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Abstract
Turnaround density probes cosmology. In other words, the matter density within the turnaround
radius of a large-scale structure depends on cosmology. So far, it has been shown, both through
spherical collapse calculations and through N-body simulations, that measurements of the turn-
around density can probe both Ωm, and ΩΛ. These calculations assumed that dark energy had the
form of a cosmological constant. They showed the turnaround density is particularly sensitive to
the halting of structure growth imparted by a cosmological constant or, alternatively, dark energy.
In this thesis, we study how different equations of state of dark energy affect the turnaround
density, and whether we can use observations of turnaround density in galaxy clusters to constrain
the dark energy equation of state. We do so within the context of the spherical collapse model. We
explore both clustering and non-clustering dark energy, and in particular we study the sensitivity
of the evolution of the turnaround density on the value of w which parameterizes the dark energy
equation of state, in each of the two cases. We find that the behavior of the turnaround density
with time is qualitatively similar in all the cases studied (converging for high redshift; decreasing
at low redshift). However, they are different enough for the turnaround density to act as a
meaningful probe of the dark energy equation of state. Interestingly, we also find no-go regimes for
turnaround in the case of non-clustering dark energy, or even cases where structures disintegrate
after turnaround, consistent with "big rip" scenarios.
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Chapter 1

Introduction

The study of large-scale structure is of fundamental importance in cosmology as it provides
critical insights into the evolution of the Universe, placing crucial constraints on the cosmological
parameters. Within the framework of the Spherical Collapse Model (SCM) (Gunn and Gott,
1972), one of the most prolific tools of the field, spherical shells around originally overdense
regions, in an otherwise homogeneous and isotropic Universe consisting only of ordinary matter,
dark matter and dark energy (DE), as is the case of our Universe since the beginning of the matter-
domination era, initially expanding alongside the background, are predicted to slow down and
eventually turnaround, leading to structure formation and the creation of large-scale structures:
galaxies, galaxy groups, and galaxy clusters. In this context, the turnaround radius is defined as
the distance from the center of a cosmic structure to the shell that is detaching from the Hubble
flow at a given time and is the largest radius this structure can reach, if the material content it
encloses remains conserved.

While the turnaround radius itself is not universal, the matter density within it (the turnaround
density) is, varying only with redshift and the assumed cosmology. This means that, all structures
turning around at the same redshift are characterized by the same turnaround density indepen-
dently of their mass and assembly history. This has been shown to be true both in the context of
the spherical collapse model, as well as in full N-body cosmological simulations (Pavlidou et al.,
2020, Korkidis et al., 2020). It is exactly this universality, combined with the cosmological de-
pendence, that makes turnaround density an attractive cosmological observable. For this reason,
the turnaround density has been proposed to serve as a new, independent of all preceding (SNs,
CMB, BAOs), cosmological probe. Its particular dependence on the cosmological parameters
gives it the additional attractive feature that measurements of the turnaround density alone have
the potential to lift the degeneracy in the parameter plane of Ωm and Ωde, the matter (dark and
baryonic, combined) and dark energy density parameters, respectively, normalized to the critical
density at present epoch, that renders the Universe Euclidian (see Fig. 1.1).

A wide range of techniques has been applied in determining the dependence of the turnaround
density on the cosmic time and the cosmological parameters. Analytic and numerical calculations
within the SCM framework, as well as full N-body cosmological simulations, allow for concrete
predictions, that may be contrasted to observations and allow for model selection, or at least
rejection of large parts of the parameter space of cosmological parameters that are incompatible
with the data.

In most previous studies of the turnaround density (and in particular, of its evolution through
cosmic time) as a cosmological observable, however, dark energy was introduced in terms of
the cosmological constant, Λ. This corresponds to a perfect fluid of equal magnitude pressure
and density that remain unaltered throughout the entire cosmic evolution. In contrast, in the
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Figure 11. 68.3%, 95.4%, and 99.7% confidence regions in the (ΩM , ΩΛ) plane from SNe combined with the constraints from BAO and
CMB both without (left panel) and with (right panel) systematic errors. Cosmological constant dark energy (w = −1) has been assumed.

z > 1, there is little constraint on w, and only a weak
constraint on the existence of dark energy.

The middle panel shows the effect of dividing the high-
est redshift bin. The constraints on w for z > 1 get much
weaker, showing that most of the (weak) constraint on
the highest bin in the left panel comes from a combina-
tion of the CMB with the well-constrained low-redshift
supernova data. Current supernovae at z > 1 offer no
real constraint on w(z > 1). Providing a significant con-
straint at these redshifts requires significantly better su-
pernova measurements. As in the left panel, w in the
highest redshift bin is constrained to be less than zero
by the requirement from BAO and CMB constraints that
the early universe have a matter-dominated epoch.

The right panel shows the effect of dividing the low-
est redshift bin. While no significant change in w with
redshift is detected, there is still considerable room for
evolution in w, even at low redshift.

Figure 15 shows dark energy density constraints, as-
suming the same redshift binning as in Figure 14. Note
that this is not equivalent to the left and center panels of
Figure 14; only in the limit of an infinite number of bins
do binned ρ and binned w give the same model. Dark
energy can be detected at high significance in the middle
bin (redshift 0.5 to 1), but there is only weak evidence
for dark energy above redshift 1 (left panel). When the
bin above redshift 1 is split at a redshift greater than the
supernova sample (right panel), it can be seen that the
current small sample of supernovae cannot constrain the
existence of dark energy above redshift 1.

8.2. SNe with ground-based near-IR data

Obtaining near-IR data of z ! 1 SNe Ia, whether from
space or from the ground, is critical for constraining the
SALT2 color parameter, c. Without the near-IR data,
the uncertainty in this parameter for 2001hb and 2001gn,
both beyond z = 1, increases by a factor of two. Precise
measurements of c are important, since uncertainties in
c are inflated by β ≈ 2.5 and tend to dominate the error
budget when the corrected peak B-brightness of SNe Ia
are calculated.

Both 2001hb and 2001gn were observed with ground-
based near-IR instruments. The operational challenges
associated in obtaining these data are significant. Long
exposure times (ten hours or more taken within a few
days) in excellent observing conditions are necessary.
Even with queue mode scheduling, these observations are
just feasible. Despite the challenges, the uncertainty in
the SALT2 color of these two SNe Ia is comparable to the
uncertainty in the color of the best space-based measured
SNe Ia at z ! 1.

The ground based near-IR data also allow us to search
for systematic offsets with near-IR data taken from space.
For z > 1.1 SNe Ia observed with NICMOS, the average
SALT2 c value is c = 0.06 ± 0.03 mag. By compari-
son, the weighted average color of the three SNe Ia at
z ∼ 1.1 with ground-based near-IR data (2001hb and
2001gn from this work, together with 1999fk from Tonry
et al. (2003)) that pass the light curve cuts is, 0.01±0.07.
Neither the ground-based or space-based measurements
show any Hubble diagram offset, (∆µ = 0.03 ± 0.10 and

Turnaround density

Fig. 1.1: While cosmological probes like the cosmic microwave background, baryon acoustic
oscillations, and type Ia supernovae only determine a relation between matter and dark-energy
density parameters the turnaround density can break the degeneracy and provide a measurement
of both at the same time. Figure from Pavlidou et al., 2020.

present work, we relax this assumption, aiming to study the potential of the turnaround density
to constrain the equation of state of dark energy.

In particular, we assume a perfect fluid equation of state (EoS) for dark energy, with propor-
tional pressure, p, and energy density ρ, characterized by w, their dimensionless ratio, w ≡ p

ρ
. We

investigate a large range of w values, from −1/3 to −2 (with w = −1, describing the EoS of the
cosmological constant, Λ) to fully explore the regimes of the sensitivity of the turnaround density
as a stand-alone cosmological observable.

