
Checking Memory Safety of CUDA Kernels

Konstantinos Eleftheriou

Thesis submitted in partial fulfillment of the requirements for the

Masters’ of Science degree in Computer Science and Engineering

University of Crete
School of Sciences and Engineering
Computer Science Department

Voutes University Campus, 700 13 Heraklion, Crete, Greece

Thesis Advisor: Associate Prof. Polyvios Pratikakis

This work has been performed at the University of Crete, School of Sciences and Engineering,
Computer Science Department.

The work has been supported by the Foundation for Research and Technology - Hellas
(FORTH), Institute of Computer Science (ICS).





University of Crete
Computer Science Department

Checking Memory Safety of CUDA Kernels

Thesis submitted by
Konstantinos Eleftheriou

in partial fulfillment of the requirements for the
Masters’ of Science degree in Computer Science

THESIS APPROVAL

Author:
Konstantinos Eleftheriou

Committee approvals:
Polyvios Pratikakis
Associate Professor, Thesis Supervisor

Angelos Bilas
Professor, Committee Member

Giorgos Vasiliadis
Assistant Professor, Committee Member

Departmental approval:
Polyvios Pratikakis
Associate Professor, Director of Graduate Studies

Heraklion, March 2024





Checking Memory Safety of CUDA Kernels

Abstract

Graphics processing units (GPUs) are heavily used nowadays for tasks like deep
learning model construction and big data analysis, due to their high processing
power. Nvidia’s CUDA platform enables the use of GPUs for such tasks. CUDA
extends the C++ programming language with special functions, called kernels,
that run on multiple CUDA threads. Most of the time, kernels perform operations
on data that reside in dynamically allocated memory, which can cause runtime
errors during the kernel’s execution, if a memory access occurs in unallocated
memory.

To identify unsafe kernel executions, we perform static analysis on CUDA’s
intermediate assembly, called PTX. The reason for this is that the source code
of Nvidia libraries, like cuBLAS, is not publicly available. At first, we convert
the kernel’s PTX code into LLVM’s intermediate representation in order to detect
the loops and the array accesses inside the kernel using LLVM passes. Then, we
detect the loop bounds and the expressions used in array accesses and define them
in terms of the kernel’s paremeters. The analysis generates constraints that are
solved using Microsoft’s Z3 Theorem Prover. The satisfiability of the constraints
determines if the kernel is safe to run.





΄Ελεγχος ασφάλειας μνήμης σε CUDA kernels

Περίληψη

Οι μονάδες επεξεργασίας γραφικών (GPUs) χρησιμοποιούνται ευρέως σήμερα για
εργασίες όπως η κατασκευή deep learning μοντέλων και η ανάλυση μεγάλου όγκου
δεδομένων, λόγω της υψηλής επεξεργαστικής τους ισχύος. Η πλατφόρμα CUDA της
Nvidia επιτρέπει τη χρήση των GPUs για τέτοιου είδους εργασίες. Το CUDA επε-
κτείνει τη γλώσσα προγραμματισμού C++ με ειδικές συναρτήσεις, που ονομάζονται
kernels και εκτελούνται σε πολλαπλά CUDA threads. Οι kernels συνήθως εκτελούν
πράξεις σε δεδομένα που βρίσκονται σε δυναμικά δεσμευμένη μνήμη, κάτι που μπορεί

να προκαλέσει σφάλματα κατά την εκτέλεση του kernel, αν υπάρξει πρόσβαση σε μη
δεσμευμένη μνήμη.

Για να εντοπίσουμε μη ασφαλείς εκτελέσεις των kernels, πραγματοποιούμε στατική
ανάλυση στην ενδιάμεση assembly του CUDA, η οποία ονομάζεται PTX. Η επιλογή
αυτή οφείλεται στο γεγονός ότι ο πηγαίος κώδικας των βιβλιοθηκών της Nvidia, όπως
η cuBLAS, δεν είναι δημόσια διαθέσιμος. Αρχικά, μετατρέπουμε τον PTX κώδικα
του kernel σε ενδιάμεσο κώδικα του LLVM, προκειμένου να εντοπίσουμε βρόχους και
προσβάσεις σε πίνακες μέσα στον kernel χρησιμοποιώντας passes του LLVM. Στη
συνέχεια, εντοπίζουμε τα όρια των βρόχων και τις εκφράσεις που χρησιμοποιούνται

για προσβάσεις σε στοιχεία πινάκων και τα ορίζουμε σε συνάρτηση των παραμέτρων

του kernel. Η ανάλυση παράγει ανισώσεις που επιλύονται χρησιμοποιώντας τον Z3
Theorem Prover της Microsoft. Η ικανοποιησιμότητα των ανισώσεων καθορίζει εάν
ο kernel είναι ασφαλής για εκτέλεση.





Contents

1 Introduction 1
1.1 CUDA Compilation Process . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Parallel Thread Execution (PTX) . . . . . . . . . . . . . . . . . . . 2
1.3 LLVM Compiler Infrastructure . . . . . . . . . . . . . . . . . . . . 3
1.4 Kernel Static Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Related Work 5

3 Implementation 7
3.1 PTX to LLVM IR conversion . . . . . . . . . . . . . . . . . . . . . 7

3.1.1 Phi node generation . . . . . . . . . . . . . . . . . . . . . . 8
3.1.2 Getelementptr instruction . . . . . . . . . . . . . . . . . . . 9
3.1.3 Static arrays . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1.4 Block terminators . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Analysis and constraint generation . . . . . . . . . . . . . . . . . . 12
3.2.1 Loop information retrieval . . . . . . . . . . . . . . . . . . . 12
3.2.2 Loop bounds constraints generation . . . . . . . . . . . . . 13
3.2.3 Array access constraints generation . . . . . . . . . . . . . . 15

3.3 Constraint solving . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Evaluation 19

5 Conclusion 27

Bibliography 29

i



ii



Chapter 1

Introduction

Traditionally, graphics processing units (GPUs) have been used for graphics and
video rendering. Lately, the need to accelerate the execution of applications that
are compute-intensive has led to the use of GPUs in a wide range of fields, like ma-
chine learning and high performance computing. Due to their parallel structure,
containing thousands of cores, GPUs can perform computations typically carried
out by CPUs in much higher speeds. Several platforms have been developed to
enable the execution of programs on GPUs. Compute Unified Device Architec-
ture (CUDA) [2] is such a platform that allows the use of GPUs by applications
for general-purpose computing. CUDA programs are written in an extension of
C++, which exposes the features of CUDA’s programming model. C++ is not
a memory-safe language and memory accesses can cause program crashes or the
mutation of the program’s data. The code that the developers want to run in
parallel is written in special C++ functions, called kernels. Our goal is to detect
memory accesses in kernels and provide constraints on the memory that is used
by the kernels.

