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Abstract

One of the most crucial steps in clinical genetics pipelines is variant annotation and
prioritization. This step usually includes the consultancy of other databases that can shed
light on the importance of the identified genomic variation. One of the genomic data sources
with a valuable wealth of information is online BioMedical publication databases such as
PubMed. Today is debatable as to which extend modern clinical genetics pipelines involved
in Next Generation Sequencing exploit this information.
Despite the plethora of available methods for information extraction from biomedical text,
they rarely take part in the annotation/prioritization step of typical Next Generation
Sequencing pipelines. This is because existing methods are not suited for mass querying the
complete genome variation of an individual. Here we present an open tool that builds a graph
from the BioC corpus consisting of all open and extensively pre-annotated PubMed articles in
less than 10 hours. In this graph, nodes represent Articles (n=27M), Chemicals (n=350K),
Diseases (n=12K), Genes (n=37K), Mutations (n=1.1M) interconnected through 190 million
edges.The graph can be queried and explored through the Cypher language that is served
and visualized through the Neo4j graph database engine. Through this engine we can query
the entirety of variants (~50K) identified in NGS experiments in a practical timescale. The
result of this query is the intersection of the graph's mutations with those of the file that have
been given as input. The articles that contain these mutations are used for topic modeling
through Top2Vec.Through the results of topic modeling, a user can easily and flexibly
investigate all existing bibliographic evidence linking the genetic profile of the individual with
known diseases and chemical/drug interactions.
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1.Introduction

1.1 Exome sequencing
In recent years, genome sequencing is a term that we come across quite often and more and
more people are moving towards this test. The benefits of this experiment are many as it is
possible to detect mutations that cause diseases, genes that cause a disease or a
phenotype. Exome sequencing now tends to be a routine test. Since the beginning of the
millennium, the cost of genome sequencing has dropped dramatically. Specifically in 2001
the cost per genome sequencing was $ 100,000,000, until 2007 this price was reduced to $
10,000,000 while today it costs less than $ 1,0001 for a quality level acceptable in clinical
genetics. (Figure 1.1)

Figure 1.1 : “Evolution of the cost of sequencing a human genome2”

1.1.1 Whole exome sequencing vs whole genome sequencing
Whole exome sequencing (WES) is divided into two steps. The first is the isolation of DNA
regions that encode proteins. The second step is to sequence these areas using any
high-throughput DNA sequencing technology. The above procedure aims to detect genetic
mutations that alter protein sequences at a much lower cost than whole genome sequencing.
Although exons occupy only 1.1% of the total genome (Venter et al. 2001) or about 30
megabases of DNA, it contains approximately 85% of known disease-related variants (Choi
et al. 2009). On the other hand, whole genome sequencing is more powerful and more
sensitive than whole-exome sequencing in detecting potentially disease-causing mutations
within the exome (Belkadi et al. 2015). One must also keep in mind that non-coding regions

2 https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data
1 https://en.wikipedia.org/wiki/$1,000_genome
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can be involved in the regulation of the exons that make up the exome, and so whole-exome
sequencing may not be complete in showing all the sequences at play in forming the exome.
Nevertheless, since the exome  is a very small part of the total genome, this process is more
cost efficient and fast as it involves sequencing around 40 million bases rather than the 3
billion base pairs that make up the genome (Nagele 2013). For these reasons WES is
preferred for many research activities that require the study of the coding regions of the
genome.

1.1.2 Next Generation Sequencing
Next Generation Sequencing (NGS) is a relatively new technology used for DNA and RNA
sequencing and mutation detection, starting a few years after the completion of the Human
Genome Project (2001). NGS can sequence thousands of genes or an entire genome in a
short period of time. Mutations that have been detected by NGS are widely used for disease
diagnosis, prognosis, treatment decision, and patient monitoring. The development and
improvement of the next generation sequencing has led to the increasing application of
cancer genomic research over the last decade.

1.1.3 Next generation sequencing diagnostic pipeline
A common diagnostic pipeline that uses NGS methods has the following scheme:

1) Sample collection
2) Sequencing and generation of FASTQ raw reads
3) Alignment to a reference genome
4) Variant calling
5) Variant annotation
6) Variant prioritization
7) Reporting

The steps from “FASTQ raw reads generation” to “variant annotation” have been fairly
automated through well tested and streamlined NGS pipelines. Some examples are
SIMPLEX (Fischer et al. 2012), combination of MuTect and GATK (Valle et al. 2016), OpEx
(Ruark et al. 2016) and WEP (D’Antonio et al. 2013). Moreover these pipelines have been
imported in Workflow Management Systems making the installation, deployment and
comparison a relatively easy process even for researchers with limited IT knowledge. Some
examples are SeqMule (D’Antonio et al. 2013; Guo et al. 2015) that uses the Galaxy
system3,Sarek (Garcia et al. 2020) that uses Nextflow (Di Tommaso et al. 2017) and
NGS-pipe (Singer et al. 2018) that uses Snakemake (Singer et al. 2018; Köster and
Rahmann 2018). Additionally, testing and benchmarking these approaches is possible via the
introduction of the Genome In A Bottle dataset (Zook et al. 2014). This dataset consists of a
Trio (mother, father, child) of Askenazi descent, a trio of Chinese descent and a male sample
(NA12878) of European descent. For a complete list of samples, sequencing techniques and
applied pipelines see4. All these samples have been analyzed in a plethora of sequencing
and genotyping platforms and processed in almost all common alignment and variant calling
software packages (Cornish and Guda 2015), (Zook et al., n.d.), (Linderman et al. 2014).

4 https://github.com/genome-in-a-bottle/giab_data_indexes

3 https://galaxyproject.github.io/training-material/topics/variant-analysis/tutorials/exome-seq/tutorial.html

https://paperpile.com/c/MLpYgK/a5O7
https://paperpile.com/c/MLpYgK/PXp56
https://paperpile.com/c/MLpYgK/StQzf
https://paperpile.com/c/MLpYgK/QK3Fd
https://paperpile.com/c/MLpYgK/3g1ua
https://paperpile.com/c/MLpYgK/3g1ua+Wmmb9
https://paperpile.com/c/MLpYgK/kcTV9
https://paperpile.com/c/MLpYgK/JJfPh
https://paperpile.com/c/MLpYgK/SqtWf
https://paperpile.com/c/MLpYgK/SqtWf+TumJh
https://paperpile.com/c/MLpYgK/SqtWf+TumJh
https://paperpile.com/c/MLpYgK/BYEOY
https://paperpile.com/c/MLpYgK/U0mgj
https://paperpile.com/c/MLpYgK/GrWbC
https://paperpile.com/c/MLpYgK/GIAPn
https://github.com/genome-in-a-bottle/giab_data_indexes
https://galaxyproject.github.io/training-material/topics/variant-analysis/tutorials/exome-seq/tutorial.html


1.1.4 Variant pathogenicity
Despite the plethora, availability and automation of exome sequencing pipelines, the task of
variant detection with potential clinical interest is still a very challenging task. Towards this
direction many frameworks have been introduced that employ in-silico methods for the
prediction of the deleterious status of the identified variants. Some examples are VAST
(Flygare et al. 2018) and Cpipe (Stark et al. 2017). These frameworks usually use three
types of information in order to classify a variant: rarity (allele frequency), conservation status
and protein effect. Moreover they do so by employing known metrics of pathogenicity such as
the CADD (Rentzsch et al. 2019), SIFT (Sim et al. 2012) and Polyphen-2 scores (Adzhubei,
Jordan, and Sunyaev 2013). Over the last years more complex types of information have
been  used for this task. For example DeepPVP ((Adzhubei, Jordan, and Sunyaev 2013;
Boudellioua et al. 2019) incorporates information from the OMIM (Hamosh et al. 2000) and
the ClinVar database (Landrum and Kattman 2018). Other tools like Phevor (Singleton et al.
2014), Exomiser (Singleton et al. 2014; Smedley et al. 2015) and Phenolyzer (Yang,
Robinson, and Wang 2015) use structured information from known ontologies like the Gene
Ontology (GO) (“Gene Ontology (GO),” n.d.) , the Human Phenotype Ontology (HPO) (Köhler
et al. 2017) and the Disease Ontology (DO) (Schriml et al. 2012).