We consider two distinct cases for the DE density profile and, in turn, the nature of its relation
to the clustering matter. They constitute extreme choices as intermediate behaviour could also be
fitting. In the first case, DE is assumed to be inhomogeneous, responding to the local deformations
of spacetime, clustering synchronously with matter. This case describes scenarios within which
the total energy content within a shell, as well as each component (matter, DE) individually, are
conserved. In the second case, DE is assumed to be completely homogeneous, insensitive to the
gravitational deformations in the vicinity of the overdense region, independently following the
evolution of the background Universe.
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Chapter 2

Formalism and Methodology

The Friedmann–Lemaitre–Robertson–Walker metric (FLRW) describes an always maximally sym-
metric (isotropic and homogeneous) universe, hence its time-dependent spatial (3d) part is the
product of the time-independent metric that encodes the geometry of the maximally symmetric
3d space and a time-dependent scale factor, a(t), common for all directions, encoding any change
on the size of the universe with respect to time, dictated by the nature and dynamical evolution
of its constituents.

If ds and dΣ are the line elements of the 4d spacetime (FLRW) and its corresponding 3d
space, respectively, we have

ds2 = c2dt2 − a2(t)dΣ2 (2.1)

For maximally symmetric space the metric assumes the following form in reduced-circumference
polar coordinates

dΣ2 = R2
0

(
1

1 − kξ2 dξ2 + ξ2dΩ2
)

, with dΩ2 = dθ2 + sin2θ dϕ2 (2.2)

where k the constant spatial curvature, which is positive, negative or equal to zero for closed,
open or flat universes, respectively, and R(t) = a(t) R0 the aerial radius of a sphere centered at
the origin of the coordinate system, measured in units of its present epoch value, R0, according
to the definition of the scale factor, a(t)= R

R0
= 1

1+z
, which becomes equal to 1 at present day.

We solve the Friedmann equations (FE) in order to determine the scale factor of the universe
as a function of time. They follow from the Einstein Field Equations (EFE),

Gµν = 8πG

c4 Tµν (2.3)

where Gµν the Einstein tensor and Tµν the stress-energy-momentum (SEM) tensor, when the
form of the metric is assumed to be FLRW, for perfect fluids of the same symmetries (isotropic
and homogeneous), with ρ the spatially uniform density and p the spatially uniform and isotropic
pressure. (

ȧ

a

)2
+ kc2

a2 − Λc2

3 = 8πG

3 ρ (2.4)

2 ä

a
+
(

ȧ

a

)2
+ kc2

a2 − Λc2 = −8πG

c2 p (2.5)

Allowing for dark energy with constant w, not necessarily equal to −1, we promote the cosmolog-
ical constant term to a perfect fluid contribution of the stress-energy tensor. Therefore, it enters
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both the EFE and the resulting FE from the RHS as(
ȧ

a

)2
= 8πG

3 (ρm + ρde) − kc2

R2
0 a2 (2.6)

and
ä

a
= −4πG

3
(∑

ρi + 3pi

)
(2.7)

with i referring to the matter and dark energy contributions. Since, pi = wiρi and wm ≈ 0, we
denote wde =w going forward and we have

ä

a
= −4πG

3 [ ρm + (1 + 3w) ρde] (2.8)

Uniform spherical overdensity
Moreover, the Friedmann equations also describe the evolution of a homogeneous and isotropic
structure corresponding to an isolated overdensity of perfect fluid, in the context of the Spherical
Collapse Model (SCM) (Gunn and Gott, 1972). We may therefore write for the evolution of any
particular shell of the uniform overdensity

R̈s

Rs

= −4πG

3 [ ρm,s + (1 + 3w) ρde,s] (2.9)

with ρm,s, ρde,s, the densities of matter and dark energy it encloses at time t, respectively.
If we assume clustering dark energy, which translates to constant spatial curvature for this

isolated spherical shell, we also have(
Ṙs

Rs

)2

= 8πG

3 (ρm,s + ρde,s) − ksc
2

R2
s

(2.10)

where ks the constant 2d Gaussian curvature of the shell. On the other hand, if dark energy
doesn’t cluster, the spatial curvature cannot remain constant, since its evolution is associated to
that of the background rather than being solely governed by local dynamics.

Hence only Eq.(2.9) holds as is, but with the identification ρde,s =ρde. More explicitly, we have

R̈s

Rs

= −4πG

3 [ ρm,s + (1 + 3w) ρde] (2.11)

In both cases alike, for the particular shell experiencing turnaround at a given time we have
Ṙs(t= tta) = 0, with its radius and enclosed matter density promptly identified as the turnaround
radius and turnaround density of the structure at that time. Therefore, defining the shell scale
factor as as = Rs(t)

Rta
, with Rs and Rta its radius at time t and at turnaround, t = tta, respectively,

we may trace its evolution up to tta, from as =0 to as =1, with the equations taking the form

äs

as

= −4πG

3 [ ρm,s − |1 + 3w| ρde,s] (2.12)

(
ȧs

as

)2
= 8πG

3 (ρm,s + ρde,s) − ksc
2

R2
ta

a−2
s (2.13)
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We also note that for the case of clustering dark energy, the constant shell curvature can be
obtained by substituting the condition for shell turnaround, ie ȧs = 0 and as = 1, in the latter
equation, which yields

ksc
2 = R2

ta

8πG

3 (ρs
m,ta + ρs

de,ta) (2.14)

At this point, we use the continuity equation for each species individually, to derive the dependence
of its density on the scale factor associated with its evolution. Starting with the matter density
of the background, we have

ρ̇u
m + 3 Ṙu

Ru

ρu
m = 0 ⇒ ρu

m(t) = ρu
m,0

(
Ru(t)

R0

)−3

⇒ ρu
m(t) = ρu

m,0 a−3 (2.15)

where in the last equation, we used the definition of the universe scale factor for the FLRW
metric, Ru(t)=a(t)R0, with a(t0)=1, t0 standing for today. Likewise, by the continuity equation
for dark energy in the universe, we derive

ρ̇u
de + 3(1 + w) Ṙu

Ru

ρu
de = 0 ⇒ ρu

de(t) = ρu
de,0

(
Ru(t)

R0

)−3(1+w)

⇒ ρu
de(t) = ρu

de,0 a−3(1+w) (2.16)

The continuity equation for matter within the spherical region bounded by the shell, yields

ρ̇s
m + 3 Ṙs

Rs

ρs
m = 0 ⇒ ρs

m(t) = ρs
m,ta

(
Rs(t)
Rta

)−3

⇒ ρs
m(t) = ρs

m,ta a−3
s (2.17)

Finally, regarding the continuity equation for dark energy in the shell, for the case of homogeneous
(non-clustering) dark energy, (2.15) holds unaltered, while for clustering dark energy we have

ρ̇s
de + 3(1 + w) Ṙs

Rs

ρs
de = 0 ⇒ ρs

de(t) = ρs
de,ta

(
Rs(t)
Rta

)−3(1+w)

⇒ ρs
de(t) = ρs

de,ta a−3(1+w)
s (2.18)

We proceed by introducing the critical density at present epoch, ρc,0 = 3H2
0

8πG
, which provides a

measure of the deviation from flat (Euclidean) geometry for the universe, when compared to
the total density of its constituents. We shall use it in order to rewrite our equations in a more
compact form, expressing all relevant densities as normalized to present epoch density parameters,
Ωi,0 = ρi

ρc,0
, thus depending only on the scale factor and the present-day values of the cosmological

and Hubble parameters, denoted from here on as Ωm,0 for matter, Ωde,0 for dark energy, and H0,
respectively.

