

ProteoSign 2.0: A differential expression analysis tool for

Proteomics data

by

Evangelos Theodorakis

Master in Bioinformatics

Faculty of Medicine - University of Crete
Heraklion, Crete, June of 2019

Abstract

Bottom-up proteomics analyses have been proved to be a powerful tool
in the characterization of the proteome. Through differential proteomic analysis
one can shed light on groups of proteins or individual proteins that give rise to
various conditions -normal or pathological. However the tools for the analysis
of such data sets are either hard-to-use with steep learning curves although
powerful, or easy to use, but lack the analytical power of others. In order to cope
with these challenges, we present ProteoSign 2.0, the upgrade of ProteoSign, a
tool for differential proteomic analysis for proteomics datasets coming from
MaxQuant or Proteome Discoverer™.

Introduction

The use of mass spectrometry (MS)-based quantitative proteomics, has
proved its value as a robust tool for probing the vast proteome and its functional
dynamics regardless of the level of biological organization (cell, tissue or
organism)1. Advances in bioanalytical chemistry, mass spectrometry and
bioinformatics, allow the detection, the relative quantification and the functional
annotation of more that 4.000 proteins in a single experiment, within an hour,
utilizing methods from the so-called bottom-up Proteomics approach2.
Proteomics methods can be classified into two distinct groups, depending on
their technical approach: the bottom-up proteomics and the top-down
proteomics. In the , still developing, top-down proteomics, intact proteins are
analyzed using MS techniques, while in , the more mature, bottom-up
proteomics, proteins are proteolytically digested into peptides, then separated
and analyzed by nano-flow liquid chromatography, electrospray ionization and
tandem mass spectrometry (nLC–ESI-MS/MS). In the case that bigger
proteomes, such as the human proteome, are to be analyzed, the protein
mixtures are fractionated on protein and/or peptide level using
gel-electrophoresis or chromatography, prior to proteolysis and
nLC–ESI-MS/MS analysis. Following that, peptides are measured with MS

approaches in order to detect their accurate mass, their relative or absolute
abundance and their amino acid sequence. Having this information, each peptide
is assigned to its “parent” protein and thus the protein abundance is calculated.
Despite the fact that, top-down proteomics can natively detect different protein
isoforms and post-translational modifications (PTMs), bottom-up proteomics
offer better peptides separation, both on nLC and MS level, as well as higher
sensitivity and accuracy, establishing the bottom-up proteomics as the most
commonly used approach for high throughput proteomics today3.
While, mass spectrometers can detect extremely low concentrations in complex
mixtures, MS-based proteomics are not quantitative by nature. To overcome this
restriction, several approaches have been proposed for measuring the intensity
and distinguishing the origin of each peptide. These approaches can be grouped
into Label-Free Quantification (LFQ) and Labelling methods, each one with its
strengths and weaknesses. Labeling methods can be further divided into three
subcategories such as metabolic labeling, isotopic labeling, and isobaric
labeling. In metabolic labeling, cultures are treated with different growth
mediums, each one containing amino acids of labeled with unique molecular
weight isotopes. Then, the mass spectrometer takes advantage of the mass shift
of each peptide during the first MS stage, making it possible to distinguish the
culture from which each peptide came from. The most well-known metabolic
labeling method is the stable isotope labeling by amino acids in cell culture
(SILAC), which also exists in the form of various altered protocols such as the
pulsed SILAC (pSILAC) and the NeuCode SILAC. Metabolic labeling methods
offer the advantages of reduced bias and short analysis duration, as the cultures
can be mixed and analyzed in the same MS run. In addition, due to the fact than
many proteins end up attaining the introduced labels, SILAC is the most
well-established metabolic labeling method in bottom-up proteomics 4. In
isotopic labeling, a method similar to metabolic labeling, chemical probes of
predetermined weight are attached to the biological samples of interest. Its key
difference compared to the metabolic labeling protocols is that this method
offers the opportunity to label and analyze samples that do not contain live cells,
such as tissue samples and biological fluids. On the same principle, peptides or
proteins coming from the same sample are distinguished during the first MS
phase , as in metabolic labeling methods, based on their mass shift. While this
method is fast, and more robust in terms of sample type, it is not as accurate as

metabolic labeling, due to the fact that newly added tags can be easily separated
from the proteins of interest during the LC elution phase. There are several
protocols for isotopic labeling as isotope-coded affinity tags (ICAT), terminal
amine isotopic labeling of substrates (TAILS) and global internal standard
technology (GIST). The last subcategory of labeling methods, is the isobaric
labeling. In isobaric labeling peptides are labeled with tags of identical weight
and chemical properties. This allows different tags to co-elute during the LC
phase without suffering from the isotopic labeling detachment. Furthermore,
isobaric labeling possesses greater multiplexing power against isotopic methods
as the number of different samples that can enter the first MS phase is greater
than in isotopic labeling and offering higher overall throughput. Typical isobaric
protocols are the tandem mass tags (TMT) and the isotopic tags for relative and
absolute quantification (iTRAQ)5. Despite the fact that labeling methods are less
biased compared to the label-free methods, these methods are time consuming
and costly compared to the label-free methods6. Label-free proteomics were
proposed as a fast and cheap alternative were each sample is essentially a
different MS run. Protein abundance in each sample can be calculated either by
measuring the ion peak intensity or the spectral counting of the peptides.
However, this method lacks the analytical power and the elasticity of labeling
methods, and it is not ideal when samples have small differences in protein
expression levels, as well as having each sample run separately on the mass
spectrometer increases the technical bias7. In all the previously discussed
methods, a typical step of the MS/MS run is the fractionation of the protein
mixtures in several fractions, which leads to the improvement of the analytical
depth of the mass spectrometer, as it reduces the protein mixture complexity.
Providing that the proper experimental method was chosen, researchers have to
pick a suitable tool for the downstream analysis. A typical pipeline for a
proteomics analysis consists from the following steps: (1) data import of the
quantified peptides, (2) filtering of the contaminants/unwanted peptides, (3)
normalization of peptides intensities, (4) imputation of missing values, (5)
aggregation of the peptides to calculate the abundance of their “parent” proteins,
(6) statistical analysis and (7) the resulting plots alongside the produced results
in a well-structured format. The statistical analysis step could contain several
types of analysis such as differential expression analysis, exploratory analysis,
pathway/GO enrichment analysis and much more, depending on the biological