1.1.5 Sequence Variant Nomenclature
As shown in figure 1.2 the number of publications, or else articles that contain genomic
variants in PubMed is constantly increasing. Every year from 2016 onwards more than
50,000 articles contain genomic variants. These articles deal with the discovery of new
mutations or the investigating of existing ones. Αlready known mutations exist in various
databases such as e.g. dbSNP (Sherry, Ward, and Sirotkin 1999), GWAS (Sherry, Ward, and
Sirotkin 1999; Pearson 2008), HapMap (Consortium and †The International HapMap
Consortium 2003), JSNP (Hirakawa et al. 2002). An issue that was more acute in previous
years was that some databases used different nomenclatures to report a mutation. Table 1.1
shows the different ways of reporting a mutation (Poo, Cai, and Mah 2011).
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Figure 1.2: “Number of publications that contain genomic variants in PubMed and PMC”. From 2016
onwards, more than 50,000 articles per year contain mutations (Lee, Wei, and Lu 2021)

Database SNP names

dbSNP rs3737965

ss4923964, ss69366921

HGVBaseG2P HGVM2256489

HGVS NM_001286.2:c.87+45G>A, NM_021735.2:c.87+45G>A

NM_021736.2:c.87+45G>A, NM_021737.2:c.87+45G>A

NT_021937.19:g.7871183G>A

JSNP IMS-JST083663

PharmGKB rs3737965@chrl: 11789038

HapMap rs3737965
Table 1.1: “Alternative names of a SNP”

Given the plethora of different naming schemes, it was imperative to use a common
nomenclature for mutation reporting that would allow communication between different
databases. Although the most common mutation reporting method was rs-id from dbSNP, in
recent years there has been a trend towards the use of the HGVS format (Human Genome
Variation Society) (Antonarakis and Nomenclature Working Group 1998). There are specific
and strict guidelines for the HGVS form of a mutation. The official HGVS guidelines were
introduced in 2001 and the last update was published in 2016 (den Dunnen et al. 2016).
The complete form of a HGVS variant is “reference:description”.
According to the oficial HGVS guidelines the part of “reference” must be one of the
following5:

● RefSeq sequences with the prefixes NC_, NT_, NW_,NG_, NM_, NR_ or NP_
○ chromosome - NC_000023.11
○ genomic contigs or scaffolds - NT_010718.17, NW_003315950.2
○ gene/genomic region - NG_012232.1
○ coding transcript - NM_004006.2
○ non-coding transcript - NR_004430.2
○ protein - NP_003997.1

● Ensembl transcript (ENST) and protein (ENSP) which are not identified by Ensembl
as being incomplete, e.g. CDS 5’ incomplete (cds_start_NF), CDS 3’ incomplete
(cds_end_NF)

○ gene/genomic region - ENSG00000198947.15

5 http://varnomen.hgvs.org/bg-material/refseq/
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○ coding transcript - ENST00000357033.8
○ non-coding transcript - ENST00000383925.1
○ protein - ENSP00000354923.3

● LRG sequences with the prefixes LRG_#, LRG_#t#, LRG_#p# (see examples
below)

○ gene/genomic region - LRG_199
○ coding transcript (or non-coding transcript) - LRG_199t1
○ protein - LRG_199p1

The part of “description”  must be one of the following:
● DNA

○ g. = linear genomic reference sequence
○ o. = circular genomic reference sequence
○ m. = mitochondrial reference (special case of a circular genomic reference

sequence)
○ c. = coding DNA reference sequence (based on a protein coding transcript)
○ n. = non-coding DNA reference sequence (based on a transcript not coding

for a protein)
● RNA

○ r. = RNA reference sequence
● Protein

○ p. = protein reference sequence

Τhus, some examples of complete HGVS forms of mutations are the following:
● DNA - coding variant: NM_004006.1:c.5690G>A
● Protein variant: NP_003997.1:p.(Trp24Cys)

More details for HGVS nomenclature recommendations are located in
https://varnomen.hgvs.org/bg-material/simple/

1.1.6 HGVS variant validation
There are some tools that can check if a variant is valid and if it has the correct
nomenclature. Some of them are Mutalyzer (Wildeman et al. 2008; Lefter et al., n.d.) ,
VariantValidator (Freeman et al. 2018) and the hgvs Python package (M. Wang et al. 2018) .
Although Mutalyzer is a widely used tool for validating sequence variant descriptions, it is not
able to validate intronic variants, for example NM_206933.2:c.6317C>G.
Hgvs Python package has an important and useful function which allows the conversion
between  coding position to protein position for a variant as well as the conversion from a
genomic position to coding position.
VariantValidator validates coding and genomic HGVS sequence variation descriptions,
accurately mapping between transcript and genomic variants. It also utilizes the hgvs Python
package.

https://varnomen.hgvs.org/bg-material/simple/
https://paperpile.com/c/MLpYgK/pYQo+ScxV
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1.2 Biomedical text mining
PubMed is a database and a search engine for biomedical publications. Pubmed provides
access to more than 33 million biomedical articles. Thousands of new articles are added to
Pubmed daily. This exponential increase in information volume at Pubmed can be addressed
with the help of text mining. This fact led to the integration of text mining in biomedicine. The
field of biomedical text mining is becoming an integral part of biomedical workflows.
There are various categories of application of text mining in biomedicine. Some of the most
known are the following:

● Document clustering and classification
● Information extraction (IE)
● Information retrieval (IR)
● Name entity recognition (NER)
● Natural language processing (NLP)
● Question-answering (QA)
● Visualization

1.2.1 Genotype-Phenotype relation extraction
Both the research and the clinical community are interested in identification of
genotype-phenotype relationships. Some known databases such as OMIM (Hamosh et al.
2000), HGMD (Griffith and Griffith 2004), Comparative Toxicogenomics Database (CTD)
(Mattingly et al. 2003), employ manual curation of biomedical literature to provide data that
can help at the detection of genotype-phenotype relationships.

However, the huge volume of biomedical information published daily makes it difficult to
update the above databases manually. To this end, extraction tools for biomedical entities
have been developed in the last 15 years.

Concerning the mutations there are a lot of tools which can detect a mutation in raw text.
Some examples are TmVar (Wei et al. 2013, 2018), SETH (Thomas et al. 2016) , AVADA
(Birgmeier et al., n.d.), EMU (Extractor of Mutation) (Doughty et al. 2011), MutationFinder
(Caporaso et al. 2007).

Concerning disease terms, there are tools like TaggerOne (Leaman and Lu 2016), DNorm
(Leaman and Lu 2016, 2014), PhenoTagger (Luo et al. 2021), Metamaplite (Luo et al. 2021;
Demner-Fushman, Rogers, and Aronson 2017). Αll of the above tools can detect disease
terms in a text and normalize those terms into different ontologies.

Despite having so many entity extraction tools, to our knowledge, there are no tools that
focus on extracting mutation-disease relationships.

1.2.2 Biomedical corpus - PubMed
Pubmed, trying to make the information it contains accessible to anyone, has made the PMC
(Pubmed Central) corpus which contains 3 million full text articles. The number of full text

https://paperpile.com/c/MLpYgK/bC1Hc
https://paperpile.com/c/MLpYgK/bC1Hc
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articles offered by pubmed is constantly increasing. For the rest of the articles, pubmed gives
access to 30 million abstracts.
All of these abstracts contain a lot of information which is  difficult to manually manage.

Thus, some corpus have been created such as the BioC-PMC which contains all the PMC
articles in BioC format. Bioc is an XML-based format for embedding text, annotations and
relations. The aim of this corpus is to provide machine readable, easy and flexible access to
all PMC texts.
All these articles are provided via the FTP site of NCBI in compressed files with a total size of
50 gb.

