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Galaxy cluster detection in the local universe, using machine learning methods. 
 

Harry Psarakis1 

1Physics Department,  University  of  Crete. 

In this thesis, i report the implementation of machine learning methods, i.e clustering algorithms  
such as DBSCAN and Hierarchical clustering, for the identification of galaxy clusters in 3D space 
in HECATE catalogue, which is a complete sample of nearby galaxies. The results were compared 
with known catalogs of galaxy clusters using standard methods. 

 
I. INTRODUCTION 

 
Clusters of galaxies, as the largest  gravitationally 

bound structures in the universe, hold a unique position 
in astrophysical and cosmological studies. Their immense 
mass provides compelling evidence for the existence of 
dark matter, while their distribution offers crucial con- 
straints on cosmological parameters. Serving as nodes in 
the cosmic web, clusters offer a window into galaxy evo- 
lution, influenced by unique intergalactic processes. Ad- 
ditionally, their role as natural astrophysical laboratories 
allows us to study phenomena like gravitational lensing, 
the hot intracluster medium, and galaxy interactions. In 
essence, the study of galaxy clusters offers insight into the 
universe’s structure, its origin and the underlying pro- 
cesses driving its evolution. 

The classification of clusters comes into two categories, 
groups or clusters, depending on the number of galaxies 
that are gravitationally bound. In both situations the 
galaxies are orbiting around the central point of the sys- 
tem’s mass, the barycenter. Clusters contain from fifty 
galaxies (poor cluster) to thousands galaxies (rich clus- 
ter). They can further be classified into two main types 
based on their morphology and dynamical state: regular 
and irregular. Regular or symmetrical/spherical clusters 
are considered to be in a more relaxed state, meaning 
they’ve had more time to come to an equilibrium state, 
after any significant mergers or interactions. Proof of such 
statement is that regular clusters are completely dom- 
inated by early-type galaxies (elliptical). On the other 
hand, irregular clusters are still in the process of evolu- 
tion and tend to have a higher fraction of spiral galaxies 
occupying them. Also, regular clusters appear to be com- 
pact, with the majority of elliptical  galaxies  harboring 
the center of the cluster, while irregular are significantly 
less dense in the center. Groups generally have less than 
50 galaxy members to a lower limit of four members. 
Over cosmic time, galaxy groups will merge with other 
groups or fall into clusters and form bigger structures. 
The Virgo cluster is such an example, that can be classi- 
fied as an open/irregular cluster that consists of smaller 
sub groups. 

Today it is known that, although the galaxies deter- 
mine the optical appearance of a cluster, the stellar mass 
contained in galaxies contributes only a small fraction to 

the total mass of a cluster, about 5%. In 1933 Zwicky 
measured the radial velocities of galaxies in Coma clus- 
ter from their Doppler shift spectra. From these observa- 
tions he calculated the dispersion in their radial veloci- 
ties. Then using the Virial theorem he estimated the mass 
of the cluster only to find out that the mass-to-light ratio 
was greater, by more than a factor of 10, than the typical 
values of its individual galaxies (M/L  1  20M⊙/L⊙). 
From this result he stated that Coma cluster contains 
significantly more mass than the sum of the masses of its 
galaxies. 

Later X-ray observations revealed that X-ray emission 
from clusters is spatially extended and not just originated 
on individual galaxies. This indicates the presence of a 
hot gas, with temperatures ranging around T 108K 
(thermal bremsstrahlung), occupying the space between 
galaxies (intracluster medium). For fully ionized hydro- 
gen, the mass estimate of the gas is still only a few percent 
of the total mass of a cluster, almost 15%. The study of 
the X-ray spectra, such as the emission lines, can also re- 
veal information about the abundance of heavy elements 
in galaxies, indicating their chemical evolution. That in- 
dicates that a significant amount of matter in clusters ex- 
ists outside of galaxies and that aids in forming a broader 
perspective of the universe on large scales. For this hot in- 
tracluster gas to remain gravitationally bound within the 
cluster and achieve such high temperatures, there must 
be a strong gravitational force acting within. Since the 
total mass of galaxies is insufficient to provide that strong 
force necessary to confine this hot gas, dark matter must 
be present. 

These significant results, i.e the mass of galaxy clusters 
exceed significantly that of the visible matter in stars and 
the mass of the intracluster medium, were the first indi- 
cators of the existence of dark matter. Dark matter as a 
significant portion, roughly 80%, exerts a massive grav- 
itational pull, leading to phenomena like gravitational 
lensing. This lensing acts as a cosmic telescope, magni- 
fying distant, faint galaxies, bringing them into observa- 
tional reach and providing valuable insights into the early 
universe. 