question. Nevertheless, the sequence of the steps, as well as their presence is not
fixed. Depending on the approach and the experiment some steps as the filtering
and the imputation are not present in some tools, while others follow alternative
sequences of steps or even major differences in the type of input files, such as
peptide input files or protein input files. Depending on the degrees of freedom
that the user ask for, the are tools with modular structure where each step is
constructed by the user and others that follow a more conservative approach
were the user can only tweak only a few parameters of analysis, desktop or web
applications, tools that are dedicated to specific experimental types and others
which can deal with a variety of experimental types and setups. The reason for
such differences between tools is the constant effort of researchers to fill the gap
between specificity and user-friendliness.
Notwithstanding, that this plethora of tools could satisfy the needs of
researchers, it is not uncommon for a piece of software not to be maintained or
upgraded after a certain period of time. In the shifting landscape of Proteomics,
where new pipelines proposed regularly, the need for well-polished techniques
and up-to-date tools and methods is crucial. In this paper, we will present the
new major improvements on ProteoSign, a web application tool for differential
expression analysis for bottom-up Proteomics. ProteoSign 2.0 takes into account
the collective knowledge of major existing tools regarding their advantages and
disadvantages, and aims to increase the accuracy of the previous version
through an enhanced pipeline, offer more plot options, while it significantly
decreases the amount of time for a full analysis.

Methods

Designers say that “The joy of an early release lasts but a short time. The

bitterness of an unusable system lasts for years”8. While new tools are being
created everyday, many of them consider their scalability as a trivial detail. This
makes promiscuous projects difficult to maintain, and eventually they get
abandoned due to the lack of funding, server space and software
incompatibility. ProteoSign 2.0 is implemented in R, but with a completely
different architecture, focusing on scalability, reproducibility, low memory
footprint, high analytical power and speed. It lays the foundations for a better

approach on bioinformatics software design by utilizing the terms code
scaffolding and dependencies management from the software design world,
making its core architecture one of its key striking features.

Code scaffolding is the automatic code generation, either a priori or on
runtime, of predefined code templates, on which the software can be build upon,
on a more scalable, powerful and reproducible way. While code scaffolding is a
well-established and mature technique used by software developers and
computers scientists, bioinformaticians tend to underestimate its importance.
This assumption can be easily confirmed by the lack of such tools for
bioinformatics software development in R for big projects. For this purpose, we
developed the project-initilizeR, an R package aiming to fill this gap9.
Project-initializeR sets up the project folder which consists from the following
files and folders: (1) the data-input folder, (2) the data-output folder (3) the src
folder (4) the info folder and (5) the reports folder. The data input folder
contains all the input data that will be used by the analysis and are not generated
by the analysis. Data-output folder contains all the output data generated by the
analysis. The info folder acts as a generic folder for all the other data not
affiliated with the analysis itself such as PDFs, PowerPoints, TODOs, etc and
acts as a laboratory notebook. Finally the src folder contains all the needed
scripts for the analysis. The src folder contains the following scripts: (1) main.R
which sets the current working directory and calls the initialize.R, load_data.R,
pull_data_from_DB.R, build.R analyze.R scripts, (2) functions.R which
contains all the needed functions and can be further splitted into
functions_XXX.R, (3) explore.R the which is used for data exploration and the
testing of code chunks, (4) the initialize.R script which loads all the needed
packages, libraries and data regarding the workspace, loads the functions.R
script and sets the global variables of the project, (5) load_data.R which loads
all the data-input files (csv/xlsx/txt/RDS etc) needed for the analysis and
displays the loaded files, (6) pull_data_from_DB.R which is used for explicitly
data input using a database, (7) build.R which is the script where all the data
wrangling happens in order to prepare the data, (8) analyze.R which contains the
all the analysis steps. In addition, there are scripts such as build_ppt.R,
prepare_shiny.R, prepare_markdown.R, markdown_report.Rmd,
shiny_report.Rmd for the preparation and the constructions of meaningful
reports based on the analysis outcomes. All the scripts, apart from the

explore.R, which is allowed to be messy, should follow the Google’s R Style in
terms of code style10. In Figure 1 you can see the structure of
project-initializeR.

Figure 1 shows the basic architecture of project-initializeR. The user starts by calling the
project-initializer.R script, which in turn generates all the needed folders and files, and fills each file
with the appropriate content.

The second term borrowed from the software design world is the
dependency management. Building data analysis pipelines, using multiple
libraries is a challenging - and usually frustrating – task. The developer often
struggles to make his pipeline functional due to missing packages, conflicts and
unsuitable versions. And even if he or she manages to make the analysis run,
isolation, portability and reproducibility are not guaranteed, making dependency
management in a non-trivial task during the first stages of software
development. In order to overcome this laborious procedure, ProteoSign 2.0
utilizes the Packrat dependency system for R11. Packrat is responsible for storing
all the needed packages locally in our project directory. During a new R session,
R will be able to access only the packages in our private library without
affecting our globally installed packages. With Packrat, we ensure that our

projects are bound with specific packages and versions, without worrying that
new packages or updates of previously used packages may break our software,
as the packages that accompany each project are installed locally. This offers
effortless sharing of our projects as the only thing needed in order to ship our
project to a different machine, is to take a snapshot of our project and then
restore the snapshot on the target machine. Following the aforementioned
methods will guarantee the scalability of ProteoSign 2.0, on its future releases.

