
University of Crete
Department of Computer Science

Improving Generative Adversarial Networks and its
Applications in Speech Synthesis

Ph.D. Thesis

Dipjyoti Paul

Heraklion

February 2024



E–mai o apokleistikÏc suggrafËac thc upoblhje–sac Didaktorik†c Diatrib†c me t–tlo Improv-
ing Generative Adversarial Networks and its Applications in Speech Synthesis. H sugkekrimËnh
Didaktorik† Diatrib† e–nai prwtÏtuph kai ekpon†jhke apokleistikà gia thn apÏkthsh tou Di-
daktoriko‘ dipl∏matoc tou Tm†matoc Epist†mhc Upologist∏n tou Panepisthm–ou Kr†thc. Kàje
bo†jeia, thn opo–a e–qa gia thn proetoimas–a thc, anagnwr–zetai pl†rwc kai anafËretai epakrib∏c
sthn ergas–a. Ep–shc, epakrib∏c anafËrw sthn ergas–a tic phgËc, tic opo–ec qrhsimopo–hsa,
kai mnhmone‘w ep∏numa ta dedomËna † tic idËec pou apotelo‘n proÏn pneumatik†c idiokths–ac
àllwn, akÏmh ki eàn h sumper–lhy† touc sthn paro‘sa ergas–a up†rxe Ëmmesh † parafrasmËnh.
GenikÏtera, bebai∏nw Ïti katà thn ekpÏnhsh thc Didaktorik†c Diatrib†c Ëqw thr†sei aparËgklita
Ïsa o nÏmoc or–zei per– pneumatik†c idiokths–ac kai Ëqw summorfwje– pl†rwc me ta problepÏmena
sto nÏmo per– prostas–ac proswpik∏n dedomËnwn, me tic arqËc thc hjik†c kai deontolog–ac thc
Ëreunac kai thc en gËnei akadhmak†c deontolog–ac.
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Abstract

In this thesis, we explore significant advancements in machine learning. We focus on improving

algorithms for Generative Adversarial Networks (GANs) and using them to improve image generation

and computer speech generation.

Given the recent strides in GAN training, it is imperative to address and enhance the stability of

the training process. Consequently, the first part of this thesis places a distinct emphasis on exploring

algorithmic advancements tailored to improved GAN training. The objective is to delve into strategies

that mitigate challenges and instabilities encountered during the training of GANs, thereby contributing

to the overall refinement of the training process. We propose a novel weight-based algorithm aimed at

strengthening the Generator. The theoretical underpinnings of this approach suggest that it outperforms

the baseline algorithm by creating a more potent Generator at each iteration. Empirical results show

substantial accuracy improvements and faster convergence rates across synthetic and image datasets. The

improvements range between 5% and a remarkable 50%.

In the realm of GAN loss functions, we introduce a novel approach based on cumulant generating

functions. This technique offers a fresh perspective on GAN loss functions by encompassing various

divergences and distances based on cumulant generating functions and relies on a recently derived vari-

ational formula. We show that the corresponding optimization is equivalent to Rényi divergence mini-

mization, thus offering a (partially) unified perspective of GAN losses: the Rényi family encompasses

Kullback-Leibler divergence (KLD), reverse KLD, Hellinger distance, and �
2-divergence. Besides, it

enhances training stability, particularly when weaker discriminators are employed, and demonstrates sub-

stantial improvements in synthetic image generation on datasets like CIFAR-10 and Imagenet.

Disentangled representations are crucial for capturing probability distributions and measuring diver-

gences effectively. Mutual Information (MI) estimation, specifically through Kullback-Leibler Divergence

(KLD), is commonly used to enforce disentanglement. We explore using variational representations, par-

ticularly based on minimizing Rényi divergences, as an alternative to KLD. Rényi divergences offer ad-

vantages in comparing different types of distributions. The text emphasizes using scalable neural network

estimators for efficient MI estimation. Despite the potential for large statistical estimation, incorporat-

ing a variational representation based on Rényi divergences proves feasible and effective. The method is

particularly successful in enhancing stability in real biological data, enabling the detection of rare sub-
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populations even with limited samples. Moreover, the difficulty of precisely estimating divergences poses

a significant challenge in many machine learning tasks, especially when dealing with high-dimensional

datasets that can lead to increased variance. In addressing this challenge, we suggest a solution: incor-

porating an explicit variance penalty (VP) into the objective function of the divergence estimator. This

added penalty aims to decrease the variance associated with the estimator, providing a potential way to

enhance the accuracy of divergence estimations.

In this part of the thesis, our attention shifts to practical uses in speech synthesis, such as transform-

ing one voice into another (voice conversion) and turning written text into spoken words (text-to-speech

synthesis). We introduce innovative techniques for voice conversion that focus on many-to-many voice

conversion. Leveraging concepts from the previous weight-based algorithm, we propose a weight mul-

tiplication approach to enhance the Generator’s gradients, making it more adept at fooling the Discrimi-

nator. This results in a robust Weighted StarGAN (WeStarGAN) system. Notably, WeStarGAN achieves

significantly superior performance compared to conventional methods. It garners preference scores of

75% and 65% in terms of speech subjective quality and speaker similarity, respectively.

Neural vocoders often struggle with generalization, especially to unseen speakers and conditions.

Here, we introduce the Speaker Conditional WaveRNN (SC-WaveRNN), which leverages speaker em-

beddings to improve speech quality and performance. This variant significantly outperforms baseline

WaveRNN, achieving impressive improvements of up to 95% in terms of Mean Opinion Score (MOS) for

unseen speakers and conditions. We extend this work further by implementing a multi-speaker text-to-

speech (TTS) synthesis approach, effectively tackling zero-shot speaker adaptation.

In the realm of Universal TTS, we present a system capable of generating speech with various speaking

styles and speaker characteristics, all without the need for explicit style annotation or speaker labels. We

propose a novel approach based on Rényi Divergence and Disentangled Representation. This innovative

method effectively reduces content and style leakage, resulting in substantial improvements in word error

rate and speech quality. Our proposed algorithm achieves improvements of approximately 16-20% in

MOS speech quality, alongside a 15% boost in MOS-style similarity.

Lastly, the growing use of digital assistants highlights the importance of TTS synthesis systems on

modern devices. Ensuring clear speech generation in noisy environments is crucial. Our innovative trans-

fer learning approach in TTS harnesses the power of amalgamating two effective strategies: Lombard

speaking style data and Spectral Shaping and Dynamic Range Compression (SSDRC). This extended

system, Lombard-SSDRC TTS, significantly improves intelligibility, with relative enhancements ranging

from 110% to 130% in speech-shaped noise (SSN) and 47% to 140% in competing-speaker noise (CSN)

compared to state-of-the-art TTS methods. Subjective evaluations further confirm substantial improve-

ments, with a median keyword correction rate increase of 455% for SSN and 104% for CSN compared to

the baseline TTS method.



Per–lhyh

Se aut† th diatrib†, exetàzoume shmantikËc proÏdouc ston tomËa thc mhqanik†c màjhshc.

Generative Adversarial Networks (GANs) kai sth qr†sh touc gia th belt–wsh thc dhmiourg–ac eikÏnwn

kai tou trÏpou pou oi upologistËc paràgoun omil–a.

DedomËnwn twn prÏsfatwn almàtwn sthn ekpa–deush twn GANs, e–nai epitaktik† h enasqÏlhsh

kai h belt–wsh thc stajerÏthtac thc diadikas–ac ekpa–deushc. EpomËnwc, to pr∏to mËroc aut†c thc

diatrib†c d–nei xeqwrist† Ëmfash sthn diere‘nhsh algorijmik∏n belti∏sewn me skopÏ thn kal‘terh

ekpa–deush GANs. StÏqoc e–nai h die–sdush se strathgikËc pou antimetwp–zoun duskol–ec kai

astàjeiec katà thn ekpa–deush twn GANs, kai epomËnwc suneisfËroun sthn sunolik† anabàjmish

thc diadikas–ac ekpa–deushc. Prote–noume Ënan kainotÏmo baro-kentrikÏ algÏrijmo pou sto-

qe‘ei sthn en–sqush thc Genn†triac. Ta jewrhtikà jemËlia aut†c thc prosËggishc upodeikn‘oun

kal‘terec epidÏseic se sqËsh me ton katesthmËno algÏrijmo, me thn dhmiourg–a miac pio ikan†c Gen-

n†triac se kàje epanàlhyh. Empeirikà apotelËsmata sthr–zoun aut† thn upÏjesh, anadeikn‘ontac

shmantik† belt–wsh sthn akr–beia kai taq‘terouc rujmo‘c s‘gklishc metax‘ sunjetik∏n sullog∏n

dedomËnwn kai sullog∏n dedomËnwn me eikÏnec. To posostÏ belt–wshc kuma–netai anàmesa se Ëna

5% kai Ëna entupwsiakÏ 50%.

Anaforikà me tic sunart†seic kÏstouc, eisàgoume mia nËa prosËggish basismËnh se ajroistikËc

genn†triec sunart†seic. Aut† h mËjodoc prosfËrei m–a nËa optik† stic sunart†seic kÏstouc sta

GANs, me thn qr†sh enÏc megàlou e‘rouc apokl–sewn kai apostàsewn, basismËnwn se ajroistikËc

genn†triec sunart†seic, kai sthr–zetai se m–a prÏsfath sqËsh diakumànsewn. De–qnoume Ïti h

ant–stoiqh beltistopo–hsh e–nai isod‘namh me thn mËjodo elaqistopo–hshc thc apÏklishc tou Renyi,

kai àra prosfËrei mia (merik∏c) kajolik† optik† sta kÏsthGANs: h oikogËneia Renyi qrhsimopoie–

Kullback-Leibler apÏklish KLD, ant–strofo KLD, apÏstash Hellinger apÏklish q². SugqrÏnwc,

belti∏nei thn stajerÏthta ekpa–deushc, id–wc Ïtan qrhsimopoio‘ntai pio ad‘namoi diakritËc, kai

anadeikn‘ei shmatik† belt–wsh sthn paragwg† sunjetik∏n eikÏnwn se sullogËc dedomËnwn Ïpwc

CIFAR-10 kai Imagenet .

Oi aposundedemËnec anaparastàseic e–nai apara–thtec gia thn apot‘pwsh twn katanom∏n pijan-

ot†twn kai thn mËtrhsh thc apÏklishc. H ekt–mhsh thc Amoiba–ac Plhrofor–ac, sugkekrimËna mËsw
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tou KLD, einai m–a sun†jhc prosËggish gia thn en–sqush thc apos‘ndeshc. Meletàme thn qr†sh

metaballÏmenwn anaparastàsewn, basismËnwn id–wc sthn elaqistopo–hsh twn apokl–sewn Renyi,

wc enallaktik† tou KLD . Oi apokl–seic Renyi prosfËroun pleonekt†mata sthn s‘gkrish diafore-

tik∏n t‘pwn katanom∏n. To ke–meno d–nei Ëmfash sthn qr†sh klimako‘menwn neurwnik∏n dikt‘wn

ektimht∏n gia thn apotelesmatik† ekt–mhsh thc Amoiba–ac Plhrofor–ac. Parà th dunatÏthta gia

mia megàlh statistik† ekt–mhsh, h qr†sh m–ac metaballÏmenhc anaparàstashc, basismËnhc stic

apokl–seic Renyi, apodeikn‘etai efikt† kai apotelesmatik†. H mËjodoc e–nai idia–tera epituq†c

sthn belt–wsh thc stajerÏthtac se pragmatikà biologika dedomËna, epitrËpontac thn an–qneush

spàniwn upoplhjusm∏n akÏmh kai me periorismËna de–gmata. AkÏmh, h duskol–a sthn akrib† ek-

t–mhsh twn apokl–sewn apotele– m–a shmantik† prÏklhsh se pollà probl†mata mhqanik†c màjhshc,

eidikà se megàlhc diàstashc dedomËna pou odhgo‘n se auxhmËnh diak‘mansh. Gia thn antimet∏pish

aut†c thc prÏklhshc prote–noume m–a l‘sh: thn qr†sh m–ac poin†c diak‘manshc sthn antikeimenik†

sunàrthsh thc ekt–mhshc thc apÏklishc. Aut† h prÏsjeth poin† stoqe‘ei sthn me–wsh thc diak‘-

manshc pou sqet–zetai me ton ektimht†, parËqontac Ëna pijanÏ trÏpo belt–wshc thc ark–beiac thc

ekt–mhshc twn apokl–sewn.

Se autÏ to mËroc thc diatrib†c, h prosoq† mac strËfetai stic praktikËc qr†seic thc s‘njeshc

fwn†c, Ïpwc h metatrop† m–ac fwn†c se àllh (metasqhmatismÏc fwn†c) kai h paragwg† lÏgou

apÏ ke–meno (ke–meno-se-fwn†-s‘njesh, TTS). Eisàgoume kainotÏmec teqnikËc gia metasqhmatismÏ

fwn†c pou stoqe‘oun kur–wc ston pollËc-se-pollËc metasqhmatismÏ fwn†c. Qrhsimopoi∏ntac

Ënnoiec apÏ ton prohgo‘meno baro-kentrikÏ algÏrijmo, prote–noume mia prosËggish pollaplasi-

asmo‘ bar∏n gia thn belt–wsh twn parag∏gwn thc Genn†triac, kajist∏ntac thn pio ikan† sto

na 'xegelàei' ton Diakrit†. AutÏ odhge– se Ëna e‘rwsto s‘sthma Weighted StarGAN (WeStar-

GAN). E–nai axioshme–wto Ïti to WeStarGAN epitugqànei shmantikà an∏terh ep–dosh se sqËsh

me sumbatikËc mejÏdouc. Shmei∏nei skor ep–doshc thc tàxhc tou 75% kai 65% se Ïti aforà thn

upokeimenik† poiÏthta fwn†c kai thn omoiÏthta omilht† ant–stoiqa.

Oi neurwiko– vocoders suqnà antimetwp–zoun duskol–ec sthn gen–keush, eidikà se àgnwstouc

omilhtËc kai sunj†kec. Ed∏, eisàgoume to Speaker Conditional WaveRNN (SC-WaveRNN), pou

qrhsimopoie– enswmat∏seic omilht∏n gia thn belt–wsh thc poiÏthtac thc fwn†c kai thc ep–doshc.

Aut† h enallatkik† xepernà shmantikà to basikÏWaveRNN, epitugqànontac entupwsik† belt–wsh

thc tàxhc e∏c kai 95% se Ïti aforà to Skor MËshc 'Apoyhc ( MOS) gia àgnwstouc omilhtËc kai

sunj†kec. Wc epiplËon epËktash ulopoio‘me m–a prosËggish pollapl∏n-omilht∏n kËimeno-se-fwn†

s‘njeshc, antimetwp–zontac thn prosarmog† se àgnwstouc katà thn ekpa–deush omilhtËc.

Anaforikà me to Universal TTS, parousiàzoume Ëna s‘sthma, ikanÏ na paràgei fwn† me poik–la

stul omil–ac kai qarakthristikà omilht†, qwr–c thn anàgkh epishme–wshc tou stul † tou omilht†.

Parousiàzoume m–a nËa prosËggish basismËnh sthn ApÏklish Renyi kai thn aposundedemËnh ana-

paràstash. Aut† h kainotÏma mËjodoc mei∏nei apotelesmatikà thn diarro† perieqomËnou kai stul,



epifËrontac ousi∏dh belt–wsh ston rumjÏ làjoc lËxewn kai sthn poiÏthta fwn†c. O proteinÏ-

menoc algÏrijmoc mac epitugqànei belt–wsh per–pou 16%- 20% sthn poiÏthta fwn†c MOS, maz–

me m–a anabàjmish thc tàxhc tou 15% sthn omoiÏthta katà MOS

TËloc, h auxanÏmenh qr†sh yhfiak∏n bohj∏n ton–zei thn shmas–a twn susthmàtwn TTS stic

s‘gqronec suskeuËc. H exasfàlish thc paragwg†c kajaro‘ lÏgou se jorub∏dh peribàllonta

e–nai epitaktik†. H kainotÏma prosËggish mac metaforàc màjhshc sto TTS axiopoie– th d‘namh

tou sunduasmo‘ d‘o apotelesmatik∏n strathgik∏n: dedomËna stul omil–ac Lombard kai SSDRC.

AutÏ to epektamËno s‘sthma, Lombard-SSDRC TTS, belti∏nei shmantikà thn katanohsimÏthta,

me sqetikËc anabajm–seic pou kuma–nontai apÏ 110% e∏c 130% sto jÏrubo me morf† fwn†c (SSN)

kai apÏ 47% e∏c 140% sto jÏrubo apÏ antagwnistËc-omilhtËc (CSN), sugkritikà me s‘gqronec

mejÏdouc TTS. UpokeimenikËc axiolog†seic epibebai∏noun peraitËrw shmantik† belt–wsh, me mia

a‘xhsh sto mËso rujmÏ diÏrjwshc lËxewn kleidi∏n thc tàxhc tou 455% sto (SSN) kai 104% sto

(CSN) se sqËsh me thn basik† mËjodo TTS.
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Abbreviations and symbols

STFT Short-time Fourier transform
ISTFT Inverse STFT
SNR Signal to noise ratio
SE Speech enhancement
LE Listening enhancement
FFT Fast Fourier transform
F0 Fundamental frequency
SS Spectral shaping
DRC Dynamic range compression
2D Two-dimensional
Bi Bi-directional
GAN Generative adversarial network
WGAN Wasserstein GAN (WGAN)
GP Gradient penalty
WeGAN Weighted Generative adversarial network
KLD Kullback–Leibler divergence
VP Variance penalty
MI Mutual information
DNE Divergence neural estimation
CNN Convolutional neural networks
LSTM Long short-term memory
RNN Recurrent neural network
GRU Gated recurrent unit
SGD Stochastic gradient descent
TTS Text-to-speech synthesis
VC Voice Conversion
SV Speaker verification
SC-WaveRNN Speaker Conditional WaveRNN
RDDR Rényi Divergence based Disentangled Representation

Table 1: Abbreviations.
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⌃ Summation
⇧ Multiplication
p( . ) Probability of
f( . ) Function of
| . | Magnitude of
t Time dimention
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Chapter 1

Introduction

Human speech is a vital part of how we communicate. It is not just about conveying information; it is
also how we express our feelings and connect with others. Speech is not just words; it includes how we
say them—our tone, pitch, speed, and rhythm—all of which make our conversations rich and meaningful.
Speech helps us share knowledge, explain complex ideas, and learn from one another, whether we’re in
school, at work, or just chatting. It’s not just about facts; it’s also about emotions. By changing how we
speak, we can convey a wide range of feelings, from happiness to sadness or anger. This emotional aspect
makes our conversations deeper and more meaningful. Speech also brings people together. When we talk,
share stories, and listen to each other, we build connections and understand each other better. It shows why
we need technology that can understand and replicate human speech, including its information, emotions,
and social aspects. [Sta80, KM82, RLL89]

Over the past decades, scientists and engineers have made remarkable advancements, uncovering tools
that have had a lasting impact on society. Advances in speech coding algorithms and technologies have
revolutionized voice communication and storage, making them more effective and efficient. The integra-
tion of natural voice in interactive systems, made possible by sophisticated speech synthesis algorithms,
has elevated the understanding of human-machine communication to new heights, and the communication
process has become smoother, more seamless, and potentially more productive due to these technological
advancements. In the medical domain, speech analysis models and principles have provided profound
insights into the complexities of the human speech production system. This, in turn, has assisted medical
professionals in the swift and reliable detection of speech-related pathologies and anomalies. Algorithms
designed to enhance speech in noisy conditions have significantly bolstered the resilience of terrestrial
and satellite communications, ensuring clear and reliable transmission even in challenging environments.
The entertainment industry has harnessed advanced speech transformation techniques to introduce life-
like artificial voices in toys, films, and video games, enriching the overall user experience. As the field
of speech processing continues to evolve, it is poised for even more applications in the future, especially
with the strengthening convergence of computers, communications, and the Internet.

1.1 Speech Production Mechanism

Given that this thesis is focused on speech, it is essential to include a brief review of the human
speech production mechanism from an acoustic standpoint [TM06, Lev92]. The illustrative diagram in
Fig.1.1 provides a comprehensive depiction of the intricate human vocal mechanism and the associated
speech organs instrumental in producing speech. Voiced sound production is a nuanced orchestration
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involving the vibration of the vocal folds induced by airflow, generating a quasi-periodic sound replete
with harmonics. In contrast, unvoiced sounds, akin to random noise, result from turbulent airflow when
they do not involve the use of the vocal cords. The conceptual framework of the source-filter model aptly
captures the essence of speech production, portraying the vocal folds as the source and the vocal tract
as the filter, dynamically altering the spectral attributes of the source signal. The vocal tract, a pivotal
component encompassing the pharynx, oral cavity, and nasal cavity, influences the production of speech
sounds.

Figure 1.1: Human speech production system.

The temporal and spectral aspects of a voiced sound are portrayed in Fig.1.2, explaining the peri-
odic nature of the waveform and the distinctive formants within the frequency domain spectrum. The
pitch period, linked to the glottal cycle, and the fundamental frequency (F0) are influenced by the dy-
namic characteristics of the vocal folds, with variations observed between male and female speakers. The
spectral envelope shows the presence of formants, representing the resonant frequencies of the vocal tract.

Fig. 1.3 shows the unvoiced speech scenario, characterized by the absence of periodicity and harmonic
structure, as evident in both the time and frequency domain plots. The speech perception resides in the
amalgamation of the glottal flow wave with the vocal tract, the shape of which is inherently determined
by the positioning of articulators. In summary, what makes each person’s voice unique comes from a mix
of different factors in how we speak. Two important factors are the pitch of our voice (fundamental fre-
quency) and the distinctive patterns in our speech sounds (formants). Techniques that simplify these traits
into a few key details, known as voice characterization, prove that these features are not only important
but also practical for identifying people by their voices.

1.2 Thesis Contribution

This thesis is structured into three interrelated segments, each serving a distinct purpose in advancing
our research objectives. The initial two sections are dedicated to comprehensively exploring the the-
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Figure 1.2: (a) Time domain waveform, and (b) spectrum and corresponding spectral envelope of a voiced
sound [/i/] uttered by a male speaker.
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Figure 1.3: (a) Time domain waveform, and (b) spectrum and corresponding spectral envelope of an
unvoiced sound [/s/] uttered by a male speaker.

oretical underpinnings. Here, we engage in a detailed examination of the conceptual groundwork and
methodological enhancements introduced, providing a robust theoretical framework for our research.

The subsequent part of the thesis seamlessly transitions from theory to practical implementation,
where we apply the established theoretical framework and algorithmic modifications to the domain of
speech synthesis. Within this phase, we demonstrate the real-world application of the theoretical advance-
ments established in the first segment. This deliberate division into theoretical exploration and practical
implementation facilitates a comprehensive understanding of both dimensions of our research endeavour.
By adding these segments, we aim to contribute not only to the theoretical advancements in our field but
also to their meaningful and practical implications in the domain of speech synthesis.

The key contributions of this thesis are outlined below:

1. Contribution to Generative Adversarial Models:

(a) GANs showcased their capability to generate novel, pseudo-real, and high-quality data that
closely mirrors their training set. It is crucial to acknowledge that training GANs poses chal-
lenges due to the inherent min–max game, and they are susceptible to a phenomenon known as
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mode collapse. These challenges underscore the need for careful consideration and optimiza-
tion when employing GANs in various applications. To mitigate these issues, we propose
a novel GAN training algorithm, Weighted GAN (WeGAN), inspired by the multiplicative
weight update method from Game Theory. We enhance Generator training by assigning higher
weights to fake samples likely to deceive the Discriminator while reducing weights for confi-
dently identified fake samples. Our contributions include improved training performance with
minimal computational cost and rigorous arguments demonstrating that WeGAN’s weights
reduce the loss function as effectively as equally weighted stochastic gradient descent for the
Generator.

(b) Despite the remarkable achievements of WeGANs, its training processes often exhibit instabil-
ity, necessitating extensive experimentation to fine-tune parameters such as loss functions, op-
timization algorithms, and architectures. This thesis introduces a novel loss function grounded
in cumulant generating functions, leading to the development of the Cumulant GAN. The key
advantage of utilizing cumulants over expectations lies in their ability to capture higher-order
information about underlying distributions, contributing to more effective learning processes
without any mode collapses or training instabilities.

2. Contribution to Disentanglement Learning:

Model performance deteriorates if data representations are not invariant and disentangled. Model
performance refers to how well a machine learning model accomplishes the task it was designed
for and can vary depending on the specific task. High performance means the model achieves the
desired outcome effectively and accurately, while low performance indicates that the model strug-
gles to achieve the desired outcome. In the context provided, disentangled refers to the separation
or isolation of different factors or features within the data representation. When data representa-
tions are disentangled, it means that the model can distinguish and manipulate individual factors
independently of each other. Here, a good representation often involves capturing the probability
distribution and measuring the divergences as a metric. One popular way to enforce disentangled
representations is via MI estimation, which can be defined as the KLD between the joint distribution
and the product of the marginals. Indeed, when MI equals zero, then the two random variables/vec-
tors are independent.

(a) Recent works [GPM+14, NCT16, CGK+02] have shown that variational representations of
KLD can be utilized to estimate MI via scalable, flexible, and completely trainable neural
network estimators. However, the statistical estimation of mutual information becomes expo-
nentially large. To this end, we analyzed the feasibility of incorporating our proposed vari-
ational representation based on the minimization of Rényi divergences. Rényi divergences
have several advantages over the commonly used KLD, including comparing heavy-tailed
distributions and certain non-absolutely continuous distributions. Moreover, conventional di-
vergence estimators exhibit robust performance in low-dimensional scenarios but encounter
difficulties when confronted with large, high-dimensional datasets typical in contemporary
machine learning applications. The challenge of accurately estimating divergences is a criti-
cal aspect of various machine learning tasks that often face heightened variance, particularly
in high-dimensional datasets. In response to this challenge, we propose an innovative ap-
proach known as Variance Penalty (VP) to address and mitigate the variance associated with
divergence estimators.

3. Contribution to Speech Synthesis

This thesis section addresses challenges within the realm of speech synthesis, specifically focusing
on voice conversion and multi-speaker multi-style scenarios, collectively referred to as universal



Chapter 1. Introduction 29

Text-to-Speech (TTS) scenarios. In these contexts, accommodating all potential speaker variations
and styles during training becomes impractical, prompting the need for better TTS systems.

(a) WeGAN’s flexibility extends across diverse GAN types. We expanded the application of our
weighting approach into voice conversion, introducing WeStarGAN, a variation of StarGAN
tailored for non-parallel multi-domain voice conversion tasks. Despite incurring minor addi-
tional computational costs, this approach significantly enhanced the training process by rein-
forcing the generator at each minibatch iteration. Subjective evaluations revealed substantial
improvements in sound quality and speaker similarity compared to baseline methods.

(b) Neural vocoder techniques, driven by data-centric learning, often exhibit limitations in gener-
alization due to the specialization of the training data [PPS20]. Additionally, in multi-speaker
scenarios, it becomes impractical to encompass all potential in-domain (seen) and out-of-
domain (unseen) cases within the training database. Seen refers to the speakers that are al-
ready present in the training, and unseen speakers are the new speakers during testing. To ad-
dress these challenges, the proposed universal vocoder, Speaker Conditional WaveRNN (SC-
WaveRNN), investigates the efficacy of incorporating explicit speaker information, specifi-
cally speaker embeddings, as a conditioning factor. This innovative approach aims to enhance
the quality of generated speech across the widest possible range of speakers without neces-
sitating adaptation or retraining. We extend our innovative approach to establish an efficient
zero-shot TTS system. This advancement demonstrates that our proposed zero-shot TTS,
coupled with a universal vocoder, can enhance both speaker similarity and the naturalness of
synthetic speech, offering improvements for both seen and unseen speakers.

(c) In the pursuit of creating a universal TTS synthesis system capable of replicating the character-
istics and speaking style of a reference speaker, we are faced with some significant challenges:
the potential occurrence of “content leakage” and “style leakage”. During training, content
information is leaked into the style embeddings (“content leakage”) and speaker information
into style embeddings (“style leakage”). We put forth a novel disentangled representation
approach to address these issues, leveraging cumulant-generating functions in speech syn-
thesis. Our system approximates and minimizes the Rényi divergence between content-style
and style-speaker pairs. Finally, we integrate the Variance Penalty into speech representation
learning, disentangling text, speaker, and style components, resulting in a marked improve-
ment in training performance compared to baseline systems.

(d) The growing prevalence of digital assistants underscores the vital role of TTS synthesis sys-
tems in modern devices. Ensuring clear speech generation in noisy environments is paramount.
Our innovative TTS approach, Lombard-SSDRC, combines Lombard speaking style data
with Spectral Shaping and Dynamic Range Compression (SSDRC). This extended system ex-
hibits significant improvements, boasting relative enhancements ranging from 47% to 140%
in speech-shaped noise (SSN) and competing-speaker noise (CSN) when compared to state-
of-the-art TTS methods. Subjective evaluations further affirm substantial progress, revealing a
median keyword correction rate increase of 455% for SSN and 104% for CSN in comparison
to the baseline TTS method.
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Part I

Generative Adversarial Networks





Chapter 2

Introduction

Machine learning has advanced impressively in recent years, achieving performance on par with or
even surpassing human beings in many challenging tasks. This progress has been driven by developing
new machine-learning models, such as generative models. Generative models are a type of machine
learning model that can create new data similar to existing data. This makes them useful for a variety of
tasks, such as generating realistic images and speech applications.

Generative adversarial networks (GANs) are generative models that learn to generate samples from a
target distribution by training a generator network to produce synthetic data that appears similar to real
data [GPAM+14]. The generator takes random noise as input and transforms it into synthetic samples,
while the discriminator aims to distinguish between real and fake samples. The generator and discrimina-
tor improve iteratively through an adversarial training process, resulting in increasingly realistic synthetic
data.

2.1 GAN Preliminaries

1. Adversarial Training:

The adversarial training process in GANs involves two main steps: training the discriminator and
training the generator. Let’s denote the target data as x, the generator network as G, and the dis-
criminator network as D.

The discriminator’s goal is to classify real samples from synthetic samples correctly. It is trained
using a binary cross-entropy loss function defined as:

LD = � 1

m

mX

i=1

h
logD(x(i)) + log(1�D(G(z(i))))

i

Where m is the mini-batch size, x(i) represents real data samples, and z
(i) represents random noise

samples used as target data for the generator.

The generator aims to fool the discriminator by generating synthetic samples that are classified as
real. Its objective is to minimize the following loss function:

LG = � 1

m

mX

i=1

logD(G(z(i)))
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The generator seeks to maximize the probability of the discriminator misclassifying the generated
samples as real.

2. Minimax Game and Optimization:

The training of GANs can be formulated as a minimax game between the generator and the discrim-
inator. The objective is to find a Nash equilibrium [Kre89]. A Nash equilibrium refers to a stable
state where both the generator and the discriminator have reached an optimal strategy, resulting in
a balance between generating realistic samples and distinguishing between real and fake samples.

The minimax objective function for GANs is given by:

min
G

max
D

V (D,G) = Ex⇠pdata(x)[logD(x)] + Ez⇠pz(z)[log(1�D(G(z)))]

where pdata(x) represents the real data distribution, and pz(z) is the distribution of the input noise.

To solve the minimax game, both the generator and discriminator are optimized alternately. Popular
optimization algorithms include stochastic gradient descent (SGD), Adam, and RMSprop. The
discriminator is updated by ascending its gradient concerning its parameters, while the generator is
updated by descending its gradient.

3. Convergence Analysis:

Ensuring convergence of the GAN training process is a fundamental challenge. GANs often suffer
from mode collapse, where the generator produces a limited variety of samples, and the discrimi-
nator fails to provide meaningful feedback.

2.2 Training Issues

Indeed, despite their impressive accomplishments, GANs can be used for several practical challenges.
One of the most prominent issues is the instability of the training process, which can lead to problems
like mode collapse or oscillation. Additionally, evaluating the quality of generated data poses a challenge
since conventional assessment criteria may not fully capture the diversity and realism of the synthesized
samples. Moreover, GANs have been found to exhibit biases that can potentially mirror the biases inherent
in the training data. These challenges underscore the ongoing efforts required to harness the full potential
of GANs while addressing their limitations and ethical considerations [SC21, SMAMG21]. Here are
some of the challenges that GANs face during training:

• Mode Collapse:

Issues like mode collapse [SGZ+16, ACB17] refer to a phenomenon in which the generator of a
GAN produces a limited variety of outputs despite having a diverse range of input noise samples. In
other words, the generator fails to capture the full complexity of the target distribution and instead
converges to a single mode or a small subset of modes. As a result, the generated samples lack
diversity and do not accurately represent the entire dataset.

Mode collapse can occur for various reasons, including the discriminator becoming too strong or
dominant. If the discriminator is too effective at distinguishing between real and fake samples, it
provides strong and consistent feedback to the generator. This can lead to the generator overfitting
to a specific subset of the data, neglecting other modes.

• Instability:
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GAN training is inherently unstable, meaning that the training process can be challenging to control
and prone to fluctuations [AB17, MNG18, ZXL+19]. Several factors contribute to this instability:

Sensitivity to network architecture and hyperparameters: The performance of GANs is highly
sensitive to the choice of network architecture and hyperparameters, such as learning rate, batch
size, and regularization methods. The learning rate is a hyperparameter that determines the step size
during optimization, affecting the convergence speed and stability of the training process; batch size
refers to the number of training examples processed simultaneously in each iteration, influencing
computational efficiency and generalization performance and regularization methods are techniques
used to prevent overfitting by introducing constraints or penalties on the model’s parameters, pro-
moting simpler and more generalizable solutions. These factors are crucial in training GANs, where
small changes in architecture and hyperparameters can significantly impact training dynamics and
the quality of generated samples, highlighting the importance of careful selection and tuning for
optimal GAN performance.

Balancing the generator and discriminator: GANs involve a delicate balance between the gen-
erator and discriminator networks. If the discriminator is too weak, it fails to provide meaningful
feedback to the generator, hindering its learning. On the other hand, if the discriminator is too
strong, it can dominate the training process and lead to mode collapse. Finding the right equilib-
rium between the two networks is crucial for stable GAN training.

Oscillations and convergence issues: GAN training can suffer from oscillations, where the perfor-
mance of the generator and discriminator fluctuate, hindering convergence. These oscillations can
make it challenging to determine when the training process has converged to an optimal solution.

• Data scarcity:

One of the challenges in GAN training is the requirement for a large amount of training data. GANs
are data-hungry models that rely on a diverse and representative dataset to learn the underlying
distribution and generate realistic samples. However, in many domains, obtaining a large amount
of labeled or high-quality data can be difficult [LWY19, BCNM06, WC18].

Overfitting to limited data: When the training dataset is limited, GANs may struggle to capture
the true distribution adequately. The generator might memorize the few available samples, leading
to poor generalization and limited diversity in the generated samples.

Domain shift and dataset bias: GANs are sensitive to the distribution of the training data. If the
available data does not sufficiently cover the target data distribution, the generated samples may
exhibit biases or fail to represent the desired characteristics of the target domain accurately.

Preprocessing and data augmentation challenges: In some domains, preprocessing and aug-
menting the data to increase its diversity and quality can be challenging. For instance, in medical
imaging, obtaining large annotated datasets can be time-consuming and expensive, limiting the
potential for GAN training.

Addressing data scarcity in GAN training often involves techniques such as transfer learning, data
augmentation, and utilizing auxiliary data sources to enhance the diversity and quantity of available
training samples.

To mitigate mode collapse and stabilize the training process, various regularization techniques have
been proposed [KAHK17, MLX+17, GSW+21]. Feature matching aims to match the statistics of the real
data’s intermediate features to those of the generated samples. It involves minimizing the discrepancy
between the expected feature values of the real and fake samples. The generator is trained to generate
samples that match the statistics of the real data’s intermediate representations.
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2.3 Variants of GANs

Since their introduction [GPAM+14], Generative Adversarial Networks (GANs) have undergone re-
markable advancements, resulting in various specialized variants that excel in data generation across di-
verse domains. Conditional GANs, for instance, enable the generation of data based on specific conditions
or desired attributes, facilitating tasks like synthesizing images of a particular class. CycleGANs have
proven effective in image-to-image translation, even when unavailable paired data. StyleGAN, known for
its versatility, can generate images with various styles and distinctive features. GANs have also expanded
beyond visual domains, showing potential in generating textual, musical, and 3D modelling, future cities,
time series data, and many other areas.