So the study of clusters of galaxies is crucial for sev- 
eral reasons, and that led scientists to the creation of 
galaxy cluster catalogs. The first attempts to create ma- 
jor galaxy cluster catalogs were thrown by George Abell 
and Fritz Zwicky. The catalogue of rich galaxy clusters 
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Figure 1. Illustration of a galaxy cluster’s sources. 
 
 

by Abell (1958) has been widely used as a primary source 
list for different type of astronomical studies (G. Abell, H. 
Corwin et al. 1989). Its an all-sky catalogue of 4073 rich 
clusters of galaxies, each having at least 30 members, at 
the local universe (z < 0.2). Abell was looking for regions 
in the sky that showed an overdensity of galaxies by us- 
ing the Palomar Observatory Sky Survey’s photographic 
plates, which covered the majority of the sky. Abell’s cri- 
teria for the identification of clusters were based on an 
increased concentration of galaxies within a circle of an- 
gular radius, called the Abell radius 

1
′
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subjective and such manual cluster identification cannot 
be applied to modern large cluster catalogs. Secondly, 
galaxy counts on images are strongly affected by projec- 
tion effects. Since the observations are two dimensional 
representations of the three dimensional universe, pro- 
jected overdensities on the celestial sphere can be clas- 
sified as clusters. For example, a random alignment of 
galaxies along the line of sight might be mistakenly iden- 
tified as part of a cluster, even if those galaxies are not 
gravitationally bound to each other and  are  at  differ- 
ent redshift. Modern catalogs have limitations as well, 
despite being developed by advanced observational tech- 
niques and tools, due to projection effects, redshift un- 
certainties etc. 

Building on the limitations of traditional cluster iden- 
tification methods, automated methods, such as ma- 
chine learning techniques, can offer enhanced reliabil- 
ity in identifying genuine clusters, minimizing misclassi- 
fications caused by projection effects or random galactic 
alignments. This is especially important in the context 
of current, extensive galaxy catalogs, based on observa- 
tions of million galaxies. By systematically integrating 
multi dimensional data from diverse astronomical obser- 
vations, machine learning techniques can provide robust 
approaches to cluster identification, thereby improving 
the accuracy and efficiency of astronomical classification 
tasks. Moreover, the predictive capabilities of these tech- 
niques are instrumental in unveiling potential undiscov- 
ered galaxy clusters offering hints and directions for fur- 
ther exploratory initiatives. Finally the merging of ma- 
chine learning methods and astronomical observations 
can yield substantial insights, and bridge the  existing 
gaps in our understanding, allowing for more informed 
interpretations of the universe. 

θA = 
z

 

where z is the estimated redshift and within a magnitude 
interval m3 m m3+2, where m3 is the apparent mag- 
nitude of the third brightest galaxy in the cluster. The 
Catalogue of Galaxies and Clusters of Galaxies (Zwicky 
Catalogue) is a list of more than 29000 galaxies and 9000 
galaxy clusters identified from Palomar Observatory Sky 
Survey in 1960. Zwicky’s criteria for identifying clusters 
relied on visual inspection of photographic plates, simi- 
lar to Abell, but without the strict richness criteria that 
Abell employed. The Zwicky catalogue is notable for its 
breadth, including both rich and poor clusters. Since pub- 
lication, the catalogue has been updated with corrections, 
using new observations and data corrections. 

Despite the great importance   of   such   galaxy   clus- 
ter catalogs, they come with limitations. Ideal catalogs 
should meet two primary standards. They should be com- 
plete, meaning that they include all the galaxy members 
of a cluster, and they should be reliable by ensuring that 
only objects meeting the criteria are listed, without any 
inaccuracies. The aforementioned catalogs and the ones 
used in this thesis, are neither complete nor pure. First of 
all measurements acquired from photographic plates are 

II. DATA 

 
The goal of this thesis was to identify clusters in 

HECATE (The  Heraklion  Extragalactic  CATaloguE). 
This is an all-sky value-added galaxy catalogue of 
204,733 individual galaxies within a radius of 200 Mpc. 
HECATE is based on the HyperLEDA catalogue and is 
enriched with additional information from other extra- 
galactic and photometric catalogues. The catalog aims to 
support contemporary and upcoming multi-wavelength 
investigations of the nearby universe. It offers lots of in- 
formation such as positions, distances, sizes, photometric 
measurements etc. (K. Kovlakas, A. Zezas, J. Andrews 
et al. 2021), but not cluster associations for its members. 
The study involved a clustering analysis of these galaxies 
based on their spatial arrangement, with the intention of 
assigning cluster identifiers to each galaxy candidate. 