ρm = ρm,0a
−3

ρc,0
ρc,0 = Ωm,0 a−3 3H2

0
8πG

⇒ 8πG

3 ρm = H2
0 Ωm,0 a−3 (2.19)

which, setting au(t) = a(t)
ata

, becomes

8πG

3 ρm = H2
0 Ωm,0 a−3

ta a−3
u (2.20)

For dark energy

ρde = ρde,0 a−3(1+w)

ρc,0
ρc,0 = Ωde,0 a−3(1+w) 3H2

0
8πG

⇒ 8πG

3 ρde = H2
0 Ωde,0 a−3(1+w) (2.21)
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or
8πG

3 ρde = H2
0 Ωde,0 a

−3(1+w)
ta a−3(1+w)

u (2.22)

Similarly, for the shell we have

ρm,s =
ρs

m,ta a−3
s

ρc,0
ρc,0 = Ωta a−3

s

3H2
0

8πG
⇒ 8πG

3 ρm,s = H2
0 Ωta a−3

s (2.23)

where we used the definition Ωta = ρs
m,ta

ρc,0
for the turnaround density, as the normalized to present

epoch density parameter for the shell matter density, while for dark energy

ρde,s =
ρs

de,ta a−3(1+w)
s

ρc,0
ρc,0 = Ωs

de,ta a−3(1+w)
s

3H2
0

8πG
⇒ 8πG

3 ρde,s = H2
0 Ωs

de,ta a−3(1+w)
s (2.24)

Returning now to Eq.(2.6) (
ȧ

a

)2
= 8πG

3 (ρm + ρde) − kc2

R2
0 a2 (2.25)

we obtain the constant spatial curvature of the universe, k, by evaluating the expression at present
epoch as

kc2 = −R2
0 ��>

1
a0

2 H2
0 (1−Ωm,0−Ωde,0) (2.26)

Substitution of Eqs.(2.20) and (2.22) in the above relation yields
(

ȧ

a

)2
= H2

0

[
Ωm,0 a−3 + Ωde,0 a−3(1+w) + (1 − Ωm,0 − Ωde,0)

]
(2.27)

or, equivalently,(
ȧu

au

)2
= H2

0

[
Ωm,0 a−3

ta a−3
u + Ωde,0 a

−3(1+w)
ta a−3(1+w)

u + (1 − Ωm,0 − Ωde,0)
]

ȧu

au

= ± H0
[
Ωm,0 a−3

ta a−3
u + Ωde,0 a

−3(1+w)
ta a−3(1+w)

u + (1 − Ωm,0 − Ωde,0)
] 1

2
(2.28)

with ȧu >0

ȧu = H0
[
Ωm,0 a−3

ta a−1
u + Ωde,0 a

−3(1+w)
ta a−(3w+1)

u + (1 − Ωm,0 − Ωde,0)a2
u

] 1
2 (2.29)

or
ȧu = H0

a
1/2
u

[
Ωm,0 a−3

ta + Ωde,0 a
−3(1+w)
ta a|3w+1|+1

u + (1 − Ωm,0 − Ωde,0)a3
u

] 1
2 (2.30)

As for the shell, we start with Eq.(2.9) in the equivalent form

äs

as

= −1
2

8πG

3 [ ρm,s − |1 + 3w| ρde,s] (2.31)

where we emphasize the fact that for all the values of w∈
[
−2, −1

3

]
that we investigate:

1 + 3w < 0 ⇒ 1 + 3w = −|1 + 3w| (2.32)
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For the case of clustering dark energy, we substitute Eqs.(2.23) and (2.24), obtaining

äs

as

= −H2
0

2
[

Ωta a−3
s − |1 + 3w| Ωs

de,ta a−3(1+w)
s

]

äs = − H2
0

2a2
s

[
Ωta − |1 + 3w| Ωs

de,ta a−3w
s

] (2.33)

while, for the case of clustering dark energy, with the constant shell curvature in (2.14) taking
the form

ksc
2 = R2

ta H2
0 (Ωta + Ωs

de,ta) (2.34)

we also have (2.13) reformed as
(

ȧs

as

)2
= H2

0

[
Ωta a−3

s + Ωs
de,ta a−3(1+w)

s − (Ωta + Ωs
de,ta) a−2

s

]
= H2

0
a2

s

[
Ωta a−1

s + Ωs
de,ta a−(3w+1)

s − (Ωta + Ωs
de,ta)

] (2.35)

ȧs = H0
[
Ωta (a−1

s − 1) − Ωs
de,ta (1 − a|3w+1|

s )
] 1

2

= H0

a
1/2
s

[
Ωta (1 − as) − Ωs

de,ta(as − a|3w|
s )

] 1
2

(2.36)

Similarly, for non-clustering dark energy we substitute Eqs.(2.23) and (2.22) in Eq.(2.12), obtain-
ing

äs

as

= −H2
0

2
[

Ωta a−3
s − |1 + 3w| Ωde,0 a

−3(1+w)
ta a−3(1+w)

u

]

äs = − H2
0

2a2
s

[
Ωta − |1 + 3w| Ωde,0 a

−3(1+w)
ta a−3(1+w)

u a3
s

] (2.37)

2.1. Minimum turnaround density

2.1.1. Clustering dark energy
2.1.1.1. Way A:

The argument of the square root in Eq.(2.36)

ȧs = H0

a
1/2
s

[
Ωta (1 − as) − Ωs

de,ta(as − a|3w|
s )

] 1
2 (2.38)

should be positive therefore

Ωta > Ωs
de,ta

as − a|3w|
s

1 − as

(2.39)

and since Ωs
de,ta is a constant, we define

f(as; w) = as − a|3w|
s

1 − as

, as ∈ [0, 1] (2.40)
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Firstly, for as = 0 we have

f(0; w) = as − a|3w|
s

1 − as

∣∣∣
as=0

= 0 (2.41)

and for as = 1

f(1; w) = lim
as→1−

as − a−3w
s

1 − as

( 0
0)
=

D.L.H.
lim

as→1−

1 + 3w a−3w−1
s

−1 = −(1 + 3w) = |3w + 1| (2.42)

We proceed with the computation of the derivative in order to investigate the behaviour of f in
the region of interest, setting for notational simplicity as =u

∂f

∂u
=
(

u − u−3w

1 − u

)′

=

(
1 + 3w u−(3w+1)

)
(1 − u) + (u − u−3w)

(1 − u)2

= 1 −�u + 3w u−(3w+1) − 3w u−3w +�u − u−3w

(1 − u)2

=
u−3w

[
3w
u

− (3w + 1)
]

+ 1
(1 − u)2

= u|3w+1| [ |3w + 1|u − |3w| ] + 1
(1 − u)2

(2.43)

The denominator is strictly positive for the open interval, u∈(0, 1). We further wish to check the
sign of the numerator, so

A(u; w) = u|3w+1| [ |3w + 1|u − |3w| ] + 1 (2.44)

∂A

∂u
= |3w + 1|

u
u|3w+1|

(∣∣∣3w + 1
∣∣∣+ 1︸ ︷︷ ︸

=−3w=|3w|

− |3w|
u

)

= − |3w| |3w + 1| u|3w+1|

u︸ ︷︷ ︸
>0

(1 − u)︸ ︷︷ ︸
>0

< 0
(2.45)

⇒ ∂A

∂u
< 0 , for u∈(0, 1) (2.46)

Also, ∂A
∂u

∣∣∣
u=1

= 0, which combined with (2.46) means

A(u) ≥ A(u=1) = 0 , u∈(0, 1)
A(u) > 0 , u∈(0, 1) (2.47)
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Therefore, noting also that A(u=0)=1, we have:

⇒


u∈ [0, 1): ∂f(u; w)

∂u
= A(u; w)

(1 − u)2 > 0

u=1:
( 0

0

)
⇒ D.L.H.:

(2.48)

∂f(u; w)
∂u

∣∣∣
u=1

= lim
u→1−

∂A(u;w)
∂u

−2(1 − u) = lim
u→1−

−����(1−u) |3w| |3w + 1| u|3w+1|

u

−2����(1−u)

= lim
u→1−

1
2 |3w| |3w + 1| u|3w+1|

u
= 3w(3w+1)

2 > 0
(2.49)

df(u)
du

> 0 , ∀ u∈ [0, 1], w<−1/3 (2.50)

⇒ [f(u)]max = f(1) or [f(as; w)]max = f(as =1; w) (2.51)

which we have already calculated in (2.42) as f(as =1; w)= |3w + 1|, thus

[f(as; w)]max = |3w + 1| (2.52)

Therefore, returning to Eq.(2.39), we have

Ωta > Ωs
de,ta f(as; w) , ∀ as ∈ [0, 1] (2.53)

⇒ Ωta > Ωs
de,ta [f(as; w)]max (2.54)

⇒ Ωta > |3w + 1| Ωs
de,ta (2.55)

Ω(cl)

ta,min = |3w + 1| Ωs
de,ta(Rta =Rta,max) (2.56)

with Rta,max denoting the maximum radius of turnaround.