Another web service from NCBI is the PubTator Central which  enables the retrieval of
biomedical annotations in biomedical articles. PubTator Central’s articles contain annotations
from various tools for identifying genes, mutations, diseases, and chemicals. These tools are
TmVar for variants, GNormPlus for genes, TaggerOne for disease and chemicals terms.
PubTator Central annotates 30 million abstracts of PubMed and the 3 million full text articles
of PMC Open Access Subset and enables users to download all these articles along with
bio-entity annotations through the FTP site. All these files of PubTator Central’s FTP site
occupy about 0.5 terabyte and are updated monthly. These files are available in three
formats:

1) PubTator
2) BioC-XML
3) BioC-JSON

Figure 1.3 represents the pipeline of making the PubTator Central’s corpus.

Figure 1.3: “Pipeline of making the PubTator Central’s corpus” PubMed abstracts and Full text articles
from PubMed Central are annotated from entities extraction tools. The disambiguation module

resolves annotation conflicts and finally the annotated articles are stored in a database in multiple
formats.



1.3 Graph Databases
Everyone interacts with databases on a daily basis without even realizing it. The history of
databases dates back to 1960 when Charles Bachman designed the first one. Since then,
there has been significant progress made in this field.
There are a lot of database types. Some of these are relational databases, NoSQL, Cloud,
Hierarchical, Document, Graph and Time-series.
Graph databases are used when there is a need to create relationships between data that
need to be quickly queried. A graph database is a NoSQL database that stores data as a
network graph. What differentiates graph databases from relational database engines (i.e.
MySQL, Postgresql) is that the main data point is the node and its relations as opposed to
the “table” and its rows..
In graph theory nodes are also referred to as vertices and relationships are also referred to
as edges or links. In graph databases nodes are also referred to as entities. Both nodes and
edges can be annotated with meta-information. Nodes can have labels. Labels characterize
a node with a simple attribute. For example, a node can have the label “Person”. Both nodes
and edges have “Properties” which are key value pairs. For example a node can have the
label “Person” and an attribute: “Name=John”. Although labels can be only strings, attribute
values can have multiple types, even complex types such as lists6.
Overall graph databases offer a very verbose schema for storing complex semantic
information. Also, they are designed to be scalable and offer flexibility that's hard to find in
other databases.
One of the main reasons developers are choosing graph databases is performance. For
certain types of big data problems–particularly those that involve analyzing the relationships
among millions or billions of entities–a graph database will outperform nearly every other
type of out-of-the-box database in existence.
Graph databases are commonly selected against other types of databases for performance7.
In particular, when it comes to big data problems that involve the analysis of complex
relationships between entities (Vicknair et al. 2010) (Sahatqija et al. 2018).

1.4 Topic modeling

Topic modeling is an unsupervised machine learning technique which is used for the
characterizing of a set of documents. This is achieved by detecting words and phrases within
the texts and by automatically clustering word groups and similar expressions. The goal of
topic modeling is to discover topics in a collection of articles.
There are two categories of topic models, Statistical and Deep learning models. Some
examples of Statistical models are LSA (Dumais 2005), pLSA (Hofmann 2017), LDA (Blei et
al. 2003) . Each of them uses a different way of finding topics.

1.4.1 LDA
To date, the most common way of topic modeling is the LDA (Latent Dirichlet Allocation)
method. LDA is a probabilistic model which is applied over the words of a set of documents.

7 https://www.tigergraph.com/blog/what-are-the-major-advantages-of-using-a-graph-database/
6 https://neo4j.com/docs/getting-started/current/graphdb-concepts/
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Its outputs are a list of topics from a collection of documents and a probability distribution
over the topics that were identified for each document.
The LDA algorithm requires some pre-processing steps. There are:

● Text conversation into lowercase
● Split text into words
● Remove the stop loss words
● Remove symbols and special characters
● Lemmatization

Except for the many steps required for the implementation of the LDA algorithm, there are
some parameters that need to be configured. These are8:

● Number of Topics
● Number of Iterations
● Chunksize. The number of documents to load into memory at once
● Alpha: the document-topic density. The higher the alpha the more topics will be found

within the document.
● Beta: the topic word density. the higher the beta, the topics consist of a large number

of words in the corpus

Configuring these parameters and steps is not a trivial process and requires excessive
experimentation. This is one of the reasons for the recent advent of algorithms that perform
topic analysis in a more data-agnostic manner, that do not require configuring an excessive
amount of parameters. One of these is Top2Vec.

1.4.2 Top2Vec
A new, up-and-coming and promising algorithm is Top2Vec (Angelov 2020) which is used for
topic modeling and semantic search.
As referred to https://github.com/ddangelov/Top2Vec some of the benefits of Top2Vec over
other algorithms such as LDA are the following:

● Automatically finds the number of topics.
● No stop word lists required.
● No need for stemming/lemmatization.
● Creates jointly embedded topic, document, and word vectors.
● Has search functions built in.

Top2vec enables the user for multiple results such as:
● Get hierarchical topics from a set of documents.
● Search topics by keywords.
● Search documents by topic or keywords.
● Find similar documents.

The three main steps of Top2Vec are:
1) Transform documents to numeric representations through Doc2Vec (Quoc et al.

2014) or Universal Sentence Encoder (Cer et al. 2018) or BERT Sentence
Transformer (Devlin et al. 2018).

8 https://radimrehurek.com/gensim/models/ldamodel.html

https://github.com/ddangelov/Top2Vec
https://radimrehurek.com/gensim/models/ldamodel.html


2) Dimensionality reduction using UMAP (McInnes et al. 2018) algorithm.
3) Clustering of documents to find topics using HDBSCAN (McInnes, Healy, and Astels

2017) algorithm.

1.5 Bioinformatics workflows
In recent years, with the discovery of many biological and medical data, and the
advancements in sequencing technology, a plethora of bioinformatics tools have being
developed. It is very common for these tools to require a complex amount of steps in order to
configure, install and use them. Additionally chaining multiple tools into pipelines often
requires both tools to share input/output formats and to also be able to coexist on the same
computation environment. Both these prerequisites are not commonly met, which
complicates this process and renders a seemingly simple pipeline, a programming task that
requires above average IT skills. For this reason, bioinformatics workflow management
systems have been developed in order to simplify tool chaining, offer execution in a variety of
computation environments and streamline the complete analysis. Some of them are Galaxy,
Taverna9, Nextflow (Di Tommaso et al. 2017) and OpenBio (Kanterakis et al. 2021).

Directed Acyclic Graphs (DAG)
A common way of representing workflows is Directed Acyclic Graphs (DAG). In a DAG nodes
represent the processing steps and edges represent step dependence. Figure 1.4 represents
an example of a DAG (Jain and Kumari 2017).

Figure 1.4: “Example of a Directed Acyclic Graph”. Step A runs first. Step B depends on step A. Both
steps C and D depend on B. Step E depends on C and D.

Reproducibility crisis
With the exponential increase of publications in recent years, the new tools and technologies
provided by researchers with the aim of their free use by the community have also increased.

9 http://www.taverna.org.uk/download/workbench/2-5/bioinformatics/

https://paperpile.com/c/MLpYgK/3wGq
https://paperpile.com/c/MLpYgK/kwiD
https://paperpile.com/c/MLpYgK/kwiD
https://paperpile.com/c/MLpYgK/TpLo
http://www.taverna.org.uk/download/workbench/2-5/bioinformatics/


Nevertheless, a major problem that has arisen is the reproducibility crisis (Baker 2016). This
term expresses the difficulty of reproducing the analysis and the discrepancies in validating
the results from published works. Non-reproductive science has no practical usage for the
community. However, there are several papers that suggest solutions to address this crisis by
setting rules for publishing new tools and technologies.(Sandve et al. 2013; Ligozat et al.
2020); (Kulkarni et al. 2018)

1.6 Research Purpose

This work lies in the intersection between exome sequencing and biomedical text mining.
Our goal is to integrate biomedical text mining into an exome sequencing pipeline. The
purpose of this thesis is to enable anyone with a set of mutations to easily and quickly search
for all the information available on PubMed about this set. Essentially, the aim of this project
is to flexibly find the projection of a set of mutations in the existing literature. In this work, an
attempt is made to extract information from database differences and combine it with the
information extracted from Pubmed.
Overall we expect that this thesis will result in a framework that will help clinical genetics take
more informed decisions when reporting variants for diagnostic purposes.