In order to develop and test the methods presented 
in this thesis, local universe galactic catalogs of known 
clusters were also used, like Northern/Southern Abell 
catalogue (G. Abell, H. Corwin et al. 1989), Compact 
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Groups of Galaxies (A. McConnachie, D. Patton et al. 
2009), Hickson Compact Groups of Galaxies (P. Hick- 
son 1982), Extended Virgo Cluster Catalog (K. Suk, 
R. Soo-Chang et al. 2014), which contained the clus- 
ter associations for their galaxy members. Because the 
Abell catalogue by itself does not contain information 
about its cluster members, a complete search was per- 
formed on NED (NASA/IPAC Extragalactic Database) 
with ’ABELL’ as a cross-ID. A total of 131,313 galaxies 
were collected through that search, while 463 obtained 
from Hickson catalog, 1589 from EVCC and 323,221 from 
compact groups (A. McConnachie). 

 
 

A. Selection of galaxies 

 
In order to select which HECATE galaxies were suit- 

able for the purposes of this study, a series of data selec- 
tion techniques were applied on the catalog. 

Firstly, through TOPCAT (Tool for OPerations on 
Catalogues And Tables),  which is an interactive graph- 
ical program that can examine, analyse, combine, edit 
and write out tables, all HECATE galaxies were cross 
matched with the galaxies obtained by the cluster/group 
catalogs mentioned before, to check which HECATE 
galaxies overlapped with a known cluster/group. If they 
were identified a new feature was added to HECATE’s 
galaxies with the label of the cluster/group they be- 
longed. 

Regarding the cross match criteria, the algorithm used 
by TOPCAT, compares elliptical regions on the sky. The 
search radius of each HECATE galaxy was the D25 el- 
lipse, which represents the region of the galaxy where the 
surface brightness falls to 25 magnitudes per square arc- 
second, a standard level used to define the size of galaxies 
in photometric studies. So, the position of each HECATE 
galaxy was characterized by: RA (degrees), DEC (de- 
grees), D25 semi-major axis (arcmin), D25 semi-minor 
axis (arcmin) , and the position angle (degrees). When 
information about the axis of D25 ellipse was missing, 
galaxies assumed to have major and minor radii around 
0.5 arcmin. 

fulfillment of the following criteria. 

 
• The velocity dispersion of the galaxies in each 

cluster was computed and the ones exceeding the 
mean ± 3std limit were dropped from the dataset. 

• Galaxies that had difference, between their velocity 
and their cluster’s provided in the relevant catalog, 
above 4000km/s were characterized as outliers and 
they were discarded. 

 
The criteria above were primarily established to ensure 

that galaxies obtained by NED database were indeed real, 
and not possible outliers  stored as ”ABELL” galaxies.  It 
is also worth noting that galaxies which appeared to be 
members to both a compact group and a cluster (dupli- 
cates) were assigned with their cluster label instead. Fol- 
lowing the procedure above the final labeled galaxy set 
contained 1584 galaxies from EVCC catalog, 353 galaxies 
belonging to Hickson’s compact groups, 2142 to the Mc- 
Connachie et al. compact groups and 7438 belonging to 
Abell clusters, resulting in total 11517 HECATE galaxies 
with their cluster label assigned. 

 
 

III. METHODS 

 
That labeled galaxy set, i.e HECATE galaxies found 

to already reside well known groups and clusters, was 
used for spatial clustering in 3D in a semi-supervised 
manner. By semi-supervised, the domain knowledge, no- 
tably the cluster label for each galaxy was leveraged. The 
advantage of having cluster labels for a small subset of 
HECATE led to the methodologies detailed in this sec- 
tion. 

Each galaxy, on the labeled set, was characterized by 
four features. RA (Right Ascension), DEC (Declination), 
and Redshift described the spatial information of each 
galaxy in spherical coordinates. Because redshift by itself 
was not contained as an information in HECATE, all ve- 
locities were converted through the Doppler relationship 

urs 

For the galaxies obtained by the other catalogs, a cross z =  
c

 
match was performed between them and their clusters, 
for the first to obtain their cluster association. During 
this cross match, the galaxies assumed to be point sources 
while the angular size of the clusters/groups were pro- 
vided in the corresponding catalogs. 

Then a cross match between all  HECATE galaxies 
and the galaxies obtained by the other catalogs was per- 
formed. The algorithm compared the ellipses of HECATE 
galaxies and the ellipses of 0.5 arcmin, both as semi- 
major and semi-minor axis, for the other galaxies. A 
match between galaxies occurred if there was an over- 
lap between these ellipses. 

Secondly, the final labeled galaxy set, containing  all 
the cross matched galaxies, was further examined for the 

where urs is the recessional velocity of a galaxy and c is 
the speed of light. The fourth feature provided was the 
cluster label, indicating the specific cluster or group, 
to which each galaxy belong. To ascertain the spatial 
relationships between galaxies, pairwise distances were 
computed for every galaxy pair using a custom distance 
function adapted for spherical coordinates, 

 
D =      r2  + r′2       2rr′(sinθsinθ′cos(φ     φ′) + cosθcosθ′) 

(3.1) 
where  (r, θ, φ)  and  (r

′
, θ

′
, φ

′
)  are  the  spherical  coordi- 

nates  of  a  galaxy  pair.  The  distance  r  and  r
′
 of  galaxies 

was calculated through Hubble’s Law for small redshift 
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Figure 2. Illustration of eps and min samples (blue data 
points). 