Apart from the engineering part of our software, clear understanding of
the biological question could help us keep things simple and stupid (KISS
principle), by not repeating ourselves (DRY principle). Likewise ProteoSign
1.0, ProteoSign 2.0 reads input from either, the proteinGroups.txt and
evidence.txt output from the MaxQuant software12,13, or the PSM file
(multiconsensus.txt or psm.txt) output file provided by the Proteome
Discoverer™ software14 (versions 1.4+). Besides the same input support,
ProteoSign 2.0 supports multiple biological replicates, technical replicates and
fractionation of the samples. Regardless of the experiment type, the ProteoSign
2.0 reads the analysis parameters from the analysis-metadata.csv file, a comma
separated file consisting from two columns, the parameter column with multiple
parameters, and the value column, with the values of each parameter. The
analysis-metadata.csv file contains the following parameters, without quotes: 1)
analysis.name, a string variable for the name of the folder which will contain the
results of the analysis e.g. PXDXXXX, 2) conditions.to.compare, a list with the
2 conditions to compare with e.g. M, H, 3) replicate.multiplexing.is.used, a
boolean variable in case of replicate multiplexing e.g. FALSE, 4) dataset.origin,
a string variable stating the origin of the data set e.g. MaxQuant or
Proteome-Discoverer 5) is.label.free, a boolean variable stating that the
experiment type is Label-Free e.g. FALSE 6) is.isobaric, a boolean variable
stating that the experiment type is Isobaric e.g. FALSE, 7) timestamp.to.keep, a
string variable for subsetting of the data set in the case of multiple timestamps
e.g. 290212, 8) subset.to.keep, a string variable for subsetting of the data set in
the case of the simultaneous analysis of different subproteomes e.g. membrane,
9) raw.files.to.remove, a list of strings with raw.files IDs to be removed from
the data set e.g. X, 10) raw.files.to.replace, a list of string to overwrite the
previously inserted raw.files.to.remove 11) minimum.peptides.detections, an
integer variable for the minimum number of detections for a peptide, in order to

be considered as a valid detection e.g. 1 (default is 1), 12)
minimum.peptides.per.protein, an integer variable setting the minimum number
of peptides belonging to a protein in order to be considered as a valid protein
(default is 2),13) min.valid.values.percentance, the percentage of valid values
for a protein to XXXX (default is 50),14) plots.format, an integer indicating the
format (eps, ps, tex, pdf, jpeg, tiff, png, bmp, svg) of the generated plots (default
is 5), 15) error.correction.method, a string variable indicating the error
correction method (BH for Benjamini-Hochberg or B for Bonferroni) of the
topTreat function during the analysis step (default is BH),16)
fold.change.cut.off, a float number indicating the minimum absolute
log2-fold-change for a protein in order to be considered as significant and 17)
FDR, a float number indicating the minimum cut-off of the adjusted p-value in
order to be considered significant. The experimental setup is supported from a
universal comma separated file regardless of the analysis, the
experimental-structure.csv file, which contains four columns, the raw.file, the
biological.replicate, the technical.replicate and the fraction column. The raw.file
column contains the raw.files’ names as strings, and the rest of the columns are
represented as integers. In the special case of a Label-Free experiment, an
additional comma separated file, the raw-files-to-conditions.csv, is used. This
file contains two columns the raw.file and the condition column, both in string
format, where each file is corresponds to a condition. On the other hand, in the
case of an isobaric experiment, the tags-to-conditions.csv file consist of two
columns, the tag column and the condition column. The tag column contains the
ID of the tag and the condition column contains the condition of each tag. The
tags-to-conditions.csv and the raw-files-to-conditions.csv follow an identical
format.

ProteoSign 2.0 starts with the script main.R bootstrapping the whole
analysis. During this early stage, main.R will prepare the ground by cleaning the
R environment from any forgotten objects, returning the freed memory to the
OS and setting up the Packrat project directory. Following that, main.R will
install the package here15 which makes the browsing between folders easier,
load the package here and then it will call the scripts initialize.R, load_data.R,
build.R and analyze.R. If by any reason, an exception is raised, the error is
catched and the analysis execution is terminated with the appropriate message.
During the development stages, an additional package called TODOr was used.

TODOr is an R addin which helps find notes and flags in the code such as
FIXME, TODO, CHANGED, BUG etc, available on GitHub16. In the
development stage TODOr is called alongside the here package any any other
package that is used by the development stage is conditionally called or loaded
when needed. However, if the analysis is not called for the first time, which
means that the packrat environment is already set, there is no need for new
installations and the packages are loaded straight away.

The next step on our analysis is to load all the needed packages and
functions regarding the analysis. At the very start of every step, we clear the
environment from any objects that are no longer necessary, and return the freed
memory back to the OS. After that, we continue with the loading of all
packages.

The packages used by ProteoSign 2.0 are the:

1. data.table as the main data structure 17. data.table is an enhanced
data.frame, aiming in a fast and memory efficient way of data
manipulation. data.table offers a complete range of functions for data
read, write, subsetting, updating and reshaping. It is the 10th more starred
package on Github and the fastest package of data manipulation across
multiple data science packages such as (spark,(py)datatable, dplyr,
pandas, dask,Dataframes.jl) as seen on Figure 2

2. splitstackshape. The package splitstackshape provides splitting of
concatenated data. We utilize the cSplit function for fast column
unfolding into multiple lines or columns based on a specific separator18.

