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Wireless local area networks are increasingly being deployed in a wide variety of

areas to meet the growing demand for wireless access. When compared to their

wired counterparts, wireless networks experience larger delays, lower throughput

and more frequent packets losses and retransmissions. Thus, developing mecha-

nisms, such as, load balancing, capacity planning, and admission control to im-

prove their performance will become more and more important. In this context,

it is critical to understand and analyze the performance and workload charac-

teristics of wireless networks in order to develop wireless networks that are more

scalable, robust, easier to manage and able to utilize their scarce resources more

efficiently. Moreover, empirical studies can be used to guide modeling efforts for

wireless demand and access patterns and provide realistic models to performance

analysis studies for wireless network protocols and services.

In this work, we study a large wireless infrastructure and explore the charac-

teristics of traffic load at APs in order to derive simple models for it. We carry
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measurements based on traces acquired from the wireless infrastructure of the

University of North Carolina (UNC). In the first part of the study, we perform a

statistical analysis on the wireless traffic load of APs to derive models that can be

used in traffic load forecasting. Based on these models, we design and evaluate

several simple forecasting algorithms. The traffic characterization is extended

by classifying flows into application types using a graph-based method in order

to avoid the inherent limitations of a port-based classification. We perform an

application-based characterization of traffic at different spatial scales and com-

pare this methodology with others in literature. Our group has proposed models

for the wireless traffic demand using real-life traces collected from the wireless

infrastructure at UNC. The final part of this thesis discusses a synthetic trace gen-

erator that produces synthetic traffic based on these models. By replaying such

traces, researchers could analyze the performance of various wireless networking

protocols under realistic traffic conditions.
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CHAPTER 1

Introduction

1.1 The emergence of wireless networks

Wireless networks are increasingly being deployed to meet the growing demand

for wireless access. IEEE 802.11 networks are becoming widely available in uni-

versities, corporations, hospitals, residential areas and generally in every type

of public area. More and more users resort to wireless technologies for their

every-day activities. Popular applications and services from the wired networks

shift in the wireless arena while new applications are increasingly being deployed.

Apart from new applications that shift in wireless networks, usage patterns of

current ones evolve rapidly over time. The proportion of wireless streaming au-

dio and video traffic increased by 405% between 2001 and 2003/2004, P2P from

5.2% in 2001 to 19.3% in 2003/4, filesystems from 5.3% to 21.5%, and streaming

from 0.9% to 4.6% between January 2006 and March 2006 [52]. The increasing

popularity of wireless networks has also attracted the interest of the research com-

munity. New standards for wireless technologies are being developed to meet the

diverse needs for wireless access and quality of service requirements while current

ones are continuously being improved. More and more researchers are becoming

interested in understanding wireless network characteristics and analyzing their

performance.
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1.2 Motivation

Despite of their broad deployment and usage, the evolution of WLANs towards

large multi-service networks has introduced several challenges that have not been

thoroughly addresses by the research community. Wireless networks have more

vulnerabilities and face more resource limitations than their wired counterparts,

such as, limited throughput and larger delays. Apart from that, due to the nature

of wireless channel and its dynamics, wireless clients experience more frequently

phenomena, such as, disconnections from the infrastructure and packet losses.

Other phenomena that degrade the performance of wireless networks are conges-

tion due to the nature of the shared medium and interference caused by other

in-proximity wireless transceivers. It is also frequent for users of a large wireless

infrastructure to fall into areas with poor or no coverage known as “dead-spots”.

All aforementioned limitations of wireless networks have motivated standardiza-

tion efforts in an attempt to improve the management of limited radio resources

and assure QoS for specific applications. Within this context, there is a grow-

ing need for mechanisms, such as, load balancing, capacity planning, admission

control and resource reservation that are expected to improve significantly the

performance of current WLANs. Understanding the underlying characteristics of

wireless demand and characterizing traffic load and access patters is elementary

to both the design and the implementation of such mechanisms. Measurement

studies though, can be particularly beneficial towards this direction. It is crit-

ical to understand the performance and workload of the wireless networks and

develop wireless networks that are more robust, easier to manage and scale, and

able to utilize their scarce resources more efficiently.
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1.3 Goals

The research goals of this work are twofold. In the first stage we intend to

characterize and analyze traffic of an infrastructure-wide WLAN at two different

network layers namely the MAC and transport layer. By analyzing traffic at the

MAC layer we intend to capture real-life phenomena, such as, user communication

and association patterns (e.g. periodicities) that will assist in modeling traffic and

implementing traffic forecasting algorithms. Such an analysis will also provide

useful information to network administrators by indicating overloaded APs or

possible dead-spots. Analyzing and characterizing traffic at the MAC layer will

provide us with a deeper insight into the performance of WLAN”s and will guide

decisions about mechanisms, such as, load balancing or admission control that

should be incorporated.

Analyzing traffic at the transport layer aims at exploring how well-known

transport layer protocols, such as UDP and TCP, perform over the wireless chan-

nel. This study also provides a multi-level application based characterization of

transport layer traffic from the perspective of network, client, AP and building.

Traffic is classified into application types using a novel tool called BLINC avoid-

ing limitations and restrictions of a payload- or port-based classification. Such a

characterization of wireless traffic is important since different application types

have diverse requirements in terms of network resources and thus have a different

effect on overall network performance. Our analysis can provide network admin-

istrators with useful information, such as, APs or buildings that are overload by

P2P traffic, security vulnerabilities of the network, or demand for delay sensitive

applications (VoIP).

In the second stage we shall focus on implementing and evaluating models for

wireless traffic on two different network layers namely MAC and TCP. Such mod-
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els will be useful for network administrators who wish to perform load balancing,

resource reservation and resource provisioning. In order to model traffic at a finer

level namely, AP and client, we exploit traffic characteristics ,such as, periodici-

ties and access patterns observed and make use of the diverse datasets collected

from our infrastructure. We use these models to implement simple short-term

forecasting algorithms that can be incorporated in access points to allow them to

perform admission control and capacity planning in a real-time fashion. So, in

this context, each AP predicts its traffic load for the next time interval (e.g., next

hour or five minute interval) and uses its traffic load estimates during admission

control to not only better manage its traffic demand but also advise clients to

associate with the appropriate APs to better utilize their local resources. Such

predictions can be used to reduce the energy spending at the client side, improve

the capacity utilization of wireless LANs, and balance traffic load across APs.

The major part of our modeling effort focuses on extracting and evaluating

models for wireless traffic at the transport layer. We evaluate models that were

suggested in [11] by generating synthetic traces and comparing them against

original traces through statistical tests and simulations. Our intention is to embed

all proposed parametric models in a software module that will generate realistic

synthetic traces in a scalable manner. We shall also show that our models can

be used to describe accurately Web traffic apart from aggregate network traffic.

Scalable and realistic models for wireless demand can be beneficial to network

administrators who wish to perform capacity planning or resource provisioning.

They can also be used to guide decisions for QoS support at specific locations

of the network. Finally, such models can be used in the absence of real-time

testbeds to generate realistic traces and assist in performance analysis studies of

wireless networks.
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1.4 Challenges

Wireless measurements are in general more complex than those in wired net-

works. In wireless measurements studies, researchers are interested in a rather

wide range of phenomena, such as, disconnections, mobility, energy consump-

tion, received signal strength, interference, and offered load as opposed to studies

concerning wired networks were the main focus is on actual traffic load. Wire-

less measurements thus, often require traces from different network layers, such

as, MAC, TCP-IP or even physical layer. Apart from that, depending on how

detailed view of the network is required at the spatial dimension, e.g., at an

AP, APs co-located in a building or set of buildings, and the architecture of the

network (single link-level subnet or multiple subnets), one may need to capture

traffic at various physical locations requiring thus multiple monitor points. Many

of the IEEE 802.11 MAC-layer frame sniffers that are available either lack suffi-

cient documentation or they need a significant amount of tuning so researchers

often have to build custom equipment or resort to expensive commercial tools to

capture over-the-air traffic with the required level of detail. Moreover, depending

on the phenomena studied, it is often required to cross-correlate diverse traces

collected from the same wireless infrastructure, such as TCP, SNMP or Syslog

messages. Such a correlation process may not always be straightforward requiring

a lot of processing time and using complicated algorithms. It comes as no surprise

that only recently traces from large-scale wireless infrastructures have been made

available. Notably, the majority of the measurement studies e.g., [56, 62, 72],

make high-level observations about network dynamics in both the temporal and

spatial domains without getting into the detail that modeling tasks require.
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1.5 Related work

The increased interest in wireless networks has attracted research community’s in-

terest and has led to several studies exploring a large variety of wireless network

characteristics. There are several empirical-based measurement studies about

traffic load that explore characteristics and patterns of wireless demand at vari-

ous spatial scales [75, 61, 70, 12, 68, 49, 52] . There is also an increased interest

in user access patterns and mobility trying to evaluate and construct realistic

mobility models [70, 80, 28, 34, 13, 35, 36, 63]. Also, being aware of the re-

source limitations and wireless channel dynamics, wireless network researchers

have focused on exploring the performance IEEE 802.11 MAC layer. Some of the

phenomena studied are:

• Hand-off delays and disconnections from the infrastructure [37, 65];

• Packet delays and packet losses observed at the MAC layer [65];

• Signal strength quality of wireless links and routing [66, 38, 57];

IEEE802.11-based mesh networks have also received a lot of attention from

researches who explore architecture and routing issues in such networks [33,

14, 15, 100, 57, 58]. Recently there have been various studies analyzing and

modeling time-series traffic load in order to support forecasting algorithms or

admission control and resource provisioning mechanisms [88, 81, 77, 39, 12].

Apart from characterizing or modeling wireless demand at the MAC layer,

many studies have focused on characterizing wireless demand at the transport

layer. One direction of such a characterization is identifying the application type

for each flow. However, standard port based classification techniques used so far

were proved to be inaccurate [32, 55]. Several system-oriented [31] or statistical

8



methods [30, 54] have been developed to address the inefficiency of current

flow classification techniques. Although classifying traffic into applications has

received significant attention in wired networks [3, 53, 60, 30, 54], there are only

a few similar studies in the case of wireless ones [70, 52]. Tutschku examined

the difference of the uploading from the downloading traffic of a popular P2P

application in a wired network and reported a significant amount of uploaded

P2P traffic in [59]. Guo et al. in [41] studied the uploaded to downloaded traffic

asymmetry for bit torrent clients and concluded that it is highly affected by high

speed downloading. Chambers et al. in [40] characterized the online games usage

in terms of user sessions and periodicities of the workload. Moreover, Guha et al.

in [17] studied the structure of the network that a famous VoIP system builds in

order to distinguish it from P2P systems.

Most traffic modelling efforts focus on wired networks. Flow-level traffic vari-

ables have been the subject of modelling in various studies, embracing almost

all Internet protocols and applications, such as, TCP [76, 73, 78, 86] and mul-

timedia streaming traffic [79]. The concept of session as a structure of the user

activity was used in [87] for Ftp traffic, as a synonymous of the Ftp control

connection. The term was used more explicitly later in Web traffic modeling.

Both empirical [74, 84] and statistical [83, 71, 49] modeling approaches have

been used for the description of traffic at the two levels. A common feature of

these studies is that the flow/session borders are heuristically defined by inter-

vals of user inactivity. Although there have been several modelling efforts in the

wireless domain, mainly performance analysis studies on wireless network pro-

tocols and mechanisms, they employ traffic scenarios that simulate saturation

conditions [42, 7, 43, 6, 18, 19, 8, 25]. Other studies employ UDP flows of fixed

packet rate among a few source and destination pairs to generate synthetic traffic

[47, 10, 48, 20, 21]. There were only few studies that employed stochastic packet
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rate models, such as, Uniform, Poisson, Pareto, AR, and Markov [22, 23, 24].

Example of studies using TCP flows are [46, 45, 9] while studies replaying real-life

traces are [44].

1.6 Contributions

In this study we characterize traffic from a campus-wide WLAN at the MAC and

transport layer using a rich set of datasets. Characterizing traffic at the MAC

layer reveals interesting phenomena of wireless demand, such as, the distribution

of traffic across APs, correlation between traffic load and number of distinct

clients seen by an AP, as well as, periodic patterns in the timeseries of traffic of

both clients and APs. Based on these periodic patterns we derive simple models

for wireless demand that are used to build short term forecasting algorithms.

Hourly predictions of the traffic load at an AP exhibit very large prediction

errors due to the high variability of traffic. When moving to a finer spatial scale

(client level) periodic based forecasting algorithms perform better.

We also characterize traffic at the transport layer. At first we use a novel

method to classify flows into application types avoiding the known port limita-

tion. Application usage patterns are identified at four different levels, namely

client-, AP,building-, and network-level. This characterization indicates that the

dominant and most popular application types across the network are Web and

P2P. Also, most wireless clients appear to exhibit strong application preferences

transferring the majority of their traffic through a specific application type. When

compared to other wired and wireless networks, we observe a larger percentage

of Web traffic, while the corresponding percentage of P2P is lower than all wired

counterparts. We notice that mobility, when expressed through the number of

distinct APs that a client has visited, does not affect application usage patterns
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across clients.

Extending the transport layer characterization of wireless demand, we eval-

uate the performance of parametric models for session- and flow-level variables.

Specifically, the biPareto distribution provides a very efficient fit for both flow

sizes and number of flows per session. Also, the lognormal distribution consists a

satisfactory approximate for flow inter-arrival times within sessions. Finally, we

show the a TVPP is a suitable model for session arrivals. It is shown that these

models can also be used for the case of Web flows. Based on these models, we

implemented a synthetic trace generator which we prove that captures the trends

observed in the real trace acquired from UNC’s WLAN.

1.7 Related publications

The modelling methodology presented in section 4 along with the implementation

and evaluation of forecasting algorithms for wireless traffic of APs at an hourly

timescale were the main contributions of the paper: “Short-term traffic fore-

casting in a campus-wide wireless network” published in 16th Annual IEEE

International Symposium on Personal Indoor and Mobile Radio Communications

by Maria Papadopouli, Haipeng Shen, Elias Raftopoulos, Manolis Ploumidis, and

Felix Hernandez-Campos.

The conclusions of our application-based characterization of wireless traffic

at the client-, AP-, building-, and network-level that are presented in section 5

are based on the findings of the paper: Multi-level application-based traffic

characterization in a large-scale wireless network published in IEEE In-

ternational Symposium on a World of Wireless, Mobile and Multimedia Networks

(WoWMoM) by Manolis Ploumidis, Maria Papadopouli, and Thomas Karagian-
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nis.

Isuses concerning modelling wireless traffic at the transport layer presented

in Section 6 are based on two recently published papers. The methodology used

to derive parametric models for flow- and session-level variables is presented in

the paper: Spatio-Temporal Modeling of Traffic Workload in a Campus

WLAN published in Second annual international Wireless Internet Conference

by Felix Campos, Merkourios Karaliopoulos, Maria Papadopouli, and Haipeng

Shen. The evaluation of these parametric models through both simple statistical

tests and simulations addressed in the same section were the main contributions

of the paper: Synthetic traffic generation based on Measurement-driven

modelling of large Wireless Local Area Networks accepted in the student

demo competition of ACM MobiCom/MobiHoc 2007 by Manolis Ploumidis, Elias

Raftopoulos and Maria Papadopouli.

1.8 Roadmap

Section 2 provides a brief description of the two infrastructures over which traces

were collected and analyzed in terms of the architecture of the network, protocols

used and their sizes. Section 3 first provides some background information

about the data collection mechanisms that are used. Then it describes how these

mechanisms were used to acquire datasets from the two infrastructures. Finally

a list of the datasets acquired is provided. Section 4 performs a characterization

of wireless demand at the MAC layer. This characterization includes identifying

some general workload characteristics, such as, traffic distribution across clients.

It also describes how statistical properties of traffic timeseries are exploited to

create simple models for wireless demand and how these models are incorporated

to implement forecasting algorithms. At the final part of this section, forecasting
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algorithms are evaluated at the AP and client level. Section 5 consists the first

part of the characterization of wireless demand at the transport layer. If first

describes the data pre-processing part which includes classification of flows into

application types using BLINC. The main part of this section presents the results

of a multi-level application-based characterization of UNC’s wireless traffic from

the perspective of the network, building, AP, and client. Finally, section 6 first

provides a brief description of the modeling approach followed in [11] along

with the models proposed for wireless demand. The main part of this section

focuses on evaluating the performance of these models. It finally presents the

basic implementation characteristics of a custom synthetic trace generator based

on the models evaluated.
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CHAPTER 2

Wireless network infrastructures

In this section we present the architecture and key characteristics of the two

wireless infrastructures that were monitored. The main part of this study focuses

on the 802.11 campus-wide wireless infrastructure of the University of North

Carolina while the second infrastructure monitored is the 802.11 wireless student

MESH network of Heraklion.

2.1 UNC campus wireless infrastructure

The University of North Carolina at Chapel hill started deploying an 802.11 wire-

less network in 1999. Wireless access is available for almost all of the building of

the 729-acre university campus including lecture halls, residences and adminis-

trative buildings. By the time measurements were made, about 500 APs provided

wireless access to 26,000 students, 3,000 faculty members and 9,000 staff members

and a couple of off-campus administrative offices.

The majority of the APs belong to the Cisco 1200 Aironet series while there

is still a significant number of 350 series and fewer 340 series APs. Two are the

main trends with respect to the infrastructure evolution with time: it is constantly

growing, with APs exceeding 750 by June 2006 and, in parallel, older 340/250

series are being replaced by 1230/1240 series AP compliant with 802.11a,g [11].

Figure 2.1 represent an abstraction of UNC”s wireless infrastructure. Wireless
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Figure 2.1: UNC 802.11 wireless infrastructure

clients roam seamlessly among APs belonging to different Basics Services Sets

(BSSs) and exchange traffic with other hosts of the same WLAN or hosts residing

in the Internet. Client B for example, first associates to AP 1, then roams to

APs 2 and 3 and finally terminates his interaction with the infrastructure by

disassociating from AP 3. UNC”s WLAN interconnects to the wired component

of the infrastructure through UNC”s backbone network and to the rest of the

Internet through campus” egress router.

2.2 Heraclion Student Wireless MESH Network (HSWN)

HSWN is a wireless MESH network that was founded in 2002 in Heraclion of

Greece. It covers an area of 10 square kilometers providing wireless access to

more than 180 members. To the best of our knowledge this is the first study

that collects a wide variety of traces, such as, packet headers, SNMP, and Syslog

from a wireless multi-hop MESH network. Figure 2.2 provides a brief abstrac-
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Figure 2.2: HSWN wireless infrastructure

tion of HSWN architecture. The infrastructure of HSWN consists of 10 access

nodes (AN) through which users of the HSWN exchange traffic with each other

and access the Internet. Each AN consists of an 802.11b AP and an 802.11a

wireless interface. APs are used by clients to connect to the infrastructure and

can be Cisco Aironet series 340 or D-link DWL-900+. Each AN”s 802.11a inter-

face serves as a backbone link to other ANs forming thus a multi-hop wireless

MESH network. Another key difference between UNC”s wireless infrastructure

and HSWN is that HSWN users are stationary and connect to network”s infras-

tructure through a directional antenna.
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CHAPTER 3

Data acquisition process

In this section we present the monitoring mechanisms that were used to col-

lect traces from the two wireless infrastructures studied along with some general

workload characteristics. Three types of data have been used to track the interac-

tion of clients with the wireless network infrastructure: Syslog messages, Simple

Network Management Protocol (SNMP) data, and packet header traces. Each

monitoring mechanism captures different aspects of wireless demand providing

thus a different view of the infrastructure being monitored. Syslog messages cap-

ture the interaction of a wireless client with the infrastructure and record events

such as associations or disassociations of the client from an AP while SNMP and

packet header traces provide information about wireless traffic at the MAC and

transport layer respectively. The first two types of data have been collected al-

most continuously from the wireless network, whereas the packet header traces

come from two different eight-day monitoring periods spaced one year apart, i.e.,

April 13-20 2005 and Apr 28-May 5 2006.

