivity is purely phononic. This assumption is
reasonable, because the phononic anisotropy between κa and κc is small. Therefore κb,ph
is not expected to be much different than these. So, the spinon heat conductivity that is
shown in figure 2.4(b) and figure 2.5(b), is calculated by the expression κmag = κb−κc.

2.2.2 Thermal Conductivity of the spin ladders Ca9La5Cu24O41

& Sr14Cu24O41

The thermal conductivity of Ca9La5Cu24O41 & Sr14Cu24O41 as a function of temper-
ature, measured by a conventional steady state method, is shown in figures 2.6 and 2.7
. It is seen in both figures, that along the ladder at every temperature above T > 50K
the magnon contribution to the thermal conductivity is much larger than the phonon
contribution, making the separation of the two contributions possible (again assuming
that the phonon contribution is isotropic). Because the peak in κc lies at lower tem-
perature for Sr14Cu24O41, it is likely that the scattering processes are stronger and the
mean free path somewhat shorter.

Comparing the spin ladders to the spin chain, it is seen that the magnetic contri-
bution to the heat transport is higher at room temperature for the ladders, especially
for Ca9La5Cu24O41. Therefore, for practical applications these materials are more
promising. The spin chain however shows a much higher peak value of the thermal
conductivity, which lies unfortunately at too low temperature to be interesting for
most applications. The phonon thermal conductivity peaks at low temperature (≈ 30
Kelvin) and is very low at room temperature.

2.3 Thermal transport in Spin Chains &
Spin Ladders

In this chapter, we ll present two theoretical descriptions of heat transport. The
first one, is the well known diffusion model, which can be used for single particle
macroscopic diffusive process and multi-particle diffusive processes when particles are
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2.3 Thermal transport in Spin Chains & Spin Ladders

Figure 2.6: Thermal conductivity of the spin ladder compound Ca9La5Cu24O41 as a
function of temperature. The c-direction is parallel to the ladder and has a contribution
from both phonons and magnons. The a-direction and b-direction are perpendicular to the
ladder and only have a phonon contribution.

Figure 2.7: (a) Thermal conductivities of Sr14Cu24O41 along all three crystallographic
directions, (b) κmag for Sr14Cu24O41 & Ca9La5Cu24O41 along the ladder. Figure taken
from [5]

in thermal equilibrium. The second one, is a macroscopic diffusion model, where he have
two different heat carriers that have different thermal diffusivities, and are converted
into one another at certain rate.

2.3.1 One-particle one-dimensional heat conduction equation
In this case, the equation that describes the heat transport of one heat carrier in 1D is:

∂T

∂t
= D

∂2T

∂x2 (2.1)

where
D = κ

ρc
(2.2)

11



2. Spin Chains & Spin Ladders

is called the thermal diffusion constant or thermal diffusivity (m2/s). Thermal diffu-
sicity is given from Equation 2.2 where, κ is the thermal conductivity (W/(m ·K)), ρ is
the density (Kg/m3), c is the specific heat capacity (J/(Kg ·K)). However, the ther-
mal properties κ, ρ and c can depend on position and temperature.Assuming that,in
general, thermal diffusivity can depend on position and temperature, the heat equation
has to be modified to

∂T

∂t
= ∂

∂x
(D(x, T )∂T

∂x
). (2.3)

If D is a function of position only, an analytical solution exists for a variety of initial
and boundary conditions. If D depends on temperature, the situation becomes more
complex and a full numerical analysis has to be performed.

2.3.1.1 Steady State Solution
If we consider a linear, steady flow of one type of heat carrier in a solid bound by a pair
of parallel planes at x = 0 and x = L, the one dimensional diffusion equation becomes

d2T

dx2 = 0 ⇒ dT

dx
= constant = TL − TR

L
(2.4)

where TR and TL are the temperatures at the surfaces x = 0 and x = L, respectively.
The equation that gives us the heat flux J is

J = −κdT
dx

(2.5)

and in our case becomes

J = −κTL − TR
L

. (2.6)

This relation is analogous to Ohm’s law for the steady flow of electrical current. So,
if we heat our sample homogenously over a small surface at x = 0 , and a heat sink is
connected to the small surface at x = L, by measuring the temperature difference at
the two surfaces, κ can directly be extracted.

2.3.1.2 Dynamic solution for flash method
In most of the experiments, the thermal conductivity is determined by measuring the
temperature change at a surface as a function of time. If we consider a sample with

12



2.3 Thermal transport in Spin Chains & Spin Ladders

two parallel surfaces at x = 0 and x = L with initial temperature distribution T (x, t),
the temperature distribution at later time t is given by [1]

T (x, t) = 1
L

∫ L

0
T (x, 0)dx+ 2

L

∞∑
i=1

exp
(−n2π2Dt

L2

)
× cosnπx

L

∫ L

0
T (x, 0) cosnπx

L
dx

(2.7)
where D is the diffusion constant. If we now assume that we heat the front surface
(x = 0) with a laser pulse of energy density Q, which is instantaneously and uniformly
absorbed in a small depth µ. Taking these as notice, the initial conditions are given by

T (x, 0) = Q/ρCµ for 0 < x < µ

T (x, 0) = 0 for µ < x < L.

Using these initial conditions, equation 2.7 becomes

T (x, t) = Q

ρCµ

[
1 + 2

∞∑
i=1

cos
nπx

L

sin(nπµ/L)
nπµL

× exp
(−n2π2

L2 Dt
)]
, (2.8)

where ρ is the density and C is the heat capacity. In most of times, only a few (like
20) terms are needed. If we now assume that µ is very small for opaque materials,
then sin(nπµ/L) ≈ nπµ/L. At the back surface, where x = L, the temperature can be
expressed as

Tl(L, t) = Tm
[
1 + 2

∞∑
i=1

(−1)nexp
(−n2π2

L2 Dt
)]

(2.9)

where Tl(L, t) is the temperature at the back surface at time t, and Tm = Q/(ρCL) is
the maximum temperature at the back surface. This is the so-called Parker’s formula,
and it is only valid if there is just one type of heat carrier or if the various heat carriers
are in thermal equilibrium.

2.3.2 Two particle one-dimensional heat conduction equation
In order to fully understand the thermal transport in the spin ladder and chain materi-
als, the two-particle origin of the transport has to be taken into account. An important
point that has to be realized, is that in experiments to determine the thermal con-
ductivity, only the phonon temperature is directly accessible. Te temperature sensor,
measures the temperature of the sample surface from the strength of the transmitted
lattice vibrations. Furthermore, the heating processes mainly creates phonons, since

13



2. Spin Chains & Spin Ladders

its more efficient than creating magnons. In the case that magnons don’t interact with
phonons, the only way the directly excited magnons to contribute to the measured
temperature is by inelastic scattering at the surface, which is a weak process. But
if there is interaction between magnons and phonons and the two carriers are not in
equilibrium, the thermal conductivity measured in an experiment is not equal to the
sum of thermal conductivities of the two carriers, as would be the case in a thermal
equilibrium [12].

Lets suppose that we have a solid, that two types of heat carriers exist, which are
not in thermal equilibrium initially and they travel diffusively through the solid. Then
the coupled heat equations for the two heat carriers are given by

∂Tl
∂t

= Dl
∂2Tl
∂x2 − gl(Tl − Tm) + P (x) (2.10)

∂Tm
∂t

= Dm
∂2Tm
∂x2 − gm(Tm − Tl) (2.11)

where gl = cm
ctot τmp

, gm = cl
ctot τmp

and ctot = cm + cl

where l stands for the lattice excitations (phonons) and m for the magnetic excitations
(magnons). P (x) is the rate at which phonons are created in the case we have a heat
source, τmp is the thermalization time between lattice and magnetic excitations and g
is the conversion rate between the two types of particles.

In the case that thermal diffusivity is a function of temperature, the former equa-
tions become

∂Tl
∂t

= ∂

∂x

(
Dl(Tl)

∂Tl
∂x

)
− gl(Tl − Tm) + P (x) (2.12)

∂Tm
∂t

= ∂

∂x

(
Dm(Tm)∂Tm

∂x

)
− gl(Tm − Tl). (2.13)

2.3.2.1 Steady State Solution
Steady state method, is used in most common experimental configurations, in which
we put a steady heat flow through a brick-shaped sample along the long axis. For this
configuration, the effective thermal conductivity κeff and the temperature profiles of
magnon and phonon systems, are analyzed by Sanders and Walton [2], assuming that
thermal conductivities are constants. In a thermally isolated system, a total heat flux
Q is supplied at x = −L/2 and absorbed at x = +L/2. In general, the temperature

14



2.3 Thermal transport in Spin Chains & Spin Ladders

of the phonon system Tl(x) is different from the magnon system Tm(x) for every x.
We can find that the contribution of a small length dx to the heat flux in the magnon
system is

dQm(x) = dP (x)
A

= cl cm
cT

Tl(x)− Tm(x)
τmp

dx (2.14)

where P is the heating power, A is the surface area, and Tl and Tm are the phonons’
and magnons’ temperatures, as mentioned above. We have to repeat that all the heat
is coming from the phonon system, since no magnons are inserted directly.

The total magnon heat flux at any point x is given by

Qm(x) = cl cm
cT

1
τmp

∫ x

−L/2
[Tl(x′)− Tm(x′)]dx′. (2.15)

In steady state, the magnon conductivity is also given by the heat flux equation

Qm(x) = −κm
dTm(x)
dx

. (2.16)

If we combine and differentiate the former two equations, we find a second-order dif-
ferential equation for the magnon system

d2Tm(x)
dx2 + cl cm

cT

1
κmτmp

[Tl(x)− Tm(x)] = 0. (2.17)

The total heat flux Q is divided between the magnons and phonons according to the
following expression

Q = Ql +Qm = −κl
dTl(x)
dx

− κm
dTm(x)
dx

. (2.18)

From the above equation, we see that Tl(x) is related to Tm(x)

dTl(x)
dx

= −Q
κl
− κm

κl

dTm(x)
dx

(2.19)

and by solving the above equation with the boundary condition that at the center of the
sample (x = 0), the phonon and magnon temperatures are both equal to the average
sample temperature T0, we get

Tl(x) = κT
κl
T0 −

Q

κl
x− κm

κl
Tm(x), (2.20)

where κT = κl + κm. By substituting equation (2.20) in equation (2.17), we find

d2Tm(x)
dx2 +A2(T0 −

Q

κT
x− Tm(x)

)
= 0 (2.21)
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2. Spin Chains & Spin Ladders

where
A2 = cl cm

cT

κT
κlκm

1
τmp

. (2.22)

Equation (2.21) is solved with the boundary condition of equal Tl and Tm in the center
of the sample, and the requirement that heat flux only enters or leaves the sample
through the phonon system, therefore the magnon heat flux must be zero at both ends.
Taking these boundary conditions into notice, we find the magnon temperature

Tm(x) = T0 −
Q

κT

(
x− sinhAx

A cosh 1
2AL

)
. (2.23)

By substituting this equation into equation (2.20), we find the expression for phonon
temperature

Tl(x) = T0 −
Q

κT

(
x+ κm

κl

sinhAx
A cosh 1

2AL

)
. (2.24)

The parameter A, as we see from equation 2.22, is related to the coupling between
magnons and phonons. If they are perfectly coupled, then τmp = 0 and A = ∞. In
this limit, the magnons’ and the phonons’ temperatures are the same. In the other
limit where τmp = ∞ and A = 0, the magnon temperature is constant over the whole
interbal and equal to T0.

Now,the measured effective thermal conductivity κeff is given by

κeff = −QL/∆Tl, (2.25)

which, with ∆Tl = Tl − T0 from equation 2.24, is given by

κeff = (κl + κm)
(
1 + κm

κl

tanh 1
2AL

1
2AL

)−1
. (2.26)

As for the dynamic solution for the flash method when two heat carriers exist, there
is an analytical formula similar to Parker’s that takes into account the thermalization
time, but we ll not mention it, since in this work a full numerical analysis is being
perfomed, that gives us the temperatures of magnons and phonons.
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3
Thermal Rectification

Thermal rectification is a phenomenon in which thermal transport along a specific
axis is dependent upon the sign of the temperature gradient or heat current. This
phenomenon, offers improved thermal management of electronics as size scales continue
to decrease and new technologies emerge by having directions of preferred thermal
transport. For most applications where thermally rectifying materials could be of use
they would need to exhibit one direction with high thermal conductivity to allow for
efficient transport of heat from heat generating components to a sink and one direction
with low conductivity to insulate the temperature and heat flux sensitive components.
In the process of understanding and developing these materials, multiple mechanisms
have been found which produce thermally rectifying behaviour. The one mechanism
that we ll consider is when we have two dissimilar materials at a contact which have
difference in temperature dependence of thermal conductivity.

A thermal rectifier is a device in which heat flows in a forward direction while it
can hardly flow in the opposite direction as an analog of the diode. Devices that are
composed of materials that are capable of transporting heat along a specific path with
extremely high transfer rates (high conductivity) while at the same time insulating the
components along the same path that are sensitive, are the ideal candidate materials
for future electronic cooling applications.

We ll now study, under which circumstances we can observe the phenomenon of
thermal rectification. It is pretty obvious that if we have only one material, which
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3. Thermal Rectification

has a constant thermal conductivity κ or its thermal conductivity has spatial or tem-
perature dependence κ(x, T ), we ll not observe the rectification phenomenon since the
temperature will propagate in exact the same way, regardless the position where we
put the heat pulse. So, the setup that we ll study is the one that we have two bounded
materials, where each one has different thermal conductivity.

The cases that we are interested in are two: the static thermal rectification and
the dynamic thermal rectification. The main difference between these two cases is that
in the static case, we contact our sample to two heat baths (one hot and one colder)
measuring the heat current, and after that we reverse the order of the heat baths and
we measure the heat current again, when at the dynamic case we put a heat pulse at the
left surface of our material and measure the temperature change at the right surface
and then via versa. The crucial point in order to observe the thermal rectification
phenomenon is that the heat fluxes (in the static case) and the temperature change (in
the dynamic case) must differ when we reverse the order of the heat baths (static case)
or put the heat pulse at opposite surfaces (dynamic case).

3.1 Static Rectification

As we mentioned earlier, our material is composed of two other materials that are
bounded together, and each one has different thermal conductivity. We assume that
each material, has constant thermal conductivity and we ll study if it’s possible to
observe the phenomenon of thermal rectification under this condition.

We ll calculate the heat flux Jr by integrating the Heat Flux equation:

Jr = −κdT
dx
. (3.1)

18



3.1 Static Rectification

We first integrate the heat flux equation from x = 0 to x = L, and we get:∫ x=L/2

x=0
Jr dx = −

∫ Tm

Th

κ1 dT (x) ⇒

Jr L/2 = −κ1T
∣∣∣Tm

Th

⇒ Jr L/2 = −κ1(Tm − Th). (3.2)

By integrating the flux equation from x = L/2 to x = L, we get :

Jr L/2 = −κ2(Tc − Tm) (3.3)

and by abstracting Equation (3.3) from Equation (3.2) we can get an expression for
the interface’s temperature:

JrL/2− JrL/2 = −κ1(Tm − Th) + κ2(Tc − Tm) ⇒

JrL/2− JrL/2 = −κ1(Tm − Th) + κ2(Tc − Tm) ⇒

Tm = κ1Th + κ2Tc
κ1 + κ2

. (3.4)

If we subtract Equation (3.2) and Equation (3.3),we can get the final expression that
gives us the heat current Jr:

JrL/2 + JrL/2 = JrL = −κ1(Tm − Th)− κ2(Tc − Tm)⇒

JrL = κ1Th − κ2Tc − κ1Tm + κ2Tm (3.5)

and by taking Equation (3.4) into account, Equation (3.5) becomes:

JrL = κ1Th − κ2Tc − κ1
κ1Th + κ2Tc
κ1 + κ2

+ κ2
κ1Th + κ2Tc
κ1 + κ2

⇒

JrL(κ1 + κ2) = κ1(κ1 + κ2)Th − κ2(κ1 + κ2)Tc − κ1(κ1Th + κ2Tc) + κ2(κ1Th + κ2Tc)⇒

JrL(κ1 + κ2) = κ2
1Th + κ1κ2Th − κ1κ2Tc − κ2

2Tc − κ2
1Th − κ1κ2Tc + κ1κ2Th + κ2

2Tc ⇒

Jr = 2κ1κ2(Th − Tc)
L · (κ1 + κ2) . (3.6)

If we now reverse the order of the heat baths, like is shown in the following figure,
and do the same calculations as before in order to find Jf we get:

19



3. Thermal Rectification

Jf = −2κ1κ2(Th − Tc)
L · (κ1 + κ2) ⇒ |Jf | = |Jr| . (3.7)

So, we conclude that in the case that the two thermal conductivities are different but
constants, we don’t observe any difference in the calculated heat currents, which means
that we don’t have rectification. In the next section, we ll study the case that the
thermal conductivities have temperature dependence, and we ll try to conclude if we
can achieve thermal rectification in this case.

