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Mining the Biomedical Literature – The MineBioText system: 
Discovery of Gene, Protein and Disease Correlations 

 

DESPOINA ANTONAKAKI 

 

MASTER OF SCIENCE  
THESIS 

 

 

ABSTRACT 
Automatic knowledge discovery from biomedical free-texts appears as a necessity 
considering the growing of the massive amounts of biomedical scientific literature. A 
special problem that makes this task more challenging, and difficult as well, is the over-
abundance and diversity of the related genomic/proteomic ontologies and the respective 
gene and protein terminologies. Specifically, a genomic/proteomic term, e.g., gene, 
protein and their functional descriptions, as well as the diseases, are referred with many 
different ways in scientific documents regarding the organization, research context and 
the naming conventions that the authors are adherent to. The work reported in this thesis 
presents methods and tools for the efficient and reliable mining of biomedical literature, 
based on advanced text-mining techniques. Specifically it covers the following R&D 
challenges: (a) Identification of gene/protein--gene/protein and gene/protein--disease 
correlations following a text mining approach. The approach utilizes data-mining and 
statistical techniques, algorithms and metrics to deal with the following problems: (i) 
identification and recognition of terms in text-references – based on an appropriately 
devised and implemented algorithmic process that utilises the Trie data-structure; and (ii) 
ranking of terms and their (potential) relations or, links – based on the MIM entropic metric 
(Mutual Information Metric) to measure the respective terms’ association strength. (b) 
Construction of a genes association network – based on the assessed terms’ (genes, 
proteins, diseases) association strengths. (c) Categorization / Classification of text-
references (mainly from the PubMed abstracts repository) into class categories utilizing an 
appropriately devised classification metric and procedure, and using the most descriptive 
(i.e, strong) associations between terms. Pre-assignment of text-references (i.e., PubMed 
abstract) to categories is performed by posting respective queries to PubMed, i.e., 
querying PubMed with “breast cancer” the retrieved documents are considered to belong 
to the “breast cancer” category. (d) Assessment on the texts’ categorization / 
classification results – based on respective PubMed abstract collections, their pre-
categorization and careful experimental set-up to measure prediction results, i.e., 
accuracy and precision. (e) Design and development of a tool – the MineBioText (Mining 
Biomedical Texts), that encompasses all of the aforementioned operations with extra 
functionalities for setting-up the domain of reference and study, e.g., gene/protein and 
disease names, their synonyms and free-text descriptions, text collections, 
parameterization of build-in algorithmic processes etc. 
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ΕΞΟΡΥΞΗ ΓΝΩΣΕΩΝ ΑΠΟ ΒΙΟΙΑΤΡΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙA – ΤΟ ΣΥΣΤΗΜΑ ΜINEBIOΤEXT: 
ΑΝΑΚΑΛΥΨΗ ΣΥΣΧΕΤΙΣΕΩΝ ΜΕΤΑΞΥ ΓΟΝΙ∆ΙΩΝ, ΠΡΩΤΕΪΝΩΝ ΚΑΙ ΑΣΘΕΝΕΙΩΝ  

 

∆ΕΣΠΟΙΝΑ ΑΝΤΩΝΑΚΑΚΗ 

ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ 

ΠΕΡΙΛΗΨΗ 

 
Η αυτόµατη ανακάλυψη γνώσεων από έγγραφα βιοϊατρικού περιεχοµένου ελεύθερης γραφής 
(free-texts) αποτελεί µια αναγκαιότητα κυρίως λόγω του τεράστιου, και συνεχώς 
αυξανόµενου, πλήθους σχετικών επιστηµονικών αναφορών. Το βασικό πρόβληµα που κάνει 
αυτόν τον στόχο περισσότερο προκλητικό και δύσκολο είναι η υπεραφθονία καθώς και η 
ποικιλοµορφία σχετικών γονιδιωµατικών ορολογιών και των εµπλεκόµενων 
γονιδιακών/πρωτεϊνικών  ορολογιών. Συγκεκριµένα, ένας γονιδιωµατικός όρος, π.χ., γονίδιο 
ή πρωτεΐνη και η περιγραφή της λειτουργία, αλλά και σχετιζόµενες ασθένειες, αναφέρονται 
µε πολλούς διαφορετικούς τρόπους σε σχετικά επιστηµονικά έγγραφα ανάλογα µε το 
ερευνητικό πλαίσιο και τις συµβάσεις ονοµατολογίας που ο συντάκτης του εγγράφου 
αποδέχεται και ακολουθεί. Η εργασία που αναφέρεται σε αυτήν την µεταπτυχιακή διατριβή 
παρουσιάζει µεθόδους και τα εργαλεία για την αποδοτική και αξιόπιστη ανακάλυψη  γνώσεων 
από τη σχετική βιοϊατρική βιβλιογραφία και αναφορές, και βασίζεται σε προηγµένες τεχνικές 
εξόρυξης γνώσης από κείµενα (text-mining). Συγκεκριµένα, συνδιαλέγεται και προσφέρει 
λύσεις στις παρακάτω ερευνητικές και αναπτυξιακές (Ε&Α) προκλήσεις: (α) Αυτόµατη 
ανακάλυψη συσχετίσεων µεταξύ γονιδίων/πρωτεϊνών και µεταξύ γονιδίων/πρωτεϊνών και 
ασθενειών. Το θέµα προσεγγίζεται µε τεχνικές και αλγοριθµικές διαδικασίες text-mining 
καθώς και τη δηµιουργία και χρήση σχετικών στατιστικών µετρικών:  (i) Προσδιορισµός, 
αναγνώριση και διαχείριση όρων σε βιοϊατρικά έγγραφα – για το σκοπό αυτό επινοήθηκε και 
προσαρµόστηκε κατάλληλα µια αλγοριθµική διαδικασία  που χρησιµοποιεί την ευέλικτη και 
αποδοτική δοµή δεδοµένων Trie, και (ii) ταξινόµηση των όρων και (των πιθανών) σχέσεών 
τους ή, συνδέσεων  – για το σκοπό αυτό η εντροπική µετρική υπολογισµού της αµοιβαίας 
πληροφορίας έχει κατάλληλα προσαρµοστεί και χρησιµοποιηθεί. (β) Κατασκευή δικτύου 
συσχέτισης γονιδίων/πρωτεϊνών (gene correlation network)  – βασίζεται στην αξιολόγηση της 
δύναµης συσχέτισης (correlation strength) των προσδιορισµένων και αναγνωρισµένων 
γονιδιωµατικών όρων στα διαθέσιµα έγγραφα. (γ) Κατηγοριοποίηση/Tαξινόµηση εγγράφων 
(κυρίως από την αποθήκη περιλήψεων PubMed) η οποία βασίζεται στην επινόηση και χρήση 
µιας µετρικής ταξινόµησης και την εισαγωγή σχετικής αλγοριθµικής διαδικασίας ταξινόµησης 
εγγράφων (texts classification) – η µετρική χρησιµοποιεί τη δύναµη συσχέτισης µεταξύ όρων 
που εµφανίζονται στα διαθέσιµα έγγραφα. Η αλγοριθµική διαδικασία  στηρίζεται στην 
εκπαίδευση (training) του ταξινοµητή εγγράφων µε βάση έγγραφα-εκπαίδευσης από τη 
βάση/αποθήκη περιλήψεων PubMed και την εκ’ των προτέρων ταξινοµησή τους (pre-
assignment to classes) από σχετικά ερωτήµατα στο PubMed, δηλ., θέτοντας το ερώτηµα στο 
PubMed "καρκίνος του µαστού" τα ανακτηµένα έγγραφα θεωρούνται ότι ανήκουν στην 
κατηγορία "καρκίνος-µαστού". (δ) Εκτεταµένα πειράµατα για την επικύρωση (validation) και 
αξιολόγηση (evaluation) αποτελεσµάτων σε σχέση µε την αξιοπιστία και ‘χρησιµότητα’ των 
συσχετίσεων που ανακαλύπτονται, καθώς και σε σχέση µε την αξιοπιστία (ακρίβεια) 
κατάταξης και ταξινόµησης εγγράφων. (ε) Σχεδίαση και ανάπτυξη ενός εργαλείου  – το 
σύστηµα  MineBioΤext, το οποίο ενσωµατώνει όλες τις προαναφερθείσες τεχνικές και 
διαδικασίες µε τις πρόσθετες λειτουργίες για τη δηµιουργία του πεδίου-αναφοράς (domain of 
reference) σε ολοκληρωµένες διαδικασίες εξόρυξης γνώσης από βιβλιογραφικές αναφορές, 
π.χ., εκµετάλλευση πολλαπλών ονοµατολογιών γονιδίων/πρωτεϊνών και ασθενειών, των 
συνωνυµών τους και των αντίστοιχων ελεύθερου-κειµένου περιγραφών τους, συλλογές 
εγγράφων, παραµετροποίηση διαδικασιών, οπτικοποίηση (visualization) αποτελεσµάτων 
κ.λπ. 

 
 
   Επόπτης: Βασίλης Χριστοφίδης 

                         Αναπληρωτής Καθηγητής 
                         Τµήµα Επιστήµης Υπολογιστών 
                         Πανεπιστήµιο Κρήτης 
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The target and main contribution of this 
thesis is the automated discovery of 
relationships among genes - over hundreds 
or thousands of them.  

The quest relies on the fact that many 
individual genes and their function are 
already discussed in the literature. The main 
assumption and the rational behind this 
approach is that common (between genes or, 
proteins) function related relevant literature 
is a strong indicator of common function 
among genes. Subsequently, it is a strong 
indicator for a correlation (or, association) 
between the referred genes/proteins. 

The vehicle towards the objective of the 
thesis relies on information retrieval and text 
mining approaches. In this setting novel 
document indexing, term (gene, protein, 
diseases) identification; and document 
categorisation methods and techniques are 
introduced. 

In this context an integrated biomedical 
literature mining system was designed and 
implemented – the MineBioText system. 

1.  Introduction   

1.1  Motivation 

After completion of the human genome 
sequencing (http://www.ornl.gov/sci/techr 
esources/Human_Genome/home.shtml) we are 
now entering the post-genomic age. The 
main focus in genomics research is switching 
from sequencing to using the genome 
sequences in order to understand how 
genomes are functioning (i.e., functional 
genomics). Approximately a decade ago, the 
concept of being able to simultaneously 
measure the concentrations of every 
transcript in the cell in a single experiment 
seemed impossible to most researchers. A 
new demanding need is raising namely, the 
linkage between the clinical and the 
‘genomics’ worlds. Identification of genes 
and proteins that affect biological function 
in humans and other organisms is a critical 
step towards the discovery of new medical 
therapies. In this context the study of 
relations (correlations and/or interactions) 
between genes/proteins, and between 
genes/proteins and diseases is vital, 
especially with the need to approach and 
realise the vision of genomic and 
individualised medicine. This is mainly 
because an individual’s (potential) genetic 
predisposition is more likely to be polygenic, 
i.e., depending from multiple genes and 
their interrelations.  
 

In a relatively recent report (Committee on Quality of Health Care in America, 2001) it 
is stated that: “What is perhaps most disturbing is the absence of real progress toward 
restructuring health care systems to address both quality and cost concerns, or toward 
applying advances in information technology to improve administrative and clinical 
processes”. Our position is that, difficulties and failures of medical decision-making in 
everyday practice are largely failures in knowledge coupling, due to the over-reliance 
on the unaided human mind to recall and organize all the relevant details. They are 
not, specifically and essentially, failures to reason logically with the medical knowledge 
once it is presented completely and in a highly organized form within the framework of 
the patient’s total and unique situation (Weed, 1991). If we are to reduce errors and 
provide quality of care, we must transform the current healthcare enterprise to one in 
which caregivers exercise their unique human capacities within supportive systems that 
compensate for their inevitable human limitations. Achieving that vision, however, 
requires that we first build the appropriate technology and enable clinicians to 
integrate it into their practices by adopting system-oriented values.  
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Systems Biology – a ‘holistic’ approach. Correlations between genotypes, gene 
regulatory networks and biochemical pathways allow the intervention and metabolic 
readjustments for combating complex diseases (Evans and Relling, 2004; Bonetta, 
2004). An ambitious direction is to attempt to model and infer gene regulatory 
networks on a global scale, or along more specific subcomponents such as a pathway or 
a set of co-regulated genes. A major obstacle is that our knowledge of transcription and 
other critical molecular level mechanisms remains incomplete, especially as refers to 
in-vivo perturbations or “noise” at various stages of regulation in molecular processes 
which could mark the difference between changes, often epigenetic, which may 
significantly affect other processes, versus those which do not. Furthermore, there are 
very few examples of regulatory circuits for which detailed information is available, and 
they all appear to be very complex.  On the theoretical side, several mathematical 
formalisms have been applied to model genetic networks. These range from discrete 
models, such as Boolean networks, as in the pioneering work of Kauffman, to continuous 
models based on differential equations, such as continuous recurrent neural networks or 
power-law formalism, probabilistic graphical models and Bayesian networks. None of 
these formalisms appears to capture all the dimensions of gene regulation and most of 
the work in this field is still very preliminary. The manual inference of pathway 
information as it occurs e.g. in the interpretation of gene expression data (Apica  et al. 
2005) is assisted with the use of pre-complied protein interaction databases, like those 
available from ingenuity, Transfac, GeneGo (Nikolsky  et al. 2005), Ariadne. A review of 
most of these tools can be found in (Bonetta 2004). Understanding biology at the system 
level -  not only gene networks, but also protein networks, signalling networks, 
metabolic networks, and specific systems, such as the immune system or neuronal 
networks - is likely to remain at the center of the bioinformatics efforts of the next few 
decades. 

Interdisciplinary Research. With the introduction of sophisticated laboratory 
instrumentation, robotics and large, complex data sets, biomedical research is 
increasingly becoming a cross-disciplinary effort requiring the collaboration of 
biologists, engineers, software and database designers, physicists etc. Techniques and 
technological infrastructure comes mainly from Bioinformatics (BI) and Medical 
Informatics (MI) – two disciplines that up to now have followed separate development 
with few contacts and synergies between them. The publication of the human genome 
has evidenced the need and the possibilities for a strong synergy between these two 
disciplines. The integration and exploitation of the data and information generated at 
all levels in both fields requires a new approach that enables a two-way dialogue 
between them that comprises data, methods, technologies, tools and applications.  
- Biomedical Informatics (BMI) is the emerging area that aims to put these two 

worlds together. The mission of BMI is to provide the technical and scientific 
infrastructure and knowledge to allow evidence-based, individualised healthcare 
using all relevant sources of information. These sources include the "classical" 
information as currently maintained in the health record, as well as new genomic, 
proteomic and other molecular-level information. Aiming at a change from late 
stage diagnosis towards early detection or even prediction of disease, BMI bears the 
potential to foster discovery and creation of novel diagnostic and therapeutic 
methods, in order to improve the health and quality of life of the individual, as well 
as the efficiency of expenditure in healthcare systems (Martin-Sanchez et al., 2004; 
Diaz, 2005).  
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1.2  Literature Data Mining 

Almost every known or postulated piece of information pertaining to genes, proteins, and 
their role in biological processes is reported somewhere in the vast amount of published 
biomedical literature. However, the advancement of genome sequencing techniques is 
accompanied by an overwhelming increase in the literature discussing the discovered genes. 
This combined abundance of genes and literature produces a major bottleneck for 
interpreting and planning genome-wide experiments. Thus, the ability to rapidly survey this 
literature constitutes a necessary step toward both the design and the interpretation of any 
large-scale experiment. Moreover, automated literature mining offers a yet untapped 
opportunity to integrate many fragments of information gathered by researchers from 
multiple fields of expertise into a complete picture exposing the interrelated roles of various 
genes, proteins, and chemical reactions in cells and organisms (Shatkay and Feldman, 2003).  

In a committee report for the US National Academy of Science Harold J.Morowitz 
argued that biological research had reached a point where “new generalizations and 
higher order biological laws are being approached, but may be obscured by the simple 
mass of data”. Now, twenty years later, those words seem to us a cruel reality as well 
as an impulsion for the development of improved computer-aided tools to aid the 
human experts. Referring to the US National Library of Medicine (NLM – PubMed, 
www.pubmed.com), the citation database published from the mid 1960s more that 4700 
biomedical journals published in over 70 countries. In 1985, the total amount of 
sequence entries found in EBI nucleotide database reached almost the size of 5000. 
Four years ago, in 2001 that number was increased about five times. The expansion of 
wider applications of intensive data technologies includes DNA and protein chips, high-
throughput protein three-dimensional structure determination and real time molecular 
and cellular imaging. This swamp of digital data seems to have a dramatic view. 

The scientific community has to deal with the handling of growing of the massive 
amounts of scientific literature, which is as well impressive. The number of review 
articles on gene technology probably exceeds the number of primary research 
publications in this field. According to NLM and the web database system there is an 
amount of metadata for more than 11 million articles (MEDLINE, 2005). There are a 
number of efficient, publicly available tools for data processing, storing and retrieving 
the information and analyzing the results in the context of existing knowledge. The 
NCBI’s web-based search system allows searching MEDLINE according to the journal and 
date of original publication, retrieval of full text of the publication.  

The increased complexity and the importance of searching the vast amount of 
bibliographic information makes the developing of improved computer-aided tools a 
necessity. The above is reinforced if we consider that this information is scattered 
throughout the published literature. Although the availability of the articles in different 
form that can be viewed from the scientists, there is a great need for a transformation 
in a computer friendly form. This is because of the limited ability to search for the 
computer the full texts such as PDF, html or text forms. It is difficult for a computer-
based algorithm to retrieve, analyze and combine the data if there are plenty of 
sources in paper-based form.  

The earliest respective works in the biomedical domain focused on tasks needing 
linguistic context and processing at level of words like identifying protein names 
[Fukuda et al., 1998] or on tasks relying on word co-occurrence [Stapley and Benoit, 
2000] and pattern matching [Ng and Wong, 1999]. During the last few years, there was 
a surge of interest in using the biomedical literature, (e.g., Andrade and Valencia, 
1997; Craven and Kumlien, 1999; Friedman et al., 2001; Fukuda et al., 1998; Hanisch et 



 

 
D. Antonakaki                   Mining the Biomedical Literature – Discovery of Gene/Protein Interactions                               18 

            MSc Thesis, Dept. of Computer Science, Univ. of Crete 

al., 2003; Jenssen et al., 2001; Leek, 1997; Rindflesch et al., 2000; Shatkay et al., 
2000; Yandell and Majoros, 2002), ranging from relatively modest tasks such as finding 
reported gene location on chromosomes [Leek, 1997] to more ambitious attempts to 
construct putative gene networks based on gene-name co-occurrence within articles 
[Jenssen et al., 2001]. Since the literature covers all aspects of biology, chemistry, and 
medicine, there is almost no limit to the types of information that may be recovered 
through careful and exhaustive mining. Some possible applications for such efforts 
include the reconstruction and prediction of pathways, establishing connections 
between genes and disease, finding the relationships between genes and specific 
biological functions, and much more. It is important to note that a single mining 
strategy is unlikely to address this wide spectrum of goals and needs [Shatkay and 
Feldman, 2003]. 

Literature data mining is the process of identifying and extracting valid, novel and 
useful nuggets of information and patterns from scientific literature. It comprises two 
technologies; text mining and information extraction (Figure 1). Literature data mining 
has progressed from simple recognition of terms to extraction of interaction 
relationships from complex sentences.  

 

 
 

Fig. 1: Data mining in the Biomedical Domain. Literature data mining in the biomedical domain tries 
aims to identify and extract valid, novel, potentially useful and ultimate understandable novel nuggets of 
information and patters in scientific literature. It combines two technologies: Information Extraction (IE) 
& Text Mining (TM). IE identifies predefined classes of entities, relations and events that are explicitly 
mentioned in the literature. TM identifies non-trivial, implicit, previously unknown and useful patters in 
text which are not explicitly mentioned in the text. 
 