3.1 Syslog

The Syslog protocol, defined in RFC 3164, is a protocol that provides a transport

to allow a device to send event notification messages across IP networks to event

message collectors, also known as Syslog servers. The protocol is simply designed
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to transport these event messages from the generating device to the collector.

The collector does not send back an acknowledgment upon the reception of Syslog

messages.

As various kernel modules of a UNIX based operating system generate mes-

sages that require user”s or administrator”s attention, on the same way devices

such as routers, switches, firewalls, VPN servers, access points and other network

devices, generate messages/notifications that can be used either for troubleshoot-

ing or to inform about an event that requires special attention. A hardware fire-

wall for example may send a Syslog message to a preset Syslog server whenever

it blocks a connection. All events logged by Syslog can then be used by system

administrators to extract valuable information. As Figure 3.1 shows, all devices

that are Syslog-compatible can be configured to send Syslog messages to a central

point. Messages between the device and Syslog server are delivered through UDP

so there is the case of missing some events due to loss of the notification.

The Syslog protocol also defines various levels of severity for the messages

generated. Each Syslog messages arriving at the Syslog server also contains a

single-digit integer indicating the severity of the message. Usually system ad-

ministrators adjust the severity level during the setting up of a Syslog collection

process to define the classes of messages to which they are interested in. In the

case where Syslog messages are used to monitor an 802.11 infrastructure, they

can be triggered by different types of events at the IEEE 802.11x MAC layer,

including the (re)association/disassociation of a client with/from an AP, its au-

thentication/deauthentication with/from the network, and a reset of a client’s

connection. There are seven types of events that trigger an AP to transmit a

Syslog message. These messages and their corresponding events are interpreted

as follows:
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Figure 3.1: Syslog collection process

Authenticated : A card must authenticate itself before using the network. Since

a card still has to associate with an AP before sending and receiving data, we

ignore any authenticated messages.

Associated : After it authenticates itself, a card associates with an AP. Any

data transmitted to and from the network is transmitted by the AP.

Reassociated : A card may reassociate itself with a new AP (usually due to

higher signal strength) or the current AP. After a reassociation with an AP, any

data transmitted to and from the network is transmitted by that AP.

Roamed : After a reassociation occurs, the old AP and sometimes the AP

with which the card has just reassociated sends a roamed message. Since we still
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receive the reassociated message, we can ignore this message as well.

Reset : When a card”s connection is reset, a reset message is sent. In our

trace, cards with a reset message are only involved in reset messages. We believe

this to be an artifact of not having logs from all of the APs, and therefore we

ignore any reset messages.

Dissasociated : When a card wishes to disconnect from an AP, it disasso•ciates

itself. We ignore any disassociated messages for a card if the previous message

for that card was a disassociated or deauthenticated message.

Deauthenticated : When a card is no longer part of the network a deauthenti-

cated message is sent. It is not unusual to see repeated deauthenticated messages

for the same card, with no other type of events for that card in between. We

ignore any deauthenticated messages for a card if the previ•ous message for that

card was a disassociated or a deauthenticated message. A disconnection message

describes either a disassociated or deauthenticated message.

All network APs for both infrastructures were configured to report Syslog

events to a server, which was continuously operational.

3.2 SNMP

3.2.1 Background on SNMP

SNMP is an Internet-standard protocol for managing devices on IP networks.

Many kinds of devices support SNMP, including routers, switches, servers, work-

stations, printers, modem racks, and uninterruptible power supplies (UPSs). It

is an application layer protocol that facilitates the exchange of management in-

formation between network devices and is part of the Transmission Control Pro-

tocol/Internet Protocol (TCP/IP) protocol suite. SNMP enables network ad-
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Figure 3.2: SNMP managed network

ministrators to manage network performance, find and solve network problems,

and plan for network growth. Current standardization efforts have led to the

release of two versions of SNMP namely SNMPv1 and SNMPv2 which describe

SNMP basic components, basic commands, data representation, and manageable

objects. Figure 3.2 illustrates a demonstrative network managed by the SNMP

protocol.

The basic components of and SNMP-managed network are managers and

agents. A manager is a server running some kind of software that can handle

management tasks for a network. Managers are often referred to as Network

Management Stations (NMSs). A NMS is responsible for polling and receiving

traps from agents in the network. A poll, in the context of network management,
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is the act of querying an agent (router, switch, Unix server, etc.) for some piece

of information. A trap is a way for the agent to tell the NMS that something

has happened. Traps are sent asynchronously, not in response to queries from

the NMS. The NMS is further responsible for performing an action based on

the information it receives from the agent. Consider for example the case where

there is a hardware failure at a key component of a network such as a router or a

switch. The malfunctioning device can send a trap to the NMS which in turn will

be responsible for taking some action like informing network administrator. The

second entity, the agent, is a piece of software that runs on the network devices

being monitored. It can be a separate program (a daemon, in Unix language), or

it can be incorporated into the operating system (for example, Cisco’s IOS on a

router, or the low-level operating system that controls a UPS). Today, most IP

devices come with some kind of SNMP agent built in allowing for administrators

to poll the status of the device. The agent provides management information to

the NMS by keeping track of various operational aspects of the device. Figure 3.3

represent the way in which an NMS and an agent interact. SNMP uses the User

Datagram Protocol (UDP) as the transport protocol for passing data between

managers and agents. UDP however is unreliable since it lacks an acknowledge

mechanism so special care is needed for the case of missed polls.

All information that an SNMP agent can provide to the NMS is organized

hierarchically in a Manageable information base (MIB). MIBs consist of man-

ageable objects that can be polled through SNMP and identified through unique

object IDs. Such manageable objects can be the total number of packets observed

at a router port, total received traffic by an APs wireless interface, number of

retransmitted MSDUs e.t.c.
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Figure 3.3: SNMP trap

3.2.2 Using SNMP in UNC wireless infrastructure

We implemented a custom SNMP-polling system relying on a non-blocking SNMP

library to poll all APs of the two infrastructures studied. APs are polled indepen-

dently with a period of five minutes, so that delays incurring during the processing

of SNMP polls by the slower APs do not affect the other APs. This eliminates

any extra delays due to the slow processing of SNMP polls by some of the slower

APs. The system ran in a multiprocessor system and the CPU utilization in each

of the three processors we employed never exceeded 70%. Note that SNMP data

can be collected in two forms namely AP and client SNMP although they are

derived from the same MIBs. The only difference is that client SNMP polls also

provide some client related objects, such as, client up-time or client traffic per

AP instead of aggregate AP traffic. Each SNMP polling returns a set of values

at each time “t”, for each AP, that correspond to the variables/characteristics

being monitored, such as:
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1. total time that an AP is up since last reboot;

2. total number of received/sent bytes by the AP;

3. total number of received/sent unicast packets;

4. total number of successfully/undelivered MSDUs;

5. transmission rate of APs wireless interface;

6. client up time since last client”s association;

3.3 Packet header data

While SNMP and Syslog protocols are mostly used to capture MAC layer in-

formation from a wireless infrastructure, packet header data collected with tools

like tcpdump can provide transport layer information about the network being

monitored. Tcpdump is a command-line tool for monitoring network traffic at

the TCP/IP layers. It can capture and log all packets “sniffed” from a particu-

lar network interface or on all interfaces of the IP device being monitored [90].

Tcpdump like other packet sniffers contains a set of flags that allow network

administrators to monitor specific IP addresses or sets of IP addresses and also

to keep or discard payloads from packets. It can also store packets captured in

various formats, such as, binary or Ascii. Note though, that the output of tcp-

dump is packet headers and not TCP flows or TCP connections. Reassembling

of packets into flows should be accomplished in a subsequent processing step.

Before using tcpdump however, the only parameter that requires consideration

is the size of the network being monitored. Storing every packet noticed on a

link is both processor and storage intensive. Especially when high-speed links

are monitored, tcpdump may start experiencing packet losses.
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Figure 3.4: Monitor point for packet header collection for wired and wireless

VLANs of UNC campus

For that reason, we selected to collect only packet headers from the largest

wired and wireless VLANs of the UNC infrastructure. For the case of HSWN we

captured only packets that crossed the gateway access node to the Internet. We

thus did not capture any intra-WLAN traffic for any of the two infrastructures.

As figure 3.4 shows, we placed the monitor at the egress router of UNC. Using

a high precision DAG card, we sniffed every packet noticed on the link between

UNC”s egress router and the rest of the Internet on both directions. On the same

way, the monitor point for the case of HSWN was placed on the link between the

gateway AN and the rest of the Internet.

3.4 Datasets acquired

Table 3.1 summarizes the data traces that are available for each infrastructure

along with the tracing period they cover and their total size. For both wireless
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UNC Wireless UNC Wired HSWN

Aggr/Client SNMP

Sep 29 - Dec 31, 2004

Jan 1 - Jun 6, 2005 N/A Jun 26 - Jul 6, 2007

Jan 1 - Jun 30, 2006

Syslog

Oct 1 - Nov 4, 2004

Jan 20 - Jun 26, 2005 N/A Jun 26 - Jul 6, 2007

Jan 1 - Aug 28, 2006

Packet headers

Apr 13 - Apr 20, 2005 Apr 13 - Apr 20, 2005 Jun 26 - Jul 6, 2007

Apr 28 - May 6, 2006

Table 3.1: Summary of all traces collected from all infrastructures

infrastructures we have a collected a rich set of different traces using all available

monitoring mechanisms (we have also collected signal strength traces but they

are not relevant with this study). These datasets, especially for the case of the

UNC wireless infrastructure, cover a large period in time starting of from 2004

and ending in 2006, proving valuable in studies that focus on the evolution of a

WLAN. Each one of the datasets acquired provides insight to different aspects of

the client”s interaction with the infrastructure and is utilized in a different part

of the traffic characterization process.

A first stage analysis of the traces collected can provide some additional char-

acteristics of the infrastructures being monitored, such as, their sizes and number

of users. Table 3.2 summarizes the number of distinct MAC addresses and num-

ber of APs that appear in the SNMP and Syslog traces collected from the wireless

infrastructure of UNC. The corresponding number of distinct MAC addresses that

appear in the SNMP and Syslog traces of the HSWN is 361. Moreover, based

on the DHCP prefixes that each wireless and wired VLAN is bound to, we were
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Syslog Aggr AP SNMP Client SNMP

2005 2006 2004 2005 2004 2005

Number of distinct MAC addresses 21,046 26,612 N/A N/A 16,018 20,422

Number of distinct APs 650 741 488 571 454 619

Trace size 3.78GB 2.63GB 1.72GB 1.51GB 1.44GB 3.38GB

Table 3.2: Number of distinct MAC addresses and APs per trace

Number of UNC WLAN 2005 UNC WLAN 2006 UNC wired 2005 HSWN

LAN side IPs 8,196 7,848 3,919 1,663

WAN side IPs 2,979,365 2,491,219 2,056,926 7,584,951

Table 3.3: Number of LAN and WAN side IPs for HWSN and UNC infrastructures per tracing

period

able to categorize all IP addresses that appear in the packet header trace into

LAN (wired or wireless) and WAN side IPs. Table 3.3 summarizes the number

of LAN side and WAN side IPs that appear in each packet header trace.
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CHAPTER 4

Wireless traffic characterization and short-term

forecasting

The main goals of this section is to characterize wireless traffic at the IEEE 802.11

MAC layer and identify statistical properties that will be used to enable APs to

perform short-term traffic forecasting. Efficient forecasting algorithms can be

beneficial in a wide range of mechanisms that aim at improving the utilization

of 802.11 wireless networks, such as, load balancing, admission control, and QoS

support. Forecasting algorithms provide traffic estimates that can be exploited

to decide whether to accept a new association at an AP or redirect a client at a

less overloaded AP. Traffic models that support forecasting algorithms can also

be used to detect or even prevent abnormal user behaviors that would indicate

malicious attacks or misconfigured devices. We also explore how short-term fore-

casting performs at two different spatial scales, namely client and AP.

The main contributions of this section are the following: We found that distri-

bution of traffic across APs is rather skewed and follows a lognormal distribution.

Moreover, some APs appear to be significantly more popular than others having

been visited by nearly all clients of the wireless infrastructure. Our traffic load

analysis also reveals a strong correlation in the log-log scale between total traffic

and number of distinct clients seen at an AP. Analyzing the time series of traffic

of the most utilized APs of the infrastructure reveals strong diurnal periodicities.

28



Based on these periodicities and recent history of an AP’s utilization we propose

several models for wireless traffic demand. We employ these models to implement

some simple short-term traffic forecasting algorithms and finally evaluate their

performance.

The datasets used in this section are Aggregate, Client SNMP, and Syslog

messages derived from the UNC campus-wide WLAN.

4.1 Traffic load notation

For the rest of the section we will often refer to the time series of traffic load of

APs. Based on the SNMP trace for each AP, we produce a time series of its traffic

load at hourly time intervals. This traffic is the total amount of bytes received

and sent from all clients that were associated with the AP at that time interval.

Based on the problem where traffic timeseries are used, Ti(h, d) will denote the

traffic of AP i during the i -th hour of day d, while Xi(t) will denote total traffic

of AP i observed during the t-th hour of the trace

4.1.1 Time series extraction

While our monitoring system requested traffic load information from each access

point precisely every five minutes, missing values are relatively frequent in our

dataset. The phenomenon is observed due to several reasons:

1. an AP may be down for maintenance, or in the middle of an accidental

reboot;

2. an AP may be too busy to reply to an SNMP query;

3. the network path between our monitor and the AP may be temporarily
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broken;

4. query packets and response packets may be lost (they are transported using

UDP);

While these pathologies are expected to be infrequent, our dataset is large

enough to contain numerous instances of each of them. Thanks to the cumula-

tive nature of SNMP counters, we were able to reconstruct missing values quite

accurately.

The basic technique for extracting an equally-spaced time-series X = {x1, x2, . . . , xn}
from SNMP data is to subtract the cumulative counters from two consecutive

polling operations. In order to detect missing values and reboots, our polling

samples include not only the cumulative counters but also the time of each polling

operation, and the cumulative time that the access point has been running since

the last reboot (up time). This means that the i-th polling sample for an access

point has the form (ti, ui, ci), where ti is time of the polling operation, ui is the

cumulative up time, and ci is some cumulative counter (i.e., total load in bytes).

Given two consecutive polling samples, the load xi observed between ti−1 and ti

is generally equal to ci − ci−1. There are two exceptions. First, SNMP counters

are represented using 32 bits, so counters often wrap-around. We consider that a

counter has wrapped around whenever ci < 230 and ci−1 > 3∗230. In this case, xi

is equal to ci +(232−1−ci−1). Secondly, after a reboot, all the counters in an AP

are reset. Therefore, if a reboot occurs at some point between ti−1 and ti, xi is

equal to ci and the value of ci−1 should not be subtracted from ci. Reboots can be

detected by checking the value ui in each polling sample. If ui is significantly less

than ti− ti−1, the access point has been reset, and xi is equal to ci. Otherwise, xi

is equal to the subtraction of the two cumulative counters. Note that resets may

create situations that look like a wrap-around, so the detection of the reboots
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should be performed before the detection of the wrap-arounds.

When all of the polling operations are successful, ti−ti−1 is equal to the polling

interval (i.e., 5 minutes). However, when a polling operation fails, ti − ti−1 is a

multiple of the polling interval. If this is due to an access point reboot, the counter

ci only reports on the activity since the reboot operation. Therefore, ci becomes

the last value of the time-series. The values between ti−1 and ti, for which no

polling samples were available, are set to zero (access points have no load while

off-line). If no reboot took place, the ci − ci−1 does not correspond to a single

xi but to the m values of the time-series between ti−1 and ti. In this case, we

perform linear interpolation and set each intermediate value of the time-series to

(ci−ci−1)/m. Finally, note that ti−ti−1 is not always exactly equal to the polling

interval (or a multiple of it). The most significant cause is the retransmission

mechanism in our SNMP monitor, which retransmits unanswered requests up to

three times. Each new request is spaced by 5 seconds. Therefore, the maximum

deviation of ti − ti−1 with respect to the polling interval is 20 seconds, and our

time-series extraction program takes into account this deviation.

4.2 Hotspot APs and their spatial locality

For several traffic characterization and modeling issues addressed in this study,

we would like to focus our analysis on the most heavily APs. We do not need for

example to use a forecasting algorithm to support load balancing on an AP that

exhibits rather poor utilization. Instead, we are interested in APs that appear to

be overloaded in terms of traffic.

For that, we define the hotspots of the wireless infrastructure based on three

metrics:

31



• maximum hourly traffic;

• total traffic;

• maximum daily traffic;

Hotspots based on maximum hourly traffic (set 1)

These are the top α% APs ordered by their maximum traffic during an hour in

the entire tracing period.

Hotspots based on total traffic (set 2)

These are the top α% APs ordered by their total traffic during the tracing period.

Hotspots based on maximum daily traffic (set 3)

These are the top α% APs ordered by their maximum traffic during a day in the

entire tracing period.

4.2.1 Hotspot definition

We define as a hotspot an AP that belongs in the top α% of APs with the highest

maximum hourly traffic and in the top α% of APs with either the highest total

traffic load or the highest maximum daily traffic load (i.e., the set (set1∩ (set2∪
set3))). We will use this definition in the following sections.

We first investigate the spatial locality of the hotspots and name two APs co-

located, if they are placed in the same building. How likely is to find co-located

hotspots in the campus? We found that for α=20, the percentage of co-located

hotspots is above 76% and 79% for the hourly and total-traffic based definitions,

respectively. 62% of the co-located APs belong in the (set1 ∩ (set2 ∪ set3))).

For α = 10, the corresponding percentages are about 11% smaller than their

respective values for α = 20. Note that, if using the uniform distribution, we had
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randomly selected the same number of APs, the mean percentage of co-located

APs in those selections is 48%.

4.3 Basic wireless traffic characterization

Whereas there is rich literature on traffic characterization in wired networks, (e.g,

[83, 76, 73, 71, 85]), there is significantly less work on the same detail for WLANs.

Using aggregate and client SNMP we explore various aspects of wireless traffic

demand, such as, distribution of traffic across APs, number of distinct clients and

associations per AP and correlation between number of clients and total traffic

at various scales.

4.3.1 Traffic and client distribution across APs

Figure 4.1 presents the total traffic that each AP has transfered during the

monitoring period measured using SNMP data. As this plot shows, traffic dis-

tribution across APs is highly skewed (note that y-axis is in the log-scale). The

most heavily utilized APs appear to have transfered nearly 250GBytes or more

while the least utilized ones have transfered just some KBytes during the same

tracing period. Looking more carefully at 4.1, especially for ranks of APs be-

tween 75 and 300 approximately, we can notice a clear linear trend in the traffic

among APs. This suggests that total traffic for the majority of the APs can be

modeled using an exponential model of the form: 10α∗χ+β. The parameters a, b

of the model were computed using linear regression between empirical data and

theoretical model resulting in an coefficient of determination - R2 value equal

to 0.9925 suggesting a very accurate fit. The suggested model fails however to

capture the “heavy-tail” trend observed in the distribution of total traffic across
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Figure 4.1: Distribution of total traffic (GBytes) across APs

APs. To be more precise, for 50 APs the actual utilization is lower than the

theoretical one while for the top 50 APs in terms of total traffic, the proposed

model underestimates their total load.

Driven by the clear log-linear trend observed in 4.1, we drew the Com-

plementary Cumulative Distribution Function of total traffic across APs which

suggested a possible lognormal model. Using Maximum Likelihood Estimate, we

computed the parameters of the lognormal distribution which were μ = 22.1669

and σ = 2.4625. Figure 4.2 shows the quantile-quantile plot of the total traffic

per AP against the theoretical quantiles of a log-normal distribution with param-

eters μ = 22.1669 and σ = 2.4625. The quantiles for the vast majority of traffic

values fall well within the confidence interval with the exception of APs which

transfer insignificant amounts of traffic.