1.1 CUDA Compilation Process

The source code of a CUDA program consists of the kernels that run on the the
device, and the rest of the program that runs on the host. The term host refers to
the CPU along with its dedicated part on the DRAM, while the term device refers
to the GPU and the part of the memory that is assigned to it.

During the first step of the compilation process, the device functions and the
host code are separated. The device code is then compiled by the Nvidia CUDA
Compiler Driver (nvcc) to cubin or PTX code and the output is placed into a
fatbinary. Parallel Thread Execution (PTX) is an intermediate assembly repre-
sentation, containing instructions in a virtual ISA. PTX is target-independent and
it is Just-in-time compiled to a device-specific assembly, before the device code

1



2 CHAPTER 1. INTRODUCTION

execution. CUDA binaries (cubin) contain target-specific code. The generated
fatbinary may contain binaries for multiple device architectures and, optionally,
PTX code. The host code is compiled using a C++ host compiler and the fatbi-
nary is embedded in the host object file.

Figure 1.1: CUDA Compilation Process (Source: Nvidia Documentation)

1.2 Parallel Thread Execution (PTX)

PTX files contain the part of the code that is executed on the device, namely the
kernel functions. This code is independent to the device architecture and it is JIT
compiled to a binary in a specific GPU architecture. The syntax of the code in
the PTX files is similar to that of a CPU’s assembly.

PTX statements consist of directive and instruction statements. Directive
statements include variable declarations in specific state spaces (global, shared,
param, etc.), function declarations, kernel entry points and directives specifying
information about the target architecture or performance tuning. The most im-
portant directive statements for our analysis are the kernel entry points and the
kernel’s parameters.

PTX instruction statements can be arithmetic or bit-wise operations, logic op-
erations, control-flow or data movement instructions and so on. The instructions
are composed of an opcode, zero to four operands and an optional guard predicate
that indicates whether the instruction will be executed or not. The operands of an
instruction can be virtual registers, constants, address expressions or label names.



1.3. LLVM COMPILER INFRASTRUCTURE 3

1.3 LLVM Compiler Infrastructure

LLVM [3] is a framework for constructing compilers and optimizing code. It is com-
posed of multiple language frontends, an intermediate representation and backends
for different machine architectures. The frontend is the part of the infrastructure
that parses the source code and generates the intermediate representation. The
LLVM intermediate representation (IR) is a target-agnostic representation com-
mon for all frontends. LLVM provides a collection of transformations and analyses
in order to optimize the IR. The IR is in Static Single Assignment (SSA) form,
meaning that each virtual register is written once and it is defined before used.
The backend converts the IR to the assembly of a specified platform.

Figure 1.2: LLVM Structure

1.4 Kernel Static Analysis

We analyze the memory used by the kernels by performing static analysis on PTX
code. We needed to take this path because the source code of Nvidia’s libraries,
like cuBLAS or cuDNN, is not publicly available. In order to perform the analysis,
we create an LLVM frontend for PTX by parsing the PTX code and converting it
into the LLVM IR. That way, we can use the passes that the LLVM provides to
transform and analyze the code in the IR level, so that we can detect loops and
array accesses inside the kernels. Then, we generate inequations based on the loop
bounds and the array sizes, which we later solve using the Z3 Theorem Prover in
order to determine their satisfiability.



4 CHAPTER 1. INTRODUCTION



Chapter 2

Related Work

While memory safety issues have been studied extensively, there is limited previous
work about the memory safety of GPUs. In this section we mention some of those
implementations. Honeycomb [5] is a software-based TEE for GPU applications.
As part of its implementation, it validates the memory safety of kernels at load
time by performing static analysis on the kernel source code. The difference of our
implementation in the static analysis part, which is the only common part of the
implementations, is that we analyze PTX code. G-Safe [6] is an implementation
that divides the shared GPU address space into partitions for different applications
to be executed concurrently on the GPU, each using its designated partition. It
accomplishes that by instrumenting PTX code of kernels included in closed-source
libraries. Our implementation could be used alongside G-Safe in order to avoid the
overhead of instrumented code, when possible, by statically validating the safety
of memory operations. GPUShield [4] implements region-based bounds checking
to improve the memory safety of GPU applications. It performs static analysis
using the LLVM IR to reduce the number of runtime checks. The difference with
our approach is that it performs static analysis on source code, like Honeycomb.
It also reports overflows caused by specific operations to the user and uses the
analysis results to minimize runtime checks based on the findings of the analysis
for each pointer. Our approach provides a result about the safety of the entire
kernel and does not provide information about specific unsafe pointer operations.
LocalityGuru [7] presents an approach for analyzing kernels at runtime before
being launched. The difference with our implementation is that they perform
the analysis on PTX code, instead of converting it to an IR. Also, the goal of
LocalityGuru is not memory safety, but to improve the locality of data used by
different thread blocks.

5



6 CHAPTER 2. RELATED WORK



Chapter 3

Implementation

In this section we dwell on the analysis procedure. At first, we describe some key
points about the conversion of PTX assembly into the LLVM IR. Next, we provide
details about the analysis and the generation of the constraints. Finally, we outline
the process of preparing and passing the constraints as input to the Z3 solver.

3.1 PTX to LLVM IR conversion

We convert the PTX statements to LLVM IR instructions by parsing the PTX file,
storing the PTX statements in a vector and then converting the PTX statements
to the corresponding LLVM IR instructions. Also, we store the mappings between
PTX and LLVM instructions.

Most PTX instruction conversions to LLVM IR are straightforward, one PTX
instruction corresponds to one LLVM instruction. But, there are cases where one
PTX instruction maps to two or more LLVM IR instructions or vice versa. In
case that an LLVM instruction maps to many PTX instructions, we have to find
patterns in the PTX code, in order to generate the right LLVM instructions. Such
cases are described in the below paragraphs.

Figure 3.1 shows an example of the source code of a CUDA kernel, declared
using the global specifier. This kernel iterates through the elements of the ar-
ray g in, increasing each element by 1 and storing the result in the array g out.
The compiler often performs loop unrolling, meaning that it rewrites the loops to
contain repeated instructions, reducing the number of iterations. Reducing the
number of iterations means reducing the executions of instructions that alter the
control flow, ultimately reducing the execution time of the generated assembly.
The PTX code that results from this example, breaks the kernel’s for loop into
two loops. The first loop is unrolled four times, so it will be executed N/4 times,
with N being the number of iterations. The second loop will execute the remaining
iterations, if any. The first loop can be seen in the example of figure 3.5, as the

7



8 CHAPTER 3. IMPLEMENTATION

block labeled $L BB0 3 and the second loop in figure 3.2, as the block with the
label $L BB0 6.