1. Deep Convolutional GANs (DCGANs):

Deep Convolutional GANs (DCGANs) improve upon the traditional GAN architecture by incorpo-
rating deep convolutional neural networks (CNNs) in both the generator and discriminator [RMC15,
OOS16]. This architectural enhancement enables DCGANs to capture spatial information and gen-
erate high-quality images.

In DCGANs, the generator and discriminator architectures are designed with convolutional layers,
allowing them to handle image data effectively. The generator takes random noise as input and
progressively upsamples it using transposed convolutions to generate synthetic images. The dis-
criminator, on the other hand, processes the input image through convolutional layers to classify it
as real or fake.

DCGANs have demonstrated superior performance in generating visually appealing images with
sharp details and realistic textures. Using convolutional layers enables the model to exploit the
spatial relationships present in images, capturing local features and generating coherent and visually
consistent samples.

2. Wasserstein GAN (WGAN):

Wasserstein GAN (WGAN) introduces the Wasserstein distance, also known as Earth Mover’s Dis-
tance (EMD), as a measure of discrepancy between the real and generated distributions [ACB17].
By using the Wasserstein distance instead of traditional divergence measures, WGAN improves the
stability of GAN training and mitigates mode collapse.

The key idea behind WGAN is using a critic network instead of a traditional discriminator. The
critic network assigns a real-valued score to each sample, estimating the Wasserstein distance be-
tween the real and generated distributions. The generator’s objective in WGAN is to minimize this
estimated Wasserstein distance, while the critic aims to maximize it.

The use of the Wasserstein distance offers several advantages over traditional GAN training. It
provides a more informative and stable gradient signal to the generator, enabling better convergence
and preventing mode collapse. Additionally, WGANs exhibit smoother training dynamics, making
it easier to monitor and assess the progress of the training process.

The WGAN objective function can be expressed as follows:

min
G

max
D

V (D,G) = Ex⇠pdata(x)[D(x)]� Ez⇠pz(z)[D(G(z))]

where pdata(x) represents the real data distribution and pz(z) represents the distribution of the input
noise.

3. Wasserstein GAN with Gradient Penalty (WGAN-GP):
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In addition to Wasserstein GAN (WGAN), there is a variant called WGAN with Gradient Penalty
(WGAN-GP), which addresses some limitations of the original WGAN and improves the stability
of training further [GAA+17b].

WGAN-GP introduces a gradient penalty term to the WGAN objective function to enforce the
Lipschitz continuity constraint on the discriminator. The Lipschitz constraint ensures that the dis-
criminator’s gradients do not grow too large, leading to more stable training dynamics and improved
convergence.

The objective function of WGAN-GP can be expressed as follows:

min
G

max
D

V (D,G) = Ex⇠pdata(x)[D(x)]� Ez⇠pz(z)[D(G(z))] + �Ex̂⇠px̂

h
(||rx̂D(x̂)||2 � 1)2

i

where x represents real data samples, z represents the input noise, G is the generator, and D is the
discriminator. pdata(x) is the data distribution, and pz(z) is the noise distribution. x̂ is a randomly
sampled point between real and generated samples defined as x̂ = ✏x + (1 � ✏)G(z), where ✏ is
sampled uniformly between 0 and 1. The term � is a hyperparameter that controls the weight of the
gradient penalty.

The objective function of WGAN with Gradient Penalty (WGAN-GP) consists of three terms: the
Wasserstein distance between the discriminator’s output on real samples and generated samples,
the negative Wasserstein distance between the discriminator’s output on generated samples, and the
gradient penalty term that enforces the Lipschitz constraint on the discriminator. By minimizing this
objective function, the generator aims to generate samples that can fool the discriminator, while the
discriminator aims to distinguish between real and generated samples. The gradient penalty term
encourages the discriminator to have gradients with a norm of 1, penalizing deviations from this
value. WGAN-GP has demonstrated improved stability and convergence properties compared to
traditional GANs and even the original WGAN. It alleviates the need for careful weight clipping
in the discriminator, which was a requirement in the original WGAN. By imposing the Lipschitz
constraint through the gradient penalty, WGAN-GP provides a more principled and effective way to
enforce a stable training process while achieving high-quality generated samples. Overall, WGAN-
GP is a powerful variant of GAN that combines the benefits of Wasserstein GAN with the gradient
penalty technique to enhance training stability and generate high-quality samples.

4. Least Squares GAN (LSGAN):

Least Squares GAN (LSGAN) introduced in [MLX+17] presents an innovative approach to address
a common issue in traditional GAN models. Traditional GANs use a discriminator modelled as a
classifier with the sigmoid cross entropy loss function. However, this choice of loss function can
lead to vanishing gradients during training, which hinders the deep representation learning process.
LSGAN tackles this problem by introducing the least squares loss function for the discriminator.

Mathematically, in the LSGAN model, there are two loss functions: the Generator loss function
(LG) and the Discriminator loss function (LD). LG is defined as two times the expected value of
the discriminator’s response to the generator’s output (D(G(z))) minus a specific constant (c) for
fake data sampled from a noise distribution (z).

(LD) comprises two terms: the first term is two times the expected value of the discriminator’s
response to real data (D(x)) minus another constant (b) for real data sampled from the actual data
distribution, and the second term is similar to (LG), involving fake data and another constant (a).

LG =
1

2
Ez⇠pz (D(G(z))� c)2
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LD =
1

2
Ex⇠pdata (D(x)� b)2 +

1

2
Ez⇠pz (D(G(z))� a)2

This encoding scheme of a, b, and c helps define the labels for fake and real data and guides the
discriminator’s learning process. The LSGAN framework represents a significant improvement over
traditional GANs, offering a solution to the vanishing gradient issue and enhancing the stability of
GAN training.

5. Conditional GANs (cGANs):

Conditional GANs (cGANs) extend the GAN framework to enable conditional generation, where
the generator generates samples conditioned on additional information. This additional information
can be class labels, input images, or any other relevant conditioning variables [MO14, IZZE17].

The architecture of cGANs includes both a generator and a discriminator, similar to traditional
GANs. However, in cGANs, the generator takes an additional input, known as the conditioning
variable, alongside the random noise. This conditioning variable provides information to guide
the generation process, allowing control over specific attributes or characteristics of the generated
samples.

The discriminator in cGANs also considers the conditioning variable when assessing the authentic-
ity of the generated samples. It aims to classify whether the pair of the conditioning variable and
the generated sample is real or fake.

cGANs have greatly succeeded in various applications, including image synthesis, style transfer,
and image-to-image translation tasks. By conditioning the generation process on specific attributes,
cGANs enable targeted and controlled synthesis, allowing users to specify desired characteristics
or transform input samples based on given conditioning variables.

The cGAN objective function can be formulated as follows:

min
G

max
D

V (D,G) = Ex,y⇠pdata(x,y)[logD(x, y)] + Ez⇠pz(z)[log(1�D(x,G(z)))]

where x represents the input data, y represents the conditioning variable, G is the generator, and D

is the discriminator. The discriminator aims to maximize the probability of correctly classifying the
pair (x, y), while the generator aims to minimize it.

6. CycleGAN:

CycleGAN is a variant of GANs designed for unpaired image-to-image translation tasks [KXRS19,
KXRS19]. Unlike cGANs that require paired data (input and corresponding output) for training,
CycleGAN can learn mappings between two domains using only unpaired datasets. It aims to learn
a mapping from one domain to another while preserving the underlying structure and content of the
input images.

CycleGAN incorporates two generators and two discriminators. The generators map images from
one domain to the other and vice versa. The discriminators assess the authenticity of the generated
images and provide feedback to the generators. In addition to the adversarial loss, CycleGAN
introduces cycle-consistency loss, which encourages the reconstructed images to be similar to the
original input images when translated back and forth between the domains.

The objective function of CycleGAN can be expressed as follows:

min
GA!B,GB!A

max
DA,DB

LGAN(GA!B, DB, A,B) + LGAN(GB!A, DA, B,A) + �Lcycle(GA!B, GB!A)
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where A and B represent images from domains A and B, respectively. GA!B and GB!A are the
generators, and DA and DB are the discriminators. LGAN denotes the adversarial loss, and Lcycle

represents the cycle-consistency loss. � is a hyperparameter that controls the importance of the
cycle-consistency loss.

CycleGAN has also demonstrated successful applications in speech-related tasks [KKH+18, KKH+20].
It has been utilized for non-parallel voice conversion, allowing transformation between different
speakers without needing paired training data. Additionally, CycleGAN has been employed for
mel-spectrogram conversion, enabling the conversion of speech representations across different
acoustic characteristics. These applications showcase the versatility of CycleGAN in the field of
speech processing, providing solutions for tasks like voice transformation and speech representation
modification without relying on aligned training data.

7. Self-Attention GAN (SAGAN):

Self-Attention GAN (SAGAN) introduces a self-attention mechanism to the generator and discrim-
inator architectures [ZXL+19]. This mechanism allows the model to focus on important spatial re-
lationships across different image regions, improving the generation quality and reducing artefacts.
SAGANs generate images with better global coherence and sharpness by capturing long-range de-
pendencies.

The self-attention mechanism in SAGAN utilizes query, key, and value operations to compute at-
tention weights for each spatial position in the image. These weights determine the importance
of each position and are used to create an attention map. This attention map is then applied to
the feature maps to compute the attended feature representation, enhancing the model’s ability to
capture global dependencies. SAGANs have demonstrated superior performance in image genera-
tion tasks, especially when long-range dependencies and fine details are crucial, such as generating
high-resolution images or complex scenes.

8. Vector Quantized GAN (VQGAN):

Vector Quantized GAN (VQGAN) is an innovative approach that combines the power of GANs
with vector quantization techniques to create really good images [ERO21]. First, it trains a special
computer program to understand images and their hidden meanings. This program can take an
image and turn it into a secret code that represents what’s in the picture. This code is like a special
language that only computers understand. Then, it uses this secret code to make better pictures.
But here’s the cool part: you can change this secret code to make the pictures look different. It’s
like having a magic wand to change the colors or shapes in a picture. However, there are some
challenges. VQGAN needs lots of pictures to learn from and really powerful computers to work its
magic. This means it’s not something you can use quickly in everyday situations. Also, sometimes
the pictures it makes can look kind of similar because of the secret code.

9. StyleGAN and StyleGAN2:

StyleGAN [KLA19] and its subsequent improvement, StyleGAN2 [KALL20], introduce a novel
architecture that allows for fine-grained control over the style and appearance of generated images.
These models enable the manipulation of various attributes such as facial expressions, hair color,
and other visual characteristics while maintaining high-quality image synthesis.

StyleGAN and StyleGAN2 achieve this control by disentangling the latent space into style and
content components. The style component captures the high-level properties, such as lighting con-
ditions and global styles, while the content component focuses on specific object details. This
disentanglement enables independent manipulation of the style and content, providing greater flex-
ibility in generating diverse and realistic images. Additionally, StyleGAN2 introduces a series
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of architectural improvements, including adaptive instance normalization (AdaIN) and progressive
growing techniques, further enhancing the quality of generated images.

StyleGAN and StyleGAN2, known for their success in creative image generation, have also found
applications in the field of speech processing. These models have been employed in tasks such
as speech synthesis, voice conversion, and speech modification, expanding their versatility beyond
visual domains. Their wide usage in generating photorealistic faces, creating novel artworks, and
enabling image-to-image translation tasks has paved the way for exploring their potential in speech-
related applications [KKH+19, WBK+20].

10. MelGAN:

MelGAN is designed for mel-spectrogram synthesis [KKdB+19, WBK+20]. The objective func-
tion of MelGAN can be written as:

min
G

max
D

V (D,G) = Em⇠pdata(m)[logD(m)] + Ez⇠pz(z)[log(1�D(G(z)))]

where m represents real mel-spectrograms, G is the generator network, D is the discriminator
network, pdata(m) is the distribution of real mel-spectrograms, and pz(z) is the distribution of input
noise. These equations capture the adversarial training process in the respective GAN variants
for speech applications, guiding the generator to produce realistic speech waveforms, converted
acoustic features, or mel-spectrograms.

These advanced GAN variants, along with the techniques mentioned earlier, demonstrate the con-
tinuous efforts to enhance the training process, stability, and capabilities of GAN models for various
applications in image synthesis, translation, and beyond.

GANs have emerged as a groundbreaking technology with applications across various fields. One of
their most prominent applications is in computer vision, where they excel at generating highly realistic
images of objects, animals, and characters that don’t actually exist. This ability has significant implica-
tions for creating visual content, from art and design to video game development. In addition to images,
GANs have shown promise in generating synthetic videos, which is a more complex task due to the need
for coherence and continuity. GANs can create videos that look remarkably close to real-life footage
by combining generators and discriminators. GANs also play a crucial role in addressing data scarcity
issues in machine learning. They can generate synthetic data that complements real datasets, improving
the performance of deep learning models. This is particularly valuable when collecting large amounts
of real data is challenging. Another fascinating application is style transfer, where GANs can take the
artistic style of one image and apply it to another, resulting in entirely new and visually appealing art-
work. This has the potential to revolutionize creative industries and art forms. In the realm of Natural
Language Processing (NLP), GANs have been adapted to generate coherent and contextually relevant
text. They can synthesize textual content that reads like it was written by humans, opening up possibili-
ties for content generation, storytelling, and more. Musicians also benefit from GAN technology, which
can assist in music composition by analyzing existing musical patterns and structures to create original
compositions. GANs help musicians explore new styles and ideas, making them valuable tools in the
creative process. In the medical domain, GANs are helping improve disease diagnosis by generating
synthetic medical images, overcoming limitations caused by limited real-world data. In geoscience and
remote sensing, GANs can generate synthetic data that retains the statistical characteristics of real data.
[MO14, OOS16, BAC+18, PBS17, FGD18]. In summary, GANs are incredibly versatile and have the
potential to transform various sectors by creating, enhancing, and safeguarding data. As this technology
continues to advance, we can expect even more innovative applications in real-world problem-solving.
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Despite significant advancements in the field of GANs, training instability remains a prominent is-
sue. The process of training GANs often requires extensive experimentation and fine-tuning, involving
the selection of suitable loss functions, optimization algorithms, and architectural choices. The existing
trial-and-error approach to finding the optimal combination of these elements can be time-consuming and
inefficient. To tackle this challenge, this thesis explores different variants of GANs that propose novel loss
functions. By investigating alternative approaches to formulating the loss function, we aim to enhance the
stability and effectiveness of GAN training. This research seeks to provide a deeper understanding of the
relationship between loss functions and the overall performance of GANs. Through systematic experi-
mentation and analysis, we aim to identify and evaluate the effectiveness of these novel loss functions
in GAN training. By comparing their performance against traditional loss functions, we can assess their
potential to overcome the limitations of current approaches. The thesis will delve into a comprehensive
examination of these innovative loss functions and their effects on critical aspects of GAN training, in-
cluding convergence speed, output quality, and the prevalent issue of mode collapse. The objective is to
discern how these novel loss functions can significantly enhance the training process of GANs. Further-
more, the study aims to leverage these improvements to enhance speech synthesis applications, ultimately
contributing to the advancement of this field.
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Chapter 3

Training Generative Adversarial
Networks with Weights

3.1 Introduction

A fully data-driven paradigm has emerged during the last years with the advent of GANs [GPM+14].
A GAN offers a new methodology for drawing samples from an unknown distribution where only sam-
ples from this distribution are available making them one of the strong areas in machine learning/artificial
intelligence research. Indicatively, GANs have been successfully utilized in (conditional) image creation
[MO14, RMC15, OOS16], generating very realistic samples [KALL17, BAC+18], speech signal pro-
cessing [PBS17, STS18], natural language processing [CLZ+17] and astronomy [SZZ+17], to name a
few.

A GAN is a two-player zero-sum game [GPM+14, OR94] between a Discriminator and a Generator,
both being powerful neural networks. They are simultaneously trained to achieve a Nash equilibrium,
where the Discriminator cannot distinguish the real and the fake samples while the Generator has learned
the unknown distribution. It is well-known that the training procedure of GANs often fails and several
specific heuristics and hacks have been devised [SGZ+16] along with general-purpose acceleration tech-
niques such as batch normalization [IS15]. Extensions and generalizations stemming from the utilization
of a different loss function have been proposed to alleviate the difficulties of training. For instance, f-GAN
[NCT16] is a generalization where the f -divergence is used instead of the Shannon-Jensen divergence of
the original GAN. Another widely-applied extension is Wasserstein GAN [ACB17] which has been further
improved in [GAA+17b]. On the other hand, there are relatively few studies that aim directly to improve
the convergence speed of training of an existing GAN.

In this chapter, instead of proposing a new GAN architecture or a new GAN loss function we propose
a new training algorithm inspired by the multiplicative weight update method (MWUM) [AHK12]. Our
goal is to improve the training of the Generator by transferring ideas from Game Theory. Intuitively, the
new algorithm puts more weight on fake samples that are more likely to fool the Discriminator and simul-
taneously reduces the weight of samples that are confidently discriminated as fake. Our contributions are
summarized as follows: (i) By adding weights to the training of GANs, we manage to improve the train-
ing performance with minor additional computational costs. The new approach is called Weighted GAN
(WeGAN). (ii) We provide rigorous arguments that the weights of WeGAN locally reduce the loss func-
tion more or at least as much as the equally weighted stochastic gradient descent for the Generator. (iii)
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The proposed algorithm is not specific to vanilla GAN [GPM+14], but it is directly transferable to other
extensions such as conditional GANs, Wasserstein GAN and f-GAN. This is an important generalization
property of WeGAN.

Before proceeding, it is worth noting that training methods utilizing weights for the Generator have
been recently proposed [HJC+17, CLZ+17, HYSX17]. These methods are essentially equivalent to each
other since they assign importance weights to the generated samples in order to obtain a tighter lower
bound for their variational formula. However, the importance weights of GAN (IWGAN) cannot be
applied to any type of objective function, and additionally, these variational GANs might diverge due
to their unboundedness. We implemented IWGAN and presented its performance in the Results section
comparing it to our algorithm.

3.2 GAN formulation

MWUM basics. The multiplicative weight update method (MWUM) is a classic algorithmic tech-
nique with numerous applications. The main idea behind this method is the existence of a number of
“experts” that give some kind of advice to a decision maker. To any “expert” a specific weight is assigned
and the initial weights are equal for any ”expert”. Then, the decision maker takes the decision according
to the advice of the “experts” taking into account the weight of any of them. After this the weights are
multiplicatively updated according to the performance of the advice of any individual “expert”; increas-
ing the weights of the ”experts” with good performance and decreasing them otherwise and so on. We
continue with the description of our algorithm and the connection to this method.

Algorithm

number of iterations k steps Sample {x1, . . . , xm} from the data distribution pdata(x).
Sample {z1, . . . , zm} from the input distribution pz(z).
Update the Discriminator by ascending its stochastic gradient:

r✓d

1
m

mX

i=1

[logD (xi) + log (1�D (G (zi)))] . (3.1)

Sample {z1, . . . , zm} from the input distribution pz(z).
Compute the unnormalized weights:

wi = ⌘(1�D(G(zi))), i = 1, ...,m.

Normalize:

wi =
wiPm
j=1 wj

, i = 1, ...,m.

Update the Generator by descending its stochastic gradient:

r✓g

mX

i=1

wi log (1�D (G (zi))) .

(3.2)

Figure 3.1: Stochastic gradient ascent/descent training of WeGAN. For a direct comparison with the original GAN,
we follow the formulation of [GPM+14].



Chapter 3. Training Generative Adversarial Networks with Weights 45

3.3 Weighted GAN algorithm

The proposed algorithm presented in Fig. 3.1 is a modification of the original GAN training algorithm.
Inspired by the MWUM, instead of equally-weighted ’fake’ samples, we assign a weight to each sample
(the ”expert” in MWUM) which multiplies the respective gradient term of the Generator. The weighting
aims to put more strength to samples that fool the Discriminator and thus are closer to the real data. Indeed,
when D(G(z)) = 0 and the Discriminator understands that the sample is fake the weight decreases by
a factor ⌘ 2 (0, 1]. On the other hand, when D(G(z)) = 1 the weight remains the same and after the
normalization step it has a value greater or equal than the previous one. Notice also that the weights in
Algorithm Fig. 3.1 depend only on the current value of the Discriminator while in the standard MWUM
the weights are updated cumulatively. This modification was necessary because the input samples are
different at each iteration. Indeed, new samples are generated and there is no obvious map between the
current samples and the samples from the previous iteration.

3.3.1 Theoretical properties of WeGAN algorithm

A key assumption of our algorithm as well as in other weighting algorithms is that the Discriminator
is faithful in the sense that it produces sound decisions for both real and fake samples. Quantitatively, it
means that the Discriminator should return on average values above 0.5 when the sample comes from the
real distribution and below 0.5 when fake samples are fed to the Discriminator. Next, we show that for
a fixed Discriminator, the optimal Generator with weights as in Algorithm 1 achieves a lower or equal
loss value than the optimal Generator with equally-weighted samples. Hence, we expect that the inferred
Generator is stronger favourably affecting the convergence properties.

Theorem 1. Fix Discriminator D and let G⇤
D;w and G

⇤
D; 1

m
be the respective optimum Generator under-

weighted and equally-weighted loss function defined by

L(G,D;w) =
1
m

mX

i=1

log(D(xi)) +
mX

i=1

wi log(1�D(G(zi))). (3.3)

Let the weight vector, w, be defined according to Algorithm 1 then

L(G⇤
D;w, D;w)  L(G⇤

D; 1
m
, D;

1
m

). (3.4)

Proof. By definition, it holds for the optimum Generator that

L(G⇤
D;w, D;w)  L(G⇤

D; 1
m
, D;w).

If we prove that for any G, it holds that L(G,D;w)  L(G,D; 1
m
) when w is defined as in Algorithm

1, we get the desired result for G = G
⇤
D; 1

m
. Without loss of generality, we prove the case with m = 2

samples. Using a more elaborate but similar argument we can prove it for the general case.

Assuming that D(G(z1)) > D(G(z2)), it is easy to show that w1 > w2 and log(1 � D(G(z1))) <

log(1 � D(G(z2))). Next, let n, k be positive integers such that w1 = k

2n + "1 and w2 = 2n�k

2n + "2,
with "i be arbitrarily small constants for i 2 {1, 2}. This is possible due to the fact that the set of rational
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numbers is a dense subset of real numbers. Since w1 > w2 implies k > n, then, it holds

w1 log(1�D(G(z1))) + w2 log(1�D(G(z2))) + "

=
1
2n

⇥
k log(1�D(G(z1))) + (2n� k) log(1�D(G(z2)))

⇤
+ "

=
1
2n

⇥
n log(1�D(G(z1))) + n log(1�D(G(z2)))

+ (k � n)(log(1�D(G(z1)))� log(1�D(G(z2))))
⇤
+ "

 1
2n

⇥
n log(1�D(G(z1))) + n log(1�D(G(z2)))

⇤
+ "

=
1
2
log(1�D(G(z1))) +

1
2
log(1�D(G(z2))) + ",

(3.5)

for arbitrarily small positive ". Thus, we prove for m = 2 that

L(G,D;w)  L(G,D;
1
2
). (3.6)

At equilibrium. It is straightforward to show that at the Nash equilibrium, the weights of WeGAN are
uniform. Indeed, it holds that D(x) = 0.5 for all x and thus

wi =
⌘1�D(G(zi))

Pm
j=1 ⌘

1�D(G(zj))
=

⌘0.5

Pm
j=1 ⌘

0.5
=

1
m

. (3.7)

This observation can serve either as a criterion to stop the training process or as an evaluation metric
to assess whether or not the training process converged to an optimum. Monitoring the variance of the
weights is the simplest statistic for both tasks.

WeGAN generalization. The proposed algorithm is not exclusive to vanilla GAN and it can be easily
extended and applied to any variation of GANs that incorporates a Discriminator mechanism. Therefore,
we do not propose just an extension of vanilla GAN but rather a novel training algorithm for general
GANs. For instance, we could assign the same formula as in vanilla GAN for the weights for Wasserstein
GAN. The presented theoretical analysis still holds for this case.

3.4 Results

For a fair comparison, we evaluate the performance of the various training algorithms without chang-
ing the architecture of the networks.

3.4.1 An illustrative example

We present a benchmark example where the new algorithm converges to the data distribution faster
than vanilla GAN. The ‘real’ data are drawn from a mixture of 8 normal distributions with each of the
8 components being equally-probable. The mean values are equally-distributed on a circle with radius
3 and covariance matrix Id. Moreover, both the Generator and Discriminator are fully-connected neural
networks with 2 hidden layers and 32 units per layer. The input random variable has a 2-dimensional
standard normal while the output of the Discriminator is the sigmoid function.

The upper and middle plots of Fig. 3.2 show the relative improvement of WeGAN with respect to
vanilla GAN for various values of ⌘ (circle, square & star lines) as a function of the number of epochs.
The chosen performance metric is the maximum mean discrepancy (MMD) [GBR+12] which measures
the closeness between the real data and the generated ones. The relative improvement is higher at the
early stage when only k = 1 iteration in the training of the Discriminator is performed (upper plot of
Fig. 3.2). In contrast, the highest relative improvement occurs closer to the convergence regime when
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k = 5 iterations in Discriminator’s training are performed (middle plot). For comparison purposes, we
added IWGAN (dashed line) which also outperforms vanilla GAN but it is slightly worse than WeGAN
with ⌘ = 0.01. Moreover, there were cases where IWGAN diverged because it produced a weight with
infinite value. In the lower plot of Fig. 3.2, we present the relative performance improvement between the
baseline training algorithm for the Wasserstein GAN and the respective weighted variation. We observe
that improvements happen but they are less prominent. Additionally, higher values of ⌘ result in better
performance which is the opposite situation when compared with the vanilla GAN.
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Figure 3.2: Upper & Middle plot: Relative improvement as a function of the epochs in terms of mean MMD with
respect to vanilla GAN for a mixture of 8 Gaussians. Lower values for ⌘ resulted in improved convergence of WeGAN
(lines with circles, squares and stars). Lower plot: Similar to the other plots for Wasserstein GAN. Higher values for
⌘ gave faster convergence while IWGAN is not applicable.

3.4.2 MNIST

We extend our experiments on a common benchmark MNIST image database of handwritten dig-
its [LeC98, LBBH98]. In this experiment, a single hidden layer-based fully connected neural network
has been used for both Generator and Discriminator with 128 hidden units. Whereas, the input to the
Generator is set to 100 dimensional standard normal random variables. Two popular evaluation metrics
i.e., Inception Score (IS) [SGZ+16] and Fréchet Inception Distance (FID) [HRU+17] are used to quan-
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titatively assess the performance of GANs. Both metrics assume access to a pre-trained classifier and
provide an objective score based on the distribution of the sample that is to be evaluated. Overall relative
performance, for IWGAN and various versions of WeGAN with respect to vanilla GAN in terms of IS
(upper plot) and FID (lower plot) metrics, are presented in Fig. 3.3. Evidently, WeGAN algorithm out-
performs standard vanilla GAN with relative improvement of almost 10% in IS and 30% in FID metrics.
Results reveal that WeGAN with ⌘ = 0.01 has the best improvement when compared to other variations
of ⌘ values which is consistent with the earlier reported results. By examining Fig. 3.3, we also observe
that IWGAN achieves higher relative improvement in the early epochs, however, fails to maintain the
performance as opposed to WeGAN at ⌘ = 0.01 which procures the best performance.
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Figure 3.3: Relative improvement as a function of the epochs in terms of IS (upper plot) and FID (lower plot) with
respect to vanilla GAN for the MNIST digit dataset. As in the benchmark example, lower values for ⌘ result in
improved convergence of the WeGAN.

3.4.3 CIFAR

CIFAR-10 is a well-studied dataset of natural images [KH09]. We use this dataset to examine the
performance of GANs in generating images. For the Generator, we use a deep convolutional network with
a single linear layer followed by 3 convolutional layers. Whereas, the Discriminator has 4 convolutional
layers and 1 linear layer at the end. Batch normalization is applied to both networks. The input noise
with a dimensionality of 100 is drawn from a uniform distribution. Fig. 3.4 shows IS (upper plot) and
FID (lower plot) scores for the CIFAR-10 dataset in terms of relative improvement with reference to
vanilla GAN. It can be observed that the proposed WeGAN with ⌘ = 0.01 is preferred over all respective
weighted variations in IS score with 5–10% improvement. Whereas, WeGAN with ⌘ = 0.5 & 0.1 both
perform comparatively well in FID score. Unfortunately, the performance metrics produce conflicting
outcomes making it hard to draw a clear conclusion for this dataset. We also evaluate IWGAN, however,
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its performance remains approximately the same against the baseline vanilla GAN.
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Figure 3.4: Similar to Fig. 3.3 but for the CIFAR-10 dataset. Improvements still happen but they are less prominent
while the performance metrics unfortunately produce inconsistent results.

Results indicated that the performance is improved when compared to the baseline training procedure.
Moreover, WeGAN is not restricted to a particular type of GAN but it can be easily applied to any type.

3.5 Conclusions

Building upon the principles of the multiplicative weight update method, our research introduces
a novel training algorithm for GANs. Our experimentation reveals promising outcomes, with notable
improvements in performance compared to the conventional baseline training procedures for GANs. What
sets our approach, which we term WeGAN (Weighted GAN), apart is its adaptability, as it is not confined
to a specific GAN variant but can be readily applied to various GAN architectures.
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Chapter 4

Cumulant GAN

4.1 Introduction

It is well-documented that the training procedure of GANs often fails, and several heuristics have been
devised [SGZ+16] to alleviate the training train stancestance, a recurring impediment with GAN training
is the oscillatory behaviour of the optimization algorithms due to the fact that the optimal solution is a
saddle point of the loss function. Standard optimization algorithms such as stochastic gradient descent
(SGD) may fail even for simple loss functions [MPP18, DISZ18].

Since their introduction, GANs have also been described as a tractable approach to minimize a di-
vergence or a distance between the real data distribution and the model distribution. Indeed, the original
formulation of GAN [GPM+14] can be seen as the minimization of the Shannon-Jensen divergence, f -
GAN [NCT16] is a generalization of vanilla GAN where a variational lower bound for the f -divergence is
minimized, Wasserstein GAN (WGAN) [ACB17] which has been further improved in [GAA+17b] aims
to minimize the Wasserstein distance showing increased training stability and similarly Least-Squares
GAN [MLX+17] which minimizes a softened version of the Pearson �

2-divergence.

However, training might still be unstable and searching for the proper loss function, optimization al-
gorithm, and architecture can involve tedious trial and error. In this chapter, we concentrate on the loss
function selection. We propose a novel loss function based on cumulant generating functions with the
resulting model referred to as Cumulant GAN. A key advantage of cumulants over expectations is that cu-
mulants capture higher-order information about the underlying distributions, which often results in more
effective learning. Using this property, we rigorously prove that cumulant GAN converges exponentially
fast when the gradient descent algorithm is used for the special case with linear generator, linear discrim-
inator and Gaussian distributions. Despite being a simple case, this theoretical result offers a rigorous
and valuable differentiation between WGAN, which fails to converge, and the proposed cumulant GAN
which demonstrates exponential convergence to the Nash equilibrium, when the same gradient descent
algorithm is used on both.

Interestingly, the optimization of cumulant GAN can be described as a weighting extension of the
standard stochastic gradient descent where the samples that confuse the discriminator the most receive
a higher weight, thus, contributing more to the update of the neural network’s parameters. Furthermore,
by applying a recent variational representation formula [BDK+20b], we show that cumulant GAN is
capable of interpolating between several GAN formulations, thus, offering a partially-unified mathemat-
ical framework. Indeed, the optimization of the proposed loss function is equivalent to the minimization
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of divergence for a wide set of cumulant GAN’s hyper-parameter values. It is also worth noting that
despite f -GAN’s (partial) unification property [NCT16], cumulant GAN and f -GAN formulations are
not equivalent even when they minimize the same divergence and there is a subtle but important differ-
ence: the underlying variational representation which is eventually optimized is different. Ours is based
on the Donsker-Varadhan representation formula while f -GAN is based on the Legendre transform of f
divergence. For KLD, the Donsker-Varadhan formula is tighter than the Legendre duality formula1. Addi-
tionally, our formulation is computationally more manageable because the hyper-parameters of cumulant
GAN are of continuous nature while f -GAN requires different f ’s for different divergences.

Our numerical demonstrations aim to provide insights into cumulant GAN’s representational ability
and learnability advantages. Experiments on synthetic multi-modal data revealed the differences in the
dynamics of learning for different hyper-parameter values of cumulant GAN. Even though the optimal
solution is the same, the SGD sequence of the training parameters driven by the chosen hyper-parameters’
values resulted in very different distributional realizations with the two extremes being mode covering
and mode selection. Moreover, using cumulant GAN, we were able to recover higher-order statistics even
when the discriminator is linear. Finally, we demonstrated increased robustness and improved perfor-
mance on image generation for both CIFAR10 and ImageNet datasets. Indeed, we performed relative
comparisons with WGAN under the standard as well as distressed settings which is a primary reason for
training instabilities in GANs and demonstrated that cumulant GAN not only is more stable but also it is
better up to 58% in terms of averaged inception score.

The chapter is organized as follows. Section 4.2 introduces the necessary background theory, while
Section 4.3 defines cumulant GAN and highlights the derivation of several of its theoretical properties.
In Section 4.5, numerical simulations on both synthetic and real datasets are presented, while Section 4.6
concludes the chapter.

4.2 Background

The proposed GAN is a fundamental generalization of WGAN by means of cumulant generating
functions. These concepts are briefly discussed in this section.

4.2.1 Wasserstein GAN

WGAN [ACB17, GAA+17b] minimizes the Earth-Mover (Wasserstein-1) distance and primarily aims
to stabilize the training procedure of GANs. Based on the Kantorovich-Rubinstein duality formula for
Wasserstein distance, the loss function of WGAN can be written as

min
G

max
D2D

Epr [D(x)]� Epg [D(x)], (4.1)

where pg D(·) is the discriminator (called critic in the WGAN setup) while D is the function space of all
1-Lipschitz continuous functions. In WGAN, Lipschitz continuity is imposed by adding a (soft) regular-
ization term on gradient values called Gradient Penalty (GP). It has been shown that GP regularization
produces superior performance relative to weight clipping [GAA+17b].

1Simply by the fact that x � e log x; see also [BBR+18a].
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4.2.2 Cumulant Generating Functions

The cumulant generating function (CGF), also known as the log-moment generating function, is de-
fined for a random variable with pdf p(x) as

⇤f,p(�) = logEp[e
�f(x)] , (4.2)

where f is a measurable function with respect to p. The standard CGF is obtained when f(x) = x.
CGF is a convex function with respect to � and it contains information for all moments of p. CGF
also encodes the tail behaviour of distributions and plays a key role in the theory of Large Deviations
for the estimation of rare events [DE11]. A power series expansion of the CGF reveals that the lower
order statistics dominate when |�| ⌧ 1 while all statistics contribute to the CGF when |�| � 1. In
statistical mechanics, CGF is the logarithm of the partition function while ���1⇤f,p(��) is called the
Helmholtz free energy while � is interpreted as the inverse temperature and f as the Hamiltonian [LRS10].
Furthermore, it is straightforward to show that ⇤f,p(0) = 0 as well as ⇤0

f,p
(0) = Ep[f(x)], hence, the

following limit for CGF holds
lim
�!0

�
�1⇤f,p(�) = Ep[f(x)] . (4.3)

We are now ready to introduce the new GAN.