3.2 Dynamic Rectification

In this subsection we ll try to conclude under which circumstances we can achieve
dynamic thermal rectification. In this case, we have our material and we put a heat
pulse at the left surface and we measure the temperature change at the right surface,
and via versa. If we observe difference in the two measured temperatures (one when we
put the heat pulse at the left surface, and one when we put at the right) then we have
achieved dynamic thermal rectification. In order to show which are the circumstances
in order to achieve dynamic thermal rectification, we have to introduce the concept of
"Reciprocity of Green’s function".

The phenomenon of reciprocity, which is known in physics, also occurs in the case
of heat propagation in a solid. To be more specific, if the heat source is at point 1 and
at point 2 causes a temperature change ∆T , then when the source is shifted to point 2,
at point 1 there occurs the same change in temperature ∆T . In this section , we want
to study and conclude what form must the diffusion coefficient have in order to get a
different temperature change ∆T when we shift the heat source from point 1 to point
2.
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3.2 Dynamic Rectification

First, we assume that our diffusion coefficient has only spatial dependence and it’s
independent of temperature, so the diffusion equation becomes:

∂T (x, t)
∂t

= ∂

∂x

(
D(x)∂T (x, t)

∂x

)
. (3.8)

If we suppose that temperature has the following form:

T (x, t) = eλtT (x) (3.9)

then, Equation 3.8 becomes

∂

∂x

(
D(x)∂T (x, t)

∂x

)
= λeλtT (x) ⇒

LT (x, t) = λT (x, t). (3.10)

This is a Sturm-Liouville eigenvalue problem, where the differential operator has the
form:

L = d

dx

(
D(x) d

dx

)
= dD(x)

dx

d

dx
+D(x) d

2

dx2 . (3.11)

This differential operator is linear and second order.We will now check if this operator
is self-adjoint:

〈f, Lg〉 =
∫ b

a
f(x)

[ d
dx

(D(x)dg
dx

)
]
dx = f(x)D(x)g′(x)

∣∣∣b
a
−
∫ b

a
f ′(x)D(x)g′(x) dx (3.12)

and similarly we get

〈Lf, g〉 =
∫ b

a

d

dx
(D(x) df

dx
) g(x) dx = D(x)f ′(x)g(x)

∣∣∣b
a
−
∫ b

a
D(x)f ′(x)g′(x) dx. (3.13)

We now calculate the following expression,

〈f, Lg〉 − 〈Lf, g〉 = f(x)D(x)g′(x)
∣∣∣b
a
−D(x)f ′(x)g(x)

∣∣∣b
a

=

= f(b)D(b)g′(b)− f(a)D(a)g′(a)−D(b)f ′(b)g(b) +D(a)f ′(a)g(a) =

= D(b)
[
f(b)g′(b)− f ′(b)g(b)

]
−D(a)

[
f(a)g′(a)− f ′(a)g(a)

]
. (3.14)

Assuming that functions f, g obey the same boundary conditions (mixed Dirichlet-
Neumann):

caf(a) + daf
′(a) = 0⇔ caf(a) + daf ′(a) = 0 (3.15)
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3. Thermal Rectification

cag(a) + dag
′(a) = 0 (3.16)

we can prove
caf(a)
cag(a) = −daf

′(a)
−dag′(a) ⇒

f(a)
g(a) = f ′(a)

g′(a) ⇒

f ′(a)g(a)− f(a)g′(a) = 0. (3.17)

Similarly we get
f ′(b)g(b)− f(b)g′(b) = 0. (3.18)

After these results, Equation 3.14 becomes

〈f, Lg〉 − 〈Lf, g〉 = 0⇒ 〈f, Lg〉 = 〈Lf, g〉 (3.19)

which means that operator L is self-adjoint on Hilbert space =⇒ L is a Sturm-Liouville
operator.

Since operator L is self-adjoint, we can check the reciprocity and the symmetry of
the Green’s function. We use the Green’s identity in 1D for the ODE with operators
in S-L form:

L = d

dx

(
p(x) d

dx

)
+ q(x),

which is:
〈u, Lv〉 − 〈Lu, v〉 =

[
p(x)

(
u
dv

dx
− vdu

dx
)
]b
a

(3.20)

which is equal to zero when L is a self adjoint operator, as we showed earlier.
We now take v = G(x, x1) and u = G(x, x2), which both satisfy boundary conditions

of the form of Equation 3.15. Furthermore , since Lv = δ(x − x1), we use Green’s
identity and we get:

〈G(x, x2), LG(x, x1)〉 − 〈LG(x, x2), G(x, x1)〉 =

=
∫ b

a

[
G(x, x2)LG(x, x1)− LG(x, x2)G(x, x1)

]
dx = 0⇔

⇔
∫ b

a

[
G(x, x2)δ(x− x1)− LG(x, x2)G(x, x1)

]
dx = 0⇔

⇔
∫ b

a
G(x, x2)δ(x− x1)dx =

∫ b

a
LG(x, x2)G(x, x1)dx. (3.21)

Therefore, from the sifting property of the Dirac function, we get:
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G(x1, x2) =
∫ b

a
LG(x, x2)G(x, x1)dx =

∫ b

a
LG(x, x2)G(x, x1)dx =

=
∫ b

a
δ(x− x2) = G(x2, x1) = G(x2, x1)⇔

⇔ G(x1, x2) = G(x2, x1). (3.22)

Physically, the above result says that the response at x1 due to a concentrated source
at x2 is the same as the response at x2 due to a concentrated source at x1. Of course,
we would have concluded to the same result if the Diffusion coefficient was a constant.

Note that, this is all reliant on the fact that the operator is fully self-adjoint.If the
given problem is self-adjoint, the operators L and L̃ coincide. In this case the Green’s
function G̃ of the adjoint problem must coincide with G since the solution of the given
differential equation is unique and allows the existence of a single Green’s function only.

Concluding, we just showed that when the diffusion equation is linear, shifting the
heat source from point 1 to point 2, gives us the same temperature change ∆T at points
2 and 1 respectively. So if we want to see different temperature change when we shift
the heat source, the differential operator (Equation 3.11) must be non-linear, which is
achieved when the diffusion coefficient is temperature dependent.

Assuming that the diffusion coefficient has the following form:

D(T ) = D0 + ηT (3.23)

the differential operator (Equation 3.11) becomes:

L = d

dx

(
D(T ) d

dx

)
= dD(T )

dx

d

dx
+D(T ) d

2

dx2 (3.24)

which is clearly a non-linear operator. So our problem is not self-adjoint anymore,
which leads us to two different Green’s functions that do not coincide,

G(x1, x2) 6= G(x2, x1). (3.25)

The above result says that the response at x1 due to a concentrated source at x2 is
different as the response at x2 due to a concentrated source at x1.
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4
Static Thermal Rectification

In the previous chapter we showed that if our two bounded materials have constant
thermal conductivities, then we can’t observe the phenomenon of thermal rectification.
So, our next move is to study if we ll achieve thermal rectification in the case where
our two materials’ thermal conductivities are not constants, but they have dependence
on temperature.

4.1 Static Thermal Rectification
We demonstrate the thermal rectification in a device made of two magnetic materials,
one is spin chain material and the other is spin ladder (we ll examine several cases of
different materials). We consider the heat current density J through the bar made of
materials A and B bonded at the center. J is described by Fourier’s law,

J = −κ
(
T (x)

)dT (x)
dx

(4.1)

where κ represents the thermal conductivity as a function of position T (x). Here,
we suppose that the material A exhibits a high κ at low temperature TL, and a rel-
atively low κ at high temperature TH , while the material B displays the opposite
property.Then, we provide two heat baths with TH and TL. When the materials A and
B are connected to the heat baths with TL and TH ,respectively, a total thermal con-
ductance of the sample should be relatively high leading to a high heat current density
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4. Static Thermal Rectification

Jf through Eq. 4.1 (we call this direction the forward direction, see the lower left panel
in figure 4.1). On the other hand, if the boundary conditions are reversed, the total
thermal conductance becomes smaller than the other one, resulting in a smaller heat
current density Jr than Jf . Thus, the rectifying coefficient defined by the ratio of |Jf |
to |Jr|,

R = |Jf |
|Jr|

, (4.2)

should be above one. If its value is one, then the values of the heat fluxes are equal
and no rectification occurs.

Figure 4.1: Top panels: Schematic figures of the thermal conductivity that is required
for thermal rectification. Bottom panels: conceptual diagrams of the thermal rectification
in bonded materials. Picture taken from [10]

We ll examine 2 special cases of thermal conductivity’s form: the first one is when
the thermal conductivity has linear dependence of temperature and the other is when
has quadratic dependence of temperature.
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4.1 Static Thermal Rectification

4.1.1 Thermal Conductivity - Linear Form

At this point, we assume that material’s A thermal conductivity can be written as

κ1 = κ10 + λ(T − T0) (4.3)

and material’s B as
κ2 = κ20 + µ(T − T0), (4.4)

where κ10, κ20, λ, µ and T0 are constants. These constants have to be found from
the figures that give us the temperature dependence of the thermal conductivity of
these materials.More specifically, assume the case of Equation 4.3, κ10 is the thermal
conductivity of the sample when T = T0,where T0 is the initial temperature of our
material,before the connection with the heat baths. When we talk about material
A,we are referring to a spin chain material and when we talk about material B, we are
referring to a spin ladder material.

The main point is to find analytical expressions for Jf and Jr, as described before,
when thermal conductivity is not constant but depends from temperature. The next
step after this one is to calculate the Rectification factor R, which was represented in
Equation 4.2. We now introduce Tm, which is the temperature at the centre of our
bounded material and L which of course is the length of our bounded material. We ll
first find Jf and then we ll do the analogous calculations to find Jr.

So, for Jr from Eq. (4.1) we get

Jr dx = −κ(T ) T (x). (4.5)

Next step is to integrate Equation 4.5 from x = 0 to x = L, but to simplify the
calculations we ll split this integration into 2 parts. First, we ll integrate from x = 0
to x = L/2 (which is the center of our material where temperature is Tm) and then we
ll do a second integration from x = L/2 to x = L. After these two steps, we ll have
2 equations with 2 unknown parameters, Jr and Tm.We ll then solve them to find Tm
and after that step, we ll get the final expression for Jr. From x = 0 to x = L/2 we
have the material A, so we ll use κ1 (Equation 4.3) as the thermal conductivity κ(T ) in
Equation 4.5. Similarly, we ll use κ2 (Equation 4.4) as κ(T ) when we ll integrate from
x = L/2 to x = L.

So, our first move is to integrate Equation 4.5 from x = 0 to x = L/2, taking notice
that since we examine the forward direction, the hot heat bath Th is at x = 0 and the
cold heat bath is at x = L,
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∫ x=L/2

x=0
Jr dx = −

∫ Tm

Th

κ1(T ) dT (x) ⇒

JrL/2 = −
∫ Tm

Th

(
κ10 +λ(T −T0)

)
dT (x) = −κ10

∫ Tm

Th

dT (x)−λ
∫ Tm

Th

(T −T0)dT (x) ⇒

Jr L/2 = −κ10T
∣∣∣Tm

Th

− λ

2T
2
∣∣∣Tm

Th

+ λT0 T
∣∣∣Tm

Th

⇒

Jr L/2 = −κ10(Tm − Th) + λT0(Tm − Th)− λ

2 (T 2
m − T 2

h ). (4.6)

If we now integrate Equation 4.5 from x = L/2 to x = L, we get∫ x=L

x=L/2
Jr dx = −

∫ Tc

Tm

k2(T ) dT (x) ⇒

Jr L/2 = −
∫ Tc

Tm

(
κ20 + λ(T − T0)

)
dT (x) ⇒

Jr L/2 = −κ20(Tc − Tm) + µT0(Tc − Tm)− µ

2 (T 2
c − T 2

m). (4.7)

Our next move is to abstract Equation 4.7 from Equation 4.6,

JrL/2− JL/2 = −κ10(Tm − Th) + λT0(Tm − Th)− λ

2 (T 2
m − T 2

h )

+ κ20(Tc − Tm)− µT0(Tc − Tm) + µ

2 (T 2
c − T 2

m) ⇒

− κ10(Tm − Th) + λT0(Tm − Th)− λ

2 (T 2
m − T 2

h )

+ κ20(Tc − Tm)− µT0(Tc − Tm) + µ

2 (T 2
c − T 2

m) = 0 ⇒
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− 1
2(µ+ λ)T 2

m + (−κ10 − κ20 + λT0 + µT0)Tm+

+ (−λT0 Th − µT0Tc + λ

2T
2
h + κ10Th + µ

2T
2
c + κ20Tc) = 0. (4.8)

The Equation 4.8 can be simplified to the following form

αT 2
m + βTm + γ = 0, (4.9)

where

α = −1
2(µ+ λ)

β = −κ10 − κ20 + λT0 + µT0

γ = −λT0 Th − µT0Tc + λ

2T
2
h + κ10Th + µ

2T
2
c + κ20Tc.

Equation 4.8 / 4.9 is a quadratic equation and it’s roots are given by

Tm± = −β ±
√
β2 − 4αγ

2α . (4.10)

Every parameter that is in the coefficients α, β and γ is known, so it is very easy to
extract Tm+ and Tm− from Equation 4.10. As we ll see later, when we ll put the real
values of these parameters in Equation 4.10, only one of the two values of Tm will be
acceptable, since the second one is either bigger than Th or smaller than Tc. Tm is the
temperature at the center of our bounded material, so it’s pretty logical to have a value
between our two heat baths Th and Tc.

Next step after finding the right Tm value, is to find the final expression for Jr. By
adding the corresponding sides of Equations 4.6 and 4.7 together, we form the following
equation

JrL = −κ10(Tm − Th) + λT0(Tm − Th)− λ

2 (T 2
m − T 2

h )

− κ20(Tc − Tm) + µT0(Tc − Tm)− µ

2 (T 2
c − T 2

m), (4.11)

which is the final expression that gives us Jr, since all the parameters are known.
We ll now find Jf using the previous method, but now we integrate from x = L to

x = 0, taking notice that the heat baths are the same, in reversed order (the hot heat
bath Th is at x = L and the cold heat bath is at x = 0).

So,by integrating Eq. (4.5) from x = L to x = L/2, we get:

Jf L/2 = −κ20(Tm′ − Th) + µT0(Tm′ − Th)− µ

2 (T 2
m′ − T 2

h ). (4.12)
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By integrating Equation 4.5 from x = L/2 to x = 0, we get

Jf L/2 = −κ10(Tc − Tm′) + λT0(Tc − Tm′)− λ

2 (T 2
c − T 2

m′). (4.13)

If we abstract Equation 4.13 from Equation 4.12, we get the expression that gives us
Tm′ :

− 1
2(µ+ λ)T 2

m′ + (−κ10 − κ20 + λT0 + µT0)Tm′

+ (−λT0 Tc − µT0Th + λ

2T
2
c + κ10Tc + µ

2T
2
h + κ20Th) = 0. (4.14)

The Equation 4.14 can be simplified to the following form

α′T 2
m′ + β′Tm′ + γ′ = 0, (4.15)

where
α′ = −1

2(µ+ λ)

β′ = −κ10 − κ20 + λT0 + µT0

γ′ = −λT0 Tc − µT0Th + λ

2T
2
c + κ10Tc + µ

2T
2
h + κ20Th.

Equation 4.14 / 4.15 is a quadratic equation and its roots are given by

Tm′± = −β
′ ±

√
β′2 − 4α′γ′
2α′ . (4.16)

Every parameter that is in the coefficients α′, β′ and γ′ is known, so it is very easy to
extract Tm′+ and Tm′− from Equation 4.16. If we put the real values of these parameters
in Equation 4.16, only one of the two values of Tm′ will be acceptable, since the second
one is either bigger than Th or smaller than Tc. Tm′ is the temperature at the center of
our bounded material, so it’s pretty logical to have a value between our two heat baths
Th and Tc.
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Next step and final step after finding the right Tm′ value, is to find the final expres-
sion for Jf . By adding the corresponding sides of Equations 4.12 and 4.13 together, we
form the following equation

JfL = −κ20(Tm′ − Th) + µT0(Tm′ − Th)− µ

2 (T 2
m′ − T 2

h )

− κ10(Tc − Tm′) + λT0(Tc − Tm′)− λ

2 (T 2
c − T 2

m′), (4.17)

which is the final expression that gives us Jf , since all the parameters are known.
Finally, we can calculate the Rectification factor, Equation 4.2, since we got the

expressions for heat current for both directions (Equations 4.11 & 4.17).

