
An Automated Method for the
Creation of Oriented Bounding Boxes
in Remote Sensing Object Detection

Datasets

Georgios Savathrakis

Thesis submitted in partial fulfillment of the requirements for the

Masters’ of Science degree in Computer Science and Engineering

University of Crete
School of Sciences and Engineering

Computer Science Department
Voutes University Campus, 700 13 Heraklion, Crete, Greece

Thesis Advisor: Prof. Antonios Argyros

This work has been performed at the University of Crete, School of Sciences and
Engineering, Computer Science Department.

The work has been supported by the Foundation for Research and Technology - Hellas
(FORTH), Institute of Computer Science (ICS).

University of Crete
Computer Science Department

An Automated Method for the Creation of Oriented Bounding
Boxes in Remote Sensing Object Detection Datasets

Thesis submitted by
Georgios Savathrakis

in partial fulfillment of the requirements for the
Masters’ of Science degree in Computer Science

THESIS APPROVAL

Author:
Georgios Savathrakis

Committee approvals:
Antonios Argyros
Professor, Thesis Supervisor

Panos Trahanias
Professor, Committee Member

Xenophon Zabulis
Principal Researcher, Committee Member

Departmental approval:
Polyvios Pratikakis
Associate Professor, Director of Graduate Studies

Heraklion, March 2024

An Automated Method for the Creation of

Oriented Bounding Boxes in Remote Sensing

Object Detection Datasets

Abstract

The detection of objects in remote sensing images is an important application
of computer vision. Given the increasing demands regarding the surveillance
and monitoring of areas that may include objects of interest, the task of
accurately detecting objects from remote sensing aerial images is of signif-
icant importance. Various object detection algorithms localize objects by
identifying either their Horizontal Bounding Boxes (HBBs) or their Oriented
Bounding Boxes (OBBs). OBBs provide a far more accurate/tighter local-
ization of object regions as well as their orientation. Several object detection
datasets provide annotations that include both HBBs and OBBs. However,
many of them do not include OBB annotations. In this work, we propose a
method which takes the objects’ HBB annotations as input, and automati-
cally calculates the corresponding OBBs. The proposed method consists of
three main parts, (a) object segmentation that is built upon the segment-
anything model (SAM) to calculate object masks based on the information
provided by the HBBs, (b) morphological filtering which eliminates possible
artifacts stemming from the segmentation process, and (c) contour detection
applied to the post-processed masks that are used to compute the optimal
OBBs of the target objects. By automating the process of OBB annotation,
the proposed method permits the exploitation of existing HBB-annotated
datasets to train object detectors of improved performance. Furthermore,
we propose the development of two data augmentation methods that resolve
the problem of the objects’ orientation imbalance. We do this by either
maintaining or increasing the number of objects in the dataset. Creating
augmented datasets can lead to less biased datasets which when used for
training can lead to more precise detections. We support this finding by re-
porting the results of several experiments that involve three standard remote
sensing object detection datasets, as well as state of the art oriented object
detectors.

Μία μέθοδος για την αυτοματοποιημένη

δημιουργία περιστραμμένων πλαισίων

αντικειμένων σε εικόνες δορυφορικής

τηλεπισκόπησης

Περίληψη

Ο εντοπισμός αντικειμένων σε εικόνες δορυφορικής τηλεπισκόπησης αποτελε-

ί μια σημαντική εφαρμογή της υπολογιστικής όρασης. Δεδομένης της ολοένα

και αυξανόμενης ζήτησης σχετικά με την παρακολούθηση και εποπτεία περιοχών

που ενδεχομένως περιέχουν αντικείμενα ενδιαφέροντος, ο ακριβής εντοπισμός

αντικειμένων από εναέριες εικόνες δορυφορικής τηλεπισκόπησης είναι υψίστης

σημασίας. Διάφοροι αλγόριθμοι που αποσκοπούν στον εντοπισμό αντικειμένων,

καθορίζουν την περιοχή όπου βρίσκονται τα αντικείμενα, χρησιμοποιώντας ε-

ίτε οριζόντια είτε περιστραμμένα ορθογώνια παραλληλόγραμμα/πλαίσια που πε-

ρικλείουν τα αντικείμενα. Τα περιστραμμένα πλαίσια παρέχουν μία πολύ πιο

ακριβή οριοθέτηση της θέσης των αντικειμένων, καθώς επίσης και την κατε-

ύθυνσή τους. Τα περισσότερα σύνολα δεδομένων για εντοπισμό αντικειμένων,

παρέχουν επισημάνσεις που συμπεριλαμβάνουν και οριζόντια και περιστραμμένα

πλαίσια. Παρ΄ όλα αυτά υπάρχουν και ορισμένα τα οποία δεν παρέχουν επι-

σημάνσεις με περιστραμμένα πλαίσια. Σε αυτήν την εργασία, προτείνουμε μία

μέθοδο η οποία παίρνει σαν είσοδο τις επισημάνσεις με τα οριζόντια πλαίσια των

αντικειμένων, και αυτόματα υπολογίζει τα αντίστοιχα περιστραμμένα πλαίσια.

Η προτεινόμενη μέθοδος απαρτίζεται από τρία κύρια μέρη, (α) κατάτμηση αντι-

κειμένων χρησιμοποιώντας το μοντέλο SAM, για να υπολογιστούν οι μάσκες
των αντικειμένων, βάσει της πληροφορίας που παρέχεται από τα οριζόντια πλα-

ίσια, (β) μορφολογικό φιλτράρισμα για εξάλειψη πιθανών τεχνητών σφαλμάτων

που προκύπτουν από την διαδικασία κατάτμησης, και (γ) εντοπισμό περιγραμ-

μάτων επί των φιλτραρισμένων μασκών, οι οποίες χρησιμοποιούνται για τον

υπολογισμό των βέλτιστων περιστραμμένων πλαισίων των αντικειμένων. Αυ-

τοματοποιώντας τη διαδικασία της επισήμανσης με περιστραμμένα πλαίσια, μας

παρέχεται η δυνατότητα εκμετάλλευσης υφιστάμενων συνόλων δεδομένων που

περιέχουν οριζόντια πλαίσια, ώστε να εκπαιδευτούν μοντέλα εντοπισμού αντι-

κειμένων τα οποία θα οδηγήσουν σε βελτιωμένες επιδόσεις. Επιπροσθέτως,

προτείνουμε την υλοποίηση δύο μεθόδων επαύξησης δεδομένων οι οποίες ε-

πιλύουν το πρόβλημα της ανομοιόμορφης κατανομής των κατευθύνσεων των

αντικειμένων. Αυτό μπορεί να επιτευχθεί είτε διατηρώντας είτε αυξάνοντας

το πλήθος των αντικειμένων. Η δημιουργία επαυξημένων συνόλων δεδομένων

μπορεί να τα καταστήσει λιγότερο μεροληπτικά και να αυξήσει την ακρίβεια

εντοπισμού αντικειμένων. Στηρίζουμε αυτήν την υπόθεση, παραθέτοντας απο-

τελέσματα από έναν μεγάλο αριθμό πειραμάτων που περιλαμβάνουν τρία δημοφι-

λή σύνολα δεδομένων, καθώς επίσης και σύγχρονους αλγορίθμους εντοπισμού

περιστραμμένων αντικειμένων.

Ευχαριστίες

Θα ήθελα να ευχαριστήσω πρωτίστως τον επιβλέποντα καθηγητή μου κ.

Αντώνη Αργυρό, για την ανεκτίμητη υποστήριξη και καθοδήγησή του, χωρίς

την οποία η υλοποίηση αυτής της εργασίας θα ήταν αδύνατη.

Επίσης, θα ήθελα να ευχαριστήσω τα μέλη του εργαστηρίου CVRL, για τις
πολύ χρήσιμες και εποικοδομητικές συζητήσεις που είχαμε οι οποίες οδήγησαν

στην βελτίωση της ποιότητας της παρούσας εργασίας.

Τέλος, θα ήθελα να ευχαριστήσω τα μέλη της τριμελούς επιτροπής για τον

χρόνο που αφιέρωσαν για την ανάγνωση και αξιολόγηση της εργασίας.

Στους γονείς μου

Contents

1 Introduction 1
1.1 Object Detection . 1

1.1.1 Pre Deep Learning Era 2
1.1.2 Deep Learning Era . 2
1.1.3 Horizontal vs Oriented Object Detectors 4

1.2 Need for more training data 5
1.3 Need for removing dataset biases 6
1.4 Contribution overview . 6

2 Related Work 7
2.1 Pre-Deep Learning Detectors 7
2.2 One-stage Object Detectors 8
2.3 Two-stage Object Detectors 11
2.4 Oriented Object Detectors . 14
2.5 HBB to OBB Transformation 18
2.6 Data augmentation . 20

3 Methods 21
3.1 Overview . 21
3.2 SAM . 22
3.3 Morphological filtering . 24
3.4 Contour detection . 24
3.5 Dataset Augmentation . 26

4 Experiments 31
4.1 Datasets . 31
4.2 Implementation details and experimental setup 33
4.3 Evaluation metrics . 34
4.4 Parameter setting and ablation studies 35
4.5 Segmentation Results . 36

4.5.1 Results on the DOTA dataset 37

i

4.5.2 Results on the HRSC2016 dataset 40
4.5.3 Results on the ShipRSImageNet dataset 43

4.6 Augmentation and Detection Results 48
4.6.1 Results on the DOTA dataset 48
4.6.2 Results on the HRSC2016 dataset 51
4.6.3 Results of the ShipRSImageNet dataset 52

5 Conclusions 55

Bibliography 57

ii

List of Tables

2.1 List of popular object detectors, with their number of stages
and bounding box type. 19

4.1 Different structuring element settings and percentage of ob-
jects from the HRSC2016 dataset that exceed certain IoU
thresholds. The types of the element are either circular or
elliptical and the sizes correspond to the diameter and minor
axis respectively. Their values are in the form of object length
percentage. 35

4.2 Different structuring element settings and percentage of ob-
jects from the ShipRSImageNet dataset that exceed certain
IoU thresholds. The types of the element are either circular
or elliptical and the sizes correspond to the diameter and mi-
nor axis respectively. Their values are in the form of object
length percentage. 36

4.3 Object detectors AP scores for classes in the DOTA dataset,
using ground truth annotations, generated annotations, and
augmented data with the proposed methods (SSO, ISO). The
classes are, PL: Plane, BD: Baseball Diamond, BR: Bridge,
GTF: Ground Track Field, SV: Small Vehicle, LV: Large Ve-
hicle, SH: Ship, TC: Tennis Court, BC: Basketball Court, ST:
Storage Tank, SBF: Soccer Ball Field, RA: Roundabout, HA:
Harbor, SP: Swimming Pool, HC: Helicopter, and CC: Con-
tainer Crane . 50

4.4 mAP scores for object detectors, trained on HRSC2016, using
ground truth annotations (GT), generated annotations (Gen),
and augmented data with the proposed methods (SSO, ISO). . 51

4.5 mAP scores for object detectors, trained on ShipRSImageNet,
using ground truth annotations (GT), generated annotations
(Gen) and augmented data with the proposed methods (SSO,
ISO). 53

iii

iv

List of Figures

1.1 Example of object detection in an input image. Objects in the
training domain are identified by a box surrounding them, as
well as a label which determines the class of the object. 2

1.2 A visualization of the differences between one-stage and two-
stage object detectors . 3

1.3 Examples of failed detections in remote sensing ship datasets
generated from Faster-RCNN with HBBs. 4

2.1 Visualization of the YOLO algorithm architecture [29] 9

2.2 Visualization of the SSD algorithm architecture [24] 11

2.3 Visualization of the RetinaNet architecture [22] 12

2.4 Visualization of the Fast R-CNN architecture [11] 12

2.5 Visualization of the RPN architecture [30] 13

2.6 Visualization of the R2CNN architecture [16] 15

2.7 Visualization of the RRPN architecture [27] 16

2.8 Visualization of the RoI transformer architecture [6] 17

3.1 Overview of our proposed method. The images, together with
their HBB annotations, are fed as prompts to the SAM model,
and the calculated object masks pass through a morphological
closing operation and a contour detection function that finally
provide the corresponding OBBs. 22

3.2 Segmentation results for an image with two objects. Green
and red stars correspond to foreground and background points
respectively. The green boxes that surround the objects, are
their HBBs. In the left figure, foreground points lie on the
diagonal directed from bottom left to top right, and vice versa
in the right figure. Each setting yields a different score for the
segmentation of each object. 23

v

3.3 Process of obtaining an object’s OBB. (a) The initial object’s
mask. The gap between its two components is apparent. (b)
Shows the mask after the closing operation which unites the
two components. (c) Calculation of the contour surrounding
the mask (red). (d) Calculation of the OBB (green). 25

4.1 Histogram of objects’ IoU, between predicted and ground truth
HBBs, in the DOTA dataset[35] 37

4.2 Orientation distribution of the objects’ OBBs, for the DOTA
dataset in the: (a) ground truth data, (b) generated annotations 38

4.3 Successful examples of segmentation masks obtained from SAM
and of resulting OBBs for selected images in the DOTA dataset 40

4.4 Examples of correct segmentations but failed OBB calcula-
tions in images of the DOTA dataset 41

4.5 Histogram of objects’ IoU, between predicted and ground truth
HBBs, in the HRSC2016 dataset[26] 42

4.6 Orientation distribution of the objects’ OBBs, for the HRSC2016
in the: (a) ground truth data, (b) generated annotations . . . 43

4.7 Examples of segmentation masks obtained from SAM and of
resulting OBBs for selected images in the HRSC2016 dataset . 44

4.8 Histogram of objects’ IoU, between predicted and ground truth
HBBs, in the ShipRSImageNet dataset[40] 45

4.9 Orientation distribution of the objects’ OBBs, for the ShipRSIm-
ageNet dataset in the: (a) ground truth data, (b) generated
annotations . 46

4.10 Successful examples of segmentation masks obtained from SAM
and of resulting OBBs for selected images in the ShipRSIma-
geNet dataset . 47

4.11 Examples of correct segmentations but failed OBB calcula-
tions in images of the ShipRSImageNet 48

4.12 Orientation distribution of the objects’ OBBs, for DOTA in
the: (a) SSO augmentation dataset and, (b) ISO augmentation
dataset. 49

4.13 Orientation distribution of the objects’ OBBs, for HRSC2016
in the: (a) SSO augmentation dataset and, (b) ISO augmen-
tation dataset. 51

4.14 Orientation distribution of the objects’ OBBs, for ShipRSIm-
ageNet in the: (a) SSO augmentation dataset and, (b) ISO
augmentation dataset. 52

vi

Chapter 1

Introduction

The detection of objects in remote sensing satellite images is a task that is
both challenging and important for different types of applications. Tasks like
environmental monitoring, marine tracking or land mapping among others,
are increasingly reliant on methods that can automatically detect objects of
interest in satellite images. During the last decade, most models that tackle
the task of object detection, make use of deep learning architectures, for the
extraction of important features from an image, as well as for the classifi-
cation of an object and the definition of its bounding region. A bounding
region can be determined in a variety of ways. Usually, in the task of object
detection, the region is defined using a rectangular box which is either axis
aligned, meaning that its sides are always parallel to the image axes, or ob-
ject aligned, meaning that one axis is parallel to the orientation axis of the
object and the other perpendicular to it. These bounding boxes are referred
to as Horizontal and Oriented Bounding Boxes (HBBs, OBBs) respectively.