4.3 Cumulant GAN

4.3.1 Definition

We define a novel GAN training by substituting the expectations in the loss function of WGAN with
the respective CGFs. Thus, we propose to optimize the following minimax problem:

min
G

max
D2D

�
(��)�1⇤D,pr (��)� �

�1⇤D,pg (�)
 
⌘

min
G

max
D2D

���1 logEpr [e
��D(x)]� �

�1 logEpg [e
�D(x)]

| {z }
=L(�,�)

, (4.4)

where the hyper-parameters � and � are two non-zero real numbers which control the learning dynamics
as well as the optimal solution. Since the loss function is the difference of two CGFs, we call L(�, �) in
(4.4) the cumulant loss function and the respective generative model as Cumulant GAN. Throughout this
thesis, we assume the mild condition that both CGFs are finite for a neighbourhood of (0, 0), therefore,
the cumulant loss is well-defined for |�|+ |�| < ✏, for some ✏ > 0.

The definition of the loss function is extended on the axes and the origin of the (�, �)-plane using the
limit in (4.3). Hence, the cumulant loss function is defined for all values of � and � for which the new
loss function is finite. It is straightforward to show that WGAN is a special case of cumulant GAN.

Let D be the set of all 1-Lipschitz continuous functions. Then, cumulant GAN with (�, �) = (0, 0) is
equivalent to WGAN.

Proof. The proposition is a consequence of the fact that

lim
�,�!0

L(�, �) = L(0, 0) = Epr [D(x)]� Epg [D(x)]. (4.5)
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Next, we rigorously demonstrate that cumulant GAN can be seen as a unified and smooth interpolation
between several well-known divergence minimization problems.

4.3.2 A Variational Formula for Rényi Divergence

Similarly to the Donsker-Varahdan variational formula for the Kullback-Leibler divergence that can
be obtained from the convex duality formula, we prove a variational formula for the Rényi divergence
using the variational representation of exponential integrals also known as risk-sensitive functionals/ob-
servables.

Theorem 2. (Variational Representation of Rényi Divergences) Let p and q be probability distribu-
tions. Then, the following formula holds:

R↵(p||q) = sup
f2Cb

⇢
1

↵� 1
logEp[e

(↵�1)f ]� 1

↵
logEq[e

↵f ]

�
, (4.6)

where Cb is the space of all bounded and measurable functions.

Proof. The authors in [ACD15] proved that for all bounded and measurable functions f we have:

1

↵� 1
logEp[e

(↵�1)f ] = inf
q

{ 1
↵
logEq[e

↵f ] +R↵(p||q)}.

Therefore, for any q,

1

↵� 1
logEp[e

(↵�1)f ]  1

↵
logEq[e

↵f ] +R↵(p||q)

R↵(p||q) �
1

↵� 1
logEp[e

(↵�1)f ]� 1

↵
logEq[e

↵f ]

For simplicity in the presentation, here we provide the proof based on the assumption that the function
f = log dp

dq
is bounded and measurable. Based on the aforementioned assumption we have:

1

↵� 1
logEp[e

(↵�1) log dp
dq ]� 1

↵
logEq[e

↵ log dp
dq ]

=
1

↵� 1
logEq[(

dp

dq
)↵]� 1

↵
logEq[(

dp

dq
)↵]

=
1

(↵� 1)↵
logEq[(

dp

dq
)↵]

=R↵(p||q)

Therefore, the supremum is attained; hence, we proved (4.6). We refer to [BDK+20b] for the complete
and general proof.

The variational formula for Rényi divergence reduces to the well-known Donsker-Varahdan variational
formula for the Kullback-Leibler divergence, when ↵! 1, [BDK+20b].
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4.3.3 Concavity Property of Cumulant GAN

The concavity of the logarithmic function implies that

�
�1⇤f,p(�) � Ep[f(x)] ,

which is nothing else but Jensen’s inequality. If additionally f is bounded, i.e., there is M > 0 such that
|f(x)| M for all x then a stronger inequality is obtained due to the fact that the domain of the logarithm
is also bounded. Indeed, the logarithm is strongly concave with a modulus equal to the infimum value of
the domain. In our case, strongly Jensen’s inequality deduces that

�
�1⇤f,p(�) � Ep[f(x)]� �e

��M

p
(f(x))

From Jensen’s inequality (4.3.3), it is easy to show that for all �, � 6= 0

L(�, �) � L(0, 0) = Epr [D(x)]� Epg [D(x)]

A stricter inequality called Jensen’s inequality for strongly convex/concave functions can be obtained if
the function D is bounded. Indeed, if |D(x)| < M for all x then the domain of the logarithmic function
is also bounded leading to the stronger inequality

L(�, �) � Epr [D(x)]� Epg [D(x)]� �e
��M

pr
(D(x))� �e

��M

pg
(D(x)).

Generally speaking, strong concavity/convexity is a strengthening of the notion of concavity/convexity,
and some properties of strongly concave/convex functions are just “stronger versions” of analogous prop-
erties of concave/convex functions.

4.3.4 KLD, Reverse KLD and Rényi Divergence as Special Cases

A major inconvenience of many GAN formulations is their inability to interpret the loss function
value and understand the properties of the obtained solution. Even when the stated goal is to minimize a
divergence as in the original GAN and the f -GAN, the utilization of training tricks such as non-saturating
generators may result in the minimization of something completely different as it was recently observed
[Sha20]. In contrast, the proposed cumulant loss function can be interpreted for several choices of its
hyper-parameters. Below there is a list of values for � and � that result in interpretable loss functions.
Indeed, several well-known divergences are recovered when the function space for the discriminator is the
set of all measurable and bounded functions. In the context that follows, we adopt the convention that a
forward divergence, or simply divergence, refers to the utilization of the probability ratio, pr

pg
, whereas a

reverse divergence involves the reciprocal ratio.

Let D be the set of all bounded and measurable functions. Then, the optimization of cumulant loss in
(4.4) is equivalent to the minimization of

a. Kullback-Leibler divergence for (�, �) = (0, 1):

min
G

max
D2D

L(0, 1) ⌘ min
G

DKL (pr||pg) .
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b. Reverse KLD for (�, �) = (1, 0):

min
G

max
D2D

L(1, 0) ⌘ min
G

DKL (pg||pr) .

c. Rényi divergence for (�, �) = (↵, 1� ↵) with ↵ 6= 0 and ↵ 6= 1:

min
G

max
D2D

L(↵, 1� ↵) ⌘ min
G

R↵ (pg||pr) ,

as well as for (�, �) = (1� ↵,↵) with ↵ 6= 0 and ↵ 6= 1:

min
G

max
D2D

L(1� ↵,↵) ⌘ min
G

R↵ (pr||pg) ,

where R↵ (p||q) is the Rényi divergence defined by

R↵ (p||q) = 1

↵(1� ↵)
logEq

✓
p

q

◆↵�
,

when p and q are absolutely continuous with respect to each other and ↵ > 02.

Proof. a. Using the definition of L(�, �), we have:

max
D2D

L(0, 1) = max
D2D

n
Epr [D(x)]� logEpg [e

D(x)]
o

= DKL (pr||pg) ,
(4.7)

where the last equation is the Donsker-Varadhan variational formula [DV83, DE11].

b. Similarly,

max
D2D

L(1, 0) = max
D2D

n
� logEpr [e

�D(x)]� Epg [D(x)]
o

= max
D0=�D2D

n
Epg [D

0(x)]� logEpr [e
D

0(x)]
o

= DKL (pg||pr) ,

(4.8)

where we applied again the Donsker-Varadhan variational formula.

c. Generalizing a. and b. we now have:

max
D2D

L(↵, 1� ↵)

=max
D2D

⇢
� 1

↵
logEpr [e

�↵D(x)]� 1

1� ↵
logEpg [e

(1�↵)D(x)]

�

= max
D0=�D2D

⇢
1

↵� 1
logEpg [e

(↵�1)D0(x)]� 1

↵
logEpr [e

↵D
0(x)]

�

= R↵ (pg||pr) ,

(4.9)

where the last equation is an extension of the Donsker-Varadhan variational formula to Rényi divergence
and was recently proved in ([BDK+20b, Theorem 5.4]). For completeness, we provide proof of the Rényi
divergence variational representation in Appendix A of Supplementary Materials.

The proof for the case L(1 � ↵,↵) is similar and agrees with the symmetry identity for the Rényi
2The definition is extended for ↵ < 0 using the symmetry identity R↵ (p||q) = R1�↵ (q||p).



Chapter 4. Cumulant GAN 57

divergence, R↵ (p||q) = R1�↵ (q||p).

The Rényi divergence, R↵, interpolates between KLD (↵ ! 0) and reverse KLD (↵ ! 1). Inter-
estingly, there are additional special cases that belong to the family of Rényi divergences. The following
corollary states some of them, while Fig. 4.1 depicts schematically the obtained divergences and distances
on the (�, �)-plane.

Under the same assumption as in Theorem 1, the optimization of (4.4) is equivalent to the minimization
of

a. Hellinger distance for (�, �) = ( 12 ,
1
2 ):

min
G

max
D2D

L(
1

2
,
1

2
) ⌘ min

G

�4 log
�
1�D

2
H
(pg, pr)

�
,

where D
2
H
(p, q) = 1

2Eq

⇣
(p
q
)1/2 � 1

⌘2�
is the square of the Hellinger distance [Tsy08].

b. �
2-divergence for (�, �) = (�1, 2):

min
G

max
D2D

L(�1, 2) ⌘ min
G

1

2
log
�
1 + �

2 (pr||pg)
�
,

and reverse �
2-divergence for (�, �) = (2,�1):

min
G

max
D2D

L(2,�1) ⌘ min
G

1

2
log
�
1 + �

2 (pg||pr)
�
,

where �
2 (p||q) = Eq

h
(p
q
� 1)2

i
is the �

2-divergence3 [Tsy08].

c. All-mode covering or worst-case regret in minimum description length principle [G+07] for (�, �) =
(1,�1):

min
G

lim
↵!1

↵max
D2D

L(↵, 1� ↵) ⌘ min
G

log

 
ess sup
x2(pg)

pg(x)

pr(x)

!
(4.10)

where ess sup is the essential supremum of a function.

d. Largest-mode selector for (�, �) = (�1,1):

min
G

lim
↵!1

↵max
D2D

L(1� ↵,↵) ⌘ min
G

log

 
ess sup
x2(pr)

pr(x)

pg(x)

!
. (4.11)

All cases a.to d. follow from Theorem 1.c as special instances of Rényi divergence:

R1/2(p|q) = �4 log
�
1�D

2
H
(p, q)

�
,

R2(p|q) =
1

2
log
�
1 + �

2 (p||q)
�
,

R�1(p|q) = R2(q|p),

lim
↵!1

↵R↵(p|q) = log

 
ess sup
x2(q)

p(x)

q(x)

!
.

(4.12)

3Forward �
2-divergence is often called Pearson �

2-divergence while the reverse �
2-divergence is often called Neyman �

2-
divergence.
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We refer to [M+05, Bis06] and the references therein for detailed proofs.

The flexibility of the two hyper-parameters is significant since they offer a simple recipe to remedy
some of the most frequent issues of GAN training. For instance, KLD tends to cover all the modes of
the real distribution while reverse KLD tends to select a subset of them [M+05, Bis06, HLLR+16, LT16,
Sha20] (see also Fig. 4.3 for a benchmark). Therefore, if mode collapse is observed during training, then,
increasing � with � = 1� � will push the generator towards generating a wider variety of samples. In the
other limit, more realistic samples (e.g. less blurry images) with less variability will be generated when �

is increased while � = 1� �.

Remark. From a practical perspective, the boundedness condition required in the above theoretical
formulation can be easily enforced by considering a clipped discriminator with clipping factor M , i.e.,
DM (x) = M tanh(D(x)

M
). On the other hand, the set of all measurable functions is a very large class of

functions and it might be difficult to be represented by a neural network. However, one can approximate
measurable functions with continuous functions via Lusin’s theorem [Fol99] which states that every finite
Lebesgue measurable function is approximated arbitrarily well by a continuous function except on a
set of arbitrarily small Lebesgue measure. Therefore, a sufficiently-large neural network can accurately
approximate any measurable function.

γ

β

1/β x “largest- 
mode selector”

reverse KLD

KLD

Renyi divergence 
   (β+γ=1)

½log(1+reverse χ^2)

1/γ x “all-mode 
covering”

½log(1+χ^2)

- 4log(1-Hellinger^2)

Figure 4.1: Special cases of cumulant GAN. Line defined by �+� = 1 has a point symmetry. The central
point, ( 12 ,

1
2 ), corresponds to the Hellinger distance. For each point, (↵, 1� ↵), there is a symmetric one,

i.e., (1 � ↵,↵), which has the same distance from the symmetry point. The respective divergences have
reciprocal probability ratios (e.g., KLD & reverse KLD, �2-divergence & reverse �

2-divergence, etc.).

4.3.5 Cumulant GAN as a Weighted Version of the SGD Algorithm

The parameter estimation for the cumulant GAN is performed using the SGD algorithm. Algorithm 1
presents the core part of SGD’s update steps where we exclude any regularization terms for clarity pur-
poses. Namely, � is the learning rate. The proposed loss function is not the difference between two
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expected values, therefore, the order between differentiation and expectation approximation does matter.
We choose to first approximate the expected values with the respective statistical averages as

L̂m(�, �) = � 1

�
log

mX

i=1

e
��D(xi) � 1

�
log

mX

i=1

e
�D(G(zi)) . (4.13)

Then, we apply the differentiation operator which results in a weighted version of SGD as shown in
Algorithm 1. Interestingly, several recent papers [BGS16, LT16, HYSX18, HJC+18, PPFS19] included a
weighting perspective in their optimization approach.

Algorithm 1 Core of SGD Iteration

Input: data batch: {xi}, noise batch: {zi}
for k steps do

⌘  ⌘ + �

 
mX

i=1

w
�
i r⌘D (xi)�

mX

i=1

w
�
i r⌘D (G (zi))

!
(4.14)

end for

✓  ✓ + �

 
mX

i=1

w
�
i r✓D (G (zi))

!
(4.15)

The difference between WGAN and cumulant GAN for the update steps is the weights w
�

i
and w

�

i
.

In WGAN, the weights are constant and equal to 1
m

while in cumulant GAN they are defined for any
i = 1, ...,m by

w
�

i
=

e
��D(xi)

P
m

j=1 e
��D(xj)

, and, w
�

i
=

e
�D(G(zi))

P
m

j=1 e
�D(G(zj))

.

The weights redistribute the sample distributions based on the assessment of the current discriminator.
Fig. 4.2 demonstrates the change of the weight relative to uniform weights for �, � > 0. The weights em-
phasise the real samples associated with the smallest D(xi) values. Similarly, they place more emphasis
on the synthetic samples that give the highest D(G(zi)) values.

The intuition behind the weighting mechanism is that samples that confuse the discriminator, i.e., the
samples around the “fuzzy” decision boundary, are more valuable for the training process than samples
that are easily distinguished, thus, they should weigh more. Essentially, the discriminator is updated
with samples produced by a better generator than the current one, as well as with more challenging
real samples. Similarly, the generator is also updated using samples from a generator which is better
than the current one. Overall, due to the use of the weights w

�

i
, w

�

i
in Algorithm 1, both generator and

discriminator updates will be more affected by synthetic samples that are more indistinguishable from the
real ones.

Additionally, the update of the discriminator is performed k times more than the generator’s update
offering two important advantages. First, more iterations for the discriminator implies that it better dis-
tinguishes the real data from the generated ones, making the weighting perspective more valid. Second, it
better approximates the optimal discriminator, thus, the theory presented in the previous section becomes
more credible in practice.

The Monte Carlo approximation in (4.13) is biased. However, it has been shown that it is consistent
[LT16], hence, the error due to the statistical approximation decreases as the size of minibatch increases.
Bias correction gradients using moving averages have been utilized in [BBR+18a] for the estimation of
CGF. However, the modification of the loss function and the lack of an interpretation analogous to the
weights w�

i
, w

�

i
are two key reasons to avoid adding any correction terms.
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Figure 4.2: Interpretation of cumulant GAN as a weighted variation of SGD for �, � > 0. Both real and
generated samples for which the discriminator outputs a value closer to the decision boundary are assigned
with larger weights because these are the samples which most probably confuse the discriminator.

4.3.6 Convergence Guarantees for Linear Discriminator

Let D be the set of all linear functions (i.e., D(x) = ⌘
T
x with ⌘, x 2 Rd) and assume that the real

data follow a Gaussian distribution with mean value µ 2 Rd and covariance matrix, Id. The generator
is defined by G(z) = z + ✓, where z is a standard d-dimensional Gaussian. The exact loss function for
WGAN is

min
✓

max
⌘

⌘
T (µ� ✓), (4.16)

while the respective exact cumulant loss function from (4.4) is

min
✓

max
⌘

⌘
T (µ� ✓)� � + �

2
⌘
T
⌘. (4.17)

It is known that the above WGAN loss function oscillates without converging to the optimum if gradi-
ent descent is used [MPP18] and more sophisticated algorithms are required to guarantee convergence
[DISZ18]. In contrast, the following theorem demonstrates that the proposed cumulant loss function con-
verges if gradient descent is used. Evidently, the use of the cumulant generating function transforms
the optimization problem from a concave to a strongly concave problem for ⌘. Next, without loss of
generality, we assume � = 0.

Theorem 3. The gradient descent method with learning rate � converges exponentially fast to the (unique)
Nash equilibrium with rate 1� �� if � 2 (0,��1). Mathematically, for the t-th iteration of the gradient
descent we have

||(✓t, ⌘t)� (µ, 0)||22  c(1� ��)t, (4.18)

where (✓⇤, ⌘⇤) = (µ, 0) is the Nash equilibrium while c is a computable positive constant.
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Proof. The update step of gradient descent for the cumulant loss is given by

⌘t+1 = ⌘t + �(µ� ✓t � �⌘t) ,

✓t+1 = ✓t + �⌘t .

(4.19)

The proof is separated into two sub-cases depending on the value of �. We will consider first the case
where 0 < �  1 and then the reciprocal case where 1  � < �

�1. This separation is needed because
different auxiliary functionals are defined.

Case 0 < �  1: Define the energy function

E(⌘, ✓) = ⌘
T
⌘ � �⌘

T (µ� ✓) + (µ� ✓)T (µ� ✓).

E(⌘, ✓) is a second order polynomial for ⌘; it is straightforward to show that if 0 < �  1 then E(⌘, ✓) �
0 for all ⌘ and ✓ and it is equal to 0 iff ⌘ = ⌘

⇤ = 0 and ✓ = ✓
⇤ = µ. Additionally, it generally holds that

||(✓, ⌘)� (µ, 0)||22  2E(⌘, ✓),

since 2E(⌘, ✓)� ||(✓, ⌘)� (µ, 0)||22 = ⌘
T
⌘ � 2�⌘T (µ� ✓) + (µ� ✓)T (µ� ✓) � 0 for all 0 < �  1.

Next, we show that E(⌘t, ✓t) converges exponentially fast to 0. Since, E(⌘, ✓) =
P

d

i=1 ⌘
2
i
��⌘i(µi�

✓i) + (µi � ✓i)2, we can proceed with d = 1 without sacrificing the generality of the proof. After some
calculations, we obtain

E(⌘t+1, ✓t+1) = (1� ��)E(⌘t, ✓t)

� �
2[⌘2

t
+ �⌘t(µ� ✓t) + (µ� ✓t)

2]

 (1� ��)E(⌘t, ✓t),

(4.20)

since ⌘
2
t
+ �⌘t(µ� ✓t) + (µ� ✓t)2 � 0 for �  1. The iterative application of this inequality yields

E(⌘t+1, ✓t+1)  (1� ��)t+1
E(⌘0, ✓0). (4.21)

Combining the above inequalities we prove (4.18) with c = 2E(⌘0, ✓0).

Case 1  � < �
�1: Repeat the steps of the first case but this time for the modified energy function

Ē(⌘, ✓) = ⌘
T
⌘ � �

�1
⌘
T (µ� ✓) + (µ� ✓)T (µ� ✓) .

Here the positive constant is given by c = 2Ē(⌘0, ✓0).

It is worth noting that the above theorem suggests a learning rate below but close to 1
�

. However, a
statistical approximation of the exact cumulant loss is used in practice and the optimal learning rate is
affected by the minibatch size, thus, it is safer to assign a smaller value. Moreover, the proof is quite
broad in the sense that it uses the concept of energy functions (a.k.a. Lyapunov functionals), a tool from
the mathematical theory of Dynamical Systems that can be transferred to more general/complex settings
as the following remark reveals.

For the same discriminator and generator, the above theorem can be generalized to the case where
x ⇠ N (µ,⌃) and z ⇠ N (0,⌃) with ⌃ being a positive-definite covariance matrix. The proof follows the
same steps for the modified energy function E(⌘, ✓) = ⌘

T⌃⌘� �⌘
T
L(µ� ✓) + (µ� ✓)T (µ� ✓), where

L is the Cholesky decomposition of ⌃ (i.e., ⌃ = LL
T ).
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Figure 4.3: Generated samples using the Wasserstein distance using clipping (1st row), KL divergence
(2nd row), reverse KLD (3rd row) and Hellinger distance (last row). The boundedness condition is not
enforced on this example but it is necessary to be satisfied when the hyper-parameters take negative values.

4.4 Cumulant GAN Implementation

Here, we present the core part of the implementation of cumulant GAN.

f a k e d a t a = G e n e r a t o r ( )
d i s c r e a l = D i s c r i m i n a t o r ( r e a l d a t a )
d i s c f a k e = D i s c r i m i n a t o r ( f a k e d a t a )

def l o s s f u n c t i o n ( d i s c r e a l , d i s c f a k e , be t a , gamma ) :

max val = t f . reduce max ( ( − b e t a ) * d i s c r e a l )
d i s c c o s t r e a l =
− ( 1 . 0 / b e t a ) * ( t f . l o g ( t f . r educe mean ( t f . exp ( ( − b e t a )* d i s c r e a l − max val ) ) ) + max val )

max val = t f . reduce max ( ( gamma ) * d i s c f a k e )
d i s c c o s t f a k e =

( 1 . 0 / gamma ) * ( t f . l o g ( t f . r educe mean ( t f . exp ( gamma* d i s c f a k e − max val ) ) ) + max val )
g e n c o s t =

− ( 1 . 0 / gamma ) * ( t f . l o g ( t f . r educe mean ( t f . exp ( gamma* d i s c f a k e − max val ) ) ) + max val )

d i s c c o s t = d i s c c o s t f a k e − d i s c c o s t r e a l

a l p h a = t f . r andom uni fo rm (
shape = [ 6 4 , 1 ] ,
minva l = 0 . , maxval = 1 . )

d i f f e r e n c e s = f a k e d a t a − r e a l d a t a
i n t e r p o l a t e s = r e a l d a t a + ( a l p h a * d i f f e r e n c e s )
g r a d i e n t s = t f . g r a d i e n t s ( D i s c r i m i n a t o r ( i n t e r p o l a t e s ) , [ i n t e r p o l a t e s ] ) [ 0 ]
s l o p e s = t f . s q r t ( t f . r educe sum ( t f . s q u a r e ( g r a d i e n t s ) , r e d u c t i o n i n d i c e s = [ 1 ] ) )
g r a d i e n t p e n a l t y = t f . r educe mean ( ( s l o p e s − 1 . ) * * 2 )
d i s c c o s t += 10* g r a d i e n t p e n a l t y



Chapter 4. Cumulant GAN 63

g e n t r a i n o p = t f . t r a i n . AdamOptimizer ( l e a r n i n g r a t e =1e −4 , b e t a 1 = 0 . ,
b e t a 2 = 0 . 9 ) . min imize ( g e n c o s t ,
v a r l i s t = l i b . pa rams wi th name ( ’ G e n e r a t o r ’ ) ,
c o l o c a t e g r a d i e n t s w i t h o p s =True )

d i s c t r a i n o p = t f . t r a i n . AdamOptimizer ( l e a r n i n g r a t e =1e −4 , b e t a 1 = 0 . ,
b e t a 2 = 0 . 9 ) . min imize ( d i s c c o s t ,
v a r l i s t = l i b . pa rams wi th name ( ’ D i s c r i m i n a t o r . ’ ) ,
c o l o c a t e g r a d i e n t s w i t h o p s =True )

re turn g e n t r a i n o p , d i s c t r a i n o p

4.5 Demonstrations

4.5.1 Traversing the (�, �)-plane: from Mode Covering to Mode Selection

As demonstrated in Section III.B and Fig. 4.1, the optimization of cumulant GAN for the set of
bounded and measurable functions and various hyper-parameter values is equivalent to the minimiza-
tion of a divergence. It is well-known that different divergences result in fundamentally different be-
haviour of the solution. For instance, KLD minimization tends to produce a distribution that covers all
the modes while the reverse KLD tends to produce a distribution that is focused on a subset of the modes
[M+05, Bis06, HLLR+16]. Taking the extreme cases, an all-mode covering is obtained as � ! �1
while the largest mode selection is observed at the other limit direction.

Our first example aims at highlighting the above characteristics of divergences and additionally to
verify that the sub-optimal approximation of the function space of all bounded functions by a family of
neural networks does not significantly affect the expected outcomes. Fig. 4.3 presents generated samples
for various values of the (�, �) pair at different stages of the training process as quantified by the number
of iterations (denoted by ‘NoIter’). The target distribution is a mixture of 8 equiprobable and equidistant
Gaussian random variables. Both discriminator and generator are neural networks with 2 hidden layers
with 32 units each and ReLU as the activation function. Input noise for the generator is an 8-dimensional
standard Gaussian. In all cases, the discriminator is updated k = 5 times followed by an update for the
generator.

KLD minimization that corresponds to (�, �) = (0, 1) (second row) tends to cover all modes while
reverse KLD that corresponds to (�, �) = (1, 0) (third row) tends to select a subset of them. This is
particularly evident when the number of iterations is between 500 and 2000. Hellinger distance mini-
mization (last row) produces samples with statistics that lie between KLD and reverse KLD minimization
while Wasserstein distance minimization (first row) has a less controlled behavior. It is also noteworthy
that reverse KLD was not able to fully cover all the modes after 10K iterations. This is not necessarily a
drawback since the divergence of choice is primarily an application-specific decision. For instance, the
lack of diversity might be sacrificed in image generation for the sake of sharpness of the synthetic images.

Finally, we remark that despite demonstrating a single run, the plots in Fig. 4.3 are not cherry-picked.
We have tested several architectures with more or fewer layers, as well as more or fewer units per layer,
repeating each run several times, with qualitatively similar results.
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Figure 4.4: Covariance estimation error for the exact cumulant loss function (upper plot) and for the
statistically-approximated cumulant loss function (lower plot).

4.5.2 Learning the Covariance Matrix of a Multivariate Gaussian

A CGF can uniquely determine a distribution and contains information on all moments. Therefore,
the use of simple discriminators which may fail under the WGAN loss might be sufficient under the
cumulant loss in order to successfully train the generator. In this section, we provide an example where
the discriminator is a linear function and the target is to learn the second order statistic of a multivariate
Gaussian distribution. Thus, the real data, x 2 Rd, follow a zero-mean Gaussian with covariance matrix
⌃, the discriminator is given by D(x) = ⌘

T
x while the generator is given by G(z) = Az where A is a

d ⇥ k matrix and z is a standard k-dimensional Gaussian. The aim is to obtain a solution, ⌃̂ = ÂÂ
T ,

close to the true covariance matrix.

The loss function of WGAN is L(0, 0) = ⌘
TEpr [x]� ⌘

T
AEpz [z] = 0, therefore it is impossible here

to learn the covariance matrix. On the other hand, the cumulant loss reads

L(�, �) = �1

2
⌘
T (�⌃+ �AA

T )⌘

allowing the possibility of a (�, �) pair that makes the Nash equilibrium non-trivially informative regard-
ing the covariance matrix. Indeed, we calculated the best response diagrams for d = 1 with fixed positive
values of � and inferred that suitable values are � ⌧ �1. Fig. 4.4 presents the average error of the
covariance matrix evaluated using the Frobenius norm as a function of �. The covariance is computed
using either the above exact loss function (upper plot) or the statistical approximation of the cumulant
loss along with stochastic gradient descent (lower plot) for three values of �. We use 10K samples for the
latter case, average over 10 iterations and a different covariance matrix is used at each iteration. The true
covariance matrix is rescaled so that its Frobenius norm equals to 1. We observe that the covariance ma-
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trix is learned satisfactorily when the exact loss function is used for large negative values of �. When the
approximated, yet realistic, loss is used, the error between the true and the estimated covariance matrices
increases after a certain value of �� because tail statistics (requiring a large amount of samples) start to
take control. Overall, the direct conclusion is that cumulant GAN is able to learn higher-order statistics
and produce samples with the correct covariance structure despite the fact that a very simple discriminator
was deployed.

4.5.3 Image Generation

A series of experiments have been conducted demonstrating the effectiveness of cumulant GAN on
standard CIFAR-10 [KH09] and ImageNet [DDS+09] datasets. In the experiments, we select pairs of
(�, �) that correspond to well-known divergences in order to highlight their effect on the training process
as well as to facilitate connections with existing literature.

Experimental Details

Here, we describe the experimental setup and architectural details for all the experiments presented
in the chapter. Three architectures have been used to compare the performance of four GAN losses:
Wasserstein, Kullback-Leibler divergence (KLD), reverse KLD and Hellinger distance. The architectures
whose successful training we demonstrate are described as follows: (i) convolutional layer for CIFAR-10
data, (ii) residual blocks for CIFAR-10 data (iii) residual blocks for ImageNet data. In the convolutional
architecture, batch normalization is applied only for the generator but not for the discriminator. Whereas,
we implemented layer normalization in both generator and discriminator. We used Adam as the optimizer
with a learning rate of 0.0001. We trained the model for a total of 100,000 iterations on CIFAR-10 and
50,000 iterations on ImageNet, with a mini-batch of 128 and 64, respectively.

CIFAR-10 Convolutional Architecture

Generator

Layer Kernel Output shape Stride Activation function

Input z - 128 - -

Linear - 512⇥ 4⇥ 4 - -

Transposed convolution 1 5⇥ 5 256⇥ 8⇥ 8 1 ReLU

Transposed convolution 2 5⇥ 5 128⇥ 16⇥ 16 1 ReLU

Transposed convolution 3 5⇥ 5 3⇥ 32⇥ 32 1 tanh

Discriminator

Convolution 5⇥ 5 64⇥ 32⇥ 32 4 Leaky ReLU

Linear - 1 - -
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CIFAR-10 Residual Architecture

Generator

Layer Kernel Output shape Stride Activation function

Input z - 128 - -
Linear - 512⇥ 2⇥ 2 - -

Residual block 1 3⇥ 3 512⇥ 4⇥ 4 1 ReLU
Residual block 2 3⇥ 3 256⇥ 8⇥ 8 1 ReLU
Residual block 3 3⇥ 3 128⇥ 16⇥ 16 1 ReLU
Residual block 4 3⇥ 3 64⇥ 32⇥ 32 1 ReLU

Convolution 3⇥ 3 3⇥ 32⇥ 32 1 tanh

Discriminator

Convolution 3⇥ 3 64⇥ 32⇥ 32 1 -
Residual block 1 3⇥ 3 128⇥ 16⇥ 16 1 ReLU
Residual block 2 3⇥ 3 128⇥ 8⇥ 8 1 ReLU

Linear - 1 - -

ImageNet Residual Architecture

Generator

Layer Kernel Output shape Stride Activation function

Input z - 128 - -
Linear - 512⇥ 4⇥ 4 - -

Residual block 1 3⇥ 3 512⇥ 8⇥ 8 1 ReLU
Residual block 2 3⇥ 3 256⇥ 16⇥ 16 1 ReLU
Residual block 3 3⇥ 3 128⇥ 32⇥ 32 1 ReLU
Residual block 4 3⇥ 3 64⇥ 64⇥ 64 1 ReLU

Convolution 3⇥ 3 3⇥ 64⇥ 64 1 tanh

Discriminator

Convolution 3⇥ 3 64⇥ 64⇥ 64 1 -
Residual block 1 3⇥ 3 64⇥ 32⇥ 32 1 ReLU
Residual block 2 3⇥ 3 128⇥ 16⇥ 16 1 ReLU

Linear - 1 - -

CIFAR-10 Dataset

CIFAR-10 is a well-studied dataset of 32⇥32⇥3 RGB color images with 10 classes. We evaluate the
quality of the generated images using four different architectures: one with convolutional layers (CNN)
and three with residual blocks (resnet). The generator for the CNN consists of one linear layer followed
by three convolutional layers while the discriminator is a single convolutional layer followed by one linear
layer. The generator for the three resnets consists of four residual blocks while the discriminator consists
of two or three residual blocks. We train two versions with three residual blocks for the discriminator
but with different channel dimensions and learning rates. In all cases, we deliberately choose a weaker
discriminator to challenge the training procedure.

To show that the proposed algorithm is extendable to different architectures, the performance of trained
GANs is tested on four different architectures. The first corresponds to convolutional layers while the latter
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Table 4.1: Inception scores on CIFAR-10 dataset.