 
The automated handling of text is an active research area, spanning several disciplines. 
These include the following: information retrieval, which mostly deals with finding 
documents that satisfy a particular information need within a large database of 
documents (for an introduction see, for instance, Sahami [1998], Salton [1989], Witten 
et al. [1999]); natural language processing (NLP), a broad discipline concerned with all 
aspects of automatically processing both written and spoken language (Allen, [1995], 
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Charniak [1993], and Russell and Norvig [1995] are some introductory references); 
information extraction (IE), a subfield of NLP, centered around finding explicit entities 
and facts in unstructured text (e.g., Cardie, 1997; Cowie and Lehnert, 1996). For 
instance, identifying all the positions in the text that mention a protein or a kinase 
(entity extraction), or finding all phosphorylation relationships to populate a table of 
phospohrylated proteins along with the responsible kinase (relationship extraction) are 
both IE tasks. Finally, text mining (Hearst, 1999), the combined, automated process of 
analyzing unstructured, natural language text in order to discover information and 
knowledge that are typically difficult to retrieve. 

Text mining – TM refers to the emerging research area that can be roughly 
characterized as knowledge discovery from large text collections, thus combining 
knowledge discovery and text processing methods. It uses techniques from the general 
field of data mining (Frawley et al., 1991), but since it handles unstructured data, a 
major part of the process deals with the crucial stage of pre-processing the document 
collections; term extraction (Daille et al., 1994; Frantzi, 1997), and information 
extraction. 

It is concerned mainly with the discovery of interesting patterns such as clusters, 
associations, deviations, similarities, and differences between terms, between 
documents, and between terms and documents (Feldman, 1999; Mladenic, 2000; 
Ciravegna et al., 2001).  

The current thesis reports on work done into five – (5) R&D directions: 

1. Identification of gene/protein--gene/protein and gene/protein--disease 
associations following a text mining approach. The approach utilizes data-
mining and statistical techniques, algorithms and metrics to tackle the problems 
of: (i) identification and recognition of terms in text-references – based on an 
appropriately devised and implemented algorithmic process; and (ii) ranking of 
terms and their (potential) relations or, links – based on the MIM entropic metric 
(Mutual Information Metric) to measure the respective terms’ association 
strength. 

2. Construction of a genes association network – based on the assessed terms (i.e., 
genes, proteins, diseases) association strengths. 

3. Categorization / Classification of text-references (mainly from the PubMed 
abstracts repository) into class categories utilizing an appropriately devised 
classification metric and procedure, and using the most descriptive (i.e, strong) 
associations between terms. Pre-assignment of text-references (i.e., PubMed 
abstract) to categories is performed by posting respective queries to PubMed, 
i.e., querying PubMed with “breast cancer” the retrieved documents are 
considered to belong to the “breast cancer” category. 

4. Assessment on the texts’ categorization / classification results – based on 
respective PubMed abstract collections, their pre-categorization and careful 
experimental set-up to measure prediction results, i.e., accuracy and precision. 

5. Design and development of a tool – the MineBioText (Mining Biomedical Texts), 
that encompasses all of the aforementioned operations with extra functionalities 
for setting-up the domain of reference and study, e.g., gene/protein and disease 
names, their synonyms and free-text descriptions, text collections, 
parameterization of build-in algorithmic processes etc. 
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1.3   Organization of the Thesis 

In the previous chapters we focused on the main problems met in the Biomedical 
domain which however impulse researchers from different but eventually assembled 
sections of science. The main contributions of the work are mentioned, and why 
literature data mining is the approach we followed to accomplish them.  

In chapter (2) Background work on Text-Mining and Biomedical Literature Mining Tasks 
is mentioned. How Text mining and Information retrieval are combined and the 
fundamental tasks employed by IR approaches which are also utilised in the context of 
text mining. Chapter (2.3) focuses mainly on the basic tasks and approaches of Text 
Mining in the Biomedical Domain. We initially refer to the main problems in the 
biomedical literature that have to be tackled; Term Identification and Term recognition 
Works are mentioned in chapter (2.3.1), which as well contains the ontologies in 
biomedical domain. Machine Learning Approaches, including Supervised, Unsupervised 
learning, Support Vector Machines, and hybrid approaches are reported in the next 
section. Chapter (2.3.2) deals with background work referring to Interactions Discovery 
(Inducing Gene/Protein Correlations), and the next chapters with Classification and 
Clustering Approaches (2.3.3) and Biomedical Information Extraction via Natural 
Language Processing approaches (2.3.4).  

Chapter (3) presents the main data structures, algorithms and statistical metrics used 
in this work. Chapter (3.1) deals with the Biomedical Texts Collections including 
Literature and Gene Terms that are collected; Gene and Proteins are explained as well 
as Parsing and Term Identification. In the next chapters (3.1) the TRIE data structure is 
presented, how data is structured in it, the main definitions and relations that will be 
used later are explained in (3.1.5) and (3.1.6) The next chapters (3.1.7, to 3.1.9) 
contain the main algorithms and metrics used in order to extract the Gene Association’s 
Networks. After the weight assignment, the term frequency is measured according to 
the well-established formula of MIM and a gene association’s network is extracted in 
chapter (3.1.9). In chapter (3.1.10) the classification method is described, including the 
‘strength’ assignment and the similarity-scoring scheme applied to each gene term 
located in the set of abstracts; finally, the prediction formulas used for validation are 
mentioned. 

In chapter (4), the architecture of the system is decomposed and the parts of MIM 
computation and gene association’s Network are analyzed. The Graphical User 
Interface of the Application is decomposed in the next chapter (4.3); basic input and 
dialog Windows are explained.  

The next chapter comprises the process we followed in order to validate the approach 
we propose. We describe the sources from which the input was retrieved, the reason 
why we focused on abstracts, and the whole process we followed to extract the gene 
network. The extracted visualized graph and the classification results for several 
experiments are shown in chapter (5.2), (5.3). The next part of this chapter explains 
the Evaluation of the MineBioText on a Trec Genomics Task, using an evaluation 
scheme provided by National Institute of Standards and Technology 
(http://www.nist.gov/) and the evaluation results in chapter (5.3.2). 
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2.   Background to Text-Mining & Biomedical Literature Mining Tasks 

2.1   Text-Mining: An Outline 

The great amount of information referring to gene and protein related biological 
functions raised a great interest for automating the techniques of identification, 
extraction, management integration and exploitation of relevant knowledge. In order 
to accomplish the task of literature data mining the primary tasks of Information 
Extraction and Text Mining are combined. Information Extraction, as it will be detailed 
in the sequel, constitutes the pre-processing phase. Information extraction includes the 
tasks of term and relation extraction as well as the co-occurrence resolution.  In the 
next step, where text analysis takes place, techniques from machine learning, statistics 
and data mining are utilized.  

Text mining - TM is defined as the process of discovering and extracting knowledge 
from unstructured data, contrasting it with data mining, which discovers knowledge 
from structured data (Hearst, 1999). Instead of leaving the user with the problem of 
having to read several tens of thousands of documents, text mining gives the possibility 
of extracting  precise facts, and finding interesting associations among disparate facts, 
leading to the discovery of new or unsuspected and hidden knowledge in text 
references. Normally TM comprises three steps (see figure 2, below): 

1. In the first step includes relevant text-references are collected, mainly based on 
Information Retrieval approaches. 

2. In the next step, known as Information Extraction, identification and extraction of 
the information pieces (mainly terms or, small-phrases) from the (retrieved) texts is 
performed – this is done in accordance to user’s requests; in principal it is based on 
Information Retrieval techniques, and mainly on text parsing operations. 

3. In the last step, mainly data-mining, machine learning and statistical techniques are 
employed in order to induce and identify associations among the pieces of the 
extracted information.  

 
 

Fig. 2: A potential view of Text Mining components and operations 
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In the biomedical domain, the input corpus provides implicit information about the 
correlation between different biological objects, but the structure of biomedical 
literature is not always adaptable to parsing operations. Some steps are necessary in 
order to prepare the text for processing and transforming it into a representation 
suitable for the data-mining tasks.  
A common type of text representation and processing ideal, followed by information 
retrieval researchers, is concerned with the contained words as the basic 
representation unit - called ‘bag of words’. In this approach, we may distinguish two 
steps: 

 First, an attribute–value representation of texts is followed, where each text 
document is represented as a vector in the lexicon space; 

 Second, based on the formed vectors, a ‘term-frequency’ process is initiated. The 
later includes operations for the removal of inflexion information based on 
stemming where, stop-words (or, other words from a pre-specified repository of 
words to disregard) are also removed. Moreover, Instead of treating each different 
word as a different instance of a term, a mapping or, projection operation is 
applied on terms that refer to grammatically or syntactically related words. 

2.2   Text Mining and Information Retrieval: A Synergistic Endeavour  

Information Retrieval (IR) is concerned with locating information according to user’s 
needs. The primal task in IR is the retrieval task in which several (available) documents 
referring to a specific domain are used for searching specific terms (as an analogue 
imagine a researcher doing a literature search in a library). In this environment the 
retrieval system knows the set of documents to be searched, but cannot anticipate the 
particular topic that will be investigated. We call this an ad-hoc retrieval task, 
reflecting the arbitrary subject of the search and its short duration. This may be 
contrasted with the text mining approach and underlying philosophy: where ‘long-term’ 
are posted and tackled in the sense that ‘life-long’, universal and ‘more’ stable 
findings are inquired, i.e., knowledge hidden in document references. But, IR 
techniques present the (basic) infrastructure (approaches, techniques, systems and 
tools) for the text mining machinery. 

2.2.1  Enabling Text Mining via Information Retrieval 

Information retrieval is concerned with identifying documents that are most relevant to 
a user’s need within a very large set of documents. More precisely, given a large 
database of documents, and a specific information need - usually expressed as a query 
by the user, the goal of information retrieval methods is to find the documents in the 
database that satisfy the information need. Naturally, the task has to be performed 
accurately and efficiently (Shatkay and Feldman, 2003). There are three fundamental 
tasks employed by IR approaches, which are also utilised in the context of text mining. 

 Boolean queries and index structures. A simple and common way for a user to 
express her need is through a Boolean query. Under this setting, the user provides a 
term (e.g., OLE1), or a Boolean term-combination (e.g., OLE1 and lipid). The result 
is the set of all the documents in the database satisfying the query constraints, 
e.g., containing both the query terms OLE1 and lipid. This query paradigm is used 
by the biomedical literature database PubMed (www.pubmed.org) and by many other 
text databases and search engines over the Web. It is supported by an index 
covering all the terms in the whole database of documents. Each term may be a 
single word (e.g., blood) or a phrase (e.g., blood pressure). It is common practice 
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to omit from the index terms that are frequent and non–content–bearing, such as 
prepositions. These terms are usually referred to as stop words and are viewed as 
delimiters when processing text. The index structure contains all the terms, 
typically sorted alphabetically for quick access, and holds for each term a reference 
to all the documents in the database that contain it. When a user poses a query, the 
index structure is efficiently searched for the query terms occurring in it, and all 
the documents found to contain the terms (or the Boolean combination of the 
terms) are retrieved. There are various methods to create indices and use them. 
The simple form of Boolean query, which has the advantage of efficient 
implementation over large databases, suffers several limitations: (a) the number of 
documents typically retrieved is prohibitively large; (b) a substantial part of the 
retrieved documents are irrelevant to the user’s information need; and (c) many 
relevant documents may not be retrieved. For instance, if we were retrieving from 
PubMed, using the query ‘OLE’, abstracts discussing OLE1 under any other of its 
aliases (e.g., “DNA repair protein or fatty-acid desaturase 1”) would not be 
retrieved. Problem b above stems from the well-known polysemy phenomenon: a 
word may have multiple meanings in different contexts. For instance, when looking 
in PubMed for the term ‘Cytosine Deaminase’ under its acronym ‘CD’, we may 
retrieve all abstracts referring to Cytosine Deaminase in which we are actually 
interested, but also all those discussing Crohn’s Disease (also CD) which are 
completely unrelated. On the other hand, limitation c, stems from synonymy: a 
single concept is discussed in various abstracts under different names.  

 

 Similarity queries and the vector model. A broadly used alternative to the 
Boolean query is the similarity query, which is typically based on the vector space 
model. Under this setting, documents are viewed as vectors over terms. A query, q, 
consisting of many terms (it may even comprise a complete document), is in-and-of-
itself viewed as a body of text, rather than merely as a search-terms combination. 
Thus, it too is represented as a vector. The retrieval task reduces to searching the 
database for document vectors that are most similar (most distant, as a dual 
process to similarity) to the query vector. Various similarity measures over 
documents have been devised and used (Salton, 1989). 
To explicitly define the vector model, we refer to the large set of documents from 
which retrieval is conducted as the database and denote it as DB. The controlled 
vocabulary of the database is the set of all the terms occurring within DB’s 
documents. Let M be the number of distinct terms {t1, . . . , tM} in this vocabulary. 
A term, ti, may be a single word or a longer phrase such as “blood pressure” or 
“acquired immunodeficiency syndrome” - stop-words are typically disregarded. 
Some systems may also stem words, removing common suffixes such as ‘ing’ or ‘e’s 
- as for instance with known and widely utilised Porter’s stemming algorithm 
(Porter, 1980; 1997, Jones and Willet, 1997). A document, d, in the database is 
represented as an M-dimensional vector: <w1, w2, . . . , wM>, where wi is a weight 
representing the occurrence or the significance of term ti within the document. The 
particular choice of term-weights can significantly influence the results of a 
similarity search, and there are several schemes for calculating the weights, e.g., 
based on vector similarity/distance metrics like the Euclidean distance, ‘cos’ine, 
and correlation coefficient similarity and others (Salton, 1989). 
 Latent Semantics Indexing & Latent Similarity. A more flexible approach that 

depends less on the explicit query terms and, to some extent, accommodates 
synonyms and polysyms is latent semantics analysis (Deerwester et al., 1990; 
Dumais et al., 1988; Dumais, 1990; Furnas et al., 1988). Two main ideas 
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underlying the method are: (i) there are abstract concepts that the explicit 
words in the documents are trying to convey. Different word combinations may 
be used to identify the same concept (synonymy), while the same word may 
denote different concepts under different contexts (polysemy). The semantics 
of words is the concept they are conveying. While the words are overtly present 
in the document, the semantics is not explicitly stated and is therefore latent; 
and (ii) a collection of documents, each represented by an M-dimensional 
vector, can be viewed as a matrix. As such, algebraic operators can be applied 
to it. One particular operator, namely singular value decomposition, can be 
used to identify and extract the “significant components” of the matrix. These 
are its largest k singular values, where k is much smaller than the original 
number of terms M. Each document in the matrix can thus be approximately 
represented as a linear combination of these k singular values, or equivalently, 
as a k-dimensional vector, rather than as the original M-dimensional vector. By 
combining these two ideas, each of the k large singular values of a document 
collection is viewed as a surrogate for a class of terms with a common hidden 
semantics. Both queries and documents are transformed and expressed as 
vectors over these singular values rather than as vectors over M terms, and the 
similarity measure is applied to these transformed vectors, whose 
dimensionality is lower than that of the original term-space. The method has 
shown a lot of promise, but suffers from two main drawbacks: - It was so far 
only shown effective on small collections of documents; and - The algebraic 
transform to singular-values space overrides the actual words in the documents. 
Thus, the method does not provide the intuition or the ability to observe the 
terms responsible for the document similarity.  

For the shake of the completeness of the presentation, we also mention the 
probabilistic models for indexing documents and assessing the similarity between them 
(van Rijsbergen, 1979; Ponte and Croft, 1998; Hofmann 1999). 

 Text categorization. This is the labelling of text references with thematic 
categories from a predefined set of category tags. There are two main approaches 
to categorization. One is the knowledge engineering approach (Hayes, 1992; Hayes 
and Weinstein, 1990) where the user manually defines a set of rules to encode 
expert knowledge regarding the correct classification of documents into given 
categories. The other approach is based on machine learning (Yang and Chute, 
1994; Lewis and Ringuette, 1994; Lewis and Hayes, 1994; Lewis, 1995; Lewis et al., 
1996; Larkey and Croft, 1996; Dumais et al., 1998; Joachims, 1998; Yang and Liu, 
1999; Cohen and Singer, 1999; Potamias et al., 2001; Potamias, 2001; Sebastiani, 
2002) where a general inductive process automatically builds a text classifier by 
training over a set of pre-classified documents.  

Some indicative IR works in the biomedical domain, also inspired the work reported in 
this thesis, follows. 

 In the context of TREC-2003, a relevant ad-hoc retrieval work is reported for the 
biomedical domain (Hull and Waldman, 2003). In this work, the authors target the 
recognition of gene and protein functions in MEDLINE/PubMed abstracts. They 
suggested an approach that uses simple syntax and domain semantics to identify 
sentences in the abstracts that suggest/point to (pre-specified) gene functions. 
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They ranked these abstracts by a metric that assess the number of appropriate 
function instances they contain. They achieved ~0.32 average precision and 
approximately ~0.30 R-precision1 figures. 

 In addition, TREC-2003 is referred to a task that incorporates two retrieval tasks 
into a set of experiments for the retrieval of known-items. They hypothesized than 
not all retrieval tasks should be approached by the same retrieval approach when a 
single search entry point is used. They applied task-classifiers on a top of traditional 
web-retrieval approaches. The traditional IR approach was based on the fusion of 
result sets generated by query runs over independent parts of the document 
structure. The task classifier combined query term analysis with known information 
resources and URL depth (Beitzel et al., 2003). 

 In the BioCreAtIvE competition (http://www.pdg.cnb.uam.es/BioLINK/BioCreative.eval. 
html) a similar to ad-hoc retrieval task is reported for task 1B and the provided text 
references (Hachey et al., 2004). The difference with the previous works is found in 
the limited number of the used documents. In this work the authors, identify gene 
references in the texts with respect to (accessible) databases of organism gene 
identifiers, and presented several approaches for gene identification, lookup, and 
disambiguation. The system provided an organism database containing unique gene 
identifiers with lists of synonyms and an accompanying abstract. They created a list 
of unique gene identifiers for genes that were mentioned in the abstract, including 
explicit mentions as well as those implicitly mentioned in gene mutants, alleles, 
and products. Results were presented with two possible baseline systems and a 
discussion on the source of precision and recall errors, as well as an estimate of 
precision and recall for organism-specific gene synonym lists. 

 Another kind of conventional ad-hoc retrieval task, where the system is expected to 
retrieve relevant documents in response to a user’s query is reported in (Song et 
al., 2003). The authors tested several techniques such as a ‘phrase indexing 
strategy’, two query-weighting methods, and two post-processing methods. 
Documents and queries in this task were limited to the biomedical domain. 
According to the experimental results, query weighting methods and document 
filtering methods can improve the performance of the retrieval system, but there 
still remain a room for improvement. This task had some significant differences to 
previous ad-hoc tasks, because of its environment.   

The work presented in this thesis utilises and introduces novel IR approaches and 
techniques – for document indexing, term identification and text categorization, in 
the context of an integrated biomedical text mining system MineBiotext. 

2.3   Text-Mining in the Biomedical Domain: Basic Tasks & Approaches 

Despite the great need that emerges from the large amount of bibliography concerning 
biomedicine, several problems pop out transmuting our task into a challenge.  

i. A main problem that appears concerns the interoperability of the available 
biomedical resources especially with respect to the non-unified format they seems 

                                             

 
1R-precision is the precision after R-docs retrieved 
(http://www.scils.rutgers.edu/~muresan/IR/TREC/Proceedings/t8_proceedings/appendices/A/appendixa.
cover.pdf). 
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to appear. The most important problem is the variety and multiplicity of utilized 
terminologies as well as the lexical coverage. The problem arises from the fact that 
there is not a standard adopted vocabulary. 

The problem of gene or protein name identification in the free-text publications is 
emerging and not adequately tackled. In some organisms scientists have enjoyed 
applying gene names with primary meaning outside the biological domain2. Names 
such as ‘vamp’, ‘eve’, ‘disco’, ‘boss’, ‘zip’ or ‘ogre’ are therefore not easily 
recognized as representative gene references [Proux et al., 1998]. Other major 
problems that are considered refer to the existence of many different names for the 
same entity and cause problems to literature (free-text) searching algorithms. In 
particular synonymy reduces the number of recalls of a given object (gene, protein, 
molecular pathway and function, disease etc).  

According to Ensemble,3 several naming conventions are entry points into the 
ensemble database (http://www.ensembl.org/index.html). Identification for a        gene can 
be the Ensemble Gene ID, the ensemble identifier, known gene name,          OMIM 
diseases and free text search of OMIM4, SWISSPROT (http://ca.expasy.org/sprot/) and 
InterPro annotation (http://www.ebi.ac.uk/interpro/). There seem to be a great need for the 
organization and centralization of terminologies in the biological domain. This calls 
for experts from different but eventually assembled sections of science. 

ii. Another problem that lies over the working out of the literature is the fact of 
multiple meanings for a given term. The effect is the reduction in precision, and 
ambiguities of a term’s sense. The term ‘insulin’ for example can refer to a gene, a 
protein, a hormone or a therapeutic agent depending on the context.  