4.1.2 Thermal Conductivity - Linear & Quadratic Form

We consider another special case, where material A’s thermal conductivity has linear
dependence on temperature (same as before), but material B’s thermal conductivity
has quadratic dependence on temperature. More specifically, the thermal conductivities
have the following forms:

κ1 = κ10 + λ(T − T0) (4.18)

and material’s B as
κ2 = κ20 + µ(T − T0)2, (4.19)

where κ10, κ20, λ, µ and T0 are known constants.
We are following the same formalism as the one we used in the previous paragraph,

wanting to export analytical expressions for Jf (heat pulse propagates in forward di-
rection) and Jr (heat pulse propagates in backward direction) in order to calculate the
Rectification coefficient R, Equation 4.2.

So,we ll start with the forward direction, integrating Equation 4.5 from x = 0 to
x = L/2, where we can use the result of Equation 4.6:

Jr L/2 = −κ10(Tm − Th) + λT0(Tm − Th)− λ

2 (T 2
m − T 2

h ). (4.20)

Our next step is to integrate Equation 4.5 from x = L/2 to x = L. In that case, we
ll obtain the same result as Equation 4.7:

∫ x=L

x=L/2
Jr dx = −

∫ Tc

Tm

κ2(T ) dT (x) ⇒
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JrL/2 = −
∫ Tc

Tm

(
κ20 +µ(T −T0)2)dT (x) = −κ20

∫ Tc

Tm

dT (x)−µ
∫ Tc

Tm

(T −T0)2 dT (x) ⇒

Jr L/2 = −κ20

∫ Tc

Tm

dT (x)− µ
∫ Tc

Tm

(T 2 − 2T T0 + T0
2) dT (x) ⇒

Jr L/2 = −κ20T
∣∣∣Tc

Tm

− µ

3T
3
∣∣∣Tc

Tm

+ 2µT0
T 2

2

∣∣∣Tc

Tm

− µT0
2 T
∣∣∣Tc

Tm

⇒

Jr L/2 = −κ20(Tc − Tm)− µ

3 (T 3
c − T 3

m) + µT0(T 2
c − T 2

m)− µT 2
0 (Tc − Tm). (4.21)

We now abstract Equation 4.21 from Equation 4.20 in order to get an expression,where
our only unknown parameter is Tm,

JrL/2− JrL/2 = −κ10(Tm − Th) + λT0(Tm − Th)− λ

2 (T 2
m − T 2

h )

+ κ20(Tc − Tm) + µ

3 (T 3
c − T 3

m)− µT0(T 2
c − T 2

m) + µT 2
0 (Tc − Tm) ⇒

− µ

3T
3
m + (µT0 −

λ

2 )T 2
m + (−κ10 + λT0 − µT 2

0 − k20)Tm

+ (κ10Th + µ

3T
3
c − µT0T

2
c + µT 2

0 Tc + κ20Tc + λ

2T
2
h − λT0Th) = 0. (4.22)

Equation 4.22 can be rewritten to the simpler form

αT 3
m + βT 2

m + γTm + δ = 0 (4.23)

where
α = −µ3
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β = µT0 −
λ

2

γ = −k10 + λT0 − µT 2
0 − κ20

δ = κ10Th + µ

3T
3
c − µT0T

2
c + µT 2

0 Tc + κ20Tc + λ

2T
2
h − λT0Th.

Equation 4.23 is a cubic equation that has 3 roots. When we find the 3 roots, we keep
the one that satisfies the following inequality, Th > Tm > Tc. After finding the value of
Tm, our final move for obtaining the expression which gives us the value of the forward
heat current, is to subtract Equation 4.20 and Equation 4.21, getting

Jr · L = −κ10(Tm − Th) + λT0(Tm − Th)− λ

2 (T 2
m − T 2

h )

− κ20(Tc − Tm)− µ

3 (T 3
c − T 3

m) + µT0(T 2
c − T 2

m)− µT 2
0 (Tc − Tm). (4.24)

We obtained the expression for Jr and now we ll find the corresponding expression
for Jf , where the heat pulse propagates forward.

In order to find the Jf , we set our heat baths in reversed order (Th is at x = L and
Tc is at x = 0) and we integrate Equation 4.5 from x = L to x = 0.

Our first move is to integrate from x = L to x = L/2 and the result we ll get, is the
same as Equation 4.21:

Jf L/2 = −κ20(Tm′ − Th)− µ

3 (T 3
m′ − T 3

h ) + µT0(T 2
m′ − T 2

h )− µT 2
0 (Tm′ − Th). (4.25)

We continue with the integration from x = L/2 to x = 0, which will have the same
result as Equation 4.20:

Jf L/2 = −κ10(Tc − Tm′) + λT0(Tc − Tm′)− λ

2 (T 2
c − T 2

m′). (4.26)
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We now abstract Equation 4.26 from Equation 4.25 in order to get an expression,where
our only unknown parameter is Tm,

JfL/2− JfL/2 = −κ20(Tm′ − Th)− µ

3 (T 3
m′ − T 3

h ) + µT0(T 2
m′ − T 2

h )− µT 2
0 (Tm′ − Th)

+ k10(Tc − Tm′)− λT0(Tc − Tm′) + λ

2 (T 2
c − T 2

m′) ⇒

− µ

3T
3
m′ + (µT0 −

λ

2 )T 2
m′ + (−κ20 + λT0 − µT 2

0 − κ10)Tm′

+ (κ20Th + µ

3T
3
h − µT0T

2
h + µT 2

0 Th + κ10Tc + λ

2T
2
c − λT0Tc) = 0. (4.27)

Equation 4.22 can be rewritten to the simpler form

α′T 3
m′ + β′T 2

m′ + γ′Tm′ + δ′ = 0 (4.28)

where
α′ = −µ3

β′ = µT0 −
λ

2
γ′ = −κ20 + λT0 − µT 2

0 − κ10

δ′ = κ20Th + µ

3T
3
h − µT0T

2
h + µT 2

0 Th + κ10Tc + λ

2T
2
c − λT0Tc.

Equation 4.28 is a cubic equation that has 3 roots. When we find the 3 roots, we
keep the one that satisfies the following inequality, Th > Tm′ > Tc. After finding the
value of Tm′ , our final move for obtaining the expression which gives us the value of
the backward heat current, is to subtract Equation 4.25 and Equation 4.26, getting:

Jf · L = −κ20(Tm′ − Th)− µ

3 (T 3
m′ − T 3

h ) + µT0(T 2
m′ − T 2

h )− µT 2
0 (Tm′ − Th)

− κ10(Tc − Tm′) + λT0(Tc − Tm′)− λ

2 (T 2
c − T 2

m′). (4.29)

Using Equation 4.2, we can calculate the Rectification factor, since we got the expres-
sions for heat current for both directions (Equations 4.24 & 4.29).
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4.2 Experimental Static Rectification

We ll now put real values in the above equations and we ll calculate the rectification
that some bounded spin chain-ladder materials present.

4.2.1 case 1: Sr2CuO3 - Ca9La5Cu24O41 compound

The first case that we ll study, is the Sr2CuO3 (Spin chain - MaterialA) - Ca9La5Cu24O41

(Spin ladder - Material B) bounded material.

(a) Total thermal conductivity of
Sr2CuO3

(b) Total thermal conductivity of
Ca9La5Cu24O41

Figure 4.2: The blue boxes in the above figures, show us the range of temperatures that
we ll take into account when we ll calculate the thermal rectification. The left surface of
each box, corresponds to the low temperature heat bath Tc = 75 K and the right surface
the high temperature heat bath Th = 125K.

As we see in figure 4.2, these two materials fulfil the 2 criteria that we mentioned
above. Material A (the spin chain) exhibits a high κ at low temperatures (near the Tc)
and low κ at high temperatures (near Th), when material B exhibits low κ near Tc and
high κ near Th. From the above figure, we can extract the thermal conductivity for
each material, in the form of Equations 4.2 and 4.3.So, we get:

κ1 = 135 W

mK
− 2 · (T − T0) W

mK2 (4.30)
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4. Static Thermal Rectification

κ2 = 63 W

mK
+ 1.7 · (T − T0) W

mK2 , (4.31)

where T0 = 100K for both materials. Now, since both materials have thermal conduc-
tivities that have linear dependence on temperature, we can use the results 4.11 and
4.17 in order to calculate the two heat currents, Jr and Jf . After this calculation, we
can easily extract the rectification factor from Equation 4.2. In order to calculate Jr
from Equation 4.11, we have to find Tm first. Taking into account that κ10 = 135 W

mK
,

κ20 = 63 W

mK
, λ = −2 W

mK2 and µ = +1.7 W

mK2 we get:

α = −1
2(µ+ λ) = 0.15 W

mK2

β = −κ10 − κ20 + λT0 + µT0 = −228 W

mK

γ = −λT0 Th − µT0Tc + λ

2T
2
h + κ10Th + µ

2T
2
c + κ20Tc = 23006.25 W

m
.

By putting α, β and γ into equation 4.10 we get Tm+ and Tm−:

Tm± = −β ±
√
β2 − 4αγ

2α ⇒

Tm+ = 1411.33K, (4.32)

Tm− = 108.67K. (4.33)

Only Tm− is acceptable since Tc < Tm− < Th, when Tm+ � Th, which is not logical.
Now from Equation 4.11, since we found Tm, we can find Jr which is

JrL = 3308.40 W
m
. (4.34)

Similarly, we ll calculate Jf . From Equation 4.15 we will find Tm′ taking into notice
that:

α′ = −1
2(µ+ λ) = 0.15 W

mK2

β′ = −κ10 − κ20 + λT0 + µT0 = −228 W

mK

γ′ = −λT0 Tc − µT0Th + λ

2T
2
c + κ10Tc + µ

2T
2
h + κ20Th = 19406.25 W

m
.

By putting α′, β′ and γ′ into Equation 4.16, we get

Tm′+ = 1429.50K (4.35)
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Tm′− = 90.50K. (4.36)

As before, only Tm′− is acceptable since Tc < Tm′− < Th, when Tm′+ � Th, which is
not logical. Now from Equation 4.17, since we found T ′m, we can find Jf which is

JfL = 5255.71 W
m
. (4.37)

Now, since we know Jr and Jf , we can calculate the rectification factor from Equation
4.2, which is equal to:

R = |Jf |
|Jr|

= 5255.71
3308.40 = 1.59 (4.38)

4.2.2 case 2: Sr2CuO3 - Sr14Cu24O41 compound

The second case that we will study is the Sr2CuO3 (Spin chain - Material A) -
Sr14Cu24O41 (Spin ladder - Material B) bounded material.

(a) Total thermal conductivity of
Sr2CuO3

(b) Total thermal conductivity of
Sr14Cu24O41

Figure 4.3: The blue boxes in the above figures, show us the range of temperatures that
we ll take into account when we ll calculate the thermal rectification. The left surface of
each box, corresponds to the low temperature heat bath Tc = 75 K and the right surface
the high temperature heat bath Th = 125K.
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From the figure 4.3, we can extract the thermal conductivity for each material, in
the form of Equations 4.2 and 4.3.So, we get:

κ1 = 135 W

mK
− 2 · (T − T0) W

mK2 (4.39)

κ2 = 75 W

mK
+ 0.9 · (T − T0) W

mK2 , (4.40)

where T0 = 100 K for both materials. In order to calculate the thermal rectification
factor we follow the same procedure as before.We will first find Tm and then we will
calculate Jr from Equation 4.11 taking into account that κ10 = 135 W

mK
, κ20 = 75 W

mK
,

λ = −2 W

mK2 and µ = +0.9 W

mK2 . We ll now find the coefficients of Equation 4.10:

α = −1
2(µ+ λ) = 0.55 W

mK2

β = −κ10 − κ20 + λT0 + µT0 = −320 W

mK

γ = −λT0 Th − µT0Tc + λ

2T
2
h + κ10Th + µ

2T
2
c + κ20Tc = 27656.25 W

m
.

By putting α, β and γ into Equation 4.10 we get Tm+ and Tm−:

Tm± = −β ±
√
β2 − 4αγ

2α ⇒

Tm+ = 476.23K, (4.41)

Tm− = 105.59K. (4.42)

Only Tm− is acceptable since Tc < Tm− < Th, when Tm+ � Th, which is not logical.
Now from Equation 4.11, since we found Tm, we can find Jr which is

JrL = 4053.75 W
m
. (4.43)

Similarly, we ll calculate Jf . From Equation 4.15 we will find Tm′ taking into notice
that:

α′ = −1
2(µ+ λ) = 0.55 W

mK2

β′ = −κ10 − κ20 + λT0 + µT0 = −320 W

mK

γ′ = −λT0 Tc − µT0Th + λ

2T
2
c + κ10Tc + µ

2T
2
h + κ20Th = 24656.25 W

m
.
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By putting α′, β′ and γ′ into equation 4.16, we get

Tm′+ = 490.40K (4.44)

Tm′− = 91.41K. (4.45)

As before, only Tm′− is acceptable since Tc < Tm′− < Th, when Tm′+ � Th, which is
not logical. Now from Equation 4.17, since we found T ′m, we can find Jf which is

JfL = 5534.14 W
m
. (4.46)

Now, since we know Jr and Jf , we can calculate the rectification factor from Equation
4.2, which is equal to:

R = |Jf |
|Jr|

= 5534.14
4053.75 = 1.37. (4.47)

As we notice, the rectification factor in the second case of materials, is smaller than
the first case.

4.2.3 case 3: SrCuO2 - Ca9La5Cu24O41 compound

The third case that we will study is the SrCuO2 (Spin chain - MaterialA) - Ca9La5Cu24O41

(Spin ladder - Material B) bounded material.

(a) Total thermal conductivity of
SrCuO2

(b) Total thermal conductivity of
Ca9La5Cu24O41

Figure 4.4: The left surface of each blue box, corresponds to the low temperature heat
bath Tc = 75K and the right surface the high temperature heat bath Th = 125K.
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From the figure 4.4, we can extract the thermal conductivity for each material, in
the form of Equations 4.2 and 4.3.So, we get:

κ1 = 190 W

mK
− 2.1 · (T − T0) W

mK2 (4.48)

κ2 = 63 W

mK
+ 1.7 · (T − T0) W

mK2 , (4.49)

where T0 = 100 K for both materials. In order to calculate the thermal rectification
factor we follow the same procedure as before.We will first find Tm and then we will
calculate Jr from Equation 4.11 taking into account that κ10 = 190 W

mK
, κ20 = 63 W

mK
,

λ = −2.1 W

mK2 and µ = +1.7 W

mK2 . We ll now find the coefficients of Equation 4.10:

α = −1
2(µ+ λ) = 0.2 W

mK2

β = −κ10 − κ20 + λT0 + µT0 = −293 W

mK

γ = −λT0 Th − µT0Tc + λ

2T
2
h + κ10Th + µ

2T
2
c + κ20Tc = 30350.0 W

m
.

By putting α, β and γ into Equation 4.10 we get Tm+ and Tm−:

Tm± = −β ±
√
β2 − 4αγ

2α ⇒

Tm+ = 1352.83K, (4.50)

Tm− = 112.17K. (4.51)

Only Tm− is acceptable since Tc < Tm− < Th, when Tm+ � Th, which is not logical.
Now from Equation 4.11, since we found Tm, we can find Jr which is

JrL = 3873.12 W
m
. (4.52)

Similarly, we ll calculate Jf . From equation 4.15 we will find Tm′ taking into notice
that:

α′ = −1
2(µ+ λ) = 0.2 W

mK2

β′ = −κ10 − κ20 + λT0 + µT0 = −293 W

mK

γ′ = −λT0 Tc − µT0Th + λ

2T
2
c + κ10Tc + µ

2T
2
h + κ20Th = 24000.0 W

m
.
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By putting α′, β′ and γ′ into Equation 4.16, we get

Tm′+ = 1377.91K (4.53)

Tm′− = 87.09K. (4.54)

As before, only Tm′− is acceptable since Tc < Tm′− < Th, when Tm′+ � Th, which is
not logical. Now from equation 4.17, since we found T ′m, we can find Jf which is

JfL = 5555.96 W
m
. (4.55)

Now, since we know Jr and Jf , we can calculate the rectification factor from Equation
4.2, which is equal to:

R = |Jf |
|Jr|

= 5555.96
3873.12 = 1.43. (4.56)

4.2.4 case 4: SrCuO2 - Sr14Cu24O41 compound

The third case that we will study is the SrCuO2 (Spin chain - MaterialA) - Sr14Cu24O41

(Spin ladder - Material B) bounded material.