CIFAR-10
````````````Loss function

Architecture Conv layers

Gen: 3 & Dis: 1

Residual blocks

Gen: 4 & Dis: 2

Residual blocks (V1)

Gen: 4 & Dis: 3

Residual blocks (V2)

Gen: 4 & Dis: 3

Wasserstein 3.95 ± 0.21 4.24 ± 0.19 4.63 ± 0.22 5.97 ± 0.03

KLD 4.39 ± 0.06 6.70 ± 0.07 6.53 ± 0.05 6.44 ± 0.09

Reverse KLD 4.01 ± 0.17 6.67 ± 0.06 6.60 ± 0.08 6.39 ± 0.04

Hellinger 4.53 ± 0.04 6.74 ± 0.06 6.58 ± 0.08 6.59 ± 0.10

Table 4.2: Inception scores on Imagenet dataset.

ImageNet
hhhhhhhhhhhhhhhLoss function

Architecture Residual blocks

Gen: 4 & Dis: 2

Residual blocks

Gen: 4 & Dis: 4

Wasserstein 6.77 ± 0.24 7.53 ± 0.11

KLD 7.21 ± 0.22 7.48 ± 0.09

Reverse KLD 7.43 ± 0.18 7.73 ± 0.11

Hellinger 7.22 ± 0.16 7.79 ± 0.13

two utilize residual networks of different capacities. For the generator of the first architecture, we use one
linear layer followed by three convolutional layers, while the discriminator is a single convolutional layer
followed by one linear layer. The generator for the second architecture has four residual blocks, while
the discriminator consists of two residual blocks. The last two architectures i.e., residual network - 1
(strong discriminator) and residual network - 2 (strong discriminator) comprise of four residual blocks in
the generator and three residual blocks in the discriminator but differs in terms of channel dimensions and
learning rates.

The plots in Fig. 4.5 present the inception score as a function of the number of iterations for the four
architectures. The inception score is a standard metric to evaluate the visual quality of generated image
samples [SGZ+16]. It assumes access to a pre-trained classifier and provides an objective score based on
the distribution of the multiple randomly generated samples that are to be evaluated. We test four different
hyper-parameter values that correspond to the minimization of Wasserstein distance (blue line), KLD (red
starred line), reverse KLD (green line) and Hellinger distance4 (black dashed line). In all cases, the same
gradient penalty term is added resulting in optimization over Lipschitz continuous function space. The
implementation of cumulant GAN is based on available open-source code5. Following the reference code,
we train the models with the Adam optimizer and the discriminator’s parameters are updated k = 5 times
more often than the parameters of the generator.

The averaged inception score results with standard deviation over five runs are reported in Table 4.1
and 4.2. We observe that all hyper-parameter choices for cumulant GAN outperform the baseline WGAN.
The relative improvement ranged from 1.5% (reverse KLD) up to 14.9% (Hellinger distance) for the
CNN architecture while the relative improvement for the resnet with the weaker discriminator ranged
from 57.2% (reverse KLD) up to 58.8% (Hellinger distance) revealing that cumulant GAN takes into

4Actually, we minimize �4 log(1�Hel
2), see Corollary 1.

5https://github.com/igul222/improved wgan training
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Figure 4.5: Inception score for CIFAR-10 using various hyper-parameters of cumulant GAN and various
architectures. In all cases, WGAN has a lower inception score relative to the cumulant GAN with the
hyper-parameter corresponding to Hellinger minimization achieving the best overall performance.

consideration all the moments of the discriminator, i.e., all higher-order statistics and not just mean val-
ues, leading to better realization of the target data distribution. Cumulant GAN achieves higher inception
scores than WGAN for the two versions of resnets with three residual blocks for the discriminator (lower
panels in Fig. 4.5), too. All cumulant GAN variations (KLD, reverse KLD and Hellinger) obtain similar
results for both versions while the performance of WGAN is significantly affected by the choice of the
hyper-parameter values, e.g., learning rate and channel dimension. This discrepancy in the performance
highlights the enhanced robustness of cumulant GAN relative to WGAN implying that cumulant GAN
might require less tuning in order to enjoy excellent performance. Finally, the samples generated by cu-
mulant GAN also exhibit larger diversity and are visually better (we refer to Appendix E in Supplementary
Materials).

Results reveal that KLD minimization is preferred with a relative improvement of 11.1% for convo-
lutional architecture and 57.8% for residual network - weak discriminator over the baseline WGAN-GP.
Reverse KLD has 1.5% & 57.2% relative improvement for convolutional architecture and residual net-
work with weaker discriminator, respectively. The superior performance can be seen for the Hellinger
distance where convolutional layer has 14.9% and residual - weak discriminator has 58.8% relative im-
provements. Moreover, significant improvements were found for strong residual discriminator networks.
Version 1 of Residual network - strong discriminator achieves 41.03%, 42.5% and 42.1% relative im-
provements for KLD, reverse KLD and Hellinger minimizations respectively. In order to experiment with
the performance when channel size and learning rate are changed, Residual network - strong discriminator
version 2 is included where both KLD and reverse KLD approach have around 7% relative improvements.
The best performance is attained for Hellinger loss with an inception score of 6.59 having an relative
improvement of 10.4% against Wasserstein loss.
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Figure 4.6: Same as Fig. 4.5 but for ImageNet. Cumulant GAN achieves higher inception score relative
to WGAN for both weak (left panel) and strong (right panel) discriminator.

ImageNet Dataset

This large scale dataset consists of 64⇥64⇥3 color images with 1000 object classes. The large num-
ber of classes is challenging for GAN training due to the tendency to underestimate the entropy in the
distribution [SGZ+16]. We evaluate the performance on two different architectures which both have a
generator with four residual blocks. The difference is in the number of residual blocks for the discrimina-
tor where we employ a weak discriminator with two residual blocks and a strong discriminator with four
residual blocks. Even though improved performance can be potentially achieved by exploring a wider
range of architectures, we choose to test the two architectures, one with a stronger discriminator than the
other. Residual network with weak discriminator comprises of four residual blocks for the generator and
two residual blocks for the discriminator. As for the other architecture (residual network - strong discrim-
inator) has four residual blocks for both generator and discriminator. Fig. 4.6 presents the performance
in terms of inception score both for baseline WGAN and for the variants of cumulant GAN when a weak
discriminator (left panel) or a strong discriminator (right panel) is utilized. Improved inception scores
are obtained with cumulant GAN for both architectures. The mean inception scores along with the stan-
dard deviation over five repetitions are reported in Table 4.1. In terms of relative improvement, cumulant
GAN is between 6.5% (KLD) to 9.5% (reverse KLD) better than WGAN for the weak discriminator and
a similar trend is observed when the strong discriminator is used. By visual inspection of the generated
images (Appendix E in Supplementary Materials), we conclude that all generators learn some basic and
contiguous shapes with natural color and texture. Nevertheless, cumulant GAN provides better images
with object specifications that are clearly more realistic.

Despite not being exhaustive, the presented examples demonstrated a preference of cumulant GAN
over WGAN. In general, GAN optimization has essentially two critical components: the first being the
function space where the discriminator lives while the other is the loss function to be optimized. WGAN’s
breakthrough was the restriction of the function space to Lipschitz continuous functions that resulted in
increased stability. However, there is no evidence that the best-performing loss function is the difference
of two expectations as in WGAN. The presented examples revealed that there are better and more flexible
options for the loss function and the proposed cumulant loss is one of them.
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4.6 Conclusions and Future Directions

We proposed the cumulant GAN by establishing a novel loss function based on the CGF of the real
and generated distributions. The use of CGFs allows for an inclusive characterization of the distribu-
tions’ statistics, making it possible to partially remove complexity from the discriminator. The net result
is improved and more stable GAN training. Furthermore, cumulant GAN has the capacity to interpolate
between a wide range of divergences and distances by simply changing the two hyper-parameter values
(�, �), and thus offers a flexible and comprehensive mechanism to choose –possibly adaptively– which
objective to minimize. Yet, most of the (�, �) cumulant GAN plane remains terra incognita and we plan
to promptly explore its properties. Additional research directions include the use of Rényi variational rep-
resentations for other estimation and inference applications and the application of the proposed cumulant
loss function beyond image generation applications.

Generated Images

In this section, generated samples from all the trained models are presented. We remark that all models
are trained with GP regularization.

Figure 4.7: WGAN: Samples of CIFAR-10 from generator and discriminator trained with convolutional
networks.
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Figure 4.8: KLD: Samples of CIFAR-10 from generator and discriminator trained with convolutional
networks.

Figure 4.9: Reverse KLD: Samples of CIFAR-10 from generator and discriminator trained with convolu-
tional networks.
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Figure 4.10: Hellinger: Samples of CIFAR-10 from generator and discriminator trained with convolu-
tional networks.

Figure 4.11: WGAN: Samples of CIFAR-10 from generator and discriminator trained with residual net-
works.
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Figure 4.12: KLD: Samples of CIFAR-10 from generator and discriminator trained with residual net-
works.

Figure 4.13: Reverse KLD: Samples of CIFAR-10 from generator and discriminator trained with residual
networks.
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Figure 4.14: Hellinger: Samples of CIFAR-10 from generator and discriminator trained with residual
networks.

Figure 4.15: WGAN: Samples of ImageNet from generator and discriminator trained with residual net-
works.
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Figure 4.16: KLD: Samples of ImageNet from generator and discriminator trained with residual networks.

Figure 4.17: Reverse KLD: Samples of ImageNet from generator and discriminator trained with residual
networks.
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Figure 4.18: Hellinger: Samples of ImageNet from generator and discriminator trained with residual
networks.



Part II

Disentanglement Learning





Chapter 5

Advancements in Neural-Based
Divergence Estimation

5.1 Introduction

Divergences such as Kullback-Leibler (KL) divergence, f -divergences, Hellinger divergence, ↵ di-
vergences and Rényi divergences, which were initially developed in the fields of information theory and
statistical physics, are indispensable tools in a growing number of machine learning applications. They
have been used in adversarial training of generative models [GPM+14, NCT16], in the estimation of
generalization errors [EGI21] and in hypothesis testing [BK09], to name a few. Mutual information
(MI), in particular, which is defined as the KL divergence between the joint distribution of a pair of vari-
ables and their marginals (and can be generalized to divergences other than KL), plays a crucial role in
Bayesian networks and (conditional) independence [CGK+02], self-supervised learning via contrastive
losses [vdOLV18, LKHS20] as well as in representation learning [HFLM+19, CDH+16].

Classical divergence estimators perform reasonably well for low dimensional cases, however they
scale poorly to large, high dimensional datasets which are typically encountered in modern machine
learning. The most compelling estimation approach of divergence is optimising a lower variational bound
parametrized by neural networks. These lower bounds, which are likelihood-free approximations, are
maximized in order to compute the divergence value at the optimizer. Well-known variational repre-
sentations are the Legendre transformation of an f -divergence [BK06, NWJ10] as well as the Donsker-
Varadhan (DV) variational formula [DV83] for KL divergence and its extension to Rényi divergence
[BDK+20c]. Their tractability stems from their objective functionals, which are computed from expected
values and approximated using statistical averages from the available or generated samples.

Despite their scalability and tractability, the estimation of divergence based on variational formulae is a
notoriously difficult problem. One challenge stems from the potentially high bias since any approximation
for the worst-case scenario requires an exponential number of samples in order to attain the true divergence
value [MS20]. Additionally, the statistical variance, which scales exponentially with respect to the diver-
gence’s value for certain variational estimators [SE19], is often prohibitively high. Focusing on the ele-
vated MI, there are several further lower bounds [BA03, BBR+18b, vdOLV18, POVDO+19, GCW+21]
and a few upper bounds [CHD+20, POVDO+19] which aim to provide more reliable estimates of MI
in the low sample size regime. However, most of these MI estimators are not transferable to the general
estimation of divergences and frequently produce instabilities during training which are further magnified
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by the small batch and/or sample size.

In this chapter, we propose to reduce a divergence estimator’s variance via an explicit variance penalty
(VP) which is added to the objective functional. Our contributions are summarized as follows:

• We present a novel variance reduction penalty for f -divergence and expand it via the delta method
to the nonlinear setting, including the DV formula for KL divergence and the variational formula
for the Rényi divergences. The proposed VP is able to flexibly trade-off bias and variance.

• We present numerical evidence on synthetic datasets that the proposed approach improves both
mean squared error (MSE) and median absolute error (MedAE) in a range of sample sizes and
types of divergences. Furthermore, we implemented the proposed VP in several other lower and
upper bounds of MI, showing that our variance reduction approach is not restricted to particular
variational formulas. Still, it is generic and applicable to most existing variational representations.

• When applied to real datasets, we demonstrate the ability of the proposed approach to reduce the
variance of the estimated Rényi divergence, thus enabling the detection of rare biological sub-
populations which are otherwise difficult to identify. Interestingly, the baseline estimator is unstable
when the order value is above one, but it becomes stable when the VP is added.

5.1.1 Related Work

There are several general-purpose variance reduction techniques in Monte Carlo stochastic sampling,
with the most popular approaches being antithetic sampling or more broadly coupling methods, control of
variates and importance sampling [RC05, Gla04, Sri13]. These methods have not been explicitly applied
to the variational divergence estimation problem. We speculate that either they are not applicable due to
the unavailability of analytical probability density formulas or they are inefficient (e.g., the control of the
variates approach requires a second estimator and potentially a second parametric model in order to be
applied).

Another way to reduce the variance is to restrict the function space to smoother and/or controlled test
(or critic) functions, balancing again between bias and variance. For instance, the restriction to Lipschitz
continuous functions has the potential to reduce the variance since there exist favourable concentration
inequality results for the Lipschitz space [Wai19]. In the GAN literature, Wasserstein GAN [GAA+17a],
and spectral normalization [MKKY18] impose Lipschitz continuity which resulted in significant gains
in terms of training stability. Similarly, the restriction of test functions to an appropriately designed
reproducing kernel Hilbert space could reduce the variance [STN20]. Such approaches can be combined
with our proposed variance penalties, as our formulation allows for general test-function spaces. However,
we do not focus on this point here.

Given the importance of MI, several estimators aim towards improved statistical properties. Lower
bounds such as MINE [BBR+18b], which uses the DV variational formula with an exponential moving
average, NWJ estimator [NWJ10] and BA estimator [BA03] as well as upper bounds such as CLUB
[CHD+20] still have high variance. InfoNCE [vdOLV18] is one of the few MI estimators that has low
variance, but at the cost of either high bias or high computational cost due to the need for many negative
samples and thus large batch size. [POVDO+19] and [GCW+21] aims to clarify the relationships and
trade-offs between those variational bounds. A different approach to reducing variance is by appropriately
working on the gradients of the objective function [WZH+20, WBH+21].

Finally, we discuss the approach of truncating the test function inside a bounded region as proposed in
[SE19]. The determination of the truncation threshold is quite difficult since it requires an a priori under-
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standing of the log-likelihood ratio. Moreover, a high truncation threshold will not affect the estimation
since a high threshold implies no real benefit in terms of variance reduction. On the other hand, a low
threshold will result in a large bias. Overall, using a high truncation threshold in order to avoid extreme
values is a good practice, even though it will have a limited impact on variance reduction.

5.2 Variational Formulas for Rényi and f -Divergences.

While our variance reduction method can be applied to any divergence that possesses a variational
formula, here, our focus will be on the Rényi and f -divergences, including the KL divergence. For
Rényi divergences, an appropriate objective functional can be constructed from a difference of cumulant
generating functions [BDK+20c]

R↵(Q|P ) = sup
g2Mb(⌦)

⇢
1

↵� 1
logEQ[e

(↵�1)g]� 1

↵
logEP [e↵g]

�
, ↵ 6= 0, 1 . (5.1)

Here Q and P are probability distributions on the set ⌦, EQ and EP denote the expectations with respect
to Q and P respectively, and Mb(⌦) is the space of bounded measurable real-valued functions on ⌦. For
f divergences, f being a lower semicontinuous convex function with f(1) = 0, one has the well-known
Legendre transform variational formula [BK06, NWJ10]

Df (Q|P ) = sup
g2Mb(⌦)

{EQ[g]� EP [f
⇤(g)]} (5.2)

where f
⇤(y) = sup

x2R{yx � f(x)} is the Legendre transform of f . Here and in the following, the
function of g that is being optimized will be called the objective function. 5.2 can be generalized to the
(f,�)-divergences [BDK+20a], where � ⇢Mb(⌦) is a restricted test-function space

D
�
f
(Q|P ) = sup

g2�
{EQ[g]� ⇤P

f
[g]} (5.3)

⇤P

f
[g] = inf

⌫2R
{⌫ + EP [f

⇤(g � ⌫)]} (5.4)

In particular, if fKL(x) = x log(x) corresponds to the KL divergence then

⇤P

fKL
[g] = log(EP [exp(g)]) ⌘ ⇤P [g] (5.5)

is the classical cumulant generating function and (5.3) (with � = Mb(⌦)) becomes the Donsker-
Varadhan variational formula [DE97, Appendix C.2]

DKL(Q|P ) = sup
g2Mb(⌦){EQ[g]� logEP [eg]}

(5.6)
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For general f , we will often write (5.3) as

D
�
f
(Q|P ) = sup

g2�,⌫2R
{EQ[g � ⌫]� EP [f

⇤(g � ⌫)]} (5.7)

and if � is closed under the shifts g 7! g � ⌫, ⌫ 2 R then we can write it simply as

D
�
f
(Q|P ) = sup

g2�
{EQ[g]� EP [f

⇤(g)]} . (5.8)

In particular, if � = Mb(⌦) then D
�
f
= Df . The generalizations of Rényi and KL divergence obtained by

using a restricted space � in place of Mb(⌦) in (5.1) or (5.2) will be denoted by R
�
↵

and D
�
KL, respectively.

5.3 Statistical Estimators and Variance Reduction

Variational representations of divergences are especially useful for creating statistical estimators in a
data-driven setting; a naive estimator is obtained by simply replacing expectations with the corresponding
statistical averages in any of the equations (5.1), (5.2), (5.3), etc. More formally, the naive estimators
can be written as D�

f
(Qn|Pn), R�↵(Qn|Pn), etc., where � is some parameterized space of functions (e.g.,

a neural network), Qn and Pn are the n-sample empirical measures from Q and P respectively (i.e.,
EPn [g] =

1
n

P
n

j=1 g(Xj) where Xj are i.i.d. samples from P and similarly for EQn ; we also assume that
the samples from Q and P are independent of one another), and the divergences are expressed in terms
of the variational formulas from Section 5.2. However, in practice, these naive methods often suffer from
high variance [SE19, BDK+20c]. We address this via variance-penalized divergences, which are con-
structed by introducing a variance penalty into the objective functional of the variational representation,
e.g.,

D
�

f
(Q|P ) ⌘ sup

g2Mb(⌦)
{EQ[g]� EP [f

⇤(g)]� �V [g;Q,P ]} , (5.9)

where the variance penalty, �V , is proportional to the variance of EQn [g] � EPn [f
⇤(g)] with strength

� > 0. Using this, we construct the following divergence estimator

sup
⌘

{EQn [g⌘]� EPn [f
⇤(g⌘)]� �V [g⌘;Qn, Pn]} , (5.10)

where g⌘ is a neural network with parameters ⌘. Similar variance penalties can be derived to other diver-
gences with variational representations.

5.3.1 Variance Penalty

In this subsection, we provide details on the variance penalty for (f,�)-divergences, the KL-divergence,
and Rényi divergences. The same framework can be repeated to other divergences with a variational rep-
resentation.

To introduce the variance penalty, first consider the (f,�)-divergence representation (5.8). Our goal
is to penalize g’s for which EQn [g] or EPn [f

⇤(g)] have large variance. Hence we introduce a penalty term
proportional to (VarQ denotes variance with respect to Q)

Var [EQn [g] + EPn [f
⇤(g)]] =

1

n
(VarQ[g] + VarP [f⇤(g)]) . (5.11)



Chapter 5. Advancements in Neural-Based Divergence Estimation 83

Specifically, for � > 0 we define the variance-penalized (f,�)-divergence

D
�,�
f

(Q|P ) ⌘ sup
g2�,⌫2R

{EQ[g � ⌫]� EP [f
⇤(g � ⌫)]� �(VarQ[g � ⌫] + VarP [f⇤(g � ⌫)])} . (5.12)

As noted above, if � is invariant under constant shifts, then the optimization over ⌫ can be omitted.
A similar result to (5.12) can be derived for any objective functional that is a linear combination of
expectations, e.g., integral probability metrics [M9̈7, SFG+12] such as the Wasserstein metric.

For nonlinear objective functional terms of the generic form G(EP [h(g)]), such as appear in (5.1) and
(5.2), we cannot compute the variance of the corresponding statistical estimator at finite n but we can use
the delta method to obtain the asymptotic variance

lim
n!1

nVar [G(EPn [h(g)])] = (G0(EP [h(g)]))
2VarP [h(g)] . (5.13)

Thus, we propose for the nonlinear case to use the above asymptotic variance as a penalty and obtain the
following variance-penalized KL and Rényi divergence variational formulas:

D
�,�
KL (Q|P ) ⌘ sup

g2�

⇢
EQ[g]� logEP [e

g]� �
�
VarQ[g] + VarP [eg]/(EP [e

g])2
��

, (5.14)

R
�,�
↵

(Q|P ) ⌘ sup
g2�

⇢
1

↵� 1
logEQ[e

(↵�1)g]� 1

↵
logEP [e↵g] (5.15)

� �

✓
1

(↵� 1)2
VarQ[e(↵�1)g]

(EQ[e(↵�1)g])2
+

1

↵2

VarP [e↵g]
(EP [e↵g])2

◆�
.

Remark. Both (5.11) and (5.13) suggest that the statistical estimators for the above-penalized diver-
gences should use a variance penalty strength that decays with the sample size � = �0/n, though other
forms of n-dependence may be useful in practice.

Though the variance penalty introduces bias, as � ! 0, the penalized divergence converges to the
corresponding non-penalized divergence, as made precise by the following theorem.

Theorem 4. Let � ⇢Mb(⌦). We have the following convergence results:

lim
�!0+

D
�,�
KL (Q|P ) = D

�
KL(Q|P ) , (5.16)

lim
�!0+

R
�,�
↵

(Q|P ) = R
�
↵
(Q|P ) , (5.17)

and if f⇤(y) <1 for all y 2 R then

lim
�!0+

D
�,�
f

(Q|P ) = D
�
f
(Q|P ) . (5.18)

Moreover, under fairly general assumptions, it holds that

lim
�!1

D
�,�
KL (Q|P ) = lim

�!1
R
�,�
↵

(Q|P ) = lim
�!1

D
�,�
f

(Q|P ) = 0 . (5.19)

Remark. Note that the corresponding statistical estimators, D�,�
f

(Qn|Pn), etc., have additional bias due
to the supremum over g. We present partial results on bias bounds in Appendix D.

The proof of Theorem 4 is given in Appendix B for the zero limit and Theorem 9 for the infinity limit.
The same proof techniques can be applied to other divergences with a variational characterization.

Finally, for non-zero � the penalized divergences (5.12), (5.14), (5.15) retain the divergence property
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and are therefore appropriate for quantifying the “distance” between probability distributions:

Theorem 5. Under fairly general assumptions on f and � (see Appendix B for details) and letting D
�,�

denote any of D�,�
f

, D�,�KL , or R�,�
↵

we have D
�,�(Q|P ) � 0 and D

�,�(Q|P ) = 0 if and only if Q = P .

The proof of Theorem 5 can be found in Appendix B.

5.3.2 Variance-Reduced Divergence Estimation Algorithm

We now propose the following divergence neural estimation (DNE) methods with variance penalty,
generalizing equations (5.9)-(5.10).

(DNE-VP�) sup
⌘

{H[g⌘;Qn, Pn]� �V [g⌘;Qn, Pn]} . (5.20)

We compare the above method to the non-penalized estimator (i.e., with � = 0)

(DNE) sup
⌘

H[g⌘;Qn, Pn] . (5.21)

In the above, the test function space is a neural network � = {g⌘, ⌘ 2 E} with parameters ⌘ and H

denotes the objective functional of the divergence, e.g., for the Rényi divergences (5.1)

H↵[g;Q,P ] =
1

↵� 1
logEQ[e

(↵�1)g]� 1

↵
logEP [e↵g] , ↵ 6= 0, 1 (5.22)

and for f divergences (5.2)

Hf [g;Q,P ] = EQ[g]� EP [f
⇤(g)] . (5.23)

Finally, V is the variance penalty corresponding to the chosen divergence (see Section 5.3.1), e.g., for
Rényi divergences

V↵[g;Qn, Pn] =
1

(↵� 1)2
VarQn [e

(↵�1)g]

(EQn [e
(↵�1)g])2

+
1

↵2

VarPn [e
↵g]

(EPn [e
↵g])2

, ↵ 6= 0, 1 (5.24)

and for f divergences

Vf [g;Qn, Pn] = VarQn [g] + VarPn [f
⇤(g)] . (5.25)

We solve (5.20) via Adam algorithm [KB14]; a stochastic gradient descent method.

5.4 Proofs of Transformed Variational Formula Identities

Given �1  a < 1 < b  1 we define F1(a, b) to be the set of convex functions f : (a, b) ! R
with f(1) = 0. The convex lower semicontinuous extension of f 2 F1(a, b) will also be denoted by
f : R ! (�1,1]. The Legendre transform of f will be denoted f

⇤(y) = sup
z2R{yz � f(z)}; recall

that f⇤ is continuous on {f⇤ <1} [Roc70, Theorem 10.1], where A denotes the closure of the set A. We
let (⌦,M) be a measurable space and P(⌦) be the set of probability measures on (⌦,M). For P 2 P(⌦)

we let EP denote the expectation with respect to P and P denote the variance with respect to P . Finally,
for k 2 Z+ we let Mb(⌦,Rk) denote the space of bounded measurable functions g : ⌦ ! Rk (if k = 1

we simply write Mb(⌦)).
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Here, we will derive variational characterizations of f -divergences and Rényi divergences that incor-
porate an additional transformation family.

Lemma 6. Let f 2 F1(a, b), Q,P 2 P(⌦) with Q⌧ P , and  : Rk ! R be continuous. Then

sup
g2Mb(⌦,Rk)

{EQ[ (g)]� EP [f
⇤( (g))]} = EP [ sup

x2Rk

{ (x)dQ/dP � f
⇤( (x))}] . (5.26)

Proof. Define I = {y : f⇤(y) < 1}. If ( ) ⇢ I
c then both sides of (5.26) equal �1 and we are done.

Hence, for the remainder of the proof we suppose there exists x0 with  (x0) 2 I . First compute

sup
g2Mb(⌦,Rk)

{EQ[ (g)]� EP [f
⇤( (g))]} (5.27)

= sup
g2Mb(⌦,Rk)

EP [ (g)dQ/dP � f
⇤( (g))]

EP [ sup
x2Rk

{ (x)dQ/dP � f
⇤( (x))}] .

Now we prove the reverse inequality. Define Am =  �1(I) \ [�m,m]k and restrict to m large enough
such that x0 2 Am. We have the bounds

�1 <  (x0)y � f
⇤( (x0))  sup

x2Am

{ (x)y � f
⇤( (x))}  sup

x2[�m,m]k
{ (x)y � (x)} <1 ,

(5.28)

where here we used the inequality

f
⇤(y) = sup

z2R
{yz � f(z)} � y � f(1) = y . (5.29)

By continuity of x 2 Am 7!  (x)y � f
⇤( (x)), for every ✏ > 0 there exists a measurable function

xm,✏ : R! Am such that

| (xm,✏(y))y � f
⇤( (xm,✏(y)))� sup

x2Am

{ (x)y � f
⇤( (x))}| < ✏ . (5.30)

The functions xm,✏ are valued in [�m,m]k, hence xm,✏(dQ/dP ) 2Mb(⌦,Rk) and we can use (5.30) to
compute

sup
g2Mb(⌦,Rk)

{EQ[ (g)]� EP [f
⇤( (g))]} (5.31)

�EQ[ (xm,✏(dQ/dP ))]� EP [f
⇤( (xm,✏(dQ/dP )))]

=EP [ (xm,✏(dQ/dP ))dQ/dP � f
⇤( (xm,✏(dQ/dP )))]

�EP [ sup
x2Am

{ (x)dQ/dP � f
⇤( (x))}]� ✏ .

This holds for all ✏ > 0 and all m and so

sup
g2Mb(⌦,Rk)

{EQ[ (g)]� EP [f
⇤( (g))]} (5.32)

� lim inf
m!1

EP [ sup
x2Am

{ (x)dQ/dP � f
⇤( (x))}] .
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5.28 implies

sup
x2Am

{ (x)dQ/dP � f
⇤( (x))} �  (x0)dQ/dP � f

⇤( (x0)) 2 L
1(P ) (5.33)

for all m, therefore we can apply Fatou’s lemma to (5.32) to compute

sup
g2Mb(⌦,Rk)

{EQ[ (g)]� EP [f
⇤( (g))]} (5.34)

� lim inf
m!1

EP [ sup
x2Am

{ (x)dQ/dP � f
⇤( (x))}]

�EP [lim inf
m!1

sup
x2Am

{ (x)dQ/dP � f
⇤( (x))}]

=EP [sup
m

sup
x2Am

{ (x)dQ/dP � f
⇤( (x))}]

=EP [ sup
x2 �1(I)

{ (x)dQ/dP � f
⇤( (x))}]

=EP [ sup
x2Rk

{ (x)dQ/dP � f
⇤( (x))}] .

This completes the proof.

Theorem 7. Let f 2 F1(a, b), Q,P 2 P(⌦), and for every ⌘ 2 E suppose we have a continuous map
 ⌘ : Rk ! R. If there exists ⌘0 2 E with ( ⌘0) = R then

Df (Q|P ) = sup
g2Mb(⌦,Rk),⌘2E

{EQ[ ⌘(g)]� EP [f
⇤( ⌘(g))]} . (5.35)

Proof. First suppose Q⌧ P : We have  ⌘(g) 2Mb(⌦) for all ⌘ and g, hence (5.2) implies

sup
g2Mb(⌦,Rk),⌘2E

{EQ[ ⌘(g)]� EP [f
⇤( ⌘(g))]}  Df (Q|P ) . (5.36)

On the other hand, using Lemma 6 and the assumption ( ⌘0) = R we can compute

sup
g2Mb(⌦,Rk),⌘2E

{EQ[ ⌘(g)]� EP [f
⇤( ⌘(g))]} (5.37)

� sup
g2Mb(⌦,Rk)

{EQ[ ⌘0(g)]� EP [f
⇤( ⌘0(g))]}

=EP [ sup
x2Rk

{ ⌘0(x)dQ/dP � f
⇤( ⌘0(x))}]

=EP [ sup
z2( ⌘0 )

{zdQ/dP � f
⇤(z)}]

=EP [sup
z2R

{zdQ/dP � f
⇤(z)}]

=EP [f(dQ/dP )] = Df (Q|P ) . (5.38)

This proves the claim when Q⌧ P .

Now suppose Q 6⌧ P : In this case there exists a measurable set A with P (A) = 0 and Q(A) > 0.
Take a sequence xn 2 Rk with  ⌘0(xn)!1, y0 2 R with f

⇤(y0) <1, and x0 2 Rk with  ⌘0(x0) =
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y0. Define gn = xn1A + x01Ac 2Mb(⌦,Rk). Therefore

sup
g2Mb(⌦,Rk),⌘2E

{EQ[ ⌘(g)]� EP [f
⇤( ⌘(g))]} (5.39)

�EQ[ ⌘0(gn)]� EP [f
⇤( ⌘0(gn))]

= ⌘0(xn)Q(A) + ⌘0(x0)Q(Ac)� f
⇤(y0)P (Ac)!1 (5.40)

as n!1. Hence we can conclude

sup
g2Mb(⌦,Rk),⌘2E

{EQ[ ⌘(g)]� EP [f
⇤( ⌘(g))]} =1 = Df (Q|P ) . (5.41)

This completes the proof.

Under stronger assumptions on f we can weaken the assumption that ( ) = R and still prove the
transformed variational formula.

Theorem 8. Let f 2 F1(a, b) be C
1 with f

0 strictly increasing, Q,P 2 P(⌦) with Q ⌧ P , and
 ⌘ : Rk ! R be continuous for all ⌘ 2 E. Suppose a  dQ/dP  b and if the value a (resp. b) is
achieved then f

0(a) ⌘ limx&a f
0(x) (resp. f

0(b) ⌘ limx%b f
0(x)) exists and is finite. Finally, define

I = {f⇤
<1} and suppose there exists ⌘0 2 E with (f 0(dQ/dP )) ⇢ ( ⌘0) \ I .

Then

Df (Q|P ) = sup
g2Mb(⌦,Rk),⌘2E

{EQ[ ⌘(g)]� EP [f
⇤( ⌘(g))]} . (5.42)

Proof. Using the definition of the Legendre transform it is a straightforward calculus exercise to show
that

f(dQ/dP ) =
dQ

dP
f
0(dQ/dP )� f

⇤(f 0(dQ/dP )) . (5.43)

Using the continuity of f⇤ on I we have

sup
x2Rk

{ ⌘0(x)dQ/dP � f
⇤( ⌘0(x))} = sup

y2( ⌘0 )\I

{ydQ/dP � f
⇤(y)} (5.44)

= sup
y2( ⌘0 )\I

{ydQ/dP � f
⇤(y)}

(f⇤)⇤(dQ/dP ) = f(dQ/dP ) .

However, (5.43) together with the assumption (f 0(dQ/dP )) ⇢ ( ⌘0) \ I implies

sup
y2( ⌘0 )\I

{ydQ/dP � f
⇤(y)} � f(dQ/dP ) . (5.45)

Therefore we have equality, with the maximum occurring at f 0(dQ/dP ), and

f(dQ/dP ) = sup
x2Rk

{ ⌘0(x)dQ/dP � f
⇤( ⌘0(x))} . (5.46)
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Combining this with Lemma 6 we see that

Df (Q|P ) = sup
g2Mb(⌦,Rk)

{EQ[ ⌘0(g)]� EP [f
⇤( ⌘0(g))]} (5.47)

 sup
g2Mb(⌦,Rk),⌘2E

{EQ[ ⌘(g)]� EP [f
⇤( ⌘(g))]} .

The reverse inequality follows from (5.2) and the fact that  ⌘(g) 2Mb(⌦) for all ⌘ and g.

Remark. In particular, if one has the a priori bounds a < m  dQ/dP  M < b then Theorem 8
justifies the use of a truncated function space, i.e., using  ⌘0 with [f 0(m), f 0(M)] ⇢ ( ⌘0) \ I . Similar
truncated discriminators were previously used for variance reduction in 2019arXiv191006222S. In the
examples shown in Figure 5.1 above, we use transformations of the form  ✓(x) = h(x+ T✓(x)) where h
is a truncation and T has the growth bound lim sup

x!1 |T✓(x)/x| < 1, thus ensuring (x+T✓(x)) = R.

In the next corollary, we apply Theorem 8 to the ↵-divergences, i.e., the f -divergences obtained by
using

f↵(x) =
x
↵ � 1

↵(↵� 1)
, ↵ > 0, ↵ 6= 1 , (5.48)

which have the Legendre transforms

f
⇤
↵
(y) =

8
<

:
y
↵/(↵�1)

↵
�1(↵� 1)↵/(↵�1)1y�0 +

1
↵(↵�1) , ↵ > 1 ,

11y�0 +
⇣
|y|�↵/(1�↵)

↵
�1(1� ↵)�↵/(1�↵) � 1

↵(1�↵)

⌘
1y<0, ↵ 2 (0, 1) .

(5.49)

Corollary 9. Let Q,P 2 P(⌦) with Q⌧ P and ⌘ : Rk ! R, ⌘ 2 E be continuous. Let ↵ > 0, ↵ 6= 1.

1. If ↵ > 1 suppose that there exists ⌘0 2 E with (0,1) ⇢ ( ⌘0).

2. If ↵ 2 (0, 1) suppose that dQ/dP > 0 and there exists ⌘0 2 E with (�1, 0) ⇢ ( ⌘0).

Then

Df↵(Q|P ) = sup
g2Mb(⌦,Rk),⌘2E

{EQ[ ⌘(g)]� EP [f
⇤
↵
( ⌘(g))]} . (5.50)

We can use Corollary 9 to derive a variational formula for the Rényi divergences that includes a trans-
formation family. Rényi divergences for ↵ < 0 can be expressed in terms of R↵ for ↵ > 1 van2014renyi
and so we focus on the cases ↵ > 1 and ↵ 2 (0, 1).

Theorem 10. Let ↵ > 0, ↵ 6= 1, Q,P 2 P(⌦), and  ⌘ : Rk ! R, ⌘ 2 E be continuous. Suppose there
exists ⌘0 2 E with ( ⌘0) = R. If ↵ 2 (0, 1) suppose also that Q⌧ P and dQ/dP > 0. Then

R↵(Q|P ) = sup
g2Mb(⌦,Rk),⌘2E

⇢
1

↵� 1
log(EQ[e

(↵�1) ⌘(g)])� 1

↵
log(EP [e

↵ ⌘(g)])

�
. (5.51)

Proof. First suppose Q ⌧ P . Applying Corollary 9 to  ⌘,c(x) = ±c exp((↵ � 1) ⌘(x)) (positive sign
for ↵ > 1, negative sign for ↵ 2 (0, 1)) with c > 0 and then evaluating the supremum over c > 0 (as was
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done in the Appendix to [BKP20]) we obtain

Df↵(Q|P ) (5.52)

= sup
g2Mb(⌦,Rk),⌘2E

sup
c>0

{EQ[±ce
(↵�1) ⌘(g)]� EP [f

⇤
↵
(±ce

(↵�1) ⌘(g))]}

=

8
<

:
sup

g2Mb(⌦,Rk),⌘2E
{ 1
↵(↵�1)EQ[e(↵�1) ⌘(g)]↵EP [e↵ ⌘(g))]�(↵�1) � 1

↵(↵�1)} , ↵ > 1 ,

sup
g2Mb(⌦,Rk),⌘2E

{ 1
↵(1�↵) �

1
↵(1�↵)EQ[e(↵�1) ⌘(g)]↵EP [e↵ ⌘(g)]1�↵} , ↵ 2 (0, 1)

.

Using the relationship between ↵-divergences and Rényi divergences, we arrive at the claimed result.

Finally, (5.51) for ↵ > 1 and Q 6⌧ P is proven using the same technique as in Theorem 7.

5.5 Bias Bounds

In this section we derive bounds on the bias of Rényi and f -divergence variational formula estimators.
We again let Qn, Pn be n-sample empirical measures from Q and P respectively. The key lemma is the
following simple results regarding the expectation of a supremum or infimum.

Lemma 11. Given an objective functional, H : Mb(⌦)⇥P(⌦)⇥P(⌦)! R, and a test function space
� ⇢Mb(⌦) we have

E[sup
g2�

H[g;Qn, Pn] � sup
g2�

E[H[g;Qn, Pn]] , (5.53)

E[ inf
g2�

H[g;Qn, Pn]  inf
g2�

E[H[g;Qn, Pn]] .

The next lemma provides a bound on the bias of statistical estimators of ⇤P

f
from (5.4).

Lemma 12. Let f be convex with f(1) = 0, P 2 P(⌦), and Pn be n-sample empirical measures from Q

and P respectively. Then for all g 2Mb(⌦) the generalized cumulant generating function satisfies

E[⇤Pn
f

[g]]  ⇤P

f
[g] . (5.54)

Proof. Using (5.4) we can compute

E
h
⇤Pn
f

[g]
i
=E


inf
⌫2R

{⌫ + EPn [f
⇤(g � ⌫)]}

�
(5.55)

 inf
⌫2R

E [⌫ + EPn [f
⇤(g � ⌫)]]

= inf
⌫2R

{⌫ + EP [f
⇤(g � ⌫)]} = ⇤P

f
[g] .

Using similar reasoning, one can bound the bias of divergence estimators that are constructed from
variational formulas.

Lemma 13. Given an objective functional, H : Mb(⌦)⇥P(⌦)⇥P(⌦)! R, and a test function space
� ⇢Mb(⌦) we have

E[sup
g2�

H[g;Qn, Pn] � sup
g2�

E[H[g;Qn, Pn]] . (5.56)
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Lemmas 12 and 13 allow us to bound the bias of both f -divergences and Rényi divergences.

Corollary 14 (Rényi Divergence Bias Bound). For ↵ 2 (0, 1) and g 2Mb(⌦) we have

E


1

↵� 1
logEQn [e

(↵�1)g]� 1

↵
logEPn [e

↵g]

�
(5.57)

� 1

↵� 1
logEQ[e

(↵�1)g]� 1

↵
logEP [e

↵g]

and

E[R�
↵
(Qn|Pn)] � R

�
↵
(Q|P ) . (5.58)

Proof. To prove (5.57) we compute

E


1

↵� 1
logEQn [e

(↵�1)g]� 1

↵
logEPn [e

↵g]

�
(5.59)

=� 1

1� ↵
E
⇥
⇤Qn [(↵� 1)g]

⇤
� 1

↵
E
⇥
⇤Pn [↵g]

⇤

�� 1

1� ↵
⇤Q[(↵� 1)g]� 1

↵
⇤P [↵g]

=
1

↵� 1
logEQ[e

(↵�1)g]� 1

↵
logEP [e

↵g] .

(5.58) then follows from Lemma 13.

Remark. When ↵ > 1 the biases of the two terms in (5.59) compete and so we can not obtain a bias
bound via the above method.

Similarly, we have:

Corollary 15 (f -Divergence Bias Bound).

E[EQn [g]� ⇤
Pn
f

[g]] � EQ[g]� ⇤P

f
[g]

for all g 2Mb(⌦) and

E[D�
f
(Qn|Pn)] � D

�
f
(Q|P ) . (5.60)
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Figure 5.1: Comparison between the estimator without VP (DNE) and with VP (DNE-VP�) for Rényi
divergence between two one-dimensional Gaussians with Q = N (0, 1.1) and P = N (0, 1). We use
N = 5K sample size, 512 as batch size and results are averaged over 100 i.i.d. runs. Left column: DNE
and DNE-VP� estimators for increasing values of ↵. The variance of DNE becomes uncontrollably high
for ↵ > 3. Middle column: Relative MedAE (the lower, the better) for varying penalty coefficient � and
two values of ↵. The relative MedAE for large values of � is close to one which implies that the estimated
value of DNE-VP� approaches zero. Right column: Relative MedAE for increasing sample size N . We
additionally present a penalty coefficient that varies with sample size, shown in blue (�N = 500

N
and

�N = 2000
N

for ↵ = 0.5 and ↵ = 10, respectively).
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5.6 Results on Synthetic Datasets

Figure 5.1 presents the statistical estimation of Rényi divergence between two one-dimensional Gaus-
sians which both have zero mean but different variance values. The order of Rényi divergence, ↵, controls
how much weight to put on the tails of the distributions, thus it can become very sensitive to the few sam-
ples from the tails. The same conclusion can be deduced from the variational formula (i.e., (5.1) where
↵ multiplies the exponentials’ argument). Therefore, a larger ↵ value implies larger statistical variance.
Indeed, high estimation variance is observed with DNE (upper leftmost panel of Figure 5.1) despite the
fact that we applied truncation as proposed by [SE19] with truncation threshold set to 1. In contrast, the
DNE-VP� estimator with � = 0.1 greatly reduces the statistical variance even when ↵ is large (lower
leftmost panel). For fairness, we imposed the same truncation operation in the output of DNE-VP�. We
report a 80% reduction of variance for ↵ = 2 which becomes 99% for ↵ = 10.

We demonstrate the large variance in the numerical estimation of Rényi divergence with respect to
hyper-parameter ↵. First, we consider two zero-centered univariate Gaussian distributions with different
standard deviations, Q = N (0, 1.1�2

0) and P = N (0,�2
0).

In our simulations, we set �0 = 1. Figure 5.1 shows Rényi divergence estimations as parameter ↵
increases, for the case of T✓(�) = 0, � = 0 and for the case of variance reduction using T✓ and � = 0.1.

The proposed approach introduces an additional hyper-parameter, �, which controls the strength of
the VP. Our theory suggests that � should depend on the sample size (and perhaps also on the other
parameters), therefore we perform two sets of experiments. In the first experiment, we explore the range
of optimal values for � in terms of MedAE1. As is evident from the middle panels of Figure 5.1, �-values
in the vicinity of 0.1 are a reasonable compromise between variance and bias. In the second experiment,
we demonstrate the performance in terms of MedAE as a function of the sample size, N . As suggested
in Remark 5.3.1, monotone performance is obtained when � is inversely proportional to N (blue dashed
line in rightmost upper panel of Figure 5.1).

Our second synthetic example constitutes the estimation of MI using various approaches with and
without VP. Here, we let Q be a zero-mean multivariate correlated Gaussian random vector of dimension
d. We impose element-wise correlation, i.e., corr(xi, x d

2+j
) = �i,j⇢ to the samples x ⇠ Q where

i, j = 1, . . . , d

2 and �i,j is Kronecker’s delta. With P we denote the product of the marginals, which
in this case is simply a zero-mean standardized multivariate Gaussian. Figure 5.2 presents the estimated
MI per training step. We consider the Renyi-based MI with ↵ = 0.5 as well as the standard MI using
the DV variational formula. Notice that these two variants result in different true values (black lines in
Figure 5.2). The plotted results demonstrate the successful reduction of variance when VP is added to the
objective functional. Interestingly, the extension of VP to InfoNCE and CLUB estimators (second row