Additionally the use of pronouns and definite articles, long, complex or negative 
sentences or, those in which information is implicit can be also a speculative 
situation for a searching algorithm. The term ambiguity can also arise from the fact 
of identification with common English words or bad encoding of human genes; for 
example the ‘BCL-2’ family of proteins. The problem becomes worse because the 
existing biology terminological resources lack of information that can support term 
disambiguation.  

2.3.1   The ‘Curse of Genes Naming’: Term Identification & Recognition 

The basic tasks in text-mining include: the classification or, categorization of texts to 
specified classes (or, categories) according to their content.  In an approximate setting, 
the content of a text reference may be approached by the identification of the terms 
occurring in a text and their potential interdependence. 

The basic step towards term identification is the detection of given terms in the 
corpus. It consists of three steps: (i) term recognition; (ii) term classification; and (iii) 
term mapping. For each step several approaches and trends have been proposed.  

Term recognition refers to the ‘marking’ of the words being (pre)specified to belong to 
the domain. The occurrence of a single term has such significance as well as the co-

                                             

 
2 A representative example is the fruit fly Drosophila. 
3 Ensemble is a joint project between EMBL - EBI and the Sanger Institute to develop a software system which produces 
and maintains automatic annotation on selected eukaryotic genomes. Ensemble is primarily funded by Wellcome Trust. 
4 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIM 
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occurrence with other terms. Potential consideration that must be consulted is the 
differentiation between terms and non-terms and the variation of a specific one. Here 
comes the need for ontological and terminological support. 

Ontology Utilization & Engineering. The biological domain is supplied with several 
ontologies. For the genomics domain the most known and widely utilized ontologies 
include the “Gene Ontology” (GO, www.geneontology.org), and the “HUGO Gene 
Nomenclature” (http://www.gene.ucl.ac.uk/nomenclature/ - from the Human genome 
Organization – HUGO, http://www.hugo-international.org/). For the medical domain 
known and widely utilized ontologies include: the Unified Medical Language System 
(UMLS; http://www.nlm.nih.gov/research/umls/), and the Medical Subject Headings 
(MeSH, http://www.nlm.nih.gov/ mesh/meshhome.html).  
The critical step in ontology engineering is the identification of relations between 
terms based on the mapping of the terminologically valid concepts to the terms. A 
basic problem in the mapping of terms (genes, proteins, pathways, diseases etc) to 
biomedical ontologies (and related databases) refers to the fact that a term can 
receive multiple semantic tags. Unfortunately, not all ontologies are devised in a 
consistent way, following best practice design approaches. Subsequently, a re-
engineering process is needed to render them more useful for applications such as text 
mining. However, even with a well designed ontology and appropriate lexicons there is 
an extra need to establish the missing link, i.e., to provide the mappings from terms in 
lexicons into corresponding ontology concepts. 
A common ontology engineering approach is the combination of different dictionaries 
with utilization of various distance-measures (e.g., the edit distance) in order to 
achieve flexible string matching. In (Krauthammer et al., 2000) a method is presented 
based on ‘approximate string comparison’ for the recognition of genes’ and proteins’ 
names and their variations. In the reported approach, both protein dictionaries and 
target text were encoded using the “nucleotide” code (a four-letter encoding over the 
{A, C, G, T} alphabet). Then, BLAST-like techniques (originally used for alignment of 
DNA and protein sequences) are applied to the converted text in order to identify 
character sequences that are similar (i.e. may be aligned) to existing gene and protein 
names (also encoded by the corresponding nucleotide codes). In the reported 
experiments the approach achieved ~0.79 recall, and ~0.72 (overall) precision figures. 
Recent techniques for term identification and recognition in biomedical are based on 
‘episodes/episode rules’ and ‘rule based information systems’. These approaches rely 
on finding information in text references partly through dictionary look-up by looking-
up to resources which are divorces from the reality of the textual term. They utilize 
dictionaries as term resources, as well as term formation patterns.  With a (mainly 
manual) technique respective mapping and recognition rules are formed. In a recent 
workshop (Ananiadou et al., 2005) a general grammar based technique was suggested 
that utilizes a ‘morphological unification grammar’s and a lexicon with instances of 
specific affixes, roots, and Greek/Latin neoclassical combining forms. An episode in 
data mining is the assignment of temporal values to items of data. It is actually a 
sequence of tuples consisting of a feature vector and an index describing its temporal 
location. Specifically in a text reference the tuple representation is used to represent 
each word occurrence in the document and its location [Alohen et al.] However a 
feature is not restricted to just a word (gene or protein), it can also be a phrase, 
punctuation mark or a mark-up tag. Episodes are designed to look for patterns such as 
co-occurring terms or phrases which might be used in constructing ‘concordance’ lists 
or, learning grammatical rules in a particular type of text. 
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 Machine learning - ML approaches as well as statistical techniques are also utilized. 
While statistical approaches mainly address the recognition of general terms, ML-
systems are usually designed for the integration of both term recognition and term 
classification tasks.  An issue that is handled by ML methods is the selection of 
representative features (i.e., features with highly accurate recognition and 
classification figures), as well as the detection of term boundaries of multi-word 
terms. However, the success of the machine learning approach is bounded by 
appropriate training sets – for both term and text collections, at least for supervised 
ML tasks. This limits its applicability to biomedical literature mining tasks because 
of the lack of representative and reliable training resources (i.e., benchmark term 
and text sets). In general, supervised ML algorithms include: decision tree learners, 
neural networks, support vector machines (SVM), (Naïve) Bayesian approaches, 
linear function learners, and instance-based classification (Mitchell, 1997). 
Respective unsupervised ML algorithms include: hierarchical. 
o In (Collier et al., 2000) a Hidden Markov Models (HMM; [Rabiner & Juang, 1986]) 

and specific orthographic features (e.g., “consisting of letter and digits” and 
“having initial capital letter”), are utilized for the discovery of terms pre-
assigned to ten classes. The GENIA corpus is used (http://www-tsujii.is.s.u-
tokyo.ac.jp/~genia/topics/Corpus/). The reported results depend on the quality of 
training resources; an example was that of the protein class which was the most 
frequent in the training sets; so, influencing the final classification. On the 
other hand, instances of the RNA class were very rare, so it was difficult to 
learn descriptive and highly accurate features. Even though, the results were 
encouraging with an F-score of ~0.76 achieved. A similar approach is reported in 
(Morgan et al., 2003) for the recognition of Drosophila gene names. Besides to 
orthographic features, prefix/suffix information, part-of-speech (POS) tags, and 
noun heads may be also utilized, as in (Shen et al., 2003). They reported that 
POS-tags proved to be among the most useful features. They achieved F-scores 
of ~0.17 to 0.80 depending on the class. The overall F-score was 66.1% and the 
protein class F-score was ~0.71.  

o In (Stapley et al., 2002) a SVM approach is used to classify terms derived by 
standard term weighting techniques and predict the cellular location of proteins 
from abstracts. The accuracy of the classifier on a benchmark of proteins with 
known cellular locations was better than that of a support vector machine 
trained on amino acid composition and was comparable to a hand-crafted rule-
based classifier (Eisenhaber and Bork, 1999). 

o In (Finkel et al., 2004) an ML system is presented for the recognition of names in 
biomedical texts. The system could make extensive use of local and syntactic 
features within the text, as well as external resources including the web; it 
achieved an F-score of 0.70 on the Coling 2004 NLPBA/BioNLP shared task of 
identifying five biomedical named entities in the GENIA corpus. 

o Also in (Dingare et al., 2004) a maximum-entropy based system is presented 
aiming towards the identification of Named Entities (NEs) in biomedical 
abstracts. Its performance is also presented, on the only two biomedical Named 
Entity Recognition (NER) comparative evaluations that have been held to date, 
namely BioCreative and Coling BioNLP. The system obtained an exact match F-
score of 0.83 in the BioCreative evaluation and 0.70 in the BioNLP evaluation. 

 Another trend used towards term identification is based on hybrid approaches and 
systems. They combine rule and statistically based techniques, as well as linguistic 
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and contextual processing in order to rank candidate terms. Hybridization is 
performed with an ‘amalgama’ of machine learning, dictionary-based and 
probabilistic approaches.  
o A specific protein and gene name tagger, “ABGene”, is presented in (Tanabe 

and Wilbur, 2002), with training performed with MEDLINE abstracts and 
adaptation of Brill’s POS tagger (Brill, 1992). In order to improve precision and 
recall they performed transformation rules for filtering and “recovering” of 
results. False positive term names were filtered-out by a list of precompiled 
biological and non-biological terms. False negatives were recovered by a list of 
terms that were compiled from the Locus-Link database 
(http://www.ncbi.nlm.nih.gov/LocusLink/, Please Note: As of July 1st, 2005 the NCBI is no longer 
updating Locuslink: http://www.ncbi.nih.gov/entrez/query.fcgi?db=gene.) and Gene 
Ontology (www.geneontology.org). Context words were also consulted. If a word 
was surrounded by “good” context words, it was tagged as a protein or gene. 
“Good” context words had been generated by a probabilistic algorithm by 
assigning Bayesian weights to all non-gene names that co-occurred with known 
names in the training set. Compound names were also extracted by relying on 
the combination of frequently occurring components in known multi-word gene 
names and a set of regular expressions. Overall, ABGene achieved precision 
figures in the range of 0.60 to 0.90. 

o A remarkable hybrid method called C/NC-value is reported in (Frantzi et al., 
2000) for the task terminology recognition in many biomedical sub-domains. A 
set of morpho-syntactic filters suggested the term candidates, and statistical 
measures on corpus estimated the term-hoods. More specifically the frequency 
of occurrence of a term, the frequency of occurrence as a substring of other 
candidate terms, the number of candidate terms containing the given candidate 
term as a substring, and the number of words contained in the candidate term 
were the main factors that were assigned to each candidate according to their 
co-occurrence with top-ranked context words. Reported results (with 
wxperiments performed on 2,082 MEDLINE abstracts) exhibit precision figures of 
0.91-0.98 for top ranked terms. 

o In (Bodenreider et al., 2002) a corpus and both lexical and terminological 
knowledge are utilised in order to extend an existing biomedical terminology. 
The adjectival modifiers were removed from terms extracted from  the  corpus  
(three million  noun  phrases  extracted  from MEDLINE),  and  de-modified  
terms  were searched  in  the  terminology. A phrase from MEDLINE became a 
candidate term in the medical UMLS Metathesaurus5 if the following  two  
requirements were met:  1)  a  de-modified  term  created from this phrase was 
found in the terminology, and 2) the modifiers removed to create  the  de-
modified  term  also  modify existing terms from the terminology, for a given  
semantic  category.  A manual review of a sample of candidate terms was 
performed. The results showed that out of the 3 million simple phrases 
randomly extracted  from MEDLINE,  125,000  new  terms  were identified  for  
inclusion  in  the  UMLS – 0.83 of the 1000 terms reviewed manually were 
associated with a relevant UMLS concept. 

                                             

 
5http://www.nlm.nih.gov/research/umls/ 
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o In (Zhou et al., 2005) a protein/gene name recognition system is presented in 
which three classifiers are combined: Support Vector Machines (SVM) and two 
discriminative HMMs Hidden Markov Models, with three post processing modules 
including an abbreviation resolution module, a proteins/gene refinement and a 
simple dictionary matching module. The experiments achieved an F-score of 
~0.83. 

o In (Ibushi et al., 1999) two classification methods based in SVM and Adaboost 
are combined on a set of MEDLINE abstracts, achieved the best results at 0.48 
precision, 0.49 recall, and 0.48 F-value levels. 

o A named entity recognition system called PowerBioNE is introduced in (Zhou, 
2004) where, HMM, SVM and sigmoid approaches are combined. Evaluation 
showed F-measure of 0.69, 0.71 and 0.78 on different classes of the GENIA 
corpus. 

o In (Dingare et al., 2005) a maximum-entropy based approach is followed that 
incorporates a diverse set of features for identifying genes and proteins in 
biomedical abstracts. The system was entered in the BioCreative comparative 
evaluation and achieved a precision of 0.83 and recall of 0.84 in the "open" 
evaluation and a precision of 0.78 and recall of 0.85 in the "closed" evaluation. 

 
Although it is not possible to thoroughly compare different systems with different 
targets and test collections for the task of term identification and recognition - TAR in 
the biomedical domain, there are attempts aiming to organize different evaluation 
schemes such as the BioCreative6 endeavor. In general, and with an approximate 
summation, we may report that TAR precision and recall figures range from 0.70-0.90, 
and (around) 0.70-0.85, respectively. 

 

2.3.2   Interactions Discovery: Inducing Gene/Protein Correlations 

The following works indicate the fact of identifying biomedical terms through Machine 
learning approaches focused on rule induction and Support Vector Machines (SVM). 

o (Bunescu et. Al., 2002; 2004) utilize machine-learning approaches based on SVM 
techniques to identify human proteins with higher accuracy than several previous 
approaches. In these references, it is also demonstrated that various rule 
induction methods are able to identify protein interactions with higher precision 
than manually developed rule. 

o In (Bunescu et al., 2005) an information extraction system is presented for 
identifying human protein names in MEDLINE abstracts, and subsequently, to 
extract information on interactions between the proteins. They demonstrated 
that ML approaches using SVMs and maximum entropy are able to identify human 
proteins with higher accuracy than several previous approaches. They also 
demonstrated that various rule induction methods are able to identify protein 
interactions with higher precision than manually developed rules. 

                                             

 
6 BIOCREATIVE (Critical Assessment of Information Extraction systems in Biology) was organized for the first time as a 
challenge cup in 2003, in which one of the subtasks was related to protein/gene name recognition and identification (in 
the same, shared set of documents). The evaluation showed that the best methods achieved F-scores of 80%, with both 
the best precision and recall values of around 80%. For details see http://www.mitre.org/public/biocreative/. 
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o In (Dehoney et al., 2003) the present NLP approach is presented where, with the 
aid and utilization of Gene Ontology (GO) collects and translates unstructured 
text data into structured interaction data. NLP is realized by a rule induction 
program, RAPIER (http://www.cs.utexas.edu/users/ml/rapier.html). RAPIER was 
modified to learn rules from tagged documents, and then it is trained on a corpus 
tagged by expert curators. The resulting rules are used to extract information 
from a test corpus automatically. Extracted genes and proteins are mapped onto 
Locuslink7, and extracted interactions are mapped onto GO. Once information is 
structured it is stored in a molecular-pathway database and this formal structure 
allows to perform advanced data mining and visualization.  

2.3.3  Biomedical Text Categorization: Classification &  Clustering Approaches 

Biomedical Text Categorization – BTC aims to the better retrieval of relevant text 
references, and improves the potential of knowledge discovery (i.e., gene/protein 
correlations) from the retrieved texts. In general we may refer to two main methods of 
text categorization: (i) unsupervised method – the task here is the induce clusters of 
texts with high intra (within cluster) similarity, and with high inter (between clusters) 
dissimilarity; and (ii) supervised method – the task here is to devise a feature-based 
prediction model (procedure, metric or both) in order to predict the category in which 
a text belongs (a training phase is required, based on collections of pre-categorized 
text references). Below we present some of the basic R&D developments for this task – 
in most of the presented methods both supervised and unsupervised text categorization 
approaches are utilized. 

Classification approaches in Text-Categorization 

o In (Sathiya et al., 2002) a BTC approach is presented for the Curation of 
Biomedical Literature8, realize by an automated text classification system for the 
classification of biomedical papers. Text classification is based on the existence of 
experimental evidence for the expression of molecular gene products for specified 
genes within a given paper. The system performs pre-processing and data 
cleaning, followed by feature extraction from the raw text. It subsequently 
classifies texts using the extracted features with a Naïve Bayes Classifier. 

o In (Mullen et al., 2005) a sentences classification system is presented which uses 
Naïve Bayes and SVM methods. The method was tested on ZAISA-1 Dataset9, a set 
of 20 full-annotated journal articles. On full articles, the highest overall F-score 
was 0.70, obtained by the SVM model.  

o In (Yildiz and Pratt, 2005) the presented text classification system extracts 
medical phrases from text by incorporating a medical knowledge base and natural 
language processing techniques. Experiments were made on MEDLINE documents 
from the OHSUMED dataset. They achieved the best results with the hybrid 
method of combining bag of words and bag of phrases:  F-score = 0.60, precision 
0.87 and recall = 0.46.  

o In (Craven and Kumlien, 1999) a ML system is presented to induce routines for 
extracting facts from the text. It applies a statistical text classification method 

                                             

 
7 http://www.ncbi.nih.gov/entrez/query.fcgi?db=gene 
8 It was presented in KDD Cup 2002 as task 1.  
9 http://research.nii.ac.jp/~collier/projects/ZAISA/index.htm 
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and a relational learning method in a corpus of 2,889 MEDLINE abstracts by 
querying on the names of six proteins. The most significant results on several 
datasets achieved 0.77 precision at 0.30 Recall. The same authors have also 
presented an approach to decrease the cost of learning information-extraction 
routines by learning from "weakly" labeled training data (Craven and Kumlien, 
1999). 

o In (Eskin and Agichtein, 2004) the presented approach aims to the discovery of 
protein functional regions and combines text mining and DNA sequence analysis. It 
is based on the creation of a seed dataset to train a text classifier and uses the 
classifier to predict additional sequences, which correspond to a class. It 
combines SVMs and the Hamming distance (for sequences similarity), achieving 
approximately a precision level of 0.80. 

Clustering approaches in Text-Categorization 

o In (Chang et al., 2001) a modified PSI-BLAST similarity-based process is utilized. 
They showed that supplementing sequence similarity with information from 
biomedical literature search could increase the accuracy of homology search 
result.  

o In (Iliopoulos et al., 2001) a method for clustering MEDLINE abstracts - based on a 
statistical treatment of terms, together with stemming, a `go-list', and 
unsupervised machine learning, is given.  

o In (Harte et al., 2003) procedures and tools are presented for the pre-
qualification of documents for further analysis. A corpus of documents for 
proteins was initially built from MEDLINE search terms. The documents space was 
examined using a strategy employing Latent Semantic Indexing (LSI; 
http://www.cs.utk.edu/~lsi/), which uses Entrez’s “related papers” utility for 
MEDLINE. Document’s relationships were visualized using an undirected graph and 
scored by their relatedness. Distinct document clusters, formed by the most 
highly connected related papers, are mostly composed of abstracts relating to 
ones aspect of research. This feature was used to filter irrelevant abstracts, which 
resulted in a reduction in corpus size of 0.10 to 0.30 depending on the domain. 
The excluded documents were examined to confirm their lack of relevance. 
Corpora consisted of the most relevant documents thus reducing the number of 
false positives and irrelevant examples in the training set for pathway mapping. 
Documents were tagged, using modified version of GATE2, with term based on GO 
for rule induction using RAPIER (http://www.cs.utexas.edu/users/ml/rapier.html   
). 

o In (Uramoto et al., 2004) a text-mining system for knowledge discovery from 
biomedical documents is presented. It was the application of “IBM TAKMI for 
Biomedical Documents” to facilitate knowledge discovery from very large text 
collections and database. The respective set of tools, designated MedTAKMI, was 
an extension of the TAKMI (Text Analysis and Knowledge MIning) - a system 
originally developed for text mining in customer relationship management 
applications. MedTAKMI dynamically and interactively mines a collection of 
documents to obtain characteristic features within them. It also utilizes natural 
language techniques to extract deeper relationships among biomedical concepts. 
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2.3.4   Natural Language Approaches in Biomedical Information Extraction 

Natural Language Processing - NLP has been applied to a broad range of information 
extraction problems in biology such as the recognition of protein interactions from 
scientific text. 

o In (Set et al., 1999) the presented NLP-based system is used to discover 
knowledge from GeneBank DNA sequences databases. It utilises a grammatical 
model of gene structure to create a parse tree. The parse tree was transformed 
into an augmented feature table that represented the gene structure, and 
through it a classification hierarchy that reflected the evolutionary relationships 
between genes is built. 

o In (Dickerson and Berleant, 2003) a project is presented for the development of 
a publicly available software suite called the Gene Expression Toolkit (GET). A 
Java™-based tool helps to dynamically find and visualize metabolic networks. 
The overall system is quite complex. A text-mining tool pulls out potential 
metabolic relationships from the PubMed database. These relationships are then 
reviewed by a domain expert and added to an existing network model. The 
results are visualized using an interactive graph display module. The basic 
metabolic or regulatory flow in the network is modeled using fuzzy cognitive 
maps. Causal connections are pulled out from sequence data using a genetic 
algorithm-based logical proposition generator that searches for temporal 
patterns in microarray data. 

o In (Gondy et al., 2003) the Genescene system is presented. A tool for biomedical 
researchers where, research findings and background relations are automatically 
extracted from text and experimental data. The extracted relations were 
evaluated by qualified researchers and are precise. A qualitative ongoing 
evaluation of the current online interface indicated that this method was more 
useful and efficient than keyword based searching. 

o Finally REGEN - Retrieval and Extraction of GENomics Data (Tasmin, 2003) is an 
NLP-based system that retrieves and extracts information from genomic data. 
The retrieval task is based on the combination of exact- and partial-match 
searching approaches using syntactic and semantic cues as patterns. 
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2.4 MineBioText: Contributions on Text Mining 

2.4.1  External Static Term Repository vs. Term Identification 

Most of the current research efforts are primarily focusing in Term Identification. 
Namely, they parse the abstracts to identify indicative terms, or else terms that are 
not common English words, but they reveal a potential significant role context-specific. 
By introducing these methods there is no need to provide an external repository of 
Gene Terms. The repository is self-generated via various methods. One of the most 
known methods is the TF * IDF metric. For each term, we measure the number of 
documents that do contain (at least once) a specific word that is a potential term. 
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 ⎜D⎜ is the number of documents in the corpus. 
 ⎜dj ⊃ tj ⎜is the number of documents where the term tj appears 

(that is nj ≠ 0). 
TF_IDF = TF ⋅IDF 

The term frequency in the given document gives a measure of the 
importance of the term within the particular document. 