3. vsn for the normalization of peptides’ intensities19.
4. imputeLCMD for the imputation of the missing values20
5. limma for the statistical analysis
6. VennDiagram for Venn diagram generation 21
7. ggplot2 for plot manipulation and genetation22. ggplot2 is the most

well-established package for plot generation and is a part of tidyverse, a
collection of R packages designed for data science, sharing the same
philosophy, grammar and data structures

Figure 2 demonstrates the benchmarking results of data.table against the most widely used packages
for data manipulation regardless of the technology (Python, R, Julia etc).

During the development stages the package rbenchmark was also used23.
Rbenchmark was used for the comparison of various methods functions and
packages in order to pick the fastest and most memory efficient methods used
by ProteoSign 2.0. In Figure 3 you can see packages used for the construction
of ProteoSign 2.0.

Figure 3 illustrates each package and software that was used for the construction of ProteoSign. The
logos were generated using the hexsticker R package.

Finally, we call the functions.R script to load all the functions on our
namespace. The functions are split inside the functions_load_data.R,
functions_build.R and functions_analyze.R files respectively.

Now that the required packages and functions have loaded on our
namespace, we can start with our data. The first file loaded on the memory is
the analysis-metadata.csv file with the analysis parameters. The analysis
parameters are saved on a global object called “global.variables”in order to be
containerized and to be globally available. If the input data set corresponds to a
Label-Free experiment, we additionally load the raw-files-to-conditions.csv file,
where each raw file is assigned to a condition. On the other hand, if the analysis
is tailored for an isobaric experiment, the tag-to-conditions.csv is also read. If

neither of the aforementioned files is loaded, the analysis corresponds to an
isotopic experiment. Following that, the next file loaded is the
experimental-structure.csv file, which contains the information regarding the
experimental setup, matching each raw file to a biological replicate, technical
replicate and/or fraction. Next off, the evidence file with the peptides’
intensities is loaded. Before we are able to use the evidence file, we have to
ensure that the file does not contain any trailing whitespaces. To clean the
evidence file fast and efficiently, we utilize the tr Unix command. The tr
(translate) command reads a byte stream from a standard input, translates it
depending on the two sets provided as input, and writes the result on the
standard output. This byte reading behavior gives us great speed and efficiency,
as it can translate files of 1GB in a split second. Now that we have cleaned the
file, we can read it swiftly and turn it into a data table using the fread function of
the data.table package. With our draft evidence data ready, we start
standardizing the data by trimming the column names of whitespaces and
lowercasing them. After that, regardless of the experiment type, we search
through the evidence data column names to find the intensity columns and to
lowercase them. Here, we exploit the fact that switch statements are faster than
if statements in R. To utilize this information, we produce an experiment ID
using the following formula :

experimental.type.id = (is.label.free * 1) + (is.isobaric * 2) + 1,

where code 1 is for Isotopic experiments, 2 for Label-Free experiments and 3
for Isobaric experiments. Now that we have the intensity columns we can start
subsetting the evidence data, keeping only the needed columns. This way the
evidence data.table will have smaller memory footprint, making any data
transformations execute faster. In the case of a MaxQuant input file, we keep
the following columns: 1) proteins, 2) raw.file, 3) protein.ids, 4) protein.names,
5) id, 6) protein.descriptions, 7) peptide.id, 8) unique.sequence.id and 9) the
intensity columns. In the case of a Proteome Discoverer input file things are not
so trivial. Due to the differences between the software version, column names
can vary. In order to deal with that we try to keep the potential columns : 1) id,
2) unique.sequence.id, 3) annotated,sequence, 4) spectrul.file, 5) modifications,
6) protein.group.accessions, 7) protein.accessions, 8) protein.descriptions, 9)

quan.usage, 10) peptide.quan.usage, 11) proteins and 12)protein.groups. In
addition, we filter the rest of the column names to get rid of the useless
columns. Ideally depending on the experiment type we try to also keep the 1)
light/medium/heavy column if the experiment type is Isotopic, 2) the intensity
column if the experiment type is Label-Free and 3) the isobaric tag e.g.
126/127/128 etc if we are on an isobaric experiment. This is the most
challenging part of the analysis for a dataset coming from Proteome-Discoverer.
Having all the needed columns of the experiment data, ProteoSign 2.0 supports
further trim of the data.table, offering the option to keep specific time stamps of
specific sub-proteomes from our initial evidence data, by searching through the
file names and keeping only those that match our criteria. Last but not least, it
offers the option to rename specific raw files by reading two sets of file names
(old.names/new.names) from the optional arguments found in the
experimental_metadata.csv. In the case of a MaxQuant input, we read the
additional file proteinGroups.txt, following almost the same pattern as we did
with the evidence.txt. We clean the file using the tr command, we store the data
into a data.table, trim and lowercase the column names and keep only the
following columns: 1) protein.ids, 2) fasta.headers, 3) protein.names, 4)
only.identified.by.site, 5) reverse, 6) contaminants, 7) id, 8) peptide.ids and 9)
evidence.ids. Whenever each file is read successfully, it is stored to the globally
available object “global.variables”.