1 __global__ void incKernel(int *g_out, int *g_in, int N) {

2 for (int i = 0; i < N; ++i) {

3 g_out[i] = g_in[i] + 1;

4 }

5 }

Figure 3.1: CUDA kernel example

3.1.1 Phi node generation

LLVM IR is in SSA form. That is not the case with PTX code, where a register
can be defined or updated multiple times. So, when a operand used in an LLVM
IR instruction corresponds to a register of this kind, a phi node must be created
to specify the operand’s value based on the control flow. So, the phi node contains
one incoming value for each predecessor of this instruction’s block.

1 33: ; preds = %"$L__BB0_4"
2 %34 = sext i32 %31 to i64

3 %35 = getelementptr i32, ptr %param_0, i64 %34

4 %36 = getelementptr i32, ptr %param_1, i64 %34

5 br label %"$L__BB0_6"
6
7 "$L__BB0_6": ; preds = %"$L__BB0_6", %33

8 %37 = phi ptr [ %35, %33 ], [ %41, %"$L__BB0_6" ]

9 %38 = phi ptr [ %36, %33 ], [ %42, %"$L__BB0_6" ]

10 %loopVar1 = phi i32 [ %4, %33 ], [ %43, %"$L__BB0_6" ]

11 %39 = load i32, ptr %38, align 4

12 %40 = add i32 %39, 1

13 store i32 %40, ptr %37, align 4

14 %41 = getelementptr i32, ptr %37, i32 1

15 %42 = getelementptr i32, ptr %38, i32 1

16 %43 = add i32 %loopVar1, -1

17 %44 = icmp ne i32 %43, 0

18 br i1 %44, label %"$L__BB0_6", label %45

Figure 3.2: Loop example in LLVM IR

Figure 3.2 presents an example of a loop created by the compilation of the
code in Figure 3.1. Block L BB0 6 is the loop block and it contains three phi
instructions, with two incoming values each. The first incoming value specifies the
value that will be assigned to the result if the phi node is reached from the previous
block (the block outside of the loop) and the second one, the value that will be



3.1. PTX TO LLVM IR CONVERSION 9

assigned if the phi instruction is reached from the loop block itself, that is in the
next iteration. So, the initial value of register %37 is the value of %35 coming
from block 33. After the first iteration and for the rest loop iterations its value
will be the value of %41, which is updated in each iteration. The same for value
%38, which is updated with the value of register %42 after each iteration. The
loop variable %loopVar1 is initialized with the value of register %4 and updated
with the value of %43, which is the result of the addition of the step to the loop
variable, after each loop.

The creation of the phi instructions goes as follows: We keep an IN and an
OUT state for each basic block. Each state is a map of PTX registers to their
LLVM IR values. The IN state is created when we enter a new basic block by
merging the OUT states of all the predecessor blocks. If there is a conflict on a
register it means that this register has been written on multiple predecessors, so
we create a phi node containing the values of the OUT states of all predecessors
as incoming values. This does not necessarily mean that the incoming values will
be different, but in case that they are the same, LLVM drops the phi node during
optimizations. The OUT state of each block is initialized with the calculated IN
state when we enter a new basic block and updated when a register is written.

3.1.2 Getelementptr instruction

The getelementptr instruction is used to perform address computations. The first
argument is the type of the result. The second argument is a pointer, which is
the base address of the structure being indexed. The rest arguments are indices,
indicating which elements of the structure are indexed. For example, the getele-
mentptr instruction in line 3 of figure 3.2 calculates the address of the fifth element
of the %param 0 array, which contains elements of type i32. In PTX, addresses
are calculated using multiplication or shift and addition instructions.

A PTX example containing address computations can be seen in figure 3.3.
This example is part of the result of the compilation of the CUDA source code
shown in figure 3.1. The first three lines of the example load the kernel parame-
ters in virtual registers, the names of which begin with ”%”. param 0 refers to the
g out array, param 1 to the g in array and param 2 to N. The cvta instructions
in the following lines convert the addresses of the arrays from addresses of the
generic address space to variables of the global address space. The next mul and
add instructions calculate the offset for the array accesses. The mul instruction,
multiplies the contents of register %26 by the size of each array element, which
is 4 bytes. The add instructions add the result of the multiplication to the base
addresses of the arrays to get the offset. The wide modifier in the mul command
causes the result to be twice the size of the operand types, in that case s64.

Initially, the parser generates the equivalent instructions in LLVM. But, the



10 CHAPTER 3. IMPLEMENTATION

addition instruction with pointers as operands is invalid in LLVM. So, after the
conversion is completed, these add instructions are converted to getelementptr and
the mul or shl instruction that calculates the offset is removed. Then, in case that
the offset value is constant, it is divided by the size of the array’s elements in order
to get the index in the array. The mul and add instructions in lines 7-9 of figure
3.3 are converted to the instructions in lines 2-4 of figure 3.2. The wide modifier
causes the generation of the sext command, which performs sign extension on the
operand in order to double its size. The combinations of the mul and add instruc-
tions correspond to the getelementptr instructions. The value returned by the sext
instruction is the index of the element to be accessed in the array.

The next block in the PTX code is a loop. The first three instructions load the
value from the calculated offset of the g in array, increase the value by 1 and then
store the result in the same offset of g out. The conversion of these instructions
is trivial and can be seen in the lines 11-13 of the IR example. The next two add
instructions compute the next offset for the array accesses of the next iteration.
These are converted to getelementptr instructions and the offset is divided by the
size of the array’s elements in order for the index to be retrieved. The next add
instruction is the step of the loop. The setp instruction sets the result of the loop’s
condition to register %p5, which is true if the loop variable stored in %r27 has
not reached 0. This instruction is converted to the icmp instruction in the IR,
which results to true if the register %43 is not 0 and stores the result in %44.
The last instruction in the example is the branch instruction, which returns the
control flow to the beginning of the loop. @%p5 is called a guard predicate and it
controls if the branch instruction will be executed. So, only if the value in %p5 is
true, the branch instruction is executed. The bra instruction is converted to a br
instruction in IR. In the example, the br instructions checks the value of register
%44, which contains the result of the previous comparison. If the value is true,
the execution continues with the next iteration of the loop, otherwise it exits the
loop.

3.1.3 Static arrays

PTX code may contain static array declarations. In PTX there is no information
about the dimensions of the array, thus it is not visible from the type of the array.
For example, a 2-dimensional 16x16 array would be shown as an 1-dimensional ar-
ray containing 256 elements. In order to overcome this issue, we originally declare
the LLVM IR array as an 1-dimensional array, as it is in the PTX, with elements of
void type. Every time that a mul or shl operation happens before an array access
to get the offset of an element in the array, we update the type of the array based
on the instruction’s operand. The first time that we encounter such an instruction
before an array access, we assume that the variable is an 1-dimensional array. In
that case, the value used for the multiplication or shift operation will be the size



3.1. PTX TO LLVM IR CONVERSION 11

1 ld.param.u64 %rd13, [param_0];

2 ld.param.u64 %rd14, [param_1];

3 ld.param.u32 %r10, [param_2];

4 cvta.to.global.u64 %rd1, %rd13;

5 cvta.to.global.u64 %rd2, %rd14;

6 ...