Cosmological parameters

At this point, we wish to associate the density parameters of the shell with those of the universe,
in search of a more informative direct relation between the lower limit Ωta,min and the cosmological
parameters. In this course, we employ the definition of density contrasts, starting with the one
for matter, which, making use of the matter density continuity (conservation) equations for the
shell and the universe, yields

ζ(t) = ρs
m(t)

ρu
m(t) =

ρs
m,taR3

taR−3
s (t)

ρu
m,taa3

taa−3(t) =
(

ρs
m,taR3

ta

ρu
m,taa3

ta

)
︸ ︷︷ ︸

=λ1

(
Rs(t)
a(t)

)−3

(2.57)

with λ1 the constant

λ1 =
Msc2
4π
3 ��R3

ta
�
�R3
ta

Muc2
4π
3 R3

0��a
3
ta�

�a3
ta

= Msc
2

4π
3

(
Muc2
4π
3 R3

0

) = Msc
2

4π
3 ρu

m,0
(2.58)

⇒ λ1 = Ms

Mu

R3
0 = R3

a such that ρu
m,0 = Msc

2

4π
3 R3

a

(2.59)
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which means that Ra is the radius the shell would need to have in order for its matter density
to equate that of the universe. Therefore, the ratio Rs(t)

Ra
expresses the relative size of the actual

shell radius with respect to Ra. So

ζ(t) = λ1

(
Rs(t)
a(t)

)−3

=
 Rs(t)

Ra

a(t)

−3

(2.60)

and

ζta = λ1

(
Rta

ata

)−3
= R3

a

(
Rta

ata

)−3
=
 Rta

Ra

a(t)

−3

(2.61)

Accordingly, for dark energy

ζde(t) = ρs
de(t)

ρu
de(t)

=
ρs

de,taR
3(1+w)
ta R−3(1+w)

s (t)
ρu

de,taa
3(1+w)
ta a−3(1+w)(t)

=
ρs

de,taR
3(1+w)
ta

ρu
de,taa

3(1+w)
ta


︸ ︷︷ ︸

=λ2

(
Rs(t)
a(t)

)−3(1+w)

(2.62)

with λ2 also constant, and

λ2 =
Qs

4π
3 ����R

3(1+w)
ta

����
R

3(1+w)
ta

Qu
4π
3 R

3(1+w)
0 ����

a
3(1+w)
ta

�
���a

3(1+w)
ta

= Qs

4π
3

(
Qu

4π
3 R

3(1+w)
0

) = Qs
4π
3 ρu

de,0

⇒ λ2 = Qs

Qu

R
3(1+w)
0 = R

3(1+w)
b such that ρu

de,0 = Qs

4π
3 R

3(1+w)
b

(2.63)

where Qs and Qu are the integrated dark energy content of the spherical region and the universe,
respectively, and Rb is the radius the shell would need to have in order for its dark energy density
to equate that of the universe, with

ζde(t) = λ2

(
Rs(t)
a(t)

)−3(1+w)

=
 Rs(t)

Rb

a(t)

−3(1+w)

(2.64)

and

ζde,ta = λ2

(
Rta

ata

)−3(1+w)
= R

3(1+w)
b

(
Rta

ata

)−3(1+w)
=
 Rta

Rb

a(t)

−3(1+w)

(2.65)

while

λ1+w
1
λ2

=
(

Ra

Rb

)3(1+w)
=

(
ρs

m,ta

ρu
m,ta

)1+w

�
�

��R
3(1+w)
ta

a
3(1+w)
ta

ρs
de,ta

ρu
de,ta �

�
��R

3(1+w)
ta

a
3(1+w)
ta

⇒ ζde,ta =
(

Rb

Ra

)3(1+w)
ζ1+w

ta (2.66)

Now, we may proceed with simplifying the notation. Since the time evolution of the scale factor
for the background universe, governed by Eq.(2.30), depends on the densities rather than the
absolute quantities of enclosed material, we may as well consider a second notional universe of
the same densities, which would result in an identical evolution of the scale factor, only this time
with content equal to the absolute quantity of material enclosed in the overdense region of our
original system, matter and dark energy alike, ie Mu =Ms and Qu =Qs. This choice allows for a
direct translation of density contrasts to radius contrasts, which, by Eqs.(2.59) and (2.63), means

Ra =R0,⋆

Rb =R0,⋆

}
⇒ Ra =Rb =R0,⋆ and λ1 =λ

1
1+w

2 =λ (2.67)
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where λ = R3
0,⋆. We should note the star is used to indicate that the aerial radius of the auxiliary

universe is different than the original’s, R0, since for the same density but different mass the
radius is correspondingly adjusted. Substituting in Eqs.(2.60) and (2.64), promptly gives

ζ(t) =
 Rs(t)

R0,⋆

a(t)

−3

, ζde(t) =
 Rs(t)

R0⋆

a(t)

−3(1+w)

(2.68)

ζta = λ
(

Rta

ata

)−3
, ζde,ta = λ1+w

(
Rta

ata

)−3(1+w)
and ζde,ta = ζ1+w

ta (2.69)

Returning to our original endeavour of relating the shell and universe density parameters, we may
thus write

Ωta =
ρs

m,ta

ρc,0
=

ρs
m,ta

ρu
m,ta

ρu
m,ta

ρc,0
=

ρu
m,0 a−3

ta

ρc,0
ζta = Ωm,0�

�a−3
ta λ

(
Rta

�ata

)−3

⇒ Ωta = Ωm,0 λ R−3
ta (2.70)

Ωs
de,ta =

ρs
de,ta

ρc,0
=

ρs
de,ta

ρu
de,ta

ρu
de,ta

ρc,0
=

ρu
de,0 a

−3(1+w)
ta

ρc,0
ζde,ta = Ωde,0�����

a
−3(1+w)
ta λ1+w

(
Rta

��ata

)−3(1+w)

⇒ Ωs
de,ta = Ωde,0 λ1+wR

−3(1+w)
ta (2.71)

with the latter, more explicitly written as

Ωs
de,ta = Ωde,0 λ1+wR

|3w+1|−2
ta

=



Ωde,0 λ1+w 1

R

∣∣∣ |3w+1|−2
∣∣∣

ta

, w∈(−1, −1
3

]

Ωde,0 λ1+w = Ωde,0 , w=−1

Ωde,0 λ1+wR

∣∣∣ |3w+1|−2
∣∣∣

ta , w∈ [−2, −1)

(2.72)

Therefore, for Rta =Rta,max, we may write

Ωs
de,ta(Rta =Rta,max) =


Ωs

de,ta,min , w∈(−1, −1
3

]
Ωde,0 , w=−1
Ωs

de,ta,max , w∈ [−2, −1)