(a) Total thermal conductivity of
SrCuO2

(b) Total thermal conductivity of
Sr14Cu24O41

Figure 4.5: The left surface of each blue box, corresponds to the low temperature heat
bath Tc = 75K and the right surface the high temperature heat bath Th = 125K.
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From the figure 4.5, we can extract the thermal conductivity for each material, in
the form of equations 4.2 and 4.3.So, we get:

κ1 = 190 W

mK
− 2.1 · (T − T0) W

mK2 (4.57)

κ2 = 75 W

mK
+ 0.9 · (T − T0) W

mK2 , (4.58)

where T0 = 100 K for both materials. In order to calculate the thermal rectification
factor we follow the same procedure as before.We will first find Tm and then we will
calculate Jr from Equation 4.11 taking into account that κ10 = 190 W

mK
, κ20 = 75 W

mK
,

λ = −2.1 W

mK2 and µ = +0.9 W

mK2 . We ll now find the coefficients of Equation 4.10:

α = −1
2(µ+ λ) = 0.6 W

mK2

β = −κ10 − κ20 + λT0 + µT0 = −385 W

mK

γ = −λT0 Th − µT0Tc + λ

2T
2
h + κ10Th + µ

2T
2
c + κ20Tc = 35000.0 W

m
.

By putting α, β and γ into Equation 4.10 we get Tm+ and Tm−:

Tm± = −β ±
√
β2 − 4αγ

2α ⇒

Tm+ = 532.02K, (4.59)

Tm− = 109.64K. (4.60)

Only Tm− is acceptable since Tc < Tm− < Th, when Tm+ � Th, which is not logical.
Now from Equation 4.11, since we found Tm, we can find Jr which is

JrL = 4717.90 W
m
. (4.61)

Similarly, we ll calculate Jf . From Equation 4.15 we will find Tm′ taking into notice
that:

α′ = −1
2(µ+ λ) = 0.6 W

mK2

β′ = −κ10 − κ20 + λT0 + µT0 = −385 W

mK

γ′ = −λT0 Tc − µT0Th + λ

2T
2
c + κ10Tc + µ

2T
2
h + κ20Th = 29250.0 W

m
.
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By putting α′, β′ and γ′ into Equation 4.16, we get

Tm′+ = 553.61K (4.62)

Tm′− = 88.06K. (4.63)

As before, only Tm′− is acceptable since Tc < Tm′− < Th, when Tm′+ � Th, which is
not logical. Now from equation 4.17, since we found T ′m, we can find Jf which is

JfL = 5975.36 W
m
. (4.64)

Now, since we know Jr and Jf , we can calculate the rectification factor from equation
4.2, which is equal to:

R = |Jf |
|Jr|

= 5975.36
4717.90 = 1.27. (4.65)

We will now study two more cases, in which the ladder’s material thermal con-
ductivity has quadratic dependence on temperature, when chain’s material has linear
dependence on temperature.

4.2.5 case 5: Sr2CuO3 - Sr14Cu24O41 compound

The fifth case that we will study is the Sr2CuO3 (Spin chain - MaterialA) - Sr14Cu24O41

(Spin ladder - Material B) bounded material, but now the spin ladder’s thermal con-
ductivity has quadratic dependence on temperature.

From the figure 4.6, we can extract the thermal conductivity for each material, in
the form of equations 4.18 and 4.19.So, we get:

κ1 = 80 W

mK
− 0.8 · (T − T0) W

mK2 (4.66)

κ2 = 94 W

mK
− 0.01 · (T − T0)2 W

mK3 , (4.67)

where T0 = 140K for both materials.
We will first find Tm from Equation 4.23 and then we will calculate Jr from Equation

4.24 taking into account that κ10 = 80 W

mK
, κ20 = 94 W

mK
, λ = −0.8 W

mK2 and

µ = −0.01 W

mK3 . We ll now find the coefficients of equation 4.23):
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(a) Total thermal conductivity of
Sr2CuO3

(b) Total thermal conductivity of
Sr14Cu24O41

Figure 4.6: The left surface of each blue box, corresponds to the low temperature heat
bath Tc = 125K and the right surface the high temperature heat bath Th = 175K.

α = −µ3 = 0.003 W

mK3

β = µT0 −
λ

2 = −1 W

mK2

γ = −k10 + λT0 − µT 2
0 − κ20 = −90 W

mK

δ = κ10Th + µ

3T
3
c − µT0T

2
c + µT 2

0 Tc + κ20Tc + λ

2T
2
h − λT0Th = 23964.58W

m

By putting α, β, γ and δ into equation 4.23 and solving it, we get Tm1, Tm2 and Tm3:

Tm1 = −161.03K, (4.68)

Tm2 = 139.98K. (4.69)

Tm3 = 354.38K (4.70)

Only Tm2 is acceptable since Tc < Tm2 < Th, when Tm3 � Th and Tm1 � Tc which
are not logical. Now from equation (4.24), since we found Tm, we can find Jr which is

JrL = 3708.47 W
m
. (4.71)
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Similarly, we ll calculate Jf . From Equation 4.28 we will find Tm′ taking into notice
that:

α′ = −µ3 = 0.003 W

mK3

β′ = µT0 −
λ

2 = −1 W

mK2

γ′ = −κ20 + λT0 − µT 2
0 − κ10 = −90 W

mK

δ′ = κ20Th + µ

3T
3
h − µT0T

2
h + µT 2

0 Th + κ10Tc + λ

2T
2
c − λT0Tc = 24910.42W

m

By putting α′, β′, γ′ and δ′ into Equation4.28, we get

Tm′1 = −163.04K (4.72)

Tm′2 = 144.90K. (4.73)

Tm′3 = 351.47K. (4.74)

As before, only Tm′2 is acceptable since Tc < Tm′2 < Th, when Tm′3 � Th and
Tm′1 � Tc, which are not logical. Now from Equation 4.29, since we found T ′m, we can
find Jf which is

JfL = 4359.27 W
m
. (4.75)

Now, since we know Jr and Jf , we can calculate the rectification factor from equation
4.2, which is equal to:

R = |Jf |
|Jr|

= 4359.27
3708.47 = 1.18. (4.76)

4.2.6 case 6: SrCuO2 - Ca9La5Cu24O41 compound

The sixth and the last case that we will study is the SrCuO2 (Spin chain - Material A) -
Ca9La5Cu24O41 (Spin ladder - Material B) bounded material, but now the spin ladder’s
thermal conductivity has quadratic dependence on temperature, as the previous case.

From the figure 4.7, we can extract the thermal conductivity for each material, in
the form of Equations 4.18 and 4.19.So, we get:

κ1 = 60 W

mK
− 0.3 · (T − T0) W

mK2 (4.77)
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(a) Total thermal conductivity of
SrCuO2

(b) Total thermal conductivity of
Ca9La5Cu24O41

Figure 4.7: The left surface of each blue box, corresponds to the low temperature heat
bath Tc = 140K and the right surface the high temperature heat bath Th = 200K.

κ2 = 138 W

mK
− 0.02 · (T − T0)2 W

mK3 , (4.78)

where T0 = 170K for both materials.
We will first find Tm from Equation 4.23 and then we will calculate Jr from Equation

4.24 taking into account that κ10 = 60 W

mK
, κ20 = 138 W

mK
, λ = −0.3 W

mK2 and

µ = −0.02 W

mK3 . We ll now find the coefficients of Equation 4.23:

α = −µ3 = 0.007 W

mK3

β = µT0 −
λ

2 = −3.25 W

mK2

γ = −k10 + λT0 − µT 2
0 − κ20 = 329 W

mK

δ = κ10Th + µ

3T
3
c − µT0T

2
c + µT 2

0 Tc + κ20Tc + λ

2T
2
h − λT0Th = 2946.67W

m

By putting α, β, γ and δ into equation 4.23 and solving it, we get Tm1, Tm2 and Tm3:

Tm1 = −8.27K, (4.79)

Tm2 = 166.14K. (4.80)
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Tm3 = 306.42K (4.81)

Only Tm2 is acceptable since Tc < Tm2 < Th, when Tm3 � Th and Tm1 � Tc which
are not logical. Now from Equation 4.24, since we found Tm, we can find Jr which is

JrL = 5326.54 W
m
. (4.82)

Similarly, we ll calculate Jf . From Equation 4.28 we will find Tm′ taking into notice
that:

α′ = −µ3 = 0.007 W

mK3

β′ = µT0 −
λ

2 = −3.25 W

mK2

γ′ = −κ20 + λT0 − µT 2
0 − κ10 = 329 W

mK

δ′ = κ20Th + µ

3T
3
h − µT0T

2
h + µT 2

0 Th + κ10Tc + λ

2T
2
c − λT0Tc = 7266.67W

m

By putting α′, β′, γ′ and δ′ into Equation 4.28, we get

Tm′1 = −18.55K (4.83)

Tm′2 = 193.19K. (4.84)

Tm′3 = 289.64K. (4.85)

As before, only Tm′2 is acceptable since Tc < Tm′2 < Th, when Tm′3 � Th and
Tm′1 � Tc, which are not logical. Now from Equation 4.29, since we found T ′m, we can
find Jf which is

JfL = 4088.65 W
m
. (4.86)

This is not the result that we were waiting because, as we mentioned before, we
expect that Jf will be bigger than Jr. The reason that this is not happening is that
these two materials that are bounded together, don’t fulfil the two criteria that are
needed for thermal rectification. To be more specific, material B that should present
high κ at high temperatures and low κ at low temperatures (when material A should
present the opposite properties), presents high κ at both low and high temperatures.
As we see, the conductivity of material B near the Tc is κ ≈ 120 W

m ·K
which is way
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higher than material’s A at low temperatures (κ ≈ 70 W

m ·K
). So, the last compound

that we studied is not a good candidate for thermal rectifier.
Concluding, we notice that the higher rectification factor is achieved in case 1.

The reason why the rectification factor in case 1 is higher than in the case 2 when
the spin ladder material is the same, is the difference in the conductivities in the spin
chain materials. We remind that in order to achieve rectification, as for the spin chain
material, it must has high κ at low temperatures and low κ at high temperatures.
We notice that the spin chain material in case 3, has a very large conductance (κ ≈
140 W

m ·K
) even at high temperatures, which at the same time is even higher than

spin ladder’s conductance at high temperatures in the same material, which is κ ≈
105 W

m ·K
. This doesn’t happen in case 1, where spin chain’s thermal conductance at

high temperatures (κ ≈ 80 W

m ·K
) is lower than spin ladder’s conductance at the same

temperature range (κ ≈ 110 W

m ·K
).

The most crucial point that makes the materials good or bad candidates for thermal
rectifier, is the non-linear’s term coefficient. When the coefficient is big, then we notice
biggest difference in thermal conductivity’s values at high and low temperatures. We
have to clarify at this point, that when thermal conductivity has the form of Equation
4.3, it has linear dependence on temperature, but in general the thermal conductivity
is non-linear, since ∼ T term in heat flux equation, is non-linear. To be more specific,
we have the heat flux equation:

J = −κ(T ) dT
dx

= −(κ10 + λ(T − T0))dT
dx

= −(κ10 − λT0)dT
dx
− λT dT

dx
. (4.87)

It is clear now, that heat flux equation that we are solving in order to calculate the
thermal rectification is non-linear, since ∼ T dT

dx
is non-linear term.

4.3 Static Rectification Study via Sander’s
& Walton’s method
In the previous section, we calculated the static rectification in a material which was
composed of two other materials bounded together, by integrating the heat flux equa-
tion from x = 0 to x = L , and from x = L to x = 0 respectively. The point here is
that by doing so, we didn’t take into consideration many valuable parameters of the 2
materials and the fact that the heat in these materials propagates via two heat carriers,
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4.3 Static Rectification Study via Sander’s & Walton’s method

the magnons and the phonons. As we mentioned in previous sections, the total thermal
conductivity in each material can be separated into two thermal conductivities, one is
for the magnon system and the other for the phonon system. The sum of these two
different conductivities gives us the total one. The parameters that we didnt take into
consideration before, is the specific heat of the two heat carriers (which is different in
each material for each heat carrier) and the thermalization time τmp between the two
carriers.

First, lets assume that we have only one material (spin chain or spin ladder), and
we ll try to find an analytical expression that will give us the temperature profile of
each carrier, taking into consideration all these parameters mentioned above. If that’s
possible, we ll continue to find the temperature profile in a material that is composed
of two others and we ll calculate the thermal rectification.

Expressing the total conductivity as a simple sum of the magnon and phonon con-
ductivities, implicitly assumes that the temperature gradient in the phonon system
is the same as that in the magnon system. Since thermal transport is inherently a
nonequilibrium phenomenon, that is not necessarily the case. In a thermally isolated
system, the difference between the magnon and the phonon temperatures, Tm and Tp,
would decay exponentially. The magnon-phonon relaxation time τmp is defined by

d

dt
∆T = −∆T

τmp
(4.88)

where ∆T = Tp − Tm. It is easy to show from Equation 4.88 that Tm and Tp approach
each other. Especially, in the case that Tm approaches Tp, we have

−cm
dTm
dt

= cp
dTp
dt

⇒ dTm
dt

= − cp
cm

dTp
dt

. (4.89)

From the left-hand side expression of the Equation 4.88, we can take

d

dt
∆T = d

dt
(Tp − Tm) ⇒ dTp

dt
− dTm

dt
= −∆T

τmp
, (4.90)

so if we enter Equation 4.89 into Equation 4.90, we will have

dTp
dt
− (− cp

cm

dTp
dt

) = dTp
dt

(1 + cp
cm

) = dTp
dt

(cp + cm
cm

) ⇒

dTp
dt

( cT
cm

) = −∆T
τmp

⇒ dTp
dt

= cm
cT

Tm − Tp
τmp

, (4.91)
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where cm and cp are the specific heats of the magnon and phonon systems, and cT =
cp + cm. Using the same logic, we can derive a similar equation for the case that Tp
approaches Tm

dTm
dt

= cp
cT

Tp − Tm
τmp

. (4.92)

Now consider a thermal conductivity sample of length L and cross-sectional area A,
with the heat flow along the x direction. A total heat flux Q is supplied at x = −1

2L,
and absorbed at x = 1

2L. In general, the temperature of the magnon system Tm(x) at
any point x will differ from that of the phonons Tp(x). If there were no heat flow down
the sample through the magnon system, the magnon temperature at each point would
come into equilibrium with the phonon temperature, as in Equation 4.92.

Therefore, in volume element Adx of the sample, the amount of heat per unit time
flowing into the magnon system from the phonon system would be

dPm(x) = cm
dTm(x)
dt

A dx = cpcm
cT

Tp(x)− Tm(x)
τmp

A dx, (4.93)

where the specific heat is now explicitly the heat capacity per unit volume.
However, if the magnon system has a finite conductivity km, the heat which flows

into it will be conducted along the sample and a steady state will be reached. The
contribution of a small length dx to the heat flux in the magnon system is

dQm(x) = dPm(x)
A

= cpcm
cT

Tp(x)− Tm(x)
τmp

dx. (4.94)

Therefore, the total magnon heat flux at any point x is given by

Qm(x) = cpcm
cT

1
τmp

∫ x

−L/2
[Tp(x′)− Tm(x′)] dx′. (4.95)

But, by definition of the magnon conductivity,

Qm(x) = −km(x)dTm(x)
dx

. (4.96)

This is the point where we stray from Mr D.J. Sanders’ and Mr D. Walton’s way
of finding the phonon and magnon temperature distribution profile. Mr Sanders and
Mr Walton considered that magnon’s thermal conductivity is a constant km, when we
consider that it has a temperature dependence, km(Tm).

Combining Equations 4.95 and 4.96, we get

km(Tm)dTm
dx

+ cmcp
cT

1
τmp

∫ x

−L/2
[Tp(x′)− Tm(x′)] dx′ = 0 ⇒
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km(Tm)
cm

dTm
dx

+ cp
cT

1
τmp

∫ x

−L/2
[Tp(x′)− Tm(x′)] dx′ = 0 ⇒

Dm(Tm)dTm
dx

+ cp
cT

1
τmp

∫ x

−L/2
[Tp(x′)− Tm(x′)] dx′ = 0. (4.97)

As we know, thermal diffusivity is the thermal conductivity divided by density and
specific heat capacity at constant pressure. Therefore, the product of density and
specific heat capacity can be considered as the volumteric heat capacity. In a more
mathematical language,

D = k

ρcP
= k

c
.

In our case, we considered the following expression

Dm(Tm) = km(T )
cm

(4.98)

in order to get Equation 4.97. At this point, we have to emphasize that we assumed
that only magnon thermal diffusivity has a spatial dependence. Phonon thermal con-
ductivity on the other hand, is constant.