 

 
Figure  3.  Construction  of  dendrogram  and  application  of 
distance threshold. 

 
 

values 

r = 
urs 

H0 

where H0 is the Hubble constant, which was set to 
67km/s/Mpc. 

Given that galaxies in HECATE catalog exist  in  the 
local universe, and thus have small redshift values, the 
expansion of the universe can be approximated as linear. 
This linear approximation consequently ensures that dis- 
tances derived from redshift measurements will satisfy 
the triangular inequality. Keeping this in mind, the pro- 
posed distance metric for calculating galactic distances, 
between individual galaxies, is justified. 

Clustering techniques in machine learning traditionally 
refers to unsupervised learning methods used to group 
data points into distinct clusters based on some measure 
of similarity without prior labels. However in reality, data 
can sometimes include some labels, or even details like 
constraints indicating which items should or shouldn’t be 
linked together. This added information can offer valu- 
able insights for both clustering and identifying outliers. 
Building on this concept, semi-supervised clustering is a 
technique that leverages these labeled items while also 
grouping the unlabeled ones. 

Before the clustering procedures, it was necessary for 
the total number of ground truth clusters to be calcu- 
lated. The basic assumption was that the minimum num- 
ber of galaxies in order for a cluster/group to be identified 
was four. That resulted on 190 different clusters existing 
on the labeled galaxy set. 

Three different clustering methods were then applied 
to the labeled data to obtain spatial clustering results, all 
provided by the scikit-learn python library. These meth- 
ods were optimized, to check how well they predicted the 
ground truth cluster labels while also achieving a high 
performance. 

 

1. DBSCAN clustering 

DBSCAN (Density-Based Spatial Clustering of Ap- 
plications with Noise) is a density-based clustering 
algorithm that groups together data points that 
are in close proximity based on a distance mea- 
sure (eps) and a specified density, i.e minimum 
number of points (min samples) (Fig. 2). Unlike 
many other clustering methods, DBSCAN does 
not require the number of clusters to be speci- 
fied a priori. This allows the algorithm to iden- 
tify clusters of varying shapes, making it espe- 
cially useful for data with non-globular and irregu- 
lar structures. The most important of its parame- 
ters, is metric, which defines the method to calcu- 
late the distances between different points in the 
dataset. The most commonly used metric, suit- 
able for datasets where features are continuous, is 
Euclidean distance given by 

 

Distance = ((x2 − x1)2 + (y2 − y1)2 

for two points in a 2-D space represented as (x1,y1) 
and (x2, y2). Moreover, another notable feature of 
DBSCAN is its ability to distinguish noisy or out- 
lier data points, classifying them as points that do 
not belong to any cluster due to a lack of suffi- 
cient density. Its capability to isolate and distin- 
guish outliers adds a layer of robustness, allowing 
for more accurate clustering results and making it 
more reliable in real-world applications where noise 
and anomalies are present. 

2. Agglomerative clustering 

On the other hand, Hierarchical clustering is a 
methodology that creates a tree of clusters known 
as a dendrogram (Fig.3), illuminating the hierar- 
chical structure of data points based on their sim- 
ilarity. Among the different approaches is hierar- 
chical clustering, Agglomerative clustering is the 
most common, which adopts a ”bottom-up” strat- 
egy. Starting with each data point as a single clus- 
ter, it recursively merges the closest pair of clusters 
into a single cluster, continuing this process until 
only one large cluster remains or a stopping crite- 
rion is met (distance threshold) (red dotted line, 
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Fig.3). This enables the exploration of data group- 
ings at various levels of precision, affording a bet- 
ter understanding of the inherent structures within 
the dataset. The metric which specifies the distance 
metric used between individual data points is called 
affinity, where also in this case the most common 
is Euclidean. Another requirement is the selection 
of an appropriate linkage criterion which deter- 
mines the proximity between two clusters. Linkage 
criteria, such as single-linkage, complete-linkage, 
and average-linkage, dictate whether the distance 
between the closest points, farthest points, or the 
average distance between all points in the clusters 
will be used as the merger criterion respectively. 
This choice significantly influences the shape and 
depth of the clusters formed. In several cases the to- 
tal number of clusters for the algorithm to predict, 
can also be defined, by configuring the n cluster 
attribute. 