With the raw data available, we can now start transforming our data into a
common format regardless of the analysis type. As previously stated, we start
the analysis by removing from the environment any variables or objects apart
from the functions loaded, the global variables and the project variables, and
return the freed memory to the OS. Then, we read the global variables located in
the “global.variables” object and store them locally. In the current version, the
tool checks the number of the conditions to be compared, and if the number of
conditions to be compared is different than 2, the tool terminates with the
appropriate error message. In feature releases, the tool could support the
comparison of multiple conditions. In the case of a Label-Free experiment, we
order the raw-files-to-conditions.csv matrix by raw.file name and then transform
the matrix into a linked list where the outer list contains the conditions and for
each condition, the inner list contains the raw files belonging to that condition.
On the other hand, if the analysis is targeted for the Isobaric experiment, we

merge the reported intensities for each condition based on the tags provided by
the tags-to-conditions.csv and replace the peptides with zero intensity with NAs.
After that, we add an extra column to the experimental structure with the
condition of each raw file, otherwise if it is not a Label-free experiment, we add
the “Labeled Experiment” string as a condition. Next, we order the experimental
structure matrix rows by conditions, biological replicates, technical replicates
and by fractions. Now, we want to check the experimental structure for its
biological validity. The experimental structure ought to have at least two
biological replicates for each condition, if the analysis is to be (biologically)
valid. The only exception is the case were we utilize the experiment
multiplexing approach, where we allow the existence of a single biological
replicate per condition. If the number of biological replicates per condition is
less than to, the analysis is terminated with the appropriate message. Later on,
we want to ensure that the numbering of the biological and technical replicates
is correct, as it is typical that the replicates numbering may be mistyped e.g.
replicates may be numbered as 1, 2 , 34 instead of 1, 2, 3. To achieve that, we
first make list of lists where each element is a condition and each condition
contains the biological and technical replicates belonging to the aforementioned
condition. Then we check the numbering of the biological and technical
replicates for each condition, making a list of list containing booleans. If the
biological or technical replicates do not have the correct numbering, the tool
will try to correct the numbering, and will also inform the user about the
alterations and the fixes proposed by the tool. Finally, the global variables will
be updated with the corrected values. Then we want to make a column that
describes each line on the experimental.structure. To do that we use the formula:

experimental.setup.id = (1 * biological.replicates.exist) +
(2 * technical.replicates.exist) + (3 * fractions.exist),

This way, depending on the id returned, we know the type of experimental
structure. This was the last addition to the experimental.structure matrix and
now we can turn in into a data.table for faster manipulation. We also hold the
information about the number of biological/technical replicates, fractions for
each condition on an object called experiment.metadata. Then, we update the
experimental.structure variable on the global.variables object with the one
previously made, and with the experiment.metadata as well. Finally, if we are

not on an Isobaric experiment,we replace the values of peptides with zero
intensity with NAs. Now, we are able to combine all the data provide into a
custom data.table that is common for all the experimental set ups regardless on
the analysis type. At this point, the evidence.data object contains 5 columns: 1)
the protein column, which contains the proteins that the peptide is supposed to
belong, 2) the raw.file column with the name of the sample that the peptide was
detected, 3) the intensity column with the intensity of the detected peptide, 4)
the id column which contains an incremental unique id for each peptide and 5)
the peptide.id column which is an id for each peptide. Firstly, we will unfold the
evidence.data data.table. To do that, we start by picking up the correct protein
names column. If the data set comes from the MaxQuant, we pick the Proteins
column. This column contains all the protein ids that this particular peptide
might belong to. There is also the leading proteins columns that contains the
protein with the best score that we could pick, but we bypass the MaxQuant
scoring system and decide to keep all the information about possible parent
proteins. On the other hand, if the data set comes from the Proteome Discoverer
software, then there is a variety of possible protein column names such as
protein.group.accessions or protein.accessions depending on the version of the
software. If the aforementioned column names do not exist, then the software
returns an error and stops the analysis. In future releases, the ProteoSign will
support more versions of the Proteome-Discoverer. Then, regardless of the
origin of the data set, we rename the column with the proteins, as protein.ids.
Now that we have picked the protein.ids column. We begin by attempting to
find the protein names column. If the column does not exist on our data set, we
will utilize the fasta headers column in order to extract the protein names, and
we will keep only the first fasta header. After that, we will order the
protein.groups.data data.table by the evidence.ids column and remove any lines
that does not contain any information on the evidence.ids column. This column
contains the peptide ids that we will find in the id column in the evidence.data
data.table and essentially, it corresponds to a peptide. Then, we subset the
protein.group.data data.table, by keeping only the protein.ids, protein.names and
evidence.ids columns. Now with the protein.group.data subset, we unfold the
data.table by splitting the evidence.ids entries into multiple lines at the “;”
character. To do that fast and efficiently, we use the cSplit method found in the
splitstackshape package. Then, we rename the evidence.ids column of the

unfolded protein.groups.subset to id, and if needed, set the column class from
string to integer, and we reorder the evidence.data and protein.groups.subset by
id. In the case that evidence.data contains the columns protein.names or
protein.ids, we remove those columns. With the two data sets, evidence.data and
protein.groups.subset sharing common fields, we can now merge them by id, as
the union of the two subsets, keeping all the columns and ordering the newly
merged superset by id. After that, we order the evidence.data by the protein.ids
column, remove any empty lines and update the evidence.column.names
variable just in case that the evidence.data file was altered. Next we plan to trim
the column with the protein descriptions. This column can contain great volume
of information as Taxonomy IDs, Database IDs etc. If our data come from the
MaxQuant, the protein.description.column will be the protein.names, otherwise
it will be the protein.descriptions column. This step could potentially be used
for further data mining. Next we will add to the evidence files a condition
column with the condition in which this peptide belongs to. If the experiment
type is Isobaric or Isotopic, there will be no column added, as the intensity
column will have been added on a previous step. Now, if the conditions
provided by the user are more than two, we can easily get rid of the extra
columns, and focus on the conditions that we want to compare. Then, depending
on the experiment type we will merge the evidence.data data.table with the
raw.file and condition columns in the case of a label-free experiment, or with
the raw.file column in the case of a Labeled experiment. In both cases we merge
the evidende.data with the experimental.structure object using the
aforementioned columns as common. Finally, we end up with a common format
data.table, containing the protein.ids, the intensity column with the intensities’
of a given peptide in a given sample, the condition column with the condition in
which each peptide belongs, the protein.ids column, the protein name in which
this peptide is believed to belong and the description column, which contains
the sample name. Then we count the number of the conditions. If the number of
the conditions is 1, then we assume that we have an Isobaric experiment,
otherwise is a Label-free or Isotopic/Metabolic labeling experiment. If we are
on a Label-free or Isotopic/Metabolic labeling experiment, we transform the
data.table by grouping the intensities of each condition for every unique
combination of sample, protein.ids and unique.sequence.id. Now instead of the
condition and intensity columns, our data.table contains the columns

