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“ It has been said that the great events of the world take place in the brain.” 

-Oscar Wilde, The picture of Dorian Grey 
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Abstract 
 
 

Abstract 

 
The purpose of this thesis is to implement a biophysical detailed single neuron model to 

investigate the active properties that underlie the dendritic computations in human layer 2 and 3 

(L2/3) cortical neurons with the usage of Boolean Algebra. Due to evolutionary pressure, the 

human cortex over periods of years gained two major properties. First, it is extraordinary thick, 

especially the L2/3 supragranular layers, and, second, it has vast dendritic trees receiving 

numerous synaptic inputs. The experimental data to fit the model were produced by dual somato-

dendritic patch clamp and two-photon imaging from Dr. Albert Gidon (Larkum Lab, Humboldt 

Universität, Berlin). They observed a fast dendritic calcium action potential (dCaAP), with 

previously unknown active properties. This dendritic action potential contributes to the 

repertoire of transformations from synaptic inputs to action potentials (APs) in human L2/3 

neurons. The dendritic activation function, namely, the amplitude of those dCaAPs’ as a function 

of the intensity of the current injection in the dendrite, was sharply tuned to an optimal input and 

progressively suppressed for stronger inputs. This indicated that dendrites of human L2/3 

neurons are intrinsically capable of computing anti-coincidence functions like the XOR. To 

expand this computational modeling approach, it was investigated under which conditions (such 

as number and type of synaptic inputs) other activations functions from Boolean Algebra can be 

implemented. When implementing the coupled mode, meaning that dendritic response initiated 

somatic spikes, the latter was able to reproduce all logical operations except the negative ones. 

Interestingly, when implementing the uncoupled one with only the dendritic response, all logical 

operations including the negative ones were reproduced. These suggest that dendrites in human 

cortical neurons expand the computational power of neurons even to perform negative 

computations and provide evidence for a dendrite-centered theory of neuronal function. Thus, is 

important to investigate the capacity of these dendritic computations. The model also 

investigates what is the contribution of apical and basal dendrites of the L2/3 single neuron when 

only the basal sub-region is stimulated and under specific conditions of N- methyl-D-aspartate 

receptor (NMDA) spiking activity. Future work involves further investigation of the 

computation and cellular substrate, e.g. spines and morphological features of the human cortical 

neurons, towards a more thorough functional application of this novel dendritic activation 

mechanism to human cognition. 

 
 

Keywords: human L2/3 cortical neurons, neocortex, anti-coincidence detection, Boolean 

algebra, logical gating, capacity of dendritic computation, apical and basal dendrites, NMDA 

receptor. 
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AIM: The purpose of this thesis is to give comprehensive insights into the computational 

power and biophysical properties of human cortical neurons. 
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1 

Introduction 
“ Computational neuroscience provides us with the tools and methods for doing three different 

things. One is characterizing what the nervous systems does. The second is determining how it 

functions. And finally, the third is, understanding why it operates in particular ways.” 

-P. Dayan and L. Abbott 

 

 

1.1 The neocortex of the humans 

Understanding how the brain works is one of the fundamental challenges in science today, with 

profound implications not only for how we treat neurodegenerative diseases, but also for how we 

view ourselves as humans. The cerebral cortex is characterized by an extremely dense 

connectivity, with each pyramidal neuron receiving between 5000 and 60000 synaptic contacts. 

A large part of this connectivity originates from the cortex itself (Braitenberg and Schuez, 1998, 

DeFelipe and Farinas, 1992). The neocortex is part of the human brain that is involved in higher- 

order functions such as conscious thought, spatial reasoning, language abstract thought, 

imagination, generation of motor commands, rationalism and sensory perception. It is consisted 

of discrete sections – each one with different functions: the frontal lobe for executive functions, 

thinking, planning, organizing, problem solving, emotions, behavioral control, personality, the 

motor cortex for movement, the sensory cortex for sensations, the parietal lobe for perception, 

and making sense of the world, arithmetic, spelling, the occipital lobe for vision, and the 

temporal lobe for memory, understanding, and language. In comparison with other species, 

human neurons are particular different, having a thicker (~3mm) cortex and larger dendritic 

arbors (Defelipe, 2011; DeFelipe et al., 2002; Mota and Herculano-Houzel, 2015; Sun and 

Hevner, 2014). As a result, the supragranular layers (L2/3) have a disproportional thickening 

(Mohan, 2015) and numerous synaptic inputs in their vast dendritic trees (Deichter, 2017). 

Those evolutionary insights make their biophysical properties unique. The neocortex is made up 

of six layers, labeled from the outermost inwards, 1 to 6. The synaptic input in the L2/3 

pyramidal neurons stems either from other L2/3 pyramidal neurons or from layer four (L4)  

spiny stellate neurons according to Lübke, 2003 and Binzegger, 2004. 
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Figure 1.1: Layers of the neocortex.1 
 

 
 

Figure 1.2: Staining across layers of the neocortex revealing the position of neuronal cell bodies and 

the intracortical axon tract.2 

 
1 https://epomedicine.com/medical-students/cerebral-cortex-layers-microanatomy-simplified/ 

2 https://healthlifemedia.com/healthy/cortical-layers-of-the-cerebral-cortex/ 

https://epomedicine.com/medical-students/cerebral-cortex-layers-microanatomy-simplified/
https://healthlifemedia.com/healthy/cortical-layers-of-the-cerebral-cortex/


9  

In this thesis, the experimental data to fit the single neuron model were obtain from simultaneous 

intracellular electrical recordings from the soma and apical dendrite in human neocortex acute 

slices from surgically resected brain tissue of epilepsy and tumor patients from their temporal, 

temporomesial and frontal lobe in L2/3. All human experiments were approved by the Ethics 

Committee of the Charité Universitätsmedizin Berlin and performed in agreement with the 

Declaration of Helsinki. Dual whole-cell voltage recordings and two- photon imaging were 

performed from the soma and dendrites of non-pathological neocortical tissue resected from 

twenty-three epilepsy patients and three patients with brain tumor (Gidon et. al, under revision 

2019). 

 

1.2. Dendritic action potentials in rodents 

In computational terms, a model can be defined by a function, estimated mathematically. What is 

trying to be estimated is an encoding function - one which converts a stimulus into a neurological 

response. At the soma, after crossing a threshold, a greater response corresponds to the generation 

of spikes, also known as action potentials (APs). The computational power of a neuron is 

constituted by the transformation from synaptic inputs to APs. A spike is defined by a threshold 

and a non-linear jump. Dendrites are branched extensions of a neuron and receive chemical 

signals emitted from projecting neurons and transfer these signals to the cell body, or soma. It is 

common knowledge that ion channels are membrane proteins that function as electrical signal 

transducers. They govern the electrical properties of all living cells. The function of ion channels 

is regulated by a number of signaling molecules. Their classifications include potassium, sodium, 

and calcium ion channels. Ion channels are divided into voltage-gated and ligand-gated channels 

based on the type of physiological stimulus activator. A cortical neuron receives thousands of 

inputs from  other neurons and its dendritic tree performs nonlinear transformations to those 

synaptic inputs, sometimes resulting in a sublinear way (Longoro et al., 2013) or in supralinear 

integration of those inputs (Losonczy and Magee, 2006; Nevian et al., 2007; Branco and Häusser, 

2011; Makara and Magee, 2013). Thus, cortical neurons integrate thousands of synaptic inputs in 

their dendrites in highly non-linear ways called dendritic non- linearities. Local non- linear 

summation of excitatory inputs, namely a dendritic spike refers to an AP generated in the dendrite 

of a neuron. The dendrites of pyramidal neurons can support sodium, calcium and N-methyl-D- 

aspartate (NMDA) spikes. These nonlinearities have been traditionally studied from the 

perspective of single-neuron computations, using a few well- controlled synaptic stimuli, 

revealing a remarkable repertoire of arithmetic operations that the dendrites of cortical neurons 

carry out (Poirazi and Mel, 2001; London and Häusser, 2005; Branco et al., 2010) including 

additive, multiplicative and divisive ways of combining individual synaptic inputs in the cell’s 

response (Silver, 2010). 