 
 

A term that scores high in this formula is considered an indicative term and 
subsequently it is stored. The main disadvantage of this method is that it cannot reveal 
the potential semantics of the terms discovered. For example if we would have to 
visualize a graph where the nodes where terms identified by this procedure, each node 
could be a gene, protein, disease name or something completely irrelevant.  

Our approach considers a fixed, stable set of terms. These terms are already stored in a 
public available database named Ensembl (http://www.ensembl. org/index. html)and can 
be browsed via a special tool called Entrez(http://www.ncbi.nlm.nih.gov/entrez/ 
query.fcgi). Moreover, this set of terms is constantly curated by a set of experts, where 
new genes/proteins discovered, or a new nomenclature is introduced. By using an 
external provided set of nomenclatures, we introduce a novel area for bioinformatics 
where the term identification process is neither essential nor necessary. 

2.4.2  Semantic Related Terms vs. Simple set of Terms.  

According to related works, the set of terms discovered or supplied is a simple vector of 
unprocessed terms. Although this collection may be huge covering all the aspects of 
gene-naming it cannot hold the semantic relations that may exist between different 
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nomenclatures. Especially in the gene-naming domain we have identify three types of 
semantic relations: 

 Significant Term/Relation. This name stands for a unique identifier among 
Gene Terms. Like the primary key in relational database notation, this relation 
stands for a nomenclature that all the other nomenclatures should be assigned 
to. Each gene name has one or more primary identifier. For our implementation, 
we have chosen the Ensembl identifier as the Significant Term. 

 Synonym Terms/Relations. As we have seen one of the major drawbacks in 
biomedical literature text mining is the existence of many heterogeneous 
naming conventions, or else nomenclatures. Fortunately, the service Entrez of 
Ensembl has a state of the art database with all naming convention with respect 
their Ensembl nomenclature. By querying this database we were able to extract 
a numerous of nomenclatures and build a vigorous set of gene names under 
almost all possible nomenclatures. 

 Free text description Words/Relation. This contribution will be discussed in 
the next chapter. 

 

  

 

 

 

Fig. 3: Semantic Relations of Gene Terms. For each Synonym Term the corresponding significant 
identifier (Ensembl id) is unique, but for each significant identifier the corresponding synonym terms 
can be more than one. As we will explain in the next subchapter, for each word belonging to a free 
text description the corresponding significant identifiers can be more than one, because of the fact 
that the free text descriptions can contain common words. 

 

2.4.3  Free Text Description vs. Plain List of Terms.  

All existing works in Biomedical Text Mining consider a plain set of gene terms that 
should be located in the document corpus. Meanwhile we have noticed that the most 
genes are referred indirectly by domain specific words. These words can be found in a 
free text description form provided by many sources such as the Gene Ontology 
Consortium. These descriptions are also curated and managed officially by a group of 
experts. In this Thesis we propose a general schema and algorithm to mine their 
semantics, store the underlying information and to retrieve it during document parsing. 
Although many references in genes are made through words presented only in gene 
descriptions, the presence of such word in an abstract does not ensures the direct 
reference of a gene. We resolve this conflict by introducing the Float Term Vector 
presented in the next section. 

 

2.4.4  Float Term Vector vs. Binary Term Vector 

By introducing free text description as a possible form of input, we have to express the 
presence of a gene term in relative, not binary way. That is, if a gene term from a 
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specific nomenclature is located in an abstract then we are certain that the specific 
gene is referred. On the other hand, if we locate a word that is used in a description of 
more than one genes then we are not certain to which gene we are referred. This is 
why we introduce a metric to indicate how strong a gene is referred in an abstract. 
Other works often use a binary vector where a gene is located or absent in an abstract. 
With float term vectors, we enrich the expressing ability of our mechanism. 

2.4.5  Implementation Contributions.  

 ‘Yes Word’ List. In contrary with the Stop Word List, we can limit the inserted set 
of genes to these exported by an external study. Namely, the Term Vector can 
contain a customized set of genes. The inserted genes can also be part of any 
naming convention. This is useful if we want to extract the underlying relations 
between genes that have discovered to exhibit some form of common behavior 
different that the coexistence in biomedical documents. These external discoveries 
could be, sequence similarity (i.e. through a BLAST algorithm), expression similarity 
(i.e. through microarray data mining operations) or functional similarity (i.e. 
through biomedical research).  

 Arbitrary Term Hierarchy. According to our implementation, we can predefine the 
kind of interactions that we want to be revealed. For example, we can insert 
different nomenclatures for gene terms, diseases and proteins. Then we can state 
that we want only interactions that include genes-genes, gene-diseases and 
proteins-diseases interactions. By that mean, we exclude gene-protein interactions 
that are very common and may be subject to redundant information. 

2.5  Other system approaches vs. MineBioText 

 

At present, most literature analysis tools use some form of text mining and focus on 
interactions between proteins. An example is InterWeaver, which automatically 
extracts interactions from sources that include niche databases of curated protein 
interactions, and scientific abstracts [Zhang Z., 2004]. In addition, such tools tend to 
focus on particular domains, such as cancer and neuroscience, lacking of scalability. A 
good example of a text-mining tool that specifically looks at neuroscience articles is 
NeuroText [Crasto CJ., 2003]. Another well-known example of a literature analysis tool 
that has been used to automatically extract gene-gene associations from Medline 
abstracts and assist with microarray data analysis is PubGene [Jenssen T.K., 2001, 
PubGene Gene Database and Tools: http://www.pubgene.org/]. It is important to note 
that although these tools perform important tasks, they are not integrated text-mining 
environments because they do not integrate information from multiple research 
options. They perform standard gene-gene relation mining through a unique abstract 
repository. Critical to the successful application of text-mining tools is the integration 
within the same computer environment of multiple research parameters. At present, 
most systems will integrate data between two parameters, usually gene expression and 
phenotype responses. An example is the combination of genomic information with 
clinical data for personalized medicine [Pittman J., 2004]. This integration is currently 
being mainly applied to human cancers and has the potential to also evolve into a 
significant predictive capability [Nervins JR., 2003]. Another partial integrating text-
mining tool is the Dragon TF Association Miner (DTFAM), which carries out text mining 
of abstracts from scientific papers and focuses on integrating links between 
transcriptions factors with disease and terms from the Gene Ontology database.  
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2.5.1 Comparison with Commercial approaches  

Several commercial biomedical-text analysis platforms are currently available. Some of 
them have been developed directly by pharmaceutical companies, such as the Novartis 
Knowledge Space Portal [http://www.novartis.com/]. Also, bioinformatics companies 
have constructed biomedical-text-mining applications such as the Alma Knowledge 
Discovery system [http://www.almabioinfo.com/], which incorporates powerful 
database systems, version control, security systems and integrated representation 
mechanisms. There are also other commercial text-mining and knowledge-discovery 
applications, including Biovista [http://www.biovista.com/], BioWisdom 
[http://www.biowisdom.com/], SAS Text Miner 
[http://www.sas.com/technologies/analytics/datamining/textminer/] and TextSense 
[http://www.inforsense.com/products/textsense.html]. BioWisdom, for example uses an 
extensive ontology of pharmaceutically relevant concepts within its knowledge-
discovery platform. Biovista exploits the use of different views or representations of 
biological knowledge, taking into account context information, and can extract 
interactions between genes and proteins from free text. Any interaction identified by 
the system is subject to manual verification, so the correct identification of these 
interactions is performed by a human user. This manual curation is not only time and 
resource consuming but is reflective of any bias the human expert will have and does 
not lend itself to convenient and frequent updating.   

2.6 In depth differences between MineBioText and TREC-genomics assignments 

The intrinsic challenge of Genomics Track The goal of Trec 2004 Genomics Track was 
to create test collection for evaluation of information retrieval and related tasks in the 
genomics domain focused on the biomedical scientists need in order to gather 
biomedical literature. The considerable challenge for the whole attempt was not only 
better Information Systems and Management in the Biomedical Domain but also the 
improvement of information extraction and text mining. The submitted works include 
Term identification using several biomedical ontologies, Term Tagger, Probabilistic 
Model for Stemming, Synonymy Management, GO/MESH terms retrieval, traditional 
Machine Learning techniques (Bayes Classifier, Support Vector Machines (SVM), 
Decision Trees e.t.c.) as well as novel ML-techniques , novel classification techniques, 
statistical similarity schemes,  Inverse Document Frequency (IDF)  and TF-IDF retrieval 
schemes. 

The value of co-occurrence Many efforts use various grammatical and natural 
language processing techniques (NLP) to extract genes/proteins associations.  

Several issues must be considered such as the sentence and word-level tokenization, 
stemming, entity identification, part of speech tagging, stemming, and abbreviation 
expansion.  

We considered the efficiency of a system in which the Biomedical Annotation was 
retrieved and recognized in the set of abstracts, instead of using Natural Language 
Processing techniques to extract the terms.   

 

The difficulty is that current technology is not at the level where it can correctly 
identify the relationships from a sentence and accurately link them to the genes or 
other biomedical objects with an acceptable accuracy and recall across all domains.  
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The second problem is the disambiguation of gene names resulting from polysemous 
terms, while synonyms create difficulties when attempting to present information in a 
qualified way. (Persidis A., 2004) 

MineBioText expresses the fact of co-occurring of terms by means of statistic 
measurements. Mutual Information Measure, a well-established formula, used to 
assign associations between biomedical objects. For each pair of Gene Terms located in 
the literature, the estimated MIM value indicates the ‘strengthens’ of their 
correlation. The task of database population by the discovered relationships between 
genes/genes-proteins and gene-diseases remains as future work. 

In contrast with NLP works, in this work entity identification is performed by string 
matching in the bibliography given the set of gene/protein/disease Terms from the 
Ensembl Genome Browser, the biological annotation repository. 

In contrast with NLP-techniques, the DB-population by sets of identified Gene Terms 
cannot be achieved, since biomedical terms are not discovered in text but retrieved 
from Ensembl. 

A gene/protein/disease associations’ network is constructed through the 
discretization of the computed values of MIM, emphasizing the most important relations 
discovered in the set of abstracts.    
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3.   Mining the Biomedical Literature with MineBioText 

The MineBioText system encompasses a set of operations summarised below. 

MineBioText: 
Tasks/Sub-Tasks tackled, Operations & Services 

1. Literature collection – abstracts from PubMed (www.pubmed.com); and 
Genes/Proteins Terminology utilization from the Ensembl (http://www.ensembl. 
org/index. html) and GO (www.geneontology.org) resources.  
 Special operations and services are provided for the device of the domain-of-

reference, i.e., genes/proteins and diseases, their synonyms, and their GO 
descriptions. The provided operations are adaptable to different domains of 
reference. Therefore, MineBioText is easily adaptable to other, except the biology, 
domains of reference. 

2. Terms identification – implemented by specially devised parsing operations: 
 Elaboration of an efficient tree-based data-structure to parse documents for terms 

(genes/proteins, diseases) identification; 
 Stemming and removal of common used words and patterns; a special exclusion-

words lexicon is also provided accompanied with special operations to edit and 
revise it. 

 Formation of a special vector-based data-structure to hold the terms, and their 
frequency of occurrence, in the given text references. 

3. Extraction of Gene/Protein Associations & Genes/Protein Correlations 
Network Construction: 
 Computation of weight values to the extracted terms according to frequency 

statistics. 
 Estimation of term-hoods including occurrences as well as co-occurrences of 

gene/protein terms in the corpus through; the basic correlation measure is based 
on the Mutual Information Metric – MIM entropic, which is applied on the terms 
weight values. 

 Discretization of the extracted MIM genes/proteins correlation –MIM values into 
three levels of association-strengths: Strong, Medium and Weak. 

 Construction of Genes/Proteins Associations Network - based on the computed 
genes/proteins association strengths. 

 Visualization of the genes/proteins associations’ network based on the utilization 
of the tulip graph tool – based on appropriate formatting of the output 
genes/proteins associations network (http://www.tulip-software.org/). 

4. Texts Categorization: 
 Selection of highly discriminant terms – based on the terms included in high 

weight values; user specified or, automatic thresholding capabilities are provided. 
 Elaboration of a novel texts classification metric and process; the texts 

classification metric is based and utilizes the highly discriminate terms determined 
by 4.i. 

  

 

The theoretical basis of the thesis is mainly implemented by operations 2, 3, and 4, 
which are covered and presented in this section. Operations in 1 are covered and 
presented in the next section (section 5).  
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3.1   Biomedical Texts Collections, Parsing & Gene/Protein Identification 

3.1.1 Biomedical Literature & Texts Collection 

In order to achieve a large-scale experiment in biomedicine we must first collect text 
and documents containing the genes we are interested in. PubMed a service of the 
National Library of Medicine - NLM (http://www.nlm.gov/) includes over 15 million 
citations for biomedical articles back to the 1950's (http://www.ncbi.nlm.nih.gov/entrez/ 
query.fcgi). These citations are from MEDLINE and additional life science journals. 
PubMed includes links to many sites providing full text articles and other related 
resources. Also it provides access to bibliographic information that includes: MEDLINE, 
old MEDLINE, as well as the out-of-scope citations (e.g., articles on plate tectonics or 
astrophysics) from certain MEDLINE journals; primarily general science and chemistry 
journals - for which the life sciences articles are indexed for MEDLINE; citations that 
precede the date that a journal was selected for MEDLINE indexing; and some 
additional life science journals that submit full text to PubMed Central and receive a 
qualitative review by NLM. We found PubMed and MEDLINE as the most reliable sources 
of biomedical literature, also utilized by most researched in the fields of medicine and 
biology.  

The respective biomedical texts collections of interest, to focus the MineBioText 
inquiries and respective knowledge discovery operations, comes from queries post on 
PubMed. For example with the query: 

“breast cancer” AND (“gene expression” OR “microarray”) 

we may focus on references dealing with breast cancer from a gene-expression 
profiling perspective, with “microarray” used and interpreted as a synonym of gene-
expression.   

MineBioText offers services for storing the retrieved biomedical text references - 
actually PubMed abstracts accompanied with their full citation details (i.e., title, 
authors, affilication etc). Here we have to note that, at the current MineBioText 
implementation, the utilization of PubMed, and the formation of respective biomedical 
texts collections is performed off-line. It is in our future R&D plans to offer the 
respective functionality from within MineBioText (see last section of this thesis).  

3.1.2 Genes/Proteins Terminology 

As mentioned in sections 2.3.1 and 2.3.2 there is a great need for consistency in the 
description and definition of genes and proteins because of the variations in the 
available and used terminologies.  

Gene ontology (GO; www.geneontology.org) is an effort toward the developing of a 
controlled vocabulary applicable to all organisms. The project began as a 
collaboration between three model organism databases: FlyBase (Drosophila), the 
Saccharomyces Genome Database (SGD) and the Mouse Genome Database (MGD) in 
1998. Since then many databases has been included. GO terms are organized in 
structures called directed acyclic graphs (DAGs), which differ from hierarchies in that a 
'child' (i.e., more specialized term) can have many 'parents' (i.e., less specialized 
terms). Not only a structured vocabulary for genome annotation is build and provided 
but services (yet preliminary) in an attempt to make mapping and translation tables 
between catalogs and GO, although these mapping are only used as a guide.  
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In MineBioText, we also use gene/protein terms from PubMed and from Ensembl 
(http://www.ensembl.org/index.html) genomics resource. Ensembl human gene/protein 
identifiers are used as our primary reference identifier for genes and proteins. All 
other identifiers for different species are also provided and utilized but will be 
searched for in the given texts. Substantially gene terms are stored in the structure 
described below. 

3.1.3 Storing Terms: An Intelligent Repository for Gene/Protein References 

The informatics community faces several numbers of problems in the structure and 
organization of data in the biomedical domain. A considerable problem of ambiguity 
arises because of inexact mapping of knowledge and linking of variant forms between 
external representations, machine executable formats and biomedical databases. A 
further corruption occurs when users try to "fill the gaps” with their own 
interpretations and terminology. A common problem met is the appearance of more 
that one terms for a single object, which brings a great need for recognition and linking 
between the different available biomedical nomenclatures (Hirschman et al., 2002; 
Ananiadou et al., 2005). 

More specifically and for text mining in the biomedical domain, the main problem 
raised relates to the huge text collections to be manipulated. During pre-processing and 
parsing of the input abstracts the whole set of gene/protein, terms should be retrieved, 
for each step of the parsing. A minimal set of abstracts may be estimated to contain 
about 5×105 abstracts with about 200 words each. If we utilize a database for storing 
terms then, at every step of the search algorithm we would need about 10×107 queries 
to it!  

3.1.3.1 An Efficient Data-Structure to Parse-for and Store terms 

A primary research task for this thesis is the organization, ‘amalgamation’ and 
utilization of different gene/protein terminologies. Towards this direction, and in order 
to cope with the intrinsic to this task high computational cots we rely and employ the 
Trie10 – a special data structure for the storage and retrieval of gene/protein terms. 

Tries were introduced in the 1960's by E.Fredkin. As it is stated: “Trie memory is a way 
of storing and retrieving information that consists of item-term pairs – information 
conventionally stored in unordered lists, ordered lists. The main advantages of a TRIE 
memory over the other memory plans are shorter access time, greater case of addition 
and updating, greater convenience in handling arguments of diverse lengths, and the 
ability to take advantage of redundancies in the information stored. The main 
disadvantage is relative inefficiency in using storage space, but this inefficiency is not 
great when store is large.” (Fredkin, 1960) 

The utilised Trie data structure was appropriately tuned and customised to meet the 
MineBioText needs in terms of space and time complexity requirements. In this 
context, we rely on recent results reported in (Bodon and Ronyai, 2003l Bodon, 2003; 
2004) about the Trie data-structure, and especially the finding that Trie-like structures 
are efficient for the construction of frequent item-sets, i.e, frequent attribute or, 
feature or, term (for text mining) combinations. The original problem was stated in 
(Bodon and Ronyai, 2003) in the context of association rules mining, where the main 
                                             

 
10 The term Trie comes from the word "reTRIEval". 
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step (and the most time- and space-consuming) task is to find frequent occurring item-
sets. 