2. Methods

2.1 A pipeline for manual identification of biomedical entities

2.1.1 Pipeline
In order to implement the central idea of this thesis we made a pipeline (figure 1.5). The first
step of this pipeline is to collect data from PubMed. The second one is the parsing of these
articles of PubMed with some tools which can detect mutations, genes and diseases. The
third one is the organization of the entities which have been retrieved from the second step
into a database making the navigating to this information easier. The fourth step of this
pipeline is the massive querying for a set of mutations and the last step is report generation.

https://paperpile.com/c/MLpYgK/mZbm
https://paperpile.com/c/MLpYgK/toUq+dhOT
https://paperpile.com/c/MLpYgK/toUq+dhOT
https://paperpile.com/c/MLpYgK/c4Vn


Figure 1.5: “Pipeline for manual identification of biomedical entities”.  PMC full text articles are
annotated by multiple concept taggers and stored in a database.

2.1.2 Corpus
In our first attempt to implement the above pipeline we downloaded the BioC-PMC dataset
which is described in section 1.2.2. The articles in the BioC-PMC corpus are available in both
the original Unicode characters as well as an ASCII encoding. BioC files are available in both
XML and JSON. This dataset consists of about 55GB of compressed files.

2.1.3 Tools
In order to parse the above data we installed a set of text mining tools. Our purpose was to
detect variants, genes and diseases in every article. We tried to install and use all these tools
that are mentioned in section 1.2.1 to decide which one we would use. One prominent
exception was AVADA (Birgmeier et al., n.d.) which had dependencies in libraries that could
not be found. We skipped this tool after our requests for help from the corresponding authors
were left unanswered.
We finally chose TmVar 2.0 which had the highest efficiency in extracting genomic variant
information from biomedical literature according to a recent review (Lee, Wei, and Lu 2021).
As described in section “1.6 Research Purpose” our aim was to detect variants in any form
and normalize them to HGVS format and TmVar fits perfectly in this task.

TmVar recognizes not only variants but also gene names that appear near the variants in the
text. It links the gene names to variants so that the tool can find gene-variant pairs to specify
the correct variant information. This feature of TmVar is achieved in combination with
GNormPlus (Wei, Kao, and Lu 2015). GNormPlus is a tool that detects genes and proteins in
raw text. In order to work properly with these two tools, GNormPlus needs to run first for a
text and then the output of this process should be the input for TmVar.
Concerning disease terms, among the tools that are referred to in section 1.2.1, we chose
MetaMapLite.

https://paperpile.com/c/MLpYgK/lXgI
https://paperpile.com/c/MLpYgK/JZGM
https://paperpile.com/c/MLpYgK/qkYj


Continuing on our  pipeline, after we downloaded the papers and installed the tools, we
started the process of parsing papers in order to detect variants and genes. Trying to parse 3
Million articles 3 times (genes-mutations-diseases), we realized that the required time was
about 150 days for each tool! Even when we tried to run GNormPlus or TmVar in parallel the
estimated time was prohibitive.

2.2 A pipeline for retrieving biomedical entities from
pre-annotated corpus and importing them to a database

2.2.1 Corpus
The prohibitive estimated time mentioned above led us to PubTator Central, which is
described in section 1.2.2. This corpus fits perfectly with our goal as it is made in a similar
way to the one described in the section of Pipeline.

Regarding the FTP site of PubTator Central, we encountered some issues. Specifically,
although there were 10 files with the suffix “.gz”, they were not files that were zipped through
gunzip but were tar files. Additionally, a file of them was not downloadable. We contacted
PubTator's communications manager in order to address the above issues and they were
resolved.

2.2.2 Parsing
After we downloaded all these compressed files (10 tar files), we realized that each tar file
contained a list of bioc.xml files. Each one of them was a collection of articles in BioC format.
Then, we wrote a python script in order to parse these files. The aim of this script was to
keep only genes/mutations/diseases/chemicals that exist in each article and the relationships
between them (in which articles the entities are contained). There were 38.000 collections of
articles which should be parsed and at the end of this process we should keep only
biomedical entities along with the  articles’ ID  that they appear.
At the beginning of the algorithm CSV files are made for each category of nodes and edges.
Then for each article in each of the 38,000 collections, all the entities we are interested in are
identified and added to the respective CSV file.
Although this process finished successfully after 5 hours, we just had CSV files with the
information mentioned above. Next step was the import of this information into the graph
database.
In our case we had over 20 million entities (Articles’ id, Mutations, Genes, Diseases,
Chemicals) and over 150 million relationships between them. These are the main entities
that we imported to the graph database.

2.2.3 Import to the Graph Database
A database for the nature of this data needs to have the following criteria:

1) Easy and quickly data entry
2) Easy data browsing and visualization



3) Relationships creation
4) Quickly queries
5) Αccessible to people without programming knowledge

Graph databases fit quite well with the above criteria. Apart from this and due to all of the
features of graph databases that are described in section 1.3, we chose to organize our data
to a graph database. There are a lot of open source graph databases such as
AllegroGraph10, ArangoDB11, InfiniteGraph12, Neo4j13. Taking into account the paper of
Fernandes and Bernandino (Fernandes and Bernardino 2018) which compares the above
graph databases we chose Neo4j.
Neo4j is an open-source graph database which uses Cypher, a declarative SQL-like
language. Through Cypher the user is able to import data to the graph and to query the
graph. Neo4j also allows the user to browse the graph database via Neo4j Browser. Neo4j
Browser is a developer-focused tool that allows users to execute Cypher queries and
visualize the results.
In addition to the Neo4j Browser the user is able to connect to the database and send
queries via the Neo4j Python driver.
Neo4j includes a web server that can host different HTTP modules. In the default
configuration, the web server will be started and host the BROWSER module (Neo4j
Browser) at port 7474.

2.3 Graph database construction
After the installation and configuration of the Neo4j, we redesigned the python script so as to
import data to the database whilst parsing the PubMed articles. As mentioned in section 1.3,
graph databases are made up of nodes and edges. In our case the labels of nodes are
“Articles”, “Genes”, “Mutations”, “Diseases”, “Chemicals” and the labels of edges are
“Articles_Genes”, “Articles_Mutations”, “Articles_Diseases”, “Articles_Chemicals” and
“Mutations_Genes”.
The nodes of articles have the PubMed id or the PMC id as properties, the nodes of genes
have the name of the gene and the ncbi id of the gene as property. The nodes of diseases
and chemicals have the MESH id as property. Concerning the mutations, their nodes have an
attribute which is mutation’s type, RS-id  or HGVS.
Concerning edges, they are undirected and they do not have any other properties except for
the label of the edge.
The script for the Neo4j database building is described below:
For each article in each bioc.xml collection, the PubMed id is identified and the entities
contained within it are located and stored in dictionaries by label. The nodes are then
inserted into the graph. The edges between the entities' nodes and the articles’ nodes that
contain them are inserted into the graph.  Each node or edge addition to the graph requires a
separate connection to the Neo4j database.
It is noteworthy that the TmVar 2.0 which has been used to detect mutations in these articles
returns some additional information besides mutation’s name. In some cases, it locates the

13 https://neo4j.com/
12 https://infinitegraph.com/
11 https://www.arangodb.com/
10 https://allegrograph.com/
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gene in which the mutation takes place, with the help of GNormPlus and the NCBI taxonomy
id which is an identifier for a taxon in the Taxonomy Database of NCBI . When the
corresponding gene is detected, an edge is added between the mutation and the gene nodes
with the label “Mutation_Gene”. We keep only mutations with NCBI Taxonomy id = 9606
which is the id for homo sapiens.
Ideally, the above process would be completed for each of the 38,000 collections, and the
graph would have been successfully constructed containing all the Pubmed entities that
concern us.
The above process lasted longer than we expected. In addition to the large amount of data
that had to be parsed, a large role in this delay seems to have been played by the multiple
connections to the database within each loop. Each connection to the base required about
0.5 second. In our case it required about 150 million connections which means that the days
required for only these connections are 600, 2 years. Even when we tried to speed up the
process by using Python's Parallel library, there was no improvement.
This estimated time was prohibitive and we had to find other solutions.
We proceeded with some actions that would speed up the construction of the graph.
Below are some of the acceleration methods we used.