 
In Figure 1.3, dendritic APs recorded from the mouse brain alongside with their duration are 

depicted showing the different kinetics of the different types of dendritic spikes. Back 

propagating APs are also considered, that are not depicted here. 
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Figure 1.3: Dendritic integration: 60 years of progress.3 

3. Stuart, G.J., Spruston, N. (2015), Nature Neuroscience, Dec;18(12):1713-21. 

1.3 Dendritic properties of human neurons 

However, the knowledge on how dendritic factors in human neurons contribute to input-to-output 

transformations in human cortical neurons is still an open topic. Some of their unique properties enable 

human neurons to perform various functions. Through the literature, there are six papers to my 

knowledge which deal with the human dendritic properties using either experimental or computational 

approaches (from non-post-mortem tissue). In general, human neurons have larger dendritic arbors, and 

thus improved encoding capabilities (Eyal et. al, 2014). Their large dendritic load enables high 

frequency modulation by axonal spikes. Their dendritic length is 3-fold larger than other model 

organisms like mouse or macaque with an increased branch complexity in size and shape (Mohan et. al, 

2015). Moreover, they have faster action potentials than mouse AP. Interestingly, human neurons have 

a specific value of membrane capacitance set to 0.45 μf/cm2, which is also used in the thesis model and 

is unique in the literature (Eyal et. al 2016). In addition, their basal terminal is particularly elongated, 

enabling multiple nonlinear processing units and the distal dendrites of human neurons provide limited 

excitation to the soma (Deichter et. al 2017). Last but not least, there is a specific number of synapses 

from experimental and modeling approaches so as to generate somatic sodium spikes (Beaulieu-

Laroche et. al 2018). Last but not least, Eyal et. al, 2018 predicted particularly larger AMPA- and 

NMDA-conductances and spiking compared to rat cortex. Overall, all these properties, make the neuron 

distinct in comparison to other model organisms that are evolutionary close to human. Nevertheless, 

human cortical neurons are not “scaled-up” versions of rodent or macaque, but have unique and 

functional properties which enable the human brain to perform higher cognitive functions. Deriving 

from those properties, Gidon et. al (under revision 2019) pinpoint a fast dendritic calcium AP. Thus, the 

aim of this thesis is to expand the findings from the latter work and investigate what computations 

human neocortical neurons of L2/3 are able to perform using this novel AP and Boolean Algebra.  
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1.4. McCulloch-Pitts neuron 

But first, let’s see if the scientific community over the years has been interested in a topic like this. 

Why and how Boolean Algebra can assist understand the functional properties of human neocortical 

neurons? It is very well known that the most fundamental unit of deep neural networks is called an 

artificial neuron. In 1943, neuroscientist Warren McCulloch and logician Walter Pits took the first 

step toward this artificial neuron, by mimicking the functionality of a Biological neuron. The 

neurons they used were simple threshold neurons, called the perceptrons. They are known as 

pioneers to formally define neurons as computational elements. 

 

 

 
 

 

Figure 1.4: The part g takes an input, performs an aggregation and based on the aggregated value the 

second part f makes a decision. They first established the neural activity of an artificial perceptron 

using logical gating to a mathematical model of a biological neuron. 

 
Their idea explores simplified neural models to get the essence of neural processing by ignoring irrelevant 

details and focusing in what is needed to do a computational task. 

 

 

 
Figure 1.5: Neural processing of an artificial neuron.4 
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          McCulloch and Pitts knew that spikes, or APs, somehow carry information throughout the brain. 
 
 

 
Figure 1.6: Each spike would represent a binary 1, each lack of spike would represent a binary 0.5 

 

 
So, as a rule, McCulloch-Pitts neurons are binary. They take as input and produce as output    

only 0’s or 1’s. 

 

Figure 1.7: Activations from other neurons are summed at the neuron and outputs 1 if threshold is 

reached and 0 if not.6 

 

In mathematical terms, 
 

 

Figure 1.8: where φ represents a threshold or a sigmoid function.7 

 
4,5,6,7 Lectures in Computational Neuroscience course, M.Sc. Bioinformatics 
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In their paper, they showed how spikes could be combined to do logical and arithmetical 

operations. 

 

 

 
Figure 1.9: A logical calculus of ideas immanent in nervous activity. The numbers in the cell bodies 

are the thresholds of the respective neurons. 

 

 
In 1958, Frank Rosenblatt, an American psychologist, proposed the classical perception model, 

the mighty artificial neuron as a linear classifier. It is a more generalized computational model 

than the McCulloch and Pitts neuron where weights and thresholds can be learnt over time. In 

their model, you need more neurons and inputs so as to potential model logical gating in the 

brain. This, however, exceeds the purposes of the biophysically detailed single neuron modeling 

which is discussed in this thesis and the first idea of McCuloch-Pitts binary threshold neurons 

will be in a greater favor. 
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1.5 Logical gating in neuroscience 
 

So, how can we link logical gating and neuroscience? Can a neuron be seen as a computational 

binary element and perform logical gating as McCulloch and Pitts proposed? In the brain, 

neuronal cells function in a more complex yet similar way to logic gates in digital computers. 

Unlike most cells, neurons have a structure of axons and dendrites for transmitting and encoding 

signals. As we saw, a neuron receives a range of inputs from its dendrites, integrates them, and 

produces an output in the axon depending on the type and frequency of the input signal. That 

signal provides input to other neurons. The input to a neuron must surpass a threshold to cause it 

to spike. The input signal depends on whether the synapse, the collection of signals between the 

axon and dendrites of neurons, is strong, or weak, excitatory, or inhibitory. A neuron with two 

inputs can act in different modes depending on the type and strength of its inputs. The output of 

a neuron's axons is a series of pulses of on and off signals as seen in computers' logic gates. 

Albeit, neurons are much more complex and versatile than computers, since they integrate 

thousands of inputs from dendrites, and process them both temporally and spatially. Computers 

must only execute a function or program in a sequence of steps. For example, the logical 

function of two strong excitatory inputs of logic OR the neuron will be stimulated if either input 

is active. In the logic AND of two weak excitatory inputs both must be active to stimulate the 

neuron. In biology, the activity of a neuron depends on the activity of the stimulus. Neurons, 

unlike computer logic gates, are adaptable. Internal and external factors may change the neurons' 

functions. Neurons can memorize information for a short- term by a electrochemical process or 

long-term by structural means. With electrical memory, ions flow due to transmission and basic 

information processing lasting 1 to 100 milliseconds. Chemical change may create a second to a 

minute of memory as balances and secondary messengers affect receptors and ion channels in 

the cell membranes. Memory lasting for 1 to 24 hours occurs by molecular synthesis and gene 

expression leads to long- term modification. Structural changes in the cell itself last from 1 to 

365 days. This alters information processing and also changes membrane extensions like 

synapses and dendrites connecting to other neurons and the outside. So, how could the concept 

of logical gating be incorporated in a biological neuron? In figure 1.10 from Häusser and 

London explain that in layer 5 (L5) of rat model logical operations can be implemented. This is 

a schematic figure highlighting four key dendritic mechanisms, mapped onto a L5 pyramidal 

neuron morphology, which can allow dendrites to act as computational elements. These 

mechanisms can coexist in the same neuron and be active in parallel or in a hierarchical manner. 

In the top left we can see that nonlinear interaction between excitation and shunting inhibition 

on small dendritic branches can implement logical operations. The branch marked by an arrow 

sums up the current from the two subtrees, such that its output would be a logical OR on their 

output. Each of the subtrees will in turn inject current if and only if the excitation AND-NOT the 

inhibition will be active onto a different branch (open circles) are only slightly influenced by this 

spike. In the top right: the L5 cortical pyramidal neurons, as depicted here, coincidence detection 

between the apical and basal dendritic compartments is achieved by active dendritic 

mechanisms. A backpropagating action potential, which coincides with a distal synaptic input, 

will trigger a dendritic Ca2+ spike, which depolarizes the whole apical dendrite and drives a 

burst of spikes in the axon. 
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Figure 1.10: A schematic figure highlighting four key dendritic mechanisms, mapped onto a L5 

pyramidal neuron morphology, which can allow dendrites to act as computational elements. 

 
All these, are discussed because the single neuron in our model tries to mimic a threshold neuron 

so as to investigate if logical gates exist in cortical computation. And if all of this seems a little 

far removed from biology, it actually seems like the hierarchy of processing areas such as visual 

information travels throughout in the brain are organized in chains of AND and OR gates. First 

the AND neurons search for co-active patterns of activation, then the OR neurons fire to signal if 

a pattern has been sensed anywhere in their receptive field, according to whether any of the AND 

gates presynaptic to them are active. One big question that is generated is: What dendritic 

computations underlie the distinct somatic and dendritic spike properties that make human 

neurons unique? Are logical operations a plausible answer? 