condition.A and condition.B alongside the columns description, protein.ids and
unique.sequence.id. If a unique combination of description, protein.ids and
unique.sequence.id does not have a detected intensity (not even a missing
value), is marked as NULL and this peptide will be disqualified from any
further downstream analysis, as a peptide has to be detected in both conditions
for a given combination. After that, we remove any NA protein.ids entries and
we store the universal data.table analysis.data in the global.variables object. In
the case of an Isobaric experiment, we just find the intensity rows of each
column that does not contain any intensity (NA) and remove the union of those
rows. Now we have finished with the data.wrangling step and we are ready to
proceed with the downstream analysis.

As always, we start our downstream analysis step by cleaning the
environment and discarding every object except the global.variables. Then we
load all the needed variables for the analysis such as the analysis.data data.table,
the minimum.peptides.detections, the minimum.peptides.per.protein, the
minimum.valid.values.percentance, the experimental.metadata, the is.label.free
boolean variable, the analysis.name, the plots.format, the
error.correction.method, the fold.change.cutoff, the FDR and the
condition.to.compare variable. Then, we check the analysis.name for its
validity. It should not contain any whitespaces or punctuation marks. If there are
any, we replace them with dashes. Next, we will make there result folders
structure. Each analysis stores its results in a folder named by the analysis.name.
Inside of that folder, there are 3 subfolders, the intermediate-data folder, the
limma-output folder and the plots folder. The intermediate-data folder contains
all the data.table intermediate results in .csv format generated by the
downstream analysis at each step (build step,filtering step, normalization step,
imputation step, aggregation step, and the data for the VENN diagram), except
at the step of the differential analysis using the limma package. The
limma-output folder contains the results of the differential analysis of
ProteoSign 2.0 in csv format and the plots folder contains all the plots generated
by ProteoSign. All the plots are generated in two versions, one with titles and
descriptions and one without. The first step on our analysis is to do a VENN
diagram of the proteins found in the 2 conditions. The number of the resulted
proteins in both conditions will be determined by the restrictions that we
introduced before, such as the minimum number of detections for a peptide, the

minimum number of peptides per protein, the number of valid values for a
peptide etc. Then we filter our data for contaminants, reverse sequences, and
proteins only identified by site. This is done by filtering the analysis.data
data.table using the protein.ids column. Following the filtering of the peptides,
we will normalize the data and we will plot the normalized and unnormalized
intensities of the peptides in each sample. For the normalization step, we will
use the VSN (variance stabilizing normalization) method, as it was proposed as
the most suitable method for proteomics data normalization as part differential
analysis study. A potential drawback of this method ,is that VSN normalization
tends to yield underestimated logFC results24. We normalize between the
conditions we will compare (pairwise-normalization) and if we have multiple
detections of a specific peptide inside a sample, we take the median of its
detected intensities’. In future upgrades, ProteoSign could offer more
normalization methods and/or global normalization. However, the review
suggests that the global normalization would not have any impact on AUCs of
the analysis. Our next step is the imputation step. At the imputation step we will
try to fill the intensities’ missing values, using the quantile regression
imputation of left-censored data method25. This method was proposed as the
most suitable method for imputation of left-censored data, which is the type of
data that is common in Proteomics experiments 26, and in addition it was shown
the superiority of the peptide-level imputation against protein-level
imputation27. Before the imputation of the values for each condition, we will
disqualify those peptides that have more missing values more than our
threshold. The default threshold is 40% missing values
(min.valid.values.percentage set to 60), but the greater the amount of missing
values, the lower the performance of the imputation step. Having our data
imputed, we can now proceed to the aggregation step. At this step we will sum
the intensities of all peptides that belong to the same protein28. Here, the user
have control over the strictness of the detected proteins, as he or she can
determine the minimum number of peptides belonging to a protein in order for
the protein to be accepted in our downstream analysis as truly detected. The
default number of minimum peptides per protein is 2 and if a proteins has less
peptides detected than the threshold, it is disqualified by further downstream
analysis. Following the aggregation of the peptides’ we will QQ plot the
intensities of the proteins. Finally, the last step of our analysis is the differential

expression analysis using the limma package. We start by constructing the
design matrix of our Proteomics experiment. If we do not have technical
replicates, the design matrix will be an N x 2 matrix, where the columns
correspond to a condition and the rows to a sample. Each cell of this matrix, will
contain the value 1 or 0 depending on the fact that this sample belongs to a
specific condition. On the other hand, if the experiment contains technical
replicates, we construct the limma.block matrix to pass the technical replicates
as blocking variables and we also calculate their correlation. Then, we will call
the lmFit function of the limma package using the aggregated data and the
design matrix as input, and if we have technical replicates, with the limma block
and the technical replicates correlation parameter as well, to fit a linear model
for each protein of our data set. Next, we call the makeContrasts function of the
limma package, to construct the contrasts matrix with the conditions that we
will compare and then we call the contrasts.fit calculate the coefficients and the
standard errors of our contrasts based on the linear model that we fitted to our
data. Now, instead of using the empirical Bayes for the calculation of p-values,
we use the treat method from limma package. We prefer the treat method, as we
want to examine the null hypothesis that the log2-fold-change of a protein in the
conditions we examine, is greater than our user-defined threshold and not just
zero, as it is in the eBayes method. In addition, we set the trend argument of
treat on TRUE, using the so-called limma-trend method. This will modify the
empirical Bayes to also take into account the mean-variance relationship in the
modeling of each protein. Apart from the trend method, we utilize the robust
Bayes method to protect the empirical Bayes from hyper or hypo variance, a
condition that is common in RNA-seq or Proteomics data due to small number
of samples. Now that we have all the proteins with their p-values, we apply the
error correction method of our choice and we order them by their p-value
(lowest to highest) marking the proteins that meet our criteria as differentially
expressed. The error correction methods available are the Bonferroni or the
Benjamini-Hochberg error correction method. The Bonferroni error correction
method, for the control of familywise error rate (FWER), helps us reduce the
number of type I errors (false-positives) while the Benjamini-Hochberg is a less
stringent control of type I errors that Bonferroni, which controls the proportion
of false-positives in the total of our positive results, called false discovery rate
(FDR). Finally, we generate some volcano plots, MA plots, value-ordered plots