7 mul.wide.s32 %rd15, %r26, 4;

8 add.s64 %rd19, %rd1, %rd15;

9 add.s64 %rd18, %rd2, %rd15;

10
11 $L__BB0_6:
12 ld.global.u32 %r22, [%rd18];

13 add.s32 %r23, %r22, 1;

14 st.global.u32 [%rd19], %r23;

15 add.s64 %rd19, %rd19, 4;

16 add.s64 %rd18, %rd18, 4;

17 add.s32 %r27, %r27, -1;

18 setp.ne.s32 %p5, %r27, 0;

19 @%p5 bra $L__BB0_6;

Figure 3.3: Loop example in PTX

of each element in the array and the array type is updated accordingly. The sec-
ond time, we assume that the variable is a 2-dimensional array. So, we divide the
previously set element size with the updated one, as found in the current mul or
shl instruction, to get the size of each row of the array. Then, we get the number
of rows by dividing the number of the array’s elements by the row size multiplied
by the updated element size and we update the type of the array.

1 .shared .align 4 .b8 _ZZ13MatrixMulCUDAILi16EEvPfS0_S0_iiE2As[1024];

2 ...

3 shl.b32 %r19, %r6, 6;

4 mov.u32 %r20, _ZZ13MatrixMulCUDAILi16EEvPfS0_S0_iiE2As;

5 add.s32 %r10, %r20, %r19;

6 shl.b32 %r21, %r1, 2;

7 add.s32 %r8, %r10, %r21;

(a) Static array declaration and indexing operations in PTX

1 @_ZZ13MatrixMulCUDAILi16EEvPfS0_S0_iiE2As =

2 linkonce_odr addrspace(3) global [16 x [16 x i32]] zeroinitializer, align 4

(b) Static array declaration in LLVM IR

Figure 3.4: Static array conversion example

The example in figure 3.4 shows a static array declaration in PTX along with



12 CHAPTER 3. IMPLEMENTATION

the corresponding declaration in LLVM. When we come across the mov instruction
in line 4 of figure 3.4, we create an 1-dimensional array in LLVM containing 1024
elements of void type. Supposing that the next instruction calculates the index of
the element to be accessed in the 1D array, we update the type of the elements
to be i512. The size of the elements is extracted from the value that the index is
multiplied with, based on the immediate value of the shift instruction, which is 64.
After we encounter the second add instruction, we eventually realize that the ar-
ray has two dimensions. So, the previous operations calculate the row number and
the current addition operation finds the index of the element in the calculated row
number. The updated element size, as extracted by the second shl instruction, will
be 4 bytes. By dividing the row size with the updated element size we notice that
each row contains 16 elements. The number of rows will be 1024 / (16 * 4). Thus,
the final type of the array will be [16 x [16 x i32]]. The 4-byte element type could
be a float, instead of an integer, but we always generate an integer in this occasion.

3.1.4 Block terminators

Every basic block in LLVM IR must end with a terminator instruction, like br,
ret, switch etc. These instructions indicate which basic block will be executed
after the current block. If all instruction conversions in a basic block have finished
and the PTX block does not contain instructions that correspond to a terminator
instruction, we generate a br instruction that transfers the control flow to the next
basic block, as it is in the PTX code. An example of such an instruction can be
seen in line 5 of figure 3.2. Here, a br instruction has been generated to transfer
the control flow from block 33 to block $L BB0 6.

3.2 Analysis and constraint generation

The next step is the analysis of the generated LLVM IR code. We detect and
analyze the loop bounds and the array accesses inside the kernel. The aim of the
analysis is to determine if the kernel code is safe to run before the kernel is exe-
cuted. CUDA kernels, most of the time, perform operations on arrays which are
dynamically allocated, so array accesses with out-of-bounds indices can cause run-
time errors. By performing these checks statically, we can minimize the dynamic
memory checks while the code is executed.

3.2.1 Loop information retrieval

In order to find the loops in the code and retrieve the loop bounds, we first have to
run some LLVM passes. LLVM passes perform optimizations and transformations
on the IR or compute information used by other passes. At first, we run the
mem2reg pass, which promotes memory references to registers and it is required by
many optimization passes. It basically converts the IR to SSA form by rewriting



3.2. ANALYSIS AND CONSTRAINT GENERATION 13

the alloca, store and load instructions. So, instead of allocating space to store
values in memory and then retrieving those values using load instructions, the
values are stored in registers. The next pass used is the Loop Rotate pass, which
transforms the loops into do/while form, while adding a guard for the case that
the loop is never executed. This pass is used by the Scalar Evolution pass. Next,
we run the Dominator Tree pass, which is an analysis pass, therefore it does not
mutate the code. It creates a tree that represents the dominance relationships in a
control-flow graph, which are necessary in detecting the loops. A node i dominates
another node j in the control-flow graph if every path from the entry node to j
needs to go through i. Finally, we use the Scalar Evolution pass that analyzes and
categorizes scalar expressions in loops. These expressions might include the loop
condition or the induction variable. Scalar Evolution pass is used in order to find
the loop bounds and recognize the induction variables.

3.2.2 Loop bounds constraints generation

After retrieving details about the loops from the results of the LLVM passes ex-
plained above, we need to generate constraints regarding the value range of the
loop variable. We need to traverse the use-def chain of each value in the loop
bounds expressions in order to express them in terms of the kernel parameters.
The def-use chain of a value contains all the users of the value, meaning all the
instructions that use it as an operand. Thus, for every value in the expression we
find its definition, then for every operand in the definition instruction we find its
own definition and so on. Another thing that we can retrieve from the previous
analysis results is the direction of the loop. In case of forward direction the step
is positive and in case of backward direction the step is negative. We need this
information in order to know the direction of the generated inequalities. The con-
straints are of the form initial value ≤ loop variable ≤ final value if the step is
positive or final value ≤ loop variable ≤ initial value if the step is negative. If
a loop variable is unnamed, a new loop variable name will be generated.

Figure 3.5 presents another loop that resulted from the compilation of the
source code in figure 3.1. Here, the loop is the block $L BB0 3 with %loopVar0
as the loop variable and %28 as the step. The loop has a negative step and the
loop variable’s final value is 0, as seen from the condition in line 32. The initial
value of the loop variable is the value of the register %7, as assigned from the phi
instruction. We traverse the Use-Def tree of the initial value as follows. Initially,
we look at the operands of %7 and realize that the first operand can not be ex-
panded further, so we expand the second operand which is an instruction. Then,
we try to expand the operands of %4. Both of its operands are terminal values,
that can not be expanded further, so we return the result. After traversing the
Use-Def tree of the initial value, which is presented in figure 3.7, the initial value
takes the form shown in line 9 of figure 3.6 as the maximum value of the loop
variable.