1.1 Object Detection

Object detection is the problem where given an image or a video sequence,
as well as ground truth annotations, it is required to locate the regions in
an image that contain an object, as well as classifying that object into one
or more categories. The determination of the region where an object lies,
is implemented by using bounding boxes that are rectangles in an image
surrounding the existing objects. An example is shown in Figure 1.1.

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Example of object detection in an input image. Objects in
the training domain are identified by a box surrounding them, as well as
a label which determines the class of the object.https://miro.medium.com/v2/resize:fit:
739/1*IrptRDRG8IL9o-55BKjbLA.png

1.1.1 Pre Deep Learning Era

Works that resolved the problem of object detection in the pre deep learning
era (e.g., [34, 4]), mainly focused on the successful extraction of features from
input images, such as edges, pixel value statistics within rectangular regions
etc. With ground truth which includes information about the objects’ loca-
tion, these features can be used for training machine learning algorithms that
can detect candidate object regions (e.g. [1, 10]). However, these methods
generally rely on several hand-crafted features that are themselves depen-
dent on the domain at which they are applied. This means that using the
same models to tackle detection problems in different applications will not
guarantee equivalent detection performances in general.

1.1.2 Deep Learning Era

Since the introduction of Convolutional Neural Networks (CNNs) in the field
of image processing however, most of the modern object detectors use them

https://miro.medium.com/v2/resize:fit:739/1*IrptRDRG8IL9o-55BKjbLA.png
https://miro.medium.com/v2/resize:fit:739/1*IrptRDRG8IL9o-55BKjbLA.png

1.1. OBJECT DETECTION 3

Figure 1.2: A visualization of the differences between one-
stage and two-stage object detectors https://pyimagesearch.com/2022/04/11/

understanding-a-real-time-object-detection-network-you-only-look-once-yolov1/

for the task of general feature extraction form input images. The advantage
of using CNNs for this role, is that the feature extraction is considerably more
adaptable to different scenarios. It can overcome issues like object occlusion
or blurring, as well as variations in scale and illumination. That is because,
CNNs use filters that are convolved with the input image using its original
shape, thus maintaining the spatial information included in the image. Also,
due to the depth of the CNN architectures, the model can learn more ab-
stract features in the first layers and more detailed ones in the final layers.
Added to the fact that feature extraction is done directly on the input data
whenever the CNNs are getting trained, this makes CNNs more adaptable to
different types of applications, thus reducing the need for many hand-crafted
components.
CNNs however, only account for the feature extraction part. The next step
is the processing of these features in order to detect and classify the objects
in an image. This is where modern object detectors are split into two main
categories. These are one-stage and two-stage detectors. One-stage object
detectors use the generated feature maps, and then an objectness score is

https://pyimagesearch.com/2022/04/11/understanding-a-real-time-object-detection-network-you-only-look-once-yolov1/
https://pyimagesearch.com/2022/04/11/understanding-a-real-time-object-detection-network-you-only-look-once-yolov1/

4 CHAPTER 1. INTRODUCTION

Figure 1.3: Examples of failed detections in remote sensing ship datasets
generated from Faster-RCNN with HBBs.
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8438330

calculated within pre-determined rectangles, also called anchors, at several
locations and with varying scales and sizes. This objectness is calculated us-
ing a Feed-Forward Neural Network added with a sigmoid activation which
computes the probability that a region contains an object. Finally, a con-
current calculation determines the class of the detected object as well as its
precise bounding box coordinates. Since all these steps happen in one pass,
one-stage object detectors are considerably fast and have many uses in real
life applications. Notable examples of one-stage object detectors are the, You
Only Look Once (YOLO) algorithm [29], Single-Shot Detector (SSD) [24],
and RetinaNet [22]. Two-stage object detectors on the other hand, use the
generated feature maps from the CNN and generate possible object regions
which are subsequently classified into object types, and refined in terms of
the bounding box coordinates. The region proposals can be generated with
several methods that can either depend on color and texture features (e.g.
[11]), or by implementing fully convolutional neural networks that take the
feature map as input, and generate rectangular proposals with objectness
scores for each of the proposed regions (e.g. [30]). The benefit of two-stage
object detectors is that they are in general more accurate compared to their
one-stage counterparts. However, this comes at the cost of higher compu-
tational complexity as well as larger training and inference times. A visual
example which depicts the discrepancies between one and two-stage detectors
is provided in Figure 1.2.

1.1.3 Horizontal vs Oriented Object Detectors

Another differentiation between object detectors, is whether they detect ob-
jects using HBBs or OBBs, as mentioned previously. HBB object detectors
are most widely used due to their regression efficiency since only 4 values
have to be predicted, and they are aligned with the axes of the image. Also,

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8438330

1.2. NEED FOR MORE TRAINING DATA 5

HBB detection is computationally cheaper because the predetermined an-
chor boxes only have to account for variations in aspect ratios and sizes.
Orientation is another degree of freedom which will inevitably require more
anchor boxes for effective detection. Finally, most tasks don’t require the
orientation of the objects since in the majority of scenarios, the objects oc-
cupy most of the HBB area (e.g. cars, household objects etc.) or their shapes
render the use of OBBs irrational (e.g. circular objects). However, in the
case of aerial images where the objects are mostly elongated and at arbitrary
orientations, the use of OBBs can yield considerable improvements in the
detection performances of object detectors. Works that have been done to
detect ships in remote sensing satellite images, showed that in the cases where
ships are moored close to each other, HBB object detectors fail to detect all
of them as separate objects and instead there are cases where many objects
are detected with only one bounding box [25, 39] as can also be seen from
Figure 1.3. Apart from the reduction of the number of false negatives, OBBs
are also useful in the cases of object tracking since the object orientation can
serve as a prior for the expected location of the same object in subsequent
frames.

1.2 Need for more training data

OBB detectors need to be trained on datasets where oriented bounding boxes
ground truth is available. However, not all datasets provide OBB annotations
(e.g., [20], [3]). To enrich the training potential of existing datasets and to
come up with OBB ship detectors of improved performance, in this work, we
propose a method which can automatically create OBBs for ship detection
datasets, using only the provided HBB annotations as input. The proposed
method is based on the Segment-Anything Model (SAM) [18], which is used
to segment objects, given input prompts that can be obtained from the HBB
ground truth. These segmented objects are in the form of masks that de-
termine the image pixels where the objects are located. However, a large
number of the generated masks exhibit artifacts such as object fragmenta-
tion in several connected components. This is resolved with morphological
filtering, that connects possibly disconnected object regions, leading to more
compact and accurate object masks [2]. In order to obtain OBBs that corre-
spond to the segmented objects, we capitalize on the fact that the target OBB
is the bounding box of minimum area. Therefore, we compute the bound-
aries of the post-processed object masks which are fed into a Minimum Area
Rectangle calculation method which returns the target OBB.

The aforementioned process creates reliable OBBs for remote sensing

6 CHAPTER 1. INTRODUCTION

object detection datasets, making exclusive use of the objects’ HBB anno-
tations. This is validated through extensive experiments on three bench-
mark datasets for aerial object detection, DOTA [35], HRSC2016 [26] and
ShipRSImageNet [40], where we make use of the HBBs of their training sets
to calculate OBBs with the described method. Then, using these OBBs we
train a wide range of OBB object detectors (i.e., [37, 14, 36, 6, 22, 13]), and
compare their performance on the test set to that which would have been
obtained if the ground truth OBBs had been used.

1.3 Need for removing dataset biases

In addition to creating more training data automatically, the proposed au-
tomated OBB annotation can lead to the reduction of spatial, scale or ori-
entation imbalance in an existing dataset. Specifically, orientation or aspect
ratio bias among the objects in the dataset, may lead to less accurate detec-
tions if they are used for training. Data augmentation methods have shown
that they can lead to increased performance both in image classification
[19, 31, 28] and object detection [43, 41] tasks. When it comes to object
detection, geometric transformations (i.e. rotation, scaling) are the most ef-
fective ways to resolve these imbalances, since if they are applied correctly
to both the images and the annotations, more orientations and sizes will be
visible to an object detector during training. This can be done by rotating
existing samples in order to cover the orientation space, and thus balance the
number of samples per orientation. In our work, we demonstrate that data
augmentation performed based on the proposed method leads to improved
performance of existing OBB object detectors.

1.4 Contribution overview

In summary, the main contributions of this paper are the following:

• We provide an automated method which creates OBBs in remote sens-
ing object detection datasets, built upon the SAM model and morpho-
logical filtering operations, using only the HBB ground truth as prior
information.

• We develop a data augmentation technique, using the generated OBB
annotations, to reduce orientation imbalance. We prove that by us-
ing augmentation we can increase the baseline performance of existing
object detectors in remote sensing object detection datasets.

Chapter 2

Related Work

2.1 Pre-Deep Learning Detectors

One of the most predominant detectors used during the era prior to the es-
tablishment of deep learning approaches, was the one proposed by Viola and
Jones [34] named after the authors, and was used to solve the problem of
face detection. It consisted of three main parts. The first implemented fea-
ture extraction using the pixel difference of two-rectangle regions, computed
using the integral image method. Despite the coarsity of these features, they
are quite capable of detecting edges or other plain structures. The second
part was responsible for the correct classification of image sub-regions into
foreground or background areas. This was implemented using the AdaBoost
algorithm [10], which given a set of classifiers that make use of different
features during the training, it can separate them into strong and weak clas-
sifiers, by calculating the difference of the classifier output of a region and
the ground truth which states whether it is foreground (1), or background
(0). The error is calculated by multiplying that difference with the respec-
tive region’s normalized weight, and the selected classifier is the one with
the smallest error. Subsequently, the region weight is updated for the next
iteration in a way that it gets penalized if it belongs to the background and
rewarded otherwise. The third and final part is essentially a method to cre-
ate stronger classifiers and reduce training time. It implements a cascade of
classifiers, that hierarchically eliminate negative sub-windows with little com-
putations, and as the stages progress, the classifiers become boosted and thus
more complex, and the rejected regions get reduced. That way the model
converges to the most important regions faster, without the need to spend
lots of computational time on unimportant regions. This model proved very
effective for the task of face detection, since the features used were highly

7

8 CHAPTER 2. RELATED WORK

sensitive to the shape of upright faces. This led to very accurate detections
at faster times than any of the previous methods.
Another such very efficient detector was the one proposed by Dalal and Triggs
[4], called Histogram of Oriented Gradients Detector (HOG). In their work,
they made the assumption that the local gradient information about its mag-
nitude and orientation in different regions, can constitute very informative
features that can subsequently be used to detect object regions. The method-
ology starts with a normalization of the color and contrast within different
image blocks where the method is to be applied. Each of these blocks is
attributed an orientation histogram, whose bins are determined by the se-
lected angle granularity. Then in each block, the region is separated into cells
upon which the gradient magnitudes and orientations are computed. This is
usually done by convolving the regions with the X and Y Sobel filters. The
gradient magnitudes and orientations are calculated as:

Gmag[i, j] =
√

G2
x[i, j] + G2

y[i, j] (2.1)

Gor[i, j] = arctan(
Gy[i, j]

Gx[i, j]
) (2.2)

At each cell, the resulting gradient magnitude and orientation is the aver-
age of the pixels within it. The gradient histogram of each block is calculated
in the following way. Each bin has an angle width w. The value each orien-
tation bin has, is calculated in the following way. Assuming that a pixel has
gradient orientation θ, gradient magnitude m, and lies between bin values θ1
and θ2. These two bins are the ones whose value will increase according to a
weighted vote originating from the cell in question. Bin θ1 will be increased
by θ1 = θ1 + (θ2 − θ)m, and θ2 by θ2 = θ2 + (θ − θ1)m. By creating a con-
catenated vector consisting of the gradient histograms in different blocks,
and using ground truth vectors that specify if a region contains an object
or not, an SVM module is trained which classifies regions to class object or
no object. This method was validated on pedestrian datasets and showed
remarkable detection performances.