3. Running them sequentially. 

At first, DBSCAN and Agglomerative clustering  were 
run separately. Then the labeled dataset was split into 
train and test samples, 80% and 20% respectively. The 
same galaxies belonging to train set for one procedure, 
was the same for the other. In that way a fair and accu- 
rate comparison is ensured among the algorithms eval- 
uation performance and clustering results. When DB- 
SCAN and Agglomerative clustering were combined on 
a sequential approach, they had to be trained on differ- 
ent training sets in a way to avoid overfitting. So the 
initial dataset was first divided into 80%-20% train and 
test samples, and then the train set was further split into 
40%-40%. Each half was used to train each clustering al- 
gorithm. On all cases the best models were evaluated on 
the 20% test sample. 

Upon dividing the initial dataset into  an  80%-20% 
split, a notable issue emerged. Consider a scenario in- 
volving a group of four galaxies. The splitting process 
could potentially allocate one galaxy to the test sample, 
leaving the remaining three for training, or the other way 
around. Under such circumstances, given the present as- 
sumption that a cluster needs 4 galaxies to be identified, 
DBSCAN is likely to classify these isolated galaxies as 
outliers, leading to the loss of that particular group. So 
to avoid missing any small clusters of galaxies, the best 
model acquired by both clustering algorithms was re-fit 
on the complete set of galaxies. In that way all galaxies 
were assigned their predicted match. However, this ap- 
proach inherently risked overfitting, because the proper 
approach would require the model to be applied on a sep- 
arate test set. For the purposes this thesis, the primary 
focus was to examine the behavior of the labeled data 
and to create a model that best describes them. In this 
specific context, the potential overfitting is not of great 
concern. 

Hyperparameter tuning process occurs with the use of 
RandomizedSearchCV  python  library.  Instead  of  trying 

 
Table I. Notation Table 

Notation Description 

eps 

min samples 

metric 

Minimum density threshold 

Minimum number of points 

Method to calculate distances 

distance threshold 

 

n cluster 

affinity 

linkage 

Linkage distance to 

stop merging clusters 

Number of clusters found 

Metric to compute distances 

Proximity between observations 

param distribution 

cv 

 
scoring 

List  of  parameters 

Number of cross-validation 

splitting 

Evaluation of performance 

 
 
 

out every possible combination of hyperparameters, as 
in GridSearch, it samples a fixed number of sets from 
specified distributions, param distribution. The main 
advantage of this approach is that it can be faster and 
more efficient than an exhaustive search, especially when 
the hyperparameter space is large. Another important 
usage is that it incorporates cross-validation, a vital tech- 
nique in ensuring the robustness of the model’s evalua- 
tion. Cross-validation involves partitioning the training 
data into a specified number of folds. Instead of training 
the model on the entire train set and then evaluating on 
a separate test set, the train set is divided e.g in 5 folds 
(cv=5) (Fig. 4), and the model is trained on all but one 
of these folds, and validated on the remaining fold. This 
process is repeated until each fold has served as a vali- 
dation set. By doing so, it reduces the risk of overfitting 
and provides a more comprehensive assessment of the 
model’s performance on unseen data. Last but not least, 
it requires a scoring parameter which will evaluate the 
performance of the hyperparameter combinations. 

Another way for someone to get insights about the 
influence of different values of hyperparameters on the 
training and validation set is by plotting the validation 
curves. A validation curve is a tool used in machine 
learning to provide helpful information about the models 
complexity, expressed through hyperparameters, and the 
models performance. By analyzing it, it becomes clear 
how well the model behaves on unseen data (validation 
score). If both train and validation scores are low, then 
the model is underfitting, meaning that its to simple or 
has been regularized too much. When the training score 
is much higher than the validation, the model fits very 
well the training data but fails to generalize to new in- 
put data. In this case the model is overfitting. The ideal 
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where F1score is a measure of a test’s accuracy and 
was calculated by 

F score =
 2 ∗ TP 

 

2 ∗ TP + FP + FN 
 
 
 
 
 
 
 
 
 
 

 
Figure 4. Illustration of cross-validation procedure. 

 

 
case is when the model is just right, where it fits the 
training set very well while also generalizing new input 
data. In such cases the scores between the two curves 
are comparable. In summary, validation curves can be 
used, only, to illustrate the impact of hyperparameters, 
it should not be used to tune the model. 

 
 

IV. Evaluation 

 
Given the luxury provided by the ground truth labeled 

galaxies, a suitable assessment metric would be the cre- 
ation of a custom scoring function which would evalu- 
ate the agreement between ground truth and predicted 
galaxy cluster labels. 

Here is an overview of the function’s implementation 

 
• For a true cluster in the labeled set, the function 

finds the galaxies residing in it. 
 

• It extracts the predicted cluster labels of these 
galaxies. 

• It scans all the predicted clusters. 

• Computes the true positives, false positives and 
false negatives by assuming two classes, one for the 
specific predicted cluster being investigated and all 
the others as a second class. 

• Computes the F1score for each predicted cluster 
and stores the predicted cluster with the highest 
value. 

• When the scan is completed, the function continue 
to the next true cluster following the same proce- 
dure. 