14 CHAPTER 3. IMPLEMENTATION

1 2: ; preds = %0

2 %3 = add i32 %param_2, -1

3 %4 = and i32 %param_2, 3

4 %5 = icmp slt i32 %3, 3

5 br i1 %5, label %"$L__BB0_4", label %6

6
7 6: ; preds = %2

8 %7 = sub i32 %param_2, %4

9 br label %"$L__BB0_3"
10
11 "$L__BB0_3": ; preds = %"$L__BB0_3", %6

12 %8 = phi i32 [ 0, %6 ], [ %25, %"$L__BB0_3" ]

13 %9 = phi ptr [ %param_1, %6 ], [ %26, %"$L__BB0_3" ]

14 %10 = phi ptr [ %param_0, %6 ], [ %27, %"$L__BB0_3" ]

15 %loopVar0 = phi i32 [ %7, %6 ], [ %28, %"$L__BB0_3" ]

16 ...

17 %13 = getelementptr i32, ptr %9, i32 1

18 ...

19 %16 = getelementptr i32, ptr %10, i32 1

20 ...

21 %17 = getelementptr i32, ptr %9, i32 2

22 ...

23 %20 = getelementptr i32, ptr %10, i32 2

24 ...

25 %21 = getelementptr i32, ptr %9, i32 3

26 ...

27 %24 = getelementptr i32, ptr %10, i32 3

28 ...

29 %26 = getelementptr i32, ptr %9, i32 4

30 %27 = getelementptr i32, ptr %10, i32 4

31 %28 = add i32 %loopVar0, -4

32 %29 = icmp ne i32 %28, 0

33 br i1 %29, label %"$L__BB0_3", label %30

Figure 3.5: Loop example in LLVM IR

The four getelementptr instructions for each pointer have occured from loop
unrolling. In order to reduce the number of iterations, the compiler repeats the
instructions in the loop four times. For the same reason the step is -4 instead of
-1. But, the number of iterations will not always be a multiple of 4. The total
number of iterations is N, as seen in the source code in figure 3.1, which is value
%param 2 in the IR. The instruction in line 3 performs a bitwise AND operation
in N with the number 3, in order to get the last 2 bits of N. Then, the result is
subtracted from N in line 8 and the result is the number of iterations that will be
executed in this loop, which is a multiple of 4. The remaining iterations, if any,
will be executed in the loop of figure 3.2.



3.2. ANALYSIS AND CONSTRAINT GENERATION 15

1 0 <= ceiling((%param_2 - (%param_2 and 3)) / 4) * 1 <= sizeof(%param_0)

2 0 <= ceiling((%param_2 - (%param_2 and 3)) / 4) * 1 <= sizeof(%param_1)

3 0 <= ceiling((%param_2 - (%param_2 and 3)) / 4) * 2 <= sizeof(%param_0)

4 0 <= ceiling((%param_2 - (%param_2 and 3)) / 4) * 2 <= sizeof(%param_1)

5 0 <= ceiling((%param_2 - (%param_2 and 3)) / 4) * 3 <= sizeof(%param_0)

6 0 <= ceiling((%param_2 - (%param_2 and 3)) / 4) * 3 <= sizeof(%param_1)

7 0 <= ceiling((%param_2 - (%param_2 and 3)) / 4) * 4 <= sizeof(%param_0)

8 0 <= ceiling((%param_2 - (%param_2 and 3)) / 4) * 4 <= sizeof(%param_1)

9 0 <= loopVar0 <= (%param_2 - (%param_2 and 3))

Figure 3.6: Generated constraints

%loopVar0

phi

%7

sub

%param 2 %4

and

%param 2 3

%28

...

Figure 3.7: Use-Def tree of the loop variable

3.2.3 Array access constraints generation

Except for the loop bounds we need to examine the expressions used as indices in
array accesses to determine if their values exceed the array sizes. We retrieve these
expressions by extracting the indices of the getelementptr instructions inside the
loop. Then, we perform a Def-Use tree traversal similar to what is described in the
previous section, starting from the index expression, until we reach a result that
depends on the kernel parameters. But, getting the index expression alone is not
enough. The way that the loops are constructed, this expression is a constant and
it is added to the array pointer on each iteration. So, the variable that changes
throughout the loop’s iterations is not the index expression but the array pointer.
As a result, we have to find the number of iterations and multiply it with the index
expression to find the maximum value used as the index. We get the number of
iterations by dividing the final value of the loop variable, if the step is positive,
or the initial value, if the step is negative, by the absolute value of the step. The
number of iterations will be the ceiling of the previous operation’s result, in case



16 CHAPTER 3. IMPLEMENTATION

that the result is not an integer. Finally, the lower bound of the constraints will be
0 and the upper bound will be the size of the array that the pointer corresponds to.

Examples of array access constraints are presented in figure 3.6. The first four
constraints correspond to the getelementptr instructions of figure 3.5 in the same
order. The other four getelementptr instructions generate identical constraints
and they have being removed as duplicates. The step of the loop is negative so
we need to get the initial value of the loop variable. The initial value of the loop
variable is %param 2 - (%param 2 and 3), so that the number of iterations will
be a multiple of 4, and is divided by the step value, which is 4. The ceiling of the
result is multiplied by the corresponding index. For example, for the instruction
of line 30 of figure 3.5, it will be multiplied by 4. The upper bound of the same
instruction’s constraint will be the size of the %param 0 array, as can be seen from
the phi instruction, of which the value is assigned to register %9. In this example,
all of the indices are constant, but this is not always the case.

3.3 Constraint solving

The next step is to solve the generated constraints and determine if they are sat-
isfiable. The constraints are satisfiable, if there are values for the variables in
the expressions that evaluate the expressions to true. For this purpose, we use
Microsoft’s Z3 SMT solver [1], which extends the SMT-LIB2 standard. SMT or
satisfiability modulo theories are the problems of detecting if a mathematical for-
mula is satisfiable. SMT-LIB is a library used for expressing such problems.

Initially, we have to convert the constraints into the syntax supported by Z3.
Every instruction needs to be converted to the corresponding Z3 symbol, e.g. add
to ”+”. Also, in case of bitwise logical operations like and and or, we use the
bv2int or int2bv functions in order to convert the integers into binary vectors,
perform the logical operation and then convert them back. We declare each loop
variable using the declare-const command. In addition, we declare a ceiling func-
tion used in the array accesses constraints using the declare-fun command. Each
constraint is added into Z3’s stack using the assert command. After creating a
string containing all the declarations and the assertions, we use Z3’s C++ API in
order to parse it and solve the constraints. The constraints are solved using the
check-sat command, which returns sat if the constraints are satisfiable, unsat if
they are not satisfiable and unknown if the satisfiability can not be determined.
The constraints are meant to be solved dynamically on the host, before the kernel
launch.