(2.73)

Therefore, Eq.(2.56), that provides the lower limit of turnaround density in the case of clustering
dark energy, takes the final form

Ω(cl)

ta,min = |3w + 1|


Ωs

de,ta,min , w∈(−1, −1
3

]
Ωde,0 , w=−1
Ωs

de,ta,max , w∈ [−2, −1)

(2.74)
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Final result

Finally, substituting our results (2.70) and (2.71) in Eq.(2.56), we obtain(
Ωm,0 λ1R

−3
ta

)
min

= |3w + 1|
(
Ωde,0 λ2R

−3(1+w)
ta

)∣∣∣
Rta=Rta,max

⇒ Ωm,0����
R−3

ta,max = |3w + 1| λ2 Ωde,0

λ1 �
���

R−3
ta,maxR−3w

ta,max

⇒ R3w
ta,max = |3w + 1| λ2 Ωde,0

λ1 Ωm,0

⇒ R−3
ta,max =

[
|3w + 1| λ2 Ωde,0

λ1 Ωm,0

]− 1
w

⇒ Ωm,0 λ1R
−3
ta,max = Ωm,0 λ1

[
|3w + 1| λ2 Ωde,0

λ1 Ωm,0

]− 1
w

⇒ Ωta,min = [λ1Ωm,0]
w+1

w [ |3w + 1| λ2 Ωde,0 ]−
1
w

=
[

λ1+w
1
λ2

] 1
w

[Ωm,0]
w+1

w [ |3w + 1| Ωde,0 ]−
1
w

(2.75)

which, since λ1+w
1 =λ2, becomes

⇒ Ω(cl)

ta,min = |3w + 1| Ωde,0

[
|3w + 1| Ωde,0

Ωm,0

]− w+1
w

(2.76)

2.1.1.2. Way B:

In this case we use Eq.(2.33)

äs = − H2
0

2a2
s

[
Ωta − |1 + 3w| Ωs

de,ta a−3w
s

]
(2.77)

demanding that äs = 0, alongside ȧs = 0, in order to identify the outermost shell that could
eventually turnaround. Since this equation characterizes the radial geodesics in the vicinity of
the spherical overdense region, it describes the radial acceleration of test particles. Hence, the
shell for which this acceleration vanishes marks the boundary between two distinct regions. The
outer one, where all test particles experience outward acceleration and cannot escape from joining
the Hubble flow, and the inner, where deceleration dominates and, if the test particles don’t have
excess outward initial velocity, it will lead them to eventually stop, turnaround and fall back
towards the center of the sphere until virialization takes hold. We obtain, from (2.33)

äs =0
ȧs =0

}
⇒

Ωta,min = |3w + 1| Ωs
de,ta a−3w

s

as =1
(2.78)

⇒ Ω(cl)

ta,min = |3w + 1| Ωs
de,ta(Rta =Rta,max) (2.79)

Comparing with the previous method, we note its equivalence with this one, since a differentiation
was involved there, that effectively increased the order of the derivative, we needed to take into
account in reaching this result. Thus, although in the first method we started from a first order
derivative of as(t) (essentially, Rs(t)) that could be associated with the velocities of test particles,

12



ultimately, we ended up using the second derivatives, associated with their acceleration, that truly
governs the evolution and decides the outcome, in both cases. As we have already obtained the
expression relating Ωs

de,ta(Rta = Rta,max) with the cosmological parameters, we promptly restate
our final result for Ωta,min here.

Ω(cl)

ta,min = |3w + 1| Ωde,0

[
|3w + 1| Ωde,0

Ωm,0

]− w+1
w

(2.80)

2.1.2. Non-clustering dark energy
For non-clustering dark energy, we may proceed in the same manner as in the previous section,
in search of a limiting value of Ωta,min. We repeat Eq.(2.37) here

äs = − H2
0

2a2
s

[
Ωta − |1 + 3w| Ωde,0 a

−3(1+w)
ta a−3(1+w)

u a3
s

]
(2.81)

The demand is once again the same, namely that äs = 0, alongside ȧs = 0, in order to identify
the largest shell that could eventually turnaround, for the exact same reasons described in the
previous situation. Only, this time we derive

äs =0
ȧs =0

}
⇒ Ωta,min = |3w + 1| Ωde,0 a

−3(1+w)
ta a−3(1+w)

u a3
s

as =1
(2.82)

⇒ Ωta,min = |3w + 1| Ωde,0 [a(t)]−3(1+w) (2.83)

and, since −3w −3=−3w −1 −2= |3w+1| −2, we have

Ωta,min = |3w + 1| Ωde,0
[a(t)]|3w+1|

[a(t)]2 (2.84)

which means that

Ω(hom)

ta,min =


Ωta,min = 0 , w∈(−1, −1

3

]
Ωta,min = |3w + 1| Ωde,0 = 2 Ωde,0 , w=−1
Ωta,min → ∞ , w∈ [−2, −1)

(2.85)

The last case, for phantom dark energy, which means that beyond a certain evolutionary point,
turnaround will be impossible, is in fine accordance with the associated, towards Big Rip, evolution
of the background universe.

Moreover, though, we should note that turnaround is only possible if äs is strictly negative
prior to the turnaround time, otherwise any associated solution for the evolution of the spherical
region is non physical. This means for each w<−1, in the case of non-clustering DE, there exists
an exact upper limit on the cosmic time, a

(max)
ta (w), beyond which turnaround is impossible, which

is decreasing as the absolute value of w increases. Larger |w| correspond to smaller a
(max)
ta (w)

limits (earlier t
(max)
ta (w) times). Or, equivalently, the smallest overdensities capable of halting the

expansion of their neighborhood, are larger for larger |w|.
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2.2. Solving for the turnaround density
We repeat here compactly the equations we need to solve numerically in order to determine the
dependence of the turnaround density, Ωta, on the dark energy equation of state parameter, w,
and the scale factors of the universe and the spherical region that surrounds the initial overdensity,
for any specific choice of cosmological parameters Ωm,0, Ωde,0 and H0. In the present work, we
use the 2018 Planck cosmological parameters (Planck Collaboration VI, 2020): Ωm,0 = 0.315,
Ωde,0 = ΩΛ,0 = 1 − Ωm,0 = 0.685 and H0 = 67.4 km s−1 Mpc−1, in order to ensure consistency with
current estimates of ΛCDM values. This choice imparts no qualitative effect on the results.

Inhomogeneous (clustering) dark energy
We have the first Friedmann equation for the background (2.30)

ȧu = H0

a
1/2
u

[
Ωm,0 a−3

ta + Ωde,0 a
−3(1+w)
ta a|3w+1|+1

u + (1 − Ωm,0 − Ωde,0)a3
u

] 1
2 (2.86)

and for the shell (2.36)

ȧs = H0

a
1/2
s

[
Ωta (1 − as) − Ωs

de,ta(as − a|3w|
s )

] 1
2 (2.87)

while, for the shell we may prefer to use (2.33)

äs = − H2
0

2a2
s

[
Ωta − |1 + 3w| Ωs

de,ta a−3w
s

]
(2.88)

which, by combining the relations (2.70) and (2.71), as

λ R−3
ta = Ωta

Ωm,0
⇒ Ωs

de,ta = Ωde,0

(
Ωta

Ωm,0

)1+w

(2.89)

in order to use the explicit dependence of Ωs
de,ta on the cosmological parameters, takes the equiv-

alent form
äs = − H2

0
2a2

s

[
Ωta − |1 + 3w| Ωde,0 Ω−(1+w)

m,0 Ω1+w
ta a−3w

s

]
(2.90)

which now contains only one unknown variable, Ωta(tta; w), the one we intend to evaluate for
any specific choice of DE EoS w parameter and cosmic time of turnaround. The corresponding
boundary conditions are

au(t=0)=0
au(t= tta)=1

as(t=0)=0
as(t= tta)=1
ȧs(t= tta)=0

(2.91)

Notice how the first two are overdetermining the system, since the equation governing the evolu-
tion of au is first order, although this poses no problem since the two are not incompatible. One
of them may be reserved simply to check the validity of the returned solution. Moreover, one may
also choose to use the second Friedmann equation for the background as well, in which case both
conditions would be necessary. At the same time, the presence of three (3) boundary conditions
for the shell, will allow us to compute the value of the unknown variable, since two of them will
serve in solving for the evolution of the shell’s scale factor and the third will be used solely in
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solving for Ωta. As a final remark, we wish to underline that obtaining Ωta does not immediately
yield a specific Rta, since its value depends on the actual Ms and Qs of the overdensity through
(2.60), (2.64) and (2.70), details not necessary if one deals directly with densities. Exactly here,
in its scale universality, lies the unique value of the turnaround density as a cosmological probe,
even more so when contrasted to the more restrictive measure that is the turnaround radius.