 

• Finally, for all true clusters in the labeled set, it cal- 
culates the mean between all maximum F1scores. 

As true positives were defined the predicted galaxies that 
were correctly identified by the algorithms to be part of 
a specific true cluster. As false positives denoted the pre- 
dicted galaxies that the algorithm incorrectly identified 
as part of a specific true cluster. And as false negatives 
were the predicted galaxies that the algorithm failed to 
identify as part of a specific true cluster. 

The custom scoring function was designed to assess 
the efficacy of clustering predictions on labeled data. The 
objective here was to find the optimal set of model pa- 
rameters or ”hyperparameters” that maximize the agree- 
ment between the predicted and true clusters. For each 
true cluster, the function identifies which predicted clus- 
ter has the highest overlap of data points, quantified by 
the highest F1score. After calculating the highest scores 
for each true cluster, the function computes their aver- 
age, returning this average score as a comprehensive met- 
ric for evaluating the performance of a clustering model. 
The optimal hyperparameter set is then determined as 
the one that maximizes this mean score across all true 
clusters, ensuring the most accurate representation of the 
underlying data structure is achieved. This entire process 
constitutes an optimization problem aimed at maximiz- 
ing the model’s predictive accuracy in assigning galaxies 
to their true clusters. 

 
 

V. RESULTS 

 
In this section, the clustering procedures that resulted 

in 3D spatial galaxy clustering for all three clustering 
techniques are presented. Two different metrics were 
tried to be optimized during each clustering procedure. 
The first was particularly concentrated on the optimiza- 
tion of the clustering algorithms performance (F1score) , 
by finding their best hyperparameter combinations. The 
second was that, the model with the best hyperparam- 
eter set should reproduce the same number of clusters, 
as know by ground truth. The results on how the differ- 
ent clustering techniques classify the predicted galaxies, 
is presented on figures 11-14 (Fig. 11-14), on a selection 
of five well known clusters, such as Virgo, Coma, Hydra, 
Abell 2197 and Abell 2199. 

 
 

A. DBSCAN 

 
The primary goal was initially to conduct hyperpa- 

rameter tuning on DBSCAN and explore its hyperpa- 
rameter space in order to optimize the algorithm’s per- 
formance according to the custom scoring function. The 
minimum number of galaxies was determined to be 4 
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(min samples=4), a decision grounded in the  assump- 
tion that a minimum of four galaxies is required for the 
identification of a group. The distance metric that has 
been used between galaxies is the one mentioned before 
on methods section (3.1). The exploration was particu- 
larly focused on finding the most effective value for the 
eps parameter. 

 

 
Figure 5. Validation curve of DBSCAN. 

 
As illustrated on the validation curve (Fig. 7),  the 

model peaks on epsilon  values  ranging  from  2  to  6. 
The fact that the range between  training  and  valida- 
tion curves from epsilon values of 2 to 10 is comparable, 
should be noticed as well. A cross-validation process was 
then implemented on the training set (80% of whole la- 
beled set). For a number of folds equal to five, cv = 5, the 
best value of epsilon obtained was 6, a value that peaked 
the validation score’s curve. Despite of that, a value of 2 
seemed to be a more appropriate choice, since the model 
there starts to converge. 

After the best hyperparameter combination was ob- 
tained, the model was fit again and predicted the labels 
of the whole labeled data set (100%). This resulted on a 
total number of predicted cluster labels equal to 190, as 
expected from the ground truth. The reason why the best 
model was fit and predicted on the whole labeled data is 
the one described on the previous section as well. For 
a 80%-20% split, clusters with 4 members will probably 
not be discovered by DBSCAN. Hence, the predicted la- 
bels corresponding to the test set were extracted from the 
whole predicted label list in order to be evaluated. The 
final performance of the model on unseen (test) data was 
91.8%. 

 
 

B. Hierarchical clustering 

 
In the configuration of Agglomerative clustering algo- 

rithm, the total number of clusters (n clusters) param- 
eter was assigned a value of ’None’, enabling the algo- 

 

 

 
Figure 6. Validation curve of AgglomerativeClustering. 

 
 

rithm to find the optimal number of clusters correspond- 
ing to a varying distance threshold value. The method to 
calculate the distance between galaxies, affinity, was 
provided by relation (3.1). Furthermore, the linkage cri- 
terion, responsible for determining the proximity between 
sets of observations, was set to single, so that the al- 
gorithm to use the minimum of the pairwise distances 
between galaxies in two clusters, as the cluster distance. 

A cross-validation procedure was performed in order to 
find the optimal distance threshold value that maximized 
the custom scoring function. The train set was split into 
5 folds and the result of the process was that the best 
distance threshold value was around 6. Then the best 
model was acquired and fit on the whole labeled data for 
the predicted labels of all galaxies to be computed. 769 
cluster labels were obtained for all labeled galaxies, way 
higher than ground truth. As observed on the validation 
curve, a distance threshold which resulted a number of 
predicted cluster labels     190, was be around 12.5. But 
its crystal clear that for values higher than 6 the model 
is overfitting. 