of panels in Figure 5.2) implies that our approach can be applied to any MI estimators, thus offering a
general variance reduction framework. Bias, variance and MSE plots as well as several more experiments
can be found in Appendix F.

1Recall that MedAE stands for median absolute error and it is a more robust-to-outliers metric.
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Figure 5.2: Performance comparison of several MI estimation approaches on a 40-dimensional correlated
Gaussian random vector. The number of samples is set to 512K and batch size to 64. Panels with R↵=0.5

in their titles present the Rényi-based MI with ↵ = 0.5 whereas the rest of the methods estimate the
standard MI (i.e., the KL divergence). In each panel, the true values are shown as a step function (black
line). The correlation coefficient of the Gaussian, ⇢, for each step is: 0.3084, 0.4257, 0.5091, 0.5741,
0.6273 and 0.6717. The running estimates per minibatch are displayed as shadow blue curves. The dark
blue curves shows the moving average of the estimated MI, with a bandwidth equal to 200 steps.

5.7 Real Data Applications

5.7.1 Detecting Rare Biological Sub-Populations

Using the dataset from [LSB+15], we test the efficacy of DNE-VP� in discriminating cell populations
which are contaminated with a rare sub-population with distinguishable statistical properties. Specifically,
we consider single-cell mass cytometry measurements on 16 bone marrow protein markers2 (i.e., d = 16)
coming from healthy and diseased individuals with acute myeloid leukemia. For each run we created
three subsets of healthy samples with sample size N = 20K which we denote by P and one dataset as a
mixture of 99% healthy and 1% diseased samples which is denoted by Q. Notice that the actual number
of diseased samples is only 200 thus it is considered as a rare sub-population.

For Rényi divergence with ↵ = 0.5 (left panels in Figure 5.3), both DNE and DNE-VP� are stable.
Despite the improvement in the separation of the two histograms, the observed variance reduction of
DNE-VP� is minimal and not enough to discriminate between the healthy and the contaminated with 1%
diseased samples distributions. When considering Rényi divergence with ↵ = 1.1, we observe that DNE
fails to produce stable estimates. In contrast, DNE-VP� always computes stable estimates. Additionally,
the two histograms are satisfactorily separated, implying that larger values of ↵ are crucial, provided there
is a way to handle the statistical variance. For completeness, Table 5.1 reports the first and second order
statistics of the histograms shown in Figure 5.3.

2Data was accessed from https://community.cytobank.org/cytobank/experiments/46098/
illustrations/121588

https://%20community.cytobank.org/cytobank/experiments/46098/illustrations/121588
https://%20community.cytobank.org/cytobank/experiments/46098/illustrations/121588
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Figure 5.3: Comparison of DNE and DNE-VP� estimators for Rényi divergence on biological data. The
histograms of the estimated divergence value are constructed from 100 i.i.d. runs between datasets of
N = 20K samples each. Healthy dataset’s distribution is denoted by P whereas healthy + 1% diseased
dataset’s by Q. Left column: Rényi divergence with ↵ = 0.5. Neither DNE nor DNE-VP� are able to
discriminate between the healthy and the 1% contaminated dataset. Right column: Rényi divergence with
↵ = 1.1. For this ↵ value, VP is compulsory for a stable estimation of Rényi divergence. Furthermore, we
are able to discriminate between healthy and 1% contaminated distributions with high accuracy (87.5%).

Table 5.1: Mean values and standard deviation for the histograms shown in Figure 5.3.

DNE DNE-VP�=0.1

mean std mean std
R↵=0.5(P ||P ) 0.0765 0.0066 0.0695 0.0053
R↵=0.5(Q||P ) 0.0789 0.0039 0.0720 0.0036
R↵=1.1(P ||P ) 676 515 0.0890 0.0089
R↵=1.1(Q||P ) 1445 1165 0.1000 0.0120



Part III

Speech Synthesis





Chapter 6

Introduction

Human speech is a vital aspect of communication, encompassing more than conveying informa-
tion—it’s a way we express emotions, connect with others, and make conversations rich and meaning-
ful. Speech involves not just words but also tone, pitch, speed, and rhythm, facilitating the sharing of
knowledge and emotions. Speech synthesis applications take on an increasingly crucial role. By harness-
ing the nuances of human speech, these technologies can offer more natural and empathetic interactions.
Speech synthesis has a diverse range of applications that are continually evolving. Voice conversion (VC)
is a transformative technology that transcends the boundaries of speech synthesis and speech recognition.
It focuses on altering the characteristics of a speaker’s speech while retaining the linguistic content and
message. Essentially, voice conversion allows one person’s speech to be transformed into the speech of
another. On the other hand, Text-to-speech (TTS) systems facilitate the conversion of written text into
spoken words, and in the realm of virtual assistants and chatbots, TTS empowers these digital entities to
comprehend text inputs and respond with spoken outputs, making interactions more natural and intuitive.

All such speech synthesis contributes to accessibility by enabling screen readers to deliver informa-
tion in a manner that preserves emotional depth and interpersonal connections. This empowers individuals
with visual impairments to engage with digital content on a more profound level. This technology bridges
the gap between human communication and machines, ensuring that information is accessible and in-
teractions are seamless for a wide array of users and contexts. In entertainment and gaming, speech
synthesis brings characters to life, infusing them with distinct voices and emotions, thereby enhancing the
authenticity of the experience for players. Furthermore, in language learning applications, it assists learn-
ers in achieving mastery of pronunciation and verbal expression, contributing significantly to effective
language acquisition and communication skills development. Language learners find such speech synthe-
sis systems invaluable for honing accurate pronunciation and enabling consistent language practice. In
essence, speech synthesis stands as a testament to human creativity, forging a connection between people
and machines by allowing technology to communicate in a way that closely resembles the natural and
nuanced aspects of human speech. This innovation goes beyond mere information transfer; it replicates
the emotional richness and interpersonal bonds intrinsic to human language.

In the ever-advancing landscape of technology, it’s crucial to recognize that speech synthesis goes
beyond merely relaying information; it plays a pivotal role in preserving the core elements of human
communication. It acts as a bridge, seamlessly connecting technology with the nuances of human ex-
pression and connection. This underscores the importance of embracing these technological strides with
empathy, understanding, and inclusivity as guiding principles. In doing so, we ensure that as we har-
ness these innovations, they remain true to the essence of human interaction and contribute to a more
harmonious and interconnected world.
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6.1 Voice Conversion

Voice conversion (VC) is a subset of speech synthesis, focused on altering one’s voice to mimic
another’s characteristics without changing the content. It plays a crucial role in applications involving
voice transformation, emotion, and accent modulation.

Most of the traditional voice conversion techniques assume the availability of parallel training data,
meaning paired utterances of the same linguistic content spoken by both the source and target speakers.
Voice conversion research began in the late 1980s and has since been categorized into parametric and
non-parametric mapping techniques. Parametric techniques, such as Gaussian mixture models (GMM)
[SCM98b] and Dynamic Kernel Partial Least Square Regression [GSA+15], involve assumptions about
the statistical distributions of speech features and their mapping. Non-parametric approaches, like vector
quantization [ANSK90] and fuzzy vector quantization [SNA91], are less reliant on assumptions and strive
to find the best mapping function while retaining the capacity to generalize to unseen data.

Conventional voice conversion faces challenges due to limited training data, but deep learning lever-
ages large datasets effectively. Neural vocoders can handle low-level detail, while general-purpose acous-
tic models handle phonetic systems. Deep learning shifts the analysis-mapping-reconstruction pipeline,
introducing embeddings for speech content and speaker identity. This aids disentanglement and addresses
issues in parallel and non-parallel data voice conversion, pushing voice conversion research forward.
Early DNN-based voice conversion focused on spectral transformation, offering non-linear mapping and
feature dimension flexibility. Conversion of other features like fundamental frequency and energy contour
was also explored [DRY+09, MK14]. DNNs mapped spectral representations between source and target
speakers, and DBNs extracted latent features [NTTA13, CLLD14b]. Deep autoencoders and layer-wise
generative training extended these ideas. LSTM networks improved temporal correlations, especially with
bidirectional LSTM (BLSTM) networks. Deep BLSTM networks outperformed DNNs, even without dy-
namic features, leading to high-quality synthesized voice [NTA14a, HS97].

The attention mechanism [BCB14, VSP+17] revolutionized neural networks. Initially applied in ma-
chine translation [BCB14], speech recognition [CJLV16], and sequence-to-sequence speech synthesis
[WSRS+17, PPG+17, TUA18], it spurred research in voice conversion. This mechanism enables net-
works to learn feature mapping and alignment simultaneously during training, eliminating the need for a
frame-aligner at runtime. Variations like sequence-to-sequence conversion network (SCENT) [ZLL+19]
and AttS2S-VC [TKKH19] are based on recurrent neural networks, employing the encoder-decoder with
attention architecture [CVMG+14, LPM15]. CycleGAN, founded on adversarial learning, employs a
generative model in a min-max game with two neural networks: generator and discriminator. It excels in
tasks with unpaired training data, such as image manipulation and synthesis [ZPIE17, ZZP+17], speech
enhancement [MLG+18] and speech recognition [MSK17]. Adversarial training effectively addresses
the over-smoothing problem, a major contributor to speech-quality degradation. Recently, CycleGAN-
VC2, an enhanced version, was introduced [MSK17], featuring improved objectives (two-step adversarial
losses), a better generator (2-1-2D CNN), and an enhanced discriminator (PatchGAN). CycleGAN finds
applications in mono-lingual [TWH+19], cross-lingual voice conversion [SZDL19], emotional voice con-
version [ZSL20], and rhythm-flexible voice conversion [YHC+18].

The VAE-based voice conversion framework [HHW+16], operates with a decoder that reconstructs
utterances based on a latent code from the encoder and a separate speaker code. This speaker code can
be an one-hot vector [HHW+16] for a closed set of speakers, or alternative representations like i-vectors
[DKD+10], bottleneck speaker representations [LLY+18], or d-vectors [SINT18] for open sets of speak-
ers. Conditioning the decoder on speaker identity compels the encoder to capture speaker-independent
information from a multi-speaker database using the latent code. However, VAE decoders tend to produce
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overly smoothed speech, potentially resulting in low-quality, buzzy-sounding output. To address this,
GANs [GPAM+14] were introduced as a solution to the over-smoothing issue [KKHK17]. GANs offer a
general framework where a data generator is trained to deceive a discriminator that distinguishes real from
fake data produced by the generator. By integrating the GAN concept into VAE, VAE-GAN has been em-
ployed in voice conversion with non-parallel training data [HHW+17] and cross-lingual voice conversion
[SZDL19], yielding more natural-sounding speech compared to standard VAE methods. Recent research
on non-parallel voice conversion using sequence-to-sequence models [LCK+20] has demonstrated the
possibility of explicitly modelling the transfer of other speech aspects, including source rhythm, speaking
style, and emotion, to the target speech.

6.2 Text to Speech Synthesis

6.2.1 Deep Learning based Speech Synthesis

In response to these challenges, modern deep learning-based approaches have surged to prominence.
These methods leverage extensive datasets and advanced neural networks, showcasing their effectiveness
in capturing the intricate nuances of human speech. This has led to the production of synthetic speech
that is more natural and fluent. Despite these advancements, some elusive aspects of human speech re-
main challenging to replicate using traditional synthesis methods. In recent years, the application of deep
learning to speech synthesis has witnessed a remarkable surge in interest and development, representing
a significant paradigm shift in the field. Deep learning, a subset of machine learning, employs artificial
neural networks inspired by the human brain to learn patterns and representations from data automati-
cally. These neural networks, consisting of multiple interconnected layers, have showcased exceptional
capabilities in various domains, including image recognition, natural language processing, and, notably,
speech synthesis.

Deep learning-based speech synthesis systems have proven to be exceptionally effective and have
gained substantial traction in commercial products and applications. The reason behind their success lies
in their remarkable ability to capture the subtleties and complexities of human speech. Here’s how deep
learning achieves this:

Learning from Large Datasets: One of the key strengths of deep learning is its capability to learn
from massive datasets. In the context of speech synthesis, this means training neural networks on extensive
collections of recorded human speech. The vast amount of data enables these systems to grasp the intricate
patterns that define human speech, such as intonation (the rise and fall of voice that conveys meaning),
rhythm (the pattern of stressed and unstressed syllables), and timbre (the unique quality of a person’s
voice).

Hierarchical Representation: Deep neural networks employ a hierarchical approach to feature ex-
traction, where each layer learns progressively more abstract representations of the input data. In speech
synthesis, this hierarchical representation allows the model to capture both the fundamental phonetic ele-
ments and the higher-level characteristics that make speech sound natural and expressive.

End-to-End Learning: Deep learning systems can be designed for end-to-end learning, where they
directly map text input to speech output. This contrasts with traditional speech synthesis methods that
involve multiple intermediate steps, such as text-to-phoneme conversion and phoneme-to-speech wave
generation. End-to-end models can learn complex mappings directly from data, simplifying the synthesis
process.



100 Improving Generative Adversarial Networks and its Applications in Speech Synthesis

Adaptive and Context-Aware: Deep learning models are highly adaptive and context-aware. They
can adjust their output based on the input text and context, capturing the fine-grained variations in speech
that convey emotions, emphasis, and meaning.

Advanced deep learning techniques have created a transformative era for speech synthesis, pushing
the boundaries of what’s possible and delivering remarkably natural and fluent synthetic speech. These
cutting-edge technologies are having a profound impact across a spectrum of applications.

Restricted Boltzmann machines (RBMs): In recent years, restricted Boltzmann machines (RBMs)
[LDY13] have found extensive use in modelling speech signals for various applications, including speech
recognition, spectrogram coding, and acoustic-articulatory inversion mapping. RBMs are often employed
for pre-training deep auto-encoders (DAEs) [DSY+10] or deep neural networks (DNNs) in these con-
texts. In speech synthesis, RBMs serve as density models for generating spectral envelopes of acous-
tic parameters, addressing issues like over smoothing in HMM-based synthesis. After training HMMs,
state alignments are performed, and RBMs estimate parameters through maximum likelihood estimation
(MLE). RBM-HMMs are then constructed to model spectral envelopes. In synthesis, the optimal spectral
envelope sequence is estimated based on input sentences and trained RBM-HMMs. While this method im-
proves subjective evaluation results and spectral envelope accuracy compared to traditional HMM-GMM
systems, it still struggles with data fragmentation issues inherent to the traditional HMM-based method.

Deep Recurrent Neural Networks (RNNs): In [GS05], the authors presented a modelling approach
based on recurrent neural networks (RNNs), leveraging the advantage of RNNs in utilizing context in-
formation for input-output mapping. However, traditional RNNs have limitations in accessing extensive
context due to issues like vanishing or exploding gradients and difficulty in learning long-term depen-
dencies. To overcome these challenges, [GFGS06] introduced a memory cell and introduced the long
short-term memory (LSTM) model, which has become a popular choice. For effective utilization of
contextual information, bidirectional LSTM is commonly employed to map input linguistic features to
acoustic features.

Convolutional Neural Networks (CNNs): Originally developed for image processing, CNNs have
found a second home in the field of speech synthesis. Their adaptability extends to various purposes
within this domain, such as feature extraction from spectrograms, which are graphical representations of
the acoustic properties of speech. CNNs excel at capturing local patterns, which proves invaluable in im-
proving the quality of synthesized speech by identifying and extracting pertinent acoustic features. They
are often deployed in conjunction with other neural network architectures, contributing to the robustness
and naturalness of the generated speech. Unlike the WaveNet model, which serves as a vocoder or back-
end, [TUA18] primarily functions as a front-end (along with much of the back-end processing) capable of
synthesizing spectrograms. Moreover, in [PPG+17], a novel fully-convolutional character-to-spectrogram
architecture called Deep Voice 3 was introduced for speech synthesis, enabling fully parallel computation
and faster training compared to models relying on recurrent units.

Transformer-based speech Synthesis: Transformer-based models have significantly advanced the
field of speech synthesis in recent years. The introduction of the Transformer architecture, originally
developed for machine translation tasks, has brought about notable improvements in the quality and effi-
ciency of speech synthesis. Transformer TTS [LLL+19] incorporates a multi-head self-attention mech-
anism into both the encoder and decoder components of the speech synthesis model. By doing so, they
enable the simultaneous construction of hidden states in a parallel fashion, which leads to significant
enhancements in training efficiency. FastSpeech [RRT+19] is a feed-forward network for parallel mel-
spectrogram generation that extracts attention alignments from a teacher model for phoneme duration
prediction and uses a length regulator to align the source phoneme sequence with the mel-spectrogram
sequence. Whereas, FastSpeech 2 [RHQ+20] is designed to overcome the challenges encountered in Fast-
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Speech and provide an improved solution for the one-to-many mapping problem in TTS. It achieves this
by training the model directly using ground-truth targets instead of simplified teacher-generated outputs
and incorporating additional variation information such as pitch, energy, and more precise duration as
conditional inputs.

Sequence-to-Sequence Speech Synthesis: Sequence-to-sequence (seq2seq) neural networks have
proven highly versatile, capable of transducing input sequences into output sequences of varying lengths.
These networks have found applications in diverse fields, including machine translation, speech recogni-
tion, and image caption generation, consistently delivering promising results. Given that speech synthesis
is essentially the reverse process of speech recognition, seq2seq modelling techniques have gained traction
in this domain as well. For instance, researchers have utilized content-based attention structures to model
acoustic features for speech synthesis, as seen in [WXX+16]. Another example is Char2Wav [SMK+17],
which employs location-based attention to construct an encoder-decoder acoustic model. However, cur-
rent seq2seq models still grapple with stability issues related to missing or repeating phones. To address
this, a forward attention approach for seq2seq acoustic modelling in speech synthesis has been proposed,
as discussed in [ZLD18]. The highly acclaimed Tacotron model, also based on seq2seq architecture with
an attention mechanism, has been introduced for mapping input text to mel-spectrograms, representing a
significant advancement in speech synthesis.

End-to-End Speech Synthesis: TTS systems traditionally comprise a text analysis front-end, an
acoustic model, and a speech synthesizer, each trained separately, which can introduce errors that accu-
mulate across these components. To tackle this issue, the field of speech synthesis has seen the rise of
end-to-end methods that unify these components into a single framework. End-to-end TTS systems offer
several advantages: (1) they can be trained on a large dataset of ¡text, speech¿ pairs with minimal human
annotation; (2) they eliminate the need for phoneme-level alignment; and (3) errors do not compound
since they rely on a single model.

Notable architectures like Tacotron, WaveNet and WaveRNN have fundamentally altered the land-
scape. WaveNet [vdODZ+16], an evolution of the PixelCNN [vdOKE+16] and PixelRNN [VOKK16]
models initially employed in image generation, represents a significant breakthrough in the realm of raw
audio waveform generation. Introduced by Deepmind in 2016, this model has paved the way for end-to-
end speech synthesis. WaveNet stands out for its capacity to produce relatively realistic and human-like
voices directly from waveform data trained on real speech recordings. It operates as a complete proba-
bilistic autoregressive model, predicting the probability distribution of the current audio sample based on
all preceding samples. A crucial element of WaveNet is the use of dilated causal convolutions, which en-
sure that the model can only consider the sampling points from 0 to t� 1 when generating the tts sample.
This innovation has played a pivotal role in WaveNet’s ability to generate high-quality audio waveforms.
The original WaveNet model operates using autoregressive connections, enabling it to synthesize audio
waveforms sequentially, one sample at a time. This process conditions the generation of each new sam-
ple on the preceding samples. The joint probability of a waveform X , denoted as x1, x2, ..., xT , can be
factorized as follows:

p(X) =
Y

p(xi+1|x1, x2, . . . , xi)

Where T represents the total number of samples in the waveform. This factorization breaks down
the probability of the entire waveform into a product of conditional probabilities for each sample in the
sequence, with each sample being dependent on the previous ones. While the original WaveNet paper
primarily focuses on its use in TTS systems, there is also the possibility of employing the WaveNet archi-
tecture as a statistical vocoder. In this scenario, the generation of speech waveforms is locally conditioned
solely by acoustic features [ATS18].
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The WaveNet model, while capable of producing high-quality audio, face inherent challenges: first,
it’s slow processing, as each sampling point’s prediction relies on preceding ones; and second, its depen-
dence on linguistic features from a text-to-speech (TTS) front-end, rendering it vulnerable to errors in text
analysis. To tackle these issues, the parallel WaveNet was introduced, significantly boosting sampling
efficiency and generating high-fidelity speech samples over 20 times faster [OLB+18a]. Additionally, the
neural model Deep Voice [ACC+17] emerged as an alternative, replacing each TTS component with a
corresponding neural network. However, it falls short of true end-to-end synthesis as its components are
trained independently.

Tacotron [WSRS+17] is a fully end-to-end speech synthesis model that has revolutionized the field
by enabling the training of speech synthesis models directly from < text, audio > pairs, eliminating
the need for labor-intensive feature engineering. One of its remarkable features is its applicability to a
wide range of languages, including Chinese Mandarin, as it operates at the character level. Tacotron
utilizes a sequence-to-sequence (seq2seq) model with an attention mechanism to convert text into a mel-
spectrogram, a robust representation of speech. While mel-spectrograms lack phase information crucial
for audio reconstruction, Tacotron employs the Griffin–Lim algorithm [GL84] to iteratively estimate this
phase information from the spectrogram during audio reconstruction. Tacotron’s end-to-end nature has
garnered significant research attention, leading to several improved versions and open-source clones that
reproduce speech quality akin to the original work. Some researchers have incorporated deep generative
models like Variational Auto-encoders (VAE) [KW13] into Tacotron to explicitly model speaker states and
control speaking styles. Additionally, there are hybrid systems that combine Tacotron and WaveNet for
speech synthesis, such as Deep Voice 2 [GAD+17], which employs Tacotron to transform text into a linear
scale spectrogram and then uses WaveNet to generate speech. Tacotron2 [SPW+18], another notable
system, has achieved high mean opinion scores (MOS) comparable to human speech by unifying a seq2seq
Tacotron-style model for mel-spectrogram generation with a WaveNet vocoder for speech synthesis.

WaveRNN [KES+18] vocoder represents a groundbreaking advancement in the domain of text-to-
speech (TTS) synthesis, characterized by its intricate neural network architecture and impressive wave-
form generation capabilities from mel spectrograms. At its core, WaveRNN employs a combination of
recurrent neural networks (RNNs), particularly long short-term memory (LSTM) or gated recurrent unit
(GRU) cells, with autoregressive generative models. This fusion of techniques allows it to tackle the chal-
lenging task of generating high-quality speech waveforms directly from textual input. What distinguishes
WaveRNN from conventional TTS models is its ability to model the conditional probability distribution
of audio waveforms, given the input text and context. By adopting a fully autoregressive approach, Wa-
veRNN generates audio samples one at a time, conditioning each sample on the previously generated
ones. This autoregressive process inherently captures the temporal dependencies and fine-grained details
essential for natural speech, including pitch variations, phonetic nuances, and prosodic features.

GAN-based vocoders represent a significant advancement in speech synthesis, often surpassing au-
toregressive models in terms of both speed and speech quality. These vocoders leverage the principles
of Generative Adversarial Networks (GANs) [GPM+14] to generate speech waveforms. GAN-based
vocoders typically consist of a generator network responsible for modelling the waveform signal in the
time domain and a discriminator network to evaluate and enhance the quality of the generated speech. Two
notable models in this category are MelGAN and Parallel WaveGAN. MelGAN [KKdB+19] adopts the
standard GAN architecture for rapid waveform generation. It utilizes a fully convolutional model for high-
quality Mel-Spectrogram inversion. With fewer parameters compared to autoregressive models, MelGAN
achieves a higher real-time factor on both GPU and CPU, all without requiring hardware-specific opti-
mization. On the other hand, Parallel WaveGAN [YSK20] is a distillation-free, fast, and compact model
designed for waveform synthesis. This architecture optimizes both the waveform-domain adversarial loss
and the multi-resolution short-time Fourier transform (STFT) loss, offering a compelling balance between
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synthesis speed and speech quality. These GAN-based vocoders represent cutting-edge innovations in the
field of speech synthesis, promising improved efficiency and performance.

Diffusion probabilistic models introduce a unique approach to generative models, consisting of two
fundamental processes: the diffusion process and the reverse process [HJA20]. In the diffusion process,
a Markov chain gradually introduces Gaussian noise to the original signal until it becomes degraded.
Conversely, the reverse process is a denoising procedure that progressively eliminates the added Gaus-
sian noise, ultimately restoring the original signal. Within our study, we explore two diffusion-based
vocoders: WaveGrad and DiffWave. WaveGrad [CZZ+20] draws inspiration from prior work on score
matching and diffusion probabilistic models. This model takes white Gaussian noise as input and, condi-
tioned on the Mel-Spectrogram, iteratively refines the signal using a gradient-based sampling technique.
DiffWave [KPH+20] is a versatile diffusion probabilistic model designed for waveform synthesis, show-
casing robust performance in both conditional and unconditional scenarios. It operates by employing
white Gaussian noise as input, initiating a Markov chain process with a fixed number of steps to generate
a structured waveform progressively. The model’s training objective focuses on optimizing a variation of
the variational bound on the data likelihood. These diffusion-based vocoders represent a novel direction
in speech synthesis, offering intriguing possibilities for generating high-quality speech waveforms.

These state-of-the-art techniques represent a seismic shift in speech synthesis, offering an unprece-
dented level of naturalness and fluency in synthetic speech. They are revolutionizing not only TTS systems
but also applications across diverse domains where lifelike speech generation is crucial. As technology
continues to advance, we can anticipate even more refined and natural synthetic speech, further blurring
the line between machine-generated and human-generated voices. As technology continues to evolve,
deep learning-based speech synthesis is expected to advance further, with models becoming even more
natural-sounding and capable of accommodating a broader range of linguistic nuances and languages.
This transformative shift is reshaping the landscape of human-computer interaction and communication,
with profound implications for accessibility, entertainment, education, and beyond.

6.3 Intelligible Speech Synthesis

The significant progress in speech synthesis over the past decade has created opportunities to enhance
real-world speech communication, but the challenge of background noise remains critical. Speech intel-
ligibility, denoting the extent to which spoken content is understandable, is vital in various contexts, from
emergency alerts to human-machine interactions. Conversely, speech quality gauges how natural and en-
gaging speech sounds, impacting user satisfaction in applications like virtual assistants and entertainment
systems. The presence of background noise poses substantial challenges, distorting speech signals and
diminishing both intelligibility and quality. Novel human assistive devices, such as hearing aids and voice
assistants, depend on clear and natural speech, making it imperative to ensure their effectiveness in noisy
environments. Thus, harnessing neural models to address noise-related issues in preserving speech quality
and intelligibility is a key focus, holding promise for improved real-world communication experiences for
both humans and machines.

In a typical speech communication scenario, both the speaker (far-end) and the listener (near-end)
contend with the challenges posed by background noise. Speech processing models are designed with
the primary objective of effectively conveying the speaker’s message to the listener, even in the presence
of these disruptive noises. The noise that affects the speech acquisition at the speaker’s side is termed
”far-end noise,” given its spatial relation to the listener. Conversely, the noise at the listener’s end, which
impairs the listener’s perception of the speech, is referred to as ”near-end noise.” Although distortions
may arise during speech transmission between the two ends, this discussion predominantly focuses on the
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impact of ambient noise on speech quality and intelligibility, assuming an ideal transmission channel.

Efforts to enhance listeners’ speech intelligibility have historically involved the modification of speech
spectral and/or temporal structures before its presentation in challenging listening environments. This ap-
proach parallels observations in human speech, where individuals adjust their articulation when speaking
in noisy surroundings to mitigate the masking effect caused by background noise—an adaptation known
as the Lombard reflex [Jun96]. Lombard speech, characterized by a higher fundamental frequency, re-
duced speaking rate, and flatter spectral tilt compared to normal speech in quiet conditions, has proven
to be more intelligible to listeners in noisy environments, even after accounting for loudness variations
[CMV14, Jun96, BC20, CL12]. Consequently, it becomes evident that speech needs to adapt to the lis-
tening context to ensure its intelligibility to the interlocutor. Likewise, artificial modifications of speech
are essential in speech output devices to guarantee intelligibility across diverse operating conditions.



Chapter 7

Non-parallel Voice Conversion using
Weighted Generative Adversarial
Networks

7.1 Introduction

Speech, being the most convenient and effective mode of communication, has prompted significant in-
terest in man-machine interface research due to recent advancements in computer technology. Interacting
with computers through speech has been a longstanding goal, necessitating research in various domains.
In particular, speech recognition and speech synthesis are crucial techniques for emulating human com-
munication with accuracy and naturalness.

The process of producing speech begins with the expulsion of air from the lungs, followed by its
passage through the trachea, larynx, and ultimately into the vocal tract. Voiced sounds are generated
when the airflow reaches the glottis, causing the vocal folds to vibrate and produce a quasi-periodic puff-
like sound source. This source signal consists of harmonics, which are different frequencies present in the
periodic waveform. Conversely, unvoiced sounds are created when the vocal folds do not vibrate, and the
airflow through the glottis becomes turbulent, resembling random noise. By considering the source-filter
model of speech production, we can perceive the source signal as the airflow waveform originating from
the vocal folds. Simultaneously, the physical vocal tract can be viewed as a filter that modifies the spectral
characteristics of the source signal. Comprising the pharynx, oral cavity, and nasal cavity, the vocal tract
possesses varying cross-sectional areas corresponding to the articulators’ positions.

A speech signal contains both linguistic and para-linguistic information, each conveying distinct as-
pects. Linguistic information pertains to language-specific or dialect-related characteristics, while para-
linguistic information encompasses speaker timbre and prosody. Thus, speech encompasses more than
just the words spoken and carries additional details such as the emotion, attitude, and individuality of the
speaker. Speaker identity, in particular, can be characterized by the following factors:

Linguistic factors: These factors are inherent in the spoken utterance of a speaker. Speaker identity
is influenced by the speaker’s language or dialect, specific terminology, and individual lexicon patterns.
These linguistic characteristics are often shaped by factors such as place of birth, social status, family
background, and community affiliations.
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Supra-segmental factors: Supra-segmental features refer to prosodic characteristics that contribute
to speaker identity. They include the duration of phonemes, syllables, and words, as well as aspects such
as fundamental frequency (pitch contour), rhythm, duration and placement of pauses, tone, etc.

Segmental factors: Segmental acoustic descriptors play a significant role in speaker identity. These
factors involve short-term features such as the spectrum, formants (resonant frequencies of the vocal tract),
and the shape of the glottal excitation pulse.

Together, these linguistic, supra-segmental, and segmental factors contribute to the holistic under-
standing and recognition of speaker identity.

Speech synthesis is the process of artificially generating human-like speech. This thesis’s specific area
of focus is voice conversion (VC), which falls under the umbrella of speech synthesis. VC systems aim to
transform an utterance spoken by a source speaker into a different target speaker’s perceived voice while
preserving the original utterance’s linguistic content.

In VC, the desired conversion factors pertaining to speaker identity include supra-segmental and seg-
mental acoustic features within a fixed linguistic context. However, due to their relatively easier extraction
and modelling, as well as their rich speaker characteristics, this thesis primarily focuses on segmental-
level conversion, specifically spectral mapping. The conversion of supra-segmental level factors, which
encompass prosodic characteristics associated with speaker identity, falls outside the scope of this thesis
and remains a challenging task to be addressed in future research.

Voiced sound exhibits periodicity, corresponding to the opening and closing of the vocal folds. The
closed phase of the vocal folds is when they are shut, while the open phase is when they are apart. The
duration of a complete glottal cycle determines the pitch period of the resulting speech signal, and its
inverse is known as the fundamental frequency. The pitch frequency (F0) represents the rate at which the
vocal folds vibrate and is influenced by physical factors such as vocal fold elasticity and mass. Typically,
male speakers have a lower pitch frequency range (60-150 Hz) compared to female speakers (200-400
Hz). The peaks in the spectral envelope, known as formants, represent vocal tract resonances. The human
vocal tract is a tube excited at one end during voiced speech production. The resonant frequencies of
this tube correspond to the formants in speech. Formant frequencies provide a concise representation of
the time-varying speech signal. The vocal cords’ fundamental frequency (F0) and the first four formant
frequencies (F1-F4) of the vocal tract play a crucial role in characterizing a speaker’s identity.

In contrast, unvoiced sounds occur when the vocal folds do not vibrate. The airflow becomes tur-
bulent either through the glottis or constrictions formed by the articulators. Here, the speech waveform
lacks periodicity and appears random. The spectrum does not exhibit harmonic structure, and the spectral
envelope differs from that of voiced speech. As mentioned earlier, the speech signal listeners perceive
results from filtering the glottal flow wave through the vocal tract. The positions of the articulators deter-
mine the shape of the vocal tract. Speakers control the articulator positions to produce specific phonemes.
However, the vocal folds and oral and nasal cavities differ among speakers, leading to distinct speech
waveforms even when the same phonetic content is uttered.

In summary, speaker individuality is characterized by a combination of factors, including segmental
and supra-segmental aspects, with each factor exerting varying influence depending on the speaker. From
the perspective of speech perception, fundamental frequency and formants carry essential information for
speaker identification. Voice conversion, which aims to represent speaker individuality using a reduced
number of parameters, confirms the suitability of these features.

Voice conversion technology finds applications in various domains. For instance, it can be uti-
lized to customize text-to-speech (TTS) systems. TTS involves converting written text into speech sig-
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nals. Corpus-based TTS, which produces high-quality synthetic speech, requires a substantial amount of
recorded speech data from a specific speaker. The process of recording and processing such data to build