By differentiating Equation 4.97 we get

d

dx
(Dm(T )dTm(x)

dx
) + cp

cT

1
τmp

(Tp(x)− Tm(x)) = 0. (4.99)

The total heat flux Q is divided between the magnons and the phonons according to

Q = Qp(x) +Qm(x) = −kp
dTp(x)
dx

− km(x)dTm(x)
dx

⇒

Q = −kp
dTp(x)
dx

− cmDm(Tm)dTm(x)
dx

. (4.100)

Therefore, Tp(x) is related to Tm(x) by

dTp
dx

= −Q
kp
− cm
kp
Dm(Tm)dTm

dx
, (4.101)

with the boundary condition that at the center of the sample, the phonon and magnon
temperatures are both equal to the average sample temperature T0; i.e.,

Tm(0) = Tp(0) = T0. (4.102)

We will now solve Equation (4.101)∫
dTp
dx

dx =
∫

(−Q
kp
− cm
kp
Dm(Tm)dTm

dx
)dx ⇒
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Tp(x) = −Q
kp
x− cm

kp

∫
Dm(Tm)dTm(x). (4.103)

At this point, we consider that magnon thermal diffusivity Dm(x) has the following
form

Dm(Tm) = D0 + αTm(x), (4.104)

where D0 and α are constants. Now,we put Equation 4.104 into 4.103 and we get

Tp(x) = −Q
kp
x− cm

kp

∫
(D0 + αTm(x))dTm(x) ⇒

Tp(x) = −Q
kp
x− cm

kp
D0Tm(x)− αcm

kp

∫
Tm(x)dTm(x) + C ⇒

Tp(x) = −Q
kp
x− cm

kp
D0Tm(x)− α

2
cm
kp
T 2
m(x) + C . (4.105)

We ll use the boundary condition 4.102 in order to neglect the constant of integration
C that exists in Equation 4.105

Tp(0) = −cm
kp
D0Tm(0)− α

2
cm
kp
T 2
m(0) + C ⇒

T0 = −cm
kp
D0T0 −

α

2
cm
kp
T 2

0 + C ⇒

C = T0 + cm
kp
D0T0 + α

2
cm
kp
T 2

0 ⇒

C = T0
(cm
kp

(D0 + α

2 T0) + 1
)

(4.106)

Substituting 4.104 & 4.105 into 4.99, the differential equation for Tm(x) becomes

d

dx

(
Dm(x)dTm(x)

dx

)
︸ ︷︷ ︸

term #1

+ cp
cT

1
τmp

(
− Q

kp
x− cm

kp
D0Tm(x)− α

2
cm
kp
T 2
m(x) + C − Tm(x)

)
= 0 .

(4.107)

We work Term #1 separately

d

dx

(
Dm(x)dTm(x)

dx

)
= dDm(x)

dx

dTm(x)
dx

+Dm(x)d
2Tm(x)
dx2 ⇒

d

dx

(
Dm(x)dTm(x)

dx

)
= d

dx
(D0 + αTm(x))dTm

dx
+ (D0 + αTm(x))d

2Tm(x)
dx2 ⇒
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d

dx

(
Dm(x)dTm(x)

dx

)
= α

(dTm
dx

)2
+D0

d2Tm
dx2 + αTm

d2Tm
dx2 . (4.108)

Substituting Equation 4.108 into 4.107 we get the final form of the equation that gives
us Tm(x)

α
(dTm
dx

)2
+D0

d2Tm
dx2 +αTm

d2Tm
dx2 + cp

cT

1
τmp

(
−Q
kp
x−cm

kp
D0Tm(x)−α2

cm
kp
T 2
m(x)+C−Tm(x)

)
= 0.

(4.109)
Equation 4.109 can be written in a simpler form

y′2 + α̃y′′ + yy′′ + βx+ γy + δy2 + εy + ζ = 0 (4.110)

where
α̃ ≡ D0

α

β ≡ − cp
cT

1
τmp

Q

kp

1
α

γ ≡ − cp
cT

1
τmp

cm
kp

D0
α

δ ≡ − cp
cT

1
τmp

cm
2kp

ε ≡ − cp
cT

1
τmp

1
α

ζ ≡ cp
cT

1
τmp

C

α
.

Equation 4.110 is a non-linear equation that cannot be solved analytically. So, we
can’t continue to study the static thermal rectification in these materials by using this
method, that was first used from D. J. Sanders and D. Walton. In the next section we
ll calculate numerically the dynamic rectification in these materials, taking in mind all
the microscopic parameters that we mentioned earlier.
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5.1 Thermal Rectification
In this section, we ll study the dynamic heat transfer in the magnetic materials that
we were talking in the previous paragraph. We have, as we mentioned from the start
of this work, two bounded magnetic materials, in which we ll put a heat pulse at the
one surface and then we ll calculate the temperature change over time, at the opposite
surface. By doing this twice (one for the left surface , calculating the temperature
change at the right surface and via versa), we ll calculate the thermal rectification
factor, which we ll compare it with the one that we extracted in the static heat transfer
in each case.

The heat transport in these compounds that we are referring to, can be described
by a two-temperature (2T) model, obtained by phase space integration of the Bloch-
Boltzmann-Peierls equation for the lattice (l, phonons) and magnetic (m,magnons)
degrees of freedom:

Cl
∂Tl
∂t

= ∂

∂x

(
kl(x)∂Tl

∂x

)
− Cl · Cm
Cl + Cm

1
τmp

(Tl − Tm) (5.1)

Cm
∂Tm
∂t

= ∂

∂x

(
km(x)∂Tm

∂x

)
− Cl · Cm
Cl + Cm

1
τmp

(Tm − Tl). (5.2)

Here, t is time; x is the coordinate alone the spin ladder or chain; Tl,m, Cl,m and kl,m are
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the temperature, specific heat, and thermal conductivity for the lattice and magnetic
subsystems; and the Cl · Cm

Cl + Cm
1
τmp

term is the coupling constant.
The reduced equations that we solve in this toy model, taking into account that

[D] = L2

T
, can be found:

Cl
∂Tl
∂t

= ∂

∂x

(
kl(x)∂Tl

∂x

)
− Cl · Cm
Cl + Cm

1
τmp

(Tl − Tm) ⇒

∂Tl
∂t

= ∂

∂x

(
(kl(x)
Cl

)∂Tl
∂x

)
− Cm
Cl + Cm

1
τmp

(Tl − Tm) ⇒

∂Tl
∂t

= ∂

∂x

(
Dl(x)∂Tl

∂x

)
− Cm
Cl + Cm

1
τmp

(Tl − Tm) ⇒

∂Tl
∂t

= ∂

∂x

(Dl(x)
L2/L2

∂Tl
∂x

)
− Cm
Cl + Cm

1
τmp

(Tl − Tm) ⇒

∂Tl
∂t

= ∂

∂(x
L

)

(Dl(x)
L2

∂Tl

∂(x
L

)

)
− Cm
Cl + Cm

1
τmp

(Tl − Tm) ⇒

∂Tl
∂t

= ∂

∂ξ

( 1
τl

∂Tl
∂ξ

)
− Cm
Cl + Cm

1
τmp

(Tl − Tm) (5.3)

and similarly for magnons,

∂Tm
∂t

= ∂

∂ξ

( 1
τm

∂Tm
∂ξ

)
− Cl
Cl + Cm

1
τmp

(Tm − Tl), (5.4)

where ξ = x/L and 0 < ξ < 1.

5.1.1 Tridiagonal System

If we use the backward difference at time tj+1 and a second-order central difference for
space derivative at position xi (The Backward Time, Centered Space Method "BTCS")
and the equation that gives us the heat current:

J = −kl(x)dTl
dx

= −Cl ·Dl(x)dTl
dx

,

from Equations 5.1 and 5.2 we get the recurrence equation:

Cl
T j+1
i − T ji
dt

= Ji,i+1 − Ji−1,i
h

− Cl · Cm
Cl + Cm

1
τmp

(T jl − T
j
m). (5.5)

56



5.1 Thermal Rectification

This is an implicit method for solving the one-dimensional diffusion equation. Implicit
methods find a solution by solving an equation involving both the current state of
the system and the later one. Mathematically if Y (t) is the current system state and
Y (t+dt) is the state at the later time (dt is a small time step), for the implicit method
one solves the equation:

G
(
Y (t), Y (t+ dt)) = 0

in order to find Y (t+ dt).

Figure 5.1: The stencil of our problem

From Equation 5.5 we get:

Cl
T j+1
i − T ji
dt

=
(Cl ·Dl

(i+1/2)
T j+1
i+1 − T

j+1
i

h
)− (Cl ·Dl

(i−1/2)
T j+1
i − T j+1

i−1
h

)

h
−

− Cl · Cm
Cl + Cm

1
τmp

(T jl,i − T
j
m,i) ⇒

T j+1
i − T ji
dt

=
(Dl

(i+1/2)
T j+1
i+1 − T

j+1
i

h
)− (Dl

(i−1/2)
T j+1
i − T j+1

i−1
h

)

h
−

− Cm
Cl + Cm

1
τmp

(T jl,i − T
j
m,i) ⇒

T j+1
i − T ji = dt

h2

[(
Dl

(i+1/2)(T
j+1
i+1 − T

j+1
i )−Dl

(i−1/2)(T
j+1
i − T j+1

i−1 )
]
−

− Cm
Cl + Cm

1
τmp

(T jl,i − T
j
m,i) ⇒

T ji −
Cm

Cl + Cm

1
τmp

(T jl,i − T
j
m,i) = T j+1

i − dt

h2

[(
Dl

(i+1/2)(T
j+1
i+1 − T

j+1
i )−

−Dl
(i−1/2)(T

j+1
i − T j+1

i−1 )
]
⇒
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T ji −
Cm

Cl + Cm

1
τmp

(T jl,i − T
j
m,i) = T j+1

i+1 (− dt
h2 D

l
(i+1/2))+

+ T j+1
i

(
1 + dt

h2 (Dl
(i+1/2) +Dl

(i−1/2)
)

+ T j+1
i−1 (− dt

h2 D
l
(i−1/2))⇒ (5.6)

(
T̃ ji

)
=
(
A
)
·
(
T j+1
i

)
(5.7)

where A is a tridiagonal matrix (which is known), T ji is the "current" Temperature
which is also known, and we solve numerically this tridiagonal system in order to
find the later Temperature T j+1

i . At this point, emphasize the fact that we solve this
tridiagonal system twice, once for phonons’ system and once for magnons’ system, since
these two systems are coupled. Another useful notation is that in the Equation 5.6,
wherever we see the diffusion coefficient, we replace it with the diffusion time of each
carrier, according with the equation Di = 1

τi
, as we showed in the reduced dynamic

Equations 5.3 and 5.4 .

5.1.2 Energy Conservation

Energy in a system like these that we are studying is conserved, since it’s closed system.
We will now prove it analytically, assuming that at first we have only one magnetic
material.

The heat transport in the materials, as we mentioned earlier, are given by Equations
5.1 and 5.2:

Cl
∂Tl
∂t

= ∂

∂x

(
kl(x)∂Tl

∂x

)
− CmCl
Cm + Cl

1
τmp

(Tl − Tm)

Cm
∂Tm
∂t

= ∂

∂x

(
km(x)∂Tm

∂x

)
+ CmCl
Cm + Cl

1
τmp

(Tl − Tm).

In the Equations 5.1 and 5.2, we can go from temperatures to energies, knowing that:

Di(x) = ki(x)
Ci

(5.8)

and
Ci · Ti = Ei , (5.9)

where Di(x) is the diffusion coefficient, Ei is the energy and the subscript i can be
equal to l if we are referring to lattice, or m if we are referring to magnons. So from
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5.1 Thermal Rectification

Equation 5.1 using Equations 5.8 and 5.9, we can get:

∂(Cl · Tl)
∂t

= ∂

∂x

(
Dl(x)∂(Cl · Tl)

∂x

)
− CmCl
Cm + Cl

1
τmp

(Tl − Tm)⇒

∂El
∂t

= ∂

∂x

(
Dl(x)∂El

∂x

)
− CmCl
Cm + Cl

1
τmp

(Tl − Tm) (5.10)

and similarly from Equation 5.2 we get:

∂Em
∂t

= ∂

∂x

(
Dm(x)∂Em

∂x

)
− CmCl
Cm + Cl

1
τmp

(Tl − Tm) . (5.11)

By adding the last 2 equations together, we have as result:

∂El
∂t

+ ∂Em
∂t

= ∂(El + Em)
∂t

= ∂

∂x

(
Dl(x)∂El

∂x

)
+ ∂

∂x

(
Dm(x)∂Em

∂x

)
⇒

∂E

∂t
= ∂

∂x

(
Dl(x)∂El

∂x

)
+ ∂

∂x

(
Dm(x)∂Em

∂x

)
, (5.12)

where E is the total Energy of our system.
In order to find if our energy is conserved, we integrate Equation 5.12 with respect

to x, assuming that our material’s length is L :

∂

∂t

∫ L

0
E dx =

∫ L

0

∂

∂x

(
Dl(x)∂El

∂x

)
dx+

∫ L

0

∂

∂x

(
Dm(x)∂Em

∂x

)
dx ⇒

∂

∂t

∫ L

0
E dx = Dl(x)∂El

∂x

∣∣∣L
0

+Dm(x)∂Em
∂x

∣∣∣L
0
⇒

∂

∂t

∫ L

0
E dx = Dl(L)∂El

∂x

∣∣∣
L
−Dl(0)∂El

∂x

∣∣∣
0

+Dm(L)∂Em
∂x

∣∣∣
L
−Dm(0)∂Em

∂x

∣∣∣
0
. (5.13)

Knowing that the magnons are insulated on the surfaces x = 0 and x = L:

∂Em
∂x

∣∣∣
0

= ∂Em
∂x

∣∣∣
L

= 0 ,

Equation (5.13) becomes:

∂

∂t

∫ L

0
E dx = Dl(L)∂El

∂x

∣∣∣
L
−Dl(0)∂El

∂x

∣∣∣
0
. (5.14)

By using the heat current equation, the above equation becomes

∂

∂t

∫ L

0
E dx = Dl(L)∂El

∂x

∣∣∣
L
−Dl(0)∂El

∂x

∣∣∣
0

= J
∣∣
0 − J

∣∣
L

= 0, (5.15)

since the material is not attached to any heat baths and that means that we don’t have
heat current flowing along our material.

59



5. Dynamic Thermal Rectification

We ll now examine the case where our sample consists of 2 materials that are
bounded together. Each material has both phonons and magnons as heat transport
carriers, so, in general the diffusion coefficients and the specific heats are different for
each carrier in each material. Coupling or thermalization time τmp ll be different in
each material too, since the one material can be spin ladder and the other spin chain.

In this case, our results for each material will be similar to what we showed earlier
(Equation 5.9) but now the integration limits will be different and there will be extra
boundary conditions in the interface, where x = L/2. For the first material, where
0 < x < L/2, from Equation 5.8 we get:

∂

∂t

∫ L/2

0
E dx = Dl(L/2)∂El

∂x

∣∣∣
L/2
−Dl(0)∂El

∂x

∣∣∣
0

+Dm(L/2)∂Em
∂x

∣∣∣
L/2
−Dm(0)∂Em

∂x

∣∣∣
0
.

(5.16)
Magnons, as we said before, are insulated on the surfaces at x = 0 and x = L, but not
in the interface, which has as result that the term ∂Em

∂x

∣∣∣
L/2

isn’t equal to zero. After
that notation, Equation 5.16 becomes:

∂

∂t

∫ L/2

0
E dx = Dl(L/2)∂El

∂x

∣∣∣
L/2
−Dl(0)∂El

∂x

∣∣∣
0

+Dm(L/2)∂Em
∂x

∣∣∣
L/2

. (5.17)

Similarly, for the second material, where L/2 < x < L, from Equation 5.8 we get:

∂

∂t

∫ L

L/2
E dx = D̃l(L)∂El

∂x

∣∣∣
L
− D̃l(L/2)∂El

∂x

∣∣∣
L/2

+ D̃m(L)∂Em
∂x

∣∣∣
L
− D̃m(L/2)∂Em

∂x

∣∣∣
L/2

,

(5.18)
but as we explained before, magnons are insulated on the surfaces so:

D̃m(L)∂Em
∂x

∣∣∣
L

= 0 ,

and because of this statement, Equation (5.18) becomes:

∂

∂t

∫ L

L/2
E dx = D̃l(L)∂El

∂x

∣∣∣
L
− D̃l(L/2)∂El

∂x

∣∣∣
L/2
− D̃m(L/2)∂Em

∂x

∣∣∣
L/2

. (5.19)
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5.2 Dynamic Rectification Results

By adding Equations 5.17 and 5.19, we get

∂

∂t

∫ L/2

0
E dx+ ∂

∂t

∫ L

L/2
E dx = Dl(L/2)∂El

∂x

∣∣∣
L/2
−Dl(0)∂El

∂x

∣∣∣
0
+

Dm(L/2)∂Em
∂x

∣∣∣
L/2

+ D̃l(L)∂El
∂x

∣∣∣
L
− D̃l(L/2)∂El

∂x

∣∣∣
L/2
− D̃m(L/2)∂Em

∂x

∣∣∣
L/2
⇒

∂

∂t

∫ L

0
E dx = Dl(L/2)∂El

∂x

∣∣∣
L/2
−Dl(0)∂El

∂x

∣∣∣
0

+Dm(L/2)∂Em
∂x

∣∣∣
L/2

+ D̃l(L)∂El
∂x

∣∣∣
L
− D̃l(L/2)∂El

∂x

∣∣∣
L/2
− D̃m(L/2)∂Em

∂x

∣∣∣
L/2

. (5.20)

Taking in mind that in the interface the heat current for each carrier must be continuous,
then from the following equation that gives us the current:

Ji = −ki(x)dTi
dx

= −Di(x) · Ci
dTi
dx

= −Di(x)dEi
dx

,

we get the following boundary conditions on the interface of our material (x = L/2):

• Dl(L/2)∂El
∂x

∣∣∣
L/2

= D̃l(L/2)∂El
∂x

∣∣∣
L/2

• Dm(L/2)∂Em
∂x

∣∣∣
L/2

= D̃m(L/2)∂Em
∂x

∣∣∣
L/2

.