A Trie is a tree structure in which each transition corresponds to a character of the 
keys in the presented key set K. A path from the root state to a leaf state corresponds 
to a key. A special endmarker # is added at the end of each key to distinguish keys such 
as ‘the’ and ‘then’. Henceforth the state number of the Trie is represented as a 
positive number; the root state is represented as 1. The goto function g is introduced to 
represent a transition labeled character α from state r to state t, and is represented as 
g(r, α) = t. The absence of a transition indicates failure (fail). Figure 4, below, gives an 
example of a traditional Trie for the set K1 = {illusion, in, inspiration, installation, 
instrument} with #. Since retrieval on the Trie advances character by character, the 
worst-case time complexity of retrieval is in proportion to the length of key strings, so 
the Trie is a fast retrieval technique. For example, the retrieval of the key ‘in#’ in 
figure 4 is performed by the confirmations of transitions g(1, ‘i’) = 2, g(2, ‘n’) = 11, 
g(11, ‘#’) = 12, in sequence. In the Trie, common prefixes of keys can be shared, but 
after making a branch path, common suffixes of keys cannot be shared. As the Trie has 
many states for a large set of keys, it is important to make the Trie more compact 
(Morimoto et al., 1994). 
 

 

Fig. 4: The traditional Trie structure 

 
It was found that the Trie structure outperforms approaches based on hash-tree 
representation approaches. Although hash and B-tree strategies are based on 
comparisons between keys, a Trie structure can make use of their representation as a 
sequence of digits or alphabetic characters. A Trie can search all keys made up from 
prefixes in an input string without the need to scan the structure more than once. This 
is so since the Trie advances retrieval character by character, which make up keys. This 
characteristic makes the Trie structure frequently applied to various fields. Examples 
include the building of dictionaries for natural language processing, searching of 
reserved words for compilers, the data structure of dynamic hashing tables for 
database systems and inverted files for text retrieval (Fredkin, 1959; Aho et al., 1983). 

However, Tries have the disadvantage of having many states for a large set of keys. A 
DAWG (directed acyclic word graph) is a well-known method of reducing the size of 
tries (Aho et al., 1983). A DAWG can merge transitions associated with suffixes of the 
traditional trie structures to reduce the total number of states, but it cannot determine 
the record for a key correctly. Thus, the applications have been restricted to areas 
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where record information is not needed. Other schemes for reducing the size of tries 
were proposed in (Maly, 1976; Ai-Suwaiyel, 1984; Dundas, 1991), but their areas of 
application are restricted to static keys. Although the approach described in Dundas, 
1991) is suited to dynamic key sets, it decreases the size of the resulting Trie slightly as 
one of the side-effects. 

 Towards efficiency: The Revised Trie Structure. We have employed and 
implemented a double-chained Trie where, the edges of a node are stored in a 
double connected list. An example of the way this structure is utilised for terms’ 
storage is illustrated in figure 5. 

   
 
 
 

 
 
  
 

 

 

Fig. 5: An example of how terms are stored. The tree contains terms abc, abcde, abcdef, alm, and 
alk. Each node contains a unique symbol or group.  Each leaf of the tree which contains ‘ ’, is a 
complete term. A term is composed of all the above ancestors till the root of the tree. All the other 
nodes simply represent a common symbol of other terms. 

We utilise this structure in an algorithmic process. The time complexity of the 
algorithm can be approached assuming a word of n letters. The search process will 
seek for the first letter in all the nodes of the built tree in order to figure out its 
ancestor. The time complexity of this action depends only on the amount of letters 
contained in the alphabet, suppose c. Similarly, all the letters of a term, that are 
going to be inserted in the tree, will need c steps. The first letter of the term takes 
c steps, as well as the second, the third till the nth; Therefore each term of n letters 
will take c*n steps, resulting into a time complexity of O(c*n)11. This algorithmic 
process is followed in the course of parsing the input texts and the identification of 
gene/protein terms in them. 

3.1.4 Text Parsing and Gene/Protein Identification: An Informal Presentation 

3.1.4.1 Removal of Common Words. 

The first problem in parsing free text references of biomedical content is the removal 
of string patterns that contain common words (i.e., words with no semantically relation 
with the biomedical domain). An efficient way to cope with this problem is to eliminate 
pre-specified patterns by using list of common words, and employing a look-up 
approach. A dictionary of English common used words is utilized for this purpose 

                                             

 
11 It can be proven that in an implementation without a double connected list this time can be reduce to n*logC.  
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(http://wordlist.sourceforge.net/) - a collection of twelve dictionaries of English word 
lists. The comparison of the words contained in the dictionary of gene terms will reveal 
the terms to expel. Finally parsing of the genes terms is necessary in order to increase 
sensitivity and reduce parsing time. Note that gene/protein names and symbols are 
converted into lowercase; with punctuation marks and others symbols removed. As long 
as the parsing process searches for single-terms, a stemming operation is needless, i.e., 
potential common words within the text will never be reached following the Trie-like 
algorithmic process presented above. All the stored gene/protein terms are stored with 
this structure, and common used words will never be reached (by the aforementioned 
algorithmic parsing process) as they are removed. Note that with the MineBioText 
system the user may customize (add/remove words and/or phrases) the exclusion 
common-words dictionary to meet her/his needs. 

3.1.4.2 Gene/Protein Localization, Recognition, Registration & Representation 

The utilized standard gene/protein terminologies. The process of the localization 
and recognition of terms utilizes various sources on genes/proteins terminologies and 
nomenclatures. Primarily the inquiry is based on the combination of the ‘Ensemble 
Gene ID’ – which consists the primary gene/protein reference key, as well as other 
identifiers utilized as standard gene/protein synonyms. These gene/protein synonyms 
are provided from various related gene/protein nomenclature resources: ‘GO Id’ and 
‘GO description’ (GO, 2006), ‘HUGO id’ (HUGO, 2006), ‘OMIM’ (OMIM, 2006), ‘Uniprot 
id’ (Uniprot, 2006), ‘UNIPROT/SWISSPROT’ (SwissProt, 2006), and EMBL (EMBL, 2006) – 
all of these are appropriately incorporated and utilized by the MineBioText system.  

Adaptation to specific search needs is enabled by the formation of an appropriately 
formatted input domain-file, where the different terminologies, i.e., gene/protein 
names and symbols and their synonyms (from the utilized nomenclatures) are specified. 
Respective operations and services are offered by the MineBioText system. An example 
entry in the domain-file is shown below. 

 
Ensembl Gene ID UniProt ID SwiisProt ID GO description 
ENSG00000006831 ADR2_HUMAN ADR2_HUMAN fatty acid oxidation 

  ‘ENSG00000006831’ is the primary gene/protein key-reference. 
  ‘ADR_HUMAN’ (or ‘ADR2’) are utilized as synonyms for the primary gene/protein reference. 
  ‘fatty’, ‘acid’, ‘oxidation’ as respective extra synonyms. 

 

Gene/Protein Identification and GO-descriptions. Initialization of the search and 
term identification process is done by consulting the input domain-file. The specified 
terminological references are searched in all the texts of the input collections (also 
specified in the domain-file). This operation is performed on the basic of the 
algorithmic Trie-based parsing process presented previously, and it is based on the 
‘Ensemble Gene ID’ as the primary key-reference ID, and the consultation of all other 
gene/protein references referred in the input domain-file.  

 A basic contribution of the work reported in this thesis is the use of the respective 
GO-descriptions, as a means to identify genes/proteins not only by their standard 
terminological encodings and references (e.g., ‘ADR2’ in the above example which 
referrers to the standard UniProt naming and encoding of genes/proteins) but, with 
reference to their functional category as reported in the respective GO-description. 
In other words we need find and register respective gene/protein lexicographic-
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identifiers – ‘gli’, which are descriptive of (relates to) specific gene/protein terms, 
(e.g., the word ‘fatty’ in the above example). It is a process that in a way extends 
the genes/proteins terms with extra synonyms. Here we are faced with the problem 
of words (or, roots of words) contained in many gene/protein descriptions. To cope 
with this problem we follow an intelligent parsing operation of the GO-description 
(small) texts in order to assess and measure the degree of gli relevance – gli_r of 
the description-words with respect to the corresponding genes/proteins. We cope 
with two cases: 
- If the gli is found in just one single description then its gli_r is set to ‘1’; 
- If the gli is located in more than one description, its gli_r is computed by the 

sum of all the previous calculated weight values for it (SUMother-gli_r), plus 1 
divided by the total number of descriptions where the gli is found 
(Descriptiongli). Note that we may result into lgi_r values that are greater than 
1. In a more formal setting: 

gli_r = SUMother_gli_r + (1 / Descriptiongli). 

The parsing process and the above formula present a form of term normalization (a 
common approach in information retrieval endeavors). Moreover, during parsing GO-
description texts we have to remove the most common morphological and inflexional 
endings from the respective words. This requires a stemming operation on particular 
words (e.g., stop-list), that also checks for uppercase words and covert them to 
lowercase, an acronyms’ recognizer etc. In this context we rely and utilize the Porter-
parser - appropriately customized and implemented within the MineBioText system 
(Porter, 1980; 1997). 

Binary Vector-based representation of texts. Initially we employ a (binary; i.e., ‘1’ 
or, ‘0’) vector-based approach to register the occurrences of every term in the input 
texts (as described in section 2.2.1). Whenever a term is met in the text as an 
‘Ensemble ID’ or, other terminological reference or ‘id’ (from the utilized input 
terminologies) the respective position in the binary vector is set ‘1’. This value 
represents the significance of the term - its descriptive power for the respective text 
it is identified. The value is set to ‘1’ because of the uniqueness of the utilized 
gene/protein identifiers (HUGO, OMIM, UniProt, Swiss-Prot ID etc) - there is a 
univocally 1-1 correspondence to the primary Ensembl ID for each gene/protein.  

 Weighted Vector-based representation. The most interesting case, also a main 
contribution of the work reported here, is the assignment of weights to the words 
found in genes/proteins GO-descriptions (identified by the operation described 
above). In this case, we deviate from the binary vector-based representation and 
move towards a more ‘vague’ assessment and registration of located 
genes/proteins. During parsing (of a given biomedical text-reference), the located 
words should be tested for their relevance with respective genes/proteins. For this 
purpose, a special process is devised and implemented. It copes with two cases: 

- The located word matches a lexicographic-identifier (gli): its weigh is set equal 
to the respective (computed and recorded) gli_r (described previously); note 
that in this case, gli_r values may be greater that 1. 

- The located word matches a gene/protein term: its weight value is assigned to 
the largest weight value from all other located words in the text (also taking 
into account the previous case).  
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3.1.5  Formal Definitions 

The input to MineBioText consist of several parts – all specified in the aforementioned 
input domain-file: The abstracts (text-references) set that comprise the main input; 
the gene/protein identifiers from the utilized gene/protein terminological resources; 
the GO-descriptions of these genes/proteins; a set of English common used words; and 
a stop-, upper-to-lower-case conversions, acronyms-to-remove etc (for the Porter 
parsing operation).  We introduce different annotations for each set: 

 Definition 1: Abstract. We define an abstract the set of all ai that belong to A and ai  
a subset of Λ where, 

Λ is a potential set of words, 
∀ai ∈ A where ai ⊂ Λ, 

ai = {λi1, …, λiki} and ki =|ai| the size of ai. 

 Definition 2: Set-of-Abstracts. Assume A = {ai … an} as the finite set of the 
abstracts. Each ai denotes an abstract from the initial set. The total number of 
abstracts is denoted as |A|.  

 Definition 3: Set-of-Terminology-Terms. We denote the set of all terms from the 
utilized gene/protein terminologies/nomenclatures as Tnom; with different 
instantiations for the each of the corresponding different gene/protein ontologies, 
e.g., THUGO for HUGO, TUniProt for UniProt, TSwissProt for SwissProt etc. A single 
gene/protein terms is denoted with tx. 

 Definition 4: Set-of-All-Terms. We define the set of all terms - except for ensemble 
identifiers- as TX, we can conclude that TX = THUGO U TEMBL. 

 Definition 5: Set-of-Ensembl-Terms. We denote the set of the Ensemble 
gene/protein identifiers as S = {s1 … sm}, with a single gene/protein identifier 
denoted as si; the size of S is denoted as |S|. 

 Definition 6: Description (lgi). A description tDi is a set of words, and is defined as:  

{ } dN1D

DDD
tN,t

t,Tt
==

⊂∈∀
λλ

Λ
K

 

 Definition 7: Set-of-Descriptions (lgi). A set of descriptions TD is the set of all tDi 
defined as: tD ∈TD where  tD is a set of words Λκ  

 Definition 8: Set-of-Common-Exclusion-Words – the Words List.  Is denoted with L,  
L = {the set of all English words in the input common-words file}. 

 

Initially all the gene/protein terms TD and S are stored. Assume that during parsing, and 
for each gene/protein contained and located in the set TX, as well as the terms 
contained in the descriptions TD, the Ensembl Gene Identifier is located, selected and 
characterized as significant. We have to define formally these concepts.  

 Definition  9: From T to S. The significance of a gene/protein term is defined as a 
function:  STassuchSs,Tt

xtxx →∃∈∃∈∀ . 

 Definition  10: Correspondence between 
DTS  and S. For each GO-description there 

is a set of significant identifiers (i.e., gli) St D that belongs to S. 

SSanscorrespondTt
DTDD ∈∈∀  
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3.1.6  Parsing and Trie-structure Utilization 

Each 
xt

s represents a unique identifier and reference to a gene/protein as specified by 

the utilized standard Ensembl (as the basic gene/protein key-reference) as well as from 
the other standard gene/protein terminological references. So, definitions 8 and 9 
above, establishes a correspondence between a unique Ensembl identifier and 
identifiers from the other standard gene/protein terminological references (i.e., HUGO, 
UniProt, Swissprot, EMBL etc). This is necessary because of the need for a ‘primary id’ 
which we can use every time we want to refer to a specific gene/protein. Every time 
we detect a gene/protein term in the abstracts its location in the Trie tree data-
structure should be found (see section 4.1.3.1). Moreover, each gene/protein standard 
term identifier has one single and unique position in the vector used to represent a 
biomedical text-reference but the stx identifier and their synonyms tx, possess different 
positions in the Trie-tree. So, we are faced with the problems of storing sets Sx, Tx, and 
TD how to link the positions of of sx , tx and tD nodes to the primary reference node. 

For the following you may refer to illustrative examples shown in figures 6 and 7. 
Consider that the input files that contain the initial names of the gene/protein terms 
are stored in pairs (si, tx). The first name -si- is the Ensemble identifier. The second 
one, tx, is any other, corresponding to term, synonym-reference (coming from the other 
gene/protein terminologies) and appears in the Trie-tree. For each new coming 
gene/protein terms pair, in order to check whether it is already present in the Trie-
tree or not, we examine if si is already stored: if yes, we localize and store –
temporarily- the position of the term; if no, we first create a new entry, only for the si. 

The next step is to insert the second name, tx, of the specific gene/protein term and 
create a link to the node that contains its corresponding significant Ensemble 
identifier. In this ways, we secure that there is going to be always a connection 
between each gene/protein term and its corresponding significant identifiers. 

 

 

 

 

 

 

 

 

 

Fig. 6: How a new term is inserted in the TRIE: Assume that the trie holds ENSG00000135487 and 
HLMKL2; the ENSG00000135486 and HNRPA1 are to be inserted. The figure shows the state after the 
insertion where the red line indicates the link that connects the new entered gene terms. 

 

The second tree holds information about TD. Each node contains a word that belongs to 
a description, td, of a particular gene/protein term. For each node there is link to a 
double connected list which holds the Ensembl identifier of the gene/protein to which 
the word’s description belongs. Thereby we can ensure that when a word is met in an 
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abstract, there is a flexible way –through the connected list- to find tD that corresponds 
to the description where the word belongs. Later, in order to assign the weight values 
to each gene/protein term that indicates its descriptive-power to an abstract, we must 
be aware whereas if it was met in an abstract or a description. The computed weight 
values also depend on the number of gene/protein terms that their descriptions contain 
the specific term. 
 
 

 

Fig. 7: How identifiers of a common gene/protein term are sited in the TRIE: Assume gene/protein 
terms ensg00000073067 and ensg00000172115 and the corresponding descriptions Cytochrome P450 2W1, 
Cytochrome c.  Cytochrome, the common word of the descriptions of the two gene terms is stored as 
shown. 

The third instance of the Trie-structure holds a stop-word list (http://wordlist. 
sourceforge.net/) used for stemming, containing words in singular and plural form, in all 
form that they take in different tenses. Before we check whether a term is contained in 
the abstracts, we examine if it is a stop word. If it is contained in the dictionary, we 
assume that it is not a gene/protein term name, the term is ignored and the search is 
blocked. 

3.1.7  Computing Gene/protein Weight Values 

The formal presentation of the algorithm for the computation and assignment of weight 
values to gene/protein terms is presented in figure 8, below. An illustrative example of 
a weight assignment is deployed in Fig.9. 

 
Assume word k ∈ ai where ai ∈ A (A: set of abstracts) 

 If (k∉L) and      

       If ∃ tx∈Tx such as tx = k                    

              Assuming Def.(10)       Vtx= 1 

      else if ∃1 tD ∈ TD 

where TD = { tD∈ TD:  λ∈tD },  such that λ=k              VtD=1  

Def.(11)  for each tD∈TD corresponds 
DTS ∈ S          

                               Else if ∃ tD1, tD2, …, tDN  where tDi ∈TD           

                                            (N: number of descriptions) 

                                          for the significant identifiers that 

           correspond to tD1,…, tDN: StD1,...StDN        VStD=min (1, VStD +1/n) 
 

Fig. 8: Assigning Term Weights. Assume a word ai that belongs to an abstract. If the word belongs to the 
No-Word-List (L), the search should terminate. Else if it belongs to the set of terms from HUGO/EMBL 
references (Tx), we assign the value VtX = 1 to the corresponding significant term of the term.  If the word 
is located in a description, we should first figure out whether it belongs in a single description or not; if 
ai belongs to n descriptions, for each one we first locate the corresponding significant identifiers; for 
each one we add to the previous assigned weight value VTX the  1/n or 1 if the sum is greater than 1.    

Cytochrome 

ensg0000007306 ensg0000017211 
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Fig. 9: Assigning Term Weights: ‘Brca2’and ‘Íl-8’ were found as gene terms; ‘ádenoma’, ‘cytotoxic’ were 
detected as part of the ‘eng00000184027’ and ‘ensg00000169429’ descriptions’ respectively.  The assigned 
values are estimated according to the algorithm described above. Note that for the ‘ensg00000169429’ the 
weight is not 1.5.  

3.1.8  Gene/Protein Associations: The MIM measure 

In order to estimate the strength of the associations between gene/protein terms a 
well established scoring scheme is used in order to measure how informative the 
associations are. Assigning associations between objects by just locating co-occurrences 
in literature has been widely used in biology and medicine. However, associations 
detected lack of specialization and bring out false positives. The significance of 
reappearance of terms is evaluated using MIM, which originally is based on Shannon’s 
Entropy theory (Shannon, 1948). 

Mutual Information Measure – MIM has been used to quantify dependencies between 
variables, including co-occurring terms in text (Dunning, 1993; Conrad and Utt, 1994; 
Stapley and Bennoit, 2003). Previous work has shown that it is possible to identify 
implicit relationships by ranking inferred relationships and preferentially examining 
those at the top list (Wren et al., 2004). In a recent work, an extended version of MIM 
is introduced and applied on biomedical literature mining (Wren, 2004). Although the 
co-occurrence of terms in abstracts marks a valid relationship, it is considerable that 
many co-occurrences of terms within literature do not always mean a biological 
association. This emerges the need for locating more informative interconnections 
between gene/protein terms. 
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MIM(i,j) between terms i and j, is computes given: a list of terms and a list of 
abstracts, and takes in consideration all the terms’ occurrence possibilities: 
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Fig. 10: Mutual Information Measure (MIM) for terms i and j. Where 
ji 00 pp is the number of the texts 

that don’t contain the term j neither i; 
ji 10 pp  is the number of the texts that don’t contain the term i 

and contain the term j; 
ji 01 pp  is the number of the texts that contain the term i and don’t contain the 

term j; 
ji 11 pp is the number of the texts that contain the term i and j; ]i[p0  is the percentage of non 

occurrence of the term i in the text references; ]i[p1 is the percentage of occurrence of the term i in the 

text references; ]j[p0  is the percentage of non occurrence of the term j in the text references and ]j[p1  

is the percentage of occurrence of the term j in the text references. 