Another metric for the utilization of APs apart from their total traffic is the

average throughput observed during the tracing period. Based on the total traffic
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Figure 4.2: Quantile-quantile plot for total traffic per AP

transfered through each AP during each hour of the trace, we compute average

hourly utilization. For APs running IEEE802.11b the maximum throughput ob-

served during one hour of the trace is approximately 4.3Mbps while for APs

running IEEE802.11g is 24MBps. Figure 4.3 is the CCDF of the average hourly

throughput for each AP. It is interesting to note that average utilization per

hour, even for the most heavily loaded APs, rarely exceeds 0.1Mbps which is far

beyond the theoretical throughput limit for IEEE802.11b. The reason for such

a low average throughput is that AP traffic within an hour is highly variable

exhibiting both large peaks and idle 5 minutes intervals during which no traffic

is transfered.

In order to identify the most popular APs we used Syslog messages to derive

the number of distinct clients that have visited each AP along with the total

number of associations per AP throughout the tracing period. Figure 4.4 presents

the number of distinct clients that have visited at least once each AP.
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Figure 4.3: CCDF of average hourly utilization per AP

A visit of client ’C’ at AP ’i’ at time ti is recorded if we notice a Syslog message

of type “Associated” or “Reassociated” from AP ’i’ at ti without having received

a “Dissasociated” message of the corresponding client through that AP the same

time instance. The most popular APs of the campus have been visited by nearly

16,000 distinct clients. As in the case of total traffic, figure 4.4 shows that there

is a clear log-linear trend between AP ranks 75 and 375 approximately. Fitting

the total number of distinct clients per AP with an exponential model of the

form: 10α∗χ+β, through linear regression results in a coefficient of determination

of R2=0.0975. As the corresponding figure shows, while the exponential model

provides an accurate fit for the majority of the APs, it fails to capture the heavy-

tail trend observed for AP ranks smaller than 75 and larger than 375. The log-

linear trend observed in the figure 4.4 and the heavy-tailed shape of the CCDF

total number of clients having visited each AP suggests a possible fit through a

lognormal distribution for the number of distinct clients per AP. The parameters

of the lognormal model computed using MLE over the number of distinct clients
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Figure 4.4: Number of distinct clients per AP

per AP were μ = 22.1669 and σ = 2.4625.

A complementary metric for the popularity of APs is the total number of

visits that each one has seen. Consider the case of a client that visits AP ’i’

and then gets disconnected. For the rest of its wireless life, this client associates

periodically at AP ’j’ to exchange mail or visit Web pages for example. In that

case, although both APs have been visited by the same number of distinct clients,

AP ’j’ has received significantly more visits. Apart from the popularity of APs,

the number of visits observed at each AP can be an indication of “hot” areas

in the campus or of possible dead-spots. APs that have received a significant

number of visits may reside in “hot” areas of the infrastructure like lecture halls

in academic buildings while APs with few visits could indicate APs located in

remote buildings or in areas with weak coverage which require placing more APs

or increasing the transmission range of current APs. Figure 4.5 is a CCDF plot

of number of visits per AP.
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Figure 4.5: CCDF of number of visits per AP

As this plot shows, the distribution of number of visits per AP is highly

skewed. While 90% of the APs have seen more than approximately 1000 visits,

only 10% of them have been visited more than 10,000 times which constitutes an

average of approximately 600 visits per day.

4.3.2 Correlation between total traffic and number of distinct clients

per AP

One of the phenomena that we wanted to explore, as part of our wireless traffic

characterization effort, is whether there is any correlation between number of

distinct clients and total traffic on an AP. Previous studies [61], have shown

that there is a weak correlation between offered load at APs and number of

distinct clients. Authors in [70] have shown that offered load is more sensitive

to individual client traffic characteristics rather than just the number of clients.

Our assumption is that total traffic load observed at an AP should be affected
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Figure 4.6: Total AP traffic vs. number of distinct clients - linear scale

the by number of distinct clients that have visited this AP. Figure 4.6 is a scatter

plot of total traffic against number of distinct clients per AP. As this plot shows,

there is no clear trend in the linear scale suggesting a weak correlation between

offered load and number of distinct clients at APs. Looking however at the same

plot at the log-log scale (figure 4.7), we notice that there is a clear upwarding

trend that can be expressed through the following model log10tt = a ∗ log10dc + b

where tt is the total traffic per AP and dc the number of distinct clients per AP.

This means that total traffic tt of an AP can be expressed as: tt = 10b ∗ dca.

Using linear regression we found that a = 0.57 and b = 8.38.

In order to explore the correlation between total traffic and number of distinct

clients per AP, we extracted for all hotspot APs the time series of total traffic

and number of distinct clients per hour. Then, the cross-correlation coefficient

was computed between the time series of total traffic and number of distinct

clients for each AP at various scales. Note that when cross-correlation is run

over 2 time series of n values, the correlation coefficient is computed between
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Figure 4.7: Total AP traffic vs. number of distinct clients - log scale

the two timeseries at all possible 2*n-1 lags. Table 4.1 summarizes the cross-

correlation coefficients at lag 0 for 5 randomly selected hotspots along with the

average coefficient among all hotspots.

Note that the two last columns of the table contain the cross-correlation co-

efficient between timeseries of total traffic and number of distinct APs per hour

normalized using the log-scale and the 4
√

scale. As this table shows, although

there is a weak correlation between total traffic and number of distinct clients per

hour in the linear scale for most hotspots, the correlation coefficient is above 85%

for all hotspots in the two normalized scales used. The average cross-correlation

coefficient among all hotspots in the log-scale is 88.21% certifying the upwarding

trend noticed in 4.7.

As this analysis has shown, as the number of distinct clients grows, there is

an exponential increase in the observed traffic load. This observation can prove

valuable to algorithms and mechanisms that wish to perform load balancing in
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Hotspot ID(i) Xi(t) − DCi(t) log(Xi(t)) − log(DCi(t))
4
√

Xi(t) − 4
√

DCi(t)

222 55.52% 89.71% 95.46%

400 65.13% 99.28% 96.67%

404 27.18% 95.23% 91.27%

406 53.0% 97.66% 89.68%

472 76.13% 84.69% 96.67%

Average 46.94% 88.21% 90.63%

Table 4.1: Cross-correlation coefficients between number of distinct clients and total traffic

APs where a large number of clients is either observed or is expected to arrive

during the following time intervals. The observations of this analysis can also

be applied to support and enhance capacity planning by placing more APs in

over-crowded areas in order to minimize the load of current APs.

4.4 Wireless traffic modeling and forecasting methodol-

ogy

This section describes three categories of forecasting algorithms that are based

on simple models for wireless traffic. Based on periodicities detected in the time

series of traffic of APs we build algorithms that exploit such diurnal or weekly

patters. The second category of forecasting algorithms exploits temporal depen-

dences that appear in traffic time series of AP. These algorithms take into account

a window of recent-traffic history (e.g the traffic observed during the last three

hours). When observed traffic load at APs exhibits both strong periodicities and

temporal dependencies, hybrid algorithms can consist a better choice.

Our general methodology consists of the following steps:
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Figure 4.8: Traffic load at AP 472: (a) time series (b)Power spectrum

(a) Time-series extraction, data cleaning, and treatment of missing values (ad-

dressed in 4.1.1);

(b) Power spectrum and partial autocorrelation analysis;

(c) Traffic load modeling; and

(d) Forecasting using the traffic load models.

4.4.1 Spectrum analysis

We find that the aggregate hourly traffic for all APs in the infrastructure exhibits

diurnal and weekly periodicities. Similar trends are observed in the hourly traffic

for several APs by autocorrelation plot and spectrum analysis. 10 out of the 19

hotspots have a clear spike at 24 hours/cycle and do not have a high frequency

variation. Also, some APs have weekly patterns at around 168 hours/cycle.

Figure 4.8(a) and (b) show the time series and spectrum plots of the hotspot
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AP 472. This AP exhibits strong diurnal periodicity. There are other APs with

no clear periodic pattern, for which there is little prediction power among the

historical data. Further smoothing does not appear to be helpful, at least with

our current relatively short traces.

4.4.2 Forecasting algorithms based on wireless traffic models

4.4.2.1 Forecasting using historical means and recent traffic

First, we model the traffic load at an AP during an hour. The model facilitates

the diurnal and weekly periodicity of the traffic load. We define the historical

mean hour traffic of an AP as the mean of the traffic during that hour for each

day in the history of that AP (Ndays days). We only consider weekdays. For

example, the historical mean-hour traffic for AP i is defined as

μi(h) = (1/Nweekdays) ×
Ndays∑
d=1

Ti(h, d) ∗ IsAWeekday?(d),

where h = 1, . . . , 24 and IsAWeekday?(d) is a binary indicator function that

specifies whether or not the d-th day is a weekday, and

Nweekdays =
∑Ndays

d=1 IsAWeekday?(d).

Similarly, the historical mean hour-of-day traffic is the mean of the traffic at

such hour of day in the history of that AP. For example, the mean hour-of-day

for AP i is defined as

μi(h, l) = (1/nw(l)) ×
Ndays∑
k=1

IsWeekday?(k, l) × Ti(h, k),

where h = 1, . . . , 24, l “runs” from “Mon” through “Sun”, and

nw(l) =
Ndays∑
k=1

IsWeekday?(k, l).
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The IsWeekday?(x, l) is a binary indicator function that specifies whether or

not the x is a weekday l. The nw(l) counts the total number of weekdays l

(e.g., the number of Mondays). For example, for the μi(2), we take the historical

mean of the traffic at AP i for all days in the history at 2am. Similarly, for the

μi(2, “Mon”), we compute the mean of the traffic of all Mondays at 2am.

We taylor two simple models based on the historical mean hour and mean

hour-of-day. Specifically, for each AP (e.g., AP i), we define the models Z1
i and

Z2
i , as follows:

(P1) Z1
i (h, d) = μi(h)

(P2) Z2
i (h, d) =

∑
l∈{Mon,..,Sun}

IsWeekday?(d, l) × μi(h, l).

To incorporate the recent traffic information in the traffic model, we compute

the mean traffic during the last w hours. For each AP (e.g., AP i), we introduce

the weighted average of the recent traffic mean and the historical mean hour and

hour-of-day, Z3
i defined as

(P3) Z3
i (h, d) = a × (1/w)

t−1∑
k=t−w

X(k) +

b × μi(h, d) + c × μi(h).

We experiment with different window sizes and weights to evaluate the impact of

the recent history and periodicity on forecasting. Note that the P3 with weights

(a,b,c) equal to (1,0,0) and history window w has the form of an autoregressive

process of order w, AR(w). In that case, the prediction takes into account only

the recent traffic history instead of the periodicity. We can specify the weights

of the P3 using multiple linear regression. The purpose of the multiple linear

regression is to establish the relationship among the group of predictors, namely,

the history window, historical mean hour traffic, and the historical mean hour-of-

day. This allows us to understand which predictors have the greatest effect. The
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linear model takes the form y = Xb + e, where y is a vector of observations, X is

a matrix of independent variables (regressors/predictors) and e is a vector of ran-

dom disturbances. Multiple linear regression aims to obtain the best fitting curve

by minimizing the least square errors (
∑n

i=1[y − f(Xi)]
2 =

∑n
i=1[yi − (bXi)]

2). P3

with weights defined using multiple linear regression is denoted as P3-MLR. We

propose three simple prediction algorithms based on the aforementioned models.

P1 and P2 use the historical means to compute the Zk
i (h, d), k = 1, 2 for P1 and

P2, respectively, and predict the traffic load of AP i during the t-th time interval

(that corresponds to the h-hour of day d). P3 integrates the historical means of

hour and hour-of-day with the recent traffic history. More specifically, P3 is an

one-step ahead prediction algorithm, since for the recent traffic, it uses the actual

traffic values as opposed to the predicted ones (for the next-hour prediction).

4.5 Evaluation of the performance of the forecasting al-

gorithms

This section introduces two metrics for the evaluation of the proposed forecasting

algorithms and performs a comparative analysis of their performance.

4.5.1 Metrics: prediction error ratio and percentage of correct pre-

dictions

To evaluate the performance of the prediction algorithms, we compute the predic-

tion error ratio which is the ratio of the absolute difference of the predicted from

the actual traffic over the actual traffic (r). For the prediction of the traffic of AP

i at time t, the prediction error ratio r(t) is defined as r(t) = |Zk
i (t)−Xi(t)|/Xi(t),

for prediction algorithms k = 1, 2, 3. A perfect prediction algorithm has predic-
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tion error ratio equal to 0.

Note that the way we defined the prediction error ratio represents the percent-

age by which the corresponding forecasting algorithm underestimates or overesti-

mates the actual traffic. Consider for example the case where the actual traffic is

50KBytes while the corresponding forecasting algorithm estimates next’s hours

traffic for a specific AP to be 25KBytes. The value of the prediction error ratio

is computed as 0.5 indicating that we underestimate actual traffic by 50%.

The prediction algorithms apply a predicted interval based on the historical

mean and a tolerance (or precision) error level. Specifically, we define the ε-

tolerance prediction interval from a mean μ to be the interval [(1−ε)∗μ, (1+ε)∗μ].

The prediction algorithm computes the percentage of times that the actual traffic

is in the predicted interval. For example, in the case of the prediction Pk, k =

1, 2, 3, for the traffic of AP i during the h-th hour of day d, it computes the

prediction interval

[(1 − ε) ∗ Zk
i (h, d), (1 + ε) ∗ Zk

i (h, d)],

and checks if Xi(t) is in that interval.

A good prediction algorithm should have a high correct prediction percent-

age and low prediction error ratio. A large prediction error ratio indicates large

prediction estimates and may result in conservative prediction and resource un-

derutilization.

4.5.2 Forecasting using historical means and recent traffic (P1, P2,

P3)

For all the aforementioned prediction algorithms, we computed the means based

on the history for each AP. The history corresponds to three weeks of the trace,
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Figure 4.9: Performance of prediction algorithms P1, P2 considering all APs

excluding weekends and starting on Monday, October 18th, 2004. We predict

the traffic for each AP, for all the hours during the weekdays of the following

week (Monday, November 8th until Friday, November 12th). We call this period

forecasting period. For P3, we varied the recent history window size to be 2, 3,

4, and 5 hours. We evaluated P3 for various values of a,b, and c, including also

values resulted from applying multiple linear regression for each AP.

Figures 4.9 and 4.10 show the histograms of the percentage of correct pre-

dictions for the P1, P2, and P3 considering all APs. P3 outperforms P2 and P1

with respect to the correct predictions percentage. P3 also outperforms P2 and

P1 with respect to the correct predictions percentage, when we only consider the

hotspots. Specifically, for a window of two hours and (a,b,c) equal to (1,0,0),

P3’s percentage of correct predictions for a 25%-tolerance prediction interval has

a (mean, median, std. deviation) equal to (34.17%, 24.17%, 22.86%).

The mean percentage of correct predictions of hotspots for an ε-tolerance is
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Figure 4.10: Performance of prediction algorithm P3 with 25% error tolerance

considering all APs

the average of the percentages of correct predictions for that ε-tolerance consid-

ering all hotspots. The mean prediction error ratio of hotspots is the average of

the mean prediction error ratios considering all hotspots. In the same manner,

we compute their median and std. deviation. For the same ε-tolerance, P2 has

a lower percentage of correct predictions than P3 but higher than P1 (for both

median and mean prediction of correct percentages). Similarly, the median pre-

diction error ratio for P3 is lower than for P1 and P2 (see Figure 4.12). On the

other hand, P3’s mean prediction error ratio is lower than P1’s and higher than

P2’s one. The high mean prediction error ratio of P1, P2, and P3 are due to the

high variability in the traffic (figure 4.11).
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Figure 4.11: Mean prediction ratios for P1, P2, and P3 with weights

(a,b,c)=(1,0,0) for each hotspot

4.6 Client level forecasting

In this section we perform traffic forecasting at the client level. We expect that

client traffic will be more bursty and exhibit more temporal phenomena that AP

traffic.

We repeated the same forecasting methodology that was used for APs (de-

scribed in 4.4) and focused on clients that transfer 75% or more of their traffic

through a specific building. We name this building as home building of that client.

We first used spectrum analysis to identify clients that exhibit strong diurnal or

weekly periodicities and found that 30.8% of them exhibited 24 hour periodici-

ties. Figures 4.14(a) and 4.14(b) show the corresponding power spectrum for 2

of the most active clients during the tracing period studied.

Moreover, applying partial autocorrelation analysis to the normalized time-

series of all periodic clients suggests that hourly traffic for the majority of them
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Figure 4.12: Median prediction ratio for P1, P2 and P3 with weights

(a,b,c)=(1,0,0) for each hotspot

can be accurately characterized though an AR(1) model. Figures 4.14(a) and

4.14(b) present the partial autocorrelation plots for clients 199 and 373 respec-

tively. Notice the sudden cut-off for both clients at lag 1 while all other coefficients

fall within the confidence interval envelope.

We applied the historical means and recent history algorithms described in

4.2, using three weeks of history for all periodic clients. For recent history we

varied the history window to be 1, 2, 3, and 5 hours while parameters a, b, and

c of the P2 algorithm, were computed using multiple-linear regression for each

client. Table 4.2 summarizes the mean, median, and SD of the relative prediction

error ratio for P1, P2, P3 and recent history algorithms averaged over all periodic

clients. Median relative error prediction for example, (as denoted in Table 4.2),

is the average over each client’s median relative error ratio. Comparing the values

of the relative prediction error ratio for various sizes of the recent history window,

we found that a window of size one performs better.
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Figure 4.13: Power spectrum for clients (a) 199 (b) 373

P1 P2 P3,window=1 Recent history,window=1

Mean 22.69 30.50 38.98 32.26

Median 3.57 6.25 4.02 10.38

SD 66.65 91.75 114.13 73.06

Table 4.2: Relative prediction error ratio for P1, P2 ,P3 and recent history algorithms for

client traffic forecasting

As expected, P1 performs better in terms of mean, media, and SD of the error

ratio since most periodic clients were found to exhibit 24 hours periodicities but

not weekly ones. This is also obvious in the P3 algorithm which has a higher

median error ratio than P1 but lower than P2. Overally, recent history performs

worse in terms of mean and median than P1 and P2 while P1 which exploits

the 24 hours periodicities performs better than all other algorithms. The reason

why recent history performs worse than all periodic algorithms is that it fails to

capture the periodic patterns that exist among client traffic timeseries. Note also
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Figure 4.14: Partial Autocorrelation Function for clients (a) 199 (b) 373

that client traffic is rather bursty often exhibiting large peaks of traffic followed

by periods during which clients transfer insignificant amounts of traffic.

Comparing the performance of the periodic-based and recent-history algo-

rithms at the AP- and client-level, we notice that P1,P2, and P3 have a signif-

icantly lower mean relative prediction error ratio when used to forecast client

traffic. Looking at plot 4.11 shows that although the mean relative error ratio

is close to 1 for most of the hotspots, there are two of them for which the cor-

responding error is as high as 500. Apart from that, mean relative error ratio is

lower when P1, P2, and P3 are applied to forecast client traffic due to a large

number of clients that transfer insignificant amounts of traffic contributing thus

with a small value to average error. On the other hand, median prediction error

ratio is significantly lower in the case of AP traffic forecasting suggesting that

P1, P2, and P3 perform Overally better when used to forecast AP traffic.
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4.7 Discussion

4.7.1 Other forecasting approaches

In this section we discuss other forecasting approaches that make use of complex

statistical methods. The two forecasting methodologies discussed here are based

on singular spectrum analysis and on p-order ARIMA models for traffic load.