Following, we will focus on the XOR function (Figure 2.1). The XOR function is considered a 

non-linear gate, due to the fact that you cannot draw a straight line to separate the points 

(0,0),(1,1) from the points (0,1),(1,0). In computer science and machine learning, this is the so 

called XOR affair that will engage a major part of this thesis work, and it is considered to only be 

solved in multilayer networks. 
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2 

Materials & Methods 

“ Neuroscience is by far the most exciting branch of science because the brain is the most 

fascinating object in the universe. Every human brain is different - the brain makes each 

human unique and defines who he or she is.” 

-Stanley B. Prusiner 

 

 

2. 1 Boolean Algebra 

Let’s see how many combinations two binary variables can generate to build logical operations, apart 

from the famous XOR function. 

 
 

Figure 2.1: Truth table listing all possible functions for two variables. 

By definition, we can see that the number of logical operations derived from two binary inputs, 

are sixteen. Can these operations be performed by the dendrites of our model? 

For visualization purposes, below are the graphical representations of the logical operations. A 

logical gate can be classified as linear if and only a single line can separate the activated output 

point from the inactivated one. 
 

Figure 2.2: XOR gate (non-linear). Mathematical representation: F = xy +x’y’ 
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. 

 
Figure 2.3: OR gate (linear). Mathematical representation: F = x + y. 

 

 

 

 

 
 

Figure 2.4: AND gate (linear). Mathematical representation: F = x*y. 
 

 
 

 

Figure 2.5: NAND gate. Mathematical representation: F = (x*y)’. 
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Figure 2.6: NOR (linear) gate. Mathematical representation: F=(x+y)’. 
 

 

 

 

Figure 2.7: F2 (linear) gate. Mathematical representation: F = x*(y)’. 
 

 

 

 

 
Figure 2.8: F3 (linear) gate. Mathematical representation F = x. 
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Figure 2.9: F4 (linear) gate. Mathematical representation: F = x’y. 
 

 
 

 

Figure 2.10: F5 (linear) gate. Mathematical representation: F = y. 
 

 

 

 
 

Figure 2.11: F9 (non linear) gate. Mathematical representation: F = xy + x’y’. 
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Figure 2.12: F10 (linear) gate. Mathematical representation: F=y’. 
 
 

Figure 2.13: F11 (linear) gate. Mathematical representation: F=x+y’. 
 

 

Figure 2.14: F12 (linear) gate. Mathematical representation F= x’. 
 

 

 

Figure 2.15: F13 (linear) gate. Mathematical representation = x’ + y. 
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Figure 2.16: F0 null (linear) gate. Mathematical representation: F = 0. 

 

Figure 2.17: F15 identity (linear) gate. Mathematical representation: F = 1. 

 

The following table summarizes the linear and non-linear gates. 
 
 

Linear gates Non-linear gates 

AND XOR 

OR EX-NOR 

NAND 

NOR 

F2 

F3 

F4 

F5 

F10 

F11 

F12 

F13 

F0 

F15 
 

 

Table 2.1: Linear and non-linear gates. 
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2.2 Non-separable Boolean functions in single dendritic 

computation 

It is a common belief that single neurons are incapable to perform linearly non-separable 

computations like the famous XOR. In Romain Cazé thesis (Cazé et. al 2013), it is demonstrated that 

all neurons possessing a single passive dendritic branch are capable of logical computations. The so-

called dendritic spikes, result in independent spiking dendritic sub-units, which turn pyramidal 

neurons into two-layer neural networks capable of computing linearly non- separable functions, such 

as the XOR. This work involved determining if binary neurons can also compute linearly non- 

separable Boolean functions implementable by a binary neuron model with a linear sub-unit and 

either a single spiking or a saturating dendritic sub- unit. Specifically, they showed show that non- 

linear dendritic sub-units, in addition to the somatic non-linearity, are sufficient to compute linearly 

non-separable functions. They proved that, with a sufficient number of saturating dendritic sub-units, 

a neuron can compute many functions computable with purely excitatory inputs. And that these 

linearly non-separable functions can be implemented with at least two strategies: one where a 

dendritic sub-unit is sufficient to trigger a somatic spike; another where somatic spiking requires the 

cooperation of multiple dendritic sub-units. 

 

 
 

 
Figure 2.18: A two stage neuron model with one dendritic subunit. Structure and parameters of the 

neuron model: x, and y are binary variables describing pre and post-synaptic neuronal activity; in 

circles are two independent sets of non-negative integer-valued synaptic weights respectively for the 

linear (black) and the non-linear (blue) subunits; in the blue square, θ and h are the non-negative 

integer-valued threshold and height that parameterize the dendritic activation function D; in the black 

square Θ is a positive integer-valued threshold determining post-synapticfiring. 

 
Specifically, it is shown that a two-stage neuron without inhibition can implement only and all 

positive Boolean functions with as many dendritic units. 
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Figure 2.19: A. Number of computable representative positive Boolean functions depending on the 

number of input variables n and on the type of synaptic integration (black – linear, green – linear with 

a spiking dendritic subunit, blue – linear with saturating dendritic subunit, red – maximan number of 

positive representative function) B. Venn diagram for sets of Boolean function for n>=6 

 
As a consequence, they proved that dendritic spikes, combined with somatic non-linearity, 

enable a neuron to compute positive linearly non-separable Boolean functions. A year after this 

work, using again a binary neuron model in conjuction with Boolean Algebra, they suggested 

that dendritic saturations as well as dendritic spikes enhance single neuron computation even if 

when they cannot directly make the neuron fire, they enhance a single neuron computation in the 

binary neuron model (Cazé et. al 2014). The implementation of these functions does not require 

the dendritic non-linearity to make the neuron spike. Within these models and contrary to the 

binary model, the dendritic and somatic non-linearity are tightly coupled. Yet, they showed that 

these neuron models are capable of linearly non- separable computation. 

 
So, taking all the above about logical gating and neuroscience into consideration, and study in 

parallel the new work of Gidon et. al, we wanted to see how many Boolean functions could be 

reproduced in the latter model apart from the XOR. We took into consideration, the number and 

type of synaptic input for the specific pathways the model is utilizing and other logical 

operations from Boolean Algebra. In the next section, all these combinations of logical gating 

are generated according to the number of synapses for each pathway of the single neuron model, 

so as to give an intuition on how human cortical dendrites of L2/3 may compute. 
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3 

2. 3 The biophysical model 

First, let’s validate with the assistance of a python script how many combinations we have when 

we have two binary inputs: 

 

 

Figure 2.20: Output from python script. Generate a set of input vector with n components and 

containing equal/different number of ones given ex. Returns set of 0/1 vectors to be classified. 

 

Now, let’s see the model of Gidon et. al (under revision, 2019). Here, the description of the 

detailed biophysical model of L2/3 neuron is discussed. It consists of 101 basal and 81 apical 

dendrites, a somatic compartment, and an axonal cable (1000 μm length, 1 μm diameter). 

Compartments lengths were at most 30 μm. 

 
Biophysics Active 

properties 

Passive 

properties 

Passive 

properties 

from soma 

to axon 

Cell 

properties 

Origin cell Model cell 

Celcius = 37 gNabar_ 

traub = 0.1 

 

Rm = 37 G_pas = 0 Del = 300 Rin = 41 Rin = 40 

 gKbar_traub 

= 0.015*3 

G_pas = 

1/Rm/1000 

 

gLbar_traub 

= 1/Rm/1000 

Dur = 1000 Tau = 14 Tau = 14 

  E_pas = -80 
 

E_l = -80 Amp = 0.4 

//0.1 
Somatic 

resting = -75 

 

Somatic 

resting = -70 

  Rheobase = 

-3 

 

E_k = -85 Tstop = 

15000 

Somatic 

rheobase = 

0.4 

Somatic 

rheobase 0.05 

  Cm = 0.45 

 

E_Na = 90    

  Ra = 100 

 

    

 
Table 2.2: Description of the model of Gidon et. al. 
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Membrane capacitance (Cm) and axial resistance (Ri) were uniformly set to 0.45 μF cm2 (Eyal et. 

al) and 100 Ω×cm, respectively, over the entire dendrite. These values resulted in somatic input 

resistance (Rin) and membrane time constant (τm) of 40 MΩ and 14 ms, respectively, similar to  

the experimental values (Rin = 41MΩ and τm = 14 ms). The single neuron model of Gidon et. al 

derives from morphological detailed reconstructions from acute slices of L2/3 neurons from 

presumably non-pathological surgically resected neocortical tissue from the anterior temporal 

lobe of twenty-three epilepsy patients and three patients with brain tumor using dual somato- 

dendritic patch clamp and two-photon imaging. Sodium (INa), and potassium delayed rectifier 

(IKdr) currents, with the corresponding maximal conductances, gNa = 0.1 S/cm2, gK = 0.045 

S/cm2 and reversal potentials, EK = -85 mV, ENa = 90 mV. Rm was 37 MΩ×cm2. The rate 

functions  for the sodium and potassium channels where adapted from Traub et   al. (1991), with  

a slight modification for the potassium channels whereby the activation time constant, τn, was 

reduced by a factor of two, and all activation curves were shifted by to –35 mV. In addition, the 

model uses synaptic mechanisms for α- amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

(AMPA), NMDA, and γ-aminobutyric acid (GABA) receptors described above. 
 