2.3.1 Speeding up graph database construction
● Genes/Diseases/Chemicals separate import

In another attempt to improve the construction time of the graph we tried to import Genes,
Diseases and Chemicals before the parsing of PubMed corpus.
We got gene information from NCBI and Diseases and Chemicals from MESH.
Existing these categories in the graph, during the parsing these entities should not be
detected and imported as nodes. Thus, instead of making the nodes in each loop, since they
already exist in the graph, they are used only for the construction of the edges.

● importing via csv files
Neo4j enables the acceleration of  dataimport by using csv files for nodes and edges. During
the parsing of bioc.xml files we created some csv files of nodes and edges which were
complemented from the entities (Articles, Mutations, Genes, Diseases, Chemicals) and the
relationships between them (Article-Mutation, Article-Gene, Article-Disease, Article-Chemical,
Gene-Mutation). After the end of parsing there were 5 csv files of nodes, one of each entity
category and 5 csv files of edges. These files could be imported to the graph using simple
Cypher commands. In this way, the connections required to the database are 10, the same
number as the sum of nodes and edges categories.

● splitting csv files or USING PERIODIC COMMIT LOAD CSV WITH HEADERS
Importing CSV files that had over 10,000 lines proved to be unstables and resulted in many
system crashes inhibiting significantly the data import process.
To address this, we added an extra step before importing csv files in which each file was split
per 1000 lines.

● Constraints
When a node is added in the graph, a search is made on all the existing nodes of the specific
label and if this node does not already exist, then it is added to the graph.This process is
very time consuming especially in the case where the graph has a lot of nodes. This issue



can be resolved by creating constraints. The constraints automatically create a schema index
in the graph database and the search described above requires logarithmic time complexity.

The user is able to specify unique constraints of a property on nodes with a specific label.
Thus, we specified constraints for each node label. The setting up of constraints significantly
accelerated the construction of the graph. Unfortunately, node key constraints, node property
existence constraints and relationship property existence constraints are only available in
Neo4j Enterprise Edition.

The time required for parsing and making csv files was 2 hours and for importing was 4
hours. After the completion of the construction of the graph it finally contained 22 Million
nodes and 120 million edges. Specifically, the numbers of each category are shown in Table
2.1.

Nodes Relationships

Articles 27.208.776 Articles-Genes 33.202.889

Genes 37.743 Articles-Mutations 3.429.989

Mutations 1.138.097 Articles-Chemicals 93.595.435

Chemicals 348.017 Articles-Diseases 60.171.400

Diseases 11.952 Gene-Mutations 244.922

Total 28.744.585 Total 190.624.635
Table 2.1: “The numbers of Nodes and Edges of the graph”

2.4 Mutations

2.4.1 HGVS format
The main target of this thesis is the matching of a set of mutations with the mutations which
exist in PubMed. This presupposes that the mutations are in the same format on both sides.
Our first thought was to use the HGVS form of mutations because of what is mentioned in
section 1.1.5.
TmVar, which was used to build the PubTator dataset, can detect SNP and HGVS variants in
a text. Concerning HGVS variants, TmVar detects only the part of “description” as descripted
in section 1.1.5. (For the mutation NM_134241.1:c.1234A>G TmVar detects only the
c.1234A>T)
Thus, we had an incomplete form of mutations within a lot of articles.
Concerning the coding hgvs variants (mutations using the “c.” positioning system), there
were 71.686 in the graph. What was missing from these variants was the corresponding
transcript. Finding all transcripts of all genes that coexist with these variants in articles and
making the cartesian product between transcripts and coding hgvs variants was a way to



deal with the problem of incomplete form of hgvs coding variants. As mentioned in section
1.1.6, VariantValidator could do this work. VariantValidator requires the installation of MySQL,
SQLite 3.8.0 and Postgres 9.5. After the installation of the above software and the
configuration of VariantValidator we tried to derive the transcripts of genes. This process was
time consuming as each of the 33,000 genes required approximately 2-3 minutes.

In order to speed up this process we bypassed the VariantValidator and we downloaded from
RefSeq all transcripts of all genes and we made a csv file with transcripts as nodes and a csv
file with the relationships between genes and transcripts. These csv files were imported to
the graph which was enriched with the label “Transcripts” for nodes and the label
“Gene-Transcript” for edges. This process was completed in less than 1 hour. The exact
number of transcripts that entered the graph was 126.657 and the number of
Gene_Transcripts edges was 126.741.

Thus, we combined the transcripts of genes which co-existed in articles with mutations with
those mutations into a cartesian product. In the end we had mutations in complete hgvs
format and we should find out which combination of all of them was the right one.
For this purpose we used another mode of VariantValidator which accepts as input an hgvs
variant (e.g.  NM_206933.2:c.6317C>G) and returns if the variant is valid or not. So, passing
all variants that resulted from the cartesian product mentioned above through
VariantValidator, we would know which ones are correct.
The times required were disappointing. Although we ran the VariantValidator for all the
mutations in 10 different screens, the time required exceeded 100 days.
Another problem that we encountered was the following:
TmVar detects all the types of hgvs mutations. In our graph we find the following mutation
types:

● 154.154 protein variants
● 71.868 coding variants
● 12.324 genomic variants
● 582 rna variants
● 1.866 m variants
● 56 n variants
● 130.014 dbSNP rs-id variants

protein (p.) 154.154

coding (c.) 71.868

genomic (g.) 12.324

mitochondrial (m.) 1.866

rna (r.) 582

non-coding (n.) 56
Table 2.2: “The number of each type of HGVS variants of the graph”



Concerning the HGVS variants of the graph (Table 2.2) we focused on protein, coding and
genomic variants because these variants are related to a disease/phenotype.
As mentioned in section 1.1.6 VariantValidator accepts only genomic or coding hgvs variants
for validation. Moreover, hgvs Python package allows the convention of a coding to protein
variant (c. to p.) or a genomic to coding variant (g. to c.). These two facts in combination with
the fact that neither the Mutalyzer accepts protein variants for validation, led us to place the
hgvs protein in our future work.
Τhese two problems mentioned in this section led us to leave the challenge of normalization
of hgvs mutations and approach the goal of this work in a different way.
So, we were content with dbSNP mutations (RS-id). Many of the hgvs mutations detected by
TmVar have been normalized to RS-id. Τhis process is done as follows: TmVar detects a
mutation, (eg c.1234A>T) then the genes that exist in the same sentence-paragraph are
detected and only the gene that initially has the position where the mutation is reported is
kept (it is within the boundaries of the gene) and at the specific site of the genome there is
the specific nucleotide referred to in the mutation.Then, once the location of the genome, the
gene and the nucleotide change are known, the mutation is normalized to RS-id. (figure 2.1)

Figure 2.1: “Example of variant normalization process by TmVar 2.0”  For each gene it
is obtained its list of associated RSIDSs from dbSNP. Another one list is obtained with RSIDs
associated with the target mutation. Any RSID found in both lists is returned as a candidate for
the normalized form of the mutation.(Wei et al. 2018)

2.5 Graph enrichment

Once the construction of the graph is completed there is the possibility of searching for
entities and relationships through Neo4j Browser via queries in the Cypher language. The
user has the ability to navigate the graph through Neo4j Browser with its graphical
environment. Additionally the user is able to send a query for a specific entity or for a specific
category of entities associated with it.
In the above cases the user can manage the results manually and browse the graph to find
various information that is interested in.

https://paperpile.com/c/MLpYgK/sPPm


The problem of managing the results returned by the graph occurs in the case of massive
queries or more generally of multiple results.
To deal with this we had to enrich the graph with more information that would help filtering
the results.

A mutation that exists in an article does not mean that there is any important information
about it. It could be in a table with other 50 mutations or a mutation could be referenced once
in an article. Οn the contrary, there are articles that deal with a specific mutation and provide
a complete analysis related to its significance and effect.
In our graph we had only the information of which mutation exists in which articles. It would
be useful if there was a metric that would determine the significance of a mutation within an
article.