4.7.1.1 Forecasting based on Singular Spectrum Analysis (SSA)

A relevant, novel, forecasting methodology based on Singular Spectrum Analysis

(SSA) is presented in [5]. SSA is a non-linear time-series analysis method that

is used to reveal underlying patterns and structure in wireless traffic. Authors

in [5] observe that time-series that correspond to wireless traffic are often short

and contain peaks on top of a more regular background. Besides, these series

often have both regular (periodic) and irregular (noisy) aspects which may be

present in different spatial and temporal scales. Motivated by these observations,

they use Singular Spectrum analysis to decompose traffic time-series into two

components, namely, a low frequency one representing the main trend of the

time series, and a high-frequency one capturing the noise of the time-series. This

decomposition provided by SSA is incorporated in a forecasting algorithm which

focuses on predicting traffic values in a relatively long-term horizon based on the

component which captures the low-frequency behavior of the original time-series.

4.7.1.2 Forecasting using ARIMA models

In this section we explore a short-term forecasting approach based on ARIMA

models for traffic. Partial autocorrelation analysis for the traffic load time-series

of the majority of the hotspots APs has revealed a significant peak on lag 1
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indicating that an ARIMA model comprises a reasonable solution for AP traffic

load. The first part of this section focuses on normalizing and applying some

statistical analysis on normalized traffic load for hotspot APs. On the second

part of the section, we implement and evaluate the performance of a forecasting

algorithm based on the derived ARIMA model.

Data normalization and traffic load modeling As Figure 4.8(a) shows,

total traffic per hour for AP 472 is highly variable and bursty exhibiting local

spikes that are hard to predict. This pattern holds for the majority of the hotspots

whose total traffic is not uniformly distributed throughout the tracing period.

Figure 4.15(a) plots the normal quantile plot of X472(t) for AP 472, which clearly

suggests that the marginal distribution of the traffic load is heavily skewed to

the right. This calls for a suitable transformation to make the data closer to a

normal distribution. Such a transformation can reduce the effect of those local

spikes on the forecasting performance. In addition, standard time series modeling

procedures are most suitable for situations with normal data [82].

After experimenting with different transformations, the 1/4 power transforma-

tion, Y (t) = X
1/4
472 (t), seems to give the best result. In particular, Figure 4.15(b)

gives the normal quantile plot for the transformed load Y (t) at AP 472. As one

can see, Y (t) is much closer to be normally distributed, and does not have ex-

treme outliers as those in Figure 4.15(a). The following model will be performed

on Y (t).

We first point out that Y (t) exhibits strong non-stationarity in both the mean

and the variance. Figure 4.16(a) plots the bimodal changing patterns of its mean,

median, 25-th percentile and 75-th percentile as functions of hour-of-day (h(t)),

which shows that both the mean and the percentiles change across the day. For
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Figure 4.15: Traffic load at AP 472: (a) normal quantile plot for X472(t) (b)

normal quantile plot for Y (t)

example, the mean curve suggests that there is very little traffic between midnight

and 7-8AM; then the load starts to increase until it reaches the first mode around

10AM and stays flat until noon; after lunch-break, the load increases again to

the second mode around 3PM before it starts to decrease until midnight. Very

sensible explanations can be given for such a diurnal pattern.

Similarly, Figure 4.16(b) indicates the diurnal patterns for the standard devi-

ation and Inter Quartile Range (IQR) (i.e., the difference between the 25-th and

75-th percentiles). The plot suggests that there is increasing variability in the

traffic load during 7AM-10AM and 1PM-3PM, exactly when the load increases.

In addition, the variability stays small between 10AM and 1PM.

The above exploratory data analysis motivates us to normalize the trans-

formed load Y (t) in the following way,

e(t) =
Y (t) − μh(t)

σh(t)

,
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Figure 4.16: Changing patters of: (a) mean, median, and quantiles of Y (t) (b)

standard deviation (SD) and inter-quantile range of Y (t)

where h(t) is the corresponding hour-of-day for time t, μh(t) is the mean of Y (t)

during those time periods with the hour-of-day being h(t) while σh(t) is the stan-

dard deviation of Y (t) during those time periods, and e(t) can be treated as a

normalized version of Y (t). Note that μh(t) and σh(t) have been plotted in Figure

4.16(a) & (b) for AP 472.

After the normalization, we can assume e(t) to be a stationary time series

as shown in Figure 4.17(a). The corresponding partial autocorrelation function

(Partial ACF) (Figure 4.17(b)) suggests that an AR(1) model is reasonable for the

normalized time series, e(t). Thus, we fit a family of AR(p) models to e(t) using

the Yule-Walker method and select the approximate order p by minimizing the

Akaike Information Criterion (AIC). See Brockwell and Davis (1998) for details

about the estimation method and the model selection criterion, AIC. Note that

the order p specifies the number of lagged variables in the time series model and
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Figure 4.17: (a) Time series for e(t) (b) Partial ACF plot for e(t)

the AR(p) model is written as

e(t) = a1e(t − 1) + . . . + ape(t − p) + n(t),

where n(t) is the model residual.

As for the load at AP 472, p is selected to be 1 and the fitted AR(1) model is

e(t) = 0.5689e(t − 1) + n(t) (4.1)

with the residuals n(t) being normally distributed with mean 0 and variance

0.6349.

Normalized ARIMA based time-series forecasting Using the normalized

ARIMA model denoted by equation (4.1), we can predict the traffic load during

the next hour, corresponding to time (t+1), X472(t+1). First, a point prediction

for e(t + 1) can be obtained as

ê(t + 1) = 0.5689e(t);
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then Y (t + 1) can be predicted as

Ŷ (t + 1) = μh(t+1) + σh(t+1) × ê(t + 1).

Finally, a point forecast for X472(t+1) is obtained by back-transforming Ŷ (t+1),

X̂(t + 1) = Ŷ 4(t + 1).

. Also, we can define the ε-tolerance prediction intervals for this point prediction

algorithm.

Note that the normalized ARIMA algorithm uses the model in (4.1) and

actual traffic to perform forecasting. A different version of this algorithm is the

normalized ARIMA multi-step ahead one (NAMSA).

Normalized ARIMA multi-step ahead time-series forecasting (NAMSA)

Using the same three-week data (as in the other prediction algorithms), this nor-

malized ARIMA multi-step ahead time series forecasting performs as follows. As

Figures 4.18 and 4.19 illustrate, the prediction error ratio of the AP 472 (hotspot

id 18) has a mean, median, and SD of 1.42, 0.72, and 3.77, respectively. Its

correct percentages are 17.5%, 9.17%, and 6.67%, for a 25%, 10%, and 5%- tol-

erance prediction interval, respectively. The corresponding percentages for P1

are 20%, 10% and 6.67%, and for P2 20%, 18.33%, 16.67%, respectively. For

a 25%-tolerance prediction interval, P3 with a two-hour window size and (a, b,

c)=(1, 0, 0) has a 24.17% correct prediction percentage.

Figures 4.18 and 4.19 also illustrate the mean and median prediction error

ratio of P3 with weights (a,b,c)= (1,0,0), P3 with weights fitted using multiple

linear regression, and NAMSA forecasting algorithm for all hotspots. Compared

to the simple prediction algorithms P1, P2, and P3, the NAMSA algorithm results

in better values for the mean and the SD of the error ratio (Figure 4.18). On
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Figure 4.18: Mean prediction ratio for P3 and NAMSA forecasting algorithms

for each hotspot

the other hand, the median of its error ratio is a bit worse than that of the

P3 algorithm (Figure 4.19). This forecasting algorithm is a multi-step-ahead

forecasting. That is, to predict a value, apart from the traffic model, the multi-

step-ahead forecasting uses the recent predicted values instead of the actual ones.

This makes the prediction even harder than the one-step ahead forecasting that

uses the actual recent values like P3. We expect better performance when we use

this algorithm for one-step ahead forecasting.

Note that P3 with weights fitted using multiple linear regression performs

worse than P3 and NAMSA (with respect to both mean and median error ratio).

This is due to the difference in the metrics used: The prediction error ratio (as

defined in Section 4.5.1) is the ratio of the absolute difference of the predicted

from the actual traffic over the actual traffic, whereas the multiple regression

minimizes the square difference. When we use as metric the difference of the

predicted from the actual traffic in square, we can observe that the mean of the
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Figure 4.19: Median prediction ratio for P3 and NAMSA forecasting algorithms

for each hotspot

overall improvement of P3 (with multiple regression) for hotspots reaches 26%.

Furthermore, we found that the dominant regressor in the weighted sum of P3

is history (for all hotspots). Specifically, in average, the recent history predictor

participates in P3 with a percentage of 43.8% while historical mean hour and

historical mean hour-of-day percentages are 41.1% and 15.1%, respectively.
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CHAPTER 5

Multi-level application-based traffic

characterization

In this section we characterize traffic of the UNC wireless infrastructure at the

transport layer. Using packet header data, transport layer flows are reconstructed

and categorized into application types using a graph-based method called BLINC.

SNMP data are correlated with transport layer data allowing us to characterize

the traffic of clients and APs as well.

The main goal of this study is to perform a multi-level application-based char-

acterization of wireless traffic and explore how wireless channel dynamics and the

inherent characteristics of a wireless network affect user behavior in terms of the

application types used. We intend to explore which are the dominant and most

popular application types throughout the network and identify application us-

age patterns at the infrastructure-wide-, client-, and AP-level. To achieve this

application-based characterization of wireless traffic we classify flows to applica-

tion types using a novel, graph-based, method avoiding the shortcomings of a

payload- or port-based-classification.

Such a characterization of traffic can be beneficial in a broad range of wire-

less network related studies and problems. Recent studies [55] have observed a

significant increase of P2P traffic accessed through a wide range of different P2P

protocols, such as, the bit-torrent and direct connect. P2P systems consume a

61



large fraction of a network’s available bandwidth since they are often used to ex-

change large files among users having thus a significant effect on overall network

performance. Network administrators can make use of our classification to limit

excess P2P traffic at certain locations of the network, such as, lecture halls or

during peak hours of the day. Moreover, most modern tools-methods that clas-

sify transport layer flows to application types are able to detect flows that are

due to malicious behaviors like Denial of Service Attacks (DoS), worms, or spam-

ming. Such a classification can reveal crucial vulnerabilities of a network that

may require administrator’s attention. Characterizing traffic at the client and AP

level is crucial to both building application usage profiles and designing better

admission control and resource management mechanisms. Finally, real-time mul-

timedia applications like VoIP have QoS requirements that are not always easy to

guarantee in shared-medium networks, such as, a WLAN. Understanding usage

trends is crucial to both designers of new protocols that provide QoS support and

developers of new high-throughput and multimedia-friendly standards.

The main contributions of this section are the following: the most popular

and dominant applications are Web and P2P accounting approximately for 81%

of total network traffic. Most users are also dominated by these two applications.

Although some applications like scanning activity and network management, do

not transfer significant amounts of traffic, they are responsible for nearly 18% of

the total flows in our trace. The vast majority of the clients appear to use the

wireless network for one specific application that dominates their traffic. More-

over, while building-aggregated traffic application usage patters appear similar,

the application-cross section varies within APs of the same building. Comparing

flow sizes between UNC’s wired and wireless component we noticed that large

file transfer flows such as Ftp and P2P are heavier in the wired network. We

also noted that application usage profiles between more mobile and less mobile
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clients are very similar in terms of the share of client’s traffic per application type.

Finally, the AP-level characterization of wireless traffic revealed an interesting di-

chotomy among APs, in terms of their dominant application type and download

and uploading behavior. To the best of our knowledge this is the first study that

characterizes traffic of a campus-wide WLAN in terms of the application types

used avoiding the known port limitation.

The datasets used in this section are packet header data collected from the

egress router of the UNC campus-wide network along with SNMP polls and Syslog

messages. For some of the tasks included in the current section we needed to cross

correlate some of these datasets.

5.1 Data preprocessing

Performing an application based characterization of transport layer flows at the

network, client, and AP level, requires first a significant amount of data prepro-

cessing. This preprocessing includes:

(a) reconstructing transport layer flows from packet header data;

(b) classifying flows into application types;

(c) adding MAC address, AP, and building info to flows;

5.1.1 Reconstructing transport layer flows from packet header data

As mentioned in section 3, packet header data were collected using a high pre-

cision DAG card from the egress router of UNC’s campus-wide network. Packet

header data were stored both in “pcap” and “ASCII” format. We used CAIDA’s

CoralReef suite [91] to process packet header data and reconstruct transport
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layer flows. The algorithm employed by CoralReed suite to reassemble flows

from packet headers uses the transport layer 4-tuple (source, destination IP ad-

dress and source, destination), the protocol type, and a parameter indicating the

flow timeout. CoralReef uses this parameter to expire active flows between hosts

in the following way: it records all packets exchanged between hosts A and B

( denoted by source and destination IP addresses found in the packet headers)

through a specific pair of ports. It considers the flow to be active for up to “time-

out” seconds after the last packet exchanged between hosts A and B. After the

expiration of this timeout interval, it reassembles all packets recorded for that

transport layer 4-tuple into a flow and reports a summary for that flow. All

packets exchanged between the two hosts, through the same pair of ports, after

the expiration of the timeout, are considered to be part of a new flow.

While tuning CoralReef to process a packet header trace, the timeout pa-

rameter must be selected carefully. Note that different application types use an

application-layer timeout to expire connections after a period of inactivity. The

timeout used while reassembling flows must be large enough to encapsulate the

application layer timeout. HTTP by default terminates an idle connection after

60 seconds of inactivity while the corresponding value for Mail and Ftp is 300

seconds. Among other applications too, 300 seconds was the largest timeout used

so we set the timeout parameter of CoralReef to 300 seconds.

5.1.2 Classifying flows to application types

Classifying transport layer flows to application types accurately has been one of

the main interests of network administrators and researchers of both wired and

wireless networks.
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5.1.2.1 Port and payload based classification

The classification of transport-layer flows based on port numbers may lead to

significant amounts of misclassified traffic due to the following reasons: Many

modern applications, such as, modern P2P protocols, audio and video streaming

applications, and online games, use dynamically assigned port numbers. As a re-

sult, many different application types use overlapping port ranges making it very

hard to distinguish amongst them by just looking at the port number. Apart from

that, numerous applications, such as, malware or P2P may try to masquerade

their traffic under well-known “non-suspicious” ports, ,such as, port 80. Indeed,

there have been studies proving the inefficiency of port based classification of

Internet traffic to application types [32, 55].

Another widely adopted method for classifying flows into application types

uses a preamble of the payload. This method is based on the fact that most

application types place a signature within the first 40 bytes approximately of the

payload of each packet sent over the Internet through that application. Using

RFCs, public documents, documentation and manuals of protocols, and reverse

engineering, a list of signatures per application and per protocol is compiled.

During processing packets of each flow the first, let’s say, n bytes of the payload

are matched against the signatures of the list in order to identify the application

type or protocol used.

Although this method can yield a very accurate classification it has several

drawbacks that may discourage using it in certain cases. The first shortcoming

of this method is that it requires keeping at least 40 bytes of the payload for each

packet increasing the storage required for the trace. Especially for the case of

high-speed backbone links of large LANs to the Internet, monitor points may fail

to capture and store packets seen on a link at the same speed they are transmitted
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resulting thus in a significant number of packet losses. Another inherent problem

of the payload based classification is that prefixes used by applications may not

always be known or even worse they may change from version to version. Finally,

that are legal and privacy issues that must be considered before keeping payloads

also apart from packet headers.

5.1.2.2 Classifying transport layer flows using BLINC

To avoid the shortcomings of payload-, and port-based classification, we employed

the BLINC tool [31] which performs classification of flows into applications types

based on the transport-layer footprint of the various application types.

A. Background BLINC was developed to classify transport layer flows to

application types without taking into account either port number or preamble

of any size from a packet’s payload. Instead of classifying individual flows to

application types, BLINC associates Internet hosts with applications and then

classifies their flows accordingly. In order to associate an Internet host to a

specific application it analyzes the behavior of the host at three network levels:

(a) social level;

(b) network level;

(c) application level;

This three-level analysis results in associating a host, and thus its flows, with

one or more applications. Each one of the three-levels of analysis is intended to

capture different aspects of a host’s behavior.

Analysis at the social level captures the popularity of a host in terms of the

number of other Internet-side hosts with which it communicates. Intuitively,
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this level focuses on the diversity of the interactions of a host in terms of its

destination IPs and the existence of user communities. Analysis at the social

level requires only access at the source and destination IP addresses.

The functional level captures the behavior of the host in terms of its functional

role on the network, that is, whether it is a provider or consumer of a service,

or whether it participates in collaborative communications. For example, hosts

that use a single source port for the majority of their interactions are likely to be

providers of a service offered on that port. Analysis at the functional level makes

use of the source and destination IP addresses along with the source port.

Finally, analysis at the application level captures the transport layer interac-

tions between hosts with the intent to identify the application of origin. At the

first place, it provides a classification using only the 4-tuple (IP addresses and

ports), and then the classification is refined by developing heuristics that exploit

additional flow information, such as, the number of packets or bytes transfered as

well as the transport layer protocol. For each application, BLINC captures host

behavior by empirically derived patterns called graphlets. Graphlets represent

the interaction between hosts and the corresponding ports that they use through

graphs. The core idea of BLINC is that hosts using different applications will be

represented through different graphs. Having a library of these graphlets BLINC

tries to associate a hosts behavior with a specific graphlet and thus with a specific

application (figure 5.1).

However, even with the use of graphlets, there may be cases ,such as, complex

or similar graphlets, that may need disambiguation or further refinement. Along

this direction, BLINC is augmented with a set of heuristics that are applied in

the aforementioned cases.

Heuristic 1. Using the transport layer protocol The protocol information can
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Figure 5.1: Graphlets: visual representation of transport-layer interactions for

various applications (originally developed in [31])

be used to distinguish similar graphlets into three groups:

(a) applications that use TCP: Web, Ftp, Chat, Mail, and P2P ;

(b) applications that use UDP: Network Management, Online games ;

(c) applications that may use both protocols: P2P,Streaming ;

For example, while graphlets for Mail and Streaming appear similar, Mail inter-

actions are performed only over TCP.

Heuristic 2. The cardinality of sets Number of ports vs. number of IP ad-

dresses is used to discriminate similar graphlets that are characterized by different

behaviors, such as, Web and P2P or Network Management and online gaming.

Heuristic 3. Per flow average packet size Many applications have similar

behaviors in terms of packet sizes. For instance, the majority of online gaming,

malware, and spam-assassin applications initialize flows whose packets are of
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constant size. Focus however is not on the actual size of the packet but rather on

the fact that packets have the same size across all flows of the same application.

Heuristic 4. Community heuristic This heuristic examines IP addresses that

reside in specific domains to identify sets of hosts that provide various kinds of

services at a specific port.

Heuristic 5. Recursive detection Hosts offering specific types of services can be

recursively identified by the interactions among them (variation of the community

heuristic). For example Mail or DNS servers communicate with other such servers

and use the same service port both as source or destination port across different

flows.

Heuristic 6. Non payload flows Non-payload or failed flows are usually an

indication of attacks or of clients of a P2P network that try to connect to other

peers that have gone off line.

As far as the performance of BLINC is concerned, it manages to classify suc-

cessfully into application types 80-90% of total traffic of the trace being analyzed

on average. The accuracy of the classification, considering the results of a payload

based classification as the ground truth, is always more than 95%.

Using BLINC in the packet header trace collected for the WLAN of the UNC

campus-wide network, we were able to classify into application types 86.7% of the

flows. The application types detected where: Web, Chat, P2P, Mail, Ftp, Stream-

ing, Network Management, Online games, Spam-assassin, and Scanning activity

that is, Port-scan (used by Trojan and worms) and Address-scan (used to launch

DoS attacks). Flows that could not be classified to any of the aforementioned

categories were marked as Unknown.