The predicted labels of the test galaxy set, were ex- 
tracted, in order to evaluate the best model acquired by 
RandomizedSearchCV process. The  evaluation  resulted 
in 94.1%. 

 
 

C. Sequential method 

 
For the sequential approach, DBSCAN and Agglomer- 

ative Clustering were trained on distinct datasets. The 
initial dataset was first divided into 80%-20% train test 
samples, and the train set was further split into 40%-40%. 

The first 40% part underwent training with the DB- 
SCAN algorithm, resulting an epsilon value  of  2.  Then 
the best DBSCAN model was applied on the second 40%, 
by fitting it and predicting its galaxy cluster  labels.  In 
that way, galaxies that were assigned as outliers were dis- 
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Figure 7. Validation curve of DBSCAN on sequential method. 

 

 
Figure 8. Validation curve of Agglomerative clustering on se- 
quential method. 

 

 
carded from this set. The new ’cleaned’ galaxy set was 
used to train the Agglomerative clustering algorithm, re- 
sulting a distance threshold of 5. The final step was to ap- 
ply this best agglomerative clustering model on the whole 
labeled set to obtain the predicted galaxy cluster labels, 
resulting 1028 different cluster labels. As mentioned be- 
fore, the evaluation was implemented on the test set that 
was initially left outside of the whole training procedure. 
By extracting the test sets predicted galaxy labels, the 
performance according to the custom scoring function 
achieved a score of 97.4%. 

The best hyperparameters of each clustering method is 
presented on Table II. To assess the performance of clus- 
tering algorithms in classifying predicted galaxies as part 
of ground truth clusters, a comprehensive examination 
was conducted focusing on five well known galaxy clus- 
ters: Virgo, Coma, Hydra, Abell 2197, and  Abell  2199 
(Fig. 11-14). This 3D representation  aimed  to  discern 
the efficacy of the algorithms  in  accurately  categoriz- 
ing the predicted galaxies and discerning whether they 

truly belong to the aforementioned clusters, serving a ro- 
bust measure of the algorithm’s precision and reliability 
in the task of astronomical clustering. The analysis con- 
centrated on these well-established clusters to ensure the 
validity and reliability of the clustering results, thereby 
providing insights into the appropriateness of the applied 
algorithms in the context of astronomical clustering. 

 
 

 
Figure 9. Summary of DBSCAN and Agglomerative clustering 
processes. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 10. Summary of DBSCAN and Agglomerative cluster- 
ing processes on sequential approach. 
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VI. DISCUSSION 

 
Studying the results of the DBSCAN method, as ob- 

served in its validation curve, a more suitable choice 
would be an epsilon value of  6. That epsilon value 
besides giving the highest validation score also results a 
total number of 155 clusters, when its fit on the whole 
labeled set. Moreover, the level of overfitting is higher at 
that specific value, because the gap between validation 
and training scores are greater over the value of 2. Since 
the presence of a plateau, for the validation score, for 
these two values, the choice of adopting an epsilon value 
of 2, not only provided the same number of predicted 
clusters as the ground truth but also achieved a high 
performance when it was evaluated on the test galaxy 
set. 

As it is seen on figures 11-14, the DBSCAN model per- 
forms well in identifying the predicted clusters as struc- 
tures. Also it  can classify  projected  galaxies  as parts  of 
a different clusters (misclassifications) and not as part of 
the ground truth clusters provided by the known cata- 
logs. Galaxies that are randomly aligned along our line 
of sight and the cluster being investigated, are correctly 
identified as misclassifications as well. Regarding Coma 
cluster’s evolutionary state, its known to be in a equilib- 
rium state. This is justified from its spherical shape, but 
also from galaxies identified as projections at higher red- 
shift. For the case of Abell 2197 and 2199, which appear 
to be on a merging process, the algorithm cannot dis- 
tinguish their separation since the galaxies are relatively 
close to each other. 

Agglomerative clustering method, as observed in its 
validation curve predicts the same number of ground 
truth clusters at a distance threshold value of 12.5. The 
problem is that the model at that point clearly overfits. 
So the choice of a distance threshold value of 6, was more 
appropriate despite predicting a large number of clusters. 

The predicted clusters are well defined as structures 
also in this case. A problem occurred in the case of Coma 
and Leo clusters, as observed on the first figure, where 
both clusters are predicted as merged. Lastly, it is clear 
that the algorithm cannot identify as much projection 
galaxies as DBSCAN. 