The formula presented in figure 10, below, estimates the co-occurrences between 
(gene/protein terms) with reference to a given collection of abstracts12. The computed 
MIMs are stored in a file to be used for the construction of gene/protein correlation (or, 
association) network (next sub-section). 

3.1.9   Construction of Gene/Protein Correlations/Associations Network  

In this subsection, we present the construction of a genes/proteins Correlation 
Network – gpCN. Here we have to note that literature based inference of a potential 
‘gene/protein-to-gene/protein’ lacks a clear-cut semantic meaning, at least with 
respect to a potential ‘biological interaction’ or, ‘biological regulation’ between them. 
So, we prefer the use of the word ‘correlation’ to refer to potential gene/protein 
relations because expresses a ‘less-causal’ concept, as contrast to ‘association’ which 
underlies a potential ‘causal’ relation. This uncovers the real utility of biomedical 
literature mining: evidence-based support to biomedical scientists based on 
‘interesting hints’ to focus and target their research. 
The gpCN construction within MineBioText is based on the utilization of the computed 
MIM values between gene/protein terms. The whole process follows three steps: 

i. The following input information is provided: the list of terms; the list of abstracts; 
and a user specified percentage MIM threshold for the gene/protein terms with 
top ranked MIM values. The last input specification is provided in order to filter-
out the gene/protein MIM values that are below the specified MIM threshold.  
This is done in order to keep the most-informative gene/protein correlations – the 
user may decide to keep all gene/protein correlations with a threshold value of 
‘0’.  

                                             

 
12 The stored input MIM file is linked with a specific list of Abstracts  MIM file(Terms, Abstracts) 
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ii. After filtering-out, the remaining gene/protein correlations are also examined for 
their strength. This operation is performed with a careful discretization of the 
corresponding MIM values into three correlation strength levels, with the following 
‘natural’ interpretation: strong, medium and weak. The discretzation of MIM 
values is based on a method reported in (Lopez et al., 2000), and utilised also in 
(Potamias et al., 2004). The descritization process has as follows.  

 Assume (in a general setting) that a MIM value may be assigned to an (ordered) 
set of nominal values; assume n such values. In the case of n=3, value ‘1’ is 
interpreted as of ‘weak’, value ‘2’ as ‘medium’, and value ‘3’ as ‘strong’. 
Define,  

n
)MIMmin()MIMmax(wi

−
=  

where, min(MIM), and max(MIM) are the minimum and maximum MIM values, 
respectively. A MIM value, MIMv, is descritised to a nominal value, MIMnom, 
using the following formula: 
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where, ⎣ ⎦fraction  is the integer part of the fraction.  

3.1.10  Abstracts/Texts Categorization & Classification 

We introduce a novel approach for text categorization and text class/category-
prediction based on term frequency and supervised learning techniques. 

Class Prediction is achieved by a similarity matching formula that compares the 
rankings of weight values – calculated according to the values from algorithm of the 
assignment of the Term Weights (Fig. 8) attached to an unclassified/test set of 
abstracts with respect to the rankings of the classified/train set of abstracts. The 
approach is tested on the clinico-genomic based classes, by measuring and ranking the 
aggregate presence of terms in abstracts containing this word, and classifying the 
corresponding documents. 

Training-phase. Assume a two-class (categories) problem, i.e., the task is to classify a 
set of documents (biomedical abstracts) into two (pre-specified) categories. Let us 
refer to these classes as ‘POS’ and ‘NEG’ (for positive and negative, respectively). The 
process may be generalized to cover multi-class cases. Therefore, two sets of abstracts 
are available, and the documents in each of them are pre-assigned to one of the two 
classes; this is the training set. Training is performed on each of the class-specific set 
of abstracts from the training set, i.e., MineBioText is called to run two times, and 
follows two steps. 
i. The corresponding abstracts are parsed and for each abstract, the corresponding 

vector-based representation of it is formed (as presented in section 4.1.4 and 4.1.6). 
Then MIM computation is performed and the strength of each gene/protein 
correlation is computed, with all corresponding values being discretized (as 
described in the previous section). All this information is stored in a file. Note: This 
file can be called at any time and filtered in case the user wants to specify a 
different threshold, i.e., keep more- or, less-strong correlations.  
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ii. The strength values for the significant identifiers is the sum of the weight values (as 
estimated from the algorithm of Fig. 8 in section 4.1.7), of all the terms identified – 
computed by the formula, below. 

∑
=

=
L1i

AA itraintrain
Vt s

K
 

Fig. 11: Calculation of Strength Values. Assume the set of train abstracts as Atrain, the number of gene 
terms located in Atrain as L, the set of gene terms located in Atrain as 

LTRAIN1TRAIN AA tt K ,and their 

corresponding Ensembl IDs as 
LTRAIN1TRAIN AA SS K . If 

LTRAINA1TRAINA tt VV K are the assigned values  of the 

terms that were located (from algorithm of Fig.8) then for the ith significant term, 
iTRAINAS  located in 

Atrain the corresponding strength value of 
trainAs  is given above. 

 

The calculated strength values given by the formula of Fig.11 for all (training) 
abstracts are sorted and stored. For the estimation of the similarity formula we 
will also need to keep the maximum value of the corresponding terms weights (of 
Algorithm of Fig. 8); these actually consists the train-results-files. 

 

Testing-phase. As for the training case, we assume the availability of two class-
specific sets of abstracts. MineBioText is called to run on each of these sets separately. 
For each set, the identified gene/protein terms and their weights are recorded and 
compose the train-results-files, as described above. 

For each term identified in the set of test abstracts, we check its occurrence in the 
saved train-results-files as well as its corresponding class-specific rank, i.e., its 
position in the ordered (by their training strengths) lists of the corresponding file. An 
illustrative example is shown in figure 12, below. In this example, note that term ‘tx’ is 
identified in the test abstracts but not in the training abstracts. In this case, its rank is 
set equal to 0. So, we have different ranks for the ‘POS’, rankPOS(t), and for the ‘NEG’, 
rankNEG(t) classes, respectively. The formula below computes the strength, 
strengthTEST(t) of a term t, identified in a test-abstract, with reference to its weight, 
weight(t), and its corresponding and class-specific strengths, strengthPOS(t) and 
strengthNEG(t). 

)NEGstrengthmax(

)t(NEGstrength

)POSstrengthmax(

)t(POSstrength

TRAINweight

NEG_TRAINcount

)t(NEG_TRAINrank

POS_TRAINcount

)t(POS_TRAINrank
)t(TESTstrength −××−=  

Equation 1. The similarity formula used for classification. The formula is been applied to each gene 
term that is found in an unclassified/test abstract. Count is the total number of all the gene terms.  
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Fig. 12: Ranking terms identified in the test-abstracts in order to calculate their test-abstracts’ 
strengths. 
 
 
For each abstract from the test file, a sum of values estimated by the similarity 
formula of all the located gene terms is compared according to the comparison with 
zero it is assigned to a class; if the assigned value is greater than 0 it is assigned to 
class A else to class B. 

If the value of the similarity function was below 0.5 the entry was assigned as 
unclassified abstract else:  

 If is predicted as A class and actually belongs to class A, we assign it as a true 
positive. 

 If is predicted as A class and actually belongs to class B, we assign it as a false 
positive. 

 If it is predicted as B class and actually belongs to class A, we assign it as a 
false negative. 

 If it is predicted as B class and actually belongs to class B, we assign it as a 
true negative. 

  

The accuracy for the prediction of the class A are the corrected predicted as class A 
divided by the total predictions for class A and class B: 

100
vesTruePositiPositivesFalse

PositivesTrue
×

+
 

100
vesTrueNegatiNegativesFalse

NegativesTrue
×

+

 
Equation 2, 3. The prediction accuracy formulas 
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The total accuracy of the correct predictions is the correct predictions divided by all 
prediction made13:  

 

100
NegativesTrueNegativesFalsePositivesFalsePositivesTrue

NegativesTruePositivesTrue
×

+++
+

 

100
NegativesTrueNegativesFalsePositivesFalsePositivesTrue

NegativesFalsePositivesFalse
×

+++
+

 
Equation 4, 5. The total accuracy for the correct and false predictions. 

 

                                             

 
13 It has to be noted that all the threshold values mentioned above have been derived empirically to 
optimize the prediction accuracy rather than reflecting some theoretical model or consideration. 
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4.  MineBioText in Action 

In general, the tasks tackled by the MineBioText system are listed in the following 
shaded box. 

MineBioText Architecture: 
Tasks/Sub-Tasks tackled 

 TASK 1 Collect literature and Gene Terminology from PubMed and Ensembl respectively. 

 TASK 2 Post Processing of Data includes: 
 TASK 2.1 stemming and removal of common used words and patterns  
 TASK 2.2 locate of gene terms in the abstracts set 
 TASK 2.3 assignments of weight values to the extracted terms according to the 

appearance frequency 

 TASK 3 Gene Associations Network Extraction: 
 TASK 3.1 We estimate term-hoods including occurrences as well as co-occurrences 

of the Gene Terms in the corpus through the Mutual Information Measure formula 
based on the weight values estimated in task 2.3. 

 TASK 3.2 Discretization of the extracted MIM values gives three levels of strength 
for the identified associations between gene terms. (Strong, Medium and Weak) 

 TASK 3.3 The gene association’s network is extracted through the estimated 
strength level of the terms, and visualized by TULIP graph tool.  

 TASK 4 Class Prediction through statistical based learning:  
 TASK 4.1 Using weight values concerning the Term occurrence, calculated in task 

2.3, we extract strength values for the gene terms located in the training set of 
literature.  

 TASK 4.2 The estimated weigh and strength values are used by a similarity scoring 
scheme in order to classify the documents. 
  

 

4.1  MineBioText General Architecture  

Initially a corpus of data including literature and gene terminology is collected from 
MEDLINE and PubMed respectively. The post processing of data includes the parsing of 
the corpus of abstracts and the set of Gene Terms. Unsupervised learning includes the 
extraction of the occurrences of terms from the abstracts and the estimation of the 
strength of the associations between them; Mutual Information Measure scoring scheme 
is used in order to measure how informative associations are by locating co-occurrences 
of the terms. The next steps include the graphical visualization of the interrelations 
between the terms, the discretization and revision of the calculated MIM values 
according to an input threshold. In order to predict the classes of an unclassified set of 
documents, we propose supervised learning. In supervised learning after the post 
processing of the input terms and texts, two sets of terms are extracted in order to be 
used in the prediction of an the unclassified set of abstracts. (The architecture of the 
system is shown in Fig. 13 and 14). 
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Fig. 13: System Architecture 1, Unsupervised learning. Input Terms and Abstracts are passed through 
the Post Processing phase (Parsing). The output graph visualization includes the gene terms or the 
diseases, according to the significant Term Identifier. 

4.2   Building Gene (association) networks with MineBioText 

After the post processing of the input is accomplished, the next step is the creation of 
knowledge (association) network. The intention is to identify the terms sharing implicit 
associations. The relationships may include binding interactions between the connected 
objects or biological influence or activations that may an object cause to the other. 
Each object present to the network will contain link to other information that can 
provide the system for the specific object. Links are directed and labeled; thus, a 
network is a directed graph.  

The approaches for computing term associations are divided in two categories; those 
estimating term relationships directly from the co-occurrence frequency and those 
inferring to term associations from the relevance information through feedback. In the 
first approach, the semantic relationships are computed from the frequency of the co-
occurrences of terms in different documents. The methods are based on the hypothesis 
that if two or more terms are met in many documents, they are possibly semantically 
related. (Spark Jones, 1971; van Rijsbergen, 1979; Salton 1989). 
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Term Repository 
Abstracts Set 1 Abstracts Set 2 

Parsing

Term Set 1 Term Set 2 

Unclassified 
Abstracts Set

Prediction

Predicted Abstracts Set 1 Predicted Abstracts Set 2 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14: System Architecture 2, Supervised learning. Input Terms and Abstracts are passed through 
the Post Processing phase (Parsing).The output except from the predicted classes of the abstracts, 
includes the accuracy of the prediction. 

4.2.1  MIM Computation 

As described in chapter 3.3 in order to estimate the strength of the associations 
between the gene terms the formula of MIM has been used. The output of the process is 
a MIM file with the following format: 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15: The first output file from the computation of MIM. The first column indicates the first term; the 
third indicates the second term; and fifth column shows the calculated MIM for the pair of terms. In this 
phase of MIM, calculation level is -1 and the last column that indicates strengthens of the MIM value, is 
null. The specific file is sorted according to the MIM values. Terms with upper x% MIM are the x% of the 
top ranked pairs of terms of the sorted list.  

 

[i] level[1]  [j]  level[j]  MIM[i][j]          null 

..   ….  ….    ….      …          … 

#Terms with upper10% MIM 

#Terms with upper15% MIM 

#Terms with upper20% MIM 

…. 

#Terms with upper95% MIM 

#All Terms (100%) 
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4.2.2  Construction of Flat Gene Terms Network  

After the computation of the MIM values (chapter 3.3) a network is constructed (Fig. 
25) indicating the correlations between the gene terms and the potential disease terms 
located in the collection of input abstracts. This new network actually a filtered MIM 
file- is generated and stored. Graph visualization software uses specific filtered output 
in order to make the network (Fig. 25). 

 

 

 

 

 
 

 

Fig. 16: The output MIM file format from the revision phase. The first and the third columns indicate the 
pair of terms. The fifth column shows the revised MIM value for the pair of terms. Still all level[i] are ‘-
1’. The format is the same as in fig.12, except that now instead of ‘null’ one of ‘S’, ‘M’, ‘W’ indicator is 
put at the last column. 

4.2.3  Revision of Flat Gene Terms Network 

After the initial computation the MIM values, given the list of gene terms, the set of 
input Abstracts, and a user specified network the revision of the network is 
accomplished.  

 

 

 
 

Fig. 17: MIM file format. Still all level[i] are ‘-1’. MIM values are now hidden from the user and indicated 
as ‘-1’ (fifth column). There are ‘S”, “M’, ‘W’ or, ‘null’ indications at the last column.  The power of the 
terms’ interconnection is also hidden here. 

The abstracts are parsed and the MIM values of all given terms are computed. Based on 
the computed MIM values, the input network is revised. MIM values are assigned to the 
original ‘-1’ values and discretized (3.5.2) so that levels Strong, Medium and Weak 
interconnections are assessed. The extracted graph from the new revised network is 
constructed (Fig. 25).  

 

 

 

 

   

Fig. 18: MIM file format 
 

 

 

[i] level[1]  [j] level[j]  MIM[i][j]  S/M/W 
.. ….  ….   ….     …     …  
#Terms with 3 as discretised value of MIM with ‘S’trong interconnection 
#Terms with 2 as discretised value of MIM with ‘M’edium interconnection 
#Terms with 1 as discretised value of MIM with ‘W’eak interconnection 
#All Terms (in this file) 

 

 

[i] level[i]  [j] level[j]  -1            S/M/W/      null 

.. ….  …. ….  … 

 

 

Computed 
(Replace ‘-1’)   New column 
 

[i] level[i] [j] level[j]  MIM  S/M/W/    null S/M/W 
.. ….  ….  ….  …  S 
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4.3  Working with MineBioText: The Graphical User interface 

The initial graphical user interface (Fig.19) is divided in two major areas; the input and 
the processes that are available through it. The input files14 include the options file, 
the file that contains the set of abstracts, and the MIM file. The options file gathers all 
the potential filenames and parameters that will be necessary for the execution of the 
system; the set of abstracts file contains all the abstracts that will be parsed later and 
used as train set by the supervised learning algorithm.  

The available tasks that the user can introduce, includes the pre-processing phase of 
the gene terms and the abstracts set; the computation of the Mutual Information 
Measure for the exported pairs of gene terms that were located in the abstracts 
through the Abstracts Parsing process; the  discretization of the values calculated in 
the previous step, according to the MIM values file exported and a user specified 
percentage; the construction of a gene associations network according to the estimated 
values of MIM given by an input file; the graphic visualization of the associations 
network; the revision of an existing genes association network according to a given 
number of levels; and finally the class prediction of a set of unclassified abstracts.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 19: The entry MineBioText GUI 

                                             

 
14 The input is resolved in detail below. 



 

 
D. Antonakaki                   Mining the Biomedical Literature – Discovery of Gene/Protein Interactions                               60 

            MSc Thesis, Dept. of Computer Science, Univ. of Crete 

4.3.1  The tasks through the GUI 

 

 Determining the options through a file. Primarily, we should mention that the 
options can be given either through an options file either by the user through a 
guided process. In the first case, the file given contains all the essential parameters 
and filenames (Fig.20). The options file contains the number of domains that can be 
inserted, the number of files that will be inserted for each domain, the path name 
of files containing domain gene terms, a determination whether each gene term 
participates in the processing function, whether is significant or comprises a 
description. The files containing the terms must include in the first line a label for 
each column15. In addition, the options file contains the pathname of the abstracts’ 
and the stop list’s file.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 20: A sample options file 
 

                                             

 
15 The labels may be the names from Ensembl. The application includes parsing for them. 

Comment = PARTICIPATES / SIGNIFICANT / DESCRIPTION  

Domains = 1 

domain_1_files = 2 

 

domain_1_file_1_name    = C:\Data\Gene-Terms\domain1\EnsGeneID-EMBLID-UniProtSwissProtAC-
UniProtAC.tsv 

domain_1_file_1_columns = 4 

domain_1_file_1_codes   =  

    Ensembl Gene ID   true  true false 

     EMBL ID    true  false  false 

     UniProt/Swiss-Prot AC   true  false  false 

     UniProt AC    true  false  false 

 

domain_1_file_2_name    = C:\Data\Gene-Terms\domain1\EnsGeneID-OMIMID-DISEASEDISCR.tsv 

domain_1_file_2_columns = 3 

domain_1_file_2_codes    =  

    Ensembl Gene ID   true  true false 

     Disease OMIM ID    true  false  false 

     Disease description   true  false  true 

 

Abstracts          = C:\Data\Abstracts\85-05-Humans-Abstracts-PubMed.txt 

Wordlist          = C:\Data\Words\12dicts\2of12inf.txt 
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 A guided options selection. At first place the number of domains must be inserted 
(Fig. 21). For each domain (browsed by the next button), the files containing the 
gene terms will be specified. Likewise the Stop List File, which contains the list of 
words that were excluded from the search process in the abstracts, will be selected 
in this dialog box. This option is defined in the second line of the options file.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 21: Determining the domain options 

 

The next step of the process includes the selection of the files containing the gene 
terms. Initially the number of domain files should be specified, in the text box 
shown in Fig.22. For each file inserted in the second text box, the user should 
determine the respective properties through the new pop-up dialog window. 
Buttons “Next” and “Previous” will gradually advance for all of the given files. 

Each file selected in the previous step, contains tab-delimited data. For each 
column the user must specify the predefined category it belongs to. The user can 
browse through all the gene terms that were contained. For each gene term 
contained in the columns, the user must select the “Column Participation” if the 
specific term will actually take part in term extraction process from the abstracts. 
If the user does not select the “Column Participation” the term will not be loaded 
as a term in the application, and used in the parsing of the abstracts.  

The second box determines whether the specific column contains a term that was 
located in a gene’s description or not. Finally the last check box should be checked 
only for the Ensemble Gene Identifiers. 
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Fig. 22: The Dialog Windows for the insertion of the domain files and the attributes specification of the 
contained gene terms 
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4.4 Implementation Issues 

In this chapter, we present a complete system analysis of our implementation for all 
methods presented. The test was performed on a PC with 1.8GHz Pentium processor 
with 512 MB of RAM. In tables 1,2 and 3 we have record the time duration of all 
methods. 

As we have already proven the time complexity of the addition operation in a TRIE data 
structure is O(c*n). Where n is the length of the word added and c is the number of the 
letters of the alphabet that the word is written. The efficiency of the data structure 
can be shown at the initial phase of the implementation where a file that contains all 
common English words is loaded. This file contains 81.520 words and is loaded in 
approximately 1 sec. Subsequently, we added all significant words, loaded from 
Ensembl. The addition of 22.289 significant terms costs in time less than 1 sec.  