2.2 One-stage Object Detectors

Since the introduction of deep learning in the field of object detection several
algorithms have been proposed that tackle this problem with significantly im-
proved efficiency. Redmon et al. 2016 [29] proposed the YOLO algorithm
which is a one-stage object detector that simultaneouly predicts all bounding

2.2. ONE-STAGE OBJECT DETECTORS 9

Figure 2.1: Visualization of the YOLO algorithm architecture [29]

boxes for all classes in one image. Its architecture consists of 24 convolutional
layers followed by 2 fully connected layers as can be seen in Figure 2.1. In
the CNN part, several max pooling layers are used, which reduce the spatial
dimensions of the features while extending their channel dimensions. The
final result of the CNN part is a 7×7×30 feature map, which passes through
the 2 FFNs which respectively regress the bounding box coordinates and the
probability scores. The input image is separated into multiple cells, each
of whom have several bounding box predictions. However, the bounding
box with the highest IoU is the one selected as the prediction for a specific
object, which eliminates several other predictions from different cells. The
implemented loss function penalizes classification and bounding box coordi-
nates errors only if the specific predictor belongs to the cell which contains
an object. For more efficient training, a learning rate schedule is used that
increases the initial learning rate gradually during the first few epochs, and
then decreases it in a step-wise manner twice during subsequent epochs of
training. Additionally, dropout layers and augmentation are implemented
for overfitting avoidance. Another issue that often appears, is multiple de-
tections due to an object’s location near the borders of multiple cells. This is
resolved using non-max suppression which leads to a slight increase in detec-
tion performance. This model was trained on the Pascal VOC 2007 dataset
[7] and it turned out that it achieved significant improvements in detection
performance compared to other contemporary state-of-the-art detectors like
R-CNN [12]. Apart from that, YOLO showed far more significant improve-
ments with regard to the training speed compared to other detectors, which
made it a very useful tool for real-time applications.
Liu et al. 2016 [24], proposed another one-stage detector called SSD, which

provided an improved detection method compared to its predecessor YOLO,

10 CHAPTER 2. RELATED WORK

both in terms of detection precision and training speed. This model consists
of a base CNN which outputs a feature map with dimensions 38×38×512.
The remaining of the network is based on 3 main additions. The first is
the introduction of more feature layers that reduce the spatial dimensions
of the main network’s output at an ever increasing extent. That way the
model is able to learn the location of objects that are of varying scales. For
instance, smaller objects will be able to get detected from feature maps of
higher resolution, which is not necessary for larger objects. After the cre-
ation of these feature maps, each of them is convolved using a 3×3×p kernel
which produces a confidence score and bounding box offsets at each grid cell
for each of the existing object categories. The third and final part is the
use of fixed size boxes with different aspect ratios at each cell of each of the
feature maps. The output from the kernel convolution with each of the fea-
ture maps consists of bounding box offsets, as mentioned previously. These
offsets are calculated with respect to each of the fixed bounding boxes at
the corresponding feature map and at the corresponding point. Therefore,
if there are x×y points, m fixed boxes and c classes, the output of the con-
volution has dimensions (c+4)xym. However, the most important part is to
match the detections with the ground truth, which is done by examining all
the fixed boxes at every feature map and calculating the overlap with the
ground truth object’s bounding box at hand. The selected fixed box is the
one with the highest overlap with the ground truth. Then, for easing the
training, each fixed box is matched to all ground truth boxes with overlap
exceeding 50%. Regarding the remaining of the implementation details, a
weighted loss function is used, which combines localization and classification
loss, SGD optimizer with learning rate decay policy and in addition data
augmentation is used to improve the training performance. This augmenta-
tion is achieved by either sampling an image, a random patch of an image,
or a patch of an image conditioned over a required overlap threshold. SSD
was trained on the Pascal VOC 2007 and 2012 datasets [7, 8] and the result
was that compared to some of the most contemporary two-stage detectors
like Fast and Faster R-CNN [11, 30], SSD achieved improved detection per-
formances. In addition SSD managed to surpass plain YOLO [29] in terms
of both accuracy and inference speed.
Lin et al. 2017 [22], in an attempt to solve the problem of the general lag-
behind in terms of accuracy of one-stage compared to two-stage object de-
tectors, focused on resolving the issue of class imbalance between foreground
and background which leads to less predictive capabilities of dense detec-
tors. To that end, they proposed an improvement of the cross-entropy loss
function, which decreases the loss attributed to correctly detected objects.

2.3. TWO-STAGE OBJECT DETECTORS 11

Figure 2.2: Visualization of the SSD algorithm architecture [24]

The Focal Loss function which aims to achieve this goal, multiplies the cross-
entropy function by a factor of (1-pt)

γ. That way, correctly detected objects
(i.e. with pt > 0.5), will have smaller losses for a value of γ > 0. In addition
to that loss variant, a Feature Pyramid Network (FPN) [21] is used as part
of the proposed network, which creates multi-scale feature maps with lateral
connections to the convolutional backbone, which assist the network to de-
tect objects at different scales. Finally, a classification and a box regression
subnet are used, in order to calculate object class probabilities and bounding
box offsets, with respect to each of the spatial positions at each feature map
respectively. This is implemented using small Fully Connected Convolutional
Networks (FCNs) that consist of 4 layers with 3×3×C dimensionality, apart
from the last one whose channels are the number of anchors times the length
of the output. This length is the number of classes for the classification
subnet, and 4 for the box regression subnet. The experimental validation of
this method was done using the benchmark COCO object detection dataset
[23]. Compared with the most contemporary object detectors, either one or
two-stage, the result was that RetinaNet achieved better detection accuracies
even with the addition of FPNs on two-stage detectors like Faster R-CNN.
This indicated that the implemented loss function did indeed contribute a
significant improvement in terms of predictive performance. With regards
to speed performances, RetinaNet has smaller inference speeds compared to
other one-stage detectors like YOLO or SSD, but higher ones compared to
detectors like Faster R-CNN.

2.3 Two-stage Object Detectors

Girshick et al. 2014 [12] introduced the concept of using both region pro-
posals and images as input for a CNN backbone. Initially, a set of object
proposals are extracted using selective search [33]. These proposals are in

12 CHAPTER 2. RELATED WORK

Figure 2.3: Visualization of the RetinaNet architecture [22]

Figure 2.4: Visualization of the Fast R-CNN architecture [11]

the form of an image patch that is considered to contain objects. After their
generation, they pass through a CNN to extract a feature map for each of
the generated proposals. The model is called R-CNN from Region-CNN. The
final component of the model is a linear SVM which takes the output of the
CNNs, specifically the output from the final layers which are fully connected
layers, and does a classification for the object category. Also, a bounding
box regression method is applied by implementing linear regression on the
region outputs from the final convolutional layer of the main CNN. The final
model was validated on the Pascal VOC 2007 and 2012 datasets [7, 8], and it
achieved satisfying performances compared to other predecessors (e.g. DPM
[9]).
An improvement of this method was implemented by Girshick 2015 [11] who
proposed the Fast R-CNN model, whose architecture is shown in Figure 2.4.
The input images pass through a convolutional backbone which outputs a
feature map for the entire image. The object proposals, pass through a Re-
gion of Interest (RoI) pooling layer, which essentially takes the corresponding

2.3. TWO-STAGE OBJECT DETECTORS 13

Figure 2.5: Visualization of the RPN architecture [30]

feature map region coming out of the CNN, and uses max-pooling to map
it into new spatial dimensions which remain fixed and are the same for all
proposals. Each of these regional feature maps coming out of the pooling
operation, pass through two Fully Connected Layers (FCs), which transform
these maps into feature vectors. Then, they pass through two separate FCs,
one responsible for the classification of the region, and the other for bounding
box refinement. In comparison with the immediate predecessor R-CNN, Fast
R-CNN managed to surpass it on the Pascal VOC 2007 and 2012 datasets
by 4 and 6% increases in mAP respectively.

Ren et al. 2015 [30], managed to further improve the existing two-stage
object detectors by proposing the Faster R-CNN model. Its most significant
contribution was the introduction of the Region Proposal Networks (RPNs),
an illustration of whom can be seen in Figure 2.5. These RPNs eliminate the
need for a predetermined object proposal generation using other algorithms
like Selective Search. Instead, the images that pass through a convolutional
backbone, yield feature maps that are then used by the RPN to generate
proposals using only the information from the feature maps. It is essentially
a deep learning framework that can learn itself which are the most probable
candidate regions. When it comes to their architecture, RPNs are essentially
FCNs which use kernels of fixed size that are convolved with the input, and
map it into a lower dimensional vector. The output of that intermediate layer

14 CHAPTER 2. RELATED WORK

is subsequently passed through two different FCs, one for classification and
the other for bounding box regression. Regarding the detection, during the
convolution of the kernel with the feature map, at each location of the kernel
there are as many predictions as a pre-determined number of anchor boxes of
varying aspect ratios. Therefore, the classification and box regression layers,
yield 2k and 4k outputs respectively, where k is the number of anchor boxes.
In order to allow the utilization of the generated proposals by the detection
network, a scheme that enables the sharing of convolutional layers between
the RPN and the main network is implemented. This is done by starting the
training of the RPN and then using its output as the proposals required by
the main detector. Subsequently, the detector initializes the new RPN train-
ing and keeping the common convolutional layers fixed, the only fine-tuning
occurs to the RPNs FC layers. Other implementation details include the use
of SGD for optimization and non-maximum suppression for the reduction of
proposals that have significant overlap with each other. This model was also
trained on the Pascal VOC 2007 and 2012 datasets, and the result was that
by using RPNs instead of other proposal mechanisms like Selective Search,
the precision on the test sets of both datasets was increased and the inference
speed was significantly reduced.

2.4 Oriented Object Detectors

Due to the demand for the more accurate localization of objects in an image,
as well as for the determination of other object characteristics, such as their
orientation, extensive work has been done to develop detectors that gener-
ate oriented bounding boxes. Jiang et al. 2017 [16] proposed the Rotated
Region CNN (R2CNN) shown in Figure 2.6. It mostly follows the same ap-
proach as Faster R-CNN [30]. An RPN is used to extract Regions of Interest
from the feature maps that come out of the convolutional backbone. The
proposed regions are axis-aligned and therefore not taking into account ar-
bitrary orientations yet. Then, they are passed through RoI pooling layers
that create three different pooled feature maps in order to account for vary-
ing object shapes. Finally, two Fully Connected layers are used with three
objectives. The first is to classify the proposals, the second is to predict the
HBBs and the third to predict the OBBs. After their generation, an inclined
non-maximum suppression is applied to remove multiple detections in the
scene. Experiments done on the ICDAR2015 dataset [17], showed that by
implementing this model using all three pooling shapes and non-max sup-
pression on the inclined bounding boxes, there is an increase in Precision,
Recall and F-measure by 20, 31 and 26% respectively, compared to the Faster

2.4. ORIENTED OBJECT DETECTORS 15

Figure 2.6: Visualization of the R2CNN architecture [16]

R-CNN model.
Notably, the RPN in the previous work, created horizontal region proposals
despite the fact that the final predictions included OBBs. Ma et al. 2018
[27] proposed the Rotated Region Proposal Networks (RRPNs) which gen-
erate oriented regions that are essentially rotated rectangles. Like in Faster
R-CNN [30], RRPNs consist of convolutional layers which use kernels to cre-
ate lower dimensional representations of the input data. However, instead of
using anchors that vary only in terms of scale and aspect ratio, the parame-
ter of the orientation is also included to account for the different directions
an object may point at. A proposal is generated if there is a significant
overlap between ground truth and generated oriented proposal. This over-
lap is calculated by the IoU of the skewed rectangles and if the IoU is over
0.7 and the deviation of the respective orientations is less that π/12, it is
considered a valid generation to be used for training. These outputs pass
through two separate FCs one used to classify the proposal, and the other
to regress the bounding box coordinates. The proposals that come out of
the RRPN pass through a Rotated Region of Interest Pooling (RRoI) layer
that implements max pooling on oriented feature regions. This is done in
the following fashion. A proposal is generated with corresponding parame-
ters (cx, cy, w, h, θ), where w, h are the width and height of the oriented
proposal and θ its orientation. The proposal is multiplied by the rotation
matrix with angle θ, which brings it to an upright direction, and re-scaled
to match square shape. Then, the max pooling is done to the transformed
region which reduces the feature dimensions. Finally, the output from the
RRoI layers passes through Fully Connected layers responsible for classifying
these regions into foreground or background. The loss is of a multi-task form
which accounts for errors in classification and deviations in the bounding box
regressions, with a weighted trade-off between these two terms. Extensive
experiments done using the ICDAR2015 dataset [17], showed that by using
RRPNs, there are significant improvements in all three main detection met-
rics, compared to several other contemporary oriented detectors.

16 CHAPTER 2. RELATED WORK

Figure 2.7: Visualization of the RRPN architecture [27]

Ding et al. 2019 [6] proposed the RoI Transformer, seen in Figure 2.8, which
also aimed to bridge the gap between horizontal and oriented proposals. It
consists of two main components. The first is the Rotated Region of Interest
(RRoI) Learner. Its main objective is to learn the RRoIs using HRoIs coming
out of the convolutional backbone. This is done by taking all the proposed
HRoIs and their corresponding feature maps, passing them through fully
connected layers, whose output is a vector of relative offsets that can be
translated into predicted OBB coordinates using translation between global
to local coordinates system. For training efficiency, before the OBB predic-
tions are done, each HRoI is matched to a unique ground truth HBB, and
then the ground truth parameters of the corresponding OBB are used for
the regression of the predicted OBB parameters. The second component is
the RRoI Warping module which translates the learned RRoIs into rotation
invariant feature maps that can then be used to pool rotation invariant fea-
tures. This warping is done by dividing the RRoI into squared bins, and
then doing a rotation matrix operation on the input feature map at each
bin and each channel. The output of the RRoI Warping is combined with
the feature map and passes through two sibling fully connected layers, one
for the classification of the object and the other for the further regression of
the final bounding boxes. This work mostly focused on datasets with aerial
images, which contain far more complex backgrounds and far more intense
variations when it comes to objects’ scales, aspect ratios and orientations.
This work was validated using the DOTA dataset [35] which is a large scale
aerial image dataset used for object detection, and the HRSC2016 dataset
[26] which focuses on ships from aerial images. In both datasets RoI trans-
former showed that compared to methods like R2CNN [16] or RRPN [27],

2.4. ORIENTED OBJECT DETECTORS 17

Figure 2.8: Visualization of the RoI transformer architecture [6]

it achieves significant improvements with regard to mAP by about 9% in
DOTA and 7% in HRSC2016. With respect to other aspects of the efficiency
of the method, regarding the train and test times it is slightly slower. Ad-
ditionally, the RRoIs are slightly enlarged in order to contain background
information to enhance the model’s predictive performance.
An improvement made to incorporate oriented object detection capabilities
using one-stage detectors, was done by Yang et al. 2021 [37] who proposed
R3Det. Using the RetinaNet architecture as a baseline, they took advan-
tage of the network’s speed and then introduced feature refinement modules
(FRM) to further improve the detection accuracy. In the initial phase, the
output of the classification and regression sub-networks of RetinaNet (see
also Figure 2.3) are passed through the FRM, which initially implements bi-
linear feature interpolation to get accurate location information about each
feature. Then, the initially predicted box is translated, to account for map-
ping transformations. A large kernel convolution done on the feature map
is then added with the refined feature maps to yield the final result. Re-
sults obtained by training the model on the DOTA and HRSC2016 datasets,
showcase its increased predictive capabilities, even compared to two-stage
counterparts (i.e. RoI transformer), as well as its increased speed which is
more than twice that of most two-stage detectors.
Another important issue that was resolved by Han et al. 2021 [14], was that
the features coming out of convolutional backbones themselves, are not rota-
tion invariant. Therefore, extracting orientation equivariant features would
lead to better detection performances in oriented objects. This module was

18 CHAPTER 2. RELATED WORK

called ReDet, and it consists of two main components. The first is a rotation-
equivariant CNN, which extracts features that under image rotation, are also
rotated in the same manner. These features then pass through RPN and RoI
transformer in order to generate RRoIs. The second component is a rotation
invariant RoI alignment module, whose aim is to generate rotation invariant
features given rotation equivariant features from the convolutional backbone.
This is done by initially applying warping on the RRoIs, which resolves the
spatial alignment task. After that the features of the warped region are
switched along their orientation channel dimension in a way that the orien-
tation at which they point is the first they encounter. Also, in order for that
to be made feasible, interpolation is applied since the channel orientations
have a pre-determined granularity. This model provided a new benchmark
for aerial object detection since on the same datasets that R3Det and RoI
transformer were trained, it yielded 3 and 10% improvement respectively,
with regard to the mAP at the test set of the DOTA dataset, and 1 and 4 %
for the HRSC2016 dataset.
Xie et al. 2021 [36] proposed the Oriented R-CNN which improves the Region
Proposal Networks and generates reliable oriented proposals at considerably
faster speeds. Its architecture consists of a feature proposal network back-
bone from which feature maps are extracted at different scales, in order to
obtain meaningful proposals for objects of varying sizes. Each feature map
passes through a convolutional layer, and during the kernel convolution, at
each point 3 horizontal anchor shapes are examined which create the first
stage proposals. These proposals are convolved with a 1×1 kernel which
corresponds to the regression branch that is used to decode the oriented pro-
posal parameters. At the second stage, these oriented proposals pass through
a RoI alignment module which extracts a fixed-size feature vector to be used
for classification and coordinates refinement. Its performance on aerial image
datasets, exhibit a considerable improvement compared to its predecessors
since both on DOTA and HRSC2016 datasets, the mAP is increased by at
least 5% and 1% respectively.
An overview of the most widely used object detectors, along with their stage
and box prediction type, is shown in Table 2.1.