and fold-change histograms of the results. Now, all the results of the
downstream analysis (plots, data, intermediate data) are saved under the
data-output folder, inside the folder with the name of the analysis.

Results

ProteoSign 2.0 updated pipeline can be summed up in Figure 4 while the
old pipeline of version 1.0 is demonstrated on Figure 5. Apart from its novel
pipeline of ProteoSign 2.0, we wanted to test its analytical power compared to
the old version of the software. To do that, we decided to test the two versions
against the PRIDE PXD001373 data set. The data set belongs to a Label-Free
experiment, analysed by MaxQuant that contained a differential expression
analysis aiming to shed light on the pathogenicity of Pseudomonas aeruginosa
through its ability to form biofilms. A key structure of these biofilms are fibrils
that are formed by a functional amyloid system. This system is coded by a
6-gene operon (FapA-F). On this paper, the researchers examine the differences
of the biofilm characteristics between a wild-type strain of P. aeruginosa
(PAOwt) with low Fap expression and one with overexpression (PAO1pFap).

The data set was analyzed with ProteoSign 1.0, ProteoSign 2.0 , Perseus,
InfernoRDN, Prostar and MSqRob. The analysis time was 2 minutes for
ProteoSign 2.0 and 11 minutes for ProteoSign 1.0 suggesting a significant
decrease on the analysis time for the new version of the software. The analysis
with Perseus and InfernoRND took 2 minutes, 5 minutes for Prostar and 35 for
MSqRob. Figure 6 contains the total differentially expressed proteins for each
tool. Interestingly, only 121 proteins were marked as differentially expressed by
both versions of ProteoSign as we can see on Figure 7. MSqRob is absent from
the following plots as it failed to detect and proteins as DE (while the ridge
regression models of MSqRob yielded significant proteins, the logFC of ther
DE proteins was below the 1.5 FC threshold).

Figure 4 summarizes the pipeline of ProteoSign 2.0. While ProteoSign 1.0 begins with the
aggregation of the peptides and then proceeds with the normalization of the protein intensities’,
ProteoSign 2.0 does the normalization on peptide-level and also incorporates an imputation step.

Figure 5 contains the old pipeline of ProteoSign 1.0. In the old pipeline the analysis starts with the
aggregation of the peptides, while in the new pipeline it is the last step before the LIMMA model fit.

Figure 6 contains a bar plot with the amount of differentially expressed proteins for each tool. While
we tried each tool to follow the same analysis pipeline, even minor differences in the methods for
each step or even between versions of the same tools can lead to different results.

Figure 7 Venn diagram of the detected proteins as differentially expressed between the two versions
of ProteoSign. The difference between the amount of the detected proteins can be explained by the
difference in their pipelines as well as in the more strict approach of version 2.0.

In the original paper, it was supported that 41 proteins associated with the
functional amyloid system were differentially expressed. As we see on Figure
8,
there are various differences between the tools.

Figure 8 shows the barplots with the number of hits of each tool against the 59 differentially
expressed proteins detected by the study for the PXD001373 dataset.

However, to decide which tool had the best performance over our data set, we
use the F1 score metric. F1 score offers a harmonic mean between the
specificity and the sensitivity of a test. As seen on Figure 9 ProteoSign 2.0.

Figure 9 contains demonstrates the F1 score of each tool against 59 DE proteins of the original data
set. As we can see ProteoSign 2.0 scores the second best score across the tools, balancing specificity
and sensitivity.

Finally in Figure 10 you can find a collage of the analysis’ plots for the
PXD001373 dataset.

Figure 10 is a collage of all the descriptive plots of the PXD001373 data set analysis, produced by
ProteoSign 2.0. The plots from top-to-bottom and from left-to-right are: 1) venn diagram, 2) volcano

plot, 3)value ordered plot , 4) Q-Q plot, 5) MA plot, 6) boxplots of each replicate before the
normalization, 7) boxplots of each replicate after the normalization, 8)histogram of the logFC.

Discussion

Differential analysis of Proteomics data can offer us better understanding
of the poly-dynamic potential of Proteome. Despite the challenging nature of
wet-lab methods and techniques of Proteomics’ data generation, both labeling
and label-free techniques have made a great impact on the field of Proteomics,
offering us accurate results, increased number of proteins successfully detected
and shorter analysis’ durations. The availability of new dry-lab methods for
each individual step in the differential expression analysis pipelines, demands
that scientists keep their tools sharp through constant evaluation, re-evaluation
and maintenance of existing software tools. ProteoSign 2.0 embraces the idea of
natural selection in software design, were the old methods are altered,
re-evaluated and enhanced or replaced by new ones, adapting to the constantly
shifting landscape of data analysis. It tries to fill the gaps of the previous version
by introducing an alternative pipeline, alongside new steps for data
normalization and imputation. A challenging part of such software tools, are not
only the methods that change day by day, but the lack of standardized protocols
and data formats in data input too, which makes the life of both software
developers and biologists hard. ProteoSign 2.0 is planned to run under a new
more user-friendly web page in the future. The web-page will be built upon the
MEAN stack (MongoDB, Express, Angular and NodeJS) and with the
MaterializeCSS CSS framework, focusing on UX, and running as a whole on a
Docker Container to promote software portability. In addition its functionality
could expand further, with GO enrichment analysis and pathway analysis. Last
but not least, the project-initializeR project could mature into a complete CRAN
or Bioconductor package and become a standard for R-based bioinformatics
analysis scaffolding.