By using these 2 boundaries conditions, Equation 5.20 becomes:

∂

∂t

∫ L

0
E dx = D̃l(L)∂El

∂x

∣∣∣
L
−Dl(0)∂El

∂x

∣∣∣
0

= J
∣∣
0 − J

∣∣
L

= 0 (5.21)

since our material is not contacted to any heat baths, so we don’t have heat current
flowing along our material. As we see, energy is conserved in our system, as we expected.

5.2 Dynamic Rectification Results

We ll now study the same cases that we studied in the Static rectification section,
solving the toy model we mentioned earlier numerically. Then, we ll extract a thermal
rectification factor for each case, and we ll compare it with the static one.

The main differences between static and dynamic rectification are:
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5. Dynamic Thermal Rectification

• in the static rectification our sample is contacted to two heat baths (one hot heat
bath at the left surface and one cold at the right surface) that leads to a heat
current that flows along our material, when in the dynamic rectification case, we
have no heat baths but we put a heat pulse at the left surface and we measure
the temperature at the right surface and via versa

• in the static case, we solve the heat flux equation, when at at the dynamic case
we solve Bloch-Boltzmann-Peierls equation for each heat carrier (Equations 5.1
and 5.2)

• in the static case we only need the each material’s total thermal conductivity in
order to extract the rectification factor, when at the dynamic case, we need the
thermal diffusivity (which is extracted by the thermal conductivity as we ll show
below), the specific heats for each heat carrier (phonons and magnons) in each
material (these parameters are different in spin chain and spin ladder materials)
and the thermalization time between the two heat carriers, which is different in
each material too

• in static case the rectification factor is defined by the ratio of |Jf | to |Jr|, when in
the dynamic case we define the rectification factor as the ratio τf to τr, where τ in
each case (r refers to backward heat propagation when f to forward propagation)
is the the time of 1/2 increase of Tl at ξ = 1.
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5.2 Dynamic Rectification Results

5.2.1 case 1: Sr2CuO3 - Ca9La5Cu24O41 compound

The first case that we will study is the Sr2CuO3 (Spin chain - Material A) -
Ca9La5Cu24O41 (Spin ladder - Material B) bounded material.

(a) Total thermal conductivity of
Sr2CuO3

(b) Magnetic thermal conductivity of
Sr2CuO3

Figure 5.2: These two diagrams show us the total and the magnetic conductivity of
Sr2CuO3. In order to extract the phononic conductivity, we abstract the magnetic con-
ductivity from the total one and the remaining is the phononic since κ ≈ κmag + κph.

Figure 5.3: This diagram shows us the total and the phononic conductivity of
Ca9La5Cu24O41. To find the magnetic contribution to total conductivity, we just abstract
the phononic from the total.
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5. Dynamic Thermal Rectification

The bounded material is in equilibrium at T0 = 100K and in order to make our
numerical calculations, we have to extract the phononic and the magnetic diffusivities
from the corresponding thermal conductivities. To accomplish this, we have first to
extract the magnetic and phononic conductivity in each material.

We can find from the figure 5.2 that in the temperature range of 75 K to 125 K
for the spin chain material (Sr2CuO3), the phononic and the magnetic conductivities
have the linear form:

κph = 55 W

mK
− 0.8 · (T − T0) W

mK2 (5.22)

κm = 80 W

mK
− 1.6 · (T − T0) W

mK2 . (5.23)

The specific heats for the two heat carriers in the spin chain material are:

Cp = 2.83 · 106 J

K m3 (5.24)

and
Cm = 3 · 104 J

K m3 . (5.25)

Knowing these two parameters, we can extract each carrier’s thermal diffusivity from
the equation κi = Ci ·Di. So, starting from phononic conductivity we have:

κph = 55 W

mK
− 0.8 · (T − T0) W

mK2 ⇒

κph = 2.83 · 106 J

K m3
( 55
2.83 · 106

m2

s
− 0.8

2.83 · 106
m2

s K
(T − T0)

)
⇒

κph = Cp
( 55
2.83 · 106

106 mm2

s
− 0.8

2.83 · 106
106 mm2

s K
(T − T0)

)
⇒

κph = Cp
(

19.4mm
2

s
− 0.3 · (T − T0)mm

2

s K︸ ︷︷ ︸
Dp

)
.

By doing the same calculation for the magnetic diffusivity using the Equations 5.23
and 5.25 we get :

κm = Cm
(

2666.6mm
2

s
− 53 · (T − T0)mm

2

s K︸ ︷︷ ︸
Dm

)
.
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5.2 Dynamic Rectification Results

So the phonon and magnetic diffusivities of the spin chain material are

Dp = 19.4mm
2

s
− 0.3 · (T − T0)mm

2

s K
(5.26)

Dm = 2666.6mm
2

s
− 53 · (T − T0)mm

2

s K
. (5.27)

We notice that there is a huge value difference between the magnetic and phononic
diffusivities and this is explained by the fact that magnetic specific heat is 2 magnitudes
of order smaller than the phononic specific heat, which results in higher values when we
calculate the ratios. The last parameter that we ll put into our numerical calculations,
regarding the spin chain material, is the thermalization time which is τmp = 10−12s.

We ll now do the same calculations for the spin ladder (Ca9La5Cu24O41) material,
in order to extract the phonons’ and magnons’ diffusivities that we ll put into our
numerical calculations.

From figure 5.3, we can extract the magnon and phonon thermal conductivity in
the temperature range of 75K to 125K, which are:

κph = 4 W

mK
− 0.02 · (T − T0) W

mK2 (5.28)

κm = 60 W

mK
+ 1.2 · (T − T0) W

mK2 . (5.29)

The specific heats of the two heat carriers in the spin ladder material are different from
these in the spin chain material, and have the values:

Cp = 2.86 · 106 J

K m3 (5.30)

Cm = 1.5 · 105 J

K m3 . (5.31)

By using the specific heats, we can extract the diffusivities from the thermal conduc-
tivities, as we did before for the spin chain material, so we get:

Dp = 1.4mm
2

s
− 0.07 · (T − T0)mm

2

s K
(5.32)

Dm = 400mm
2

s
+ 8 · (T − T0)mm

2

s K
. (5.33)

The last parameter that we need for our numerical analysis is the thermalization time of
the two heat carriers in the spin ladder material, which can be found in the bibliography

65



5. Dynamic Thermal Rectification

and has the value τmp = 4 · 10−4s. As we notice, the coupling time between the two
carrier is much smaller in the spin chain material than the ladder one.

We put all these parameters (the thermal diffusivities, the specific heats and the
thermalization times for both materials) into our fortran program that solves the tridi-
agonal system (Equation 5.7) that we mentioned earlier, and by applying a heat pulse
at the left surface of our material, we measure the temperature change at the right
surface and via versa. Then, we measure the time of 1/2 increase of Tl in both surfaces
and we calculate the rectification factor.

Figure 5.4: This figure shows us the phonons’ temperature change when we put a heat
pulse at the right surface and we measure the change at the left surface of our material
(Forward direction - Green line) and via versa (Backward/Reversed direction - Red line).
We can see the 1/2 temperature increase time for each direction, τf and τr.

We can find the 1/2 temperature increase time for each direction from the plot
data, and their values are τf = 0.0538s and τr = 0.0494s. So we can find the dynamic
rectification factor which is

Rdyn = τf
τr

= 0.0538s
0.0494s = 1.089 ≈ 1.09. (5.34)

5.2.2 case 2: Sr2CuO3 - Sr14Cu24O41 compound

The second case that we will study is the Sr2CuO3 (Spin chain - Material A) -
Sr14Cu24O41 (Spin ladder - Material B) bounded material.
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5.2 Dynamic Rectification Results

(a) Total thermal conductivity of
Sr2CuO3

(b) Magnetic thermal conductivity of
Sr2CuO3

Figure 5.5: These two diagrams show us the total and the magnetic conductivity of
Sr2CuO3. In order to extract the phononic conductivity, we abstract the magnetic con-
ductivity from the total one and the remaining is the phononic since κ ≈ κmag + κph.

Figure 5.6: The diagram (a) shows us the total and the phononic conductivity of
Sr14Cu24O41 when the diagram (b) shows us the magnetic contribution to the total con-
ductivity.

The spin chain material (Sr2CuO3) is the same as in the case 1, so we know all
the parameters (Specific heats, thermal diffusivities for the two heat carriers and the
thermalization time) we need for our numerical calculation:

Cp = 2.83 · 106 J

K m3 ,

Cm = 3 · 104 J

K m3 ,
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5. Dynamic Thermal Rectification

Dp = 19.4mm
2

s
− 0.3 · (T − T0)mm

2

s K
,

Dm = 2666.6mm
2

s
− 53 · (T − T0)mm

2

s K
,

and
τmp = 10−12s

These thermal diffusivities, as we mentioned in case 1, correspond to the temperature
range of 75K to 125k.

The spin ladder (SR14Cu24O41) material is different from the one in case 1, so we
have to do all the calculations that we did before in order to extract the phonons’ and
magnons’ diffusivities that we ll put into our numerical calculations.

From figure 5.6, we can extract the magnon and phonon thermal conductivity in
the temperature range of 75K to 125K, which are:

κph = 21 W

mK
− 0.3 · (T − T0) W

mK2 (5.35)

κm = 52 W

mK
+ 1.0 · (T − T0) W

mK2 . (5.36)

The specific heats of the two heat carriers in the spin ladder material are (as we men-
tioned in case 1):

Cp = 2.86 · 106 J

K m3

Cm = 1.5 · 105 J

K m3 .

By using the specific heats, we can extract the diffusivities from the thermal conduc-
tivities, so we get:

κph = 21 W

mK
− 0.3 · (T − T0) W

mK2 ⇒

κph = 2.86 · 106 J

K m3
( 21
2.86 · 106

m2

s
− 0.3

2.86 · 106
m2

s K
(T − T0)

)
⇒

κph = Cp
( 21
2.83 · 106

106 mm2

s
− 0.3

2.83 · 106
106 mm2

s K
(T − T0)

)
⇒

κph = Cp
(

7.3mm
2

s
− 0.1 · (T − T0)mm

2

s K︸ ︷︷ ︸
Dp

)
.
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5.2 Dynamic Rectification Results

By doing the same calculation for the magnetic diffusivity using the Equations 5.36
and 5.31 we get :

κm = Cm
(

346.6mm
2

s
+ 6.6 · (T − T0)mm

2

s K︸ ︷︷ ︸
Dm

)
.

So, the thermal diffusivities for our two heat carriers in the spin ladder material, are:

Dp = 7.3mm
2

s
− 0.1 · (T − T0)mm

2

s K
(5.37)

Dm = 346.6mm
2

s
+ 6.6 · (T − T0)mm

2

s K
. (5.38)

The thermalization time for the spin ladder is τmp = 4 ·10−4s,so by solving numerically
the tridiagonal system (Equation 5.7) we get the figure that shows us the temperature
change in our material, when we put a heat pulse in each surface.

Figure 5.7: This figure shows us the phonons’ temperature change when we put a heat
pulse at the right surface and we measure the change at the left surface of our material
(Forward direction - Green line) and via versa (Backward/Reversed direction - Red line).
We can see the 1/2 temperature increase time for each direction, τf and τr.

As we see in the figure 5.7, the heat propagates the same way for both directions.
The 1/2 temperature increase time for each direction is the same, τf = τr = 0.0127s,
that leads to a rectification factor Rdyn = 1, which means that we have no rectification.
In the static case, we found a Rectification factor whose value is Rstat = 1.37, and as
we see, in the static study rectification occurs, when in the dynamic study does not.
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5. Dynamic Thermal Rectification

5.2.3 case 3: SrCuO2 - Ca9La5Cu24O41 compound

The third case that we will study is the SrCuO2 (Spin chain - MaterialA) - Ca9La5Cu24O41

(Spin ladder - Material B) bounded material.

(a) Total thermal conductivity of
SrCuO2

(b) Magnetic thermal conductivity of
SrCuO2

Figure 5.8: These two diagrams show us the total and the magnetic conductivity of
SrCuO2. In order to extract the phononic conductivity, we abstract the magnetic conduc-
tivity from the total one and the remaining is the phononic since κ ≈ κmag + κph. We are
interested for the 4N purity’s conductivity.

Figure 5.9: The diagram (a) shows us the total and the phononic conductivity of
Ca9La5Cu24O41 when the diagram (b) shows us the magnetic contribution to the total
conductivity.
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5.2 Dynamic Rectification Results

We can find from the figure 5.8 that in the temperature range of 75K to 125K for
the spin chain material (SrCuO2), the phononic and the magnetic conductivities have
the linear form:

κph = 30 W

mK
− 0.3 · (T − T0) W

mK2 (5.39)

κm = 160 W

mK
− 1.9 · (T − T0) W

mK2 . (5.40)

The specific heats for the two heat carriers in the spin chain material are:

Cp = 2.83 · 106 J

K m3 (5.41)

and
Cm = 3 · 104 J

K m3 . (5.42)

Knowing these two parameters, we can extract each carrier’s thermal diffusivity from
the equation κi = Ci · Di, as we did before. So, starting from phononic conductivity
we have:

κph = 30 W

mK
− 0.3 · (T − T0) W

mK2 ⇒

κph = 2.83 · 106 J

K m3
( 30
2.83 · 106

m2

s
− 0.3

2.83 · 106
m2

s K
(T − T0)

)
⇒

κph = Cp
( 30
2.83 · 106

106 mm2

s
− 0.3

2.83 · 106
106 mm2

s K
(T − T0)

)
⇒

κph = Cp
(

10.6mm
2

s
− 0.1 · (T − T0)mm

2

s K︸ ︷︷ ︸
Dp

)
.

By doing the same calculation for the magnetic diffusivity using the Equations 5.40
and 5.42 we get :

κm = Cm
(

5333.0mm
2

s
− 62 · (T − T0)mm

2

s K︸ ︷︷ ︸
Dm

)
. (5.43)

So the phonon and magnetic diffusivities of the spin chain material are

Dp = 10.6mm
2

s
− 0.1 · (T − T0)mm

2

s K
(5.44)

Dm = 5333.0mm
2

s
− 62 · (T − T0)mm

2

s K
. (5.45)
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5. Dynamic Thermal Rectification

The last parameter that we ll put into our numerical calculations, regarding the spin
chain material, is the thermalization time which is τmp = 10−12s.

We have made the calculations for the spin ladder (Ca9La5Cu24O41) material in
case 1, so the thermal diffusivites are:

Dp = 1.4mm
2

s
− 0.07 · (T − T0)mm

2

s K
(5.46)

Dm = 400mm
2

s
+ 8 · (T − T0)mm

2

s K
. (5.47)

The last parameter that we need for our numerical analysis is the thermalization time of
the two heat carriers in the spin ladder material, which can be found in the bibliography
and has the value τmp = 4 · 10−4s.

We put all these parameters (the thermal diffusivities, the specific heats and the
thermalization times for both materials) into our fortran program that solves the tridi-
agonal system (Equation 5.7) that we mentioned earlier, and by applying a heat pulse
at the left surface of our material, we measure the temperature change at the right
surface and via versa. Then, we measure the time of 1/2 increase of Tl in both surfaces
and we calculate the rectification factor.

Figure 5.10: This figure shows us the phonons’ temperature change when we put a heat
pulse at the right surface and we measure the change at the left surface of our material
(Forward direction - Green line) and via versa (Backward/Reversed direction - Red line).
We can see the 1/2 temperature increase time for each direction, τf and τr.

We can find the 1/2 temperature increase time for each direction from the plot
data, and their values are τf = 0.0561s and τr = 0.0518s. So we can find the dynamic
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5.2 Dynamic Rectification Results

rectification factor which is

Rdyn = τf
τr

= 0.0561s
0.0518 = 1.083 ≈ 1.08. (5.48)

5.2.4 case 4: SrCuO2 - Sr14Cu24O41 compound

The fourth case that we will study is the SrCuO2 (Spin chain - MaterialA) - Sr14Cu24O41

(Spin ladder - Material B) bounded material.