69



5.1.2.3 Statistical based methods for classifying flows into application

types

Recent studies [30, 54] have applied statistical techniques to probabilistically

assign flows to application types. These methods apply clustering techniques to

group flows into a predetermined number of groups. Criteria used to perform

this classification are:

• average flow duration;

• average packet size per flow;

• statistical properties of the in-flow packet inter-arrival times;

5.1.3 Correlating packet header data with wireless sessions

In order to perform an application-based characterization of UNC WLAN’s traf-

fic, at the client, AP, and building level, MAC layer information is needed for each

flow. This information may contain the APs that the flow has traversed and the

MAC addresses that has initiated the flow. For the client level characterization,

assuming that one IP address corresponds to one client may lead to misleading re-

sults since as a client roams across APs of the wireless infrastructures he switches

VLANs and thus possibly associates to a new IP each time. Apart from that, if a

client reassociates to the wireless infrastructure after a long period during which

he was disconnected, the DHCP server of the network may assign a different IP

address to the corresponding MAC address. Due to these reasons it is possible

for a specific IP address to have been associated to two different MAC addresses.

In order to add MAC layer information to the transport-layer flows, SNMP

data were used. Syslog messages that could also provide MAC layer information
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can not be coupled with flow-level data since Syslog messages are collected at

the MAC layer where IP address information is not available. On the contrary,

SNMP protocol runs at the application layer capturing thus both MAC layer and

TCP/IP information. Based on client SNMP polls, wireless sessions were con-

structed. As figure 5.2 shows, a wireless session can be viewed as an episode in

the interaction of a client and the wireless infrastructure: a wireless client arrives

at the network, associates to one or more APs for some period of time, initiates

transport-layer flows, and then leaves the infrastructure. During a wireless ses-

sion, clients may initiate numerous flows through the corresponding APs to which

they associate. For each wireless session a summary is created which includes the

MAC address of the client, the IP address assigned to the corresponding MAC

address, and the list of the APs to which the client has associated. Knowing the

building to which each AP is located we can also have building level information

for each flow. The timestamp of the first and the last SNMP polls that constitute

a session are also used to derive the duration of the session.

In order to correlate a wireless session with a transport-layer flow, we needed

to find all possible ways in which they might correlate. The possible ways in

which a flow may correlate with a wireless session are the following:

(a) the starting time of the flow falls within the duration of the wireless session;

(b) the end time of the flow falls within the duration of the wireless session;

(c) the start and end time of the wireless session fall within the duration of the

flow;

Note however that client SNMP data provide accurate start times for associa-

tions, but end times are affected by sampling. For a polling interval of 5 minutes,

the real end time of an association must be between the last polling time t and t
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Figure 5.2: Wireless sessions and flows

+ 5 minutes. If a flow starts after t, the previous three rules will not be able to

match the flow and the AP. This motivates a heuristic modification of rules (a)

and (b), where an expanded association lifetime is used. This expanded lifetime

is [end+5minutes, start].

Applying the aforementioned rules along with the modification proposed we

were able to correlate with wireless sessions 74.26% of the transport-layer flows

which correspond to 77.6% of total network traffic.

5.2 Aggregate traffic characterization

While there have been several studies looking at the application cross-section at

wired networks (e.g [3, 53, 60, 30, 54]), such attempts are limited in the case of

wireless networks and are based on most cases on a port-based classification of

flows [70, 52].
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We first performed an application-based characterization of the total wireless

traffic of the UNC campus-wide WLAN. This characterization includes identify-

ing the dominant and most popular application types throughout the network,

analyzing how flow sizes vary across different application types and comparing

the application traffic mix of the WLAN being studied with other wired and

wireless infrastructures.

5.2.1 Identifying dominant and most popular application types

To identify the dominant application types throughout the network, we computed

for each application type the percentage of: (a) total network traffic and (b) total

number of flows that were accessed through it. We believe that the characteristics

of a wireless network, such as, its limited resources and possible areas with no

or weak coverage, would have a significant effect on wireless users’ behavior. For

example, due to large delays experience in a wireless channel, limited usage of

delay sensitive applications, such as, streaming is expected. We also expect that

due to limited throughput available at a wireless network, P2P should not have

a significant share of total traffic.

As table 5.1 shows, the dominant application types throughout the network

are Web and P2P accounting approximately for 81% of total traffic and and 80%

of total flows. Specifically, P2P appears to be responsible for nearly 25% of total

network traffic. Note however, that the way we collected our traces may underes-

timate the share of P2P traffic since it fails to capture all traffic that is exchanged

within the WLAN. This table also shows that although some application types

access insignificant amounts of total traffic, they contribute with a large number

of flows. For example, although the Network managements along with scanning

activity (address-, and port-scanning), are both responsible for 0.42% of total
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bytes transfered, they account collectively for approximately 18% of total net-

work flows. The effect of such applications on overall network performance is

also significant since APs keep state for each flow that is initiated trough them

and periodically update their status tables consuming thus significant amounts

of their resources. What is interesting in this table is that Mail is responsible

for a rather small percentage of total number of network flows. However this is

the effect of our monitor point placed after the egress router of UNC campus

failing to capture any mail for which both the source and the destination reside

inside the UNC WLAN. Finally, this table shows that other application types,

such as, Ftp or Chat, transfer insignificant amounts of traffic. Note, once again,

that the reason for which Ftp receives such a low share of total traffic is that our

monitoring point fails to capture any Ftp requests to local (with respect to UNC

WLAN) repositories.

Although byte and flow statistics reveal the dominant applications, in terms

of network traffic, they only indirectly hind on the popularity of each application.

We address popularity of an application through the number of clients that had

at least one flow of that specific application. Note that by the term number

of distinct clients we mean the number of distinct MAC addresses for which at

least one flow was recorded through an application type. As Figure 5.3 shows,

Web and Chat appear to be the most popular application types among clients.

All of the clients have at least one flow through Web while that vast majority

of them had used at least once a Chat application. An interesting observation

that reveals significant security vulnerabilities of UNC’s WLAN is that that vast

majority of the clients have been scanned at least once by an address-scan or

port-scan malware application. Figure 5.3 also shows that nearly 7 out of 10

wireless clients have used at least once a P2P application confirming results of

recent studies that have shown an increased interest in P2P systems.
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Application type Flows (%) Bytes (%) Packets (%)

Network Management 9.95 0.42 1.54

Chat 2.05 0.48 1.47

Web 35.6 57.59 46.80

P2P 30.04 24.85 34.46

Online Games 1.11 0.01 0.075

Ftp 0.91 1.57 1.72

Mail 0.07 0.33 0.21

Address Sscan 6.40 0.12 0.58

Port Scan 0.39 0.32 0.28

Streaming 0.10 0.177 0.196

Unknown 13.2 14.09 12.64

Table 5.1: Percentage of total number of flows, packets and total traffic per application type

5.2.2 Distribution of flow sizes across application types

Exploring how the distribution of flow sizes varies across different applications

can provide useful information about how certain applications perform over the

wireless channel and also reveal user preferences. Due to the inherent resource

limitations that characterize a wireless network, we would expect to notice very

few large P2P and Ftp flows in terms of total traffic transfered. Moreover, for P2P

users, frequent disconnections from the infrastructure will result in disconnecting

from current peers and thus will further trigger peer discovery mechanisms. As

a result, a large number of small-size P2P flows carrying control data will be

observed. Concerning Web flow sizes, a large number of Web flows of the same

size may be an indication of an on-going Denial of Service attack to one or more

Web servers residing either in the Internet or inside the UNC WLAN.
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Figure 5.3: Popularity of application types

Figure 5.4 is a CCDF plot of flow sizes per application type. As this figure

shows, Web flows appear to be heavier in terms of sizes than other application

types with streaming flows coming next. It is also surprising to note that the

distribution of Mail flow sizes appears to be so heavy. Note that 10% of the mail

flows are larger than 10KBytes. This behavior can be attribute however to mails

exchanged between hosts residing in the UNC WLAN and hosts that reside in

the Internet that contain large attachments. Note that very few mail flows are

larger than some MBytes which is the limit set for attachments for various mail

servers. Looking at the distribution of flow sizes for P2P systems we note that

nearly 80% of the P2P flows transfer up to 500bytes. P2P flow sizes transferring

very few data are mostly control flows that either setup a direct connection with

other peers or try to discover neighboring peers to connect to. This observation

verifies our original intuition that we should notice a significant number of P2P

control flows that would be the result of P2P users disconnecting from the wireless

infrastructure. This figure also verifies our previous result that application types,
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Figure 5.4: Distribution of flow sizes per application type

such as, scanning activity, Chat, and network management are not among the

dominant application types. As it shows, flow sizes for Chat, address-scanning,

port-scanning, and network management, are smaller than 1Kbyte for nearly 80%

of the flows.

A common characteristic for flow sizes of all application types is that a sig-

nificant portion of the flows transfer up to several KBytes while only a minority

of them appears to initiate transfers as large as several Mbytes. This observation

is very similar to the “mice” and “elephant” flows phenomena that appear in

Internet backbone traffic [69]. To further explore if flows of specific applications

exhibit similar phenomena, we calculated for the dominant and most popular ap-

plication types, the percentage of flows that are responsible for 50% and 90% of

total traffic through that application. For Web, 0.05% of the flows are responsible

for nearly 50% of total Web traffic while 6.2% of the flows are responsible for 90%

of total Web traffic. As far as P2P is concerned the corresponding percentages

for 50% and 90% of total traffic are: 0.005% and 0.2% of total P2P flows. The
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BLINC wired UNC Wired UNC Wireless Dartmouth Wireless

Web 37.5% 48.68% 57.59% 28.6%

P2P 31.9% 34.85% 24.85% 19.3%

Table 5.2: Percentage of Web and P2P traffic (bytes) across four different networks

same patterns are observed for the majority of other application types indicating

that mice and elephants phenomena are very intense in our traces.

5.2.3 Comparative study with other wired and wireless infrastruc-

tures

At the final part of the application-based characterization of aggregate traffic, we

contrast our findings with three other application-based characterization studies

in wireless and wired networks, namely, two wired campus networks (BLINC,

and UNC) and two wireless campus networks (UNC, and Dartmouth). Note

that although a direct comparison is not straightforward due to the differences

in the monitored networks, time of collection as well as the varying definition of

application classes across studies, we can still observe general application trends.

To this end, we first compared the traffic share of the most dominant and pop-

ular applications (i.e., Web and P2P) of the UNC wireless network with the share

of the same applications captured at the wired component of the UNC network

(i.e., traffic originating from wired clients) within the same time interval. Simi-

larly, we contrast our findings to the BLINC campus trace studied in the original

BLINC work [31], and the findings from the Dartmouth wireless network [52].

Table 5.2 summarizes the percentages of Web and P2P traffic for each one of

these networks. Note that the BLINC campus trace, and the two UNC traces

were all classified by BLINC, hence the findings can be directly comparable; port
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numbers were used in the case of the Dartmouth trace.

The results are remarkably similar for the two “wired” traces (BLINC and

UNC campus networks), especially in the P2P case. On the contrary, the share

of P2P traffic is significantly lower in both wireless traces amounting to approx-

imately one fifth for Dartmouth and one forth for the UNC of the total traffic.

The most significant difference across the wireless traces is the share of Web traf-

fic which is significantly higher in our traces. While such a difference may simply

reflect different usage patterns across the two wireless networks, we speculate

that the port based classification of Web traffic may has missed all traffic that

was not destined to one of the well known ports for Web.

Finally, to further explore if application usage patterns are different between

wired and wireless networks, we compared flow sizes for several application types

types over the UNC wired and wireless LANs. Figure 5.5 presents the CCDF plot

of flow sizes between UNC wired and wireless LAN for Web, P2P, Ftp, network

management, and address-scanning.

As expected wired flows are heavier than wireless ones for most application

types. The most obvious reason for this is the larger throughput available at

the wired network. This difference becomes more profound for the throughput-

demanding applications, such as, P2P and Ftp and might imply that wireless

users, being aware of the scarce resources of a wireless network, may choose to

defer large file transfers either through Ftp or a P2P protocol until they get

plugged to the wired network. We can also see that application types that per-

form standard operations (address-scanning and Network management) and thus

initiate flows of a predetermined size perform the same over the wired and wireless

channel. Finally we can see that the distribution of Web flow sizes is very similar

between wireless and wired network which is reasonable since Web browsing is
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Figure 5.5: CCDF of flow sizes per application type. Wired vs. wireless LAN

neither delay nor throughput demanding.

5.3 Client traffic characterization

This section extends our aggregate traffic characterization to the client level.

This section examines user behavior in terms of applications in order to gain a

better understanding of the underlying application usage trends. Characterizing

the client behavior is essential in designing more efficient AP admission control

and selection mechanisms based on user profiles.

5.3.1 Home application type per client

We define the home application of a client as the application that is responsible

for more than x% of that client’s traffic. Wireless clients have strong application

preferences, both in terms of number of flows and bytes. For example, for x equal
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x NM Chat Web P2P Games Ftp Mail Strm Ascan Pscan Unkn

50 0.40% 1% 88.8% 2.36% 0% 0.13% 0.21% 0.1% 0.03% 0.03% 5.64%

75 0.13% 0.77% 78.16% 1.5% 0% 0.07% 0.16% 0.06% 0.01% 0.0115% 2.5%

90 0.06% 0.56% 59.26% 0.8% 0% 0.06% 0.06% 0.015% 0% 0% 1.1%

Table 5.3: Percentage of clients per home application

to 90%, nearly half of the wireless clients have a home application that is approx-

imately half of the clients transfer nearly all of their traffic through a specific

application type. Table 5.3 indicates the percentage of wireless clients that have

a specific application type as a home application with various thresholds. The

most prominent home application is Web, while P2P appears to be the home

application for only a minority of the clients. It is also interesting how the traffic

mix varies for clients without a home application. Even in this case most clients

are still dominated by Web. The second largest share of their data is accessed

either through P2P or an undefined application.

5.3.2 Effect of wireless network on client application usage patterns

While user preferences with respect to applications over the wireless network

appear to have similar trends as to wired networks [89, 51] (i.e., Web and P2P

dominate), it is unclear whether client behavior is affected by the application

performance over the wireless channel. To shed some light on client behavior over

the wireless network, we compare the characteristics of the dominant applications

over the wired and the wireless networks.

As observed in our earlier study [29], the distribution of flow sizes for wireless

users is very similar for both the wired and wireless component when looking at

the aggregate traffic. Uploading and downloading flows, also follow very simi-
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lar distributions in both the wired and wireless component. Flow sizes however

appear quite different between wired and wireless when looking at specific appli-

cation types. Looking back at figure 5.5 we notice that flow sizes appear smaller

for bulk file-transfer applications, such as, Ftp and P2P over the wireless network.

In the case of Web traffic the two curves look very similar with wired Web flows

being slightly heavier than wireless ones, P2P and Ftp flows however, appear

“lighter” in size in the wireless network, especially for larger flow sizes.

There are two potential explanations for this observation, one is application-

dependent while the second is user-driven. First, especially in the case of P2P

applications, packet losses or disconnected TCP flows severely affect performance;

broken TCP connections will result in disconnecting from existing peers, which

will further trigger peer discovery mechanisms and increase queue waiting times,

resulting in decreased flow sizes. As we observed in an earlier study [29], the large

number of retransmissions at the 802.11 MAC layer, increases both the packet

delay and number of retransmitted or failed packets at the transport layer. This is

consistent with figure 5.6 which compares the number of flows per client between

Web and P2P in the wireless network. Note that while overally the Web flows are

heavier in terms of bytes and number of transfered bytes per client, the number

of flows per client is larger in P2P than in Web. Essentially, each P2P client

appears to have a large overhead in the wireless network with numerous small

flows, corresponding to control traffic. Secondly, users may avoid transferring

large files over the wireless network because of the limited throughput indicated

also in Section 5.1 that compares the P2P traffic in wireless and wired. This

observation holds for both Ftp and P2P transfers.
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Figure 5.6: CCDF of number of flows per client for P2P and Web

5.3.3 Distribution of client traffic per application

Identifying the home application for each client may reveal application user pref-

erences however it only indirectly addresses issues of how traffic is distributed

among clients. Are there clients that are most active than other? are there

heavy P2P or heavy Web users? Moreover, in section 5.2.2 we noticed that for

most application types, a small percentage of total flows are responsible for the

largest portion of traffic accessed through that application often refereed to as

“elephant flows”. Are these “elephant flows” flows uniformly distributed across

clients or they are initiated through a specific subgroup of them? To answer these

questions, we calculated for each client and each application, the percentage of

total traffic of that application that was transfered by that client. Figure 5.7

presents the corresponding percentages of total application traffic per client for

the dominant and most popular application types.

As this plot shows, there are very few clients that are responsible for more

83



Figure 5.7: CCDF of percentage of total traffic per application type for each

client

than 1% of the total traffic of a specific application. For example for Web, less

than 0.001% of the clients are each one responsible for more than 10% of total

Web traffic observed in the wireless component of the UNC network. This plot

also reveals that there are heavy P2P users in our network being responsible

for approximately more than 4% of total P2P traffic each. It is also interesting

to note that the majority of address-scan traffic is transfered through a rather

small fraction of total wireless users probably suggesting a set of compromised

hosts that are used as “zombies” to launch a DoS attack. Finally, in order to

see if “elephant flows” for the dominant applications (Web, P2P) are transfered

through a specific set of clients, we calculated for these application types, the

percentage of clients that are responsible for x% of their total traffic.

As table 5.4 shows, 1.5% of the UNC’s wireless users are responsible for ap-

proximately half of total Web traffic observed in the traces while 24% of them
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x% of total traffic 50% 70% 90%

Web 1.56% 6.29% 24.29%

P2P 0.18% 0.33% 0.98%

Table 5.4: Percentage of clients that transfer x% of total network’s Web and P2P traffic

are responsible for the vast majority of Web traffic. However the phenomenon of

some clients transferring nearly all of the traffic of a specific application type, is

significantly more intense in the P2P case where nearly 1% of the clients trans-

fer 90% of total P2P traffic suggesting that “elephant” P2P flows are initiated

through a specific set of clients while for the case of Web the are dispersed to a

larger number of clients.

5.3.4 Effect of mobility on application usage patterns

The last part of our client traffic characterization focuses on exploring how mo-

bility affects client application usage patterns. Our intuition is that application

usage profiles between stationary and mobile clients should have different pat-

terns. First of all, very mobile clients who frequently dissasociate from the in-

frastructure and then re-associate back or go off-line should have more transient

behaviors, such as, Web browsing, Mail and Chat. For example, frequent disasso-

ciations from the infrastructure should discourage mobile clients from initiating

large file transfers through Ftp or P2P. This means that for certain applications

we expect that flow sizes will be heavier for stationary users.

Although there have been several studies on wireless networks that have pro-

posed schemes to address mobility related issues [50, 75, 27, 28, 68], we rely

on a simple method to distinguish between mobile and stationary clients since

our main focus is on identifying application usage preferences between mobile
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Figure 5.8: Total traffic vs. number of distinct APs visited for (a) Web (b) P2P

and stationary clients and not on inferring a realistic mobility model. The met-

rics used to express a wireless client’s mobility are the number of distinct APs

that a client has visited and the number of visits of that client at all APs of the

infrastructure (the notion of visit was first introduced in Section 4.3.1).