TF-IDF (Term Frequency - Inverse Document Frequency) is a statistical measure that
evaluates how relevant a word is to a document in a collection of documents.
Therefore, we calculated tf-idf for every mutation and it was added to nodes as an attribute.
This attribute enables the user to determine the importance of a mutation in an article.
We also downloaded from dbSNP’s ftp site the “GCF_000001405.39.gz’’ file14 which contains
all known RS-ids with the relevant information. This information concerns the pathogenicity of
the mutations (mutations that exist within the ClinVar), the allele frequency of a mutation
according to the 1000 Genomes Project and the information regarding the regulatory effect of
the mutation, namely if it is nonsense, missense or silent.
All this information was added as an attribute to mutations, easing the navigation of a user on
the graph.

2.6 Topic modeling
In general this work belongs to the field of mass querying large corpora of biomedical
documents in order to extract a subset of articles of interest. After submitting a query, our
pipeline does not export a flat set of related articles. A flat set would be difficult to use in a
downstream analysis. In contrast it generates an easy to navigate graph, containing all the
resulting articles as nodes along with all the rich information that has been described either
as nodes or as properties. Nevertheless even when the resulting graph contains as few as
100 articles, it is difficult for a user to locate interesting patterns just by visually inspecting it.
For this purpose we applied topic modeling on the text of the resulting articles.
Towards this  we tried to retrieve abstracts from PubMed via the Biopython package and the
module of Entrez. Given a list of PubMed ids, these articles are returned though API. Thus,
trying to retrieve the abstracts of some articles that were resulted from a query to our
database, we realized that the estimated time for up to 20 articles was tolerable. When the
number of articles exceeded 20 the waiting time was not practical for ordinary use. This was
expected since the API method is not suitable for downloading large volumes of data.

14 https://ftp.ncbi.nih.gov/snp//latest_release/VCF/
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2.7 Random file access
The Pubmed corpus which we parsed as mentioned in section 1.2.2 includes not only the
entities we saved in our graph database but also the text of the articles. Therefore, we
parsed again the Pubmed corpus to keep only the text. In order to have quick access to
these texts we used the Random File Access method. This method enables quick access to
specific records rather than having to read the file sequentially. According to this method, in a
file there should be all the texts of the articles and in a second file should contain the
Pubmed of each article and the offset that starts and ends in the first file.
Thus, we made a file which included the texts of all articles and another file with the indexing
of each article in the first file. (figure 2.2)

Figure 2.2: “Pre-processing steps for Random File Access method” . We create a file (index.csv) that
contains the offsets and length (in bytes) of each Pubmed or PMC ID. This file is loaded in a hashtable

in memory where the ID is the key and the tuple offset,length is the value. Then when we want to
access the text of a given article we first acquire this tuple and we make a random read access in the
file containing the articles. This process takes logarithmic time (binary search) for accessing a single

article over the complete corpus.

In this way we had easy and flexible local access to all articles’ text. For example acquiring
the complete text of 100 random pubmed IDs required less than a minute of computation
time. One way of analyzing a set of texts, as mentioned in section 1.4, is topic modeling.



2.8 Topic Modeling

2.8.1 LDA
Initially, we used the LDA algorithm for a set of articles which resulted from a query to our
graph database. There are many ways to implement this algorithm. We performed LDA with
Gensim (Rehurek and Sojka, 2011) which is an open source Python library for document
representation as semantic vectors.
The LDA algorithm requires some pre-processing steps. So, we should perform the text
preprocessing steps that are described in section 1.4.1. In addition to these steps, before the
final building of the LDA model, the user must choose the number of topics that will be
returned. Finding the optimum number of topics is a known issue in the LDA algorithm. A
solution to this problem is to build many LDA models with different values of the “Number of
Topics”t parameter or by checking if the same keywords are repeated in different topics.
Therefore, the above is a practical problem in implementing an LDA model.
The purpose of this thesis is to build a tool that will not necessarily be used by people who
will have programming knowledge or great familiarity with specific areas such as topic
modeling. Taking into account that, we decided that the LDA algorithm does not fit the
purpose of this project.

2.8.2 Top2Vec
As mentioned in section 1.4.2, Top2Vec does not require neither preprocessing steps nor
configuration of parameters like the “Number of Topics”. So, we configured the Top2Vec
algorithm  so as to  accept as input the texts from the results of a query in our graph
database. Then the pipeline proceeds as follows:

1) Create jointly embedded document and word vectors using Doc2Vec.
2) Create lower dimensional embedding of document vectors using UMAP.
3) Find dense areas of documents using HDBSCAN.
4) For each dense area calculate the centroid of document vectors in the original

dimension, this is the topic vector.
5) Find n-closest word vectors to the resulting topic vector.

After these steps, a model is built and ready for use. Top2Vec has some modules that return
information about the model. Some of these are:

● “Get Number of Topics” which returns the number of topics that Top2Vec has found
in the corpus.

● “Get Topic Sizes” which return the number of documents most similar to each topic.
● “Search Topics” which enables the user to search for topics most similar to a

keyword.

>>>topic_words,word_scores,topic_scores,topic_nums=model.search_topics(keywor
ds=["medicine"], num_topics=5)
>>> topic_nums
[21, 29, 9, 61, 48]
>>> topic_scores
[0.4468, 0.381, 0.2779, 0.2566, 0.2515]



In the above example, topic 21 was the most similar topic to “medicine” with a cosine
similarity of 0.4468. (Values can be from least similar 0, to most similar 1)

● “Generate Word Clouds” which returns to the user via word clouds representation a
grouping of topics

● “Search Documents by Topic” which searches for a specific topic.
● “Semantic Search Documents by Keywords” which searches documents for

content semantically similar to keywords.
● “Similar Keywords” which search for similar words to a keyword.

Therefore, the user can run the modules described above to explore the data generated from
a query in the database. Additionally, the dimensionality reduction and the clustering graphs
are returned to the user.

With the addition of Top2Vec for topic modeling, the pipeline scheme completed. (Figure 2.3)

Figure 2.3: “Our final pipeline”. Pubmed abstracts and full-text PMC articles were commented on by
TmVar, GNorm, and Tagger one to identify mutations, genes, diseases, and chemicals, creating the
PubTator BioCXML files. We wrote a python script in order to parse the BioCXML files and to keep

only the entities. These entities are inserted into the Neo4j graph database. Finally the results of the
queries in neo4j are given as inputs for topic modeling through Top2Vec

2.9 Argo Workflow

As described in the Graph database construction section, the construction of our graph
requires a lot of steps. Specifically, until the completion of the construction of the graph, the
following steps are required:



1) Download data from PubTator
2) Uncompress the data
3) Parse the data and create csv files with nodes and edges
4) Setup Neo4j database
5) Import nodes
6) Import edges

Additionally, the above steps should be repeated for each graph update. For this reason, we
used the Argo workflow15 with the aim of automating and speeding up the graph construction
process even more. Argo Workflow enables the user to run jobs in parallel and through a
directed acyclic graph (DAG) it manages the dependencies between the tasks.
It is important to note that Argo Workflows are Research Objects that encapsulate the
complete analysis which can be reproduced with a minimal effort (Nikolov, 2021).

The six layers of the DAG in figure 2.4 correspond to the six steps mentioned above.
As also shown in the DAG, the steps 1,2 and 5 run in parallel. Especially the fifth step (Import
of nodes), which was the most time consuming, by using the Argo the importing of nodes
was greatly accelerated. The same parallelism can not occur when importing the edges as
multiple threads cannot write information to the same node at the same time.

15 https://argoproj.github.io/argo-workflows/

https://argoproj.github.io/argo-workflows/


Figure 2.4: “The steps of the building of the graph in Argo workflow”. The first step is the setting up of
Neo4j, the second one is the downloading of the required files. The third one is the uncompressing of
the files. Fourth step is the parsing of BioCXML files. The fifth one is the preparation of the database
for its construction. The last two steps are the importing of nodes in parallel and the importing of
edges.

3. Results-Use cases

3.1 Exploring the graph



After a user logs in to the address and port that neo4j has installed, the interface of Neo4j
Server that appears is shown in the figure 3.1.