During synonym term loading, the addition algorithm becomes more complex. For each 
term added, we look for its significant in the structure. This adds the burrier of the find 
operation in the addition operation. We also parse large text files making lot I/O 
operations. These results in a significant increasing of the time needed to store 
synonym terms. Generally, in order to store 190.376 synonyms we spent approximately 
eight minutes. Storing words from GO-descriptions took approximately 35 seconds. The 
identified set of non-common English words, participating in the description of one or 
more genes were 22.899 words. Here, in addition with special word identification, we 
had to find and mark all genes having this special word increasing the relevant time. 
The parse phase was tested under two different conditions. The first was by having all 
genes significant identifiers, synonyms plus description words and in the second phase 
we removed the words from descriptions.  

In the first phase, in order to parse the 13.218 abstracts of the leukemia domain we 
spend 9 minutes. The MIM computations phase took 20 minutes and this was the longest 
procedure during the whole testing phase. MIM discretization and graph creation took 
negligibly low amount of time. In contrary, in the second phase where no words from 
description were in present the time amounts where surprisingly smaller. Instead of 20 
minutes, the parsing procedure lasted for 37 seconds and the rest procedures had 
negligible minor times. This great difference between these two phases comes from the 
extreme increasing of gene-gene relations when description words are in present. 
These words seem to be met with high frequency in biomedical abstracts resulting in a 
huge amount of relation in the order of 106. These relations had to be stored bringing 
the resources of our system in the edge of exhaustion. This procedure justifies the 
screening phase via MIM discretization that we have introduced. In future work we plan 
to add methods that are more sophisticated in order to limit the relations identified. 
Even so, our implementation spends a reasonable time to store and manage these 
relations. 

During classification procedure, our implementation took approximately half a minute 
to complete the whole task. The classification procedure was performed with all genes 
significant, synonyms and description words loaded in the data structure. Since our 
approach calculates only the feature vector of each abstract and not the MIM value the 
classification performance was completed in almost negligible time.   

As a conclusion, we may state that our methods contain sophisticated approaches in 
term management that consume reasonable computer resources. The MIM computation 
with description words may sometimes spend extreme amounts of memory. Although 
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this was expected for extreme inputs like these presented we plan to improve our 
filtering approached during MIM computation. 

 

Table 1. System Analysis for Gene Associations Network Extraction  

Locating Gene Terms & Extracting Gene Associations Network 

Action Amount Time 

“Loading Common English words” 81.520 Words ~1 sec 

“Loading Significant Terms” 22.221 Terms ~1 sec 

“Loading Synonym Terms” 190.376 Terms 8 min 14 sec 

“Loading  Description” 22.899 Words ~35 sec 

 

“Parsing Leukemia abstracts” 13.218 Abstracts 9 min 19 sec 

“MIM computation” 20 min 

“MIM Discretization” ~3 min 2 sec 

“Graph MIM values” 

6094129 pairs of terms 

~3 min 2 sec 

 

Table 2. System Analysis for Gene Associations Network Extraction  

The procedures without free text descriptions 

“Parsing Leukemia abstracts” 13.218 Abstracts ~37 sec 

“MIM computation” ~1 sec 

“MIM Discretization” ~2 sec 

“Graph MIM values” 

7888 pairs of  terms 

~2 sec 

 

Table 3. System Analysis for Classification  

Classification 

‘Leukemia Cancer’ 13.218 Abstracts 

‘Colon cancer’ 4.594 Abstracts 

Action Time 

“Split  abstracts files into test & train” ~30 sec 

“Training phase” ~3 min 

“Testing phase” ~4 min 
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5.  Validation and Evaluation of MineBioText 

PubMed the service of the National Library of Medicine includes over 15 million 
citations for biomedical articles back to the 1950's 
(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi).These citations are from MEDLINE and additional 
life science journals. PubMed includes links to many sites providing full text articles and 
other related resources. However, the availability of the full text of the document is 
dependent on the policy of the publisher. For several documents, the provided text 
includes only the abstract. PubMed provides the user the correlated list of documents 
given a word based query through an integrated text-search based search and retrieval 
system called Entrez (Entrez PubMed: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi). The queries that 
are provided through the web interface can be based either on characteristics of the 
publication of the documents, either on the contents of the documents. Specifically the 
search can be based on the author name, on the journal title, on the year of 
publication or gene/protein names, on diseases, or any keyword that can determine a 
specific domain, consequently the retrieval of literature from the NCBI db is domain 
specific. 

Ensembl is a joint project between EMBL - EBI and the Sanger Institute to develop a 
software system that produces and maintains automatic annotation on selected 
eukaryotic genomes (Ensembl Genome Browser: http://www.ensembl.org/index.html). The site provides 
free access to all data from the Ensembl project through a variety of available 
software. Ensembl uses MySQL relational databases to store its information. A 
comprehensive set of Application Programme Interfaces (APIs) serve as a middle-layer 
between underlying database schemes and more specific application programs. The 
APIs aim to encapsulate the database layout by providing efficient high-level access to 
data tables and isolate applications from data layout changes. Ensembl provides a Perl 
API and a Java API (Ensj) although the Java one is slightly less complete. An available 
Ensembl generic data management system we chose to use is BioMart (BioMart Project: 

http://www.biomart.org/); a data mining tool that can be used with any type of data and 
provides a build-in support for query optimization. It provides the user a set of filters in 
order to exclude or include characteristics of the Gene Set. The first step includes the 
database and dataset selection that actually determines category of the set of genes 
such as Homo sapiens genes/ Drosophila melanogaster genes etc. In the second step 
more specific characteristics about the dataset must be specified; the region of the 
dataset; specifications about the genes such as disease genes, common genes or having 
specific ids given by the user. The last step of BioMart includes the selection of the 
Chromosome and Ensembl attributes that will be included in the exported data, as well 
as some external references such as Protein ID/ GO ID/ HUGO ID/EMBL ID/.     

In this thesis, we decided to deal with abstracts because of the conciseness of the 
information gathered in the specific part of the publication. The specific gene terms 
located in the abstract of a document usually concerns the research hypothesis or the 
conclusions of the work. The set of genes that can be referred in a whole biomedical 
research document has a significant diversity. Therefore, the correlation indicated for 
the gene terms mentioned in the abstract is more significant for this thesis, than two 
potential terms located in the full text.  

Although the search of citations in can be based on specific gene terms, we chose more 
generic keywords describing a domain such as colon or breast cancer. The primary 
reason was the fact that the set of abstracts should be covering the whole domain that 
is described by the keyword. The search cannot be based on specific gene terms 
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because of the need to have an integrated set of documents (full covering of the 
domain) which through the classification will reveal the more descriptive gene terms 
for the specific domain. MineBioText starts from a set of gene terms that were 
retrieved by Ensembl through a similar domain specific filtering. A primary goal of this 
thesis is to determine the minimum set of terms that are correlated best with the 
retrieved abstracts, given a domain generic set of abstracts and gene terms. The user 
inserts a specific set of gene terms and a domain specific set of abstracts, and queries 
the most significant correlated documents. A mediate output generated from 
MineBioText includes a vector of weighted set of terms. Each weight expresses the 
frequency of occurrence of the term in the text and the value (as described in chapter 
3.4.1) depends on whether the Gene Terms was located in the abstract’s set or in the 
set of descriptions of Genes. The desirable output of our system could be described as 
the quality of a function that corresponds the set of gene terms to the set of abstracts, 
in a specified domain.  

5.1  A Validation Scenario 

In order to evaluate the classification method we focused on two specific diseases, 
which we have strong belief that are caused by genetic factors. The first phase (Fig. 
23) of the procedure includes the retrieval of the input set of abstracts that satisfied 
the query and the respective set of gene terms. The set of abstracts was divided in two 
parts; one for training set and one for testing. The two groups of retrieved references 
should not have common parts. In order to avoid two appearances of an abstract, we 
compared the two sets and removed the common abstracts from one of the sets.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 23: Input and Output of the first phase of Classification in MineBioText. Initially the set of abstract 
divided in two parts, the train file and the test file. The Train file is parsed by MineBioText and the 
desired set of gene terms that are located in, are exported, as well as the sum of the weight values. This 
is the train file for the specific domain. The remaining set of abstracts is the test file, that as well as 
train file, is parsed by MineBioText application in order just to locate the terms contained. The exported 
file (test file for the domain) contains the Primary Identifier of the abstracts taken from Medline (PMID), 
the gene terms as they were located in the abstract, their corresponding Ensembl ID, and their calculated 
weight values (estimated according to algorithm of Fig.8). 

Train file  for domain 

Ensembl ID Strength 

ensg00000169429 15.239394 

ensg0000015734 67.928571 

 

Test file for domain 

PMID Term Ensembl ID Weight value  

15604281’ ‘il8’ ensg00000169429 1 

15606925 ‘mrna’ ensg00000157344 0.071429 

 

Set of abstracts  

Train file for 
domain (50% 

from the  
initial set) 

Test file for 
domain (50% 

from the 
initial set) 

MineBioText  Gene 
terms set 

MineBioText  Gene 
terms set 
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First, we divided16 the groups of documents; for example 50% of the abstracts for the 
training and 50% for the test. The independent groups of references will be input to 
MineBioText separately; for the two ‘runs’ -for each domain separately- the Gene 
Terms (Sx, Tx,), the ‘stop-word’ will be necessary as well, in order to extract the weight 
values for each Gene Term located in the abstract/train files. (Fig. 23) 

The next phase (Fig. 24) applies the similarity matching metric (Eq.1) to the 
test/unclassified set abstracts; those have not been classified and comprised the test 
sets. The next step is to predict the class of each of the documents contained in the 
test set. 

 

 

 

 

 

 

 

 
 

Fig. 24:  The Input for the similarity formula (second phase) of Classification in MineBioText 

5.2  Validation of MineBioText 

In order to evaluate the reliability of the approach, we focused on six domain sets 
including retrieved sets of Abstracts and Gene Terms from PubMed and Ensembl 
concerning ‘Colon’, ‘Breast’, ‘Leukaemia’, ‘Ovarian’ and ‘Prostate’ Cancer. The output 
Gene Associations Networks generated for each domain set as well as the Classification 
results are mentioned in the sections below.  

Domain Set 1. The first set of abstracts include 4.594 for ‘Colon’cancer, 9.278 for 
‘Breast’Cancer and 13.218 for ‘Leukaemia’, from three keyword based queries: “(colon 
AND gene)”, “(breast AND gene)”, “(leukaemia AND gene)”. The sets of abstracts were 
compared in order to exclude the common parts. The removed set from ‘Colon’ and 
‘Leukaemia’ contained 141 abstracts; 252 abstracts from ‘‘Breast’ and ‘Leukaemia’ and 
499 from ‘Colon’ and ‘Breast’ sets. We also retrieved 168.019 Gene Terms from 
Ensembl (from ‘Homo Sapiens’ dataset) including the features of ‘Ensembl Gene ID’, 
‘description’ (from ‘Ensembl Attributes’), ‘EMBL ID’, Hugo indicated as ‘GO ID’ and 
‘Protein ID’ (from the ‘External References’). 

 

 

 

 
                                             

 
16 The percentage is a user input. 

Classified abstracts  

Matching Similarity formula 

Train File for Breast 
Cancer (From Phase A) 

Test File for Breast 
Cancer (From Phase A) 

Train File for Breast 
Cancer (From Phase A) 

Test File for Breast 
Cancer (From Phase A) 
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Table 4. The Retrieved Set of Abstracts 

 

 

 

 

 

Table 5. The common set of abstract between the domains that were excluded. 

 

 

 

 

 

After domain specific literature has been processed and associations were derived 
through Mutual Information Measure, the next step was the creation of knowledge 
(association) network. The extracted relationships include binding interactions between 
the connected objects or biological influence or activations that may an object cause to 
the other. A potential network can reveal relation between gene to gene and gene to 
disease. Each object present to the network will contain link to other information that 
can provide the system for the specific object. 

Given the list of terms, the set of abstracts (tables 5,6), a user specified network of 
terms and a user specified percentage (X%) of the gene terms with top ranked MIM 
values. The MIM file computed in the previous step, including the gene terms and 
abstracts, is filtered with remaining rows just the ones where the MIM values are over 
the one that corresponds to the upper X% percentage. For all these remaining rows, the 
MIM values are discretised to 3 levels; Strong, Medium and Weak. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 25: A visualized Genes Association network 

The input set of Abstracts 

‘Colon’ Cancer 4.594 

‘Breast’ cancer 9.278 

‘Leukemia’ cancer  13.218 

The common set of Abstracts 

‘Colon’ – ‘Breast’ cancer 499 

‘Colon’ – ‘Leukemia’ cancer  141 

‘Breast’ – ‘Leukemia’ cancer  252 
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In order to visualize the network tulip graph software17 was used. Tulip is a software 
system dedicated to the visualization of huge graphs that manages graphs with up to 
500,000 elements (node and edges).  

The visualized network contain all the information extracted from the search of the set 
of Gene Terms in the given set of abstracts, including explicitly mentioned relations 
and facts as well as novel findings extracted from the network. Each node of the 
networks, shown in the figures above is a Gene Identifier or a Disease. The attached 
labels for the Gene Terms comprise the corresponding HUGO identifiers18. Each Gene 
Term can be connected to another Gene Term as well as to a Disease name19, according 
to the co-occurrences indicated by the revised MIM values (presented in chapter 3.5.3). 

As it will be shown for the domain sets, 5 & 6 the findings that can be extracted from 
the Gene Networks include potential relations between Genes and Genes with Diseases. 
The distilled knowledge can be retrieved from either explicitly mentioned relations and 
facts or identification of implicit novel patterns in the given set of abstracts, based on 
the co-occurrences indicated by the revised network of chapter 3.5.3. In the next 
paragraphs, we mention examples of possible relations and facts between the nodes of 
a network. 

Domain Set 2. The second domain set includes Breast Cancer and Leukaemia.  We 
retrieved 162 abstracts from PubMed concerning the diseases mentioned. The input 
Gene Terms set and the Abstracts were input to MineBioText and the calculated MIM 
values were revised in order to produce the Visualised Network seen in Fig. 26. 

 

 
 

Fig. 26:  The visualized genes association network between Breast Cancer & Leukemia. 

                                             

 

17 http://www.tulip-software.org/ 
18 We noticed that HUGO Identifiers were the most common mentioned in the set of abstracts.  
19 The corresponding significant identifiers for the disease names have been also inserted to the Trie: 
ENSG10000000001 for leukaemia/leukaemia/leukaemias/leukemias, ENSG10000000002 for colon cancer 
and ENSG10000000003 for breast cancer.  
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Domain Set 3. The third domain set concerns ‘Breast’ and ‘Ovarian’ Cancer including 
129 abstracts. The output network is seen in Fig. 27.   
 

 
 

Fig. 27:  The visualized genes association network between Breast & Ovarian Cancer. 
 

Domain Set 4. The next experiment was made in datasets from ‘Breast’ and ‘Prostate’ 
Cancer with about 142 abstracts retrieved. The Gene Associations network from the 
revised MIM values is shown in Fig.28. 

 

Fig. 28:  The visualized genes association network between Breast & Prostate Cancer. 
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Domain Set 5. The domain set for ‘Prostate’ and ‘Ovarian’ Cancer was made on a set 
of 86 Abstracts. The output visualized network is shown in Fig. 29.  
 

 
 

Fig. 29:  The visualized genes association network between Prostate and Ovarian Cancer 
 

 In Fig. 29, the network indicates the connection between ‘Prostate Cancer’ with 
‘Cxcr4’ and ‘Ovarian Cancer’ with ‘Cxcr4’. Since there are not common 
publications in the set of abstracts we have retrieved a novel connection revealed:  

o ‘Cxcr4’– ‘Prostate’. In abstract “Expression signature of the mouse prostate”, 
PMID: 16055444, Cxcr4 is explicitly mentioned.  

o ‘Cxcr4’– ‘Ovarian’. In abstract “Role of immunoreactions and mast cells in 
pathogenesis of human endometriosis--morphologic study and gene expression 
analysis.”  PMID: 15005245, ‘Cxcr4’ is explicitly mentioned.  

 Another example of extracted information is that of Fig. 29 where the network 
reveals the association between ‘Prostate Cancer’ and ‘Ovarian Cancer’ with 
Gene Term ‘IL-8’.  

o ‘IL-8’– ‘Prostate’. In abstract “Identification of genes involved in estrogenic 
action in the human prostate using microarray analysis.” PMID: 14667807, ‘IL-
8’is explicitly mentioned.  

o ‘IL-8’– ‘Ovarian’. In abstract “Role of immunoreactions and mast cells in 
pathogenesis of human endometriosis--morphologic study and gene expression 
analysis.” PMID: 15005245, ‘IL-8’ is explicitly mentioned. 
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Domain Set 6. The last set includes abstracts about ‘Breast’, ‘Ovarian’ and ‘Prostate’ 
Cancer. 

 

Fig. 30:  The visualized genes association network between Breast- Ovarian and Prostate Cancer. 
 

 The visualized network of Fig. 30 (Domain 5 including ‘Breast’/‘Ovarian’/‘Prostate’ 
Cancer) revealed the connection between Gene Term ‘BRCA1’ with ‘Breast’ and 
‘Ovarian’ cancer. 

o ‘BRCA1’ – ‘Ovarian’.  As seen in abstract “Gene expression profiles of BRCA1-
linked, BRCA2-linked, and sporadic ovarian cancers”, PMID: 12096084 there is 
no-single reference to “breast cancer”. 

 

5.2.1  Towards a Qualified Validation of MineBioText Findings 

The results inferred by MineBioText may be also validated by reference to other works 
related to biomedical literature mining findings, and to related biology-related 
experimental findings. This is crucial for the reliability of the MineBioText findings 
(i.e., correlations between genes/proteins, and between genes/proteins and diseases). 
With respect to that we summarise the above MineBioText findings, i.e., correlations, 
into the following figure (figure 31a), and the visualised findings from STRING to figure 
31b).  
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Fig. 31:  The visualized genes association network between Breast- Ovarian and Prostate Cancer. 

 

We used the STRING Web-based system (http://string.embl.de/) – as systems that 
registers and visualises gene/protein associations, based on both literature mining and 
experimental evidence. It can be easily verified the literature-mining as well as the 
experimental-based validation of the correlations between: genes/proteins ‘IL-8’, 
‘cxcr4’, ‘erf1’ and ‘brca1’ - ‘brca1’ is also correlated with the ‘ovarian-cancer’ 
disease. 

The above presentation validates MineBioText findings in a qualified way. 

 

5.3  Biomedical Texts Classification: Evaluation of MineBioText 

As shown in table 7 for the set of 9278 abstracts retrieved for the domain of ‘Breast’ 
cancer the 4264 where classified. About the ‘Colon’ cancer domain from the 4594 set 
of abstracts retrieved from PubMed, the 2036 where classified and for the ‘Leukaemia’ 
domain the initial set of 13218 gave 6358 classified abstracts.  

a 

b 
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Classification results between the ‘Leukaemia’ and  ‘Colon’ sets of abstracts, with 
division 50% of for both of the sets, achieved Total Accuracy = 97.5% and the AUC of the 
ROC curve was 0.99. The respective results, with the same split of 50% and AUC results 
between ‘Colon’ and ‘Breast’ sets achieved 93% and the sets of ‘Breast’ and 
‘Leukaemia’ 90 %. 

Table 6. The Classified set of Abstracts 

Domain Set of Abstracts Classified 

‘Breast’ cancer 9278 4264 

‘Colon’ cancer 4594 2036 

‘Leukemia’ cancer 13218 6358 

 

Table 7. The Classification Results for Domain 1 

Dataset Percentage      
(train–test) 

Total 
Accuracy 

AUC  

‘Breast’ – ‘Colon’ cancer  93%   0.9932 

‘Colon’ –‘Leukemia’ cancer  97.5% 0.9965 

‘Breast’ – ‘Leukemia’ cancer 

50%, 50% 

90 % 0.9663 

 

Table 8. The Classified set of Abstracts for the Domain Sets 2-6 

Domain Set of Abstracts Classified 

‘Breast’ –‘leukaemia’ Cancer 162 162 

‘Breast’-‘Ovarian’ Cancer 129 129 

‘Breast’- ‘Prostate’ Cancer 142 142 

‘Ovarian’-‘Prostate’ cancer 86 86 

 

 

As seen in chapter 4.1.10 according to the estimated value of the similarity formula 
described in Eq. 1, a prediction is indicated as true positive (A/A); false positive (A/B); 
false negative (B/A) and true negative(B/B). The corresponding results for each domain 
set are shown in ‘Class Prediction’ column of table 9.  
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Table 9. The Classification Results for Domain set 2-6.  