Figure 5.8 is a scatter plot of total Web and P2P traffic for all clients vs.

the number of distinct APs visited by each client. As this figure shows, as the

number of APs that a client has visited increases, total traffic that is accessed

through either Web or P2P is not affected. Note that the majority of both heavy

and light Web users visit up to 50 APs while heaviest P2P users also associate

to at most 75 distinct APs. To stress-test our hypothesis we focused on the most

mobile and on the least mobile clients of the infrastructure. We define two classes

of clients based on the number of distinct APs that they visit: Top mobile: Top

5% of the clients in terms of number of distinct APs visited and top stationary :

Bottom 5% of the clients in terms of number of distinct APs visited.
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x NM Chat Web P2P Strm Ascan Pscan Unkn

Top mobile 4.34% 2.97% 76.91% 1.61% 0.07% 0.086% 0.2% 13.23%

Top stationary 1.40% 3.46% 78.38% 0.76% 0.18% 0.75% 0.04% 14.92%

Table 5.5: Mean percentage of a client’s traffic through each application type. Most

mobile vs. most stationary clients

For each one of the two classes, the mean percentage of a client’s traffic that

was accessed through each application type was computed.

As table 5.5 shows, top mobile clients access on average 1.61% of their traffic

through P2P while the corresponding percentage for stationary clients is 0.76%.

For all other application types, top mobile and top stationary clients access very

similar fractions of their traffic through each application type which shows that

apart from P2P, application usage profiles are similar between mobile and sta-

tionary clients.

5.4 Application usage patters across APs and buildings

In this section we extend our aggregate and client traffic characterization at the

AP level. Such a characterization can provide valuable information to adminis-

trators who wish to perform resource provisioning and guarantee QoS for certain

application types at certain locations of the network. For example, APs that

experience large delays and access a significant share of their traffic through Web

or Streaming may require different settings, such as, using IEEE802.11e which

provides QoS support. Moreover, administrators may wish to either filter out

or limit P2P usage at certain APs that reside in over-crowded areas. Finally,

as security has become a crucial issue for most wired and wireless networks, ad-
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Figure 5.9: (a) CDF of percentage of total network traffic across APs. (b) CCDF of the

number of distinct clients across APs.

ministrators need to have information about both locations of the network where

numerous attacks are noticed and of misbehaving hosts.

As observed in previous studies, the overall distribution of traffic across APs is

not uniform. Few APs are responsible for the largest amount of traffic. The reason

for such a skewed distribution of traffic among APs is the varying popularity

among APs. To validate this assumption, we plot the CCDF of the number

of clients across APs in Figure 5.9(a). This figure reveals that few APs are

significantly more popular than others having been visited by more than 400

clients. As expected, these APs correspond to the ones with the highest traffic

aggregation.
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Figure 5.10: CCDF of the percentage of each APs traffic per application type

5.4.1 Application usage patterns across APs

We first examined how the distribution of traffic varies across APs. In order

to examine if the share of traffic of each application is similar across APs or

whether specific applications dominate particular APs we computed for each AP

the percentage of its total traffic that was access through each application type.

Figure 5.10 presents the corresponding CCDF for Web, P2P, and Mail.

As this figure shows, the distribution of traffic across APs varies with the

application type. While high percentages of Web traffic appear in most of the

APs, a small portion of them, roughly 10%, access a significant amount of P2P

data. It is also interesting to explore how the traffic mix varies across APs that

are not dominated by Web. Figure 5.11 shows the percentage of an AP’s traffic

that is accessed through other application types for APs which access at most

50% of their traffic through Web Figure 5.12 shows the combined percentage of

Web and P2P traffic across APs sorted by their Web traffic percentage for APs

89



Figure 5.11: Percentage of AP traffic through other applications for APs with less than 50%

of their traffic through Web

which access at most 75% of their traffic through Web.

These two figures reveal that APs that are not dominated by Web form two

groups: the first group contains APs that are dominated by P2P while the second

group contains APs that are not dominated by P2P or Web, however Web along

with P2P are responsible for the largest portion of this AP’s traffic. Although

Web is the most popular and dominant application type at the network level,

this is not the case at the AP level. Enough of the APs are not dominated by

Web and access significant percentages of traffic through other application types.

Figure 5.11 also shows that other application types rarely dominate any of the

APs with the exception of three APs being dominated by mail traffic and one by

Ftp.

5.4.2 Home application type per AP

90



Figure 5.12: Combined share of traffic for P2P and Web for APs with less than 75% of their

traffic through Web

p Web (%) P2P (%) Ftp (%) Mail (%) Unknown (%)

50 85.9 6.17 0.28 0 4.2

75 55.8 0 0 0 0.84

90 25.52 0.28 0 0 0

Table 5.6: Percentage of APs with a home application.

To study in more detail what application types dominate the traffic of APs

we say that an AP has a certain type of application as home application, if more

than p% of its total traffic is of that application type. Table 5.6 presents the

breakdown of APs that have such a home application when half of the traffic of

the AP belongs to a specific application type. Approximately 4% of the APs are

dominated by unknown traffic, while for roughly another 4%, a home application

could not be defined since no application type is dominating this AP’s traffic.

Overall, there is an application preference towards specific APs in the wireless
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Building Type APs Web (%) P2P(%) Ftp(%) Mail(%) Unkn(%)

Academic 165 79 6 - 1.8 3

Administrative 36 66 8.3 - - 8

Clinical 16 62 6 - - 6

Athletic 15 53 20 - - 6

Residential 42 83 5 - - 2

Business 15 73 - 5 - -

Library 12 86 - - - -

Conference 9 55 - - - 11

Theater 4 90 5 - - -

Table 5.7: APs per building category and the percentage of APs with a home application.

network. This is an important observation since it can direct traffic engineering

decisions, such as, load balancing or filtering P2P traffic at certain locations of

the network.

5.4.3 Application usage patterns across buildings and building types

To further examine the spatial variation of the application cross-section, we

grouped APs based on their building category. Working at building level cir-

cumvents several problems emerging when working at AP-level: non amenability

to statistical processing, higher sensitivity of monitored traffic variables to the

short-term propagation conditions, and lack of scalability [2]. These categories

reflect buildings with similar functionalities and allow us to examine whether the

share of the application depends on these functionalities. We would expect for

example to notice insignificant amounts of online games and P2P traffic at APs

residing in academic buildings or near lecture halls.
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AP ID 44 45 46 47 48 49 50 51 52

Web (%) 89 81 87 85 78 61 95 45 74

P2P (%) 0.01 0.09 0.1 0.1 0.2 35 0 51 11

Table 5.8: Web vs. P2P traffic share across APs of building ID 22.

To this end, a similar analysis is performed using the notion of the home

application for an AP as defined in the previous section. Table 5.7 presents the

number of APs for 9 building categories, and the percentage of APs for which

a home application existed. There is a weak correlation between the building

category and the number of APs that have a home application(e.g., Mail exists

only in the academic buildings as a home application, while Ftp is present only

in the business category). This reinforces our intuition that distinct APs may

require different configuration settings depending on the application or the type

of building functionality.

The uneven traffic distribution in the application cross-section that was ob-

served across buildings exists also across APs of the same building. Table 5.8

presents the percentage of Web and P2P traffic for all APs located in building

22. This building was chosen randomly among the buildings with the largest

number of APs. While in most cases Web traffic dominates the overall traffic

share, there are distinct APs (highlighted in the table) in which P2P contributes

with the largest amount of traffic. Note that these are not transient traffic phe-

nomena, since our tracing period corresponds to several days.

5.4.4 Download to upload asymmetry

Previous studies [26] have observed that certain APs are dominated by uploaders.

In this section, we first explore if this phenomenon persists over time. Then, we
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Figure 5.13: (a) CCDF of the assymetry index for Web, P2P, and total traffic (b) Assymetry

index vs. uploaded traffic

examine which application is responsible for the asymmetry observed between

the downloaded and the uploaded traffic. For that, we define the asymmetry

index of an AP to be the fraction of the total downloaded to the total uploaded

traffic (bytes).

Approximately 5% of the APs show asymmetry indexes less than 1 which

menas that more bytes are uploaded than downloaded by users associated to

these APs. Figure 5.13 (b) is a scatter plot presenting the asymmetry ratio for

each AP versus the total uploaded bytes at the same AP. It is interesting to note

that especially APs with significant amounts of uploaded traffic show asymmetry

indexes less or very close to 1, which implies symmetric usage of these APs.

The asymmetry trend observed in this study using packet header traces of 2005

is very similar to the one observed in [26] using packet header traces of 2004.

This suggests that the phenomenon of asymmetry between total downloaded and

total uploaded traffic at APs persists over time. However in the traces of 2005
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there were slightly fewer APs with asymmetry indexes less than 1 suggesting that

overall downloading activity has increased.

To examine if such an asymmetry is application specific we focused on the

asymmetry index per application. Intuitively, applications that are characterized

by symmetric usage (e.g., P2P) could explain ratios less than one in specific APs;

for example, heavy uploaders that are mostly associated to a specific AP could

significantly affect the usage of that AP. For roughly 40% of the APs, the asym-

metry index for P2P is less than 1, while this is true for only 1.4% of the APs

when it comes to Web. As expected, uploading behavior is more intense in P2P

than in Web, which highlights the need for application profiling of the various

APs: network operators should dimension APs according to their application us-

age characteristics to exploit such phenomena. In addition, there was significant

uploading behavior for chat and streaming applications although P2P is the main

reason for almost all small asymmetry indexes observed in Figure 5.13 (b).

5.5 Application based characterization of wireless sessions

In the next chapter, extending our transport layer characterization, we are going

to focus on evaluating models that describe how sessions arrive at a campus-

wide wireless network and also how flows arrive within a session. We will also

explore if these models can be used to characterize flow and session arrival rates

for flows of specific application types. The question that we are interested to

answer is whether sessions are homogeneous in terms of total traffic transfered

per application. Are sessions dominated by a specific application type or there

are more than one applications that contribute with a significant amount of traffic

to these sessions?
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x NM Chat Web P2P Games Ftp Mail Strm Ascan Pscan Unkn

50% 0.32% 1.62% 88.64% 2.27% 0% 0.27% 0.19% 0.09% 0.039% 0.0072% 5.56%

75% 0.18% 0.98% 79.97% 1.57% 0% 0.22% 0.17% 0.08% 0.01% 0.0072% 2.88%

90% 0.079% 0.95% 65.42% 1.04% 0% 0.21% 0.13% 0.07% 0.03% 0% 0.63%

Table 5.9: Percentage of sessions that transfer x% of their traffic through each appli-

cation

For that reason, we calculated for each application, the percentage of sessions

that access more than x% of their traffic through that application type. Table

5.9 summarizes the corresponding percentages for x=(50%, 75%, 90%).

As this table shows, the vast majority of the sessions transfer more than 50%

of their traffic through Web. What is interesting is that although we have seen

that there are some APs that are dominated by P2P, there are very few sessions

that access a significant portion of their traffic through P2P, suggesting that P2P

is distributed among the various sessions. However, when x=90%, less than 67%

of the sessions are dominated by a specific application type with the vast majority

of them being dominated by Web.
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CHAPTER 6

Evaluation of parametric models for wireless

traffic demand

In this section we extend our transport-layer characterization of a campus-wide

WLAN’s demand by suggesting and evaluating the performance of a set of para-

metric models that describe wireless traffic at the session- and flow-level (pro-

posed in [11] published in the Second annual international Wireless Internet

Conference).

Such models of wireless demand can prove valuable to performance analysis

studies that wish to explore how widely deployed (or even new) protocols and

mechanisms (e.g for load balancing or admission control) perform under realistic

conditions. Since trace collection from a large campus-wide WLAN may not

always be feasible or it may require a significant amount of time to collect and

pre-process datasets, synthetic traces generated based on realistic models can

consist input to simulation and testbed experiments.

The main goals of this study are twofold. At first we shall evaluate through

simple statistical tests and through simulations the performance of a set of para-

metric models for wireless demand. Based on the proposed models and the pa-

rameters acquired during the first part of the analysis, we implement a synthetic

trace generator (in a Matlab module) and contrasted synthetic traces with actual

data.
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One of the main contributions of this study is that we evaluate the perfor-

mance (proving the goodness of fit) of the set of parametric models proposed in

[11] through both statistical tests and simulations. Applying simple visual tests

it is also shown that flow-level models cab also be applied to Web flows apart

from aggregate network flows. Finally we implement a synthetic trace generator

based on the coherent parametric statistical models of the WLAN workload and

show that the synthetic traces produced capture the trends observed in the actual

data.

Both the modeling and evaluation methodology used at this section were based

on transport layer connections extracted from packet header data of the UNC

WLAN. For each connection we also have AP and application type information.

Statistical tools that are used are: Grubb’s test for detection of outliers, MLE to

fit the parameters of models, random number generators, CCDF and QQ-plots

6.1 Modeling methodology

This section provides a brief summary of the modeling methodology used as

proposed in [11]. The modeling methodology proposed in this work is hierarchical

in that is based on two fundamental components namely, the wireless session and

transport layer connection (also referred to as “flow”).

As said in section 5.1.3, a wireless session can be viewed as an episode in the

interaction of a client and the wireless infrastructure: a wireless client arrives at

the network, associates to one or more APs for some period of time, and then

leaves the infrastructure. It was preferred over modeling individual association-

disassociation sequences, whose dynamics in wireless LANs can change dramat-

ically due to small changes in the network layout, physical environment, or
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network/client equipment avoiding thus too network dependent characteristics.

Models based on network dependent characteristics can not be used in studies

that either explore these characteristics or propose mechanisms that shape them.

For example, in the context of WLANs, modeling the precise sequence of as-

sociations and disassociations inside sessions is too network-specific, since small

changes in the network layout, physical environment, or network/client equip-

ment can dramatically change association/disassociation dynamics. Therefore,

the simulation model should not impose a priori a certain sequence of associ-

ations and disassociations. This requirement is satisfied when sessions are the

subject of modeling. The simulated session may end up having completely dif-

ferent association dynamics, but the corresponding workload is preserved.

In this hierarchical modeling approach, wireless sessions consist the higher

level unit of wireless traffic including all transport layer connections that were

initialized within these sessions by clients who have associated to one or more

APs. On the other hand transport layer connections provide a finer level of

modeling wireless traffic. Transport layer connections represent the interaction

between a host of the UNC WLAN and a host residing on the Internet including

all packets exchanged between these two hosts through a pair of ports. Working

with transport layer connections is in line with the approaches followed in [49, 67,

86] and the principles of network-independent modeling from [87]. Simulating

wireless workload based on this two-tier approach consists of simulating sessions

and the flows started inside them, leaving packet-level and association dynamics

to underlying mechanisms that are independent of our model.

The two-tier modeling approach developed in [11] relies on parametric models

for the traffic demand variables. When compared with empirical models, they

provide better insight to the properties and the dynamics of the modeled quanti-
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ties. In parallel, they are more adequate in summarizing datasets and make their

comparison straightforward. The parametric models proposed for both session-

and flow-level traffic variables are statistical distributions. To derive the distri-

butions that best fit the flow- and session-level variables, extensive use of formal

and visual statistical tools was made.

6.2 Proposed models

The actual variables that are modeled are through a statistical distribution are:

1. session arrival times;

2. flow inter-arrival times within a session;

3. flow sizes;

4. number of flows per session;

Table 6.1 summarizes these variables, along with the proposed model for each

one and its Probability Density Function.

Modeled variable Model Probability Density Function (PDF)

Session arrival Time-varying N : # of sessions between t1 and t2

Poisson(λ(t)) λ =
t2∫
t1

λ(t)dt, Pr(N = n) = e−λλn

n!
, n = 0, 1, . . .

Flow interarrival/session Lognormal p(x) = 1√
2πxσ

exp

[
− (ln x−μ)2

2σ2

]
Flow number/session biPareto p(x) = kβ(1 + c)β−αx−(α+1)(x + kc)α−β−1

Flow size biPareto Same as above

Table 6.1: Summary of models for network-wide traffic demand variables

100



6.2.1 Background theory on biPareto distribution and on Time-varying

Poisson Process

This subsections provides some general background information about two of the

distributions that are employed in [11] to model flow- and session-level variables

namely the biPareto distribution and the time-varying Poisson process (also re-

ferred to as inhomogeneous Poisson process).

6.2.1.1 biPareto Distribution

The biPareto distribution is specified by four parameters (a, b, c, k), whose com-

plementary cumulative distribution function (CCDF) is given by:
(

χ
κ

)−α(
x/k+1
1+c

)a−β

where x ≥ k. x � k is the minimum value of biPareto random variable, which

is a scale parameter. The CCDF initially decays as a power law with exponent

a � 0. The in the vicinity of a breakpoint kc (with c � 0), the decay exponent

gradually changes to β � 0.

Essensiantly, the biPareto distribution has two Pareto tails on both ends of

the distribution. On a log-log plot, a CCDF of the form χ−α (a pareto tail) would

appear as a straight line with slope −α. Thus, the log-log plot of a biPareto CCDF

has two nearly linear regimes, with slopes −
(

c
1+c

α + 1
1+c

β
)

and −β, respectivly.

This property of the distribution makes it a good choice for modeling the number

of flows per session and flow sizes. Its parameters can be estimated via maximum

likelihood estimates.

6.2.1.2 Time-varying Poisson process

Poisson process [92, 93] is one of the most important models used in queueing

theory. It is often used to model the arrival process of certain events, such as,
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customers at a queue. For the case of networks, a Poisson process is a viable

model when thepackets originate from a large population of independent users.

Mathematically the process is described by the so called counter process N(t)

which indicates the number of arrivals that have occured in the interval (0,t).

A Poisson process can be described in three equivelant ways: (a) Poisson

process is a birth process: in an infinitesimal time interval dt there may occur

only one arrival. This happens with the probability λdt independent of arrivals

outside the interval. (b) The number of arrivals N(t) in a finite interval of length

t follows the Poisson(λt) distribution with

P{N(t)=t} = (λt)n

n!
e−λt

Moreover, the number of arrivals N(t1, t2) and N(t3, t4) in non-overlapping

intervals(t1 � t2 � t3 � t4) are independent.

(c) The interarrival times are independent and obey the Exp(λ) distribution:

P{interarrival time � t} = e−λt.

6.3 Evaluation of parametric models for wireless traffic

In this section we evaluate how the models described in 6.1 for the corrresponding

session- and flow-level variables fit with the actual data. The evaluation is per-

formed through visual and simple statistical tests and also through simulations.

For the simulations we make use of Matab’s built-in random number generators

for the distributions used in our models.
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Figure 6.1: Number of sessions per hour. Empirical vs. synthesized data

6.3.1 Fitting sessions with a time-varying Poisson process (TVPP)

To evaluate the performance of a TVPP fit for the session inter-arrival times

within a time block, we generated theoretical session interarrivals times and

compare them against the real ones. We first extracted session inter arrival

times within a block of length L=1 hour from the real trace, assuming that the

Poisson arrival rate is constant within this 1 hour block. We then simulated the

time-varying Poisson process in the following way: for each simulated interval

of length L, we consider that we have a Poisson process with a constant rate r.

We fix this rate from the actual data. Then, for this interval we generate session

interarrival times using the inverse CDF of the exponential distribution with rate

λ = r. Session interarrival times are generated up to the point that their cum-

mulative sum will become � L. Having generated the session interarrival times

within each session, we extract session arrival times and construct the time series

of these arrivals.
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Figure 6.2: QQ-plot of simulated vs. empirical session intearrivals

Figure 6.1 shows the number of sessions observed per time interval for the 179

hours of the real data and the synthetic based on the simulated TVPP. As this

plot shows, the deviation between the real and the synthetic data is insignificant

for all hours of the trace implying a very accurate fit of session arrivals through

a TVPP. To further check on the validity of the proposed model, we run 30

simulations of the time-varying Poisson process and ploted the simulated session

inter-arrivals against the actual ones. Figure 6.2 presents the QQ-plot of the

simulated session interarrival times against the actual ones. As this plot shows,

the quantiles for the the vast majority of the interarrival times fall well within

the simulation envelope.