We have also created the functionsmin2 andmax2 that calculate the minimum
and maximum value between two integers and correspond to PTX’s min and max
instructions. We define the recursive function maxn that calculates the maximum



3.3. CONSTRAINT SOLVING 17

of n numbers. This function is used when we come across phi nodes during the
constraint generation process in order to get the maximum value of all the incoming
values of the phi node. The shl function calculates the result of the bitwise left
shift operation between two integers and is the equivalent to PTX’s shl instruction.
The declarations of these functions can be seen in figure 3.8.

1 (define-fun min2((x Int) (y Int)) Int (ite (< x y) x y))

2 (define-fun max2((x Int) (y Int)) Int (ite (> x y) x y))

3 (define-fun shl ((x Int) (y Int)) Int

4 (bv2int (bvshl ((_ int2bv 32) x) ((_ int2bv 32) y))))

5 (define-fun-rec maxn ((ls (List Real))) Real

6 (if ((_ is nil) ls)

7 0

8 (let ((hd (head ls))

9 (tl (tail ls)))

10 (if ((_ is nil) tl)

11 hd

12 (let ((tlmax (maxn tl)))

13 (if (> hd tlmax) hd tlmax))))))

Figure 3.8: Custom Z3 functions

Figure 3.9 shows the constraints of figure 3.6 after being converted into Z3’s
format. The first line declares the loop variable loopVar0 using (declare-const loop-
Var0 Int), which is syntactic sugar for (declare-fun loopVar0 () Int) and declares
a variable of integer type. The second line defines the ceiling function, which re-
ceives a real number as a parameter and calculates the smallest integer greater
than or equal to that number. The operations are using prefix notation. All arith-
metic operators have been converted to their corresponding symbols, and the and
operator has been converted into bvand. The bvand operation performs bitwise
AND between two bit vectors. ( int2bv 32) casts the integers into a 32-bit vector
used in the bvand operation and bv2int converts the result back to an integer. The
number 1000 is the value of N, which is not known statically, so the value has been
hardcoded in this example.



18 CHAPTER 3. IMPLEMENTATION

1 (declare-const loopVar0 Int)

2 (define-fun ceiling ((x Real)) Int

3 (ite (>= (- x (to_real (to_int x))) 0.0) (to_int x) (+ (to_int x) 1)))

4 (assert

5 (<= 0

6 (*

7 (ceiling

8 (/ (- 1000 (bv2int (bvand ((_ int2bv 32) 1000) ((_ int2bv 32) 3)))) 4))

9 1)

10 1000))

11 (assert

12 (<= 0

13 (*

14 (ceiling

15 (/ (- 1000 (bv2int (bvand ((_ int2bv 32) 1000) ((_ int2bv 32) 3)))) 4))

16 2)

17 1000))

18 (assert

19 (<= 0

20 (*

21 (ceiling

22 (/ (- 1000 (bv2int (bvand ((_ int2bv 32) 1000) ((_ int2bv 32) 3)))) 4))

23 3)

24 1000))

25 (assert

26 (<= 0

27 (*

28 (ceiling

29 (/ (- 1000 (bv2int (bvand ((_ int2bv 32) 1000) ((_ int2bv 32) 3)))) 4))

30 4)

31 1000))

32 (assert

33 (<= 0 loopVar0 (- 1000 (bv2int (bvand ((_ int2bv 32) 1000) ((_ int2bv 32) 3))))))

Figure 3.9: Constraints in Z3 format



Chapter 4

Evaluation

In order to test the implementation we analyzed kernels that perform tensor com-
putations from PyTorch repository. Specifically, the PyTorch kernels perform av-
erage pooling on 4D tensors. We also analyzed a kernel performing matrix mul-
tiplication included in the samples of CUDA 11.6. AveragePooling0 contains 7
loops and 6 array accesses. The kernel analysis generates 13 compound inequali-
ties, one for each loop and one for every array access. The same is the case with
AveragePooling1. AveragePooling2 contains 4 loops and the analysis generates
4 constraints based on the loop bounds, one for each loop. For this kernel, the
number of constraints generated due to array accesses is not equal to the number
of array accesses present inside the kernel. This happens because of duplicates.
There are accesses in the same element of the same array inside the kernel or ac-
cesses to arrays of equal sizes. MatrixMul contains 1 loop and 10 array accesses
and as in the previous example, this kernel generates duplicate constraints too.

Kernel Loops Array Accesses Constraints

AveragePooling0 7 6 13

AveragePooling1 7 6 13

AveragePooling2 4 10 11

MatrixMul 1 10 8

Table 4.1: Number of constraints generated per kernel

An example of a constraint generated from the analysis of the bounds of a loop
in the AveragePooling0 kernel is shown in figure 4.1. Figures 4.1c and 4.1b show
the instructions that correspond to the constraint’s expressions in LLVM IR and
PTX, respectively. The constants shown in the constraint are values that are not
known statically and have been hardcoded for illustration purposes and for the
constraints to be solvable in this example. The numbers 10, 100, 1000, 1024 and
2048 correspond to the values of %tid, %ntid, %ctaid, param 2 and param 3, as
shown in the PTX. The registers %tid, %ntid and %ctaid are vectors referring to

19



20 CHAPTER 4. EVALUATION

the ID of the thread that executes the kernel, the number of thread blocks that
execute the kernel and the block ID in which the current thread belongs to. The
blocks can have up to 3 dimensions, so the x element retrieves the information
for the first dimension of the block. These values are retrieved in the LLVM IR
using the @llvm.nvvm.read.ptx.sreg.ntid.x(), @llvm.nvvm.read.ptx.sreg.tid.x() and
@llvm.nvvm.read.ptx.sreg.ctaid.x() intrinsics shown in figure 4.1c. The constants
1024 and 2048 correspond to param 2 and param 3, which are integer parameters
being passed to the kernel. The constants will be replaced with their real values
when the implementation is deployed, by replacing our placeholders with the cor-
responding values during the kernel launch.

$L BB0 13 is the loop block. The variable loopVar5 shown in the constraint
and the LLVM IR is the loop’s induction variable. This variable corresponds to
the register %r117 in the PTX. The lower bound of the loop is composed of the
expressions in lines 4-17 of figure 4.1a, which have derived from the lines 1-14 of
the PTX and the lines 1-10 of the LLVM IR. The lower bound is, basically, the
initial value of register %117 before entering the loop in the PTX and the second
incoming value of the phi node in line 14 of the LLVM IR. The upper bound is
the value 2048. It corresponds to param 3 and we can see that it is the value
that terminates the loop in the setp instruction of the PTX code and the icmp
instruction of the LLVM IR.