Dataset Percentage 

(train–test) 

Total Accuracy Class Prediction AUC 

‘Breast’ – 
‘Leukaemia’ Cancer 

 

98.148% 

A/A: 92 

A/B: 0 

B/A: 3 

B/B: 67 

 

0.999 

‘Breast’-‘Ovarian’ 
Cancer 

98.449% A/A: 91 

A/B: 0 

B/A: 2 

B/B: 36 

 

0.998 

‘Breast’ - ‘Prostate’ 
Cancer 

98.591% A/A: 89 

A/B: 2 

B/A: 0 

B/B: 51 

1.000 

‘Ovarian’ - 
‘Prostate’ Cancer 

50%, 50% 

97.674% A/A: 32 

A/B: 2 

B/A: 0 

B/B: 52 

1.000 

 

5.3.1  Evaluation of MineBioText Classification on a TREC-Genomics Task 

In order to evaluate the classification process we used an evaluation scheme provided 
by TREC 2004 Genomics Track. The Text REtrieval Conference (http://trec.nist.gov/) 
co-sponsored by the National Institute of Standards and Technology 
(http://www.nist.gov/20) and US department of Defense. It was started in 1992 as part of 
the TIPSTER Text program. Its purpose was to support research within the information 
retrieval community by providing the infrastructure necessary for large-scale evaluation 
of text retrieval methodologies. 

The TREC workshop series has the following goals: 

 To encourage research in information retrieval based on large test collections; 

 To increase communication among industry, academia, and government by creating 
an open forum for the exchange of research ideas; 

                                             

 
20 NIST is a federal technology agency that works with industry to develop and apply technology, 
measurements, and standards. 
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 To speed the transfer of technology from research labs into commercial products by 
demonstrating substantial improvements in retrieval methodologies on real-world 
problems; and 

 To increase the availability of appropriate evaluation techniques for use by industry 
and academia, including development of new evaluation techniques more 
applicable to current systems. 

The first year (2003) of genomics track featured two tasks including ad-hoc retrieval 
and information extraction; both centered on the Gene reference to function 
(GeneRIF21) and attracted 29 groups who participated. Trec 2004 focused on the 
standard ad-hoc retrieval task of topics retrieved from biomedical research scientists 
Medline bibliographic database as well as the categorization of full text documents 
simulating the task of curators of the Mouse Genome Informatics22. TREC Genomics 
track 2004 differed from the other tracks in that it focused on the biomedical domain; 
the main goal was to create a large collection of test data used for the evaluation of 
retrieval systems; focused on biomedical scientists, curators and annotators, providing 
scientific literature. The track was supplied by resources from National Science 
Foundation (NSF) Information Technology Research (ITR)23 and was overseen by a 
committee of individual with background in IR and genomics.  

A total of 33 groups participated in the 2004 Genomics Track, making it the track with 
the most participants in all of TREC 2004.  A total of 145 runs were submitted.  For the 
ad hoc task, there were 47 runs from 27 groups, while for the categorization task; there 
were 98 runs from 20 groups.  The runs of the categorization task were distributed 
across the subtasks as follows:  59 for the triage subtask, 36 for the annotation 
hierarchy subtask, and three for the annotation hierarchy plus evidence code subtask. 

The goal of the ad-hoc retrieval task was to mimic conventional searching. The use case 
was a scientist with a specific information need searching MEDLINE for relevant 
articles. The documents were a 10-year subset of MEDLINE full texts (1994-2003). This 
provided a total of 4,591,008 records, which is about one third of the full MEDLINE 
database. The ad-hoc retrieval task consisted of 50 topics derived from interviews 
eliciting information needs of real biologists.  

The results for the ad-hoc retrieval system were measured with the classical recall 
(Eq.6) and precision (Eq.7) measurements, using the preferred TREC statistic of mean 
average precision (Eq.8) (average precision at each point a relevant document is 
retrieved, also called MAP). This was done using the standard TREC approach of 
participants submitting their results in the format for input to Chris Buckley’s trec_eval 
program24. 

The second task was divided in three subtasks; the first one focused on the triage of 
articles with potential experimental evidence warranting the assignments of GO terms; 
the other two focused on the assignment of the three GO categories indicating the 
assignment of a term within them. Systems were required to classify full-text 
documents from a two-year span (2002-2003) of three journals.  The first year's (2002) 

                                             

 
21 http://www.ncbi.nlm.nih.gov/projects/GeneRIF/GeneRIFhelp.html 
22 Mouse Genome Informatics (MGI) provides integrated access to data on the genetics, genomics, and 
biology of the laboratory mouse., http://www.informatics.jax.org/ 
23 www.itr.nsf.gov/ 
24 ftp://ftp.cs.cornell.edu/pub/smart/ 



 

 
D. Antonakaki                   Mining the Biomedical Literature – Discovery of Gene/Protein Interactions                               77 

            MSc Thesis, Dept. of Computer Science, Univ. of Crete 

documents comprised the training data, while the second year's (2003) documents 
made up the test data. 
In the triage task positive examples were papers designated for GO annotation by MGI. 
Negative examples were all papers not designated for GO annotation in the operational 
MGI system.  For the training data (2002), there were 375 positive examples, meaning 
that there were 5837-375 = 5462 negative examples.  For the test data (2003), there 
were 420 positive examples, meaning that there were 6043-420 = 5623 negative 
examples. 

5.3.1.1  TREC-Genomics Task Classification Topics 

The topics for the ad hoc retrieval task were developed from the information needs of 
real biologists and modified as little as possible to create needs statements with a 
reasonable estimated amount of relevant articles (i.e., more than zero but less than 
one thousand).  

The information needs capture began with interviews by 12 volunteers who sought 
biologists in their local environments. A total of 43 interviews yielded 74 information 
needs. Some of these volunteers, as well as an additional four individuals created 
topics in the proposed format from the original interview data.  

The aim was to have each information need reviewed more than once but it was only 
able to do this with some, ending up with 91 draft topics. The same individuals then 
were assigned different draft topics for searching on PubMed so they could be modified 
to generate final topics with a reasonable number of relevant articles. The track chair 
made one last pass to make the formatting consistent and extract the 50 that seemed 
most suitable as topics for the track.  

The topics where formatted in XML and had the following fields: 

 ID: 1 to 50 
 Title: Abbreviation statement of information need 
 Information Need: Full statement information need. 
 Context: Background information to place information need in context 

 

From the 50 total topics, 26 had general genomic interest without any specific gene 
term included in the topic description. For example: 

 

<TOPIC> 
<ID>2</ID>  
<TITLE>Generating transgenic mice</TITLE>  
<NEED>Find protocols for generating transgenic mice.</NEED>  
<CONTEXT>Determine protocols to generate transgenic mice having a single 
copy of the gene of interest at a specific location.</CONTEXT>  
</TOPIC> 

 

The rest 24 topics was an information need for the functionality of one or more specific 
genes or proteins. For example: 
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<TOPIC> 
<ID>1</ID>  
<TITLE>Ferroportin-1 in humans</TITLE>  
<NEED>Find articles about Ferroportin-1, an iron transporter, in 
humans.</NEED>  
<CONTEXT>Ferroportin1 (also known as SLC40A1; Ferroportin 1; FPN1; HFE4; 
IREG1; Iron regulated gene 1; Iron-regulated transporter 1; MTP1; SLC11A3; and 
Solute carrier family 11 (proton-coupled divalent metal ion transporters), 
member 3) may play a role in iron transport.</CONTEXT> 
</TOPIC> 

 
  

Although the track specification does not make any distinguishing between these two 
categories, our implementation is a term oriented classification mechanism and we 
expect to be more accurate in the second category. For each topic a vast collection of 
documents (abstracts of scientific papers) were created. This collection is named ‘pool 
(of documents)’. A pool is composed by documents that are characterized as 
“Definitely Relevant”, “Possibly Relevant” or “Not Relevant” by a set of Biology 
experts. The characterization procedure is quit complex in order to assure a consensus 
between different types of documents. The detailed procedure can be found in TREC 
2004 genomics track overview, [Hersh,W. R., and Bhupatiraju, 2004]. The average pool 
size (average size of documents judged by topic) was 976, with a range of 476-1450. 

Evaluation Measures. In order to evaluate the characterization ability of a method, 
TREC proposes the use of the mean average precision (MAP) score [Kazuaki K., 2005]. 
For each topic, we rank our documents in descending order from “most relevant” to 
“less relevant” according to our scoring schema. For each relevant document retrieved 
we measure the Precision value and the Average Precision (AP) shown in Equations 6,7. 
 

 

RetrievedDocuments#

RetrievedDocumentsRelevant#
Precision =  

  
 

  
Equation 6,7. Precision and Average Precision Formulas 
 

Finally the Mean Average Precision (MAP) is the mean value of all Average Precisions in 
all topics. 

 

Topics#

AP
MAP

Topics#

1i
i∑

==  

 
 
Equation 8. Mean Average Precision. 

DocumentsRelevant#
1i iPrecision

AP

RetrievedDocumentsRelevant#
∑
==
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The procedure of evaluating the MAP score can be seen in the example of figure 32. 

 

Fig. 32:  The procedure of evaluating MAP score 
 

5.3.2  MineBioText Classification Results on the TREC-Genomics Task 

In order to evaluate our method we had to make some refinements in the classification 
procedure. First, in this domain we do not have two train/test sets. We only have a 
topic specification and a pool of documents. The topic specification that forms the 
research query acts as a unique train set and the pool of documents as a unique test 
set.  

Furthermore words in the query that are not common English words are regarded as 
gene terms as well. We slightly changed the set of stop-word list to exclude words 
that were contained in some queries but descriptive for the query. These words usually 
included words of organs (i.e., kidney, heart) and diseases (i.e., stroke, thrombosis, 
cancer, tumor).  

As a future work, we plan to avoid this heuristic action by providing a general 
biomedical dictionary as the Medical Subject Headings (http://www.nlm.nih.gov/mesh/). 
Moreover whenever a query contained a Gene Term provided by Ensembl, an abstract 
should obligatory had this term in order to be characterized as “relevant”. We added 
this heuristic because especially when a query contained a Gene Term (such as 
“BRCA1”) and a prior common English word (such as “breast”) the majority of the 
documents had the common English word but did not had the Ensembl Gene Term 
producing a lot Retrieved-Irrelevant documents. 

Finally, the matching formula used in MineBioText (Eq.1), has changed to the formula 
given in equation 9. 

 

th)max(streng
)strength(t

weight
count

(t)rank
(t)docsstrength topic

topic

topic ××=  

 
Equation 9. The matching similarity formula used where the strength referring to the abstract-test file, 
in the original formula (Eq.1), is now referring to the pool of document. In addition, the corresponding 
train set in this equation refers to the topic specification formed by the research query.  
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The sign of the prior formula was the criterion whether an abstract belong to “class 1” 
or to “class 2”. The new formula does not produce negative values but it estimates 
“how strong” an abstract has common features with the query. Hence, if an abstract 
yields Similarity value of zero is considered as ‘irrelevant’, otherwise it is ‘relevant’. 
These values also used for ranking of the documents in order to estimate the MAP value 
as we can see in figure 33. 

 

 

Fig.33: Analytical result of methods submitted in 2004 Genomic Track and the relative 
results of our approach. The first column shows the ID of each topic. The second shows if a 
topic contained a query for one or more gene terms. Our approach is a matching term oriented 
technique and we expect to have better results in gene term related topics. The third column 
shows the total number of abstract that each topic contains. The forth and fifth column 
contains the number of abstracts that were characterized as “definitely relevant” and “possibly 
relevant” respectively by the expert group. During 2004 Genomic Track both “definitely 
relevant” and “possibly relevant” were managed as relevant documents. The sixth column is 
the final number of irrelevant documents and the seventh column is the number of relevant 
documents of each topic. The eighth column is the MAP value that succeeded the 47 submitted 
runs and the ninth column is the Average Precision succeeded by MineBioText. In the final tenth 
column is the difference of MineBioText and the MAP of the rest submitted methods.  
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At 2004 genomics, track 47 methods (or else “runs”) were submitted. In the following 
table, we provide information about the characteristics of each topic, the average 
results of the 47 methods submitted, and the results of our method. 

As we can see the MAP, value for our experiments is 0.39. If we limit the topics to 
these that are Gene Related then the MAP value is 0.45, but if we limit the topics to 
these that are not Gene Related then the MAP value is 0.33. The following table shows 
the results of the 47 “runs” that submitted in 2004 Genomic Track. In Figure 34 we 
inserted our results. As we can see we have placed in the second rank.  

Rank Run MAP 

- MineBioText(GR)* 0.451 

1 Pllsgen4a2 0.408 

- MineBioText 0.390 

2 uwmtDg04tn 0.387 

3 Pllsgen4a1 0.369 

4 THUIRgen01 0.344 

5 THUIRgen02 0.343 

- MineBioText(NGR)* 0.332 

6 Utaauto 0.332 

7 uwmtDg04n 0.332 

8 PSE 0.331 

9 tnog3 0.325 

10 tnog2 0.320 

11 utamanu 0.313 

12 aliasiBase 0.309 

13 ConversManu 0.293 

14 RMITa 0.280 

15 aliasiTerms 0.266 

16 akoike 0.243 

17 OHSUNeeds 0.234 

18 tgnSplit 0.232 

19 UIowaGN1 0.232 

20 tq0 0.228 

21 OHSUAll 0.227 

22 LHCUMDSE 0.219 

23 akoyama 0.216 

24 PDTNsmp4 0.207 

25 PD50501 0.206 

26 RMITb 0.206 

27 UBgtNormJM1 0.204 

28 ConversAuto 0.201 

29 york04g2 0.201 

30 tgnNecaux 0.195 

31 lga1 0.183 

32 york04g1 0.179 

33 lga2 0.175 

34 rutgersGAH1 0.170 

35 wdvqlxa1 0.158 

36 wdvqlx1 0.157 

37 DCUmatn1 0.139 

38 BioTextAdHoc 0.138 

39 shefauto2 0.130 

40 rutgersGAH2 0.130 

41 shefauto1 0.129 

42 run1 0.118 

43 MeijiHilG 0.092 

44 DCUma 0.090 

45 csusm 0.012 

46 edinauto2 0.002 

47 edinauto5 0.001 

 
Fig. 34: Results of all 47 “runs” submitted in 2004 Genomics Track plus MineBioText ranked in 
descending order of MAPs. The first column is the succeeded rank during Track. The second column is the 
method’s name. More details for each submitted method can be found at “TREC 2004 genomics track 
overview”, [Hersh,W. R., and Bhupatiraju, 2004]. MineBioText (GR) or MineBioText (Gene Related) is 
our method limited in only gene related topics where MineBioText (NGR) or MineBioText (Not Gene 
Related) is our method limited in not gene related topics.  
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Interpretation of Results. As we can see in Fig. 34, our system succeeded the second 
best result over 47 submitted runs, with an insignificantly small difference from the 
best run. The main result that has to be discussed is that our system succeeded far 
better performance than the others in gene related topics. That is because the other 
methods include NLP techniques that are very effective in common Information 
Retrieval domains, but they do not include Term Matching techniques as we do. It 
seems that inserting information from gene annotations is more significant than 
implementing sophisticated NLP techniques. Specifically in the Genomics domain, we 
have an increasing amount of sources of gene terms, synonyms, descriptions, 
annotations and ontologies. A system that tackles these sources can handle not only 
classification tasks but can satisfy certain information needs as well. Nevertheless, NLP 
still plays a central role in text categorization and we plan to include related 
techniques as a future step.  
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6.  Conclusions and Future Work 

Automatic extraction of information from biomedical texts appears as a necessity 
considering the growing of the massive amounts of scientific literature. According to 
NLM and the web database system there is an amount of metadata for more than 11 
million articles. Despite the great amount, the gathering among specific organisms, the 
availability through the biomedical literature seems to lack. The common denominator 
where the main problems are gathered is terminology and lexical coverage. The 
problem arises from the fact that there is not a standard adopted vocabulary. 

According to Ensemble, several naming conventions are entry points into the Ensemble 
database. There seem to be a great need of organizing and centralization of the 
terminology in the biological domain that calls experts from different but eventually 
assembled sections of science. Additionally the use of pronouns and definite articles, 
long, complex or negative sentences or those in which information is implicit can be 
also inconvenient for a searching algorithm. Term ambiguity can arise from the 
identification with common English words or bad encoding of human genes. There are a 
number of efficient, publicly available tools for data processing, storing retrieving 
information, and analyzing results in the context of existing knowledge, involving 
techniques from Natural Language Processing (NLP) and data mining. The great amount 
of literature referring to gene and protein related biological functions raised a great 
interest for automating the techniques of identification, extraction, management 
integration and exploitation of knowledge. Despite the great need that emerges from 
the large amount of bibliography concerning biomedicine, an additional challenge was 
to deal with the problems arisen in biomedical literature.   

Our approach used statistical techniques in order to address the recognition of general 
terms, rank the discovered Gene Terms and estimate term-hoods. More specifically 
Mutual Information Measure was used to estimate the strength of associations 
between the terms. We proposed unsupervised learning in order to achieve extraction 
of genes association network. The implementation provides discretization of the MIM 
values according to an input threshold either the revision of MIM. The output is actually 
an Association’s network of the gene terms and a graphical visualization of the 
interrelations between them is provided. After the post processing of the input terms 
and texts, two sets of terms are extracted in order to be used in the prediction of the 
unclassified set of abstracts. Finally, class prediction of documents was accomplished 
through supervised learning.  

We presented a general schema for storing and managing biomedical term information. 
From the associations derived we can conclude that term information contained in the 
abstracts is essential and valuable source for knowledge extraction. The novel 
extracted information comprises a primal step for the biomedical research towards the 
discovery of gene to gene and gene to disease relations and transforms the application 
to an assistant for a biomedical researcher. The extracted networks contain trivial 
interrelations between genes as well as new discovered with equivalent weight that 
comprise a challenge for further biomedical research. The classification method 
presented can be applied not only in the biomedical literature but can equally be 
extended to a general text classification domain. 

Although the complexity of terminology and nomenclature in the biomedical domain, 
we proposed an effective approach for the distillation of valuable information and a 
considerable high classification rate. Intensive experimental to other ‘disease’ dataset 
validation is remaining as a future study. Another task we consider as future work is the 
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revision of the Gene Nomenclature; present and extend the string matching of the 
Terms in the Set of Input Texts to a fuzzy string matching. Referring to the Terminology 
used in the experiments, we suggest a more expansive search of the Terms in MESH in 
order to extend the extraction of the potential relations between in the input abstracts 
to more object such as Anatomy Terms; Organisms; Diseases; Chemicals and Drugs; 
Analytical, Diagnostic and Therapeutic Techniques and Equipment; Psychiatry and 
Psychology Terms; Biological Sciences such as Genetic Processes/Phenomena/ 
Structures as well as Chemical and Pharmacologic Phenomena; Physical Sciences; 
Anthropology, Education, Sociology and Social Phenomena; Technology, Food and 
Beverages; Information Science such as Computing Methodologies, Information Services 
e.t.c;  Persons; Health Care or Geographic Locations.  

Towards efficiency some implementations issues should also be consulted; a potential 
implementation of a double Trie should be introduced in order to reduce the number of 
states created in the traditional implementation; a more extended search of the 
recognized words as Gene Terms from the sets of the Gene descriptions with the 
introduction of a more efficient approach of stemming. The application implemented 
could also be adjusted and settled in order to accept input from to a more generic suite 
of mining numerical and biomedical data such as gene expressions, sequences; or 
protein folding research tools. Towards an effective update of the input Gene Terms, 
Gene Synonyms, Descriptions, Ontologies and Publications, MineBioText should be 
adjusted as a web interface.  

We considered the efficiency of a system in which the Biomedical Annotation was 
retrieved and recognized in the set of abstracts, instead of using Natural Language 
Processing techniques to extract the terms.  The difficulty is that current technology is 
not at the level where it can correctly identify the relationships from a sentence and 
accurately link them to the genes or other biomedical objects with an acceptable 
accuracy and recall across all domains. 

In contrast with NLP-techniques, the DB-population by sets of identified Gene Terms 
cannot be achieved, since biomedical terms are not discovered in text but retrieved 
from Ensembl. We accept the value of term extraction so we consider the potential 
insertion of NLP-techniques as a future work.  
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