Homogeneous (non-clustering) dark energy
In this case, we also have the first Friedmann equation for the background (2.30)

ȧu = H0

a
1/2
u

[
Ωm,0 a−3

ta + Ωde,0 a
−3(1+w)
ta a|3w+1|+1

u + (1 − Ωm,0 − Ωde,0)a3
u

] 1
2 (2.92)

as for the shell (2.37)

äs = − H2
0

2a2
s

[
Ωta − |1 + 3w| Ωde,0 a

−3(1+w)
ta a−3(1+w)

u a3
s

]
(2.93)

with the same conditions as in the case of clustering dark energy. Contrary to the previous case,
the system of ODEs is now coupled.

Singularity circumvention
As one may verify with a quick visual inspection of our equations, there is a singularity at
t=0 ⇔ au =0 and as =0, yielding

lim
t→0+

ȧu =∞ , lim
t→0+

ȧs =∞ and lim
t→0+

äs =∞ (2.94)

In order to avoid treating infinity in our numerical calculation, we use the following transforma-
tions

au → u1 = a3/2
u and as → u2 = a3/2

s (2.95)
that will allow us to rewrite our equations in a form that is nowhere singular. We have

u̇1 = 3
2 a1/2

u ȧu ⇒ ȧu

au

= 2
3

u̇1

u1
(2.96)

⇒ ü1 = 3
2

1
2 a−1/2

u ȧ2
u + 3

2 a1/2
u äu

⇒ u1ü1 = 1
3 u̇2

1 + 3
2 a2

uäu or a2
uäu = 2

3 u1ü1 − 2
9 u̇2

1 (2.97)

and, likewise,

u̇2 = 3
2 a1/2

s ȧs ⇒ ȧs

as

= 2
3

u̇2

u2
(2.98)

⇒ u2ü2 = 1
3 u̇2

2 + 3
2 a2

säs or a2
säs = 2

3 u2ü2 − 2
9 u̇2

2 (2.99)

Therefore, for the evolution of the background we have

ȧu = H0

a
1/2
u

[
Ωm,0 a−3

ta + Ωde,0 a
−3(1+w)
ta a|3w+1|+1

u + (1 − Ωm,0 − Ωde,0)a3
u

] 1
2

a1/2
u ȧu = H0

[
Ωm,0 a−3

ta + Ωde,0 a
−3(1+w)
ta a−3w

u + (1 − Ωm,0 − Ωde,0)a3
u

] 1
2

u̇1 = 3
2 H0

[
Ωm,0 a−3

ta + Ωde,0 a
−3(1+w)
ta u

|2w|
1 + (1 − Ωm,0 − Ωde,0)u2

1

] 1
2 (2.100)
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and for the shell, in the clustering dark energy case,

äs = − H2
0

2a2
s

[
Ωta − |1 + 3w| Ωde,0 Ω−(1+w)

m,0 Ω1+w
ta a−3w

s

]
⇒ a2

säs = −H2
0

2
[

Ωta − |1 + 3w| Ωde,0 Ω−(1+w)
m,0 Ω1+w

ta a−3w
s

]
⇒ u2ü2 = 1

3 u̇2
2 − 3H2

0
4

[
Ωta − |1 + 3w| Ωde,0 Ω−(1+w)

m,0 Ω1+w
ta u−2w

2

]
⇒ ü2 =

{
1
3 u̇2

2 − 3H2
0

4
[

Ωta − |1 + 3w| Ωde,0 Ω−(1+w)
m,0 Ω1+w

ta u
2|w|
2

]} 1
u2

(2.101)

and, finally, in the case of non-clustering dark energy

äs = − H2
0

2a2
s

[
Ωta − |1 + 3w| Ωde,0 a

−3(1+w)
ta a−3(1+w)

u a3
s

]
u2ü2 = 1

3 u̇2
2 − 3H2

0
4

[
Ωta − |1 + 3w| Ωde,0 a

−3(1+w)
ta u

−2(1+w)
1 u2

2

]
ü2 =

{
1
3 u̇2

2 − 3H2
0

4
[

Ωta − |1 + 3w| Ωde,0 a
−3(1+w)
ta u

−2(1+w)
1 u2

2

]} 1
u2

(2.102)

It is immediately apparent from Eq.(2.100) that u̇1(0)= 3
2 H0

√
Ωm,0 a−3

ta , therefore it is not singular
for t = 0 (u1 = 0, u2 = 0). The same holds for u̇2(0) and ü2(0), as can be shown with application
of the Mean Value Theorem on Eqs.(2.101) and (2.102), that also yields the approximation

˜̇u2(t) = u̇2(0) (2.103)
ũ2(t) = u̇2(0) t (2.104)

appropriately close to the time of the singularity (t→0).
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Final expressions
Compactly, the final form of our equation systems, applied for a flat background universe, where
k =0 ⇔ (1−Ωm,0−Ωde,0)=0 is as follows.

Inhomogeneous (clustering) dark energy

u̇1 = 3
2 H0

[
Ωm,0 a−3

ta + Ωde,0 a
−3(1+w)
ta u

|2w|
1

] 1
2

ü2 =
{

1
3 u̇2

2 − 1
3

(3
2H0

)2 [
Ωta − |1 + 3w| Ωde,0 Ω−(1+w)

m,0 Ω1+w
ta u

|2w|
2

]} 1
u2

, u2 ̸= 0

Homogeneous (non-clustering) dark energy

u̇1 = 3
2 H0

[
Ωm,0 a−3

ta + Ωde,0 a
−3(1+w)
ta u

|2w|
1

] 1
2

ü2 =
{

1
3 u̇2

2 − 1
3

(3
2H0

)2 [
Ωta − |1 + 3w| Ωde,0 a

−3(1+w)
ta u

−2(1+w)
1 u2

2

]} 1
u2

, u2 ̸= 0

In both cases, for t=0

u̇1(0) = 3
2H0

√
Ωm,0 a−3

ta and u̇2(0) = 3
2H0

√
Ωta (2.105)

and in the vicinity of t→0 the following approximations hold. For the background universe

˜̇u1(t) = u̇1(0)
ũ1(t) = u̇1(0) t

(2.106)
(2.107)

and for the shell
˜̇u2(t) = u̇2(0)

ũ2(t) = u̇2(0) t

(2.108)
(2.109)

while the boundary conditions for the transformed system, following from (2.91), are

u1(t=0)=0
u1(t= tta)=1

u2(t=0)=0
u2(t= tta)=1
u̇2(t= tta)=0

(2.110)

2.3. Numerical Methodology
In order to evaluate numerically the turnaround density, Ωta(tta; w), for varying dark energy
equation of state (w) and epochs (ata), we need to solve the following systems of coupled ODEs,
for the specified boundary conditions.