 

Synaptic 

mechanisms 

Gmax tau_r tau_d Mg Gamma Se 

AMPA 0.1e – 3 0.3 1.8 0 - - 

NMDA 0.1e – 3 8 35 1 0.06 - 

GABA 0.1e – 3 0.5 20 0 - -80 

 

Table 2.3: Synaptic mechanisms 

 
All those active properties of L2/3 revealed a previously unknown mechanism that included fast 

calcium APs in their dendrites (dCaAPs). dCaAPs were simulated at one dendritic compartment 

where threshold, width, and height as a function of the input strength were simulated by sum of 

current sources with a sigmoidal shape. Specifically, the dCaAP current, 

 
 

was triggered when membrane potential crossed –35 mV. w is a parameter such that the dCaAP 

amplitude was about 40 mV at threshold. A and B, the rise and decay of the dCaAP current were 

given by sigmoid functions. The dCaAP inactivation, set as a 

function of the membrane potential, K(v) (where in our passive dendritic model approximate 

dCaAP inactivation as a function of the current K(i)), is 

 
 

where v is the membrane potential at the location of the dCaAP, vth is the threshold (–36 mV) for 

dCaAP, F = 1/(vth – vrest), is a normalization factor. τinac was set to 0.3. We set the refractory 

period to 200 ms so that dCaAPs fired with 5 Hz or less. The novelty of this model, is the new 

dCaAPs observed which suggest that human neurons fire dendritic action potentials 
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with unique shape, complex temporal properties (e.g. delayed impact on the soma) and 

computational characteristics that herald a new approach to distributed computation in neural 

networks. 

2.4 Novelty of dCaAPs 

Action potential propagation links information processing in different regions of the dendritic tree. 

Those dendrites are not just bits of wire: they also have their own apparatus for making spikes. If 

enough inputs are activated in the same small bit of dendrite then the sum of those simultaneous 

inputs will be bigger than the sum of each input acting alone. In this picture it is shown that the 

dendrites of human L2/3 neurons are intrinsically capable of computing anti-coincidence functions 

like XOR, which is conventionally considered to be possible only in multi-layer networks. XOR 

gate is known as an anti-coincidence gate, meaning that this gate gives output high when inputs  

are opposite (anti-coincidence). 

 

 
Figure 2.21: dCaAP amplitudes as a function of the input current strength (Idend) normalized 

by rheobase (Irhe) for 21 dendrites and exponential fit (dashed line). 

 
Here it is depicted that when current is injected, a jump in amplitude is reported, the current begins 

to exponentially decline in a non-linear way. As a result, dCaAps in L2/3 dendrites provide a 

unique activation function, so as to compute the XOR operation by suppressing the amplitude of 

dCaAP when the input is above an optimal strength. 

2. 5 Anti-coincidence detection in the dendrites of human L2/3 

neurons 

To further investigate what this unique dCaAP activation function is capable of computing, a 

compartmental modelling approach of Gidon et. al tried to fit and predict the experimental data. 

The computational model represents a L2/3 pyramidal neuron morphology, which was digitally 

reconstructed and modelled in the NEURON simulation environment. It is, therefore, a single 

neuron detailed biophysical model with a realistic input situation consisting of background 

synaptic excitation distributed all over the entire dendritic tree. The background synapses are 



27  

650 in number and represented by gray dots in figure 2.3 (A). To simulate two distinct classes 

of inputs like a binary neuron model discussed in the introduction, pathways X and Y were 

constructed. They are represented by green and red dots in figure 2.3 (A,B,C) and both 

pathways have 80 excitatory synapses. The pathways have also 20 GABAergic with yellow 

color. Pathways X and Y were added targeting a sub-region of the apical dendrite, as in the 

experimental data. With these values for number of synapses for each pathway and all  the 

above active properties described, each of these groups of synapses, and as a consequence, each 

pathway, were able to trigger dCaAPs by themselves as we can observe in figure 2.3 (A). Due  

to the selectivity to particular input strengths of the dCaAPs, coincident activation of two 

synaptic input pathways diminished the dCaAP amplitude, as seen in figure 2.3 (D). 

Interestingly, when we have those pathways in the stimulated apical subregion and add 

inhibition, the dCaAPs regain their amplitude. 

 

 
 

 

 
Figure 2.22: Anti-coincidence in layer 2/3 of the human cortex. 



28  

Left. A. L2/3 neuron modeled by passive membrane and dCaAPs mechanism at the apical 

dendrite 76 located demarcated by the blue circle. 650 background excitatory synapses marked by 

gray dots were randomly distributed over the entire dendritic tree. Pathway X and Y with 80 

excitatory synapses each (red and green dots) targeted only a sub-region of the apical dendrite. 

Additionally, on the same sub-region, 20 GABAergic synapses were distributed with conductance 

of 0.3nS (yellow dots). All excitatory synapses consisted of NMDA and AMPA conductance, 

0.3nS each. Background synapses were activated in all the simulations (B – E). 

 

Right. The modeled dCaAP amplitude depended on the stimulation current intensity with decay 

constant of 0.3. dCaAP threshold was set to –36 mV with 0.2 pA current pulse. B. dCaAP 

recorded at the dendrite during activation of pathway X (red synapses). C. As in B but for 

pathway Y (green synapses). D. dCaAPs diminish when both, pathway X and Y are activated. E. 

An inverse impact of excitation and inhibition due to dCaAP activation curve; dCaAPs regain 

their amplitude when inhibitory synapses were activated. 

 
 

2. 6 The XOR affair 

The model has two major functions, the coupled and the uncoupled one. In the first one the 

response of the single neuron comes both from the soma and the dendrite. The isolated response 

of the dendrite is termed uncoupled. So, using this new dCaAP mechanism at the apical dendrite 

subregion, Gidon et. al provided a solution for the  XOR classification problem. Specifically, as 

we see in figure 2.4 (up part of F & G) X and Y inputs to the apical dendrites trigger dCaAP for 

(X,Y) input pairs of (1,0) and (0,1) marked by black crosses, but not for (0,0) and (1,1) marked 

by the empty crosses. As a result, dCaAP mechanism solves the XOR affair. Interestingly, Gidon 

et. al provided also a solution for the AND/OR classification, now at the soma of the L2/3 

neuron. As we see in figure 2.4 (bottom part of F & G), somatic AP is triggered for (X,Y) input 

pairs of (1,1), (0,1) and (1,0) but not for (0,0), which is a solution for OR logical operation. 

Thus, in this simplified model of L2/3 pyramidal neuron, in the apical dendritic compartment 

(blue color in figure 2.3 (G) ), dCaAPs could reproduce XOR logical operation, and in the 

somatic compartment and activation of AP (green color in figure 2.3 (G) ), the OR logical 

operation. Due to NMDA spikes (Eyal et. al 2018), the basal and tuft dendritic branches as seen 

in gray background in figure 2.3 (G), could reproduce AND logical operation. 
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Figure 2.23: Logical operations on apical and basal dendrites 

 
Nevertheless, AND/OR logical operations here use a classical sigmoid function for thresholding 

the spiking activity of the neuron, and not the new dCaAP mechanism which showed a solution 

for the XOR affair. So, taken all these into consideration, the major research question of this 

master thesis was to see if other logical operations, apart from the XOR could be reproduced in 

the dendrites of human L2/3 cortical neurons using the new dCaAP mechanism as their activation 

function. This research question thrives from the novelty of the model of Gidon et. al representing 

the somatic and dendritic compartments of L2/3 neuron as a network of coupled logical operators 

with their corresponding activation functions. To expand their approach, it is further investigated 

what computations - in both coupled and uncoupled modes of the model – can a two-stage neuron 

in human cortical neurons of L2/3 perform. The novel activation function of the dCaAP 

mechanism is used as the activation function along with the logical operations from Boolean 