Figure 3.1: “Neo4j Server interface”

Once users connect to the Neo4j server they have the ability to browse the graph. There are
several options for navigating the graph.
There is a possibility by selecting a category from the Nodes on the left side, to display some
of the results of this category. The figure 3.2 shows the result after selecting the category of
nodes "Αrticles".

Figure 3.2: “ Graphic representation of articles”

If users are interested in a specific entity of a certain category they can do a specific search.
(Figure 3.3)



Figure 3.3: “Query for a specific Article”

In the above case we searched for the article with PMC-id 3789669 and the corresponding
node was returned (Figure 3.3). By clicking on the node we can expand it and display all its
relationships (Figure 3.4).

Figure 3.4: “Article’s contents”

Then we can isolate the unique rs-id mutation that exists within the article (rs391525) and
observe that it is also linked to the TNF gene which is the gene in which this mutation occurs
(Figure 3.5).

Figure 3.5: “Connections between the contents of the article”



If we are interested in this mutation we can expand its node to see the rest of its relationships
(Figure 3.6). We notice that this mutation exists in many articles, specifically in 533.

Figure 3.6: “Articles (blue nodes) in which the mutation (brown node) appears”

Also as we notice at the bottom of the figure, this particular mutation has the attribute
"common" which indicates that it is a common mutation. As a common mutation we mean
that this mutation occurs in more than 2% of the population in the 1000genome project.
Queries can be even more complicated. We can include more than one relationship in a
query. In the following example we ask for the return of all the first 100 diseases that exist in
articles that contain a dbSNP mutation with tf-idf>0.5.

Figure 3.7: “Results of a query with multiple relationships”



Through a query like the one above (Figure 3.7), relationships between two categories can
be extracted within the graph.

3.2 Export relationships

Just navigating through the Neo4j Browser makes it difficult for the user to reach a
conclusion. We have created a script that allows the user to give a mutation (with RS-id) and
return the diseases that coexist most often in articles with this mutation. This application may
be useful to anyone looking for possible relationships between categories of entities. In the
following example (Figure 3.8) we have given as input the mutation rs165599 and the script
returns the 5 most frequently disease terms (with Mesh id) which coexist with this mutation in
bibliography. As shown in the following figure the first disease term is this with mesh id
D012559. This id corresponds to the schizophrenia term. Searching for the same mutation in
Clinvar we observe that there is no report of association with schizophrenia. On the contrary,
there are several articles in Pubmed that study the association of the rs165599 mutation with
schizophrenia (Figure 3.9). Overall this script explores possible relationships between a
mutation and a disease.



Figure 3.8: “Most frequently disease terms which coexist with rs165599 mutation in PubMed”



Figure 3.9: ”Most frequently disease terms which coexist with rs1042713 mutation in PubMed”

3.3 Massive queries via a csv file

Neo4j enables the user to send massive queries via csv files. The csv file that is loaded to
Neo4j must have a specific format. Specifically, there should be a header that is the attribute
that we will look for in the graph. This csv file must have one entity per line. A csv file with a
mutation per line can be loaded and sent to the graph as a query. The result of this query
could be the number of mutations that exist in the graph, the articles that are connected with
these mutations or the diseases that coexist in articles with these mutations. The user has
many options as to what the query will return. Τhe impressive thing about this process is the
time it takes. For example a query of 35.000 rs-ids, requires 2 seconds (Figure 3.10).



Figure 3.10: “From exome sequencing to the results of the graph”

When we send a query of 35.000 mutations to the graph, the average number of results is
5000-6000 mutations. If we select to also include the articles that mention these mutations,
then it also returns approximately 15.000 articles.

Figure 3.11: “The number of returned articles of a query without filters”

Managing the graph and the contained information from 15.000 articles is practically
impossible. With the help of the filters that were added (section Graph enrichment) we can
further filter the results. As we can see below, having a csv file of 35.000 mutations of a
person, we can query  the complete file and get the 4848 mutations that also exist in the
graph (Figure 3.11). Using the TF-IDF filter for the same file the number of returned articles is
significantly reduced. The higher the TF-IDF that we use as a filter, the lower the number of
returned articles. (table 3.1)



TF-IDF Number of returned articles

without TF-IDF filter 4343

>0.5 565

>2 121
Table 3.1: “The effect of TF-IDF filter on returned articles”

Filters Number of returned articles

without filters 4343

with ClinVar filter 1374

With ClinVar filter and TF-IDF>2 69
Table 3.2: “The effect of ClinVar filter on returned articles”

The user has the ability to further limit the results by using the Clinvar filter. As it shown in
Table 3.2 the results that are returned are significantly reduced with the ClinVar filter. As also
shown in Table 3.2 when the TF-IDF and ClinVar filters are applied in combination the
number of returned items is manageable.

After some articles have been returned from a query the user can use them for topic
modeling as mentioned in the chapter Topic modeling. Initially the articles resulting from the
query are extracted by the method of random file access as mentioned in the corresponding
chapter. Then the texts of these articles are given as input to Top2Vec for topic modeling.
Figure 21 includes the steps from the loading of a file with mutations to topic modeling with
Top2Vec.



Figure 3.12: “The steps from the loading of a file with mutations to topic modeling with Top2Vec”

The file uploaded to the graph (figure 3.12) contains 35,000 mutations of one individual.
Setting the tf-idf filter to greater than 1.327 mutations are returned that are contained in 692
articles.
The texts of 692 articles are available to be given as input to Top2Vec within 10 seconds due
to the Random File Access method. Top2Vec provides various ways of representing the
results of topic modeling. One of them is word clouds. Figure 3.13represents the 7 topics that
emerged from Top2Vec.



Figure 3.13: “Topic Word Clouds of 692 articles”

The user is able to select one of the topics and to search for the documents related to the
specific topic. By selecting a topic, the most similar documents to it could be returned with a
cosine similarity of the document. For example if a user choose the topic 2 of figure 22 which
is related to schizophrenia, the documents of Figure 23 are returned:



Figure 3.14: “the closest documents to topic 2 along with the cosine similarity score”

The 4 above documents (Figure 3.14) are the closest to topic 2 (schizophrenia) and they are
easy to read and can lead the user to useful conclusions.

The user can search for documents for content semantically similar to keywords. For
example if the user is interested in searching for the top 5 documents closest to the word
“cancer”, the documents in figure 3.15 are returned:



Figure 3.15: “Top 5 documents closest to the word "cancer"

In conclusion, in the above example we uploaded a file with 35,000 mutations to the graph.
Using a tf-idf filter, 327 of them were returned. These 327 mutations are contained in 692
texts which were loaded as input to Top2Vec. Top2vec identified 6 topics. Selecting the topic
that is related to schizophrenia, the most relevant articles of this topic returned along with a
cosine metric that states how relevant the article is to the topic of the cluster. These
documents contain information about some of the mutations that exist in both the graph and
the file with the 35.000 mutations. We then searched the entire set of documents (692
documents) for content semantically similar to the word "cancer". As shown in Figure 24, the
articles that are returned, study the association of some mutations with cancer risk.



Top2Vec enables the user to understand how close the above topics are to each other
through UMAP plots. In figure 3.16 the nodes represent the articles and their colors
represent the different clusters (topics). The figure also represents the connectivity between
the nodes.

Figure 3.16: “UMAP plots”

Although the above graphs (Figure 3.17) may look impressive, especially in cases where
there is a large number of nodes and topics, they do not help the user to extract detailed
information from them. For this reason we made a python script on a jupyter (Kluyver et al.
2016) notebook which produces interactive UMAP plots. As shown in Figure 3.18the user is
able to hover over the data points and get more information about the nodes of the graph.



Figure 3.17: “Interactive UMAP plot”

3.4 Validation with PRS

3.4.1 Polygenic risk score
The genetic basis of common diseases is complex since the biologic factors regulating most
of these diseases are polygenic (Iles 2008). For the development of complex diseases there
are a huge number of genetic variants that have been associated, most with very small
effects (Momozawa and Mizukami 2021). Nevertheless the cumulative effect of these
variants turns out to be substantial both for the prognosis and characterization of these
diseases. This cumulative score from a set of disease associated variants is called Polygenic

https://paperpile.com/c/MLpYgK/bhDs
https://paperpile.com/c/MLpYgK/XkrB


Risk Score (PRS) (Khera et al. 2018). PRS is calculated as the weighted sum of risk alleles
with the weights specified by genome-wide association studies (GWAS). The need for an
open resource for research and validation of polygenic scores led to the creation of the PSG
Catalog (Lambert et al. 2021). All published PGS and related metadata are available in PSG
Catalog site16 along with the disease/phenotype that they characterize.