Breaking down the lower bound expression in the constraint of figure 4.1a, we
firstly observe a division between ctaid and param 2 created from line 6 of the IR.
The result is multiplied by the ntid and the tid is added to the calculated product.
The result is converted into a 32-bit vector using the int2bv command, in order
for the bvand operation to take place. The bvand operation performs a bitwise
AND operation with -1 to keep the 32 least significant bits of the previously calcu-
lated number. At last, the result is converted back to an integer using the bv2int
command, in order to be used in the comparison. These operations have been
generated from the instructions in the lines 8-10 in the IR. The and operation has
emerged from the lo modifier in line 12 of figure 4.1b, which forces only the lower
half of the result to be written in the destination register.

Figures 4.2, 4.4 and 4.3 present another example of constraint generation with
the instructions that correspond to it in PTX and LLVM IR. Here, the constraint
has been created due to an array access in the AveragePoolin0 kernel. Just like the
previous example, this example contains some hardcoded values. The constants
512, 1024, 2048, 4096, 8192 correspond to registers param 2, param 10, param 11,
param 12, param 13, respectively. These are parameters passed to the kernel.
Constant 100 is the value of register %ctaid.x.

The minimum and maximum values of the inequality in this example depend
on the size of the array. The size of the array is another value that is not available



21

statically, so it has been hardcoded in this example as the constant 1000000. The
minimum index that can be used for the array access is, obviously, zero. The array
access occurs in line 39 in the IR using the index calculated by the getelementptr
instruction in line 37. The equivalent instruction for the array access in the PTX
is the ld instruction in line 32 and the index is calculated by the shl and add in-
structions in line 29-30. The index constraint is generated by the value used in the
getelementptr instruction. The expression shown in the middle of the inequality
in figure 4.2 is the index’s expression.

Examining the constraint outwards, we observe a division between the ctaid
and param 2 with the result multiplied by param 2 and an and operation with -1
applied to the calculated value. The result is converted to an integer using the
bv2int instruction and then subtracted from the ctaid. These expressions have
been created from the instructions in lines 2-6 in the IR and 2-5 in the PTX.
Next, there is a multiplication with param 10, the result is converted to a 32-bit
vector in order for an and operation with -1 to take place. The computed value is
converted back to an integer by the bv2int command. The instructions that led to
this expression can be seen in line 8-10 in the IR and lines 7-8 in the PTX. In the
IR there is also a sext value that has been generated due to the cvt instruction in
the PTX, which doubles the width of the destination register. This instruction has
no effect in the constraint. The expression analyzed above is the second operand
of an addition. The first operand is the result of an and operation performed in
the product of loopVar3 with param 12. The instructions corresponding to these
expression can be seen in lines 18-21 in the IR and 14-16 in the PTX. The loop-
Var3 variable is defined in line 13 of the IR and has been created because these
instructions exist inside a loop block. Again, there is a sext instruction in the lines
mentioned with no effect in the generated expressions of the constraint. Next,
there is an addition of the previously computed value and the result of an and
operation applied to the product of loopVar4 with param 13. In the lines 25-28
of the IR and 19-21 of the PTX code we can see the relevant instructions. The
next expression in the constraint, is a multiplication of loopVar5 with param 11.
A bitwise and operation with -1 is applied to the result. The calculated value
is added to the result of the previous addition. The instructions that caused the
generation of these expressions are those in lines 33-16 in the IR and 26-30 in the
PTX. The variable loopVar5 is defined in the line 32 of the IR and it is the induc-
tion variable of the loop block $L BB0 13. The and operations in this constraint
has been generated due to the lo modifiers of the mul instructions in the PTX.



22 CHAPTER 4. EVALUATION

1 (declare-const loopVar5 Int)

2 (assert

3 (<=

4 (bv2int

5 (bvand

6 ((_ int2bv 32)

7 (+

8 (*

9 (/ 100 1024)

10 1000

11 )

12 10

13 )

14 )

15 ((_ int2bv 32) -1)

16 )

17 )

18 loopVar5

19 2048

20 )

21 )

(a) Loop Constraint

1 ld.param.u32 %r46, [param_2];

2 ld.param.u32 %r47, [param_3];

3 ...

4 mov.u32 %r4, %ntid.x;

5 ...

6 mov.u32 %r6, %tid.x;

7 ...

8 mov.u32 %r64, %ctaid.x;

9 div.u32 %r65, %r64, %r46;

10 mul.lo.s32 %r66, %r65, %r46;

11 sub.s32 %r12, %r64, %r66;

12 mad.lo.s32 %r13, %r65, %r4, %

r6;

13 ...

14 mov.u32 %r117, %r13;

15 ...

16 $L__BB0_13:
17 ...

18 add.s32 %r117, %r117, %r18;

19 setp.lt.s32 %p8, %r117, %r47;

20 @%p8 bra $L__BB0_13;
21 ...

(b) PTX

1 %7 = call i32 @llvm.nvvm.read.ptx.sreg.ntid.x()

2 ...

3 %10 = call i32 @llvm.nvvm.read.ptx.sreg.tid.x()

4 ...

5 %24 = call i32 @llvm.nvvm.read.ptx.sreg.ctaid.x()

6 %25 = udiv i32 %24, %param_2

7 ...

8 %29 = mul i32 %25, %7

9 %30 = add i32 %29, %10

10 %31 = and i32 %30, -1

11 ...

12 "$L__BB0_13": ; preds = %"$L__BB0_13", %94

13 ...

14 %loopVar5 = phi i32 [ %109, %"$L__BB0_13" ], [ %31, %94 ]

15 ...

16 %109 = add i32 %loopVar5, %55

17 %110 = icmp slt i32 %109, %param_3

18 br i1 %110, label %"$L__BB0_13", label %"$L__BB0_14.loopexit"

(c) LLVM IR

Figure 4.1: AveragePooling0 loop constraint generation example



23

1 (assert

2 (<=

3 0

4 (+

5 (+

6 (+

7 (bv2int

8 (bvand

9 ((_ int2bv 32) (* loopVar3 4096))

10 ((_ int2bv 32) -1)))

11 (bv2int

12 (bvand

13 ((_ int2bv 32)

14 (*

15 (-

16 100

17 (bv2int

18 (bvand

19 ((_ int2bv 32)

20 (* (/ 100 512) 512)) ((_ int2bv 32) -1))))

21 1024))

22 ((_ int2bv 32) -1))))

23 (bv2int

24 (bvand

25 ((_ int2bv 32) (* loopVar4 8192))

26 ((_ int2bv 32) -1))))

27 (bv2int

28 (bvand((_ int2bv 32) (* loopVar5 2048))((_ int2bv 32) -1))))

29 1000000))

30

Figure 4.2: AveragePooling0 array access constraint generation example



24 CHAPTER 4. EVALUATION

1 ...