References

1. Anderson, N. L. & Anderson, N. G. Proteome and proteomics:
New technologies, new concepts, and new words. Electrophoresis 19,
1853–1861 (1998).

2. Hebert, A. S. et al. The One Hour Yeast Proteome. Mol.

Cell. Proteomics 13, 339–347 (2014).

3. Coorssen, J. R. & Yergey, A. L. Proteomics Is Analytical

Chemistry: Fitness-for-Purpose in the Application of Top-Down and
Bottom-Up Analyses. Proteomes 3, 440–453 (2015).

4. Schwanhäusser, B., Gossen, M., Dittmar, G. & Selbach, M.

Global analysis of cellular protein translation by pulsed SILAC.
Proteomics 9, 205–209 (2009).

5. Gevaert, K. et al. Stable isotopic labeling in proteomics.

Proteomics 8, 4873–4885 (2008).

6. Patel, V. J. et al. A comparison of labelling and label-free

mass spectrometry-based proteomics approaches. J. Proteome Res. 8,
3752–3759 (2000).

7. Zhu, W., Smith, J. W. & Huang, C.-M. Mass

spectrometry-based label-free quantitative proteomics. J. Biomed.
Biotechnol. 2010, 840518 (2010).

8. Pavelin, K. et al. Bioinformatics meets user-centred design:

a perspective. PLoS Comput. Biol. 8, e1002554 (2012).

9. Vangelis Theodorakis. project-initializeR: Scaffolding for

large R Projects. (2018). Available at:
https://github.com/VangelisTheodorakis/project-initializeR.
(Accessed: 24th June 2019)

10. Google’s R Style Guide. Available at:
http://web.stanford.edu/class/cs109l/unrestricted/resources/google-style.ht
ml. (Accessed: 24th June 2019)

11. Packrat: Reproducible package management for R.

Available at: https://rstudio.github.io/packrat/. (Accessed: 24th June
2019)

12. Cox, J. & Mann, M. MaxQuant enables high peptide

identification rates, individualized p.p.b.-range mass accuracies and
proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372
(2008).

13. Tyanova, S., Temu, T. & Cox, J. The MaxQuant

computational platform for mass spectrometry-based shotgun
proteomics. Nat. Protoc. 11, 2301–2319 (2016).

14. Proteome DiscovererTM Software. Available at:

https://www.thermofisher.com/order/catalog/product/OPTON-30795.
(Accessed: 24th June 2019)

15. Müller, K. A Simpler Way to Find Your Files [R package

here version 0.1].

16. Krzemiński, D. Find All TODO Comments and More [R

package todor version 0.0.5].

17. Matt, D. data.table: Extension of ‘data.frame’. Available

at: https://cran.r-project.org/web/packages/data.table/index.html.
(Accessed: 24th June 2019)

18. Ananda, M. splitstackshape: Stack and Reshape Datasets

After Splitting Concatenated Values. (2019). Available at:

https://cran.r-project.org/web/packages/splitstackshape/index.html.
(Accessed: 24th June 2019)

19. Huber, W., von Heydebreck, A., Sultmann, H., Poustka, A.

& Vingron, M. Variance stabilization applied to microarray data
calibration and to the quantification of differential expression.
Bioinformatics 18, S96–S104 (2002).

20. Lazar, C. imputeLCMD: A collection of methods for

left-censored missing data imputation version 2.0 from CRAN. 2015
Available at: https://rdrr.io/cran/imputeLCMD/. (Accessed: 30th April
2018)

21. Hanbo, C. VennDiagram: Generate High-Resolution Venn

and Euler Plots. Available at:
https://cran.r-project.org/web/packages/VennDiagram/index.html.
(Accessed: 24th June 2019)

22. Hadley, W. Create Elegant Data Visualisations Using the

Grammar of Graphics [R package ggplot2 version 3.2.0].

23. Kusnierczyk, W. Benchmarking routine for R [R package

rbenchmark version 1.0.0].

24. Välikangas, T., Suomi, T. & Elo, L. L. A systematic

evaluation of normalization methods in quantitative label-free
proteomics. Brief. Bioinform. 19, bbw095 (2016).

25. Hastie, T., Tibshirani, R., Narasimhan, B. & Chu, G.

impute: Imputation for microarray data. Available at:
https://bioconductor.riken.jp/packages/3.2/bioc/html/impute.html.
(Accessed: 30th April 2018)

26. Wei, R. et al. Missing Value Imputation Approach for Mass
Spectrometry-based Metabolomics Data. Sci. Rep. 8, 663 (2018).

27. Lazar, C., Gatto, L., Ferro, M., Bruley, C. & Burger, T.

Accounting for the Multiple Natures of Missing Values in Label-Free
Quantitative Proteomics Data Sets to Compare Imputation Strategies.
J. Proteome Res. 15, 1116–1125 (2016).

28. Carrillo, B., Yanofsky, C., Laboissiere, S., Nadon, R. & Kearney,
R. E. Methods for combining peptide intensities to estimate relative
protein abundance. Bioinformatics 26, 98–103 (2010).