a personalized TTS system is costly and time-consuming. In this context, VC provides an economical
and efficient solution for creating new voices for TTS by utilizing a limited amount of data to convert the
voice of the source speaker (a TTS system) to that of the target speaker. Additionally, VC technology
is applicable in other domains such as automatic speech-to-speech translation, voice dubbing, education,
speaking aids, and entertainment [KM98b, NTSS12, TNS12, EB08]. Presently, VC methods are also
employed in investigating vulnerabilities associated with automatic speaker verification (ASV) systems.

Voice conversion can be formulated as a regression problem of estimating a mapping function from
source to target speech. A large number of popular statistical approaches like linear multivariate re-
gression (LMR) [VMT92], Gaussian mixture model (GMM) [SCM98a], joint density GMM (JD-GMM)
[KM98a] were introduced more than two decades ago which proved quite successful. Over the time, sev-
eral non-linear spectral mapping techniques based on restricted Boltzmann machine (RBM) [NTA14b],
feed-forward deep neural networks (DNNs) [DBYP10, CLLD14a], recurrent DNNs [SKLM15] and non-
negative matrix factorization (NMF) [WVCL14] have also been proposed. However, most of these con-
ventional VC methods require aligned parallel source and target speech data for training. In many sce-
narios, it is troublesome to collect parallel utterances. Even when parallel data is accessible, the required
alignment procedures introduce artefacts and lead to speech-quality degradation. Numerous attempts have
been made to overcome these limitations to develop non-parallel VC methods. Sequence-to-sequence
(Seq2Seq) learning has proved to be outstanding at various research tasks and was successfully adopted
in VC [MSTS17, ZLL+19, TKKH18]. Seq2Seq VCs mainly use multiple modules such as Automatic
speech recognition (ASR) and TTS, which are trainable with pairs of speech and its transcript rather than
the source-target speech. These approaches convert both acoustic features and the duration of the source
speech. Nonetheless, these techniques consist of several training procedures, and they are expensive in
terms of both external data and computation.

Conditional variational autoencoders (CVAEs) approach were recently adopted for VC [HHW+16,
SINT18]. CVAEs are an extended version of variational autoencoders where the encoder and decoder
networks can take additional auxiliary input variables. The VC has experienced significant improvements
following the introduction of generative adversarial networks (GANs). The VAE-GAN framework is an
alternate approach for non-parallel VC that overcomes the weakness of VAEs [HHW+17]. Furthermore,
a variation of GANs named cycle-consistent GAN (CycleGAN) was presented in [KK17]. CycleGAN
utilizes a frame-by-frame approach, which is designed to learn forward and inverse mappings simulta-
neously using an adversarial loss and cycle-consistency loss. One of the drawbacks of CycleGAN-VC
is the ability to learn only one-to-one mappings. To resolve this issue, Star generative adversarial net-
work based VC (StarGAN-VC) was recently introduced [KKTH18], which was originally proposed as a
method for simultaneously learning images among multiple domains [CCK+18]. It possesses a unified
model architecture which allows simultaneous training of multiple domains, i.e., many-to-many mapping
within a single network.

Even though a significant amount of research has been provided in the literature for non-parallel meth-
ods, generating high-quality audio quality is still very challenging and has room for improvement. This
chapter extends the work of StarGAN-VC and proposes a novel training algorithm inspired by Weighted
GAN (WeGAN) [PPFSed]. Furthermore, the existing StarGAN-VC utilizes three loss functions. How-
ever, it lacks stable training, which can be overcome by Wasserstein GANs with gradient penalty (WGAN-
GP) [GAA+17b]. Our proposed approach introduces a new and effective weight factor for WGAN-GP.
The proposed Weighted StarGAN (WeStarGAN) algorithm improves the training of the Generator by
transferring ideas from Game Theory. The new algorithm puts more weight on generated samples whose
data distribution is closer to the real samples and is more likely to fool the Discriminator. Simultaneously,
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it reduces the weights of generated samples that are confidently discriminated against as fake. By doing
so, WeStarGAN enhances the robustness of the weak Generator by adding weights to the training process,
and we expect that the inferred Generator will be stronger, favourably affecting the convergence proper-
ties. Experimental results based on subjective performance evaluation confirm that our proposed method
achieves better speaker similarity and perceptual speech quality than the baseline StarGAN-VC system.

7.2 GAN Architectures

7.2.1 Star Generative Adversarial Networks

Our proposed model is adapted from the StarGAN [CCK+18], which was proposed for multi-domain
image-to-image translation and slightly differs from the StarGAN-VC [KKTH18] in terms of both cost
functions and DNN architectures.

The objective is to train a single Generator G that learns mappings among multiple domains, i.e.,
many-to-many speaker conversion. To achieve this, we train G to convert the attribute of source x speaker
domain into target y speaker domain conditioned on the target domain label c, y0 = G(x, c). The target
domain label c is generated randomly so that G can learn the flexibility to transform the source speech.
An auxiliary classifier is introduced that allows the Discriminator to control multiple domains. Fig. 7.1
illustrates the training process of StarGAN-VC approach.

We applied three losses in the objective function, Adversarial Loss, Domain Classification Loss and
Reconstruction Loss.

Adversarial Loss: G generates fake data G(x, c) conditioned on both the source speaker’s data x and
the target domain label c, while D tries to distinguish between real and fake data. While training, G tries
to minimize this objective, while the Discriminator D tries to maximize it. Moreover, we implemented
Wasserstein GAN with gradient penalty [GAA+17b], which uses a penalty term in the loss and provides
strong performance and stability. The modified adversarial loss for D is defined as,

LD

adv-gp = Ex⇠psrc [�D(x)] + Ex⇠psrc,cD(G(x, c)) + �gpEx̂[(||rx̂D(x̂)||2 � 1)2], (7.1)

LG

adv
= �Ex⇠psrc,c[D(G(x, c))], (7.2)

Where x̂ is sampled uniformly along a straight line between a pair of real and generated data samples,
and �gp is a constant value.

Domain Classification Loss: An auxiliary classifier is implemented similar to D, which imposes the
domain classification loss while optimizing the cost function. Two loss terms are incorporated here:
domain classification loss of real speech data, which optimizes D, and a domain classification loss of fake
speech data, which optimizes G. The losses are as follows,

Lreal

cls
= Ex⇠psrc,c0 [� logDcls(c

0|x)], (7.3)

Lfake

cls
= Ex⇠psrc,c[� logDcls(c|G(x, c))], (7.4)

where Dcls(c0|x) represents a probability distribution of real data x over domain labels computed
by D. D learns to classify real data to its corresponding original domain c

0. Whereas Dcls(c|G(x, c))
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Figure 7.1: Overview of StarGAN (in black), consisting of two modules, a Discriminator D (identical neural network
architecture is used for Classifier except for the last convolutional layer) and a Generator G. The weights (in red) are
introduced during the training optimization process in our proposed algorithm.

represents the probability distribution of fake data G(x, c) over domain labels computed by D. G tries to
minimize this objective to generate data that will be classified as target domain c.

Reconstruction Loss: The adversarial and classification losses assist G to generate speech that is realistic
and can be classified to its correct target domain. However, this does not guarantee preserving the content
of the linguistic information while changing only the speaker domain-related information. To alleviate
this problem, a reconstruction loss is introduced to the Generator, defined as,

Lrec = Ex⇠psrc,c,c0 [||x�G(G(x, c), c0)||1], (7.5)

where G(x, c) is the generated data conditioned on x and the target domain label c and G(G(x, c), c0) is
reconstruct the original speech x which is conditioned on G(x, c) and the original domain label c0. We
applied L1 norm as a reconstruction loss.

The overall objective functions to be minimized with respect to G an D can be written as

LD = LD

adv-gp + �clsLreal

cls
, (7.6)

LG = LG

adv
+ �recLrec + �clsLfake

cls
, (7.7)

where �rec and �cls are the hyper-parameters for domain classification loss and reconstruction loss, re-
spectively.

7.2.2 Training StarGAN with Weights (WeStarGAN)

In [PPFSed], authors presented a training algorithm based on weights that improved the performance
of vanilla GANs. Instead of equally-weighted ’fake’ samples, a weight to each sample is assigned which
multiplies to the respective gradient term of the Generator. The weights are designed to impose more
strength on samples that fool the Discriminator and thus are closer to the real data. Intuitively, the
weighted algorithm puts more weight on fake samples that are more likely to fool the Discriminator and
simultaneously reduces the weight of samples that are confidently discriminated as fake. A theoretical
argument reveals that the optimal Generator with weights achieves a lower or equal loss value than the
optimal Generator with equally weighted samples for a fixed Discriminator. Hence, it is expected that the
inferred generator will be stronger and favourably affect both the point and the speed of convergence with
minor additional computational costs. The proposed algorithm is presented in Fig. 7.2.
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Algorithm 1

number of iterations k steps Sample {x1, . . . ,xm} from the source data distribution psrc(x).
Update the Discriminator to minimize the objective function:
1
m

P
m

i=1[�D(xi) +D(G(xi, c))]
� 1

m

P
m

i=1 �clslogDcls(c0|xi)
+ 1

m

P
m

i=1 �gp(||rx̂iD(x̂i)||2 � 1)2]
Sample {x1, . . . ,xm} from the source data distribution psrc(x).
Normalize:
D̄i = D(G(xi, c))� 1

2m [
P

m

j=1 D(xj) +D(G(xj, c))].
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Figure 7.2: Training algorithm of WeStarGAN. For a direct comparison with the StarGAN, we follow the formula-
tion of [KKTH18].

We extend the training algorithm to Wasserstein GANs with gradient penalty (WGAN-GP). In WGAN-
GP, the discriminator does not return the probability of a real sample but a continuous regression-type
value. Taking this fact into account, we uniformly scale the output of the Discriminator D(G(x, c)) based
on the output of the Discriminator conditioned on both real and fake data and translate the data around
the axis 0. The normalized output is then employed in the weight function. The proper weights for
WeStarGAN’s Generator are defined by

wi = e
⌘min(0,D̄i) (7.8)

where ⌘ corresponds to the hyper-parameter, which weighs the factor of the weight values. Note that the
normalized D̄i is only used to estimate the weights. We empirically set ⌘ = 0.1 for our experiments.

The choice for the weights is dictated by the fact that we focus on improving the Generator training by
putting more attention on the data that are closer to real distribution. Therefore, when the Discriminator
output is D̄i < 0, the weight decreases by an exponential factor. On the other hand, when D̄i > 0, Our
algorithm takes into account the samples which almost follow the real data distribution.

7.3 Experimental Setup

7.3.1 Experimental conditions

The experiments have been conducted with the CMU Arctic database [KB04a] that consists of speech
spoken by two male speakers (rms and bdl) and two female speakers (clb and slt) and are divided into
two subsets i.e., training and evaluation, without overlap. As there are four speakers involved in our ex-
periments, the attribute c is represented as a four-dimensional one-hot vector depending upon the target
speaker attribute. Although, the database contains parallel speech, we randomly select training data as our
system operates on non-parallel data, The sampling rate of the speech signals is 16 kHz. For each utter-
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Figure 7.3: Overview of StarGAN [KKTH18], consisting of two modules, a discriminator D and a generator G.
In the input and output layers, h, w, and ch represent height, width, and number of channels, respectively. In
each convolutional layer, k, c, and s denote kernel size, number of output channels and stride size, respectively.
“Conv”, “IN”, “ReLU”, “LReLU”, and “Deconv” denote convolution, instance normalization, rectified linear unit,
leaky rectified linear unit and transposed convolution, respectively. Dcls provides a probability distribution over
domain labels where the domain corresponds to the number of speakers used to train VC.

ance, 36 dimension mel-cepstral coefficients (MCCs), logarithmic fundamental frequency (logF0), and
aperiodicities (APs) were extracted for every 5 ms using the WORLD analyzer [MYO16]. The logF0 is
converted using the logarithm normalized transformation, and the aperiodicities are used directly without
any modification. Once the training process is completed, we use WORLD vocoder to generate speech
from converted features.

7.3.2 Network architectures

In the Generator, an acoustic feature sequence is inserted, and the output is an acoustic feature se-
quence of the same length. We normalize the source and target MCCs per dimension. The generator
network comprises three convolutional layers (conv), six residual blocks, three transposed convolutional
layers (Dconv), and seven conv layers, which are used for the discriminator. Whereas, in [KKTH18], five
conv layers and five Dconv layers are considered in the Generator, and two separate five conv layers are
used for Discriminator and Classifier networks. Instance normalization is used for the generator, but no
normalization is used for the discriminator. All models are trained using Adam optimizer with �1 = 0.5
and �2 = 0.999. The batch size is set to 32. The overview of network architecture is depicted in Fig 7.3.

7.4 Results and Discussion

In this section, we present the experimental results to evaluate the performance of voice-converted
speech samples. To assess the performance based on subjective evaluation experiments, we conducted lis-
tening tests for the speech quality (i.e., naturalness) and speaker similarity of the converted speech to the
target speech. Our proposed WeStarGAN-VC architecture was compared against the recently proposed
StarGAN-VC architecture. Two separate listening tests are reported, the ‘ABX’ and ‘AB’ tests. In the
‘ABX’ test, experimental subjects have to decide whether a given sentence ‘X’ is closer in vocal quality to
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Figure 7.4: Subjective preference test in (%) for speaker similarity and speech quality.

one of a pair of sentences ‘A’ and ‘B’, which are converted speech samples obtained with the proposed and
baseline methods, not necessarily in that order. Meanwhile, the ‘AB’ test compares the quality or natural-
ness of the converted speech. Fifteen native and non-native English listeners participated in our listening
tests. All the converted speech samples were presented randomly from the evaluation set. Furthermore,
the evaluation samples contain both intra-gender pairs and cross-gender pairs.

The evaluation results of the preference test are demonstrated in Fig. 7.4. The proposed WeStar-
GAN algorithm obtained the majority of preferences for best conversion in terms of sound quality and
speaker similarity. For speaker similarity, the result shows that 17% preferences were given to the ‘No
preference’ option, which indicates similar speaker characteristics in the speech samples generated using
both approaches. Nevertheless, the proposed method performs better with 65% preference. Moreover,
WeStarGAN significantly outperforms the baseline in generating good speech quality. The significant
improvement in speech quality might be attributed to the fact that weights are only multiplied by the fake
samples of the adversarial loss function, which generates real-like speech samples. On the contrary, no
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weights are introduced to the domain classification loss that is responsible for speaker mapping. We fi-
nally remark that WeStarGAN has the potential to be used for the training of lighter Generators which are
necessary in cases such as operating on mobile devices.

7.5 Conclusion

In this chapter, we proposed WeStarGAN, a novel algorithmic variation of StarGAN capable of per-
forming non-parallel multi-domain voice conversion tasks. With minor additional computational costs,
the suggested approach improved the training process by devising a stronger generator at each minibatch
iteration. This development is crucial because our approach can overcome the limitation of using a weaker
generator and still successfully train it to generate good-quality speech samples. In addition, we extended
the weighting approach to the more stable WGAN-GP model. The subjective evaluation revealed that the
proposed method obtained higher sound quality and speaker similarity than the baseline method.
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Chapter 8

Speaker Conditional WaveRNN:
Towards Universal Neural Vocoder for
Unseen Speaker and Recording
Conditions

8.1 Introduction

Speech synthesis has received attention in the research community as voice interaction systems have
been implemented in various applications, such as personalized Text-to-Speech (TTS) systems, voice
conversion, dialogue systems and navigations [Dut97, Tay09, SCM98b, PPS19]. In the past, conven-
tional statistical parametric speech synthesis (SPSS) exhibited high naturalness under best-case condi-
tions [ZTB09, Kin11]. Hybrid synthesis was also proposed as a way to take advantage of both SPSS and
unit-selection approach [QSY12, MCW+16]. Most of these TTS systems consist of two modules: the
first module converts textual information into acoustic features while the second one, i.e., the vocoder,
generates speech samples from the previously generated acoustic features.

Traditional vocoder approaches mostly involved source-filter models for the generation of speech pa-
rameters [MQ86, MC90, KMKDC99, MYO16]. The parameters were defined by voicing decisions, fun-
damental frequency (F0), spectral envelope or band aperiodicities. Algorithms like Griffin-Lim utilized
spectral representation to generate speech [GL84, PBS13]. However, the speech quality of such vocoders
was restricted by the inaccuracies in parameter estimation. Recently, the naturalness of vocoders has been
significantly improved by benefiting from the direct waveform modelling approach. Neural vocoders
like WaveNet utilize an autoregressive generative model that can reconstruct waveform from interme-
diate acoustic features [ODZ+16, THK+17]. To overcome the time complexity at inference, a parallel
wave generation approach was adopted to generate speech in real time [OLB+18b, PPC19]. Wave Recur-
rent Neural Networks (WaveRNN), which employs recurrent layers, increase sampling efficiency without
compromising their quality [KES+18]. In particular, introducing a gated recurrent unit (GRU) can re-
alise real-time high-quality synthesis. Although WaveRNN has been suggested to focus on text-to-speech
synthesis, our work exercises it as a vocoder while changing the conditioning criteria from linguistic in-
formation to acoustic information. Other recent works have been also found in literature, notable among
them are SampleRNN [MKG+17], WaveGlow [PVC19], LPCNet [VS19] and MelNet [VL19].
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Techniques in neural vocoders involve data-driven learning and are prone to specialize to the training
data which leads to poor generalization capabilities. Moreover, in multi-speaker scenarios, covering all
possible in-domain (or seen) and out-of-domain (or unseen) cases in the training database is practically
impossible. Previous studies also attempted to improve the adaptation capabilities of vocoders [SZL18],
either with or without providing speaker information [LLJ+18, HTK+17]. However, these studies did
not address the generalization capabilities for unseen out-of-domain data. In [LTDL+19], a potential
universal vocoder was introduced, claiming that speaker encoding is not essential to train a high-quality
neural vocoder.

Inspired by the performance and computational aspects of WaveRNN, we propose a novel approach for
designing a universal WaveRNN vocoder. The proposed universal vocoder-speaker conditional WaveRNN
(SC-WaveRNN) explores the effectiveness of explicit speaker information, i.e., speaker embeddings as a
condition and improves the quality of generated speech across the broadest possible range of speakers
without any adaptation or retraining. Even though conventional WaveRNN can model good temporal
structure for a single speaker, it fails to capture the dynamics of multiple speakers. We have experimen-
tally demonstrated that our proposed SC-WaveRNN overcomes such limitation by modelling temporal
structure from a large data variability, making it possible to generate high-quality synthetic voices. Our
work involves independent training of a speaker-discriminative neural encoder on a speaker verification
(SV) task using a state-of-the-art generalized end-to-end loss [WWPM18]. The SV model, trained on a
large amount of disjoint data, can attain robust speaker representations that are independent of channel
conditions and capture a large space of speaker characteristics. Coupling such speaker information with
speech synthesis training also reduces the need for ample high-quality multi-speaker training data. At the
same time, it increases the model’s ability to generalize. Experimental results based on both objective and
subjective evaluation confirm that the proposed method achieves better speaker similarity and perceptual
speech quality than baseline WaveRNN in both seen and unseen speakers.

In parallel with the above-mentioned studies on the universal vocoder, there has been substantial
development in multi-speaker TTS where the speaker encoder is jointly trained with TTS [CAS+18,
PZPP19]. These jointly trained speaker encoders lead to poor inference performance when applied to data
which are not included in the training dataset. Fine-tuning the pre-trained TTS model in combination with
speaker embeddings was addressed in [DHS18, HMW+19, ACP+18]. Such approaches always require
transcribed adaptation data and more computational time and resources to adapt to a new speaker. To
overcome this, TTS models can be adapted from a few seconds of the target speaker’s voice in a zero-
shot manner by solely using speaker embedding without retraining the entire model. [JZW+18, CCL+19,
CLY+20].

Unfortunately, limitations still exist and human-level naturalness is not achieved yet. Additionally,
prosody information was mismatched, especially for unseen speakers. To address those issues, we first
train a multi-speaker Tacotron, which is conditioned on the speaker embeddings obtained from the in-
dependently trained speaker encoder. Tacotron [WSRS+17] is a sequence-to-sequence network which
predicts mel-spectrograms from text. Next, we incorporate the proposed SC-WaveRNN as a vocoder us-
ing the same speaker encoder and synthesize the temporal waveform from the sequence of Tacotron’s
mel-spectrograms. We compare our system with the baseline TTS method [CLY+20], which studies the
effectiveness of several neural speaker embeddings in the context of zero-shot TTS. Our results demon-
strate that the proposed zero-shot TTS system outperforms baseline zero-shot TTS in [CLY+20] in terms
of both speech quality and speaker similarity on both seen and unseen conditions.

The chapter is organized as follows: In Section 2, the speaker encoder is explained. In Section 3, the
details of Conditional WaveRNN are introduced. In Section 4, the experimental evaluations demonstrating
the effectiveness of conditioning are presented. In Section 5, the implementation of zero-shot TTS is
explained. Finally, the chapter is concluded in Section 6.
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Figure 8.1: System overview of speaker encoder [WWPM18]. Features, speaker embeddings and simi-
larity scores from different speakers are represented by different color codes. ‘spk’ denotes speakers and
‘emb’ represents embedding vectors.

8.2 Neural Speaker Encoder

Speaker verification (SV) refers to the process of determining whether an utterance belongs to a spe-
cific speaker by comparing it with that speaker’s known enrollment utterances. SV finds applications in
Voice Match and similar systems. Speaker verification models typically fall into two main categories, de-
pending on the constraints imposed on the enrollment and verification utterances: text-dependent speaker
verification (TD-SV) and text-independent speaker verification (TI-SV). In TD-SV, both the enrollment
and verification utterances have a phonetic constraint on their transcripts. This means that the spoken
words or phrases in the utterances are predetermined and limited to a specific set of phonetic content. On
the other hand, TI-SV does not impose any lexicon constraints on enrollment and verification utterance
transcripts. As a result, there is a wider variability in terms of the phonemes used and the durations of the
utterances.

In our work, we emphasize text-independent speaker verification (TI-SV) and its relevance in uni-
versal vocoders. We specifically focus on the significance of a speaker encoder within this context. We
employ the generalized end-to-end (GE2E) approach for the speaker verification task, which has been
trained on a large dataset containing thousands of speakers [WWPM18]. This trained model allows us to
generate speaker embeddings using only a few seconds of reference speech from a target speaker without
requiring any specific text or utterance constraints. By leveraging the GE2E model and the generated
embeddings, we aim to enhance the capabilities of universal vocoders in capturing and reproducing the
unique characteristics of individual speakers, thereby enabling more accurate and personalized speech
synthesis.

The encoder network initially computes a frame-level feature representation and then summarizes
these features to utterance-level fixed-dimensional speaker embeddings. Next, the classifier uses GE2E
loss, where embeddings from the same speaker have high cosine similarity and embeddings from different
speakers are far apart in the embedding space. As depicted in Fig. 8.2, Uniform Manifold Approximation
and Projection (UMAP) [MHM18] shows that the speaker embeddings are perfectly separated with large
inter-speaker distances and very small intra-speaker variance.

8.2.1 Training Encoder Network

The speaker encoder structure is depicted in Figure 8.1. The log mel-spectrograms are extracted from
speech utterances of arbitrary window length. The feature vectors are then assembled in the form of a
batch that contains S different speakers, and each speaker has U utterances. Each feature vector xij

(1  i  S and 1  j  U ) represents the features extracted from speaker i utterance j. The features
xij are then passed to an encoder architecture. The final embedding vector eij is L2 normalized and
calculated by averaging each window separately.
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A linear layer is attached to the last LSTM layer as an additional transformation to obtain network
output. f(xij ;w) where w represents network parameters. The final embedding vector eij is regularized
by L2 normalization: eij = f(xij ;w)/||f(xij ;w)2||. During inference, final embeddings are calculated
by averaging each window separately.
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Figure 8.2: UMAP projection of 10 utterances for each of the 10 random speakers. Different colors represent
different speakers.

8.2.2 Generalized End-to-End Loss

During training, the embedding of all utterances for a particular speaker should be close to the centroid
of that particular speaker’s embeddings while far from other speakers’ centroids. The similarity matrix
SMij,k is defined as the scaled cosine similarities between each embedding vector eij to all speaker
centroids ck (1  i, k  S and 1  j  U ).

As depicted in Figure 8.1, the goal is to increase the similarity values of coloured areas and minimize
the values of grey areas.

SMij,k =

(
w · cos(eij , c�j

i
) + b if k = i

w · cos(eij , ck) + b otherwise

where c�j

i
=

1

U � 1

UX

u=1;u 6=j

eiu and ck =
1

U

UX

u=1

eku

Here, w and b are trainable parameters. The ultimate GE2E loss L is the accumulative loss over
similarity matrix (1  i  S and 1  j  U ) on each embedding vector eij :

L(x;w) =
X

i,j

L(eij) = �SMij,i + log
SX

k=1

exp(SMij,k)

The use of the softmax function on the similarity matrix makes the output equal to 1 if k = i; otherwise,
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Figure 8.3: Block diagram of WaveRNN architecture.

it is 0.

8.3 Speaker-conditional WaveRNN

In literature, convolutional models have been thoroughly explored and achieved excellent performance
in speech synthesis [ODZ+16, PPC19], yet they are prone to instabilities. A recurrent neural network
(RNN) is expected to provide a more stable, high-quality speech due to the persistence of the hidden state.

8.3.1 Preliminaries

Our WaveRNN implementation is based on the repository1 which is heavily inspired by WaveRNN
training [KES+18]. This architecture combines residual blocks and an upsampling network, followed by
GRU and FC layers, as depicted in Fig. 8.3. The architecture can be divided into two major networks:
conditional and recurrent. The conditioning network consists of a pair of residual and upsampling net-
works with three scaling factors. At the input, we first map the acoustic features, i.e., mel-spectrograms,
to a latent representation with the help of multiple residual blocks. The latent representation is then split
into four parts, later fed as input to the recurrent network. The upsampling network is implemented to
match the desired temporal size of the input signal. The outputs of these two convolutional networks, i.e.,
residual and upsampling networks, along with speech, are fed into the recurrent network. As part of the
recurrent network, two uni-directional GRUs are employed with a few fully connected (FC) layers at the
end. By design, the overhead complexity is reduced with fewer parameters, and the temporal context is
taken advantage of for better prediction.

1https://github.com/fatchord/WaveRNN

https://github.com/fatchord/WaveRNN


120 Improving Generative Adversarial Networks and its Applications in Speech Synthesis

wavernn(y) = p(yt|yt�1;ht;�)

where, p is probability function, h is acoustic features from the conditioning network and � is trainable
network parameters.
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Figure 8.4: Block diagram of proposed SC-WaveRNN training.

8.3.2 Training WaveRNN with Speaker Embeddings

The above auto-regressive model can generate state-of-the-art, natural-sounding speech; however, it
needs large amounts of training data to train a stable, high-quality model, and data scarcity remains a core
issue. Moreover, a key challenge is its generalization ability. We observe degradation in speech quality and
speaker similarity when the model generates waveforms from speakers that are not seen during training.

In order to assist the development of a stable universal vocoder and remove data dependency, we pro-
pose in this chapter an alternative module referred to as speaker conditional WaveRNN (SC-WaveRNN).
In SC-WaveRNN, the output of the speaker encoder is used as additional information to control the speaker
characteristics during both training and inference. The additional information is pivotal in generating
more stable, high-quality speech across different speaker conditions. The direct estimation of raw audio
waveform y = {y1, y1, · · · , yN} is described by the conditional probability distribution:

sc-wavernn(y) = p(yt|yt�1;ht; e;�)
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Where e is the 256 dimension speaker embeddings vector, the speaker encoder is independently trained
using a large diversity of multi-speaker data that can generalize sufficiently to produce meaningful em-
beddings. The embedding vector e is computed utterance-wise. For each utterance, the final embedding
vector is averaged over all frames, and hence, it is fixed for any utterance. The embedding vector is
concatenated with the conditional network output and speech samples to form the conditional network.
The details of the SC-WaveRNN algorithm are presented in Figure 8.4. In addition, we apply continuous
univariate distribution constituting a mixture of logistic distributions [OLB+18b], which allows us to eas-
ily calculate the probability of the observed discretized value y. Finally, discretized mix logistic loss is
applied to the discretized speech.

8.4 Zero-shot Text-to-Speech

Using the auxiliary speaker encoder enables us to propose a TTS system capable of generating high-
fidelity synthetic voice for unseen speakers without retraining the Tacotron and vocoder. Such speaker
adaptation to completely new speakers is called zero-shot. This speaker-aware TTS system mimics voice
characteristics from a completely unseen speaker with only a few seconds of speech sample.

  Speaker encoder

 Text

  SC-WaveRNN

Synthetic 
 Speech

Mel-spectrogram

Speaker embeddings

  Multi-Speaker
      Tacotron

Reference speech

Figure 8.5: Block diagram of the proposed zero-shot TTS system.

Our proposed system is composed of three separately trained networks, illustrated in Figure 8.5: (a) a
neural speaker encoder, based on GE2E training, (b) a multi-speaker Tacotron architecture [WSRS+17],
which predicts a mel-spectrogram from text, conditioned on speaker embedding vector, and (c) the pro-
posed speaker conditional WaveRNN, which converts the spectrogram into time domain waveforms. First,
the speaker embeddings are extracted from each target speaker’s utterance using the speaker encoder. At
each time step, the embedding vector for the target speaker is then concatenated with the embeddings of
the characters before being fed into the encoder-decoder module. The final output is mel-spectrograms.
To convert the predicted mel-spectrograms into audio, we use SC-WaveRNN, which is independently
trained by conditioning on the additional speaker embeddings. Due to the generalization capabilities of
the models, combining multi-speaker Tacotron with SC-WaveRNN can achieve efficient zero-shot adap-
tation for unseen speakers. We compare the proposed zero-shot system with a recently proposed zero-shot
TTS [CLY+20] as the baseline system. There, the best-performing system uses a multi-speaker Tacotron
with gender-dependent WaveNet vocoders as a TTS system and an x-vector with a learnable dictionary
encoding as a speaker encoder network.
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8.5 Experimental Setup

The speaker encoder training has been conducted on three public datasets: LibriSpeech, VoxCeleb1
and VoxCeleb2, containing utterances from over 8k speakers [JZW+18]. The log mel-spectrograms are
first extracted from audio frames of width 25ms and step 10ms. Voice Activity Detection (VAD) and
a sliding window approach is used. The GE2E model consists of 3 LSTM layers of 768 cells and a
projection to 256 dimensions. While training, each batch contains S = 64 speakers and U = 10 utterances
per speaker.

Tacotron and WaveRNN models are trained using VCTK English corpus [CJK16] from 109 different
speakers. To evaluate generalization performance, we consider three scenarios: seen speakers-seen sound
quality (SS-SSQ), unseen speakers-seen sound quality (UNS-SSQ) and unseen speakers-unseen sound
quality (UNS-USQ). Seen speakers refer to the speakers that are already present in the training, and unseen
speakers are the new speakers during testing. Sound quality refers to the recording conditions, such as
recording equipment, reverberation, etc. We train the network using 100 speakers, leaving 9 speakers for
UNS-SSQ scenarios that are chosen to be a mix of genders and have enough unique utterances per speaker.
CMU-ARCTIC database [KB04a] is used for UNS-USQ scenario having 2 male and 2 female speakers.
Moreover, to overcome the limited linguistic variability in VCTK data, we initially train the Tacotron
model on the LJSpeech database as a “warm-start” training approach similar to [CLY+20]. Code and
sound samples can be found in 2.

8.6 Results and Discussion

8.6.1 Universal vocoder

In this section, we evaluate the performance of vocoded speech shown in Table 8.1. To assess the
effectiveness of speaker embeddings in SC-WaveRNN, PESQ and STOI objective measures are computed
from 50 random samples. We carry out evaluations on three conditions: SS-SSQ, UNS-SSQ and UNS-
USQ. The purpose of each condition is to evaluate the proposed vocoder not only on seen or unseen
speakers but also for the quality of the recordings. As expected, seen scenarios perform better with
respect to unseen samples. However, we observe that SC-WaveRNN significantly improves both the
objective scores when compared to baseline WaveRNN for all scenarios.

Table 8.1: Objective evaluation tests.

SS-SSQ UNS-SSQ UNS-USQ

PESQ STOI PESQ STOI PESQ STOI

WaveRNN 2.2575 0.8173 2.1497 0.7586 1.4850 0.8620

SC-WaveRNN 2.7948 0.9049 2.8657 0.8984 1.8063 0.9195

Concerning the perceptual assessment of speech quality and speaker similarity, two separate listening
tests are reported: mean opinion score (MOS) and ‘ABX’ preference test. The subjects are asked to rate
the naturalness of generated utterances on a five-point scale (1:Bad, 2:Poor, 3:Fair, 4:Good, 5:Excellent).
In the ‘ABX’ test, experimental subjects have to decide whether a given reference sentence ‘X’ is closer
in speaker identity to one of ’A’ and ’B’ sentences, which are samples obtained either from the proposed

2https://dipjyoti92.github.io/SC-WaveRNN/

https://dipjyoti92.github.io/SC-WaveRNN/
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Figure 8.6: Vocoder Subjective listening test (MOS) for speech quality and preference test in (%) for speaker
similarity.

or the baseline method, not necessarily in that order. Fifteen native and non-native English listeners
participated in our listening tests. The evaluation results of both MOS and ’ABX’ tests are demonstrated
in Figure 8.6. Error bars represent 95% confidence intervals. For all seen and unseen scenarios, the MOS
scores for the proposed SC-WaveRNN are much higher than the baseline WaveRNN (between 14% to
95% relative improvement). Under the same sound quality conditions (SS-SSQ and UNS-SSQ), although
the proposed technique is preferred in terms of the speaker similarity preference test, most preference is
given to the ‘same preference’ option, which indicates similar speaker characteristics for both methods.
In contrast, experimental analysis shows a significant preference score (92%) in unseen sound quality for
the proposed SC-WaveRNN. We conclude that additional speaker information in the form of embeddings
is effective for improvements in naturalness and speaker similarity, especially for unseen data, and can
achieve a truly universal vocoder. This is attributed to the fact that unseen scenarios are handled more
efficiently by the model since additional embeddings are able to capture a broad spectrum of speaker
characteristics. Moreover, SC-WaveRNN does not compromise the performance in seen conditions but
also enhances generalization in unseen conditions.

8.6.2 Zero-shot TTS Synthesis

‘MOS’ and ‘ABX’ tests are employed to evaluate the proposed zero-shot TTS performance, as de-
picted in Figure 8.7. We subjectively evaluate both baseline [CLY+20] and our methods by synthesizing
sample utterances from seen speakers and unseen speakers. Different sound qualities are not considered
in the evaluation experiments of zero-shot TTS. As expected, a gap between seen and unseen speakers is
visible: seen speakers’ synthetic speech has a slightly higher quality than unseen speakers. MOS scores
indicate that the proposed TTS is superior in quality, with 19.2% and 14.5% relative improvement for seen
and unseen speakers, respectively. We also found that our proposed TTS mimic better speaker characteris-
tics and significantly improves under both conditions. With regard to speaker similarity, the proposed TTS
obtains the majority of preferences with 60% and 60.9% compared to 15.5% and 32.6% of the baseline
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TTS for seen and unseen speakers, respectively.
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Figure 8.7: Zero-shot TTS Subjective listening test (MOS) for speech quality and preference test for (%) for speaker
similarity.

8.7 Conclusions

In this chapter, we proposed a robust universal SC-WaveRNN vocoder that is capable of synthesizing
high-quality speech. The system was conditioned on extracted speaker embeddings covering a diverse