2.5 HBB to OBB Transformation

All the detectors mentioned up to this point, are based on the fact that either
HBBs or OBBs will be their input annotations. While it is not generally
feasible to use HBB annotations to predict OBBs in any object detector, it
is possible to use HBB annotations and transform them to OBBs in order

2.6. DATA AUGMENTATION 19

Method Number of stages Box type
YOLO[29] one-stage HBB
SSD[24] one-stage HBB
RetinaNet[22] one-stage HBB
R-CNN[12] two-stage HBB
Fast R-CNN[11] two-stage HBB
Faster R-CNN[30] two-stage HBB
R3Det[37] one-stage OBB
Rotated-RetinaNet[22] one-stage OBB
ReDet[14] two-stage OBB
Oriented-RCNN[36] two-stage OBB
RoI-Transformer[6] two-stage OBB
S2A-Net[13] two-stage OBB

Table 2.1: List of popular object detectors, with their number of stages and
bounding box type.

to enrich the datasets available for oriented object detectors. There are
generally two ways to achieve that. One is to use HBBs to learn object
masks, and then use these masks to calculate the corresponding OBBs. One
of the first methods which implemented weakly-supervised learning for object
masks using only HBBs as input, was proposed by Tian et al. 2021 [32], called
BoxInst, who used an adaptive backbone, which dynamically changes the
weights of the mask heads, in order to enable the successful discrimination
between foreground and background when predicting each instance. They
also implement two loss terms, one for minimizing the distance between the
projected HBB of the predicted mask and the ground truth HBB, and the
other to ensure the pairwise label consistency between neighboring pixels,
based on their color information. The other way is to go directly from HBBs
to OBBs using weakly and self supervised learning. Yang et al. 2023 [38]
developed the H2RBox model, which uses two branches. The first is a weakly-
supervised branch which can be any rotated object detector that gives OBBs
as output and then it computes its corresponding HBB that gets compared
with the GT HBB to compute the loss. The second is a self-supervised branch
which uses different angle and scale views of the input images, and then after
doing the inverse scale and rotation transformations, calculates the loss of
the respective HBB with its GT counterpart.

20 CHAPTER 2. RELATED WORK

2.6 Data augmentation

It has been shown that the strategy of tweaking the data in given datasets
in order to widen the range of the current data properties (e.g. illumination,
scale, rotation), can lead to performance improvements in several computer
vision tasks. Krizhevsky et al. [19] and Simonyan et al. [31] show that
performing data augmentation using translation and intensity changes leads
to reduced image classification errors. Zoph et al. [43], show that in object
detection problems, a combination of color and geometric transformations
which, in turn, also affects the Bounding Boxes, leads to improvements in
the detection performance of several object detectors in different benchmark
datasets. A different approach for data augmentation is proposed by Zhong
et al. [41], who implement random removal of patches within either the
entire image or within object regions. The result of this strategy was an
increase of accuracy in both image classification and object detection tasks.

Chapter 3

Methods

3.1 Overview

Our work focuses on improving the automated transformation of Horizontal
to Oriented Bounding Boxes (H2OBB) by implementing an HBB → Mask
→ OBB approach. While this approach is similar to BoxInst [32], it has
significant differences with regards to the separate components of the model.
The proposed method (see also Figure 3.1) consists of three main compo-
nents. The first part is responsible for the instance segmentation of objects
within an HBB region of an image. This is done using the segment anything
model (SAM), which takes as input the images of the dataset as well as the
objects’ HBB annotations. The output of this component is in the form of
object masks, which are binary arrays signifying the object regions. The
second component is responsible for the correction of the resulting masks
and the removal of artifacts. This is done by implementing a morphological
closing operation on each of the resulting masks. Finally, a contour detection
method is applied on the closed masks in order to compute the border re-
gions of the object. Using this information, one can calculate the minimum
area rectangle which surrounds the computed contour, and in turn obtain
the width and height of the OBB. Also, since the main direction is com-
puted, one can obtain the orientation of the mask as well, which leads to the
5-elements tuple (cx, cy, w, h, θ) that unilaterally define an OBB. The final
masks are then passed through the ground truth overlap calculator, which
calculates the IoU between the HBBs of the predicted masks and those of
the respective ground truth objects. We manually define a threshold for the
IoU, above which we consider the detection as valid. In this case, the OBBs
of the accepted objects are then represented as the 2D coordinates of their
four corners and constitute the final output of the model.

21

22 CHAPTER 3. METHODS

Figure 3.1: Overview of our proposed method. The images, together with
their HBB annotations, are fed as prompts to the SAM model, and the
calculated object masks pass through a morphological closing operation and
a contour detection function that finally provide the corresponding OBBs.

Given the generated OBB annotations, we also examine how improved the
detection performance of existing oriented object detectors would be, if the
training datasets were pre-processed in a way that resolved spatial imbalances
and more specifically, imbalances with respect to the objects’ orientation.
Most works do this by using data augmentation techniques, which however
do random rotations and rescalings that do not necessarily lead to uniform
orientations in the new dataset. In this work, we resolve this problem as
well, by implementing an iterative algorithm which rotates the images in a
way that constantly tries to minimize the variance in the orientation his-
togram of the objects at hand. We can either do this by maintaining the
same number of images, or by increasing them. By the time the maximum
number of objects is reached, it is guaranteed that the orientation histogram
of the resulting dataset will be as uniform as possible and thus the orientation
imbalance will be effectively eliminated.

3.2 SAM

The Segment-Anything Model (SAM) [18], is a novel image segmentation
method which enables a zero-shot generalization, namely it can segment ob-
jects even in images that are in a significantly different domain than the
one on which the model was trained. The implementation is based on an
encoder-decoder architecture. Two different encoders are implemented, each
taking a different type of input. The first takes the image as input and maps
it into an embedding space. The second takes prompts as input, which can
be dense (mask) or sparse (points, boxes). The purpose of these prompts is
to determine the areas where the segmentation has to focus on. The outputs
from both encoders are then passed through a mask decoder which returns
different sets of segmentation masks that define the segmented regions of an

3.2. SAM 23

Figure 3.2: Segmentation results for an image with two objects. Green and
red stars correspond to foreground and background points respectively. The
green boxes that surround the objects, are their HBBs. In the left figure,
foreground points lie on the diagonal directed from bottom left to top right,
and vice versa in the right figure. Each setting yields a different score for the
segmentation of each object.

image, each with a confidence score.
The most important factor that determines the quality of the detection, is

the accuracy with which we determine the region corresponding to an object.
To achieve this, we make use of the SAM predictor and we apply it to all
images and all objects. SAM can segment objects in a specified region given
a set of m 2D points which are specified to belong to the image foreground
or background.

The main assumption upon which our implementation is based, is that
the objects at hand are elongated, meaning that their length is considerably
larger than their width. Since the objects we are interested in are obtained
from aerial images, we expect that this is a valid assumption. An important
feature that elongated objects present however, is that their orientation will
lie upon one of the two diagonals of the surrounding HBB. Due to the fact
that we don’t have any prior knowledge regarding which diagonal that is, we
adopt the following strategy. We take the center of the object’s HBB as a
foreground point because we are sure that it belongs to the object. The re-
maining m−1 points are equally distributed across the two diagonals so that
each diagonal has (m − 1)/2 points, symmetrically placed with accordance
to the center point. Then, we run the segmentation for two cases as shown
in Figure 3.2. In the first case, the input points of one diagonal are treated
as foreground points and the rest as background, and in the second case the
opposite. Both segmentations yield a score that quantifies SAM’s confidence
about the accuracy of the segmentation and we assume that the one with

24 CHAPTER 3. METHODS

the highest score has correctly segmented the object at hand. The output of
the segmentation for one image, is a set of binary masks, each corresponding
to one object. Each mask has the same size as the input image, with ones in
the pixels that belong to the object and zeros otherwise.

3.3 Morphological filtering

The segmentation masks specify which pixels belong to a certain object.
However, a problem that arises is that the pixels belonging to the mask do
not necessarily form a single connected component. In several cases there
are gaps in the interior and the border regions of the mask. This is resolved
through a morphological closing operation:

A •B = (A⊕B)⊖B. (3.1)

In Equation (3.1), A is the binary mask resulting from SAM and B is the
structuring element used for morphological filtering. Symbols ⊕ and ⊖ de-
note dilation and erosion operations, respectively.

Essentially, the closing operation firstly expands the mask according to
the structuring element, which leads to the filling of any gaps within the
mask, and then reduces it by the same element, which removes the expanded
regions at the edges of the object area. In general a structuring element can
have any shape and size. Therefore depending on the task at hand, we have
to carefully select a setting that will be suitable for the shape of the objects
in the datasets. Popular choices for element shapes, are squared and circular
ones. However, in aerial images, most objects (e.g. trucks, bridges, ships)
have an elongated shape as mentioned before, and this allows for the use
of an elongated element as well. We therefore make use of either a circular
or an ellipse-shaped structuring element B, whose size is adaptable to the
length of the object at hand. The ellipse however, due to its eccentricity, has
to be directed in the same angle as the object. To achieve that we find the
diagonal of the HBB upon which the object lies, via the SAM segmentation
score, and then we calculate the inverse tangent of the angle formed between
the object’s direction and the horizontal x-axis. This gives the orientation
the ellipse should have, and we also specify the minor and major axes.

3.4 Contour detection

After the closing operation, the resulting masks are used for the calculation
of the object region boundaries. This is done by implementing a contour

3.4. CONTOUR DETECTION 25

(a) Object mask (b) Closing operation

(c) Contour calculation (d) OBB calculation

Figure 3.3: Process of obtaining an object’s OBB. (a) The initial object’s
mask. The gap between its two components is apparent. (b) Shows the mask
after the closing operation which unites the two components. (c) Calculation
of the contour surrounding the mask (red). (d) Calculation of the OBB
(green).

detection method which initially detects changes in the intensity of the bi-
nary image, and then after implementing a connected component analysis,
it returns one or more sets of points, that enclose the regions containing the
object pixels. The reason why there may be more than one contours, is that
even after the closing operation, it is possible that some isolated blobs, sig-
nified as object regions, are not included within the main object region. To
resolve this, we assume that the contour corresponding to the object region,
is the one encompassing the largest area in terms of pixel amount.

After computing the contour surrounding the object mask, we obtain the
optimal OBB surrounding it, by calculating the minimum bounding rectangle
that encompasses the contour. This is done via a convex hull computation

26 CHAPTER 3. METHODS

which is done using the points belonging to the object’s contour. The result-
ing hull is then used to fit a minimum area rectangle, via iterative rotations
of a rotated rectangle around the hull, until the minimum area rectangle is
obtained, which will also yield the width, height and orientation of the OBB.
The center of the OBB is obtained from the centroid of the contour points.
The center, width, height and orientation of the object are all the parameters
needed to define an OBB. An example of the mentioned steps is shown in
Figure 3.3.

A way to prove that the segmentation has been done correctly, is to com-
pare the ground truth HBB of each object with the HBB that would be
computed, given the segmentation mask of the respective object. The pre-
dicted HBB of an object is computed in the following way. The edge points of
an object’s segmentation mask are considered to be the same as the ones that
would define the HBB surrounding it. We then calculate the IoU between
the ground truth and predicted HBB of each object, and define a hyperpa-
rameter that corresponds to the IoU threshold above which we consider the
segmentation as correct. The masks of the correctly segmented objects, will
subsequently be used for the calculation of their respective OBBs.

3.5 Dataset Augmentation

Aerial image datasets contain images of objects in various orientations. How-
ever, there might be significant imbalance in the number of object samples
per orientation. Given the proposed method, we can correct such imbalances.
Specifically, by having access to the OBBs of the objects, we can augment
the given imbalanced dataset so as to cover the space of ship orientations
more uniformly. This can be done in several ways; in this work we explore
two such techniques.
Same Size Object-wise (SSO) augmentation: We create an augmented

dataset, with the same number of samples as the original dataset but with
images rotated in such a way so that objects are as equally distributed among
orientations as possible. To do that, we firstly create an empty histogram,
hereby referred to as SSO-Histogram, with as many bins as the number of
quantized ship orientations. Then, we sort the images according to the num-
ber of included objects, in descending order. Starting with a random image
from those with the highest number of objects, we calculate their orientation
histogram and add it to the SSO-Histogram. The remainder of the process is
the following. We iteratively select random images, calculate the orientation
histogram of the included objects, and then rotate the image in such a way
so that the newly updated SSO-Histogram has the minimum variance. Each

3.5. DATASET AUGMENTATION 27

time an image is selected, it gets removed from the selection pool, so that
the random selection begins with images with the most objects and gradu-
ally with images with fewer ones. The iterations terminate when the total
number of objects in the SSO-Histogram reaches the total number of objects
in the dataset. Refer to Algorithm 1 for more details.