17



Inhomogeneous (clustering) dark energy

ȧu = f1(t, au, as, ȧs) = f1(au)
ȧs = f2(t, au, as, ȧs) = f2(ȧs) = ȧs

äs = f3(t, au, as, ȧs) = f3(as, ȧs)
(2.111)

or, equivalently,
u̇1 = f1(t, u1, u2, u̇2) = f1(u1)
u̇2 = f2(t, u1, u2, u̇2) = f2(u̇2) = u̇2

ü2 = f3(t, u1, u2, u̇2) = f3(u2, u̇2)
(2.112)

Homogeneous (non-clustering) dark energy

ȧu = f1(t, au, as, ȧs) = f1(au)
ȧs = f2(t, au, as, ȧs) = f2(ȧs) = ȧs

äs = f3(t, au, as, ȧs) = f3(au, as, ȧs)
(2.113)

or, equivalently,
u̇1 = f1(t, u1, u2, u̇2) = f1(u1)
u̇2 = f2(t, u1, u2, u̇2) = f2(u̇2) = u̇2

ü2 = f3(t, u1, u2, u̇2) = f3(u1, u2, u̇2)
(2.114)

We acquired the solution of our system in all cases, using the Newton-Raphson (NR) colloca-
tion method, a generalization of the well known iterative root-finding algorithm characterized by
guaranteed local convergence of order 2, whenever an appropriate initial step seed is provided.
Specifically, we made use of a python routine called solve_bvp, included in the integrate package
of the scipy library for specialized scientific applications (Virtanen et al., 2020). It comprises an
optimized realization of the NR algorithm, designed for (non-linear) first order systems of ODEs,
coupled or otherwise.

In the case of clustering dark energy the system is not coupled. This allowed us to cross-
test the correctness and accuracy of our results for this case, using a particularly fast method of
numerical quadrature (tanh-sinh (Mori, 2005), provided by both the scipy and mpmath python
libraries), at arbitrarily high precision, ensured by use of mpmath (mpmath Development Team,
2023). Analytical solutions were also procured for the special cases that admit them, further
reaffirming the validity of our associated results.
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Chapter 3

Results

In this section we present the results of our work. We have integrated the Friedmann equations
describing the evolution of a spherical overdensity in an otherwise homogeneous and isotropic
universe, together with the ones governing the background’s evolution, exploring the behavior of
the turnaround density as a function of cosmic time and the equation of state of DE parameterized
by w. Their solution allows us to evaluate Ωta(ata; w), as described in the previous section.

3.1. Inhomogeneous (Clustering) dark energy
In Fig.(3.1) we plot the turnaround density as a function of redshift (or the scale factor) for varying
dark energy equations of state. From the range of values we have investigated, w ∈ [−2, −1/3],
we have selected to display as representative choices (−2, −1.5, −1). In all frames of Fig.(3.1)
we show how Ωta varies with the cosmic time, encoded in the first row by the scale factor of
the background Universe and in the second row by redshift. The first column covers the scale
factor range a ∈ [10−3, 102] and its equivalent redshift range. In the second column, we focus in
the vicinity of the present cosmic epoch, with the scale factor in the region a∈ [0.25, 1] (redshift:
z ∈ [0, 3]), starting with the Universe in a quarter of its present size leading up to today. The final
column zooms in even further, with a∈ [0.75, 1] and z ∈

[
0, 1

3

]
.

The most prominent characteristic, across all epochs and for all cases of DE equation of state,
is the decrease of the turnaround density with time, falling from over 109 for ata ∼ 0.001 (high
redshift) consistently towards a few hundreds, for a Universe half-sized compared to today, to
clearly discernible values of the order of one for the present day. For high redshifts, all the lines
are closing in together, apparently rendering the dependence of the turnaround density on the
cosmology, via the w parameter, increasingly negligible. Therefore, we would naively not expect
observations at increasingly high redshift to add significant constraining power. However, assum-
ing the observing accuracy for the turnaround density at higher redshifts does not substantially
deteriorate, we should note that the absolute difference between models is in fact important, so
high-z measurements could in principle be also very constraining. Of course, it is by no means
obvious that the turnaround density is measurable with similar accuracies, or even at all, at high
redshifts, so the relative importance of measurements at different redshifts will have to be studied
in detail taking into account specific measurement methods, their uncertainties, and how these
depend on z.

To estimate the constraining power of turnaround density for w, we assume 1% uncertainty in
its measurement and 3.5% uncertainty in the measurement of its derivative, in accordance with the
estimation suggested by Pavlidou et al., 2020, which we also adopt here for consistency. Then, the
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Fig. 3.1: Three sets (vertical) of time ranges for the evolution of turnaround density, Ωta, as a
function of the background scale factor (Upper panels) and redshift (Lower panels), for the same
three values of w, in the case of inhomogeneous (clustering) dark energy.
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predicted variation of Ωta with w for low-redshift structures, shown in the final column of Fig.(3.1),
translates to considerable constraining power on w alone, assuming other cosmological parameters,
e.g. Ωm,0, are obtained independently. However, if the remaining cosmological parameters are not
obtained independently, a more detailed study is in order, to determine the constraining power
of the turnaround density as a stand-alone cosmological observable.

In Fig.(3.2), we plot the turnaround density as a function of w for z =0 (current epoch). We
are interested in comparing the behaviour of Ωta for the same redshift, here chosen to be the
present cosmic epoch, for the full range of w rather than a representative sample. We observe a
continuous but not monotonic dependence of Ωta with w, starting from the lowest value for the
lowest w, reaching a peak for w ∼ −0.6, and then decreasing for even larger (less negative) values
of w. This behavior is not surprising: Eq.(2.80) informs us of the behaviour of Ω(cl)

ta,min(w), the
minimum turnaround density predicted for each w in the clustering DE case, which indeed has a
w-dependence similar to the one observed for the current epoch.

Furthermore, at w = −1 and w = −1/3 the Friedmann equations we are solving for become
identical to their non-clustering case counterparts, since in the case of the cosmological constant
or the complete absense of DE, respectively, DE behaves effectively homogeneously. This serves
as a verification for the values we expect our curve to cross, when the analytical solutions are also
known.

We notice that the value of Ω(z=0)
ta (w), although it has a degeneracy in w for the region

that cover its Ω(z=0)
ta (w = −1/3) value and higher, once again varies enough to be discernible by

observations of the estimated accuracy.

Fig. 3.2: The predicted value of current turnaround density, Ω(today)
ta , for varying w, in the case

of inhomogeneous (clustering) dark energy.

In the following figure, Fig.(3.3), we show how the ratio of the turnaround density at present
epoch to that of redshift z =1, when the Universe was half its current size, Ω(z=0)

ta

Ω(z=1)
ta

, varies with the
w parameter, assuming all other cosmological parameters remain fixed. This serves as an estimate
of the change in the time dependence of Ωta(ata; w) with changing w. There is clear distinction
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of this parameter (at the level of a ∼ 35% range of values) for the range of w we investigated,
although its behavior is, again, not monotonic.

Fig. 3.3: The ratio of current turnaround density to the turnaround density @z = 1, for varying
w, in the case of inhomogeneous (clustering) dark energy.

3.2. Homogeneous (Non-Clustering) dark energy
As in the case of clustering dark energy, in Fig.(3.4) we plot the turnaround density as a function
of cosmic time, parametrized by the scale factor (top panels) or the redshift (bottom panels),
for varying DE EoS (w parameter). We have, once again, selected to display (−2, −1.5, −1)
as representative choices from the range of w we investigated, [−2, −1/3], only this time we
further add w=−0.5, −1/3 as representative choices of w>−1, in order to illustrate the distinct
difference between the regions separated by w = −1 (cosmological constant), i.e. quintessence
(w ∈ [−1, −1/3]) and phantom energy (w < −1). As in the previous section, the first column
covers the scale factor range a∈ [10−3, 102] and the equivalent redshift range. The second column,
centers in the vicinity of the present cosmic epoch, starting with the Universe in a quarter of its
present size (scale factor: a ∈ [0.25, 1], redshift: z ∈ [0, 3]), leading up to present day. The final
column zooms in even further, with a∈ [0.75, 1] (z ∈

[
0, 1

3

]
).