The sequential approach, where the two clustering 
methods were combined, seems to be a more appropri- 
ate method. Predicted clusters are of course well defined 
(Fig. 11-14). DBSCAN tends to misclassify a larger num- 
ber of galaxies in clusters that cover a broad redshift 
range, whereas Agglomerative clustering does not dis- 
play this behavior to the same level. This difference is 
especially notable in the case of the Coma Cluster, as il- 
lustrated on figures 11-12. This inconsistency can be at- 
tributed to the inherent strictness of DBSCAN in exclud- 
ing more galaxies as projected, contrasted with a more 
tolerant approach of Agglomerative clustering concerning 
the redshift dimension. Additionally, DBSCAN seems to 
exclude galaxies that reside the edges of the extended 

Virgo cluster and Hydra cluster (Fig. 11-13). However, 
employing a sequential approach appears to offer a bal- 
anced agreement between the tendencies of the two clus- 
tering models, bridging the gap and yielding more con- 
sistent results. 

Given also the fact that the sequential approach 
achieved a higher scoring of 97.4%, when evaluated on the 
unseen galaxy set, highlights that is a better approach to 
be applied on such galaxy data. 

 
 

VII. CONCLUSION 

 
In this thesis, three different clustering approaches 

were discussed for the purpose of clustering the whole 
HECATE catalog. Given the advantage of having a small 
labeled HECATE sample, led to the semi-supervised pro- 
cedures proposed. 

All of these clustering techniques work quite well with 
the labeled galaxy set, since they can identify the struc- 
tures of the clusters and possible galaxy alignments and 
projections. DBSCAN alone predicts the total number of 
ground truth clusters and does a better job in identify- 
ing misclassifications compared to Agglomerative cluster- 
ing. Moreover, DBSCAN can be quite strict, on exclud- 
ing galaxies out of clusters. Agglomerative clustering, on 
the other hand seems to better detect under structures, 
i.e subgroups, on the ground truth cluster set, since the 
predicted number of clusters was higher. 

The sequential approach was considered as a stacking 
of the two clustering models to obtain the ultimate pre- 
diction. DBSCAN cleaning the galaxy data set from out- 
liers and then Agglomerative clustering performing the 
clustering process on that cleaned galaxy set. This ap- 
proach was implemented due to the desire to explore the 
combined potential of both algorithms, examining how 
the sequential application could enhance the reliability 
and accuracy of the clustering results. The high score of 
97.4% indicates that its more effective in predicting the 
already known clusters, than when DBSCAN or Agglom- 
erative clustering are performed separately. 

For the case of galaxies classified as projections, a fur- 
ther study on updated catalogs is required. In new sur- 
veys, performed with more precise observations, misclas- 
sified galaxies can be identified as part of major clusters. 
This investigation, especially for misclassified galaxies, 
will enhance the reliability of the clustering results pre- 
sented in this thesis. 

It is important to mention the fact that there is some 
overfitting on the final results. When best models were 
acquired, they were  applied on the  whole  labeled  set 
to obtain a galaxy cluster prediction for each labeled 
HECATE galaxy. In general, it would be more appro- 
priate to be applied on an unseen galaxy set. But given 
the nature of the data set that was inevitable. 

For future applications on the whole HECATE catalog, 
and not just the labeled set performed in this study, all 



10 
 

three clustering methods can be applied with the hyper- 
parameters set from this analysis, hoping that the results 
will still be significant. It should be noted that clustering 
the whole 204733 galaxy catalog will be a computation- 
ally expensive procedure, and that is why this thesis was 
limited only on the already labeled galaxies of HECATE. 
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Algorithm Hypeparameters Range Value Score 

 

DBSCAN 
eps 

min samples 

1-10 2.0 

4.0 

 

91.8% 

Agglomerative distance threshold 1-20 6.0 94.1% 

 eps 1-10 2.0  

Chain min samples  4.0 97.4% 

 distance threshold 1-20 5.0  

 

Table II. Table of different clustering techniques, with their corresponding best hyperparameter values. Range column refers to 
the range on which hyperparameters were investigated. Scores were obtained by the evaluation of each model on the labeled 
test set (20%). 
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Figure 11. Visualization of galaxy classification and prediction results, where each subfigure corresponds to a different clustering  
method applied on galaxy clusters. On the top left corner the true galaxies are displayed, serving a reference for accurate  
classification. Underneath the results of DBSCAN clustering are presented. The top right corner represents Agglomerative  
clustering results and underneath are the outcomes derived from the sequential method. Actual galaxies are denoted by filled  
colored circles, whereas predicted galaxies are represented by overlapping empty squares of different color. Misclassified ob jects 
are highlighted with an ’X’ mark and referring to false positive galaxy measurements. This set illustrates the Extended Virgo  
Cluster accompanied with Leo (back) and Coma (front) clusters. 
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Figure 12. This set illustrates the Coma cluster. 
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Figure 13. This set illustrates the Hydra cluster. 
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Figure 14. This set illustrates the Abell 2197 and Abell 2199 clusters. 