Increased Size Object-wise (ISO) augmentation: The second way for
performing augmentation is to increase the number of objects in under-
represented orientations so that each orientation has twice as many samples
as the most prevalent orientation in the pre-augmented dataset. To do this
we use the dataset’s orientation distribution with the same quantization as
before, and we assign it to an ISO-Histogram. We select the orientation with
the most objects and define the upper bound of all the orientation bins as
the double of that number of objects. If for example, the dataset has 80 ob-
jects pointing at 70 degrees, the upper bound for all bins is set to 160. The
next step is to constantly select random images, and rotate them in such a
way that at least one of the objects is brought to the most prevalent orienta-
tion, while simultaneously adding the orientation distribution of the rotated
image, to the ISO-Histogram. This is done until the number of objects in
that orientation, reaches the upper limit. Then, we iteratively select random
images from the dataset, we calculate their objects’ orientation distribution,
and rotate the image by the angle at which the updated ISO-Histogram will
have the minimum variance. This is done while constantly checking if at any
orientation the number of objects exceeds the upper bound, and if it does
we select another image. The iterations terminate when the total number of
objects in the ISO-Histogram reaches the upper bound per orientation times
the number of orientation bins, or if there are no more images left to fill the
underrepresented orientations. A pseudocode representation of this process
is shown in Algorithm 2.

The calculation of the rotated OBB coordinates is done by applying the
rotation matrix on the OBB center, and because the image orientation in-
creases the image size, the center points are adjusted to the new image size,
as shown in Equations 3.2, 3.3,

c′x = cosθ ·
(
cx −

w

2

)
− sinθ ·

(
h

2
− cy

)
+

w′

2
(3.2)

c′y = −
(
sinθ ·

(
cx −

w

2

)
+ cosθ ·

(
h

2
− cy

)
− h′

2

)
, (3.3)

where θ is the difference between the object’s orientation and the orientation
to which we want to bring it, w and h are the width and height of the original

28 CHAPTER 3. METHODS

image, and w′ and h′ are the width and height of the rotated image, respec-
tively. The height and width of the OBB remain the same since the number
of pixels corresponding to each of the object’s sides, is rotation invariant and
also invariant with respect to the image size.

3.5. DATASET AUGMENTATION 29

Algorithm 1 SSO Algorithm

N: total number of objects
CH: current orientation histogram
UB: upper object bound per orientation bin
n: current number of objects in histogram
w: angle bin width
n← 0
UB ← N ∗ w/180
CH ← ∅
while n < N do

f max← files with maximum number of objects
f curr ← random(f max)
FH ← orientation histogram of objects in f curr
if n = 0 then

CH ← CH + FH
Rotate image and annotations by 0 degrees

else
Rotation angle ← 0
min variance ← Var(CH,FH)
for 0 ≤ i ≤ 180/w − 1 do

Shift FH elements by index i
variance ← Var(CH,FH’)
if variance<min variance then

Rotation angle ← i*w
min variance ← variance

end if
end for
CH ← CH + FH’
Rotate image and annotations by ”Rotation angle” degrees

end if
n ← sum(CH)
remove f curr

end while

30 CHAPTER 3. METHODS

Algorithm 2 ISO Algorithm

CH: current orientation histogram
UB1: number of objects in orientation with max objects
n: current number of objects in histogram
w: angle bin width
UB1 ← max(Data Hist)
ind max ← index(max(Data Hist))
n← UB1
CH ← Data Hist
while CH[ind max]<2*UB1 do

f curr ← random(files)
FH ← orientation histogram of objects in f curr
rand ind ← random index with non zero objects in FH
Rotate image and annotations by (ind max - rand ind)*w
FH’ ← shifted FH by (ind max - rand ind)
CH ← CH + FH’
n ← sum(CH)

end while
UB2 ← n
while n<max(CH)*180/w do

f curr ← random(files)
FH ← orientation histogram of objects in f curr
Rotation angle ← 0
min variance ← Var(CH,FH)
for 0 ≤ i ≤ 180/w − 1 do

Shift FH elements by index i
variance ← Var(CH,FH’)
if variance<min variance then

Rotation angle ← i*w
min variance ← variance

end if
end for
CH ← CH + FH’
Rotate image and annotations by ”Rotation angle” degrees
n ← sum(CH)

end while

Chapter 4

Experiments

4.1 Datasets

In order to validate the effectiveness of the developed method, we run ex-
periments on three benchmark datasets for aerial object detection, DOTA
[35], HRSC2016[26] and ShipRSImageNet[40]. All three, are remote sensing
object detection datasets, that consist of high resolution images containing
objects of several types. They provide extensive annotation files that include
both HBBs and OBBs for the image objects. HRSC2016 and ShipRSIm-
ageNet are datasets that focus specifically on ships from satellite images.
DOTA is a more general aerial object detection dataset that consists of 16
classes that are entirely different from each other.

DOTA v1.5 is a benchmark aerial object detection dataset, consisting of
images with significantly large sizes, that are mostly around 4000×4000 pix-
els. There are in total 2806 images which include 188282 objects. Their
annotations come in the form of both HBBs and OBBs. The OBBs are 4-
point quadrilaterals, namely for each object, its OBB is in the form of (x1,
y1, x2, y2, x3, y3, x4, y4). The 1.5 version of the dataset which is used in this
work, consists of 16 object categories. These are: plane, ship, storage tank,
baseball diamond, tennis court, basketball court, ground track field, harbor,
bridge, large vehicle, small vehicle, helicopter, roundabout, soccer ball field,
swimming pool and container crane. The split into training, validation and
test sets, attributes 1411, 458 and 937 images to the sets respectively, that
are randomly selected in order to avoid biases. With regard to the distribu-
tion of objects in an image, there are cases where there is no object in an
image and cases with as many as 10000 instances. In general however, the
distribution follows a logarithmically decreasing trend of the number of im-
ages with respect to the number of instances, namely there are many images

31

32 CHAPTER 4. EXPERIMENTS

with few instances, and less with ever increasing ones. The aspect ratios
of both HBBs and OBBs, have wide distributions, with most OBBs having
ARs of about 3:1, and HBBs ranging mostly from 1:1 to 3:1. The images
themselves are taken from a wide variety of scenarios. There are almost as
many images taken at open fields and city environments. This makes the
DOTA dataset a very challenging and useful dataset, since it can generalize
to most aerial detection scenarios.

HRSC2016 is the most extensively used dataset for optical remote sensing
ship detection. Its image sizes are smaller than those of DOTA, which range
between 300×300 and 1500×900. There are 1070 images in total, of whom
436 belong to the training set, 181 to the validation, and 453 to the test
set. The object annotations include both HBBs and OBBs, which are in
the form of (xmin, ymin, xmax, ymax) and (cx, cy, w, h, θ) respectively. The
object orientation θ ranges between −π/2 to π/2. This dataset includes
images with varying conditions. For example, there are images with ships in
the outer sea, moored in harbors, packed close to each other, or even under
partial occlusions. Additionally, the classification of the ships follows a 3-level
hierarchical classification scheme regarding the object type. The first level
simply describes whether an object is a ship or not, and the remaining levels
classify the ships in ever increasing category detail (e.g. cargo, oil tanker,
aircraft carrier etc.). The deeper the level, the more detailed the classification
is. For example, in level 2 the categorization is at the level of separating a
merchant ship from a destroyer, and in level 3, the classification specifies even
the type of the ship (e.g. Destroyer→Arleigh Burke, Merchant→Container).
In this work we are only interested in the level-1 classification, namely simply
knowing the existence of a ship.

ShipRSImageNet is a dataset that extends the existing ship detection
datasets by including a combination of images from these datasets, as well
as images collected from satellites. In total, it consists of 3435 images, 2198
of whom are in the training set, 550 in the validation and 687 in the test
set, while the total number of instances is 17573. The majority of the col-
lected images have a size of approximately 930×930 pixels and there is an
extensive variety of image conditions, namely with respect to the weather
conditions, the image quality, spatial resolution, light conditions, as well as
the surrounding environment, since there are many cases of images taken of
ships in the outer sea and moored in harbors. The HBBs are again in the
form of (xmin, ymin, xmax, ymax), but the OBBs are provided in two forms.
The first is (cx, cy, w, h, θ) where θ is the angle between the object’s orien-
tation and the horizontal axis. The second is (x1, y1, x2, y2, x3, y3, x4, y4),
which contains the coordinates of the bounding box edge points, and is the

4.2. IMPLEMENTATION DETAILS AND EXPERIMENTAL SETUP 33

form we use for the experiments with this dataset. The classification of the
objects follows a 4-level hierarchy of detail, but in this case the first level
object classification includes the “ship” and “dock” classes.

4.2 Implementation details and experimental

setup

As was explained previously, we want to automate the transformation of
HBBs to OBBs. Therefore, despite the fact that OBB ground truths are
provided in the datasets, we will not use them at all during the creation of
our own OBBs. Instead, only the HBBs will be used as input to the model.
The expected form of the HBBs is (xmin, ymin, xmax, ymax).

For the first part of the model, which is the segmentation process us-
ing SAM (see section 3.2), we have to specify the number of input prompt
points, their discrimination between foreground and background, as well as
the coordinates of the HBB within which the segmentation shall take place.
We decide to select 5 input points for the HRSC2016 and ShipRSImageNet
datasets and 1 point for the DOTA dataset. If one point is used, it is in
the center of the HBB and is considered foreground point by default. In the
case of the other two datasets, where more than one points are used, one of
them is the center of the HBB, and the others are placed halfway between
the center of the box and the respective box edge. For instance, the points
belonging to the 1st diagonal are the center, the one in the middle between
the top left edge and the center, and the one in the middle between the bot-
tom right edge and the center. Similarly, for the 2nd diagonal, the points
are the center, the middle between the top right edge and the center, and
the middle between the bottom left edge and the center. In general, if the
usage of more than one input points is required, their number should yield
a modulo of 1 if divided by 4 (i.e. 5, 9, 13, 17 etc.). This is because there
should be an equal number of points on each half-diagonal in order to ensure
symmetry. Additionally, the respective objects’ HBBs are also used as input
prompts to SAM.

For the closing operation, we use an ellipse shaped structuring element
with minor axis equal to

√
2 times 3% that of the HBB diagonal, for the

HRSC2016 dataset. For the DOTA and ShipRSImageNet datasets we use a
circular structuring element with the same radius. Regarding the true and
predicted HBB overlap calculation, we set the IoU threshold to be 0.6 for the
DOTA dataset, and 0.7 for the other two datasets, in order to consider it as
a valid segmentation. Objects with invalid segmentation are not considered

34 CHAPTER 4. EXPERIMENTS

parts of the newly generated dataset. After the calculation of the OBBs, we
create new annotation files that include the HBBs and OBBs of the objects
whose segmentation from SAM was deemed valid. For the augmentation
part, we set the discretization of the orientations to be equal to an angle
range of 10 degrees for both methods.

The most decisive factor which determines the performance of the pro-
posed method, is its ability to generate OBB annotations that are accurately
aligned with the actual objects in the images. To validate this, we make
use of several oriented object detectors by training them using the generated
annotations from our method, and testing their performance on the test sets
that were left intact during the entire process. However, a fair evaluation
should take into consideration that any object detector would itself have a
certain performance on the original datasets. Therefore, in order to esti-
mate the relative effectiveness of our proposed method, we also need to train
the object detectors that are to be used, on the training sets of the original
datasets, and then compare their respective performances on the test sets.
The oriented object detectors that we use, are obtained from the OpenMM-
Lab project [42], and they are all implemented with ResNet-50 [15] backbone,
pretrained on ImageNet [5]. The optimizer used is SGD with momentum,
where the momentum is 0.9 and the weight decay is 1e-4. These object de-
tectors are either single-stage (e.g. R3Det [37]), or two-stage (e.g. ReDet
[14], Oriented-RCNN [36]). The learning rate for the ReDet detector is 0.01,
and 0.0025 for all the other detectors used. We used one NVIDIA GeForce
GTX 1080 Ti GPU with 11GB RAM.

4.3 Evaluation metrics

The evaluation metric used for the detection performance is the mean average
precision (mAP) as it is used in PASCAL 2007. The training lasts for 36
epochs using the HRSC2016 and ShipRSImageNet datasets, and 12 epochs
for the DOTA dataset, since it has been found that for most object detection
tasks, it is a reasonable limit before convergence is reached. In the case of
the HRSC2016 dataset, we make use of the training set only and not the
validation set. Therefore, the results obtained from the training of selected
object detectors will not be the same as the ones presented in the original
papers (i.e. [37, 14, 36, 6, 22, 13]), but since the purpose of this work is
to provide a comparative assessment between original and generated OBBs,
our main focus is not on the performance metric values of the detection, but
on the relative differences between the detection performances yielded from
training on the different sets.

4.4. PARAMETER SETTING AND ABLATION STUDIES 35

Type Size IoU threshold
90% 80% 70% 60%

circle
√

2*3% 76.22 96.52 98.67 99.50√
2*6% 75.97 96.93 99.25 99.83√
2*9% 74.81 96.77 99.34 99.92√
2*12% 73.82 96.35 99.34 99.83√
2*15% 73.65 96.27 99.34 99.83

ellipse
√

2*3% 78.62 97.27 99.17 99.67√
2*6% 77.30 97.02 99.42 99.75√
2*9% 75.14 96.52 99.25 99.59√
2*12% 72.49 95.44 99.01 99.67√
2*15% 69.76 94.12 98.34 99.42

Table 4.1: Different structuring element settings and percentage of objects
from the HRSC2016 dataset that exceed certain IoU thresholds. The types
of the element are either circular or elliptical and the sizes correspond to the
diameter and minor axis respectively. Their values are in the form of object
length percentage.