6.3.2 Fitting flow sizes through a Bipareto distribution

The statistical analysis carried in [11] revelas that flow sizes can be accurately

described using a biPareto distribution. To evaluate the efficiency of this model
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Figure 6.3: CCDF of (a) theoretical vs. empirical flow sizes (b) simulated vs. empirical flow

sizes

flow sizes for the 11,188,727 flows that exist in our real trace are extracted. Using

MLE over all flow sizes, the paremeters of the Bipareto distribution are (a, b, c,

k) = (1.6683e-010, 0.99134, 11.784, 139).

Figure 6.3 (a) shows the joint CCDF of a Bipareto distribution with the

parameters computed using MLE over the actual flow sizes. We see that the

fit is excellent for most of the distribution with biPareto clearly capturing the

transition in the slope between the body and the heavy tail of the empirical

distribution. To further explore the peroformance of the biPareto model, we em-

ployed a custom biPareto random number generator to synthesize flow sizes using

the parameters computed using MLE. Figure 6.3 (a) presents the corresponding

CCDF of the synthesizes flow sizes against the actual ones. For the vast majority

of the flow sizes, the two distributions are almost identical with the exception of

flows with rather small sizes where the theoretical model slightly overestimates

the actual flow sizes.
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Figure 6.4: Flow interarrival times: (a) CCDF of theoretical vs. empirical (b) Logonrmal

QQ-plot

6.3.3 Lognormal fit for flow inter-arrivals within a session

The parametric model proposed in [11] to describe flow inter-arrival times within

a session is the lognormal. We first extracted flow inter-arrival times within

session from the real data and then used MLE to calculate the mu, sigma pa-

rameteres of the model. Figure 6.4 (a) is a joint CCDF of the theoretical flow

intearrivals derived from our model with parameters μ=-1.434 and σ=2.7667, and

the emperical ones. As this figure shows, our model follows the trend observed

in the real data for 90% of the flows approximately while for the rest 10% of

the flows it slightly underestimates flow inter-arrival times. While more complex

models, e.g an ON/OFF model, may provide a better approximation, the pro-

posed lognormal model certainly provides a reasonable description of the data

using only two parameters.

The lognormal quantile plot for the empirical data is also shown in 6.4 (b).
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Figure 6.5: CCDF of number of flows per session. Theoretical vs. fitted

Due to the large number of flows in the trace, the QQ-plot was drawn for a

randomly selected session among the ones with the largest number of sessions.

The blue curve corresponding to the emperical quantiles follows the red diagonal

line closely for all of the quantiles. The simulation envelope is very narrow in

this case, and shows that there are some significant deviations from the lognormal

model in the upper part.

6.3.4 Evaluating biPareto fit for number of flows per session

The last variable that is used in this two-tier modelling approach is the number

of flows per session which is described through a biPareto distribution. Figure

6.6 plots the CCDF of the fitted distribution with parameters (a, b, c, k) =

(0.068324, 1.6442, 304.04, 1) against the emperical data in a logarithmic scale.

The emperical distribution of the number of flows per session matches well

the proposed biPareto model for sessions with up to approximately 10,000 flows.
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The fit is worse at the tail due to some sessions that have a rather large number of

flows. These sessions can be due to abnormal or outlying users behavior. Clients

that were compromised by an address-scan attack may then be used as zombies

and take part in a DoS attack by initiating a large number of small-size flows to

other internet side hosts. Moreover, clients using a bit-torrent P2P application

that experience frequent disconnections from the infrastructure, will initiate a

large number of control flows to discover and reconnect to existing peers.

To explore however how significant is the effect of sessions with such outlying

behavior we compare the number of flows per hour observed in the real trace with

the number of flows generated by the biPareto model. In order to create the time-

series of the number of flows per session, we need to have the flow arrival times

which in turn require to know the session arrival times. Altough section describes

6.5 how all these models can be used in conjuction to produce synthetic traces, a

brief summary is presented here. The proceedure of generating a synthetic time

series of flow arrivals includes the following steps:

(a) For each time interval of the simulated duration;

(b) Session arrivals are extracted from session inter-arrival times obtained

through a TVPP;

(c) For each session, flow inter-arrival times are generated which are tran-

sormed to absolute flows arrival times;

We synthesized a trace of 179 hours triggering all aforementioned models with

their corresponding parameters computed using MLE and drew a joint timeseries

plot ( 6.6) for the number of flows per hour for the emperical and simulated data.

As this plot shows, there are specific time intervals during which the synthe-

sized traces underestimates the number of flows in our trace. The most prominent

deviation of the real from the synthetic trace is observed between the 100-th and
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Figure 6.6: Time series of number of flows per hour. Synthetic vs. empirical trace

112-th hours approximately.

6.3.4.1 Removing outlying sessions

To further improve the performance of the proposed models we employed the

Grubb’s test (Appendix C) to remove outlying sessions, i.e. sessions with an

excessive number of flows. Applying Grubb’s test on an iterative manner resulted

in removing 0.2% of the total sessions which were responsible for 6.7% of the total

traffic observed for UNC’s WLAN in the packet header trace.

The parameters of all session- and flow-level models were recomputed for the

corresponding distributions using MLE having excluded first all outlying sessions

and all flows initialized within these sessions from the real trace (Figure 6.2).

Using the new parameters for the flow-level variables, we repeated the process

described in 6.3.4. Figures 6.7 (a) and 6.7 (b) show the joint CCDF between

synthesized and empirical data for both the number of flows per session and flow
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Modeled variable Model Model Parameters

Session arrival Time-varying Fixed from

Poisson(λ(t)) Real trace

Flow interarrival/session Lognormal (μ, σ) = (-1.3343, 2.9788)

Flow number/session biPareto (a, b, c, k) = (0.0702, 1.8565, 366.6385, 1)

Flow size biPareto (a, b, c, k) = (1.716e-12, 1.0847, 23.3648, 139)

Table 6.2: System-wide parameters for flow, and session variables

sizes.

As we can see the fit for the flow sizes is well in line with the emperical data for

nearly 99% of the flows. What is however more interesting is the improvement

in the fit of the number of flows per session after having removed the outliers

leading to a smoother tail for the corresponding distribution which is accurately

described by our model. The improvment is even more profound if we consider

the time series of number of flows per hour. As Figure 6.8 shows,

6.4 Extending flow and session related models to the ap-

plication level

The previous section evaluated the performance of the proposed flow- and session-

level models at the infrastructure level considering flows from all applications

through all APs. This section explores how these models perform when applied

for flows of specific applications. Specifically, since Web was found to be the

dominant application in terms of total traffic transfered (Section 5.2.1), we are

going to explore if the models proposed in Section 6.2 can be used for the cor-

responding variables for Web flows only. Note also that in Section 5.5 we have
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Figure 6.7: CCDF of synthesized vs. empirical data for (a) number of flows per session (b)

flow sizes

observed that nearly 65% of the sessions transfer the vast majority of their traffic

through Web.

6.4.1 Evaluating a biPareto fit for Web flow sizes

Looking at the CCDF plot of Web flow sizes (figure 6.9) we can see that the dis-

tribution of Web flow sizes is a power-law like distribution with a very smooth tail

(notice the log-log scales of the plot). Appropriate power-law-like distributions

to fit such data are the exponential, pareto, biPareto, and Weibull distribution.

For each one of these distributions, we run MLE over the actual Web flow

sizes to get the parameters that best fit the corresponding model. Based on these

parameters and using Matlab’s built-in random number generators for these dis-

tribution, synthesized flow sizes are generated. Note that we generate synthesized

flow sizes for the same number of flows that appear in the real trace (Web flows).
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Figure 6.8: Timeseries of number of flows per interval. Emperical vs. synthetic

To evaluate which distribution provides the better fit, a joint CCDF of all syn-

thesized flow sizes along with the actual ones is presented in figure 6.10. As it

shows, for probability values ranging from 0.1 to 1, the biPareto model clearly

provides the better fit for Web flow sizes. For flow sizes � 30Kbytes, the gener-

alized Pareto distribution also provides an efficient fit, apart from the biPareto.

Overally, the model that appears to be the most appropriate to describe Web

flow sizes is the biPareto.

6.4.2 Number of Web flows per session

When concerning all flows of the network, the model that fits accurately the

number of flows per session is the biPareto. Figure 6.11 presents the CCDF

plot of the theoretical against the actual Web flow sizes. As it shows, number

of Web flows per session can be accurately described by a biParetto model with

parameters (a, b, c, k) = (0.075, 2.1693, 425.019, 1). The fit is very accurate for
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Figure 6.9: CCDF of Web flow sizes

all sessions clearly capturing the transition in the slope between the body and

the heavy tail of the emperical distribution.

6.4.3 Evaluating a lognormal fit for the Web flow inter-arrival times

within a session

In Section 6.3.3 we have noticed that a lognormal fit can provide an accurate

approximation for the flow intearrival times within a session. To evaluate if this

model can also be used to describe the interarrival times of Web flows within

a session we extracted flow interarrival times for Web flows from the real trace

and calculated the parameters of the lognormal model through MLE (μ=-1.3627,

σ=3.033).

Figure 6.12 (a) shows that the lognormal model performs very well for flow

inter-arrival times of up to 10 seconds. For larger flow interarrival times, the

proposed model slightly underestimates actual data but overally it provides a

113



Figure 6.10: CCDF of Web flow sizes. Synthetic vs. empirical data

satisfactory fit using only two parameters as opposed to other more complex

models.

6.5 Implementation of a synthetic trace generator

In the last part of this section we describe the implementation of a synthetic

trace generator based on the coherent parametric statistical models for UNC’s

WLAN workload evaluated in the previou sections. This generator can be used

for both generating synthetic traces and for validating proposed models. The

output of the synthetic trace generator can be directly employed in simulation

and testbed experimentation studies to generate more realistic user behaviors,

while it allows for a better insight to the problem than empirical models. Network

load can be simulated at both the client association and flow levels. The synthetic

trace generator proposed is parametric in that the user can adjust the following

parameters:
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Figure 6.11: CCDF of number of Web flows per session. Theoretical vs. emperical data

• the duration and scale of the trace;

• the client arrivals volume;

• the number of flows generated per user initiated session;

• the corresponding flow sizes;

Our traffic generator ensures that the synthetic trace follows the respected

models and provides data that are easy to manipulate, process, and incorporate

in any simulation study.

The synthetic trace generator was implemented as a matlab module. It can

be used either to simulate one of the modeled variables (e.g. number of flows per

session) or to simulate variables that are note directly modeled, such as, total

traffic per hour or average throughput per hour. The inputs required by the

synthetic trace generator are the following:

1. Trace length as number of intervals of length L;
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Figure 6.12: CCDF of theoretical vs. actual flow inter-arrival times

2. Duration (L) of each interval in seconds;

3. Number of sessions for each interval to be simulated (in our cased fixed

from real trace);

4. Parameters of the lognormal model for flow interarrivals within a session;

5. Parameters of the biPareto model for num of flows per session;

6. Parameters of the biPareto model for flow sizes;

Note that a reasonable choice for the duration of each interval of the trace is

the time during which the arrival rate of the Poisson process is constant.

A high level view of the implementation of our synthetic trace generator con-

sists of the following steps:

1. For each time interval ’i’ (1,N);

Generate session interarrival times based on the exponential distribution;
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Transform session interarrival times to session arival times;

2. For each session ’s’ generated during (1);

Generate number of flows (’n’) through biPareto;

Generate ’n’ flow interarrival times through lognormal;

Transform flow interarrival times to flow arrival times;

Generate ’n’ flow sizes through biPareto model;

End(2);

End(1);

3. Based on each flow’s size and arrival, calculate throughput time series

Using the synthetic trace generator, we sinulated 179 hours of synthetic trace

(as many as the hours of the real trace) triggering all of the modelled variables

in order to calculate average throughput per hour. The interval length was set

to 1 hour and the parameters for the corresponding distributions were the ones

described in Section 6.2. Notice that our synthetic trace generator does not model

or makes any assumptions about the duration of the flow. We only model the

arrival time for each flow and not the number of intervals during which the flow

was active. In order to get a rough estimate of the average throughput per hour,

we assume for both the synthesized and the real data, that the flow ends at the

same time interval that it starts and that all of its traffic is transfered during the

corresponding time interval.

As figure 6.13 shows, the synthetic trace follows the trends observed in the

actual data captyring the variability of the throughput for through the tracing

period. Overally the shape of the throughput that was computed through the

synthetic trace has the same shape with the actual one, exhibiting peaks and
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Figure 6.13: Average throughput per hour. Synthetic vs. empirical data

intervals of low utilization at the same hours. There are however some hours

where the synthetic throughput is higher than the real, the synthetic generator

underestimates the actual throughput. To get a rough estimate of the deviation

of the synthetic trace from the actual one in terms of average throughput per

hour, we calculated for interval ’i’ the residual value of the throughput as: Re-

siudal throughput(i) = Real throughput(i) - Synthetic throughput(i). The mean

residual value over all intervals of the simulated period was 0.8Mbps. To get an

essense of this deviation, consider that the actual flows that are modeled and sim-

ulated correspond to all flows of UNC WLAN captured at the egress router over

a tracing period of 8 days. The bandwidth of the backbone link that connects

UNC’s WLAN to the egress router is 100Mbps.
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6.6 Discussion

In [11] it was shown the proposed parametric models for the session- and flow-

level variables can also be used to model the corresponding variables at the AP-

level apart from the aggregate network. For example, focusing on hotspot APs, it

was shown that the number of flows per session for a specific AP follow a biPareto

distribution.

6.6.1 Generating synthetic traces

As shown in chapter 5 of [1], the synthetic traces produced using the synthetic

trace generator described in 6.5 can be used as input in simulations of various

802.11 scenarios in Ns-2. When compared to other publicly used models, our

parametric models generate traffic that is more similar to the empirical data in

terms of various metrics, such as, delay, jitter, and throughput.

Apart from our parametric models, synthetic traces were generated using

various other models. These models are summarized in table 6.3. Note that

when a fixed number is used for flow sizes this number if the mean flow size in

the empirical trace.

The empirical trace to which all synthetic traces are compared is a file that

contains the session arrival timestamp, the AP at which the corresponding ses-

sion started, the arrival of each in-session flow and the corresponding flow size.

To generate synthetic flow sizes drawn from a specific distribution, MLE was first

used to derive the parameters of the corresponding distribution and then using

these parameters, values that follow that distribution were produced using a ran-

dom number generator. In both the Pareto-Uniform and Fixed-Uniform synthetic

traces, the flow arrival times are derived from a uniform distribution from the
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Model Flow size Flow arrival

biPareto-Lognormal biPareto Lognormal

biPareto-Lognormal-AP biPareto Lognormal

Pareto-Empirical Pareto As in empirical trace

Pareto-Uniform Pareto Uniform

Fixed-Empirical Fixed as in empirical trace

Fixed-Uniform Fixed Uniform

Lognormal-Weibul Lognormal Weibul

Fixed-Fixed Fixed Fixed

Table 6.3: Models used to generate synthetic traces

interval [0,T], where T is the duration of the empirical trace. The flow sizes in

the Pareto-Uniform scenario were derived using a pareto distribution while the

Fixed-Uniform scenario includes flow sizes that are fixed, equal to the mean flow

size found in the trace. The Lognormal-Weibul scenario is based on the models

proposed in [49] by Meng et al., in which the flow interarrival times follow a

Weibul distribution in hourly basis and flow sizes a lognormal distribution. The

parameters of the Weibul distribution were determined using Maximum Likeli-

hood Estimates for each hour-of-day of the empirical trace. Finally, [1] makes

use of some naive models (e.g., Fixed-Fixed scenario) that have been widely used

in performance analysis studies and simulations concerning wireless network pro-

tocols.

6.6.2 Simulation testbed

In order to evaluate the performance of all aforementioned models, synthetic

traces were generated using each one of these models and were fed as input in
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simulations scenarios in Ns-2. The testbed that is simulated is a WLAN with

three wireless clients associated at the same AP and for wired clients connected

through a router to the internet. Mutliple concurrent connections are initiated by

source nodes to reproduce the simulated traffic were a round-robin flow assign-

ment process is used to associate clients with flows. For the case of naive models,

flows of fixed size and fixed arrival time were used based on a simple CBR traffic

generator. Apart from the traffic generated by each simulated model, there is no

other background traffic in any of the simulated scenarios.

6.6.3 Benchmarks

For the evaluation of the performance of the various parametric models, a set of

benchmarks were used. Note that these benchmarks were not directly addressed

by our models and were employed to characterize the performance of IEEE802.11

APs under real-life network conditions. The benchmarks used were:

• throughput

• jitter

• delay

• goodput

• hourly aggregate traffic sent from wired clients

Note that unlike throughput that takes into account all the data trasnfered in

the transport layer, goodput only considers the amount of bytes delivered from

the transport layer to the application layer. The term delay is used to denote

the average packet delay within a flow while jitter expresses the variability of the

delay.
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6.6.4 Evaluation

Comparing all synthetic traces generated by the models included in table 6.3

through average flow delay, it is shown in [] that our set of parametric models

captures more efficiently the trend observed in the actual data with Meng’s mod-

els being also accurate. Other naive models based on fixed flow sizes or on flow

sizes drawn from a pareto distribution deviate significantly from the actual data.

The proposed set of parametric models also generates synthetic traffic that is

closer to actual data both in terms of average flow delay and averalge flow jitter

when compared to Meng’s approach and the naive models mentioned in [49].
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CHAPTER 7

Conclusions

Wireless networks grow in response to the increasing demand for wireless access.

In the same time, more features are added to them to enable support for more

demanding applications and efficient management of their resources. Knowledge

of the wireless traffic demand in terms of the applocation types used is crucial

to performing network overprovisioning. Moreover performance analysis stud-

ies that are intended to reveal weaknesses of wireless networks and propose new

mechanisms, such as, load balancing and admission control to improve their per-

formance, call for realistic models of key network elements. Along the direction

of improving the performance of wireless networks, traffic load forecasting esti-

mates can be used by APs to not only better manage their traffic demand but

also advice clients to associate with the appropriate APs to better utilize their

local resources. Such predictions can be used to reduce the energy spendings at

the client side, improve the capacity utilization of wireless LANs, and better load

balance the traffic.

In this work, we designed a number of forecasting algorithms based on the

knowledge acquired from the modeling task, and evaluated their performance

on the hotspots of a large production wireless network. We also extended these

algorithms at the client level and compared their perfomance at the AP level.

Our ultimate goal is to design and develop admission control, capacity planning

and load balancing tools incorporating these forecasting mechanisms.
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We also provide a detailed multi-level application based characterization of a

campus wide WLAN from the perspective of the network, client, and AP. Our

results can be employed to support better admission control and AP selection

mechanisms, indicate usage trends, and guide per-application traffic modeling

efforts. We identify application usage patterns across clients and APs. We also

explore how wireless channel dynamics affect user behavior and compare appli-

cation traffic mix of the infrastructure studied with other wired and wireless

infrastructures.

We evaluated the performance of a set of parametric models for flow and ses-

sion related variables intended to describe traffic demand of a large scale WLAN.

Most of the modeling efforts have been on the AP-level. The shift to sessions and

flows has gained two important advanatages: sessions at an AP can mask the

network-related dependencies that are not important in a range of applications

and simulation environments, such as, brief transitions from one AP to another

due to a transient behavior of the signal, and exhibit statistical properties (such as

stationarity) that make them amenable to modeling. We also explored how these

models perform when applied to model flow related variables for Web. Finally we

implemented and evaluated the performance of a synthetic trace generator based

on the parametric models proposed.
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CHAPTER 8

Future work

As far as AP traffic forecasting is concerned, we intend to explore how forecasting

performs in finer time scales. Short-term forecasting (e.g., next minute) can

assist in designing more energy-efficient clients. Moreover, long-term forecasting

is essential for capacity planning and understanding the evolution of the wireless

traffic and networks. We also aim to simulate load balancing mechanisms that

facilitate these forecasting algorithms to evaluate their impact on the performance

of the network.