We once again observe the decrease of the turnaround density with cosmic time (increase with
redshift), across all epochs and for all cases of DE equation of state, starting, with a convergence
of all the lines, from over 109 for ata ∼ 0.001 (high redshift) and also characterized by similar
absolute differences between models, as in the previous case (clustering DE). This means, as
discussed in the previous section, that distinction between w cosmological models could be, in
principle achieved, if measurements of enough accuracy could be acquired for high-z structures
in the future, although it should be noted, that further distinction between clustering and non-
clustering DE is not attainable by high-z observations alone. This is due to the aggregate nature
of the effect that an ever-increasing DE scalar field, around an original overdensity, has on the
ability of the overdensity to impact the detachment of its neighborhood from the Hubble flow.
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For high redshifts this effect hasn’t had enough time to fully play out, therefore rendering the
two cases effectively indistinguishable, the further back in time we look.

Importantly, the most prominent qualitative difference between this scenario (non-clustering
DE) and the one discussed in the previous section (clustering DE) becomes apparent close the
present day and can be seen in the first column, which also includes future values of the turnaround
density. For w < −1 (phantom energy) there exists an exact upper limit on the cosmic time,
a

(max)
ta (w), beyond which turnaround is impossible, as we have already noted in section 2.1.2, when

discussing the minimum turnaround density for the case of non-clustering DE. This limit decreases
for increasing absolute value of w. For larger |w|, the rate at which the relative contribution of
DE to the energy density budget of the Universe increases is higher. As a result, overdense
regions that haven’t yet managed to induce turnaround on their surroundings become unable to
do so faster. This means that the smallest overdensities capable of halting the expansion of their
neighborhood, Ω(hom)

ta,min(w), are larger for larger |w|. For a given w, any overdensities below this
limit will be incapable of ever inducing turnaround, a result in accordance with the Big Rip fate
of all Universes with w<−1, that predicts the eventual disintegration of all existing structures.

On the other hand, assuming 1% uncertainty in the measurement of the turnaround density
and 3.5% uncertainty in the measurement of its derivative, as per the estimation suggested by
Pavlidou et al., 2020, the predicted variation of Ωta with w (for w ≥ −1) for low-z structures,
is again enough for achieving considerable constraining power on w, provided the remaining
cosmological parameters are independently obtained with high enough accuracy.
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Fig. 3.4: Three sets (vertical) of time ranges for the evolution of turnaround density, Ωta, as a
function of the background scale factor (Upper panels) and redshift (Lower panels), for the same
five values of w, in the case of homogeneous (non-clustering) dark energy.
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Fig. 3.5: The predicted value of current turnaround density, Ω(today)
ta , varying w, in the case of

homogeneous (non-clustering) dark energy.

As in the case of non-clustering dark energy, in Fig.(3.5), we plot the turnaround density as a
function of w for z =0, in order to examine the behaviour of Ωta(z =0; w) (present cosmic epoch)
for the full range of w. We observe, once again, continuous dependence of Ωta with w, although
in this case it is also monotonic, increasing from lowest to highest w. We confirm once again that
for w =−1, −1/3 we retrieve the same value of the turnaround density as in the clustering case,
as we should.

In the homogeneous DE case, the value of Ω(z=0)
ta (w), does not exert any degeneracy with w

and it varies enough to be discernible by observations of the estimated accuracy, as in the case
of clustering DE.
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Fig. 3.6: The ratio of current turnaround density to the turnaround density @z = 1, for varying
w, in the case of homogeneous (non-clustering) dark energy.

In the following figure, Fig.(3.6), we present as in the case of clustering dark energy the
dependence of the ratio of the turnaround density at present epoch to that of redshift z =1, when
the Universe was half its current size, Ω(z=0)

ta

Ω(z=1)
ta

, with the w parameter (DE EoS), assuming all other
cosmological parameters remain fixed, since it serves as an estimate of the change in the time
dependence of Ωta(ata; w) with changing w, as previously discussed. There is strictly monotonic
decrease with increasing w and the distinction of this parameter (at the level of again a ∼ 40%
range of values) for the range of w we investigated, is observationally attainable, within estimated
accuracy.
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Chapter 4

Discussion

In this thesis, we have examined the behavior of Ωta as a function of the equation of state of
dark energy in the following two cases: inhomogeneous (clustering) dark energy and homoge-
neous (non-clustering) dark energy. We have done so in the context of the spherical collapse
model of structure formation, by integrating the Friedmann equations that describe the evolution
of a spherical overdensity. In the first case, the overdensity evolves effectively isolated by the
otherwise homogeneous and isotropic background universe that contains it. In the second case,
the overdensity’s growth is more directly affected by the background’s evolution. The evolution
of the background, also governed by Friedmann equations, is in both cases independent of that
of the overdensity as, for the scales we are considering, the effect of the perturbation in altering
the expansion of the Universe as a whole is negligible. Combining this system of equations with
the appropriate boundary conditions that ensure the eventual turnaround of the spherical region
allows us to determine the value of Ωta(ata; w) for each specific evolutionary scenario.

Since Ωta has been suggested as a cosmological observable, we have sought to identify for
which cases it is indeed possible to draw direct conclusions for the cosmological parameters based
on its observed value.

In the context of the spherical collapse model, or, equivalently, if all effects that make the true
value deviate from the spherical collapse prediction are below statistical uncertainty, we have
reached the following conclusions.

First, we have seen that for both investigated cases (clustering/non-clustering DE) the high-
redshift behaviour of the turnaround density for all w cosmological models converges. However,
the absolute differences of the turnaround density between models remain significant at high
redshift, so depending on the achievable accuracy of high-redshift measurements of the turnaround
density, important constraints could in principle be derived from the early Universe.

Second, in the low-redshift regime, if we were to adopt the estimated accuracy of Pavlidou et
al., 2020 for measuring the turnaround density, we would conclude that indeed different values of
w produce turnaround densities different enough so that the turnaround density can be considered
as a useful observable for the dark energy equation of state.

Third, for the non-clustering DE case the behaviour of the turnaround density as a function
of cosmic time for w < −1 (phantom energy) vastly deviates from the one seen in the case of
clustering DE, since for later times the ever-increasing contribution of DE around overdensities
that have not yet managed to stop the expansion of their surroundings, render them incapable
of doing so in the future, which is reasonable, especially considering the Big Rip fate of their
background Universe.

In summary, we qualitatively conclude that indeed the turnaround density could yield impor-
tant constraints for the dark energy equation of state. Immediate next steps for the investigation
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presented in this thesis include a follow up on these results in order to produce quantitative con-
straints on the values of the cosmological parameters Ωm,0, Ωde,0, w that we can obtain, assuming
we can achieve a measurement of Ωta with a given accuracy in several redshift bins. We will addi-
tionally quantify the constraints that can be placed on w alone, assuming that the values of Ωm,0,
Ωde,0 and H0 are obtained from independent cosmological datasets, at accuracies comparable with
those quoted by current cosmological studies.
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Abbreviations

Acronym Definition

GR General Relativity

EFE Einstein Field Equations

FE Friedmann Equations

EoS Equation of State

SCM Spherical Collapse Model

FLRW (metric/model) Friedmanni-Lemaitre-Robertson-Walker (metric/model)

ΛCDM (cosmology/model) Lambda Cold Darm Matter (cosmology/model)

NR Newton-Raphson (method)
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