2 %24 = call i32 @llvm.nvvm.read.ptx.sreg.ctaid.x()

3 %25 = udiv i32 %24, %param_2

4 %26 = mul i32 %25, %param_2

5 %27 = and i32 %26, -1

6 %28 = sub i32 %24, %27

7 ...

8 %67 = mul i32 %28, %param_10

9 %68 = and i32 %67, -1

10 %69 = sext i32 %68 to i64

11 ...

12 "$L__BB0_9": ; preds = %"$L__BB0_15", %87

13 %loopVar3 = phi i32 [ %113, %"$L__BB0_15" ], [ %73, %87 ]

14 %88 = icmp sle i32 %85, %81

15 br i1 %88, label %"$L__BB0_15", label %89

16
17 89: ; preds = %"$L__BB0_9"
18 %90 = mul i32 %loopVar3, %param_12

19 %91 = and i32 %90, -1

20 %92 = sext i32 %91 to i64

21 %93 = add i64 %92, %69

22 br label %"$L__BB0_11"
23 ...

24 94: ; preds = %"$L__BB0_11"
25 %95 = mul i32 %loopVar4, %param_13

26 %96 = and i32 %95, -1

27 %97 = sext i32 %96 to i64

28 %98 = add i64 %93, %97

29 br label %"$L__BB0_13"
30 "$L__BB0_13": ; preds = %"$L__BB0_13", %94

31 ...

32 %loopVar5 = phi i32 [ %109, %"$L__BB0_13" ], [ %31, %94 ]

33 %100 = mul i32 %loopVar5, %param_11

34 %101 = and i32 %100, -1

35 %102 = sext i32 %101 to i64

36 %103 = add i64 %98, %102

37 %104 = getelementptr i32, ptr %param_0, i64 %103

38 ...

39 %106 = load double, ptr %104, align 8

40 ...

41 %109 = add i32 %loopVar5, %55

42 %110 = icmp slt i32 %109, %param_3

43 br i1 %110, label %"$L__BB0_13", label %"$L__BB0_14.loopexit"

Figure 4.3: AveragePooling0 array access LLVM IR example



25

1 ...

2 mov.u32 %r64, %ctaid.x;

3 div.u32 %r65, %r64, %r46;

4 mul.lo.s32 %r66, %r65, %r46;

5 sub.s32 %r12, %r64, %r66;

6 ...

7 mul.lo.s32 %r95, %r12, %r54;

8 cvt.s64.s32 %rd10, %r95;

9 ...

10 $L__BB0_9:
11 setp.le.s32 %p6, %r27, %r26;

12 @%p6 bra $L__BB0_15;
13
14 mul.lo.s32 %r94, %r114, %r56;

15 cvt.s64.s32 %rd9, %r94;

16 add.s64 %rd2, %rd9, %rd10;

17 mov.u32 %r115, %r26;

18 ...

19 mul.lo.s32 %r96, %r115, %r57;

20 cvt.s64.s32 %rd11, %r96;

21 add.s64 %rd3, %rd2, %rd11;

22 mov.u32 %r116, %r19;

23 mov.u32 %r117, %r13;

24
25 $L__BB0_13:
26 mul.lo.s32 %r97, %r117, %r55;

27 cvt.s64.s32 %rd12, %r97;

28 add.s64 %rd13, %rd3, %rd12;

29 shl.b64 %rd14, %rd13, 3;

30 add.s64 %rd15, %rd1, %rd14;

31 ...

32 ld.global.nc.f64 %fd3, [%rd15];

33 ...

34 add.s32 %r117, %r117, %r18;

35 setp.lt.s32 %p8, %r117, %r47;

36 @%p8 bra $L__BB0_13;
37

Figure 4.4: AveragePooling0 array access PTX example



26 CHAPTER 4. EVALUATION



Chapter 5

Conclusion

In this thesis, we demonstrated an approach for identifying unsafe kernel execu-
tions, by performing static analysis on kernel code. The analysis process involved
converting the kernel’s PTX assembly into the LLVM IR and the use of LLVM’s
passes in order to detect loop bounds and array access inside the kernels. The
analysis generates constraints, solved using the Z3 SMT solver. The satisfiability
of the constraints determines the memory safety of the kernel. We evaluated the
implementation by analyzing kernels from the PyTorch repository. We presented
the relation between the number of loops and array accesses inside the kernels
and the number of generated constraints. Finally, we presented examples of con-
straints that were generated from PyTorch kernels. Our results show that the
static generation of constraints on the memory used by a kernel is possible, so
that the dynamic memory checks for every memory access inside the kernels can
be reduced.

27



28 CHAPTER 5. CONCLUSION



Bibliography

[1] Leonardo de Moura and Nikolaj Bjørner. Z3: An Efficient SMT Solver. In Tools
and Algorithms for the Construction and Analysis of Systems, pages 337–340,
2008.

[2] David Kirk. NVIDIA CUDA software and GPU parallel computing architec-
ture. volume 7, pages 103–104, 10 2007.

[3] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for Life-
long Program Analysis & Transformation. In Proceedings of the 2004 Inter-
national Symposium on Code Generation and Optimization (CGO’04), Palo
Alto, California, Mar 2004.

[4] Jaewon Lee, Yonghae Kim, Jiashen Cao, Euna Kim, Jaekyu Lee, and Hyesoon
Kim. Securing GPU via region-based bounds checking. In Proceedings of the
49th Annual International Symposium on Computer Architecture, ISCA ’22,
page 27–41, New York, NY, USA, 2022.

[5] HaoHui Mai, Jiacheng Zhao, Hongren Zheng, Yiyang Zhao, Zibin Liu, Mingyu
Gao, Cong Wang, Huimin Cui, Xiaobing Feng, and Christos Kozyrakis. Hon-
eycomb: Secure and efficient GPU executions via static validation. In 17th
USENIX Symposium on Operating Systems Design and Implementation (OSDI
23), pages 155–172, Boston, MA, July 2023.

[6] Manos Pavlidakis, Stelios Mavridis, Antony Chazapis, Giorgos Vasiliadis, and
Angelos Bilas. G-safe: Safe GPU Sharing in Multi-Tenant Environments. In
Under submission, 2024.

[7] Devashree Tripathy, AmirAli Abdolrashidi, Quan Fan, Daniel Wong, and
Manoranjan Satpathy. LocalityGuru: A PTX Analyzer for Extracting Thread
Block-level Locality in GPGPUs. In 2021 IEEE International Conference on
Networking, Architecture and Storage (NAS), 2021.

29