range of seen and unseen conditions. The main advantage of SC-WaveRNN is its high controllability
since it improves multi-speaker vocoder training and better generalization ability by allowing reliable
transfer to unseen speaker characteristics. Furthermore, speaker conditioning is typically more data effi-
cient and computationally less expensive than training separate models for each speaker. The subjective
and objective evaluation revealed that the proposed method generated higher sound quality and speaker
similarity than the baseline method. In addition, we extended our approach to devising an efficient zero-
shot TTS system. We demonstrated that the proposed zero-shot TTS with a universal vocoder could
improve speaker similarity and the naturalness of synthetic speech for seen and unseen speakers.



Chapter 9

Universal Multi-Speaker Multi-Style
Text-to-Speech via Disentangled
Representation Learning based on
Rényi Divergence Minimization

9.1 Introduction

Speech synthesis, which attracts a lot of attention in communication and voice interaction systems,
aims to synthesize intelligible and high-quality speech signals which are indistinguishable from human
recordings. The realization of a spoken utterance can be categorized into three principal components: the
content, the speaker and the style component. The content component refers to the linguistic content of
speech (what). The speaker characteristics are attributed to the speaker component (who). The definition
of style component is associated with pitch variation and loudness (how). Style covers all aspects of
speech that do not contribute to content information or the speaker’s identification.

Recently, the superiority of deep neural network (DNN) based speech synthesis surpassed the con-
ventional speech synthesis models [WSRS+17, SPW+18, ACC+17, RHQ+20, vdODZ+16, KES+18].
Given a sufficient amount of training data, such TTS systems are capable of producing speech with su-
perior quality, particularly for single-speaker synthesis. However, generated speech usually tends to be
neutral and less expressive. Synthetic speech expressivity is also restricted because collecting labelled
speech data, especially information describing prosody, is cumbersome due to concerns on cost, complex-
ity and privacy, making unsupervised representation learning immensely popular.

Relating to expressive TTS, previous works aimed to transfer the style factor of a reference speech
into the given text without prosody labels [HZW+18, SRBX+18]. In Global Style Token (GST), the
reference speech is encoded into a fixed-length style embedding using a trainable style encoder that is
conditioned along with content features and speaker embeddings in an unsupervised manner [WSZ+18].
Disentangling speech styles with a hierarchy of variational autoencoder (VAE) was introduced in [KW13,
TPZK20]. Estimating mutual information using the Mutual-Information Neural Estimator (MINE) be-
tween the style and the content has been proposed in [HSTD20]. To improve the controllability in style
modelling, fine-grained style transfer approaches were investigated in [LK19, KRRD19, DT20]. On the
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other hand, to facilitate a semi-supervised approach, an auxiliary style classification task was proposed
to capture style information from the reference utterances accurately [WLL+19, LYXX21]. The most
recent studies in this direction also take into account the speaker identity [HZW+18, JZW+18, MMS19],
which may be hard to extend for TTS models where only a few seconds of target voices are available.
In [CLH+21, THZL21], the authors combined speaker and style embeddings to build an all-around TTS
system.

A universal TTS synthesis system can generate speech from text with speaker characteristics and a
speaking style similar to a given reference signal. The major challenge for universal TTS is speaker
perturbation along with style transfer. The ultimate goal is to transplant prosody from arbitrary speakers,
especially in the context of zero-shot, where only a few seconds of data is available. Towards this aim, we
employ a universal TTS (UTTS) framework, which consists of four major components: content encoder,
style encoder, speaker encoder and speech decoder. The content encoder generates a content embedding
from the text. The style encoder represents the style factors in a style embedding, while the speaker
encoder provides the speaker identity in the form of a speaker embedding. Finally, the speech decoder,
conditioned on all the above embeddings, synthesizes the desired target speech.

When considering generalising the models with multiple speakers and multiple styles using just the re-
construction loss, performance unfortunately deteriorates. During training, content information is leaked
into the style embeddings (“content leakage”) and speaker information into style embeddings (“style leak-
age”). Thus, at inference, when the reference speech has different content from the input text, the decoder
expects the content from the style vector, ignoring some parts of the content text. Moreover, speaker
information could be expected from the style encoder, leading to completely different speaker attributes.

To alleviate those issues, we suggest a novel Rényi Divergence based Disentangled Representation
(RDDR) algorithm. The minimization of Rényi divergence becomes feasible via a variational repre-
sentation formula that involves the cumulant generating function. We introduce two variations of this
framework: Hellinger distance RDDR (H-RDDR) and sum of Rényi divergences RDDR (S-RDDR).
Both variants are selected aiming to reduce the statistical variance of the adversarial component. More-
over, cumulants are preferred over expectations because they capture higher-order statistical information
about the underlying distributions, which often leads to more stable training [PPF+20]. Similar to mu-
tual information minimization where a lower bound of the Kullback-Leibler divergence is utilized, the
proposed RDDR algorithm estimates, via neural network approximations, a lower bound of the Rényi
divergence between the joint distribution and the product of the marginals of two pairs: content-style
and speaker-style and then, minimize the estimated Rényi divergence in an adversarial manner. Rényi
divergence minimization between those distributions pushes the various modalities to become indepen-
dent. Our approach effectively disentangles content, style, and speaker information, not only alleviating
leakage issues but also assisting the decoder in training on the proper data, leading to the synthesizing
of high-quality speech. Our work involves independent training of a speaker-discriminative neural en-
coder to produce utterance-level speaker embeddings using a state-of-the-art generalized end-to-end loss
[WWPM18]. Hence, the TTS system can synthesise speech from unseen speakers in a zero-shot manner.
We train the style encoder using a set of trainable vectors, which are linearly combined using style factors
generated from the input reference speech. Style tokens are trainable parameters that are optimized to-
gether with the TTS network parameters. Finally, due to low computational complexity, TransformerTTS
is employed for the content encoder and speech decoder [LLL+19]. Experimental results based on both
objective and subjective evaluation confirm that the proposed method achieves better style similarity and
perceptual speech quality than the baseline TTS system, which is trained without a disentangled loss.
Code and sound samples can be found in 1.

1https://dipjyoti92.github.io/Universal-TTS/
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Figure 9.1: System overview of our universal TTS framework. (a) Universal TTS conditioned on speaker
(Esp) and style (Est) encoders that can synthesise well-controllable speech. TransformerTTS is employed
as a backbone TTS infrastructure. (b) The proposed training protocol considers a novel adversarial RDDR
approach combined with minimising the TTS reconstruction loss. A reference utterance is used to extract
speaker and style factors, whereas, during inference (c), the system may take any arbitrary speaker or style
as input.

9.2 Universal TTS (UTTS)

Figure 1 shows an overview of the proposed universal TTS framework along with training and infer-
ence protocols. On the encoder side, we employ three different encoders with different architectures for
content, style, and speaker, respectively. A speech decoder that is conditioned on all the above-mentioned
latent embeddings produces the output speech features.

9.2.1 Speaker Encoder

The Speaker Encoder (Esp) deploys generalized end-to-end (GE2E) loss that is trained on thousands
of speakers [WWPM18]. The log mel-spectrograms are extracted from speech utterances of arbitrary
length. The feature vectors are then assembled in the form of a batch that contains S different speakers,
and each speaker has U utterances. Each feature vector fij (1  i  S and 1  j  U ) represents the
features extracted from speaker i and utterance j, respectively. The features are then passed to an encoder
architecture. The final embedding vector is L

2 normalized, and they are calculated by averaging all
window frames. The encoder consists of 3 LSTM layers of 768 cells and a projection to 256 dimensions,
as depicted in the previous chapter. During training, the embedding of all utterances for a particular
speaker should be closer to the centroid of that particular speaker’s embedding and, at the same time, far
from other speakers’ centroid.

9.2.2 Style Encoder

The style encoder (Est) is comprised of a convolutional stack, followed by a gated recurrent unit
(GRU) similar to the GST-Tacotron paper [WSZ+18]. Mel spectrograms, which are extracted from the



128 Improving Generative Adversarial Networks and its Applications in Speech Synthesis

reference speech, are passed to the stack of six 2D convolutional layers with kernel size 3⇥2 and 2⇥2
stride. The channel sizes of convolutional layers are (32, 32, 64, 64, 128, 128) followed by batch normal-
ization and ReLU activation. The output from the last convolutional layer is summarized with a single-
layer 128-unit unidirectional GRU. The style token layer is implemented with ten style token embeddings
and a multi-head attention module [VSP+17]. As with speaker and content embeddings, the dimension
of the style embeddings is 256. Finally, we apply tanh activation to GSTs before attention since it leads
to greater token diversity. The overall style encoder is jointly trained with the entire TTS model without
using prosodic labels.

9.2.3 TTS Module

Given its performance and computational gains, we implemented TransformerTTS as our backbone
TTS [LLL+19]. Here, the multi-head attention mechanism constructs the hidden states for the encoder and
the decoder in parallel, which improves training efficiency. In addition to this backbone TransformerTTS
model, a style encoder Est and a speaker encoder Esp is introduced to construct a truly universal TTS,
also depicted in 9.1(a).

The TTS module converts textual, style and speaker information into acoustic features with the help
of the encoder-decoder paradigm. While the final module is a vocoder, WaveRNN [KES+18] in our case
generates speech waveform from the previously generated acoustic information. The first stage of the
TTS module is the conversion from text to phonemes. The text-to-phoneme converter not only assists
the model in training on the vast majority of cases but also resolves cases where some letters can be
pronounced differently under different contexts, leading to major performance degradation when data are
insufficient. Given a set of speech and phoneme content pairs (x, c), the baseline UTTS minimizes the
feature-domain reconstruction loss between the predicted output of the speech decoder D and the original
speech,

Ltts = min
Est,Ec,D

k D(Ec(c), Est(x), Esp(x))� x k1 (9.1)

where || · ||1 is the L
1 norm. We are not optimizing Esp weights due to the fact that it is already pre-

trained on thousands of speakers. Therefore, the speaker embeddings should reflect a well-balanced
speaker universe. TTS module is first pre-trained with LJSpeech, which has a broad range of linguistic
variability, and then we freeze Ec for the remaining training process.

9.3 Proposed Disentangled Representation

Although baseline UTTS tries to synthesize speech using content, style and speaker factors, training
just on an L

1 reconstruction loss is not enough. The style embeddings still manage to carry non-style
information, leading to content leakage and style leakage. To efficiently decouple all representations
without explicit labels, we estimate and minimize the Rényi divergence (RD) between their embedding
representation pairs (Ec(c), Est(x)) and (Esp(x), Est(x)). The overall training and inference protocols
are demonstrated in 9.1 (c) & (d).

9.3.1 Preliminaries

The standard approach to disentangling two modalities is through Mutual Information (MI) mini-
mization since zero MI implies Independence. MI is the Kullback-Leibler (KL) divergence, and it can be
represented in the form of Donsker-Varadhan representation [DV83]. Given two random variable X and
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Y, MI i.e., I(X,Y) is equivalent to KL divergence between the joint distribution, PXY and the product of
marginals, PX ⌦ PY. MINE [BBR+18a] estimate a lower bound of MI:

I(X,Y) � I⇥(X,Y) = sup
✓2⇥

�
EPXY [T✓]� log(EPX⌦PY [e

T✓ ])
 

(9.2)

where T✓ is an NN-based parametrization of the space of all continuous and bounded functions. For the
proposed UTTS, T✓ is parametrized by three fully connected layers, each layer followed by ReLU, with
parameters ✓ 2 ⇥ while the optimization is performed through stochastic gradient descent.

We introduce this approach to disentangle content, style and speaker representations in UTTS, sim-
ilar to [HSTD20]. We use two separate neural estimator T✓ and T

0
✓0 to approximate MI from the pairs

(Ec(c), Est(x)) and (Est(x), Esp(x)), respectively. By minimizing MI, we force the encoders to learn
information that is independent of each other. Thus, the overall objective function is a min-max prob-
lem where we seek to maximize the lower-bound of MI w.r.t. T✓ and T

0
✓0 and minimize the MI and the

reconstruction loss w.r.t. Est and D.

L = min
Est,D

max
T✓,T

0
✓0
{k D(Ec(c), Est(x), Esp(x))� x k1

+ �max(0, I⇥(Ec(c), Est(x))) + �max(0, I⇥0(Est(x), Esp(x)))}
(9.3)

where � is a hyperparameter, set to 0.1. We also bound from below the estimated MI to non-negative
values.

9.3.2 Rényi Divergence based Disentangled Representation

Learning representative latent embeddings is a challenging problem. In order to decouple all the
information factors properly, it is necessary to estimate the MI between the embedding pairs. However, it
has been demonstrated that the statistical variance of the finite-sampling MI estimator can be exponentially
high [SE20, MS20], often resulting in inferior estimation performance. In this chapter, we propose a
different family of information-theoretic divergences to reduce estimator’s variance. We present two
alternatives based on the Rényi divergence family for disentangled speech representation learning. The
proposed algorithm is presented in 9.2.

The cumulant generating function (CGF), also known as the log-moment generating function, is de-
fined for a random variable with pdf p(X) as ⇤f,p(�) = logEp[e�f(X)], where f is a measurable function
with respect to p. RDDR employs the expectation of the cumulant loss function and substitutes it in the
loss function of MINE in Equation (9.3.1).

Given two random variables X and Y, RDDR employs a DNN (i.e., T✓) to approximate the maxi-
mum lower bound of the Rényi divergence (RD) variational formula which is defined via two cumulant
generating functions (CGFs):

R�,�(X,Y) � sup
✓2⇥
� 1

�
EPXY [e

��T✓ ]� 1

�
log(EPX⌦PY [e

�T✓ ]) (9.4)

Where hyper-parameters � and � are two non-zero real numbers which control the learning dynamics,
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Algorithm: Pseudo-code for proposed RDDR training

Input: Speech and text pairs hxi, cii.
Pre-training: Optimize Ec, D on LJSpeech using
min

Ec,Est,D

P
i
k D(Ec(ci), Est(xi), Esp(xi))� xi k1

Esp  GE2E training
Est, T✓, T

0
✓0  initialization with random weights

Est, D, T✓, T
0
✓0 not converged Sample mini-batch from hxi, cii; i = {1, 2, . . . , b}

{p
i
} {Ec(ci)|i = 1, 2, . . . , b}

{q
i
} {Est(xi)|i = 1, 2, . . . , b}

{ri} {Esp(xi)|i = 1, 2, . . . , b}
{p̂

i
}, {r̃i} random permutation of {p

i
} , {ri}

LRD1 =
P

k
[� 1

�k
log 1

b

P
b

i=1 e
��kT✓(pi,qi)

� 1
�k

log 1
b

P
b

i=1 e
�kT✓(p̂i,qi)]

LRD2 =
P

k
[� 1

�k
log 1

b

P
b

i=1 e
��kT

0
✓0 (ri,qi)

� 1
�k

log 1
b

P
b

i=1 e
�kT

0
✓0 (r̃i,qi)]

The overall objective function:
L = 1

b

P
b

i=1 k D(p
i
, q

i
, ri)� xi k1

+ �max(0,LRD1) + �max(0,LRD2)
D = D � ✏rDL; Est = Est � ✏rEstL
T✓ = T✓ + ✏rDLRD1 ; T

0
✓0 = T

0
✓0 + ✏rDLRD2

Figure 9.2: Training algorithm of RDDR.

the use of CGFs allows for an inclusive characterization of the distributions’ statistics, making it possible
for T✓ to enforce independence better. This, in turn, leverages improved disentanglement representation.
The proposed algorithm can be interpreted for several choices of its hyper-parameters. Thus, the opti-
mization of the proposed loss function is equivalent to the minimization of divergence for a wide set of
hyperparameter values. For our experiments, we choose two variations. First, (�, �) = (0.5, 0.5) which
is equivalent to the minimization of Hellinger distance, we refer to this as Hellinger RDDR (H-RDDR).
Internal numerical simulations conducted by our group have shown that the variance of the estimated
Hellinger distance is significantly smaller than the variance of the estimated KL divergence. Second, we
choose a combination of � = [0, 0.5, 1] and � = [1, 0.5, 0], which is equivalent to the minimization of the
sum of Réyni divergences. This variant is called the sum of RDDR (S-RDDR). This particular choice for
the hyper-parameters tries to optimize KL divergence and reverse KL and Hellinger distance simultane-
ously. By doing so, we anticipate enhanced independence between the speech factors. Similar to Equation
(9.3), we can formulate the overall objective function through adversarial training.

9.4 Results and Discussion

The speaker encoder training has been conducted on LibriSpeech, VoxCeleb1 and VoxCeleb2 datasets
containing utterances from over 8k speakers [PPS20]. TransformerTTS and WaveRNN models are trained
using VCTK English corpus [VYM+16] from 109 different speakers. We initially trained the Trans-
formerTTS model on the LJSpeech database [Kei17], which contains 13,100 audio clips from a single
speaker, as a “warm-start” approach.
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Table 9.1: Objective evaluation tests. Lower scores indicate better performance.

No Shuffle Shuffle

RMSE-F0 MCD WER(%) RMSE-F0 MCD WER(%)

UTTS 29.80 5.28 22.7 47.02 6.56 32.1

UTTS MINE 30.33 5.38 25.4 47.26 6.59 31.9

UTTS S-RDDR 28.59 5.35 21.6 45.75 6.39 28.7

UTTS H-RDDR 28.59 5.26 18.3 47.26 6.59 26.6

9.4.1 Objective Evaluation

In this section, we evaluate the performance of disentanglement strategies shown in Table 1. To as-
sess the effectiveness of the proposed methods, we calculated three performance scores from 100 random
samples. Mel-cepstral distortion (MCD) measures the spectral distance between the synthesized and ref-
erence mel-spectrum features. Root mean squared error (RMSE) evaluates the similarity in F0 modelling
between reference and synthesized speech. Lastly, word error rate (WER) evaluates the content preserva-
tion criterion. During inference, we evaluate the performance on two conditions: ‘no shuffle’ and ‘shuffle’.
No shuffle feeds same reference speech xi into style and speaker encoders and its corresponding text ci to
predict the speech features x0 with the decoder. Whereas, shuffle feeds speech xi into speaker, xj into style
and ck into the content encoder given (i 6= j 6= k). We observe that the proposed S-RDDR and H-RDDR
algorithms outperform both the baseline and MINE approaches regarding RMSE-F0 and MCD evaluation
metrics with relative improvements. As expected, no shuffle scenarios perform better with respect to shuf-
fled samples. Furthermore, one of the main objectives of the RDDR algorithm is to improve the content
leakage of the generated speech, which we objectively measure using Google’s open-source automatic
speech recognizer (ASR) [asr]. For the VCTK dataset, ASR achieves a WER of 14.6% on the held-out
real data. Although both RDDR variants perform better, the performance of H-RDDR is the best so far,
with WER of 18.3% and 26.6% for no shuffle and shuffle scenarios, respectively. We overall conclude
that the disentanglement module during training assists the TTS in achieving a more accurate rendering
of prosodic patterns as well as synthesizing proper speech content to its corresponding text without any
significant leakage issues.

Table 9.2: Average cosine-similarity evaluation.

Methods Baseline MINE S-RDDR H-RDDR

No Shuffle 0.828 0.840 0.836 0.839

Shuffle 0.734 0.732 0.737 0.739

Next, we employ cosine similarity as a speaker similarity measure between the generated and reference
speaker’s speech. As shown in Table 2, cosine similarity does not vary much across different systems.
This is attributed to the fact that speaker embeddings are pre-trained and do not jointly train with the TTS
module. Therefore, different TTS modules perform equally better, and speaker identities are much closer
to reference speakers.
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Table 9.3: MOS scores (95% confidence interval) of audio quality and speaking style similarity for dif-
ferent TTS modules.

Methods MOS-Speech-Quality MOS-Style-Similarity

UTTS 3.01 ± 0.05 2.98 ± 0.08

UTTS MINE 3.11 ± 0.06 2.92 ± 0.08

UTTS S-RDDR 3.62 ± 0.05 3.41 ± 0.07

UTTS H-RDDR 3.51 ± 0.06 3.36 ± 0.07

9.4.2 Subjective Evaluation

We conduct listening tests to evaluate different TTS modules and the choice of RDDR approach, as
depicted in Table 3. Twenty native and non-native English listeners participated in our listening tests.
We conducted two separate mean opinion score (MOS) listening tests, and subjects were asked to rate
the synthesized speech on a scale of five (1:Bad, 2:Poor, 3:Fair, 4:Good, 5:Excellent). MOS-Speech-
Quality (MSQ) assesses the perceptual speech quality, whereas MOS-Style-Similarity (MSS) evaluates
the speaking style expressiveness w.r.t. the reference style. MSQ scores indicate that compared to UTTS,
the proposed S-RDDR and H-RDDR UTTSs are superior in quality, with 20.3% and 16.6% relative im-
provement, respectively. We also found that our proposed TTS mimic better style characteristics than
the baseline and shows significant relative improvement of 14.4% and 12.7% for S-RDDR and H-RDDR,
respectively. Results indicate that disentanglement helps the system to properly learn all the information
factors relating to content, speaker and style. Therefore, it enhances the speech decoder’s ability to syn-
thesize high-quality speech and also preserves the style of the reference speech better. We did not conduct
listening tests for speaker similarity as objective results clearly indicate equal performance for all TTS
modules.

9.4.3 Disentangled Representation Learning using variance reduction method

An important application of MI is disentangled representation learning. In the context of represen-
tation disentanglement, the extraction of meaningful latent features for high-dimensional data is chal-
lenging, especially when explicit knowledge needs to be distilled into interpretable representations. One
popular approach to enforce representation disentanglement is via MI minimization. Moreover, a superior
disentanglement will allow a greater degree of interpretability and controllability, especially for gener-
ative models maintaining high production capacity. In this section, we employ the proposed DNE-VP�

estimator for MI estimation in order to learn disentangled representation and, particularly, in the context
of speech synthesis and analysis.

A universal text-to-speech synthesizer can generate speech from text with a speaker factor and speak-
ing style similar to a reference signal. Previous works aimed to encode the information from reference
speech into a fixed-length style and speaker embedding using trainable encoders [WSZ+18, TPZK20,
CLH+21, THZL21]. The major challenges for such speech synthesizers are controllability and gener-
alisability, especially when trying to generalize the models with multiple speakers and multiple styles.
During training, content information is leaked into the style embeddings (“content leakage”) and speaker
information into style embeddings (“style leakage”). Thus, at inference, when the reference speech has
content different from the input text, the decoder expects the content to be from the style vector, ig-
noring some parts of the content text. Moreover, speaker information could be expected from the style



Chapter 9. Universal Multi-Speaker Multi-Style Text-to-Speech via Disentangled Representation
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encoder, leading to completely different speaker attributes. To alleviate that, [PMPS21] suggested re-
placing the KL-based MI with Rényi-based MI and minimizing the Rényi divergence between the joint
distribution and the product of marginals for the content-style and style-speaker pairs. However, reliable
estimation of Rényi divergence was problematic due to high statistical variance. Taking advantage of the
proposed variance reduction technique, we employ a VP term in the loss function, which is denoted as
DNE-VP� (R↵). By doing so, content, style, and speaker spaces become representative and (ideally) in-
dependent of each other. We introduce two variations of this framework: sum of three Rényi divergences
DNE(R↵=0 +R↵=0.5 +R↵=1) (i.e., sum of the corresponding objective functionals) and DNE(R↵=0.5).
We tested several different � values, aiming to reduce the statistical variance of the adversarial component.
Notice that larger � values were helpful in this application.

Table 9.4: Objective evaluation tests. Lower scores indicate better performance.

No Shuffle Shuffle
RMSE-F0 MCD WER(%) RMSE-F0 MCD WER(%)

DNE (R↵=0 +R↵=0.5 +R↵=1) 28.59 5.35 21.6 45.75 6.39 28.7
DNE (R↵=0.5) 28.59 5.27 18.3 47.26 6.60 26.6
DNE-VP�=5 (R↵=0 +R↵=0.5 +R↵=1) 30.29 5.23 21.2 48.15 6.39 27.3
DNE-VP�=10 (R↵=0 +R↵=0.5 +R↵=1) 27.76 5.36 18.1 47.62 6.48 28.7
DNE-VP�=5 (R↵=0.5) 28.69 5.87 17.3 46.53 6.72 25.4
DNE-VP�=10 (R↵=0.5) 29.71 5.33 22.8 45.47 6.54 26.2

We evaluate the performance of disentanglement strategies using three performance scores from 100
random samples shown in Table 9.4. Mel-cepstral distortion (MCD) measures the spectral distance be-
tween the synthesized and reference mel-spectrum features. Root mean squared error (RMSE) evaluates
the similarity in F0 modelling between reference and synthesized speech. Lastly, word error rate (WER)
evaluates the content preservation criterion. During inference, we evaluate the performance on two condi-
tions: ‘no shuffle’ and ‘shuffle’. During inference, ‘no shuffle’ feeds the same reference speech into style
and speaker encoders and its corresponding text to predict the speech features, whereas ‘shuffle’ feeds ran-
dom speech. We observe that the proposed DNE-VP� variants outperform baseline approaches without
VP regarding all evaluation metrics. Our proposed systems greatly reduced content leakage by improving
the word error rate by approximately 5-18% relative to the baseline systems. Furthermore, RMSE-F0 and
MCD scores show that the disentanglement module during training assists the TTS in achieving a more
accurate rendering of prosodic patterns and synthesizing proper speech content to its corresponding text
without any significant leakage issues.

9.5 Conclusions

We proposed a novel disentangled representation by exploiting cumulant-generating functions in
speech synthesis. Our system approximates and then minimizes the Rényi divergence between content-
style and style-speaker pairs, and it is jointly trained with TTS reconstruction loss in an adversarial man-
ner. The subjective and objective evaluation revealed that the proposed approach outperforms both the
baseline and my algorithm and is able to eliminate the issues of content and style leakage, resulting in
a truly universal TTS system. The main advantage of universal TTS is its high controllability since it
improves multi-speaker multi-style training along with better generalization ability by allowing reliable
transfer to speaker and style information.

Furthermore, reliable estimation of Rényi divergence faced challenges due to high statistical variance.
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A VP term was introduced in the loss function to overcome this. The aim was to achieve independence
between content, style, and speaker spaces. Various � values were experimented with to reduce the
statistical variance of the adversarial component, with larger � values proving beneficial in this context.



Chapter 10

Enhancing Speech Intelligibility in TTS
using Speaking Style Conversion

10.1 Introduction

Over the years, text-to-speech (TTS) systems have become more prevalent, and they have a substantial
range of applications, including personal voice assistants, public address systems, and navigation devices.
In a quiet environment, the intelligibility of synthetic speech corresponds to that of natural speech. How-
ever, the intelligibility typically falls below the natural speech level in noisy conditions [CMVB+13c].
Listeners in real-world scenarios often hear speech in noisy surroundings where the intelligibility of syn-
thetic speech is also compromised. Therefore, highly efficient TTS systems which are able to simulate
Lombard effect and make the speech more intelligible are essential for the end listeners. Such speaking
style conversion retains the linguistic and speaker-specific information of the original speech.

Few studies have explicitly adapted Lombard speech onto speech synthesis models by focusing on
articulatory effort changes [RSVA11, PDD14]. Previously, the majority of such studies were conducted
using hidden Markov model (HMM)-based statistical parametric speech synthesis (SPSS) due to its su-
perior adaptation abilities and flexibility. The HMM model trained on normal speech was then adapted
using a small amount of Lombard speech and improvements were shown under different noisy condi-
tions [CMVB+13c]. Yet, these approaches were limited to poor acoustic modelling and the inability to
synthesize high-fidelity speech samples. To overcome this, deep neural network approaches were imple-
mented where the robustness of acoustic modelling is improved by efficient mapping between linguistic
and acoustic features. Inspired by the success of adversarial generative models, Cycle-consistent adversar-
ial networks (CycleGANs) showed promising results in terms of speech quality and the magnitude of the
perceptual change between speech styles [SJY+19, SJA+19]. An extension to recurrent neural networks
and particularly long short-term memory networks (LSTMs) was proposed that it successfully adapted
normal speaking style to Lombard style [BAA17]. In [BJA+19b], the authors demonstrated results with
sequence-to-sequence (seq2seq) TTS models along with the recently proposed Wavenet vocoder, where
the audio samples are generated through a non-linear autoregressive manner. Along with different adapta-
tion approaches, various TTS vocoders are compared in the context of style transfer and assessment was
performed in terms of speaking style similarity and speech intelligibility [SJRA19, BJA+19a].

A sizable amount of training data is required to train a TTS system with Lombard style. However, the
collection of a large portion of Lombard speech is difficult. Such data sparsity limits the usage of typical



136 Improving Generative Adversarial Networks and its Applications in Speech Synthesis

data-driven approaches similar to the recent end-to-end TTS systems. Our work considers the use of
speaking style adaptation techniques leveraging on large quantities of widely available normal speech data
referred to as transfer learning. It assumes the prior knowledge from a previous model trained with large
variations in linguistic and acoustic information. It adapts to the target styles even with a limited amount of
data. In the literature, most of the vocoders for style transfer in TTS systems are either source-filter based
models or convolutional models [SJRA19, BJA+19b]. However, such techniques are limited by their
inefficiency both in modelling proper acoustic parameters and in the computational complexity of sample
generation. Inspired by the performance and computational aspects of recurrent neural networks, in this
work, we employ WaveRNN as a vocoder [KES+18], which generates speech samples from acoustic
features, i.e., mel-spectrograms. Experimental results indicate that WaveRNN is capable of adapting to
appropriate target speech styles and able to provide more stable high-quality speech samples. To generate
the mel-spectrograms from text, we utilize a popular architecture Tacotron, a seq2seq encoder–decoder
neural network with attention mechanism [WSRS+17].

Improvement of speech intelligibility in noise can also be achieved by signal processing techniques
such as amplitude compression [NG76], changes in spectral tilts [LC09], formant sharpening and dynamic
range compression [ZS14]. The method Spectral Shaping and Dynamic Range Compression (SSDRC) has
been shown to provide high intelligibility gains in various noisy conditions by redistributing signal energy
on time-frequency information [ZKS12]. In [VBYKS13], the best performing method was achieved by
applying additional processing, i.e., dynamic range compression after generating Lombard-style adapted
TTS. The results, however, failed to increase the intelligibility under competing-speaker noise. In order
to develop a highly intelligible communication system and restrict the latency imposed by additional pro-
cessing after the TTS synthesis. Here, we implement Lombard-SSDRC TTS where the TTS model is
trained with Lombard speech processed through the SSDRC algorithm. Hence, we combine the advan-
tages of naturally-modified Lombardness with speech enhancement strategies in the frequency domain
(spectral shaping) and in the time domain (dynamic range compression) into an intelligibility-enhanced
TTS synthesis system.

10.2 Factors defining speech intelligibility

The understanding of speech is influenced by various factors, including the clarity of articulation,
the sensitivity of the listener’s ear, the language proficiency of both the speaker and the listener, and the
quality of the communication environment. When speakers perceive a loss of intelligibility, they adjust
their articulation to facilitate communication.

Two main categories of speech production changes have been identified: (1) those based on the inter-
locutor, such as foreign-directed speech (FDS) or machine-directed speech (MDS), and (2) those based
on the communication environment, such as Lombard speech (LS) or speech addressed to a distant lis-
tener. Each category exhibits unique features. For instance, LS is produced with increased vocal effort
to maximize speech audibility in noisy conditions where clarity may be compromised, while FDS often
demonstrates reduced lexical variability and clearer intonation patterns [UKB07, FAFZ12]. However, the
boundaries between these categories are not absolute, as they share many acoustic and phonetic features.

Although there is intra-speaker variability within each speaking style, previous studies have reported
clear acoustic and phonetic changes associated with individual production changes. This section provides
a brief summary of the observed acoustic-phonetic changes in both interlocutor-induced and environment-
induced modifications and their impact on listener intelligibility.

Lombard styles exhibit a decreased speaking rate, resulting in longer phone durations than casual or
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normal speech [PDB86, Lu09]. The decrease in speaking rate is also accompanied by an increase in the
number of pauses and the duration of various sound segments. Bradlow et al. [BKH00] observed an
overall increase in sentence duration of 51% and 116% for male and female speakers, respectively when
transitioning from casual to clear speech. Cooke et al. [CMV14] conducted experiments by artificially
modifying speech durations and evaluated their impact on listener intelligibility, but no clear benefits were
observed with durational modifications. Nevertheless, speaking slowly with appropriate pauses can give
listeners sufficient time to process and comprehend the message effectively.

Analysis of the energy difference between consonants and vowels has shown an increased consonant-
to-vowel energy ratio (CVR) in clear speech compared to casual speech [BKH03]. Hazan and Markham
[HM04] investigated the correlation between CVR and intelligibility and found no significant correlation
between word intelligibility and CVR for nasals, fricatives, and stop consonants in naturally produced
speech. However, studies have demonstrated that enhancing consonant energy in words, consonant-vowel
syllables (CV), and vowel-consonant-vowel (VCV) syllables improves consonant identification for both
normal hearing listeners [HS98, GS86] and hearing-impaired listeners [GS87, ME88]. Building on these
findings, Skowronski and Harris [SH06] performed energy redistribution from vowels to consonants,
which was shown to improve speech intelligibility. Similarly, Godoy and Stylianou [GS12] evaluated
the contributions of voiced and unvoiced regions to Lombard intelligibility and found that the increase in
Lombard intelligibility is primarily attributed to vowel segments of the speech signal.

Short-term spectral analysis (STSA) allows the examination of the frequency information of speech
at different time points. STSA has revealed that vowel sounds in clear speech exhibit higher spectral
prominences than in casual speech.

Based on this observation, Krause [Kra01] amplified the magnitudes of the first and second formants
in segments of casual speech to match the spectral characteristics of clear speech. This formant sharpening
technique enhanced the intelligibility of casual speech for normal-hearing listeners but had limited benefits
for the hearing impaired [Kra01].

Further analysis of the spectral differences between casual and clear speech was conducted in [KS14].
A mixed-filtering technique was developed to isolate the information from clear speech and incorporate it
into casual speech to improve intelligibility, which proved beneficial for enhancing intelligibility in noisy
environments.

The analysis of the long-term average spectrum (LTAS), which is the spectral information averaged
over time, revealed an increase in energy within the frequency region spanning formants for Lombard
speech compared to normal articulation. This increase in energy resulted in a reduction in spectral tilt.
A similar, albeit less pronounced, tendency was observed in the case of clear speech compared to casual
speech [HM04]. Godoy et al. [GKS14] further investigated the influence of relative spectral amplitude
differences between different speech styles on speech intelligibility. Figure 2.5 depicts the LTAS differ-
ence between Lombard and normal speech, as well as clear and casual speech. The figure illustrates that
Lombard speech exhibits a noticeable increase in average energy within the 500-4500 Hz frequency band
compared to normal speech, while the exaggeration of spectral content is less pronounced in clear speech
compared to casual speech. This migration of spectral energy from low and high frequency bands to the
mid-frequency range is attributed to the increased intelligibility of these speech styles.

In line with this investigation, Lu and Cooke [LC09] artificially redistributed the spectral energy of
normal speech to match that of Lombard speech, thereby reducing the spectral tilt of the overall spectrum.
This reduction in spectral tilt was found to improve speech intelligibility in noisy environments.

Vowel sounds can be categorized based on the position of articulation. The positioning of articulators
is reflected in the formants of each vowel sound, particularly the first (F1) and second (F2) formants,
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Figure 10.1: Average relative spectra for all frames (from Godoy et.al [GKS14]).

which together constitute the two-dimensional vowel space. Analysis of the correlation between vowel
space and intelligibility has shown that speakers with larger vowel spaces tend to be more intelligible than
those with reduced vowel spaces [HM04, BTP96]. Specifically, speakers with a wider range of F1 values
appear to produce highly intelligible speech. Additionally, the F2 range has been found to be significantly
correlated with sentence intelligibility [HM04] but less so with word intelligibility [BTP96]. Studies by
Godoy et al. [GKS14] have also revealed an expansion of vowel space in clear speech compared to casual