(a) Total thermal conductivity of
SrCuO2

(b) Magnetic thermal conductivity of
SrCuO2

Figure 5.11: These two diagrams show us the total and the magnetic conductivity of
SrCuO2. In order to extract the phononic conductivity, we abstract the magnetic conduc-
tivity from the total one and the remaining is the phononic since κ ≈ κmag + κph. We are
interested for the 4N purity’s conductivity.
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5. Dynamic Thermal Rectification

Figure 5.12: The diagram (a) shows us the total and the phononic conductivity of
Sr14Cu24O41 when the diagram (b) shows us the magnetic contribution to the total con-
ductivity.

We have made the calculations and found the thermal diffusivities for both materi-
als, within the 75K-125K range, which are for the chain material

Dp = 10.6mm
2

s
− 0.1 · (T − T0)mm

2

s K
(5.49)

Dm = 5333.0mm
2

s
− 62 · (T − T0)mm

2

s K
. (5.50)

and for the ladder material:

Dp = 7.3mm
2

s
− 0.1 · (T − T0)mm

2

s K
(5.51)

Dm = 346.6mm
2

s
+ 6.6 · (T − T0)mm

2

s K
. (5.52)

We put all these parameters (the thermal diffusivities, the specific heats and the
thermalization times for both materials) into our fortran program that solves the tridi-
agonal system (Equation 5.7) that we mentioned earlier, and by applying a heat pulse
at the left surface of our material, we measure the temperature change at the right
surface and via versa. Then, we measure the time of 1/2 increase of Tl in both surfaces
and we calculate the rectification factor.

As we see from the figure 5.13, the 1/2 temperature increase time, is the same for
both directions of propagation, τr = τf = 0.0163s which leads to a rectification factor
Rdyn = 1. That means that we haven’t rectification in this case, when at the static
study rectification occurs for this compound.
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5.2 Dynamic Rectification Results

Figure 5.13: This figure shows us the phonons’ temperature change when we put a heat
pulse at the right surface and we measure the change at the left surface of our material
(Forward direction - Green line) and via versa (Backward/Reversed direction - Red line).
We can see the 1/2 temperature increase time for each direction, τf and τr.

5.2.5 case 5: Sr2CuO3 - Sr14Cu24O41 compound

The fifth case that we will study is the SrCuO2 (Spin chain - Material A) - Sr14Cu24O41

(Spin ladder - Material B) bounded material. The differences between this case and the
previous, is that in this one, spin ladder’s magnetic thermal conductivity has quadratic
dependence on temperature and that the temperature range, where we study the ther-
mal rectification, is between 125K-175K.

From the Figures 5.14 and 5.15, we can extract the thermal conductivity for each
heat carrier, for both materials. We start from the spin chain material, and the thermal
conductivities within the range of 125K - 175K are:

κph = 25 W

mK
− 0.3 · (T − T0) W

mK2 (5.53)

κm = 55 W

mK
− 0.5 · (T − T0) W

mK2 , (5.54)

where T0 = 140K. Knowing the specific heats for the two heat carriers in the spin
chain material, we calculate the thermal diffusivities like we did in the previous cases:

κph = 25 W

mK
− 0.3 · (T − T0) W

mK2 ⇒
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(a) Total thermal conductivity of
Sr2CuO3

(b) Magnetic thermal conductivity of
Sr2CuO3

Figure 5.14: These two diagrams show us the total and the magnetic conductivity of
Sr2CuO3. In order to extract the phononic conductivity, we abstract the magnetic con-
ductivity from the total one and the remaining is the phononic since κ ≈ κmag + κph. We
are interested for the 4N purity’s conductivity.

Figure 5.15: The diagram (a) shows us the total and the phononic conductivity of
Sr14Cu24O41 when the diagram (b) shows us the magnetic contribution to the total con-
ductivity.

κph = 2.83 · 106 J

K m3
( 25
2.83 · 106

m2

s
− 0.3

2.83 · 106
m2

s K
(T − T0)

)
⇒

κph = Cp
( 25
2.83 · 106

106 mm2

s
− 0.3

2.83 · 106
106 mm2

s K
(T − T0)

)
⇒

κph = Cp
(

8.8mm
2

s
− 0.1 · (T − T0)mm

2

s K︸ ︷︷ ︸
Dp

)
.
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5.2 Dynamic Rectification Results

Doing the same calculation for the magnetic thermal conductivity in the spin chain
material, results:

κm = Cm
(

1833mm
2

s
− 17 · (T − T0)mm

2

s K︸ ︷︷ ︸
Dp

)

where T0 = 140K.

As for the spin ladder material, Sr14Cu24O41, we can extract the thermal conduc-
tivity for each heat carrier from figure 5.15 within the 125K-175K temperature range,
which are:

κph = 16 W

mK
− 0.12 · (T − T0) W

mK2 (5.55)

κm = 78 W

mK
− 0.01 · (T − T0)2 W

mK3 . (5.56)

By knowing that in the spin ladder, the specific heats for phonons and magnons are
Cp = 2.86 · 106J/K · m3 and Cm = 1.5 · 105J/K · m3, using the previous method to
extract the thermal diffusivities leads us to the results:

Dp = 5.6mm
2

s
− 0.04 · (T − T0)mm

2

s K
(5.57)

Dm = 520.0mm
2

s
− 0.06 · (T − T0)2mm

2

s K2 . (5.58)

As we mentioned at the start of this case study, all thermal diffusivities except the
magnons’ one in the spin ladder that has quadratic dependence on temperature, depend
linearly on temperature. We now put all these parameters (the thermal diffusivities, the
specific heats and the thermalization times for both materials) into our fortran program
that solves the tridiagonal system (Equation 5.7) that we mentioned earlier, and by
applying a heat pulse at the left surface of our material, we measure the temperature
change at the right surface and via versa. Then, we measure the time of 1/2 increase
of Tl in both surfaces and we calculate the rectification factor.
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5. Dynamic Thermal Rectification

Figure 5.16: This figure shows us the phonons’ temperature change when we put a heat
pulse at the right surface and we measure the change at the left surface of our material
(Forward direction - Green line) and via versa (Backward/Reversed direction - Red line).
We can see the 1/2 temperature increase time for each direction, τf and τr.

As we see from the figure 5.16, the 1/2 temperature increase time, is the same for
both directions of propagation, τr = τf = 0.0186s which leads to a rectification factor
Rdyn = 1. That means that we haven’t rectification in this case, when at the static
study, rectification occurs for this compound.

5.2.6 Discussion

Why dynamic rectification factors are much smaller that the static ones?
At this point, we have to emphasize the main difference between the static and the
dynamic rectification. In the static one, we only use the total thermal conductivity
for each material, and we integrate the heat flux equation. On the other hand, in the
dynamic rectification, we solve numerically a coupled system of two diffusion equations,
taking in mind the dynamic parameters that we know from the microscopic study of
the materials, such as the thermal conductivity of each heat carrier in both materials,
the specific heats of the heat carriers and the coupling time that shows us how much
time is needed for the two heat carriers to interact. As we see, in the static we neglect
a lot of information about our materials and maybe this is a reason that we see much
divergence in our results between the static and the dynamic case, which leads in much
more "promising" results.
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5.2 Dynamic Rectification Results

But let’s try to explain why in the dynamic rectification study, we observe that
the heat propagates, in almost every case, by the same way in both directions. We ll
show moments of the heat that propagates (for both directions) in our material due
to the phonons and magnons and we ll try to explain why the 1/2 increase time of
Tl is almost the same in both directions. The following figures correspond to case’s 1
thermal diffusivities.

Figure 5.17: Phonons’ Temperature versus reduced length ξ = x/L, at time t = 0s

(a) Phonons’ Temperature versus reduced
length ξ = x/L

(b) Magnons’ Temperature versus reduced
length ξ = x/L

Figure 5.18: Temperature of each carrier versus reduced length ξ = x/L,at time t =
0.0001s

Figure 5.17 shows us the moment when t = 0s, which is when we put the heat pulse
at the surfaces. We have to point out that these are two different subcases, one is when
we put the heat pulse at the left surface and measure the temperature increase at the
opposite and via versa, that are plotted simultaneously. The next moment is when t =
0.0001s (figure 5.18), and as we see, when the heat pulse is putted at the chain material,
the phonons’ temperature (figure 5.18(a)) diffuses faster than when is putted in the
ladder material where temperature’s diffusion is extremely small. This happens for two
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5. Dynamic Thermal Rectification

reasons, the first one is because of the difference in the phonons’ thermal diffusivity in
the two bounded materials (in the chain material Dp ≈ 19mm2/s when in the ladder
material Dp ≈ 1.4mm2/s) and the second reason is because of the thermalization time
in these two materials. The thermalization time in the chain material is much smaller
than in the ladder material, τchain � τladder, and that leads the heat to transfer from
the phonon system to the magnon one faster in the chain material, as it is shown in
figure 5.18(a), where we observe a 3-degrees increase in magnons’ temperature when
the pulse is putted at the chain material. At the same time, we observe that when
the heat pulse is putted at the ladder material, magnons’ temperature increase for less
than 0.1 degrees. We notice that in the magnon system, the heat diffuses extremely
fast and that is because of the big values of the magnons’ diffusivities in both materials
(Dm ≈ 2500mm2/s in the chain material and Dm ≈ 400mm2/s in the ladder material).

(a) Phonons’ Temperature versus reduced
length ξ = x/L

(b) Magnons’ Temperature versus reduced
length ξ = x/L

Figure 5.19: Temperature of each carrier versus reduced length ξ = x/L,at time t =
0.001s

By observing the figures 5.19 and 5.20, we can see that when the heat pulse is
putted in the chain material, the heat diffuses much faster than when is putted in the
ladder material, and the two reasons that cause this is the bigger phonon diffusivity
in the chain material and the smaller thermalization time in the chain material that
leads the heat to the magnon system, as we mentioned earlier. At the two moments
that are shown in these two figures, we notice that there is a big difference in the
temperature in the magnon systems for the two directions. This happens because at
the chain material the coupling time is much more smaller than the ladder’s one, so
the heat transfers faster in the magnon system and diffuses pretty fast due to the high
magnon diffusivities.At the same time in the ladder material, the coupling time is way
bigger that the τchain and if we add the fact that the phonon’s system diffusivity is
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5.2 Dynamic Rectification Results

(a) Phonons’ Temperature versus reduced
length ξ = x/L

(b) Magnons’ Temperature versus reduced
length ξ = x/L

Figure 5.20: Temperature of each carrier versus reduced length ξ = x/L,at time t =
0.005s

way too small,most of the heat stays in the phonon system that diffuses too slowly
(comparing to the chain material) and only a small part of it transfers to the magnon
system causing the magnons’ temperature to increase for 0.2 Kelvin degrees.

As for the phonon system , which interests us the most since we measure the phonon
temperature increase at the opposite surfaces, we observe something interesting that we
have to point it out. Despite the fact that in the chain material the heat diffuses pretty
fast in the phonon system, when it reaches the interface (where the ladder material
begins, at ξ = 0.5) the heat there diffuses very slowly (due to the small Dp in the
ladder material) causing the phonon’s temperature to slowly increase. So, we don’t
still see an increase in the phonons’ temperature at the opposite surfaces since despite
the direction, the phonons’ temperature increases slowly at the opposite surfaces.

(a) Phonons’ Temperature versus reduced
length ξ = x/L

(b) Magnons’ Temperature versus reduced
length ξ = x/L

Figure 5.21: Temperature of each carrier versus reduced length ξ = x/L,at time t = 0.08s
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5. Dynamic Thermal Rectification

The last figure (Figure 5.21), corresponds to a moment where we observe a difference
in the phonons’ temperature at the two opposite surfaces. As we see, despite the fact
that the two bounded materials have different dynamic parameters, the heat reaches
the opposite surface from the one that we put the heat pulse, in almost the same time
for both directions. The result is to observe a very small rectification for all the cases
we studied for these 4 materials (every case’s moment figures are similar to these we
showed).

After we studied these cases, a new question arises. "Which dynamic parameter is
crucial for seeing intense rectification phenomena?". The answer to this question lies
at the "Reciprocity and symmetry of the Green’s function" section, where we showed
that in order to observe thermal rectification, our diffusion coefficients must be non
linear. That means that they must have the following form : D = D0 + η · T , which
depends linearly on temperature, but in general D is non linear. So, the bigger the non
linear coefficient η becomes, the bigger the linearity is, which leads to a big rectification
factor.

Lets study the following setup of spin chain-ladder bounded material:

Spin Chain Material Spin Ladder Material

Dp 5 mm
2

s
+ 20 · (T − T0) mm

2

s ·K
100 mm

2

s
− 4.9 · (T − T0) mm

2

s ·K

Dm 5 mm
2

s
+ 20 · (T − T0) mm

2

s ·K
0.1 mm

2

s
+ 15 · (T − T0) mm

2

s ·K

where as we see, the non linear coefficients are much bigger than these in cases 1-5.
These coefficients values aren’t random and the logic behind this choice will explained
now. In the static rectification study, we studied cases of two bounded materials,where
the one exhibits a high κ at low temperatures and high κ at high temperatures and the
second material had the opposite properties. This leads us to two different heat fluxes
when we place a hot heat bath at the left surface and a cold heat bath at the right
surface and via versa, and because of that we observed the rectification phenomenon.
The difference now is that in each material we have two heat carriers, each one having
its own thermal conductivity, so we have to think a little different. We want our chain
material, which is a material with very small thermalization time if we compare it
with the one in the ladder material (τchain � τladder), to exhibit high diffusivity in
both phonons’ and magnons’ system at high temperatures and low diffusivity at low
temperatures. On the other hand we want our ladder’s material phonons’ system to
exhibit low diffusivity at high temperatures and high diffusivity at low temperatures,
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5.2 Dynamic Rectification Results

when the magnons’ system should exhibit low diffusivity at low temperatures and high
diffusivity at high temperatures.

When we put the heat pulse at the spin chain material, we expect to diffuse pretty
fast since the Dp is big in high temperatures and at the same time, since the coupling
time is pretty small and a big portion of the heat will be transfered to magnons’ systen,
magnons will diffuse pretty fast too (Dm is big in high T ). At the time that the heat
pulse will reach the interface (at the start the temperature at the interface will be
small but it will keep increasing), it will diffuse fast since the ladder’s Dp is high at
low temperatures causing the heat to reach the opposite surface in short time. If we
now put the heat pulse at the spin ladder material, we observe that the phonons will
diffuse at very slow rates, since Dp is small at high temperatures. At the same time,
the coupling time is much bigger in the ladder material, so the heat will remain much
more time in the phonon system that diffuses slowly. At a time, the heat will reach
the interface, where the spin chain ladder exhibits low diffusivity at low temperatures
in both phonons’ and magnons’ system, which will stall the heat propagation.

So in general we expect that in the backward direction (when we put the heat
pulse at the chain material) the heat pulse will propagate faster than in the forward
direction (when we put the heat pulse at the ladder material). We will put these
thermal diffusivities that are shown in the above table into our program and we ll see
if the result agrees with our speculations.

Figure 5.22: This figure shows us the phonons’ temperature change when we put a heat
pulse at the right surface and we measure the change at the left surface of our material
(Forward direction - Green line) and via versa (Backward/Reversed direction - Red line).
We can see the 1/2 temperature increase time for each direction, τf and τr.
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5. Dynamic Thermal Rectification

From figure 5.22, we can measure the 1/2 temperature increase times for both
directions which are τf = 0.00340s for the forward direction and τr = 0.00216s for the
backward/reversed direction. The rectification factor is:

Rdyn = τf
τr

= 0.00340s
0.00216s = 1.57 . (5.59)

As we see, the setup we studied leads to a high rectification factor, if we compare it
with the previous dynamical results (cases 1-5). This results shows us that we have to
search for materials that their thermal conductivities have steeper slopes, which means
that the thermal diffusivity’s non linear term coefficient will be high in value. The last
case we studied, we showed that the bigger the non linear’s term coefficient is, results
to more intense non linear phenomena, which in our case is the phenomenon of thermal
rectification.

The question that arises now is: "Are there materials whose thermal conductivity’s
slope is as steep as we mentioned in the last case that we studied?". The answer to this
question is yes. Recently, the family of vanadium oxides has been studied in some works,
where they used these materials to study the thermal rectification phenomenon. The
heat in these materials is carried by two heat carriers, the phonons and the electrons.
The interesting thing that they showed in these materials, is that when the insulator-to-
metal transition occurs in thin films of polycrystalline V O2, the thermal conductance
is increased by 60% due to the phase transition (which occurs close to ∼ 340 K). So
the thermal conductance’s slope is pretty steep, thing that we are searching for.

As we just showed, thermal rectification is a subject that is being studied by a lot of
scientific teams, and the discovery of materials that their thermal conductivity’s slopes
are as steep as possible, will help us to get more promising results at creating a thermal
rectifier.
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6
Temperature Response due to

time-dependent heat source

In the last chapter of this work, we ll study the temperature response at the right
surface of a material, when at the left surface we have adapted a time-dependent heat
source.