Algebra, as stated in the literature before, linking logical gating and neuroscience. To reproduce 

these logical operations, we depend on the number and type of synaptic inputs and how away we 

are from the soma of the neuron, with the proximal and distal dendrites in the coupled and in the 

uncoupled mode respectively. To put it in other words, where the coupled function is called 

specific values for the number of synapses are distributed all over the apical subtree and the 

dCaAP mechanism is stimulated in proximal or the distal dendrites. In the uncoupled function, the 

dCaAp mechanism is performed on apical dendrite 60 (600 μm from the soma). The background 

activity is randomly distributed. For the coupled function, the dCaAP mechanism is 216 μm from 

the soma. Again, the background activity is randomly distributed. Then inhibition is in one branch 

localized. This means higher excitability of the cell, but not all over it. Interestingly, the amplitude 

of dendritic APs was sharply tuned to an optimal input intensity and progressively suppressed for 

stronger inputs and this will be addressed as a research question in the thesis work with respect to 

proportionally or not spiking activity of the neuron. In the next section, the results of all these 

approaches are discussed along with scientific questions regarding the capacity of those 

computations and if we observe differences in apical and basal dendrites. 
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In this section, only the uncoupled function is activated, meaning we only have dendritic 

response. This is of vital importance, because in the work of Gidon et. al it is interesting how 

cortical neurons have higher amplitude regardless the number of spiking activity. Specifically, in 

figure 3.7 (B3) the dCaAP mechanism has a greater value of max amplitude even if the spikes are 

less. 
 

 
Figure 2.24: B1. Current stimulus injected into the dendrite (Idend) 417 μm from the soma (B1) 

and corresponding somatic (B2) and dendritic traces (B3). B2. Idend of 260 pA and 275 pA, but 

neither smaller nor larger current, resulted in somatic APs. B3. Idend of 260 pA and 275 pA 

maximized dCaAP amplitudes whereas Idend > 275 pA dampened them. B4. dCaAP (in blue) 

precedes the somatic AP (in gray) traces are magnified from B2 and B3. C. Isoma 
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3 

Results 
“Any man could, if he were so inclined, be the sculptor of his own brain.” 

-Santiago Ramon y Cajal, Advice for a young Investigator 

 
 

3. 1 Synaptic integration 

 
Using the above dCaAP mechanism as the activation function for the simulations, we model 

logical operations in the subdomain of the apical tree, as in the solution for XOR classification 

problem we saw in both the computational modeling approach and the experiments. Specifically, 

to explore how dendrites contribute to the computations of human L2/3 neocortical neuron, we 

stimulate in the uncoupled mode the apical dendrite 76 (600μm from the soma) with the dCaAP 

mechanism, and in the coupled mode we stimulated the dCaAP mechanism in the apical dendrite 

60 (215μm from the soma). With an ultimate goal of understanding how human cortical neurons 

compute and are distinct, the dendritic factors governing the input-to-output transformations are 

explored and the single neuron is being tested as a binary threshold neuron finding the golden 

section between excitation and inhibition of the cell. Both in coupled and uncoupled mode, we 

record the traces, both dendritic and somatic, from the background and the pathways X, Y, and 

XY. These four traces are seen as the desirable output of each logical gate. To generate an input 

to this output transformation, we investigated the number and type of synapses as stemming from 

the synapse doctrine for learning and memory. That is the reason why along with the novel 

dCaAP activation function, the number of synapses play a significant role in modelling the logical 

operations as input variables for the pathways X, Y, XY and the background activity. This results 

in a specific synaptic parameter space for both the coupled and uncoupled mode, as discussed in 

the table below. 

 
In the table 3.1, the number of synapses for each pathway is being presented. This derives from 

trial and error simulations of the single detailed biophysical neuron using all the synaptic and 

active properties as in the model of Gidon et. al. The two synaptic inputs, synapses – 1 and 

synapses – 2, are seen as two independent pathways, pathways X and Y respectively, and when 

stimulated together they must give the specific binary output each gate is requesting to be 

modeled, namely the pathway XY. All pathways use the new dCaAP mechanism as their 

activation function represented by the binary pathways X and Y to generate the output 

combinations of the gate. The number of the background synapses mostly is 650, randomly 

distributed in apical subdomain. It is also set to a higher value of 850, when needed to activate 

the state of the background of a gate when it is an on state. Someone would argue that tuning 

the background activity exceeds the purposes of the neuron seen as a binary threshold neuron, 

with the background seen as a third variable. This is something valid to an extent. Nevertheless, 

neurons receive different levels of background activity depending on the state of the animal. 
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However, in this particular case, we are more interested to understand the dendritic computations 

in the single neuron level and generate the logical gates there. To do this, we must tune the 

background activity, because, as we will see later, some of the gates require high background 

activity as an input so as for their output to be in an active state. Discussing how many inputs are 

required to perform and generate logical operations by many dendrites of human L2/3 neuron, 

exceed the purposes of this thesis, moving from a detailed biophysical single neuron level to a 

network level. 

 

Gate (output) Synapses - 

background 

Synapses 1 Synapses 2 Synapses 1 

& 2 

XOR (0,1,1,0) 650 120  120  240 

AND (0,0,0,1) 650 60  60  120 

OR (0,1,1,1) 650 120  420  540 

F2 (0,0,1,0) 650 100  150  250 

F3 (0,0,1,1) 650 10  120  130 

F4 (0,1,0,0) 650 100  60  160 

F5 (0,1,0,1) 650 120  10  130 

F9 (1,0,0,1) 850 120  200  320 

F10 (1,0,1,0) 850 180  10  190 

F11 (1,0,1,1) 850 120  80  200 

F12 (1,1,0,0) 850 120  20  140 

F13 (1,1,0,1) 850 100  80  180 

NULL (0,0,0,0) 0 0  0  0 

IDENTITY (1,1,1,1) 850 240  240  480 

NAND (1,1,1,0) - -  -  - 

NOR (1,0,0,0) - -  -  - 

 

Table 3.1: Number of synapses for coupled function. 

 
As depicted in the above table, using specific numbers of synaptic inputs, other gates apart from 

the XOR, could be reproduced. In the model of Gidon et. al the XOR solution needs 80 synapses  

to be generated in the apical subdomain. To specify how dendrites perform computations in L2/3 

neurons, we stimulate the dCaAP mechanism to proximal apical dendrite 60. To generate again the 

XOR gate the apical dendrite 60 needs 120 synapses, a higher value than before. Gate AND gives 

an active state of an output when only the two inputs coincide. 
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This requires a lower value in the number of synapses than the XOR solution for example. OR gate 

on the other hand, has three activated outputs except the background activity. To generate a pattern 

like this, a greater number of synapses are needed for the second input variable. F2 gate needs a 

higher number for the second input variable, but a lower number of synapses in the first input 

variable in comparison with the XOR solution respectively input for example, for only one output 

to be activated. For F3 gate, we need a low synapse input for the first input variable so as to 

activate one pathway and still activate the pathway with a summed output. F4 resembles the F2 

gate in the activating pattern and synaptic input variables. F5 gate is the exact opposite from F3 

gate, with again a summed output but the other pathway activated. Moving on to gates F9 to F13, 

we observe a desirable output pattern in the background activity. To activate this, and still model 

those gates, the default background activity is tuned to a higher value. In the F9 gate, to have a 

summed output and a background activity, the second input variable needs to be higher than the 

first one, with the first input variable not surpassing the value for the XOR solution for example. 

F10 gate requires the background activity and one pathway activated, thus, the first input variable 

needs to be much greater than the other. F11 gate is activates also one pathway apart from the 

background and the summed output and for this purpose the second input variable is lower in 

value, but greater than the previous example. F12 gate does not have a summed output pattern, but 

only a background and an activated pathway, so the second input variable needs to be low in value. 

Finally, F13 gate has the background activity, the summed pattern and one pathway activated as an 

output, so the two input variables are similar in value to give a summed output, but not that high to 

generate more than one pathway. Null gate needs zero number of input variables, and identity gate 

requires the doubled value of input variable from XOR gate, so as all output patterns will be 

activated. Thus, this interplay of optimal synaptic strength for the two input variables reproduces 

logical operation in the apical dendrite 60 on L2/3 neocortical neuron. However, it needs to be 

reported here, that the inhibitory logical operation like NAND and NOR could not be reproduced in 

this stimulation. Due to the fact that the inhibition is localized in one tree and the excitability of the 

cell is high enough, but not in the soma, we thought that stimulating a dendrite with different 

morphological properties may assist this. Activating only the uncoupled mode of the model when 

only dendritic response of the cell is recorded, the dendrite is more distal, both temporally and 

spatially, with its morphology being thinner in diameter and therefore small cell accumulation. 