speech, while no such expansion is observed in Lombard speech. However, Lombard speech consistently
exhibits an increase in F1 frequency, resulting in a shift in vowel space.

Motivated by the observation of vowel space expansion in clear speech, frequency wrapping tech-
niques were tested in attempts to achieve vowel space expansion [MKS12, GKS14]. However, these
techniques did not yield improvements in intelligibility. On the other hand, since formants and their tran-
sitions play a crucial role in perceiving and classifying different sound segments, sharpening the formants
using statistical approaches has been found to be helpful in improving intelligibility in noise [ZKS12].

A variation in the speaker’s fundamental frequency (F0) is also observed in Lombard speech [SB06].
This variation may contribute to the improved intelligibility associated with this style. However, modi-
fying the F0 characteristics of normal speech to match those of Lombard speech did not enhance word
recognition intelligibility in noise for normal listeners [LC09]. Furthermore, artificial flattening of F0
was found to degrade intelligibility [LB03, WS08], leaving the true impact of F0 on speech intelligibility
uncertain.

Speech, as a real-valued signal, can be decomposed into a set of amplitude-modulated (AM) signals
with carrier frequencies falling within the signal bandwidth [DFP94]. The temporal variation of these AM
components is called the modulation of speech over time. Studies on clear speech have revealed higher
modulation depths for temporal envelopes, which appear to correlate with the intelligibility advantage of
clear speech [KB04b, LZ06]. The study by Drullman et al. [DFP94] demonstrated that smearing low-
frequency modulations resulted in intelligibility degradation, with modulation frequencies in the range of
4 to 16 Hz being the most relevant for intelligibility. The modulation index metric is used to quantify
the modulation depth of temporal envelopes [HS85], traditionally serving as a benchmark measure for
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speech intelligibility in noisy and reverberant conditions. This argument is supported by studies in neuro-
science, which show that speech is decomposed in the auditory cortex into spectro-temporal modulation
content, and perception is driven by sounds that combine both temporal and spectral modulations effec-
tively [MS05, SZ09, KDS96]. Consequently, modulation domain processing of speech has been proposed
for applications such as noise reduction and echo cancellation, as it better isolates masking components
[WL12, SJS18, JSS16]. Transplanting enhanced amplitude modulation from clear speech to casual speech
has contributed to improved intelligibility in noise [KS16]. In a recent study, Bosker and Cooke [BC20]
observed the same trend in Lombard speech, with enhanced modulations in the frequency range of 1-8
Hz. Subsequently, they demonstrated that transplanting Lombard amplitude modulation onto plain speech
yielded additional intelligibility benefits, emphasizing the importance of amplitude modulation for speech
intelligibility.

10.3 Spectral shaping and dynamic range compression (SSDRC)

Inspired by the intelligibility benefits of various speaking adaptations, artificial modification of speech
to improve its intelligibility by altering the acoustic features has been recommended. Among the multi-
tude of features contributing to intelligibility, spectral energy redistribution and increasing consonant-
to-vowel ratio with dynamic time-domain energy reallocation were found to contribute largely to the
intelligibility benefits in noise [RVD09, GKS14]. A combination of spectral shaping (SS) and dynamic
range compression (DRC) was proposed in the work of Zorila et. al [ZKS12] as the SSDRC algorithm.
SSDRC was tested in various listening settings on different languages since its introduction and has
been found to produce the best intelligibility benefit in noise for normal and hearing-impaired listen-
ers [CMVB13a, CMVB+13c, ZSFM17, SSCS20]. Therefore, we consider the SSDRC style over many
natural styles as a reference for our research because it produces the highest intelligibility. Since the
feature modifications elicited by SSDRC are used in the neural network architectures in the following
chapters, a brief description of the SSDRC algorithm must be informative at this stage. SSDRC performs
a two-stage speech processing to increase its intelligibility: 1) spectral shaping in the frequency domain
and 2) dynamic range compression in the time domain.

10.3.1 Spectral shaping (SS):

In the initial phase of the enhancement framework, the SS module serves as an adaptive spectral
shaper in the Fourier domain. Its primary objective is to impart a ”crisp” and ”clean” quality to speech by
sharpening formants, as these formants play a crucial role in speech perception and contribute significantly
to intelligibility, even under quiet listening conditions.

The entire process is carried out adaptively based on the voicing probability.

This module takes a plain speech signal, denoted as x(t), as its input. The processing is performed
frame-by-frame, where each frame has a fixed duration. The Discrete Fourier Transform (DFT) is applied
to each frame, resulting in the magnitude spectral components denoted as X(w, t). Adaptive shaping is
applied considering the voicing probability, which helps avoid processing artefacts in regions with fewer
sonorant characteristics, such as fricatives.

The voicing probability is determined using the following equation:

Pv(t) = ↵
rms(t)

z(t)
(10.1)
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where ↵ = 1/max (Pv(t)) is a normalization constant, and rms(t) and z(t) is the RMS value and zero
crossings of the segment, respectively, for a window centred around the instant t with the length of 2.5
times the fundamental period (8.3 ms and 4.5 ms for male and female voices, respectively).

For every DFT frame X(!, t), we employ the SEEVOC spectral envelope estimator [Pau81] on the
magnitude spectrum to obtain the envelope estimate E(!k). Subsequently, we calculate the spectral
envelope’s tilt T (w) as follows:

log T (!) = c0 + 2c1 cos(!), (10.2)

where the variable cm denotes the m
th cepstrum coefficient computed as

cm =
1

N/2 + 1

N/2X

k=0

logE (!k) cos (m!k) . (10.3)

Therefore, the final adaptive spectral shaper has the transfer function function (over frame instance t)

Hs(!, t) =

✓
E(!, t)

T (!, t)

◆�Pv(t)

. (10.4)

In this way, the formant inclusive regions of voiced spectra are sharpened by selectively isolating the
unvoiced segments with parameters Pv(t). The variable � was set to 0.25 in most cases.

Figure 10.2: Spectral shaping fixed filter

Previous research has indicated that pre-emphasizing the spectrum above 1100 Hz enhances intelligi-
bility in noisy environments [NG76]. Therefore, we employ an adaptive pre-emphasis filter as the second
spectral shaping filter.

To avoid introducing a noisy quality to the speech during the filtering process, we utilize an adaptive
pre-emphasis technique that is adapted based on the voicing probability. The following transfer function
characterizes this adaptive pre-emphasis filter:
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Figure 10.3: Input-Output Envelope Characteristic (IOEC) Curve

Hp(!, t) =

8
<

:

1 !  !0

1 +
! � !0

⇡ � !0
gPv(t) ! > !0

(10.5)

where !0 = 0.125⇡ for 16 kHz sampled speech, and the variable g is selected to 0.3.

Therefore, the adaptive cascaded spectral filtering can be expressed as

YaSS(!, t) = Hs(!, t)Hp(!, t)X(!, t). (10.6)

Drawing inspiration from the spectral characteristics of Lombard Speech, we incorporate a fixed spec-
tral gain filter as the final step to enhance energy in the mid-frequency range of the spectrum. This filter,
denoted as Hr(w), is non-adaptive or time-invariant. It increases the amplitudes of frequencies within the
range of 1000 to 4000 Hz by 12 dB, while simultaneously attenuating components below 500 Hz with
a slope of 6 dB per octave. This Lombard-inspired filter’s transfer function is illustrated in Figure 10.2,
and it aligns with the average spectral distribution observed in Lombard-style speech, as demonstrated in
Figure 10.1.

Consequently, the output of the entire spectral shaping process is the final spectral-shaped signal,
which is obtained by applying the Lombard-inspired spectral gain filter.

YSS(!, t) = Hr(!, t)YaSS(!, t). (10.7)

Inverse Fourier transforms with overlap and add technique reconstructs the spectral-shaped waveform.

10.3.2 Dynamic range compression (DRC):

Following the spectral shaping module, the speech signal undergoes amplitude compression using a
dynamic range compressor (DRC). The primary objective of the DRC is to reduce the variations in the
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envelope of the signal. To achieve this, the gain applied by the DRC is derived from a desired input/output
envelope characteristic (IOEC) curve. In the SSRC algorithm, the IOEC utilized is depicted in Figure
10.3, which consists of three distinct zones: unity gain, expansion, and compression.

Initially, the envelope of the speech signal is computed by employing the analytic signal technique
with the assistance of the Hilbert transform. This results in the envelope estimation, denoted as e(n). The
estimated envelope, e(n), is then subjected to dynamic compression with a release time constant of 2 ms
and an almost instantaneous attack time constant. This compression process can be expressed using the
following formulation:

ê(n) =

(
ar ê(n� 1) + (1� ar) e(n), if e(n) < ê(n� 1)

aaê(n� 1) + (1� aa) e(n), if e(n) � ê(n� 1)
(10.8)

where the time constants are set to be ar = 0.15 and aa = 0.0001.

The 0 dB reference level of the envelope e0 were set to the 30% of the maximum of the input signal
envelope. With this reference value, the input envelope is computed as

ein(n) = 20 log10 (ê(n)/e0) . (10.9)

The corresponding output level eout(n) is obtained by projecting ein(n) onto the IOEC curve in Figure
10.3 and the equivalent gain is computed as:

g(n) = 10(eout(n)�ein(n))/20.

Therefore, the dynamic range compressed signal would be

sg(n) = g(n)s(n).

To ensure that the loudness remains unchanged, the global energy of the output signal, denoted as
sg(n), is rescaled to match that of the original unmodified speech. This rescaling process guarantees that
the overall energy level of the modified speech aligns with that of the original signal, thereby maintaining
consistent loudness.

Figure 10.4 illustrates the alteration induced by the spectral shaping and dynamic range compression
(SSDRC) algorithm on a speech segment. The dynamic range of the SSDRC output is lower compared
to the original signal. This reduction in dynamic range helps amplify low-intensity phonemes such as /p/
and /k/, contributing to improved intelligibility. However, it should be noted that this amplification comes
at the cost of reducing the intensity of high-sonorant segments. Additionally, both the original signal and
the SSDRC output have equal root mean square (RMS) energy, ensuring that the increase in intelligibility
is not a result of direct signal amplification.

Controlled modifications of speech, such as those introduced by the SSDRC algorithm, can enhance
intelligibility for listeners in noisy or distant environments. However, it is crucial to recognize that these
modifications also alter the natural modulations of the speech signal, leading to a degradation in signal
quality or naturalness. As a result, careful consideration must be given to parameters such as � in the
spectral shaping and the attack (aa) and release (ar) time constants in the dynamic range compression of
SSDRC when using the algorithm for different applications.

Furthermore, variations in pitch-period between male and female voices can impact quantities like
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Figure 10.4: Speech waveform modified for intelligibility with SSDRC algorithm.

the window size used for computing the voice probability Pv(t), which in turn can affect the quality
and intelligibility of the output signal. Selecting appropriate trade-offs between quality and intelligibility
becomes an application-specific task, considering the specific requirements and priorities of the intended
use. For instance, in high-noise conditions, effortless message understanding is crucial, while in quiet
environments, high quality and naturalness may be preferred. However, it is important to note that the
scope of this thesis is limited to extremely low signal-to-noise ratio (SNR) listening scenarios, where
maximizing intelligibility or message understanding is of paramount importance, with less emphasis on
preserving naturalness. The debate surrounding the trade-off between quality and intelligibility extends
beyond the scope of this thesis.

10.4 Neural TTS architecture

The proposed TTS system comprises two separately trained neural networks: (a) Tacotron, which
predicts mel-spectrograms from text and (b) WaveRNN vocoder, which converts the mel-spectrograms
into time-domain waveforms.

10.4.1 Tacotron

Tacotron [WSRS+17] (Figure 10.5) is a seq2seq architecture with an attention mechanism, and the
encoder-decoder neural network framework heavily inspires it. The system has two main components:
(a) an encoder and (b) an attention decoder. The encoder consists of 1-D convolutional filters, followed
by fully-connected (FC) layers and a bidirectional gated recurrent unit (GRU). It takes text as input and
extracts sequential representations of text. The attention decoder is a set of recurrent layers which pro-
duces the attention query at each decoder time step. The input to the decoder RNN can be produced by
concatenating the context vector and output of the attention RNN. The decoder RNN is basically a 2-layer
residual GRU, whereas the attention RNN has a single GRU layer. The output of the attention decoder is
a sequence of mel-spectrograms, which is then passed to the vocoding stage.
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Figure 10.5: Block diagram of Tacotron architecture.

10.4.2 WaveRNN

The implemented WaveRNN vocoder is based on the repository1 which in turn is heavily inspired by
WaveRNN training [KES+18]. This architecture combines residual blocks and an upsampling network,
followed by GRU and FC layers, as depicted in Figure 8.3.

The architecture can be divided into two major networks: the conditional network and the recurrent
network. The conditional network consists of a pair of a residual network and an upsampling network
with three scaling factors. At the input, we first map the acoustic features, i.e., the mel-spectrograms to a
latent representation with the help of multiple residual blocks. The latent representation is then split into
four parts which are later used as input to the subsequent recurrent network. The upsampling network is
implemented to match the desired temporal size of the input signal. The outputs of these two convolutional
networks, i.e., residual and upsampling networks, along with speech, are fed into the recurrent network.
As part of the recurrent network, two uni-directional GRUs are employed with a few FC layers. By design,
such a network not only reduces the overhead complexity with fewer parameters but also takes advantage
of temporal context, resulting in better prediction.

In addition, we apply continuous univariate distribution to be a mixture of logistic distributions [OLB+18b],
which allows us to calculate the probability of the observed discretized value easily. Finally, discretized
mix logistic loss is applied to the discretized speech samples.

1https://github.com/fatchord/WaveRNN

https://github.com/fatchord/WaveRNN
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10.5 Transfer learning

Most deep learning methods perform well under the standard assumption that the training and in-
ference data are drawn from similar feature space and data distribution. When the distribution changes,
models must be trained from scratch using new training data. Under the condition of data scarcity, such
as in our case for Lombard data, training a new model on such a limited sample size might lead to poor
execution. In such cases, transfer learning (TL) offers a desirable and extremely important adaptation
framework [PY09]. Assuming that there are two tasks, the source task and the target task, TL tries to
boost the performance of the target task by utilizing knowledge learned from the source task via fine-
tuning prior distributions of the hyper-parameters.

LJSpeech 
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TL Nick 
(Normal)

LJSpeech 
(Normal)

TL Nick 
(Normal)

Nick 
(Lombard)

TL

LJSpeech 
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TL Nick 
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(SSDRC)

TL
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TTS

Lombard 
     TTS

SSDRC 
   TTS

Lombard
 SSDRC 
   TTS

Figure 10.6: A functional block diagram of the proposed adaptation techniques used in this study. Each block
represents a TTS system (Tacotron + WaveRNN), which takes text as input and generates speech samples.

We develop four TTS systems based on the speaking styles: normal TTS, Lombard TTS, SSDRC
TTS and Lombard-SSDRC TTS. To effectively transfer the prior knowledge, we initially train the TTS
system with normal speech (single female speaker from LJSpeech corpora), which has a large amount of
linguistic variability. Then, we adapt the learned model with normal speech from a male speaker (Nick).
This normal TTS serves as the baseline system for our experiments. The Lombard TTS system is then
fine-tuned using the TL approach on the limited Lombard data from the same male speaker (Nick) again.
Whereas SSDRC TTS uses training data processed with the SSDRC algorithm applied to Nick’s normal
speech. The last TTS system is fine-tuned on data that is prepared by applying SSDRC algorithm on
Nick’s Lombard speech, referred to as Lombard-SSDRC TTS. Please note that all proposed TTS systems
comprise Tacotron and WaveRNN modules [PPSed], and each module is trained separately using data
from the corresponding target speech style.

10.6 Database and Hyperparameters Selection

The proposed TTS systems are trained using two publicly available databases, i.e., LJSpeech corpus
[Kei17] and Nick Hurricane Challenge speech data [CMVB+13b]. LJspeech comprises 13,100 short au-
dio clips of a single female professional speaker reading passages. The Nick data has both normal and
Lombard styles of British male voice professional speech. The normal speech consists of 2592 utter-
ances (⇠2 hours), whereas the Lombard speech data has 720 utterances (⇠30 minutes). During training,
we always consider 2400 utterances for normal and 500 utterances for Lombard speech. We addition-
ally compare with the baseline Lombard TTS system, which is built on Tacotron and WaveNet archi-
tecture [BJA+19b]. The WaveNet configuration used in their system consists of three repetitions of a
10-layer convolution stack with exponentially growing dilations, 64 residual channels and 128 skip chan-
nels, whereas the Tacotron architecture is similar to ours. The proposed Tacotron and WaveRNN models
use 80-dimensional normalized mel-spectrograms extracted from audio frames of width of 50ms, hop
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Table 10.1: SIIB
Gauss intelligibility measure at different SNR levels under speech-shaped and

competing-speaker noise.

Systems SSN CSN
-10 dB -5 dB 0 dB -21 dB -14 dB -7 dB

TTS 15.03 26.80 42.43 13.3 17.86 28.27
Lombard TTS [BJA+19b] 17.89 33.89 54.53 9.91 18.1 36.21

Lombard TTS (ours) 20.02 37.43 58.65 13.52 22.51 41.65
SSDRC TTS 29.90 51.02 77.97 16.73 29.75 55.56

Lombard-SSDRC TTS 35.04 58.68 88.35 19.13 35.84 68.35

length of 12.5ms, and 2048-point Fourier transform. In Tacotron, character embeddings are set to 256,
and a progressive training schedule is employed to reduce batch size from 32 to 8. WaveRNN architecture
is based on a set of 10-layer convolution stacks inside residual blocks followed by 2 GRUs. Each GRU
has 512 hidden units. Code and audio samples can be found in 2.

10.7 Observations and discussion

Objective intelligibility scores are computed first for the five style adapted methods (TTS, Lom-
bard TTS [BJA+19b], proposed Lombard TTS, also refer to as Lombard TTS (ours), SSDRC TTS and
Lombard-SSDRC TTS) under two different noisy conditions. A recently developed intelligibility metric
called ‘speech intelligibility in bits’ (SIIBGauss) [VKKH18] is implemented as an objective evaluation
metric. It considers the information capacity of a Gaussian channel between clean and noisy signals.
Higher values refer to better intelligibility. The scores are evaluated from 250 utterances, and each adap-
tation approach has 50 distinct utterances. Table 10.1 presents SIIB

Gauss intelligibility scores. We
consider three different Signal-to-Noise Ratio (SNR) levels masked with two types of noise: speech-
shaped noise (0, -5 and -10 dB) and competing-speaker (-7, -14 and -21 dB). Since we are focusing on
the context of TTS, we omitted the scores for natural speech in our experiments.

It can be observed that the standard synthesis system trained with normal speech, referred to here as the
speech type ‘TTS’, is the worst performer when compared to the rest of the methods under any condition
as expected. To enhance the intelligibility, TTS is re-trained with limited Lombard style data. We observe
that the proposed Lombard TTS i.e., Lombard TTS (ours) is able to mimic the Lombardness successfully
and outperforms baseline Lombard TTS from [BJA+19b] with a relative improvement between 8% and
12% in SSN and 15% to 36% in CSN conditions across different SNR levels: from low to high SNRs.
The results also show high performance gain of 18% and 36% in Low SNR i.e., -10 dB for SSN and -21
dB in CSN conditions, respectively. The use of WaveRNN instead of WaveNet vocoder as in the baseline
Lombard TTS, demonstrates how the choice of vocoder affects the intelligibility of synthesized speech.
WaveRNN effectively adapts to the new style while trained with a limited amount of target style data.
Furthermore, considering the SSDRC approach, we aim towards additional intelligibility gains under
adverse noise conditions. Our results reveal that SSDRC TTS archives further improvement compared
to the Lombard TTS. Motivating by the boosting effect of Lombard style, along with the enhancement
by SSDRC data in terms of speech intelligibility, the proposed Lombard-SSDRC TTS shows significant
intelligibility gains between 110% and 130% in SSN, and 47% to 140% in CSN against TTS. Those
results can be attributed by the fact that the combined model exploits efficiently both Lombardness and
spectral shaping with range compression by modifying time-frequency regions.

2https://dipjyoti92.github.io/TTS-Style-Transfer/

https://dipjyoti92.github.io/TTS-Style-Transfer/
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To assess the performance on subjective evaluation, metric scores were computed based on the number
of keywords correctly identified in each sentence. The short common words ‘a’, ‘the’, ‘in’, ‘to’, ‘on’,
‘of’, and ‘for’ were excluded. The listening test was conducted via a web-based interface and ten native
listeners participated in the test. No listener heard the same sentence twice, and each condition was
heard by the same number of listeners. Since intelligibility level varies from one listener to another and
large variability in scores can be possible when listeners use different hearing devices or backgrounds,
intelligibility gains should be observed from a common reference point. This was achieved by designing
an initial pilot study where subject-specific SNR levels are matched with the speech reception threshold
(SRT) at which 40% of normal speech is intelligible for each individual listener. In the final listening test,
we choose SNR levels based on the values obtained from the pilot study for each listener individually.

Figure 10.7: Box plot results for listeners’ keyword scores across of methods for SSN and CSN.

Box plots reported in Figure 10.7 allow comparing different TTS modification algorithms. The subjec-
tive results reveal a similar pattern to the objective metrics. The proposed Lombard-SSDRC TTS outper-
forms all other methods by a remarkable margin under all noisy conditions. Lombard-SSDRC TTS shows
superior performance by achieving a remarkable relative improvement of 455% for SSN and 104% for
CSN in the median keyword correction rate compared to the TTS method. It is worth noting that the per-
formance gains are immensely higher in SSN conditions, although we observe outstanding performance
gains in both noisy conditions. Moreover, the comparison between Lombard TTS [BJA+19b] and Lom-
bard TTS (ours) adaptation methods highlights that Lombard TTS (ours) method achieves significantly
better performance in terms of keyword correction rate. This confirms the adaptability of WaveRNN for
limited data scenarios and shows its effectiveness in the transfer learning approach. The results indicate a



148 Improving Generative Adversarial Networks and its Applications in Speech Synthesis

relative improvement of 136% in SSN and 16% in CSN compared to Lombard TTS [BJA+19b] in terms
of median keyword correction rate.

10.8 Conclusions and perspective

In summary, we built and evaluated a set of intelligible TTS systems for various speaking styles with
the help of transfer learning in Tacotron + WaveRNN architecture. The synthesized voice was adapted
to two strategies: Lombard-style recordings and SSDRC algorithm. First, we showed that the Lombard-
adapted TTS system (ours) is able to learn the Lombard style under limited training data successfully and
outperforms the baseline Lombard TTS system [BJA+19b] by a significant margin when masked either
with SSN or CSN noise. This shows the advantage of applying a neural-based WaveRNN vocoder and its
importance in achieving highly intelligible Lombard synthetic speech.

The SSDRC adaptation of TTS was found to improve further the intelligibility substantially compared
to both the normal and Lombard-adapted TTS systems in objective metric. Furthermore, to enjoy larger
intelligibility gains, we combined the benefits of Lombardness with the SSDRC modification strategy.
Experiments on both objective and subjective intelligibility scores confirmed that the combined system
contributed to significant gains under all noisy conditions.

In conclusion, these observations further underline the fact that neural networks can be optimized to
learn various speaking styles and generate intelligible speech in adverse conditions, an observation that
was reported in the previous chapter with speech input.



Chapter 11

Conclusions and Future Work

11.1 Overview

This thesis represents a comprehensive exploration of the potential of neural networks across various
algorithmic levels and applications in the domains of image and speech synthesis. The findings underscore
the critical importance of algorithmic advancements in the realm of artificial intelligence and demonstrate
their versatility in a wide array of applications. This research serves as a testament to the adaptability
and effectiveness of neural networks, showcasing their ability to drive innovation and address diverse
challenges in today’s technology-driven world.

Our thesis introduces the innovative WeGAN training algorithm, which has shown substantial im-
provements in GAN performance compared to traditional training methods. We demonstrate WeGAN’s
adaptability, highlighting its versatility, by applying it to various GAN architectures. We conducted bench-
mark experiments on synthetic data drawn from a mixture of 8 normal distributions and real-world datasets
such as CIFAR and ImageNET. The results indicate that our new algorithm converges to the data distri-
bution more rapidly than the vanilla GAN, resulting in enhanced performance compared to the baseline
training procedures.

Furthermore, WeGAN’s applicability extends beyond specific GAN types, making it a versatile tool
for many applications. We extended our weighting approach to the domain of voice conversion, intro-
ducing WeStarGAN, an algorithmic variation of StarGAN capable of non-parallel multi-domain voice
conversion tasks. Despite minor additional computational costs, this approach significantly improved the
training process by strengthening the generator at each minibatch iteration. Subjective evaluations showed
notable enhancements in speech quality and speaker similarity when compared to baseline methods. Our
research thus demonstrates the potential of WeGAN and related techniques to enhance GAN performance
across various applications, from data synthesis to voice conversion, offering promising avenues for future
research and development in the field of generative adversarial networks.

Although GANs have achieved impressive results, their training process can often be unstable and
require extensive experimentation to find the right loss function, optimization algorithm, and architecture.
In this thesis, we focused on addressing the challenge of loss function selection and introduced a novel
loss function based on cumulant generating functions, resulting in the Cumulant GAN. Using Cumulant
GAN’s loss function, grounded in cumulant generating functions, provides a comprehensive way to char-
acterize distribution statistics, simplifying the discriminator’s complexity. This leads to improved and
more stable GAN training. Moreover, Cumulant GAN offers flexibility by allowing interpolation between
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various divergences and distances through simple adjustments of two hyperparameters (�, �), providing a
versatile mechanism for choosing and potentially adapting the objective to minimize.

This thesis also addresses the challenge of accurately estimating divergences, which are crucial for var-
ious machine learning tasks but often suffer from high variance, especially in high-dimensional datasets.
Common divergence estimators, like Kullback-Leibler (KL) divergence, f-divergences, Hellinger diver-
gence, a-divergences, and Rényi divergence estimators, perform well in low-dimensional scenarios but
struggle with large, high-dimensional data typical in modern machine learning.

To tackle this issue, we propose a novel approach called Variance Penalty (VP) to reduce the vari-
ance in divergence estimators. During optimisation, the VP is added to the objective function, effectively
trading off bias and variance. This thesis presents significant contributions across four key areas: Firstly,
we introduce a versatile VP that reduces variance in divergence estimators, designed specifically for f-
divergences and extended to non-linear settings like KL divergence and Rényi divergences. Second,
through extensive empirical validation on synthetic datasets, we demonstrate the VP’s effectiveness in
improving divergence estimation across diverse scenarios, enhancing both mean squared error and me-
dian absolute error. We also highlight its applicability to various mutual information bounds. Third, in
real-world applications, we deploy the VP to actual datasets, enabling more accurate estimation of Rényi
divergence and aiding in identifying rare biological subpopulations, with the added benefit of stabilizing
estimators when order values exceed one.

In this thesis, we address the challenges faced by neural vocoders, particularly in multi-speaker sce-
narios, where it’s impractical to cover all possible speaker variations during training. We propose a robust
universal SC-WaveRNN vocoder designed to synthesize high-quality speech across a wide range of speak-
ers without needing adaptation or retraining. The key innovation in our approach is the use of speaker
embeddings that encompass a diverse set of seen and unseen conditions, enhancing both the vocoder’s
controllability and generalization capabilities. SC-WaveRNN offers several advantages, including im-
proved multi-speaker vocoder training and better generalization to unseen speaker characteristics. This
speaker conditioning technique is data-efficient and computationally less demanding than training separate
models for each speaker. Subjective and objective evaluations confirm the effectiveness of our method,
demonstrating higher speech quality and speaker similarity compared to baseline approaches.

Moreover, we extend our approach to create an efficient zero-shot TTS system. This innovation shows
that our proposed zero-shot TTS, combined with a universal vocoder, can enhance both speaker similarity
and the naturalness of synthetic speech, even for seen and unseen speakers. In future work, we plan to
explore the construction of speaker embeddings and their potential applications with unseen data further,
opening up exciting possibilities for improving speech synthesis across various domains and scenarios.

In pursuing a universal TTS synthesis system capable of generating speech that mimics a reference
speaker’s characteristics and speaking style, we encounter a substantial challenge: the potential distortion
of speaker attributes and speaking style. This challenge becomes particularly pronounced in zero-shot
learning scenarios where only limited reference data is available. To tackle this challenge, we introduce a
Universal TTS framework comprising four key components: a content encoder, a style encoder, a speaker
encoder, and a speech decoder. The content encoder focuses on generating content embedding from the
input text. Meanwhile, the style encoder handles the representation of style factors, converting them
into a style embedding. The speaker encoder identifies and encodes the speaker’s identity as a speaker
embedding. The speech decoder, informed by all the embeddings, synthesizes the target speech with the
desired characteristics and style. However, a significant hurdle arises when attempting to generalize these
models to handle multiple speakers and styles using only reconstruction loss. During training, information
leaks across different embeddings, leading to issues known as “content leakage” and “style leakage.” This
means that the decoder, during inference, might expect content from the style vector or even misinterpret
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speaker attributes.

We propose a novel disentangled representation approach to overcome these issues, leveraging cumulant-
generating functions in speech synthesis. Our system approximates and minimizes the Rényi divergence
between content-style and style-speaker pairs. This joint training process, incorporating an adversarial
component, eliminates the problems of content and style leakage, resulting in a truly universal TTS sys-
tem. The primary advantage of this universal TTS approach lies in its high controllability. It enhances
multi-speaker and multi-style training while improving generalization capabilities by enabling reliable
transfers of speaker and style information. The conditioning of speaker and style attributes can be achieved
with minimal reference data in an unsupervised manner, making it a powerful tool for various TTS appli-
cations. Lastly, we integrate the VP into speech representation learning, disentangling text, speaker, and
style components, leading to significantly improved training performance over baseline systems.

The remarkable advancements in speech synthesis have opened up new avenues for improving real-
world speech communication, but the persistent challenge of background noise remains a critical issue.
Speech intelligibility, which measures the degree to which spoken content is understandable, holds im-
mense importance in diverse applications, ranging from emergency alerts to machine interactions. In this
context, our research has yielded significant contributions. We developed and evaluated a series of intelli-
gible TTS systems, utilizing transfer learning within the TTS architecture. These systems were adapted to
different speaking styles, particularly Lombard style recordings and the Speech Separation and Derever-
beration with deep Recurrent Neural Networks for Cochlear Implants (SSDRC) algorithm. Our findings
demonstrate that the Lombard-adapted TTS system outperforms baseline Lombard TTS systems, espe-
cially in the presence of both Single-Sided Noise (SSN) and Colored Stationary Noise (CSN). Moreover,
SSDRC adaptation further substantially enhances intelligibility, surpassing both normal and Lombard-
adapted TTS systems in objective metrics. The combined approach, which combines Lombardness with
SSDRC modification, yields significant gains in intelligibility under various noisy conditions. These re-
sults underscore the potential of neural networks to learn diverse speaking styles and generate intelligible
speech in adverse environments, as highlighted in the previous chapter with speech input.

11.2 Future research directions

The research conducted in this thesis has opened up various avenues for future investigations and
extensions. While the algorithms presented here represent significant advancements, they are not without
limitations and open challenges. Future research could explore these areas to enhance further the work
done in this thesis.

We introduced innovative loss functions derived from a novel approach based on the CGF; this CGF-
based replacement of expected values isn’t confined solely to the WGAN framework. It has the potential
to extend to various other GAN loss functions, leading to the development of entirely new loss functions
that can contribute to advancements in the field of generative adversarial networks. This underscores the
versatility and broader applicability of our proposed approach beyond WGAN.

Variational representations for divergences translate the estimation of divergence into an optimization
problem. It offers a valuable mathematical tool to analyze probabilistic models between multivariate
probability distributions. However, learning proper representations from these high-dimensional data is
challenging, especially when trying to distill that knowledge into useful representations. Even though
our proposed neural-based divergence estimators provide a good representation, they often have different
statistical variances that may result in unreliable divergence estimation. The future directions can be
explored by two methods that have the potential to reduce the variance of the estimators: Weighted sum
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of divergences and new families of transformations. Our superior disentanglement learning will allow a
greater degree of interpretability and controllability, especially for generative models, maintaining high
production value - be it audio or images. Therefore, the research outcome can be utilized in domains
such as Augmented Reality Audio and AR/VR Human Understanding. The following domains could
benefit from utilizing our disentanglement approach, which is able to extract useful features where high-
dimensional observed data is disentangled into a low-dimensional representation comprising semantically
meaningful factors of variation. Finally, this allows each factor to be extracted from a different distribution
and then combined together for generation purposes.

Future research directions in Universal TTS entail several critical domains. The need for enhanced
style control is evident. Users should be able to intricately define and manipulate speaking styles, al-
lowing for the expression of emotions, formality, and other nuanced characteristics. This empowers the
technology to cater to diverse user preferences and situational demands, making the synthesized speech
more personalized and adaptable. Additionally, there is a pressing requirement to improve the data effi-
ciency of Universal TTS systems. Achieving this involves investigating techniques like low-resource and
zero-shot learning. These methodologies are essential because they address the challenge of training TTS
models effectively even when limited data is available. They pave the way for systems to adapt to and
generate unseen styles, expanding the utility of TTS technology across a broader spectrum of use cases.
Furthermore, researchers should delve into the realm of unsupervised or weakly supervised style learn-
ing methods. These approaches hold the promise of allowing TTS systems to autonomously recognize
and adapt to various speaking styles without relying on explicit style labels. This autonomy is pivotal
for creating TTS systems that are highly versatile and capable of handling diverse styles and contexts
seamlessly.

Another intriguing avenue for future research would involve extending the conditioning information
with style and speaker attributes to the vocoder component in the context of Universal TTS systems.
While significant progress has been made in conditioning the acoustic models to generate speech with
specific speaking styles and speaker characteristics, extending this conditioning to the vocoder could
yield promising results. This approach would involve aligning the vocoder’s capabilities with those of
the acoustic models, allowing for a more comprehensive and synchronized control over the entire TTS
pipeline.
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