4.4 Parameter setting and ablation studies

For the implementation of the proposed method, it was important to carefully
tune three main parameters. These were, the number of points given as
prompts to SAM, the shape and size of the structuring element used for
the closing operation, and the IoU threshold between predicted and ground
truth HBBs. The prompt points were set to 1 for the DOTA dataset. The
reason for that is that in the DOTA dataset, in most cases there are a lot of
objects, very closely packed next to each other, which makes the examination
of the segmentation along diagonals more harmful that beneficial. As for the
HRSC2016 and ShipRSImageNet datasets, the number of points was set to
5, which was the minimum possible from the available selections above 1,
because qualitative assessments of the created segmentation masks, indicated
that more points lead to segmentation of the background, which is more
uniform, and therefore yielding higher segmentation scores than the object.
For the same reason, it is very important to also include the HBB annotations
as prompt inputs, since failure to do so, results in even more background
segmentations, especially in cases of ships in open seas.

For identifying the best configuration of the structuring element, we inves-
tigated which setting provided the maximum percentage of objects from the
original datasets, for each IoU threshold between predicted and ground truth

36 CHAPTER 4. EXPERIMENTS

Type Size IoU threshold
90% 80% 70% 60%

circle
√

2*3% 9.40 44.24 78.98 92.60√
2*6% 9.38 44.06 78.62 92.58√
2*9% 9.09 43.88 78.07 92.46√
2*12% 9.05 43.20 77.61 92.25√
2*15% 8.70 43.29 77.30 91.96

ellipse
√

2*3% 9.24 44.34 77.65 91.62√
2*6% 9.35 44.88 78.07 91.70√
2*9% 9.39 45.04 78.74 92.46√
2*12% 9.09 44.61 78.51 92.48√
2*15% 8.59 43.87 77.87 92.14

Table 4.2: Different structuring element settings and percentage of objects
from the ShipRSImageNet dataset that exceed certain IoU thresholds. The
types of the element are either circular or elliptical and the sizes correspond
to the diameter and minor axis respectively. Their values are in the form of
object length percentage.

HBBs. For the HRSC2016 dataset, we present the results in Table 4.1 from
which we obtain that an elliptic structuring element with minor axis equal
to
√

2 times 3% the length of the object, meets this requirement. The major
axis is set equal to twice the minor axis. For the ShipRSImageNet however,
the results are different. From Table 4.2 we see that a circular structur-
ing element with diameter equal to

√
2 times 3% the length of the object,

maximizes the percentage of objects above 0.9, 0.7 and 0.6 IoU thresholds.
Therefore, we will use this setting for this dataset.

Finally, we set the IoU threshold to 70% for the HRSC2016 and ShipRSIm-
ageNet datasets, and to 60% for the DOTA dataset. The reason for this
comes from information obtained from Figures 4.1, 4.5 and 4.8, where we
determine the threshold according to a point above which we can visibly
realize that the vast majority of objects lie.

4.5 Segmentation Results

In this part we want to examine the degree at which the model properly
creates reliable OBBs based only on the HBB inputs. To that end, we ex-
amine both the segmentation masks that were calculated using SAM and
morphological closing, as well as the resulting OBBs that are computed by

4.5. SEGMENTATION RESULTS 37

Figure 4.1: Histogram of objects’ IoU, between predicted and ground truth
HBBs, in the DOTA dataset[35]

the contour detection and the minimum area rectangle operation.

4.5.1 Results on the DOTA dataset

The performance of our model with respect to its ability to generate new
OBBs from HBBs using the DOTA dataset, was validated through the ex-
amination of several qualitative metrics that provide valuable information
regarding the quality of the segmentation and OBB creation process. One
such metric is the IoU overlap between the ground truth HBB and the HBB
that would have surrounded the object, if its OBB was the one predicted by
the model. We show the results in Figure 4.1 from which we observe that the
vast majority of objects, have an IoU overlap that exceeds 60%. Specifically,
80% of the total number of objects in the training set exceed this threshold.
This is an indication that the model can segment the objects in an image to a
satisfying extent. However, simply the overlap between the HBBs is only one
part of the picture, which indicates that the model is successful, but it is not
guaranteed. This is because there are many combinations of object masks
that may lead to very similar HBBs as that of the ground truth. Therefore,

38 CHAPTER 4. EXPERIMENTS

(a) ground truth data (b) generated data

Figure 4.2: Orientation distribution of the objects’ OBBs, for the DOTA
dataset in the: (a) ground truth data, (b) generated annotations

in order to make a comparison that will focus on the created OBBs, we take
the orientation distribution of the objects as computed from the ground truth
OBBs and compare it to the orientation distribution that is obtained using
the OBBs calculated from our method. The results are shown in Figure 4.2
and we can observe that there is almost no correlation between the two distri-
butions. This means that the subset of the original dataset that is maintained
after the segmentation and OBB calculation, differs significantly with respect
to the included objects’ orientation. While this is not an encouraging indi-
cator, thanks to the enormous number of objects in the dataset, it may not
necessarily be considerably detrimental as far as the quality of the generated
OBBs is concerned. In order however to obtain a more comprehensive insight
regarding the quality of the segmentation masks and the generated OBBs,
we evaluate the output of the masks obtained from SAM after the closing op-
eration, as well as the resulting OBBs that arise after the contour detection
and the minimum area rectangle fitting. For the most part, the segmentation
and the OBB creation is successful, and we present some of the results in
Figure 4.3. We can observe that for a wide variety of objects appearing in
aerial images (e.g. cars, swimming pools, trucks etc.) the generated segmen-
tation masks are of high quality and indeed accurately encompass the object
regions. It can also be observed that this applies for objects of varying scales
and orientations, since the presented examples include images with different
zoom scales. In the presented examples we can notice that the method works
equally well in segmenting either large objects (e.g. tennis courts - case 2)
or smaller ones (e.g. cars on highways - case 3). Due to the appearance and

4.5. SEGMENTATION RESULTS 39

object arrangement trends that are frequent in this data domain, namely the
closely packed objects in several cases, we can be confident that the selec-
tion of only one prompt point during the segmentation process was a correct
call, since a diagonal mask score comparison would include object location
in any case and would disregard the object borders. One such example of
the ones presented, is the case of the trucks that are parked diagonally next
to each other (case 5) and the model manages to successfully segment each
one of them. We can also observe that the method works even in cases where
an object region is located within another object region. For instance, we
present a case of boats that are docked in a marina (case 4), and we see
that both the marina and the docked boats are segmented successfully. It is
also apparent that the OBBs that are created using the segmentation masks,
capture accurately the minimum rectangle of the objects’ masks and have
the same orientation as the objects’ direction. We can see this in several
object cases varying in both size and aspect ratio. For instance, in cases of
small cars driving on highways (case 3), the OBBs have to be very small and
also have to capture the cars’ direction, which we can see is indeed the case.
However, the pipeline has some flaws, particularly when segmenting objects
that do not have a sufficiently elongated shape. In such cases, the model
may successfully segment the object, but fail at generating a correct OBB.
We show such examples in Figure 4.4. We can see that there are objects like
airplanes (cases 2 and 3) or baseball diamonds (case 1), which due to the
fact that their shape does not exhibit a predominant direction, it is hard for
the model to determine the OBB. This happens because is not guaranteed
that the minimum area rectangle will have its small side perpendicular to the
front of the object. For example, in the cases with the airplanes, a “correct”
rectangle would need to have a side parallel to the wings, and one parallel to
the airframe. However, such a rectangle does not satisfy the minimum area
requirement, and if we calculate the OBB using the Minimum area rectangle
algorithm on the segmented masks, the resulting OBB will have the shape
that appears in the examples, namely a rectangle with one edge at the wing
tips and the other at the cockpit. More generally however, objects that do
not have clearly elongated shapes are challenging for the model, because it is
increasingly difficult to have a one to one optimal match between an object
mask and an OBB. This means that there can be possibly more than one
OBBs that can surround an object. For instance, square shaped objects can
have 2 different OBBs, circles may have infinite OBBs in principle. There-
fore, it is important to notice that this methodology works best when applied
on objects with nearly rectangular shapes. When it comes to the cases where
both the segmentation and the OBB generation fail, they are relatively few

40 CHAPTER 4. EXPERIMENTS

Figure 4.3: Successful examples of segmentation masks obtained from SAM
and of resulting OBBs for selected images in the DOTA dataset

in number, and can mostly be attributed to texture similarity with the back-
ground (e.g. ground track fields), and also to illumination factors, such as
the existence of shadows that are very close to the object from which they
originate. These cases are however a very small minority, and for the most
part the model is successful in both the segmentation and OBB generation
process.

4.5.2 Results on the HRSC2016 dataset

After running the OBB generation model on the HRSC2016 dataset, we
calculated the distribution of the IoU overlap between the ground truth HBB

4.5. SEGMENTATION RESULTS 41

Figure 4.4: Examples of correct segmentations but failed OBB calculations
in images of the DOTA dataset

and the predicted HBB. We show the results in Figure 4.5, where we see that
the vast majority of objects, have a predicted HBB that exceeds in terms of
IoU a 70% overlap with the respective ground truth HBB. In this specific
case, we also observe that the IoU distribution is very tight and around 90%.
This means that in most cases, the segmentation masks from SAM, combined
with the closing operation, lead to predicted HBBs that would most likely
be overlapping by 90% with those from the ground truth. This is a far
better result compared to that obtained from the DOTA dataset, but we
still have to verify the similarity between the orientation distributions of the
objects’ ground truth OBBs and the predicted OBBs. The results are shown
in Figure 4.6, from which we can easily observe that the two orientation
distributions are almost identical, both in terms of shape but also in terms
of number of objects per orientation bin. This essentially means that the
dataset created from the generated OBBs can be considered as of almost
the same quality as that of the original dataset. Subsequently, we examine
the outputs of the segmentation part of our model in order to see whether
they indeed highlight the objects that they were meant to. In Figure 4.7 we
present several examples of segmentation masks created for objects in some
images. It can be observed that the masks, encompass almost exactly the
regions of the ships that they are meant to segment, in a variety of scenarios.
In the provided examples, we see that the segmentation is successful in cases

42 CHAPTER 4. EXPERIMENTS

Figure 4.5: Histogram of objects’ IoU, between predicted and ground truth
HBBs, in the HRSC2016 dataset[26]

where the ships are in the open sea, docked in harbors, both in distance and
closely moored to each other, even in cases where there are partial occlusions
like cranes that pass on top of the ships. This robustness can be attributed
to several factors. The most significant one is the usage of input points in
alternate diagonals. In nearly every scenario, the ship regions, upon which
one of the diagonals lies, are more uniform compared to the surrounding
areas. For example, in the case of a ship moored in a dock, the other diagonal,
namely the one that does not contain the ship in question, is very likely to
include sea surface, harbor environments, or ships of different styles, among
the center of the ship itself. Also, another factor is the proper location of
the prompt points on the diagonals. The ships in the dataset have varying
widths and lengths, which means that if the ship is very wide and the prompt
points are placed close to the center, then it is likely that in both diagonals
all points will belong to the object. This is why the points are selected to lie
at the middle of each half-diagonal. Given the visual quality of the generated
masks, we can be confident that the model is successful in its first part which
is the correct determination of the objects’ regions. Additionally, in the
same figure we provide the respective results with regard to the calculation
of the objects’ OBBs. We can easily observe that all OBBs do indeed tightly
enclose the ships in the images, and perhaps in some cases in an even more

4.5. SEGMENTATION RESULTS 43

(a) ground truth data (b) generated data

Figure 4.6: Orientation distribution of the objects’ OBBs, for the HRSC2016
in the: (a) ground truth data, (b) generated annotations

accurate way than a human annotator would manage. However, there are a
few cases where due to the probable inclusion of areas near the ships’ edges
as object points, the resulting OBBs have slight deviations, with regard to
their orientation, compared with the ships’ bow. Despite these slight issues,
we can realise that the generated OBBs from our method are more than
reliable for usage in object detection tasks.

4.5.3 Results on the ShipRSImageNet dataset

The final dataset on which the model is to be evaluated, belongs to the same
domain as HRSC2016 and focuses primarily on ship detection. ShipRSIm-
ageNet is far more extensive, both quantitatively and in terms of variety of
conditions. Therefore, a qualitative assessment of our model on this dataset
will determine its robustness if the images domain gets more challenging. In
Figure 4.8 we present the histogram of the IoUs between the ground truth
HBBs from the training set objects, and the predicted HBBs obtained after
the segmentation, closing and OBB prediction steps. The majority of the ob-
jects have an IoU overlap that exceeds 60%, which is a good indication about
the quality of the predicted masks. We can also observe that there is a peak
of the histogram, centered at around 80% IoU overlap, at which point approx-
imately 1000 to 1200 objects lie. However, the distribution around that peak
is wider and the peak itself is located at an IoU smaller by 10% compared
to the HRSC2016 dataset. While this suggests that the segmentation is of
lesser quality than that in the previous dataset, it is worth mentioning that
there are several factors which may handicap this metric. One such factor
is that the HBB annotations in the dataset’s ground truth are obtained by
the extreme points of the respective ground truth OBBs. This is not how we

44 CHAPTER 4. EXPERIMENTS

Figure 4.7: Examples of segmentation masks obtained from SAM and of
resulting OBBs for selected images in the HRSC2016 dataset

calculate the respective HBBs because the HBBs edge points are determined
by the masks’ extremes and not by the OBB ones. That is because we want
the HBBs to be as tight as possible around the objects in question. Another
factor is the existence of classes that usually have significant context similar-
ities with regions outside their HBBs. A predominant such example is the
“dock” class, which in most images appears as a long strip of land passing
next to one, or between two or more ships. However, its texture is very sim-
ilar to the part of the harbor which lies behind it and as a result, part of the
harbor outside the HBB also gets segmented. The next aspect of the segmen-
tation we examine, is the orientation distribution between ground truth and
segmentation generated OBBs. The results are shown in Figure 4.9, from
which we can see that the distributions are not identical to the extent that

4.5. SEGMENTATION RESULTS 45

Figure 4.8: Histogram of objects’ IoU, between predicted and ground truth
HBBs, in the ShipRSImageNet dataset[40]

they were for the HRSC2016 dataset, but still we can observe that the shape
of the distributions is very similar, particularly at the orientations at which
most objects are directed. For example, we can easily notice the similarity
of the peaks at 100, 120 and 130 degrees. As before, we also examine the
masks’ quality as obtained from SAM with morphological closing, in order to
get a better understanding of the model’s efficiency on this dataset. In this
dataset, there were several good cases, as well as several problematic ones.
In Figure 4.10 we present examples of successful segmentations and OBB
creations, in a variety of scenarios. As we can see, the model was able to
successfully create segmentation masks and predict reliable OBBs in several
cases. One such case is when the objects are almost in total darkness (i.e.
cases 2,3), which is remarkable since there are very slight variations in terms
of pixel intensities, and yet the segmentation part manages to successfully
discern them. Another case is when the objects are partially occluded from
environmental factors such as clouds (i.e. case 5), which is also indicative of
the model’s robustness in varying conditions. More importantly however, we
notice that the model is also successful in cases where there are simultane-
ously lots of objects, very close to each other and surrounded by texture rich
environments. One such example is shown in case 4, where we see that in an
image with a large amount of objects, of varying sizes, and often surrounded