Upon stimulating the dCaAP mechanism of the distal apical dendrite 76 in the uncoupled mode, a 

different parameter space of synaptic inputs needs then to be explored. The same question remains. 

If any other gates could be modeled in a dendrite that is not close to the soma of the neuron, that 

will expand the dendritic computation capability of the Gidon et. al model, and if negative logical 

operations could be performed there. 
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Gate (output) Synapses - 

background 

Synapses 1 Synapses 2 Synapses 1 

& 2 

XOR (0,1,1,0) 650 120  120  240 

AND (0,0,0,1) 650 60  60  120 

OR (0,1,1,1) 650 120  420  540 

F2 (0,0,1,0) 650 100  150  250 

F3 (0,0,1,1) 650 10  120  130 

F4 (0,1,0,0) 650 100  60  160 

F5 (0,1,0,1) 650 120  10  130 

F9 (1,0,0,1) 850 120  200  320 

F10 (1,0,1,0) 850 180  10  190 

F11 (1,0,1,1) 850 120  80  200 

F12 (1,1,0,0) 850 120  20  140 

F13 (1,1,0,1) 850 100  80  180 

NULL (0,0,0,0) 0 0  0  0 

IDENTITY (1,1,1,1) 850 240  240  480 

NAND (1,1,1,0) - -  -  - 

NOR (1,0,0,0) - -  -  - 

 

 

Table 3.2: Number of synapses for uncoupled function. 

 
The same approach for the uncoupled mode, as before in the coupled one, stands for the 

background synaptic input, and the pathways X and Y. Specific values of randomly distributed 

number of synapses are tested in simulations to try and explain with a specific thesholding in 

excitation and inhibition of the two pathways, so as to explore if other logical operation from 

Boolean algebra with different synaptic inputs could be implemented upon using the dCaAP 

distally. Specifically, XOR gate requires exact half of the values for the two input variables than 

in the coupled mode for XOR. AND gate requires an input that together will generate only the 

summed output. OR gate needs a higher value in the second input variable to activate the 

pathways except the background activity. F2 gate needs a high value of the first input variable to 

generate only one output pathway. F3 gate needs a low first input variable and simultaneously a 

higher than before second input variable to generate only one pathway and the summed output 

pattern. F4 gate requires a high value for the second input variable and a mediocre first input 

variable that will not activate the output summed pattern. F5 gate needs a low first input variable 

 and a higher vale in the second input variable than the
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threshold value in the previous gates, so as the summed output and only one pathway be 

generated. Again, from gates F9 to F13, the background activity is on an on state, so it is again 

tuned to 850 synapses than the default value of 650. F9 gate requires a similar value in the input 

variables for the summed output to be activated. F10 gate needs a lower value of the second input 

variable for only one pathway activated in the output and not their summed pattern. F11 needs a 

greater value in the second input variable than the previous gate, so as to activate also the summed 

output. F12 needs a lower first input variable than the previous gate, with a simultaneous low 

second input variable for only one pathway to be activated in the output. F13 gate requires a high 

number of the second input variable for the summed output to be activated along with one 

pathway and the background activity. Again, null gate requires zero value of input variables, and 

identity gate needs the threshold values to generate all outputs. Interestingly, in the uncoupled 

mode, the negative dendritic computations are performed. The NAND gate requires a higher value 

of first synaptic variable than before and the second input variable is half in value to generate all 

outputs expect the summed one. The NOR gate needs a high value of the second input variable 

that will balance with the background activity and not give as an output the summed pattern. As a 

result, in the uncoupled function of the model, all logical operations including the negative NAND 

and NOR could be modeled. Something like that expands the computational capacity of human 

neocortical neurons of the L2/3, with dendrites being more close to the soma of such an ion 

channeled and synaptic neuron contributing more to  the dendritic computation of the human 

neocortex. 

 
The following picture visualizes the grouped number of synapses in the two major functions of 

the model, coupled and uncoupled, which reproduce the logical Boolean operations. With blue 

color, the pair of logical operations in the coupled mode is being depicted; while the green color 

represent the number of paired synapses of the pathway X and Y that reproduce the logical 

operations. It is observed that in the uncoupling way, with only the dendritic response, a higher 

value in the number of synapses is being required to model the Boolean functions, and that would 

be an indicator of why even the negative logical operations were able to be reproduced. 
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Figure 3.1: Coupling and uncoupling pathways visualizing the number the paired synapses need to 

construct Boolean functions. 

 

3.2 Modelling the gates using the dCaAP mechanism on proximal 

and distal dendrite 

Here, we use the above number of synapses as in table 3.1 and 3.2, and five repetitions to 

approach the results of the modeled logical operations for a period of time of 20.000 ms, where 

in each repetition, the exact location of the pathway-synapses changed, as well as the instance of 

the Poisson process. Again, all logical gates, except for the inhibitory ones are implemented in 

the coupled mode and all Boolean function in the uncoupled mode. We decided to visualize the 

modeled logical gates as a function of the mean firing rate for each pathway. In the next figure, 

we are in the coupled mode, when we have both dendritic and somatic response by stimulating 

the apical dendrite 60. We only depict the somatic one, due to the fact that the dendritic activity 

in the coupled mode was not in high value. In the x axis we have the background activity (Bg), 

the pathway X, the pathway Y, and the pathway XY. In the y axis, we have the mean firing 

frequency, which is being measured with the assistance of python script counting the number of 

spikes of the recorded traces. As mean firing frequency we set the number of spikes measured 

for each pathway and background activity divided by the time of the simulations for five runs 

along with their standard deviation. In the legend of each subplot the desired output of the 

logical gate is written for comprehensive purposes. One is represented as an activated output  

and zero as an inactivated one. 
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Figure 3.2: Implementation of XOR, AND, OR, F2 gates on apical dendrite 76. 

 
Here, XOR and AND logical operations have similar values for the mean firing frequency,  

while OR gate has a higher mean firing frequency and F2 gate a lower one. This is explained by 

the number of the synaptic input and the background number of synapses being used to 

threshold the neuron and reproduce each gate. 

 

 

Figure 3.3: Implementation of F3, F4,F5, F9 gates on apical dendrite 76. 
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Here logical gates F3, F5, F9 have similar mean firing frequency as a sequence of similar values of 

number of synapses to model them, while F4 gate has a low value for mean firing frequency when 

implemented. This is because as thresholding the binary neuron only the excitation of pathway X 

must be kept for the latter logical operation with the other input variable being lower in synaptic 

input to keep the balance in the two variables. 

 
 

Figure 3.4: Implementation of F10, F11, F12, F13 gates on apical dendrite 76. 

 

 
Here, F11 and F12 gates have similar mean firing frequency as some of the above mentioned 

logical operations, and Boolean functions of F10 and F13 have lower mean firing frequency due 

to the fact that one of their pathways should reach the threshold to surpass the other pathway for 

activation. 
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Figure 3.5: Implementation of null and identity gates on apical dendrite 76. 

 
Here, the NULL gate gives zero value for each pathway, and the F15 gate activates all outputs 

with a highest detected mean firing frequency as a consequence of higher number of synapses 

for all the pathways. 

 
To provide a mechanism for making quantitative decisions about the validity of constructing the 

logical gates, we used ANOVA Tukey’s statistical test. This test compares all possible pairs of 

means, and is based on a studentized distribution. Tukey’s test will pairwaise compare every 

means of the pathways and identify any difference between two means that is greater than the 

expected standard error. Our null hypothesis here is that the mean of a pathway should be different 

from the other pathway, and from the background as well. 
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Specifically, for XOR gate in figure 3.2, we want to observe if the XY pathway has a statistical 

significance on pathway X and Y. Here is the result from Python analysis on the logical gate 

XOR mean firing frequency for the five runs: 

 
 

Figure 3.6: ANOVA Tukey’s test to compare the means for each pathway of the XOR gate. 

 
As the p-value is below the confidence interval value of 0.05, the hypothesis has statistical 

significance value, with the means of each pathway being statistically significant. 

 
So, with the assistance of a python script measuring the max amplitude from the recordings of 

the dendritic traces again for five repetitions and for a time period of 20.000 ms, as in the 

coupled mode, we move closer to the soma, in the dendrite 76, to explore if again logical 

operations can contribute in dendritic computation of L2/3 human cortical neuron using the 

number of synapses stated in the table 3.2. 