3.4.2 Validation
PRS is a valuable resource for the validation of our pipeline. PRS are commonly applied in
exome sequencing in order to generate a predisposition score for a certain common disease.
Therefore it is expected that an individual with a genetic common disease should have a
subset of the variants that are present in a relevant PRS. Similarly, in our pipeline we expect
that a subset of the ~40.000 variants identified from the exome sequencing screening of an
individual, to be present in our graph. Querying the graph with the complete set of variants
for a given PRS, extracting the resulting text from papers and applying Top2Vec, should
reveal topics that are relevant to the disease. For example, giving as input to our graph a file
with mutations that have effect for Alzheimer disease, topic modeling should find a topic
related to Alzheimer disease. Interestingly our process disregards the effect information that
is present in PRS. Therefore our process is different from the typical PRS pipeline which
assigns a score for a given common disease. In general our pipeline answers to “which”
common disease an individual has predisposition on, whereas PRS answers to “how much”
predisposition exists.

To validate our approach, we downloaded two variant collections from the FTP site of PGS,
one for osteoporosis (Tanigawa et al. 2022) and one for thrombosis (Tanigawa et al. 2022).
For each file we retrieved the rs-ids in order to mass query the graph.

Concerning the thrombosis file, there were 634 rs-ids and the corresponding effect weights.
We removed the effect weights and the resulting file was sent to the graph as a query. In total
27 mutations were returned which were contained in 72 articles. Then these articles were
given to Top2Vec for topic modeling and two topics were returned (figure 3.19).

As the words clouds of figure 3.19 indicate, topic 0 concerns osteoporosis and topic 1
concerns fasting and lipid metabolism. This finding poses the question of whether there is a
correlation between these two conditions. A simple search in PubMed revealed articles that
relate osteoporosis and fasting (Hisatomi and Kugino 2019; Barnosky et al. 2017; Veronese
and Reginster 2019) and articles that relate osteoporosis and lipid metabolism (Chen et al.
2017; Tian and Yu 2015; B. Wang et al. 2022).

In brief, osteoarthritis and fasting are correlated since weight loss leads to improved bone
health and consequently in battling age related osteoporosis.

16 thttps://www.pgscatalog.org/
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Figure 3.18: “Results of topic modeling of a PGS Catalogue file with 634 mutations associated with
osteoarthritis”

Concerning the thrombosis PRS, there were 839 corresponding mutations which were sent
to the graph as a query and 81 mutations of them were returned. These mutations were
contained in 425 articles which were given for topic modeling. As shown in words clouds of
figure 3.20, there are three topics, topic 0 concerns common genomic concepts without any
clinical information, topic 1 concerns thrombosis and topic 2 is about schizophrenia. Τopic 1
is what we expected and confirms that our tool works properly. The words of topic 2 are
indicative of an interesting potential association between thrombosis and schizophrenia.

There are several articles that search for possible correlation between schizophrenia and
thrombosis (Hsu et al. 2015); (Lin et al. 2019; De Hert et al. 2010). Some articles refer that
antipsychotic drug use increases this risk of thrombosis. Thus, topic modeling led us to the
conclusion that there is a possible association between schizophrenia and thrombosis.

Figure 3.19: “Results of topic modeling of a PGS Catalogue file with 839 mutations associated with
thrombosis”

https://paperpile.com/c/MLpYgK/fwmS
https://paperpile.com/c/MLpYgK/QjIB+1Ozm


In conclusion, through our pipeline, new relationships can be explored between a huge set of
mutations and possible diseases / phenotypes. The topics that are identified that are not the
target ones might provide insights about novel relationships between diseases.

4. Discussion

Next generation sequencing (NGS) tends to become a routine test in clinical practice through
the rise of its accessibility, the increase of its trustworthiness and the reduction of its cost.
.One last criterion that is still missing from NGS before “reaching the clinic” is interpretability.
Findings from NGS should easily and prominently stick out so that clinicians and medical
professionals could make a reliable informed decision.  Despite the great progress that has
been made in the field of variant prioritization, Geneticists have not benefited much from the
information contained in PubMed regarding genetic entities such as genes and  mutations.

Both the immense size and the exponential growth of the information contained within
PubMed makes it difficult to exploit this knowledge. Although many tools have been
suggested for the mass exploration of this knowledge base, most are based on pre-defining
a minimum set of keywords and relationships in which the exploration will be based. In the
era of Next Generation Sequencing and in particular in exome sequencing, we cannot define
such a set. Or else we cannot simply search the entirety of PubMed about the complete set
of mutations that have been identified. Interestingly the problem is not about how to perform
the query. Existing query techniques and database designs can execute complex queries in
massive databases in a timely manner. The problem lies in interpreting and visually
inspecting the results.

The purpose of this master thesis is to integrate text mining into the evaluation of a set of
mutations. We implemented a pipeline to locate biomedical entities (mutations, genes,
diseases, chemicals) in Pubmed and import them into a graph database. Through the graph
a user has the ability to send multiple queries to easily and flexibly search for information
both for individual entities and for a set of mutations.

Variant nomenclature is an issue that has been of considerable concern to the scientific
community (Poo, Cai, and Mah 2011). Our initial goal was to convert as many mutations as
possible into hgvs format. This attempt failed because we created all possible HGVS
mutations in the articles and the estimated time for their validation was too long.
Nevertheless the validation of HGVS mutations in a short period of time is still a challenging
task. The enrichment of the graph we created with the HGVS mutations would be a
significant addition that belongs to our immediate future work

After finally using SNP mutations (RS-id), we constructed the graph with the biomedical
entities of the articles. When a set of mutations is given as a query in the graph, the entities
are mere words and can not help to draw safe and clear conclusions. A solution for rapidly



accessing the text of an article would be to store the contents of the papers in the database.
This would practically create a "clone" of PubMed and it would require an excessive amount
of disk space. Given the allocated resources to this project this was not possible, but this
option should remain under consideration given sufficient amounts of resources.
To solve this issue, we used the Random File Access (Peterson 1957) method, so that we
have very fast access to the texts of the articles. These texts were used for topic modeling
with Top2Vec so that the different topics of a set of articles could be distinguished.

To further validate our approach we used sets of disease associated variants from the PRS
Catalogue. The hypothesis was that the resulting topics from Top2Vec should include topics
related to the given disease. Experiments with both osteoporosis and thrombosis (section
3.4.1) validated this hypothesis. In addition, we also showed that topic modeling generates
additional topics, allowing the research to explore existing or potential novel interesting
relationships between a condition of interest and other biomedical concepts. In contrast to
other text mining tools that explore relationships through semantically proximal concepts (i.e.
diseases with diseases or genes with genes), topic modeling generates clouds with words
that transcend the semantic space. Although this might be vague, it can also help
researchers to perform a broader investigation beyond the definition of certains concepts.

It is important to note that a definite validation of this pipeline is missing since we do not have
in our disposal a comprehensive set of exome sequencing data from individuals with known
diseases, rare or common. As a future work we intend to test this pipeline either in simulated
exome sequencing data or in real data that are part of a research initiative. This could also
help to fine-tune our pipeline, especially the Top2Vec part which we might be prone to noise.

This work is intended to be used by people who are not necessarily familiar with the
command line or Cypher language. For this reason, another future work is the construction of
a webpage that could ease the data access, the graph exploration and the extraction of topic
models.

Finally, the complete pipeline has been made available as an Argo workflow. This workflow
can be installed and deployed with minimal effort. Additionally it can be easily scaled in a
Kubernetes cluster and meet the needs of a more demanding setup. Describing and
providing complex bioinformatics pipelines in widely accepted formats and easily deployable
workflow management systems such as Argo can not be very convenient but also help to
battle the reproducibility crisis which, especially in a clinical genetics setting, could have
detrimental effects.
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