46 CHAPTER 4. EXPERIMENTS

(a) ground truth data (b) generated data

Figure 4.9: Orientation distribution of the objects’ OBBs, for the ShipRSIm-
ageNet dataset in the: (a) ground truth data, (b) generated annotations

by non uniform areas, for instance ships surrounded by harbor areas, the
model not only manages to successfully determine their masks, but also the
resulting OBBs are calculated for the majority of the existing objects and
are significantly accurate regardless of the respective objects’ sizes and orien-
tations. There are however several other examples, where the model was not
successful either partially or entirely in its objective to obtain object masks
and OBBs. In Figure 4.11 we present examples of cases where the model
partially fails, namely it succeeds in obtaining the object masks, but fails to
determine OBBs for the respective objects. This may be due to a number of
reasons. The most probable reason is that the HBBs of the ground truth are
not tight enough around the object, and therefore the predicted HBB which
surrounds the object more tightly since its edges touch the mask edges, have
a smaller area which may not be enough to exceed the predetermined IoU
threshold. Another reason may be the existence of artifacts in the masks,
that extend the mask region, and as a result lead to larger HBBs than the
ground truth ones. For example, in the first case of Figure 4.11, we notice
that the right side dock mask includes a region in its bottom left which does
not seem to be a part of the dock. This will lead to the prediction of an
HBB that will also incorporate that extra region, but the effect of that will
be an HBB of larger area which may considerably decrease the IoU. Cases
where both the segmentation and the OBB prediction fail, occur more rarely
but still manage to cause damage to the model’s performance. Such failed
cases for the most part, can be attributed to scenarios where objects are
packed next to each other, they belong to the same class and therefore have
similar textures, and the image is zoomed in on them. In that case, the seg-
mentation along alternate diagonals will result in masks that cover regions
belonging to one or more objects, and will therefore be full of artifacts and

4.5. SEGMENTATION RESULTS 47

Figure 4.10: Successful examples of segmentation masks obtained from SAM
and of resulting OBBs for selected images in the ShipRSImageNet dataset

disconnected regions. In these cases, the most probable scenario is that the
predicted HBBs will have very low IoUs and the respective masks will not be
used to predict OBBs, but even if that is not the case, the resulting OBBs
will be of very low accuracy.

48 CHAPTER 4. EXPERIMENTS

Figure 4.11: Examples of correct segmentations but failed OBB calculations
in images of the ShipRSImageNet

4.6 Augmentation and Detection Results

At this point, having already generated new OBBs for all three of the men-
tioned datasets, we will exploit the information obtained, to create aug-
mented datasets which eliminate the orientation variance of the existing ob-
jects. After doing this, we will train several oriented object detectors using
the ground truth OBBs, then using the generated OBBs, all from the training
sets, and validate the performance on the test set which is the same for both
the ground truth and generated data. Subsequently we will train the same
detectors using the augmented versions of the datasets as training inputs,
and validate them on the test sets in order to examine whether the detection
performance of the detectors can be improved.

4.6.1 Results on the DOTA dataset

Firstly, we examine the orientation distributions of the augmented datasets
obtained by implementing the SSO and ISO methods. The results are shown
in Figure 4.12, from which we can see that the new distributions are far more
uniform compared to the ground truth and generated data distributions that
are shown in Figure 4.2. In addition, we observe the significant differences
between the ISO and SSO datasets, with regard to the number of existing
objects in each bin. This means that the ISO method indeed generated
more images, and furthermore, the average number of objects in each bin

4.6. AUGMENTATION AND DETECTION RESULTS 49

(a) SSO data (b) ISO data

Figure 4.12: Orientation distribution of the objects’ OBBs, for DOTA in the:
(a) SSO augmentation dataset and, (b) ISO augmentation dataset.

approximates the ISO bound that is twice the number of objects in the most
prevalent orientation in the pre-augmented dataset.

However, the distributions are not completely flat, and the reason for
this is that almost all images have a significantly large number of objects, in
many cases more than a hundred, and they are pointing at arbitrary orien-
tations. This means that when the augmentation starts, and the randomly
selected image is to be rotated in a way which minimizes the variance of
the new orientation histogram, there may occur orientations at that setting,
whose number of objects will exceed the upper bound. If that happens, the
iterations will continue until there are no more images that satisfy the upper
bound limitation for all orientations, and in that case the algorithm termi-
nates, giving as output the dataset and the orientation histogram which is
computed by that point. Nevertheless, the ground truth dataset, the datasets
with the generated OBBs, the SSO and ISO datasets are given as input to
the rotated object detectors, and their precision performances are presented
in Table 4.3. In this table, we present the average precision for all classes
in the DOTA dataset and the mean of that, yielded by six oriented object
detectors, trained on all four of the training set versions of the dataset. Com-
paring the results obtained when training the models with the ground truth
OBBs with those obtained using the generated OBBs, it can be seen that
the generated annotations yield slightly lower precisions and in some cases
they even exceed the ground truth in terms of detection performance. This
is indicative of the model’s generation quality since in this dataset there are
many difficult cases like non-elongated objects and objects in significantly

50 CHAPTER 4. EXPERIMENTS

classes PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC CC mAP
Data/Method R3Det [37]
Ground truth 87.25 68.91 32.03 28.83 55.00 70.43 78.47 90.00 39.60 78.49 18.78 67.53 53.84 68.47 16.52 0.00 53.38
Generated 75.42 48.67 21.18 32.39 49.27 65.34 77.83 89.14 30.21 77.93 21.19 55.63 51.14 60.13 7.58 0.00 47.69
SSO 66.28 30.23 13.65 4.39 51.64 62.11 75.02 83.33 16.90 76.18 17.79 33.33 44.38 59.19 0.00 0.00 39.65
ISO 75.59 55.01 28.67 55.69 55.60 77.50 78.65 89.59 51.16 80.98 52.52 53.07 61.53 65.54 18.57 0.00 56.23
Data/Method ReDet [14]
Ground truth 90.04 77.37 53.26 61.36 63.43 81.48 88.24 90.61 69.10 87.14 61.15 77.45 74.74 74.89 52.77 0.00 68.94
Generated 86.30 70.43 38.80 60.04 59.75 76.70 80.14 89.72 62.28 86.12 64.09 73.41 65.73 72.36 33.42 0.53 63.74
SSO 84.08 61.11 27.71 39.90 57.57 75.95 79.40 90.03 54.85 82.21 48.35 61.52 61.30 68.74 14.88 0.00 56.72
ISO 70.61 54.57 38.79 60.04 61.02 82.99 79.72 90.19 64.49 85.30 55.66 67.02 74.03 68.50 25.20 0.00 61.13
Data/Method Oriented R-CNN [36]
Ground truth 88.98 76.24 49.68 60.50 63.63 83.01 88.77 90.66 64.89 85.56 51.23 73.67 67.13 74.26 54.95 0.32 67.09
Generated 85.27 72.27 43.06 61.79 56.80 80.87 80.04 90.27 60.69 78.84 51.51 70.80 63.52 72.46 38.28 0.67 62.95
SSO 75.45 62.87 29.10 47.36 58.05 80.45 79.14 89.11 41.53 75.06 34.73 63.24 55.67 66.68 11.69 0.00 54.38
ISO 77.88 60.14 40.98 59.96 62.42 82.53 86.42 90.41 58.05 83.57 52.69 64.82 72.72 67.84 36.98 0.00 62.34
Data/Method RoI Transformer [6]
Ground truth 89.77 75.59 47.95 66.60 63.05 77.34 80.57 90.69 62.56 85.54 55.29 73.60 73.22 76.09 54.03 2.95 67.18
Generated 78.52 67.41 38.23 64.01 56.89 76.72 79.83 90.24 54.09 85.16 53.82 70.20 62.95 71.88 41.13 0.76 61.99
SSO 75.50 62.59 24.62 51.77 57.46 75.07 79.10 89.61 47.96 75.24 50.44 60.56 58.54 71.13 13.35 0.00 55.81
ISO 78.76 53.63 36.22 61.20 60.48 77.78 79.70 90.46 55.46 77.97 54.70 63.60 73.82 68.71 23.03 0.00 59.72
Data/Method Rotated RetinaNet [22]
Ground truth 87.16 73.26 22.99 31.17 50.47 55.94 72.80 89.91 46.93 80.05 45.10 63.98 52.60 66.92 15.98 0.00 53.45
Generated 76.28 62.55 17.93 27.85 45.96 51.51 68.93 88.53 39.33 76.76 41.78 57.32 47.84 58.82 1.05 0.00 47.65
SSO 74.56 41.96 2.00 6.06 47.17 41.20 67.06 87.87 21.94 74.11 28.81 32.71 41.03 54.94 0.00 0.00 38.84
ISO 79.59 62.01 21.63 50.85 54.40 69.89 78.06 89.79 51.13 80.38 53.16 61.49 59.00 63.24 9.87 0.00 55.28
Data/Method S2A-Net [13]
Ground truth 88.80 72.55 37.23 40.70 60.99 75.74 80.29 90.30 48.59 84.73 43.25 69.56 62.18 69.53 43.34 0.00 60.49
Generated 79.43 63.33 29.41 43.68 53.36 74.62 79.03 89.21 45.17 81.72 38.52 68.41 54.09 62.13 33.70 0.00 55.99
SSO 73.92 33.71 13.36 10.93 54.29 72.28 78.60 88.75 22.62 79.37 21.92 39.67 48.61 59.24 0.16 0.00 43.59
ISO 82.49 63.61 31.74 62.95 57.73 80.52 79.11 89.71 49.49 83.56 51.89 58.24 68.21 64.99 30.21 0.03 59.65

Table 4.3: Object detectors AP scores for classes in the DOTA dataset, using
ground truth annotations, generated annotations, and augmented data with
the proposed methods (SSO, ISO). The classes are, PL: Plane, BD: Base-
ball Diamond, BR: Bridge, GTF: Ground Track Field, SV: Small Vehicle,
LV: Large Vehicle, SH: Ship, TC: Tennis Court, BC: Basketball Court, ST:
Storage Tank, SBF: Soccer Ball Field, RA: Roundabout, HA: Harbor, SP:
Swimming Pool, HC: Helicopter, and CC: Container Crane

texture-rich environments. However, we also observe that only for two out of
the total six detectors used, namely the R3Det and the Rotated RetinaNet,
the mean average precision is maximized by the ISO augmented dataset. For
the remaining detectors the maximum precision is obtained by training with
the original ground truth OBB training set. However, even in detectors that
yield better mAP using the ground truth, there are some classes whose AP is
larger when trained using the ISO augmented set. These classes are usually
those that have significantly elongated shapes (e.g. Large Vehicle, Soccer
Ball Field, Harbor etc.). The reason for this is the one explained previously,
namely the objects that do not have clearly elongated shapes are segmented
correctly, thus are used for OBB generation, but the created OBBs are not
pointing in the direction of these objects and are therefore not accurate. This
is not the case for elongated objects like vehicles, sport courts etc. since their
shapes lead to OBBs that tightly match the segmentation masks. Despite
these flaws however, we can see that the method is effective with respect
to the quality of the automated OBB generation, taking into account the

4.6. AUGMENTATION AND DETECTION RESULTS 51

(a) SSO data (b) ISO data

Figure 4.13: Orientation distribution of the objects’ OBBs, for HRSC2016
in the: (a) SSO augmentation dataset and, (b) ISO augmentation dataset.

Method GT Gen SSO ISO
mAP mAP mAP mAP

R3Det[37] 83.06 79.49 79.18 88.33
ReDet[14] 79.73 78.96 77.78 87.71
Oriented-RCNN[36] 89.93 81.13 88.91 89.77
RoI-Transformer[6] 87.07 86.92 76.38 87.86
Rotated-RetinaNet[22] 62.26 63.01 60.42 78.43
S2A-Net[13] 89.61 80.59 86.68 89.23

Table 4.4: mAP scores for object detectors, trained on HRSC2016, us-
ing ground truth annotations (GT), generated annotations (Gen), and aug-
mented data with the proposed methods (SSO, ISO).

challenges posed by the complexity of the DOTA dataset.

4.6.2 Results on the HRSC2016 dataset

In Table 4.4 we present the performance of our annotation generation and
augmentation methods, for the same six object detectors, using ground truth
and generated data for the HRSC2016 dataset. We can see that the object
detectors’ performance on the test set, when trained using the OBBs gener-
ated from our method, is for the most part slightly lower but close to that
obtained by training them using the ground truth annotations. This means
that the generated OBBs are, at least in their vast majority, of similar quality

52 CHAPTER 4. EXPERIMENTS

(a) SSO data (b) ISO data

Figure 4.14: Orientation distribution of the objects’ OBBs, for ShipRSIm-
ageNet in the: (a) SSO augmentation dataset and, (b) ISO augmentation
dataset.

to the ones from the ground truth. As it was mentioned in paragraph 4.5.2,
and referring to Figure 4.6, due to the intense similarity between the ground
truth and generated orientation histograms, we expected that the detection
performances of object detectors trained on these two datasets, would yield
similar results. Considering the promising results of the annotation method,
we use the generated annotations for the creation of augmented datasets. Fig-
ure 4.13 shows the distribution of the objects’ orientations in the SSO and
in the ISO augmented dataset. For both augmentation methods used (SSO,
ISO), the resulting orientation histograms are completely uniform within the
specified orientation quantization, which means that the resulting datasets
have nearly zero orientation bias, as can be verified from figures 4.13a and
4.13b. The performance of the same object detectors using the augmented
datasets, indicates that the most effective augmentation method is the ISO.
SSO yields results that are similar to the ones obtained from ground truth
training, but it does not exceed them for any of the object detectors used.
Apart from the Oriented-RCNN[36] and S2A-Net[13] object detectors, ISO
yields improved detection performances ranging from 5 to 16% increases in
the mAP metric.