41  

 

 
 

 

 

Figure 3.7: Implementation of XOR, AND, OR, F2 gate with the dendritic response measured in max 

amplitude on apical dendrite 60. N is the number of spikes for each bar. 

 
As in the coupled mode, the x axis represents each pathway and the background activity. In the y 

axis, we measure the mean max amplitude for the five repetitions. Here we can observe that the 

max amplitude of gates XOR, AND, OR and F2 is close to 40 V. However, the within box on 

the barplots representing the measured number of spikes for each pathway is not proportional 

with the max amplitude. For example, in the XOR gate, the XY pathway has max amplitude of 

38 V, but the number of spikes is 99 for the pathway XY. This is something that comes in line 

with the finding of Gidon et. al. about spiking activity and amplitude, making the dCaAP 

mechanism having a unique functionality when it comes to dendritic computation on closer 

dendrites of human neocrtical neuron in L2/3. 
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Figure 3.8: Implementation of F3, F4, F5, F9 gate with the dendritic response measured in max 

amplitude on apical dendrite 60. N is the number of spikes for each bar. 

 

 

Here, gates F3, F4, F9 have similar max amplitude as before, but F5 gate has a lower value of 

max amplitude with less number of spikes for pathway X perhaps compared with the X pathway 

of gate F4 with a similar max amplitude, but more spikes. 



43  

 

 
 

 
Figure 3.9: Implementation of F10, F11,F12,F13 gate with the dendritic response measured in max 

amplitude on apical dendrite 60. N is the number of spikes for each bar. 

 
Here F10, F11, F12, and F13 gates have similar value of max amplitude as before, with again a 

spiking activity disproportional to their max amplitude. 
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Figure 3.10: Implementation of NAND,NOR, NULL, F15 gate with the dendritic response measured 

in max amplitude on apical dendrite 60. N is the number of spikes for each bar. 

 
Here, NULL gate has zero values for each pathway, and F15 gate similar value of max 

amplitude as before, with an increased number of spikes for each pathway. Interestingly, here 

the gates NAND and NOR are being reproduced with a similar max amplitude and same 

philosophy in the spiking activity. 

 
Overall, from the above figures, we can observe in some of the cases, that when the max 

amplitude is low, the spiking activity is high validating the results of Gidon et. al. So, is this 

negative integration in the dendrites more close to the soma a bug or a feature? This remains an 

open question that needs special attention so as to understand the functionality of the new 

dCaAP mechanism in human neurons. These results may suggest that each dendrite is a 

computational element like a threshold binary neuron, when you are closer to the soma you  

have more dendritic operations and computations, enabling each neuron behave as a network 

finding dynamically logical patterns of activity as the output from Boolean functions. 

 
Again, for the statistical significance of the means for each pathway, ANOVA Tukey’s 

statistical test is being implemented for the XOR gate to compare the means. 
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Figure 3.11: ANOVA Tukey’s test to compare the means for each pathway of the XOR gate. 

 
As the p-value is below the confidence interval value of 0.05, the hypothesis has statistical 

significance value, with the means of each pathway being statistically significant. 

 

 

3. 3 Lookup tables for logical operations 

Here, we generalize the results to all combinations that could possibly explain a logical operation. For all 

combinations in both functions the simulations runs for a duration of ts = 4s for four repetitions, and the 

maximum number of synapses of pathways X and Y are 360, with a step of 20 synapses. In the coupled mode, 

upon stimulating the dCaAP mechanism on proximal dendrite, we can explain a gate with the assistance of 

measuring the number of spikes, and in the uncoupled mode by measuring the maximum amplitude of the 

dCaAP. We present two colormaps, due to the fact that we have two modes of background activity. We saw 

before, that some gates require high background activity on their output, and some lower or not at all. That is the 

reason why, using a deductive method to explain each gate, we categorize the background activity as the first 

step of explain the output of a gate. The figures are arrays that replaces runtime computation of measuring the 

number of spikes and the max amplitude in both states of background activity with a simpler colormap array 

indexing each logical operation. Thus, we provide a solution space for logical operations. 
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Figure 3.12: Lookup table for coupled mode (firing frequency). 

 
 

Figure 3.13: Lookup table for coupled mode (firing frequency). 
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Figure 3.14: Lookup table for uncoupled mode (max amplitude). 

 

Figure 3.15: Look-up table for uncoupled mode (max amplitude). 
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3. 4 Tuning curve of dendritic computation 

As it has already been understood, dendrites are active neuronal structures. They are one of the 

major factors in long-term potentiation. With a sigmoid function as activation function Wu et.  

al. 2009 showed the capacity-enhancing synaptic learning rules in a medial lobe online learning. 

The capacity of computation for information theory and entropy purposes on the apical 

subdomain here comes in line with the aforementioned paper, with the activation function being 

the novel dendritic mechanism and not a classic sigmoid. Neural encoding is merely a 

transformation from physical space. To understand the encoding of a neuron and a functionality 

of the new dCaAp mechanism, the concept of tuning curve is performed. Commonly, it is 

assumed that a neuron’s role is to encode the stimulus at the tuning curve peak, because high 

firing rates are the neuron’s most distinct responses. Tuning curves are the functions that relate 

the responses of sensory neurons to various values within one continuous stimulus dimension. 

Here, the activation function is not a sigmoid as seen before, but this new dCaAP mechanism. It 

depicts the neuronal integration, firing rate, and encoding of the human neocortical neuron of 

L2/3. 

 

 
Figure Figure 3.16: Tuning curve of coupled pathway X with ts=20000 ms. In the x axis the 

frequency (number of synapses needed for the pathway/20 s) is shown, while in the y axis the mean 

number of spiking for five runs along with their standard deviation. 
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This tuning curve stands as a prediction of the model. First, it validates the dCaAP mechanism, by 

sharply increasing its activity when we have an input strength at 7.5 Hz and then declining in a non 

linear way as the dCaAP activation function. However, when the input becomes stronger, the 

spiking activity increases by making the cell more excitable providing a duality solution for the 

model. So, what additional computing power do human dendrites add to a neuron? Previous work 

using artificial neural networks has suggested that active dendrites improve the computing power 

of CA1 pyramidal neurons by increasing the number of possible input/output  relationships 

(Poirazi et. al. 2001) and that we must consider the dendritic tree as a two layer neural network 

with excitatory connections, such as the approach of Poirazi et. al. (2003) for the CA1 pyramidal 

neuron. However, several key questions remain open: what characterizes these new input/output 

behaviors of the dCaAP mechanism in human dendrites with the excitatory and inhibitory 

thresholding pathways? Is there a specific dendritic morphology which maximally increases the 

computational power of such dendritic neuron potentially performing Boolean operations? And 

which physiological parameters of the neuron should change to reach this maximal computational 

power except the number and type of synaptic inputs? 

 

3. 5 NMDA receptor 
 

In the biophysical model, the dendritic Boolean computations were different between apical and 

basal dendrites (figure 2.4). So, apart from the main research question of this thesis which was if 

other logical operations could be reproduced, we wanted to explore what will happen if now we 

stimulate not an apical subdomain of the modelled cortical neuron, but a random basal one with 

respect to NMDA spiking activity. In other words, the apical had as activation function the new 

dendritic action potential, whereas the basal dendrites preferred the sigmoid function and gave 

NMDA spikes. Therefore, it is crucial to observe their difference with respect to dendritic and 

somatic response on the L2/3 neuron as well as the NMDA spiking activity. We have four groups 

for the basal subdomain. Given the coupling of the basal tree to the soma, NMDA spiking at the 

basal tree always induced somatic spiking, For coupled mode of the apical tree, with somatic 

spiking or not, we measure basal NMDA spiking activity in contrast to the apical 60 dendrite, 

whereas in the uncoupled mode in the apical tree, with somatic spiking or not, we measured basal 

NMDA spiking activity in contrast to the apical dendrite 76. We have only somatic response here 

and the duration of the simulation is set again to 20.000 ms. According to Cazé, the number of 

dendrites should match and not exceed the dimensionality of space spanned by the inputs. We 

investigated under which synaptic inputs NMDA spiking can be observed or not. 

 
The four conditions with their synaptic inputs, are: 

 
 Synapses (coupled-uncoupled) Synapses (NMDA-no NMDA) 

Coupled – no NMDA 80 120 

Coupled – NMDA 80 220 

Uncoupled – no NMDA 60 60 

Uncoupled – NMDA 60 320 

 
Table 3.3: NMDA conditions and number of synapses 
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The question addressed here is if basal and apical dendrites have different computations in the 

soma rather than in the dendrite. So, a 3D scatter plot may reveal shared features for apical and 

basal dendrites. 
 