6.1 1 Material

6.1.1 One heat carrier

At first, we suppose that we have one material, tha has only one heat carrier, phonons.
Our material is at Equilibrium at T = 100K and we adapt at the left surface a time
dependent heat source that has the following form

Source = 5 · sin(2π
T
· t), (6.1)

where 5 is the amplitude (the peak deviation of the function from zero) and T is the
period. By doing our numerical calculations, we observe the temperature response at
the opposite surface versus time, wanting to see in which cases the heat propagates
diffusivily and in which ballistically.
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6. Temperature Response due to time-dependent heat source

case i:
We suppose that the period of the heat source is T = 0.1s and the diffusion constant

of the phonons is Dp = 100 mm
2

s
which corresponds ,as we showed in the Dynamic

Rectification section when we showed the reduced dynamic equations, to a diffusion
time of τp = 1

Dp
= 0.01s.

Figure 6.1: Temperature response at the opposite surface from the one that we adapted
the heat source, versus time.

As we see from figure 6.1, when the diffusion time τp is smaller than the period T
of the heat source, then the heat propagates ballistically.

case ii:
The heat source we adapt is the same in all cases. The only thing that we change is
the diffusion time of the phonons in respect to the heat source period, and we see the
results. Lets suppose that out diffusion time τp is equal to the heat source’s period.

Figure 6.2: Temperature response at the opposite surface from the one that we adapted
the heat source, versus time.
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6.1 1 Material

In this case, where τp = T we notice that the propagation is mostly ballistic, with
a small diffusive character.

case iii:
In this case we suppose that the diffusion time τp is bigger than the period T , and more
specifically we choose τp = 1s.

Figure 6.3: Temperature response at the opposite surface from the one that we adapted
the heat source, versus time.

We observe that in this case, the heat propagates diffusivily in our material.
Concluding, in the case that we have one material with only phonons as heat carrier,

we observe that when τp < T the heat propagates ballistically, but when τp ≥ T the
diffusive character is becoming more and more intense as the diffusion time τp becomes
bigger than the period of the heat source.

6.1.2 Two heat carriers

Now we suppose that we still have one material but we have two heat carriers (phonons
and magnons) in comparison with before that we had only phonons. So the new param-
eter that joins the study is the coupling/thermalization time τmp. Additional, we have
to point out that the heat source transfers the heat into the phonon system, not the
magnon one (but still can transferred to the magnon system via the phonon-magnon
coupling). So, we consider that our heat source has the form of Equation 6.1,the ther-
malization time equals to τmp = 0.01s and now we ll study 3 different cases where we
ll change the heat source period T in respect to τmp.
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6. Temperature Response due to time-dependent heat source

case i:

In the first case, we suppose that the period of the heat source is T = 0.001s < τmp.
At first we set the diffusion times of phonons and magnons equal to τp = 0.0001s

and τm = 0.1s respectively.

Figure 6.4: Phonons’ (Red) and Magnons’ (Green) temperature response at the opposite
surface from the one that we adapted the heat source, versus time.

As we observe, the heat that is in the phonon system propagates ballistically when
the heat that is in the magnon system diffusivily. This is a result that we were waiting
since τp < T and τm > T , and as we showed in the previous subsection, when the
diffusion time is smaller than the period of the heat source we have ballistic transport,
on the other hand when it is equal or bigger than the period we have diffusive transport.

Lets change the diffusion time of magnons to check what changes will occur and
if magnons’ diffusion time affects the way of how heat is propagated in the phonon
system. We assume that τm = 0.0001s and after our numerical calculations, the figure
that we get is exact the same as the figure 6.4 . So this results shows us that the
magnon system has nothing to do with how heat propagates in the phonon system,
and despite the value of τm the heat in the magnon system will propagate diffusively.

At this point, we have to point out that if we set the τp to be bigger than the
period T , the heat will propagate diffusively in the phonon system, as we showed in
the previous subsection where we had only phonons as heat carrier. This means, that
at least for the case that we have only one material, taump doesn’t affect the way that
heat propagates in the phonon system, only τp and T do.
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6.1 1 Material

case ii:

We now set T = τmp = 0.01s and the diffusion times of phonons and magnons are
taup = 0.001s and τm = 0.001s respectively.

Figure 6.5: Phonons’ (Red) and Magnons’ (Green) temperature response at the opposite
surface from the one that we adapted the heat source, versus time.

When T = τmp, the heat in the phonon system will still propagate, as it is shown
in the figure 6.5, ballistically (if τp < T , otherwise if τp ≥ T will propagate diffusively),
and as for the magnon system the heat will propagate diffusively, as in the previous
case (despite the value ot τm).

So the crucial result that we get from case i and ii, is that the heat in the phonon
system will propagate ballistically if τp < T and doesn’t get affected by the coupling
with magnons, when at the same time the heat that is being transferred in the magnon
system will propagate diffusively, no matter what the value of τm is, as long as T ≤ τmp.
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6. Temperature Response due to time-dependent heat source

case iii:

In the last case, we set the period of the heat source to be equal to T = 0.1s, so
that T > τmp. The phonons’ and the magnons’ diffusion times are τp = 0.01s = τm.
We now notice that both phonons and magnons propagate ballistically. In this case

Figure 6.6: Phonons’ (Red) and Magnons’ (Green) temperature response at the opposite
surface from the one that we adapted the heat source, versus time.

the magnons’ diffusion time τm affects the way the heat propagates in the magnon sys-
tem. If τm then the heat in the magnon system will propagate ballistically otherwise
diffusively.

So, to conclude, in these three cases, where we have only 1 material, we get the
following useful results:

• the way the phonons will propagate, depends only on the phonons’ diffusion time
and the period of the heat source T . If we have τp < T then heat will propagate
ballistically, on the other hand if we have τp ≥ T , the heat ll propagate diffusively.

• magnons’ diffusion time doesn’t affect the way that heat propagates in the magnon
system.

• thermalization time τmp doesn’t affect the heat propagation in the phonon system,
but only in the magnon system. If τmp ≥ T then the heat in the magnon system
will propagate diffusively, otherwise if τmp < T then the heat in the magnon
system will propagate ballistically if τm ≤ T and diffusively if τm > T .

The last result can be explained by thinking that in the first two cases where
T ≤ τmp, the period that the source is inserting/removing heat to/from our system
is smaller than the coupling time, so a big part of the heat "doesn’t make it in time"
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6.2 2 Materials

to get transferred to magnon system, since the coupling is slower. That’s why we
observe a diffusive response in the magnon system. But in the third case where the
coupling time is smaller than the period of the source, a big part of the heat is getting
transferred in the magnon system via the phonon-magnon coupling, and is transferred
out by the same mechanism, following the frequency of the heat source in the case
where taum < T .

6.2 2 Materials

Let’s suppose that we have two materials bounded together, the first one has two heat
carriers (phonons and magnons that interact) and the second one has only phonons.
We adapt a heat source (same heat source as Equation 6.1) at the left surface of the
material and we measure the temperature response at the opposite surface, wanting
to check in which cases the heat propagates ballistically and in which diffusively. We
set the thermalization time τmp = 0.01s (which only exists in first material since in
the second we have only phonons as heat carrier) and the parameters that we change
are the diffusion times of phonons in both materials (τp1 and taup2), the diffusion time
of magnons (τm) that only exist in the first material and the period T of the heat source.

case i:

In our first case we set, the period of the heat source T = 0.001s < τmp, the phonons’
diffusion times equal to τp1 = 0.01s and τp2 = 0.0001s, and the magnons’ diffusion time
in the first material equal to τm = 0.0001s. As we notice, we chose the first’s mate-
rial phonon diffusion time bigger than the period of the heat source and the second’s
material phonon diffusion time smaller than period.
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6. Temperature Response due to time-dependent heat source

Figure 6.7: Phonons’ temperature response at the opposite surface from the one that we
adapted the heat source, versus time.

As we see from figure 6.7, if one’s material phonon diffusion time is bigger than the
period of the heat source, the heat propagation is mostly diffusive. If we change the
magnons’ diffusion time and set it τm = 1s we observer that this change doesn’t affect
the phonons’ heat propagation. So, we can say that the way of heat’s propagation
depends only on the two diffusion times of the phonons.

Lets now set τp1 to be equal to τp1 = 0.1s and keep τp2 as it was before.

Figure 6.8: Phonons’ temperature response at the opposite surface from the one that we
adapted the heat source, versus time.

The interesting thing that we notice from figure 6.8 is that if one of the two phonons’
diffusion time is more than one order of magnitude bigger than the heat period T , then
the heat propagates full diffusively.

The next subcase we ll see, is when both phonons’ diffusion times are smaller than
the heat source’s period T .
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6.2 2 Materials

Figure 6.9: Phonons’ temperature response at the opposite surface from the one that we
adapted the heat source, versus time.

From figure 6.9, we observe what we expect, and that is that the heat, when τp1 =
τp2 < T , propagates fully ballistically. This result comes to agree with the previous
results that we extracted when we studied the 1 material case.

In the case now that the two phonons’ diffusion times are τp1 = τp2 = 0.01s (one
order of magnitude bigger than T ), then we get the following figure:

Figure 6.10: Phonons’ temperature response at the opposite surface from the one that
we adapted the heat source, versus time.

where as we see, the propagation is almost fully diffusive. So, if at least one τp is
bigger than T then we see diffusive propagation.

The last 3 subcases of case 1 that we ll study are when τp1 = T and τp2 = 0.0001s,
T , 0.01s (in the first subcase the τp2 is one order of magnitude smaller than T , in the
second both τp1 and τp2 are equal to T , and in the third τp2 is one order of magnitude
bigger than T ). We ll present the three figures altogether and then we ll discuss the
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results.

Figure 6.11: Phonons’ temperature response at the opposite surface from the one that
we adapted the heat source, versus time. In this subcase τp1 = T and τp2 = 0.0001s.

Figure 6.12: Phonons’ temperature response at the opposite surface from the one that
we adapted the heat source, versus time.In this subcase τp1 = τp2 = T .

From the above 3 figures (figures 6.9-6.11), we observe that in the case where τp1 = T

and τp2 goes from one order of magnitude below T to one order of magnitude above T ,
the only subcase that we saw diffusive propagation was when τp2 = 0.01s > T . So, we
can conclude to the result that if one of the two phonon diffusion time is equal to the
period of the heat source, and the second one is equal or smaller to the period, then
we observe ballistic transport. Otherwise, if the second one is bigger than the period,
we observe diffusive transport. A useful notice that we should mention is that, as we
see in figures 6.11 and 6.12, when phonons’ diffusion times become smaller than T , the
propagation tends to be purely ballistic, but when one or both of the τp have the same
value with T , we observe mostly ballistic propagation and partly diffusive.
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6.2 2 Materials

Figure 6.13: Phonons’ temperature response at the opposite surface from the one that
we adapted the heat source, versus time.In this subcase τp1 = T and τp2 = 0.01s.

case ii: / case iii:
In the second case of the study of heat propagation in a material that is composed of
two others that are bounded together, we set the heat source period T to be equal to
the thermalization time τmp when in the third case we set period T to be one order of
magnitude lower than τmp. By changing the two phonons’ diffusion times we ll try to
observe in which cases we see ballistic or diffusive heat propagation, as we did before.

In order to avoid posting the same figures as the previous case, we have to say that
in both cases (ii and iii), we get the same results as case 1. More specifically, in order
to see ballistic propagation, both phonons’ diffusion times must be ≤ T . In other cases
we have diffusive propagation, as we had in case 1 too.

Concluding, in the case that we have two materials bounded together, where in
the first one we have both phonons and magnons, when at the second we have only
phonons, we observed the following:

• to observe ballistic propagation, the phonons’ diffusion time in both materials
must be ≤ T . If both τp < T we observe fully ballistic transport, when if at
least one is equal to T , then we observe mostly ballistic, and partly diffusive
propagation

• if one τp is ≤ T and the other is > T , then we observe mostly diffusive and partly
ballistic propagation (see figure 6.7)

• if both τp are > T then we observe fully diffusive propagation

• lastly, we noticed that the magnons’ diffusion time and the thermalization time
in the first material, don’t affect the way that the heat propagates.
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7
Summary

Efficient heat removal is crucial to the performance of many electronic devices, since
overheating often leads to a number of performance problems. If we take in mind that
electronics are being miniturized more and more every year, then we conclude that we
have to find a way to dissipate the heat in order to avoid system failures. The main
goal of this thesis is to propose a possible device, a thermal diode, that allows the heat
to flow in a forward direction while it can hardly flow in the opposite direction.

In this thesis, two types of one-dimensional quantum magnets are investigated,
the spin chain system and the spin ladder system, in which the magnetic structure
forms a chain and ladder, respectively. These are chosen because of their potential
in applications in advanced thermal management. The spin ladder and spin chain
materials are promising candidates for advanced cooling mechanisms, because of their
advantageous properties. First of all, heat is conducted primarily along one crystal
axis, hence the material can thermally insulate in one direction and carry away heat
along another. Second, the thermal conductivity along the one-dimensional structure
is κmag ≈ 100W/m ·K, i.e. comparable to a metal. The anisotropy in between different
crystallographic directions is about 40. Third, these compounds are electrically insulat-
ing and can therefore be used to simultaneously electrically insulate electronic circuits
and transport heat. Finally, heat is carried by localised spins which can be manipulated
with magnetic fields or light. This opens the possibility of having a controllable ther-
mal conductivity at room temperature. For example, doping with switchable magnetic
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defects potentially makes tuning of the thermal conductivity achievable.

In chapter 2 the specific spin chain SrCuO2, Sr2CuO3 and spin ladder systems
Ca9La5Cu24O41 and Sr10La4Cu24O41, that are investigated in this thesis, are intro-
duced. The temperature dependence of the steady state thermal conductivity for spin
chains and ladders i, as is described in the chapter, shows a huge magnetic contri-
bution along the ladder/chain that dwarfs the lattice contribution, leading to a large
anisotropy between the ladder/chain direction and the other directions. After the intro-
duction of the spin chain and ladder materials, we present a mathematical description
of (anisotropic) heat diffusion. Along the one-dimensional spin system both magnetic
and lattice excitations participate in the heat transport. During a thermal conductiv-
ity experiment, only the energy of the lattice excitations can be measured, therefore
only the lattice excitations are contributing to the temperature measured. A standard
macroscopic diffusion model can be used when the magnetic and lattice excitations
reach thermal equilibrium at a time scale much faster than the time scale of the ex-
periment. If this is not the case, both excitations have to be taken into account and a
microscopic two-temperature diffusion model is needed to describe the problem. If in
such case the macroscopic diffusion model is used, an effective thermal conductivity is
obtained, of which the size depends on the degree of thermalization between the lattice
and magnetic excitations.

In chapter 3, we introduce the concept of Thermal Rectification, that is a phe-
nomenon in which thermal transport along a specific axis is dependent upon the sign
of the temperature gradient or heat current. Furthermore, we examine under which
circumstances we can achieve thermal rectification, in two independent cases, the static
thermal rectification and the dynamic one. Our material consists of two other materials
that are bounded together, each one having its own thermal conductivity. The main
thing that we concluded is that, in order to observe thermal rectification phenomena,
the thermal conductivities of these two materials must not be constants, but they must
have temperature dependence. In chapter 4 and 5, we studied the cases of Static and
Dynamic thermal rectification, respectively, for various combinations of bounded spin
chain and ladders materials. The highest rectification factor for both cases is found in
the Sr2CuO3 - Ca9La5Cu24O41 compound.

Lastly, in chapter 6, we study the case where we have a material and we adapt a
time-dependent heat source at its left surface, measuring the temperature response at
the opposite surface. The heat in this material, in most of the cases that we study,
propagates via two heat carriers, the phonons and the magnons. So, in this chapter
we want to conclude under which circumstances the heat propagates ballistically or
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diffusively. The interesting thing that we pointed out is that if the phonons’ diffusion
time τp is equal or smaller than the heat source’s period, then the heat propagates
ballistically, otherwise diffusively.

In this work we showed that in a composite material with different temperature
dependent thermal conductivities, thermal rectification is possible to occur. Thermal
rectification exists at the macro and micro scales and a better understanding is be-
ing developed in both, which will eventually lead to efficient thermal rectifiers/diodes.
Currently the many mechanisms that are known to exist in solid systems have shown
only small levels of rectification and are not predictable, but theoretical and analytical
models have predicted large rectification possible and are becoming more and more
accurate. Experimental validation and realization of some of these mechanisms is cru-
cial to the future application involving thermal rectifiers even if only a fraction of the
predicted levels of rectification are achieved. Researchers are only now starting to think
about what devices can be fabricated, what quantities can be measured and whether the
theoretical systems can be realized in the lab. In fact, experimental study of thermal
rectification is said to be ongoing in quite a few research labs.
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