4.6.3 Results of the ShipRSImageNet dataset

The detection performances obtained for the ShipRSImageNet dataset, are
shown in Table 4.5. Contrary to the HRSC2016 dataset, here the detection

4.6. AUGMENTATION AND DETECTION RESULTS 53

Method GT Gen SSO ISO
mAP mAP mAP mAP

R3Det[37] 42.61 36.88 33.99 45.73
ReDet[14] 59.31 46.69 41.09 51.78
Oriented-RCNN[36] 57.43 48.22 49.71 58.93
RoI-Transformer[6] 44.91 35.85 34.18 43.01
Rotated-RetinaNet[22] 37.61 29.56 27.42 38.69
S2A-Net[13] 55.61 42.16 36.95 52.60

Table 4.5: mAP scores for object detectors, trained on ShipRSImageNet, us-
ing ground truth annotations (GT), generated annotations (Gen) and aug-
mented data with the proposed methods (SSO, ISO).

performances obtained by training with the generated annotations are sig-
nificantly lower, sometimes by more than 10% mAP. This is a significant
decrease compared to the ground truth performances, which can mostly be
attributed to the fact that there are many false negatives due to the more
extended ground truth HBBs, and due to the less accurate OBB predictions
for difficult classes like the docks. Nonetheless, we examine the performances
obtained by using the SSO and ISO augmented datasets, whose orientation
distributions are shown in Figure 4.14. We notice that the distributions are
considerably flat, which means that the bias imposed due to the objects’
orientation imbalance is reduced to almost zero. After generating the respec-
tive annotations we train the same detectors using the augmented versions
of the dataset. We can see that in this dataset, three out of the six detec-
tors used, yielded better performance when trained with the ISO augmented
data compared to the one obtained using ground truth data. Specifically,
the improvements range from ∼0.2% to ∼2%, which are not as significant as
those in the HRSC2016 dataset, but still exhibit that even in more complex
datasets, our method can lead to improved detection performances.

54 CHAPTER 4. EXPERIMENTS

Chapter 5

Conclusions

We proposed a new method to automatically generate OBBs in aerial object
detection datasets, and demonstrated its effectiveness by showing that the
performance of object detectors when trained on the data with the gener-
ated annotations is similar to that obtained when using the ground truth
annotations for training. This was validated through the usage of three
benchmark aerial object detection datasets, with varying complexities, sizes
and object types. The main observation was that the proposed method
works significantly better when used on objects with significantly elongated
shapes, due to the proper matching between the minimum area rectangle and
the generated segmentation mask. An indication of this is that the closest
performances between ground truth and generated annotations are achieved
using the HRSC2016 dataset which is a ship detection dataset, and for the
classes of DOTA that are strongly rectangular (e.g. harbors, vehicles). We
also proposed two data augmentation techniques aiming to make the dataset
more balanced in terms of orientations which are, object-wise with same size
(SSO) and object-wise with increased size (ISO). With respect to the degree
at which the uniformity of orientations is achieved, we showed that for the
ship detection datasets, the distributions are almost completely flat, and for
the DOTA dataset they are slightly less so but still significantly more uniform
than the original distributions. Using the SSO and ISO augmented dataset
versions, we trained the same oriented object detectors in order to quantita-
tively evaluate the performance of the augmented versions of the datasets. It
was observed that the augmentation using the same number of objects, did
not lead to any higher detection performance despite the elimination of the
orientation bias. The ISO method however, managed to improve the perfor-
mance achieved by benchmark object detectors in the test set, with varying
margins depending on the dataset complexities and the detectors themselves,
a fact that proves the importance of the proposed methods in aerial object

55

56 CHAPTER 5. CONCLUSIONS

detection tasks.

Bibliography

[1] Bernhard E Boser, Isabelle M Guyon, and Vladimir N Vapnik. A
training algorithm for optimal margin classifiers. In Proceedings of the
fifth annual workshop on Computational learning theory, pages 144–152,
1992.

[2] Shao-Yi Chien, Shyh-Yih Ma, and Liang-Gee Chen. Efficient mov-
ing object segmentation algorithm using background registration tech-
nique. IEEE Transactions on Circuits and Systems for Video Technol-
ogy, 12(7):577–586, 2002.

[3] Aaron Walter Avila Cordova, William Condori Quispe, Remy
Jorge Cuba Inca, Wilder Nina Choquehuayta, and Eveling Castro
Gutierrez. New approaches and tools for ship detection in optical satel-
lite imagery. Journal of Physics: Conference Series, 1642(1):012003, sep
2020.

[4] N. Dalal and B. Triggs. Histograms of oriented gradients for human
detection. In 2005 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’05), volume 1, pages 886–893
vol. 1, 2005.

[5] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.
Imagenet: A large-scale hierarchical image database. In 2009 IEEE
Conference on Computer Vision and Pattern Recognition, pages 248–
255, 2009.

[6] Jian Ding, Nan Xue, Yang Long, Gui-Song Xia, and Qikai Lu. Learn-
ing roi transformer for oriented object detection in aerial images. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2849–2858, 2019.

[7] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman. The PASCAL Visual Object Classes

57

58 BIBLIOGRAPHY

Challenge 2007 (VOC2007) Results. http://www.pascal-
network.org/challenges/VOC/voc2007/workshop/index.html.

[8] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman. The PASCAL Visual Object Classes
Challenge 2012 (VOC2012) Results. http://www.pascal-
network.org/challenges/VOC/voc2012/workshop/index.html.

[9] Pedro Felzenszwalb, David McAllester, and Deva Ramanan. A discrim-
inatively trained, multiscale, deformable part model. In 2008 IEEE
Conference on Computer Vision and Pattern Recognition, pages 1–8,
2008.

[10] Yoav Freund and Robert E Schapire. A decision-theoretic generalization
of on-line learning and an application to boosting. Journal of computer
and system sciences, 55(1):119–139, 1997.

[11] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE international
conference on computer vision, pages 1440–1448, 2015.

[12] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich
feature hierarchies for accurate object detection and semantic segmen-
tation. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2014.

[13] Jiaming Han, Jian Ding, Jie Li, and Gui-Song Xia. Align deep features
for oriented object detection. IEEE Transactions on Geoscience and
Remote Sensing, 2021.

[14] Jiaming Han, Jian Ding, Nan Xue, and Gui-Song Xia. Redet: A
rotation-equivariant detector for aerial object detection. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 2786–2795, 2021.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep resid-
ual learning for image recognition. In 2016 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 770–778, 2016.

[16] Yingying Jiang, Xiangyu Zhu, Xiaobing Wang, Shuli Yang, Wei Li, Hua
Wang, Pei Fu, and Zhenbo Luo. R2cnn: Rotational region cnn for ori-
entation robust scene text detection. arXiv preprint arXiv:1706.09579,
2017.

BIBLIOGRAPHY 59

[17] Dimosthenis Karatzas, Lluis Gomez-Bigorda, Anguelos Nicolaou,
Suman Ghosh, Andrew Bagdanov, Masakazu Iwamura, Jiri Matas,
Lukas Neumann, Vijay Ramaseshan Chandrasekhar, Shijian Lu, Faisal
Shafait, Seiichi Uchida, and Ernest Valveny. Icdar 2015 competition on
robust reading. In 2015 13th International Conference on Document
Analysis and Recognition (ICDAR), pages 1156–1160, 2015.

[18] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rol-
land, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alexander C.
Berg, Wan-Yen Lo, Piotr Dollar, and Ross Girshick. Segment anything.
In Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), pages 4015–4026, October 2023.

[19] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet clas-
sification with deep convolutional neural networks. Advances in neural
information processing systems, 25, 2012.

[20] Darius Lam, Richard Kuzma, Kevin McGee, Samuel Dooley, Michael
Laielli, Matthew Klaric, Yaroslav Bulatov, and Brendan McCord.
xview: Objects in context in overhead imagery. arXiv preprint
arXiv:1802.07856, 2018.

[21] Tsung-Yi Lin, Piotr Dollar, Ross Girshick, Kaiming He, Bharath Hari-
haran, and Serge Belongie. Feature pyramid networks for object detec-
tion. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), July 2017.

[22] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr
Dollár. Focal loss for dense object detection. In Proceedings of the
IEEE international conference on computer vision, 2017.

[23] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Per-
ona, Deva Ramanan, Piotr Dollár, and C. Lawrence Zitnick. Microsoft
coco: Common objects in context. In David Fleet, Tomas Pajdla, Bernt
Schiele, and Tinne Tuytelaars, editors, Computer Vision – ECCV 2014,
pages 740–755, Cham, 2014. Springer International Publishing.

[24] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott
Reed, Cheng-Yang Fu, and Alexander C. Berg. Ssd: Single shot multi-
box detector. In Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling,
editors, Computer Vision – ECCV 2016, pages 21–37, Cham, 2016.
Springer International Publishing.

60 BIBLIOGRAPHY

[25] Zikun Liu, Hongzhen Wang, Lubin Weng, and Yiping Yang. Ship ro-
tated bounding box space for ship extraction from high-resolution op-
tical satellite images with complex backgrounds. IEEE Geoscience and
Remote Sensing Letters, 13(8):1074–1078, 2016.

[26] Zikun Liu, Liu Yuan, Lubin Weng, and Yiping Yang. A high resolution
optical satellite image dataset for ship recognition and some new base-
lines. In International conference on pattern recognition applications and
methods, volume 2, pages 324–331. SciTePress, 2017.

[27] Jianqi Ma, Weiyuan Shao, Hao Ye, Li Wang, Hong Wang, Yingbin
Zheng, and Xiangyang Xue. Arbitrary-oriented scene text detection
via rotation proposals. IEEE Transactions on Multimedia, 20(11):3111–
3122, 2018.

[28] Agnieszka Miko lajczyk and Micha l Grochowski. Data augmentation for
improving deep learning in image classification problem. In 2018 In-
ternational Interdisciplinary PhD Workshop (IIPhDW), pages 117–122,
2018.

[29] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look
once: Unified, real-time object detection. In 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 779–788, Los
Alamitos, CA, USA, jun 2016. IEEE Computer Society.

[30] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn:
Towards real-time object detection with region proposal networks. In
C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 28. Curran
Associates, Inc., 2015.

[31] Karen Simonyan and Andrew Zisserman. Very deep convolutional net-
works for large-scale image recognition. In Yoshua Bengio and Yann
LeCun, editors, 3rd International Conference on Learning Representa-
tions, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings, 2015.

[32] Zhi Tian, Chunhua Shen, Xinlong Wang, and Hao Chen. Boxinst: High-
performance instance segmentation with box annotations. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5443–5452, 2021.

BIBLIOGRAPHY 61

[33] J.R.R. Uijlings, K.E.A. van de Sande, T. Gevers, and A.W.M. Smeul-
ders. Selective search for object recognition. International Journal of
Computer Vision, 2013.

[34] P. Viola and M. Jones. Rapid object detection using a boosted cascade
of simple features. In Proceedings of the 2001 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition. CVPR 2001,
volume 1, pages I–I, 2001.

[35] Gui-Song Xia, Xiang Bai, Jian Ding, Zhen Zhu, Serge Belongie, Jiebo
Luo, Mihai Datcu, Marcello Pelillo, and Liangpei Zhang. Dota: A
large-scale dataset for object detection in aerial images. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2018.

[36] Xingxing Xie, Gong Cheng, Jiabao Wang, Xiwen Yao, and Junwei Han.
Oriented r-cnn for object detection. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision (ICCV), pages 3520–3529,
October 2021.

[37] Xue Yang, Junchi Yan, Ziming Feng, and Tao He. R3det: Refined single-
stage detector with feature refinement for rotating object. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 35, pages
3163–3171, 2021.

[38] Xue Yang, Gefan Zhang, Wentong Li, Yue Zhou, Xuehui Wang, and
Junchi Yan. H2RBox: Horizontal box annotation is all you need for
oriented object detection. In The Eleventh International Conference on
Learning Representations, 2023.

[39] Zenghui Zhang, Weiwei Guo, Shengnan Zhu, and Wenxian Yu. Toward
arbitrary-oriented ship detection with rotated region proposal and dis-
crimination networks. IEEE Geoscience and Remote Sensing Letters,
15(11):1745–1749, 2018.

[40] Zhengning Zhang, Lin Zhang, Yue Wang, Pengming Feng, and Ran He.
Shiprsimagenet: A large-scale fine-grained dataset for ship detection in
high-resolution optical remote sensing images. IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, 14:8458–
8472, 2021.

[41] Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang.
Random erasing data augmentation. In Proceedings of the AAAI con-
ference on artificial intelligence, volume 34, pages 13001–13008, 2020.

62 BIBLIOGRAPHY

[42] Yue Zhou, Xue Yang, Gefan Zhang, Jiabao Wang, Yanyi Liu, Liping
Hou, Xue Jiang, Xingzhao Liu, Junchi Yan, Chengqi Lyu, Wenwei
Zhang, and Kai Chen. Mmrotate: A rotated object detection benchmark
using pytorch. In Proceedings of the 30th ACM International Conference
on Multimedia, MM ’22, page 7331–7334, New York, NY, USA, 2022.
Association for Computing Machinery.

[43] Barret Zoph, Ekin D Cubuk, Golnaz Ghiasi, Tsung-Yi Lin, Jonathon
Shlens, and Quoc V Le. Learning data augmentation strategies for object
detection. In Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part XXVII 16, pages
566–583. Springer, 2020.

	Introduction
	Object Detection
	Pre Deep Learning Era
	Deep Learning Era
	Horizontal vs Oriented Object Detectors

	Need for more training data
	Need for removing dataset biases
	Contribution overview

	Related Work
	Pre-Deep Learning Detectors
	One-stage Object Detectors
	Two-stage Object Detectors
	Oriented Object Detectors
	HBB to OBB Transformation
	Data augmentation

	Methods
	Overview
	SAM
	Morphological filtering
	Contour detection
	Dataset Augmentation

	Experiments
	Datasets
	Implementation details and experimental setup
	Evaluation metrics
	Parameter setting and ablation studies
	Segmentation Results
	Results on the DOTA dataset
	Results on the HRSC2016 dataset
	Results on the ShipRSImageNet dataset

	Augmentation and Detection Results
	Results on the DOTA dataset
	Results on the HRSC2016 dataset
	Results of the ShipRSImageNet dataset

	Conclusions
	Bibliography