Figure 3.17: Scatter plot for NMDA conditions showing that apical dendrites have higher 

divergence. 

 

 
Here is depicted that with respect to NMDA spiking activity, apical dendrites have greater 

capabilities compared to the basal dendrites, and that would be an indicator why the new  

dCaAP mechanism is observed when we stimulated the apical subdomain. 

 
Overall, we have shown that the Boolean operation can be potentially implemented using both a 

specific parameter space and when you move to more than one simulation for all possible 

combinations. When the dCaAp is on a distal dendrite, intrinsically it computes rather negative 

integrations. In addition, the computational capacity described, explains the firing frequency of 

the model and predicts a duality. The apical and basal differences with respect to NMDA activity 

require further investigation. A limitation of this work is that the inhibition in the model is in 

one subtree localized and not distributed all over it. As a consequence, it was not explored as a 

synaptic input variable. Moreover, future work involves investigating specific features of apical 

and basal dendrites and the morphology of the cell in general, either again in a single neuron 

level or in a network level. Nevertheless, the results described in this thesis suggest a wider range 

of human cortical neurons as computational building block, using this new dCaAP mechanism, 

something that can have a major impact on artificial intelligence and if our human brain perform 

operations as in a computer. 
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4 

Discussion 

“Life is not easy to for any of us. But what of that? We must have perseverance and above all 

confidence in ourselves. We must believe that we are gifted for something and that this thing must be 

attained.” 

-Marie-SkłodowskaCurie 

 

 

4. 1 New approach to distributed dendritic computation 
 

Several studies have demonstrated that dendritic spikes can amplify coincident dendritic inputs, 

e.g., in layer 5 pyramidal neurons in the rodent cortex or in CA1 neurons of the rodent 

hippocampus. The simulation of Gidon et. al is a simple and explicit demonstration of how the 

dendritic mechanism observed in human L2/3 pyramidal neurons computes the anti- coincident 

function for multiple input pathways, limiting the number and/or strength of inputs integrated in 

the dendrite. Interestingly, when we introduce inhibition to the model (20 GABAergic  synapses) 

in addition to the two excitatory pathways, the hyperpolarization of the membrane caused by the 

inhibition led to recovery of the dCaAPs. In the expansion of the model, when we moved closer 

to the soma negative integration by the dendrites could be performed. These results suggest that 

the net input strength, such as the precise balance between excitation and inhibition, is necessary 

for firing dCaAPs and propose a counter- intuitive role of inhibition in increasing the dendritic 

spikes amplitude, as we observed the spiking activity and the max amplitude of closer dendrites. 

The transformation of input to output represents the computational function of a neuron. It has 

long been assumed that the summation of synaptic inputs at the dendrite and the output at the 

axon can only instantiate simple (i.e. linear) logical operations such as the AND and OR gates. 

Traditionally, more complex, non-linear operations (like the XOR affair) has been thought to 

require a network solution. Gidon et. al found that, dCaAPs in L2/3 dendrites have a unique 

activation function that allowed them to effectively compute the XOR operation in the dendrite 

by suppressing the amplitude of the dCaAP when  the input is above an optimal strength. In the 

thesis work, this assumption is expanded to more logical operations. Thus, we consider a novel 

model based on the results in this study of Gidon et. al that portrays the somatic and dendritic 

compartments of L2/3 neuron as a network of coupled logical operators and corresponding 

activation functions. Like the XOR logical operation could be potentially be computed in the 

apical dendrites and the AND/OR in the basal ones, our results on more logical gates 

implemented by the dendrites on L2/3 human neurons could assist dynamically to this interplay. 

In this model, the apical dendrite performs XOR wit h dCaAP, whereas the soma and tuft/basal 

dendrites perform AND/OR operations with sodium and NMDA spikes respectively. That would 

explain a dynamic pattern of more logical operations performed by 
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our dendrites to perform higher level functions, like cognition, utilizing this new dCaAP 

mechanism. Finally, the findings that human neurons fire dendritic action potentials which have 

unique shape and computational characteristics like the tuning curve, and specific active 

properties between apical and basal dendrites herald a new approach to distributed dendritic 

computation in the level of single neuron and beyond with a major impact on artificial 

intelligence and neural networks. 

 

4. 2 Does our cortex mimic a computer? 

It is a common ground, that to learn and mimic how the brain processes information has been a 

major research challenge for decades. Despite the efforts, little is known on how we encode, 

maintain and retrieve information. It is good to keep in mind, though, that inputs from dendrites 

process the integration both temporally and spatially. The human brain is the most powerful 

computer the world has ever seen! The bigger question here is addressing how does the brain 

compute. It is certainly very tempting to conclude that generally neurons in the brain simply put 

just complex multi-function logic gates and that the output of a neuron’s axons is a series of 

pulses on and off signals as seen in computers’ logic gates. But of course, someone needs to 

extend the metaphor, as a neuron doesn’t just have two inputs, it - usually - has thousands. 

Especially if we talk about the neocortex. And of course, it isn’t just any two, so it’s like a 

massive “AND” gate and the “AND” gate is when a certain percentage of the inputs are active, 

not all of them. And then you need to put in a few inputs capable of shutting down output, kind 

of like putting an inverter running into an AND gate, but of course it isn’t a simple any gate.  

And then it appears that in certain neurons, areas that are close together form individual 

computation units, for example when you have one AND gate with e.g. 100s of inputs and a 

threshold and then it’s output connects into a hub, with lots of others of the AND gates, and the 

hub is a giant OR gate. Thus, Boolean algebra computations depend on the number of input and 

hugely on the cell type and the biophysical mechanisms and morphology of the  cell. Does our  

in silico cell resemble the in vivo one? According to the researchers, the neocortex contains 

thousands of models functioning not only in hierarchy, but also in parallel (numenta) putting 

aside the long-standing view that the neocortex receives input from a sensory organ and 

processes it in a series of hierarchical steps. Theoretical studies have proposed that dendritic 

compartments can perform parallel processing as well as subsequent nonlinear transformations 

prior to final integration at the axon ((Häusser and Mel, 2003; Jadi et al.,2014; London and 

Häusser, 2005; Poirazi et al., 2003; Polsky et al., 2004; Tran-Van-Minh et al., 2015). With more 

isolated or additional compartments capable of nonlinear transformations, the electrical  

structure of human dendrites could provide single neurons with a richer cortical computational 

repertoire. So, are human beings the ideal decoders? Are neurons in the brain simply put 

complex multi-function logic gates, or does their function go much deeper than that? If we think 

of a brain as a device that transforms inputs to outputs, then, inexorably, the computer becomes 

our analogy of choice. But the brain isn’t a computer. Each neuron is a computer. Your cortex 

contains 17 billions computers! It is a common knowledge that the dendrites of a pyramidal 

neuron contain many separate branches, which means that each branch of a dendrite acts like a 

little nonlinear output device, summing and outputting a local spike if that branch get enough 
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inputs at roughly the same time. We use our brain and our neurons and we make our neurons 

doing non linear computations in order to understand our brain and understand the way neurons 

compute signals. In other words, I am thinking how I can have the ability to think. It means the 

brain can do many computations beyond treating each neuron as a machine for summing up 

inputs and spitting out a spike. Yet, that is the basis for all the units that make up an artificial 

neural network. It suggests that deep learning and its artificial intelligence brethren have but 

glimpsed the computational power of an actual brain. But if we think the brain is a computer, 

because it is like a neural network, then now we must admit that individual neurons are 

computers too. All 17 billion of them in your cortex; perhaps all 86 billion in your brain. And so 

it means your cortex is not a neural network. Your cortex is a neural network of neural networks. 

Of course, neurons receive many more than two inputs, and have many more than two branches: 

so the range of logical functions they could compute is astronomical. What if the input here was 

not a simple Poisson spike train? What if our cell had a different biophysical morphology? 

Would all these logical operations be validated again? A neuron's dendritic nonlinearity that is 

optimal for integrating synaptic inputs depends on the statistics of its presynaptic activity causal 

patterns to generate Boolean gates. Knowing, though, that the dendrites of a neocortical neuron 

can compute logical gating in one extend, like the results in this thesis work, is of vital 

importance for artificial intelligence and machine learning algorithms in the context of human 

cognition, something that could change the way we -with our brain- think about the brain. 
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6 

Terms of use 
NEURON simulation environment (version 7.5) for modelling approaches, and Python  

scripting language for data analysis. All simulations were performed in the High Performace 

Computing Cluster of Poirazi lab. 
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