We also intend to extend our application-based characterization of wireless

demand at the transport layer by using heuristics and statistical clustering tech-

niques to profile clients based on their application characteristics and roaming

patterns, and contrast the results using data from different wireless environ-

ments. Another issue that also requires significant consideration is how mobility

affects both application usage patterns across clients and the performance of ap-

plications with real-time constraints. We are also concerned in exploring how

wireless channel dynamics ,such as, packet losses, interference and MAC-layer

retransmissions affect the performance of certain applications ,such as, P2P or

voice and video streaming ones.

There is also a variety of open issues concerning the modeling methodology

and the paremetric models proposed for the flow- and session-level variables that

were used to characterize wireless demand at the transport layer. In section 6
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we have partially explored how the parametric models proposed for flow related

variables perform when applied to Web flows. We intened to further explore,

both through statistical tests and simulations, how well the proposed models scale

when used to characterize flows of specific application types. Using traces from

other infrastructures and other tracing periods we aim to investigate if our models

persist over time and if they can be applied to a large variety of infrastructures

to accurately characterized wireless demand. A further refinement of our models

will consider how the population size of wireless users relates to the process of

session arrivals. Some clients use the infrastructure only one or a few times and

then disappear from the system, whereas others represent a more constant load.

Understanding this part of the workload will make simulations more intuitive,

since their input could be the number of clients and a parametric description of

their access patterns. Apart from the statistical evaluation of our models we also

intened to perform a system-oriented evaluation by synthesizing traffic based

on the proposed models in a broadly used network simulator (e.g., Ns-2) and

then compate the actual traces with the synthesized ones based on parameters

that were not directly addressed by the corresponding models, such as, average

throughput per flow, average delay and jitter.
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A Mutliple Linear Regression

The purpose of multiple linear regression is to establish a quantitative relationship

between a group of predictor variables (the columns of X) and a response, y. This

relationship is useful for

1. understanding which predictors have the greatest effect;

2. knowing the direction of the effect (i.e., increasing x increases/decreases y);

3. using the model to predict future values of the response whenonly the pre-

dictors are currently known;

The quantitative relationship between a group of predictor variables (the

columns of X) and a response, y can be expressed through a linear model of

the form: y = Xβ + ε where:

• y is an n-by-1 vector of observations;

• X is an n-by-p matrix of regressors;

• β is a p-by-1 vector of parameters;

• ε is an n-by-1 vector of random disturbances;

The solution to the problem is a vector, b, which estimates the unknown

vector of parameters, β and is computed using the least squares method. This

solution is expressed by the following equation: b = β̂ =
(
xT X

)−1
xT y

2Main source used: [96]
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B Least Squares Method

The method of least squares, also known as regression analysis, is used to model

numerical data obtained from observations by adjusting the parameters of a

model so as to get an optimal fit of the data. The best fit is characterized

by the sum of squared residuals having the minimum possible value with the

residual being the difference between an observed value and the value given by

the model.

B.1 Problem Statement

The objective consists of adjusting the parameters of a model function so as to

best fit a data set. Consider the case of a data sample that consists of m points

(data pairs) (xi, yi), for i=1,m, where xi is an independent variable and yi is

a dependent variable whose value is found through observations. Also assume

that the proposed model for the independent variable yi is: f(xi,β), where the n

adjustable parameters are held in the vector β. Target of the least squares method

is to find those parameter values for which the model “best” fits the data. The

least squares method tries to define the parameters that best fit the sample data

by minimizing the sum of the squared residuals denoted as: S =
∑i=m

i=1 ri
2 A

residual is defined as the difference between the values of the dependent variable

and the modeland is denoted by the following equation: ri = yi − f (xi, β) An

example of a model is that of the straight line. Denoting the intercept as a and the

slope as β then the corresponding model function is given by: f (xi, β) = a+βxi.

A data point may consist of more than one independent variable. For an

example, when fitting a plane to a set of height measurements, the plane is a

function of two independent variables, x and z, say. In the most general case
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there may be one or more independent variables and one or more dependent

variables at each data point.

B.2 Solving the least squares problem

Least squares problems fall into two categories, linear and non-linear. The linear

least squares problem has a closed form solution, but the non-linear problem has

to be solved by iterative refinement; at each iteration the system is approximated

by a linear one, so the core calculation is similar in both cases.

The minimum of the sum of squares is found by setting the gradient to zero.

Since the model contains n parameters there are n gradient equations.

ds
dβj

= 2
∑

i ri
dri

dβj
= 0, j = 1...n

and since:

ri = yi − f (xi, β)

the gradient equations become:

−2
∑

i
df(xi,β)

dβj
ri = 0, j = 1...n

The gradient equations apply to all least squares problems. Each particular

problem requires particular expressions for the model and its partial derivatives.

The system is a linear one when when the model comprises a linear combina-

tion of the parameters and can be expressed as:

f (xi, β) =
∑j=n

j=1 xijβj.

The coefficients xij can be either constants or functions of the independent

variable xi.

For the case of non-linear system, there is no closed solution to a non-linear

least squares problem. Instead, initial values must be chosen for the parameters.
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Then, the parameters are refined iteratively, that is, the values are obtained by

successive approximation.

1Main source used: [95, 94]
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C Grubb’s test

The Grubbs test, also know as the maximum normalized residual test, can be

used to test for outliers in a univariate data set. Note that this test assumes that

the actual data are normally distributed. Grubbs test detects one outlier at a

time so in order to remove multiple outlying values, Grubbs test must be applied

in an iterative manner by removing each time the current outlier. This process

should be repeated until no outliers are detected. More formally, the Grubbs test

can be defined as follows:

H0: There are no outliers in the data.

Ha: There is at least one outlier in the data.

Significance level: a.

The statistic test used for the detection of outliers is expressed through the

following equation:

G = max(|Xi|−μ)
s

where μ and s are the sample mean and standard deviation of the data. That

is, the Grubbs test statistic is the largest absolute deviation from the sample

mean in units of the sample standard deviation.

The hypotheseis H0 of no outliers is rejected if:

G � N−1√
N

√
t2
(a/2N,N−2)

N−2+t2
(a/2N,N−2)

where t(a/2N,N−2) is the critical value of the t-distribution with (N-2) degrees

of freedom and a significance level of a
2N

.

The above is actually a combination of the following two tests:

1. The test that the minimum value is an outlier.
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2. The test that the maximum value is an outlier.

In order to generate the on-side tests, the test statistic is: G = Ȳ −Ymin

s
or

G = Ymax−Ȳ
s

.

After an outlier has been detected and removed, the same proceedure is re-

peated for the new sample with size N-1.

3Main source used: [97, 98]
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D Maximum Likelihood Estimate

Assume x is a continuous random variable with pdf: f(x; θ1, θ2, ..., θk, )

where θ1, θ2, ..., θk are k unknown constant parameters that need to be esti-

mated. Conducting an experiment N times we obtain N values for the random

variable x (x1, x2, ..., xN). The likelihood function is given by:

L(x1, x2, ..., xN |θ1, θ2, ..., θk) = L =
∏N

i=1 f(xi, θ1, θ2, ..., θk)

for i=1,...,N.

The logarithmic likelihood function is:

Λ = lnL =
∑N

i=1 ln(f(xi, θ1, θ2, ..., θk))

The maximum likelihood estimators (MLE) of θ1, θ2, ..., θk, are obtained by

maximizing L or Λ. By maximizing Λ, which is much easier to work with than L,

the maximum likelihood estimators (MLE) of θ1, θ2, ..., θk are the simultaneous

solutions of k equations such that:

d(Λ)
dθj

= 0, j = 1, 2, ..., k

Even though it is common practice to plot the MLE solutions using median

ranks (points are plotted according to median ranks and the line according to

the MLE solutions), this is not completely accurate. As it can be seen from

the equations above, the MLE method is independent of any kind of ranks. For

this reason, many times the MLE solution appears not to track the data on

the probability plot. This is perfectly acceptable since the two methods are

independent of each other, and in no way suggests that the solution is wrong.

4Main source used: [99]
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E Source code for specific tasks

E.1 QQplots with simulation envelope

function paramhat vec = envelope qqplot( FLINFO flowsizes D outexcl, distribution, samples )

fs = FLINFO flowsizes D outexcl(:,3);

%fs = FLINFO flowsizes D outexcl;

values = length(fs);

paramhat index = 1;

%===============================

% create simulation data

%===============================

s = sprintf(’Create synthetic data’);

switch lower(distribution)

case {’weibull’}
[paramhat] = wblfit( fs );

wdata0 = wblrnd(paramhat(1,1),paramhat(1,2),values,1 );

case {’lognormal’}
[paramhat] = lognfit( fs );

wdata0 = lognrnd(paramhat(1,1),paramhat(1,2),values,1 );

case {’exponential’}
[paramhat] = expfit( fs );

wdata0 = exprnd(paramhat(1,1),values,1 );

case {’extreme value’}
[paramhat] = evfit( fs );

wdata0 = evrnd(paramhat(1,1),paramhat(1,2),values,1 );

case {’generalized extreme value’}
[paramhat] = gevfit( fs );

wdata0 = gevrnd(paramhat(1,1),paramhat(1,2),paramhat(1,3),values,1 );

case {’pareto’}
[paramhat] = gpfit( fs );

wdata0 = gevrnd(paramhat(1,1),paramhat(1,2),std(fs),values,1 );

case {’gamma’}
[paramhat] = gamfit( fs );

wdata0 = gamrnd(paramhat(1,1),paramhat(1,2),values,1 );

case {’bipareto’}
[paramhat] = fitBiPareto( fs, 60, ’FS’, ’FS’);

wdata0 = floor(randbipareto(500, paramhat(1,1), paramhat(1,2), paramhat(1,3), min(fs)));

% these functions elapse at ∼8ms
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otherwise

error(’Invalid distribution’);

end

paramhat vec(paramhat index,:) = paramhat; paramhat index = paramhat index + 1;

disp ( s );

f1 = figure;

hold on;

%===============================

% create simulation envelope

%===============================

for envel = 1:samples

switch lower(distribution)

case {’weibull’}
s = sprintf(’\t[weibull]Generating simulation envelope: run[%d]’, envel);

%[paramhat] = wblfit( fs );

wdata = wblrnd(paramhat(1,1),paramhat(1,2),values,1 );

case {’lognormal’}
s = sprintf(’\t[lognormal]Generating simulation envelope: run[%d]’, envel);

%[paramhat] = lognfit( fs );

wdata = lognrnd(paramhat(1,1),paramhat(1,2),values,1 );

case {’exponential’}
s = sprintf(’\t[exponential]Generating simulation envelope: run[%d]’, envel);

wdata = exprnd(paramhat(1,1),values,1 );

case {’extreme value’}
s = sprintf(’\t[extreme value]Generating simulation envelope: run[%d]’, envel);

wdata = evrnd(paramhat(1,1),paramhat(1,2),values,1 );

case {’gamma’}
s = sprintf(’\t[gamma]Generating simulation envelope: run[%d]’, envel);

wdata = gamrnd(paramhat(1,1),paramhat(1,2),values,1 );

case {’generalized extreme value’}
s = sprintf(’\t[generalized extreme value]Generating simulation envelope: run[%d]’, envel);

wdata = gevrnd(paramhat(1,1),paramhat(1,2),paramhat(1,3),values,1 );

case {’pareto’}
s = sprintf(’\t[pareto]Generating simulation envelope: run[%d]’, envel);

wdata = gprnd(paramhat(1,1),paramhat(1,2),std(fs),values,1 );

case {’bipareto’}
s = sprintf(’\t[bipareto]Generating simulation envelope: run[%d]’, envel);

%[paramhat] = fitBiPareto( fs, 60, ’FS’, ’FS’ );

wdata = floor(randbipareto(2000, paramhat(1,1), paramhat(1,2), paramhat(1,3), min(fs)));

otherwise
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error(’Invalid distribution’);

end

disp ( s );

h = qqplot(wdata0,wdata);

delete(h(2)); delete(h(3));

set(h(1),’Color’,’cyan’)

paramhat vec(paramhat index,:) = paramhat; paramhat index = paramhat index + 1;

end

h = qqplot(wdata0,fs);

delete(h(2)); delete(h(3));

ah = gca;

xlim = get(ah,’XLim’);

ylim = get(ah,’YLim’);

% f2 = figure;

% compCopy(f1, f2);

figure(f1);

%===============================

% Plot data in original scale

%===============================

if( xlim(1,2) > ylim(1,2) )

axes max = ylim;

else

axes max = xlim;

end

axes max(1,1) = 0;

ah = gca;

set(ah,’XLim’, axes max);

set(ah,’YLim’, axes max);

ideal = (0:100:axes max(1,2));

plot(ideal,ideal,’Color’,’r’,’LineWidth’,2);

xlabel(’Synthetic data quantiles’);

ylabel(’Original data quantiles’);

grid on; hold off;

%===============================

% Plot data in log scale

%===============================

% figure(f2);

% if( xlim(1,2) > ylim(1,2) )

% axes max = xlim;

% else
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% axes max = ylim;

% end

% axes max(1,1) = 0;

% ah = gca;

% set(ah,’XLim’, axes max);

% set(ah,’YLim’, axes max);

% ideal = [0:100:axes max(1,2)];

% plot(ideal,ideal,’Color’,’r’,’LineWidth’,4);

% set(gca,’XScale’,’log’); set(gca,’YScale’,’log’);

% xlabel(’Synthetic data quantiles [log scale]’);

% ylabel(’Original data quantiles [log scale]’);

% grid on;

%===============================

% Save data

%===============================

% switch lower(distribution)

% case {’weibull’}
% savename = [ ’qqfit orig weibull ’ int2str(samples)];

% case {’lognormal’}
% savename = [ ’qqfit orig lognormal ’ int2str(samples)];

% case {’bipareto’}
% savename = [ ’qqfit orig bipareto ’ int2str(samples)];

% otherwise

% error(’Invalid distribution’);

% end

%saveas( f1, [ savename ’.fig’]);

%saveas( f1, [ savename ’.jpg’]);

% savenamelog = [ savename ’ log’];

%close(f1);

%saveas( f2, [ savenamelog ’.fig’]);

% saveas( f2, [ savenamelog ’.jpg’]);

% close(f2);
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E.2 Extract basic traffic time-series from SNMP

#!/usr/local/bin/perl

#

# Felix Hernandez Campos

#

# February 2005

#

# -----------------------------------------------------------------------------

# USAGE

# -----------------------------------------------------------------------------

# SCRIPT NAME: ap data2ap ts.pl

my ($progname) = $0 =∼ /([ˆ\/]+)$/;

my $usage=<<EOF;

Description:

Extra basic time-series from SNMP aggregate data. Note that this script

does not perform any interpolation (but proper counter substracting requires

detecting reboots, so those are handled).

Input format:

Sorted SNMP AP aggregate data trace

sort -s -n +1 -2 +0 -1

Output format:

Set of time-series for each AP. Each AP has its own separate file.

This file start with two header lines preceeded by a hash (#) symbol and

lines of the form

relative poll time [ value1 value2 ... ]

Individual time-series can be easily extracted using Unix\’s cut or

combined with a simple perl program. Similarly, it is straight-forward

to construct time-series at coarser granulaties with a time-series

aggregator program.

Missing values are marked with NA. Completely missing samples are not

reported.

Usage:

$progname [options] output prefix < tr.ap sorted data

Options:
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-h Show this help message.

-... ...

EOF

# -----------------------------------------------------------------------------

# PRAGMAS

# -----------------------------------------------------------------------------

use strict;

# ----------------------------------------------------------------------------

# IMPORTS

# ----------------------------------------------------------------------------

#die ”Environment variable \$SRC undefined or incorrect”

# if ($ENV{SRC} eq ””);

#require ”$ENV{SRC}/stats/cdf.pl”;

# -----------------------------------------------------------------------------

# MAIN

# -----------------------------------------------------------------------------

#

# OPTIONS

#

use Getopt::Std;

my (%opts);

if (not getopts(”h”, \%opts) or $opts{”h”} or @ARGV != 1) {
print ”$usage”;

exit;

}

use IO::File;

my $pref = $ARGV[0];

my $polling interval = 300;

my $polling delta = 25; # maximum expected 15 + processing time
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my $assume wrap around thr = 1800; # handle big wrap around after gap

# Previous and current SNMP sample

#

# Unlike declaring a new variable for each column, this type of data

# representation pays off when many columns are handled the same way,

# since we can loop through each column

my (@prev sample, @sample);

#

# Columns in each line of the AP aggregate trace,

# and at the same time the names of the fields in the sample arrays

#

my @columns =

( ”poll time”, ”ap num”, ”os”, ”up time”, ”iface speed”,

”byte recv”, ”ucast pkt recv”, ”non ucast pkt recv”, ”error pkt recv”,

”discarded pkt recv”,

”byte sent”, ”ucast pkt sent”, ”non ucast pkt sent”, ”error pkt sent”,

”discarded pkt sent”,

”assoc”, ”auth”, ”roamed in”, ”roamed away”, ”deauth”);

#

# Time-Series Output

#

# Set of columns from which a time-series should be computed

# Up time is useful for cleaning up the time-series

my @ts columns = (3, 5..$#columns);

my @non ts columns = (0, 1, 2, 4);

# file descriptors for each time-series file

my @ts fds;

# column number lookup by name (more readable than by index)

my %colnum;

my $i;

for ($i = 0; $i < @columns; $i++) {
$colnum{$columns[$i]} = $i;
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}

my @non assoc columns = (3, 5..($colnum{”assoc”}-1));

#

# Sample processing

#

my ($prev line, $line);

my $num aps = 0;

my $num ap reboots = 0;

# Inconsequential Cisco bug

my $off by one errors = 0;

# How often is the up time after a reboot above the polling interval?

my $late poll after reboot = 0;

# Current time-series file

# Samples from the SNMP aggregate input add a new line to this file

# (except for the first sample of each AP, for which no difference with

# previous sample is possible)

my $ts fd;

my $start poll time;

while (<STDIN>) {

# e.g.

# 1077711305 6 604351400 120974027 635617 2948 1074 689172675 520663 436 23 14271809 716 1821 35970

# notice the backwards up time: WHY is inter-poll time 74 seconds???

# BUG???

# 1077711379 6 604337100 120964576 635548 2948 1074 689123285 520602 436 23 14271809 716 1821 35970

# diff is 232 to the first one and 158 to the first one

# BUG????

# 1077711537 6 604381000 120977516 635645 2948 1074 689224319 520689 436 23 14271809 716 1821 35970

$line = $ ;

@sample = split;
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die ”Unexpected number of columns ”. (scalar @sample) .

” != ”. (scalar @columns) . ”\n$ ”if (@sample != @columns);

# Ignore completely empty polls (AP did not respond)

next if ($sample[$colnum{”iface speed”}] eq ”NA”);

if ($prev sample[$colnum{”ap num”}] ne $sample[$colnum{”ap num”}]) {
#

# New AP found

#

$num aps++;

# Close time-series file for previous AP

$ts fd->close if (defined $ts fd);

# Open new time-series file for current AP

my $fname = ”>$pref.ap ”. $sample[$colnum{”ap num”}] . ”.ts”;

$ts fd = new IO::File($fname);

die ”cannot open $fname”if (not defined $ts fd);

# print headers

$start poll time = $sample[$colnum{”poll time”}];

print $ts fd ”# Start time: $start poll time\n”;

print $ts fd ”# Rel time os ”;

my $col;

foreach $col (@ts columns) {
print $ts fd ($columns[$col] . ($col != $#columns ? ” ” : ”\n”));

}

# store first sample for this AP

@prev sample = @sample;

} else {
#

# Another line for this AP

#

my $diff = $sample[$colnum{”polltime”}] - $prev sample[$colnum{”polltime”}];

if ($diff < $polling interval - $polling delta) {
# ToDo: output distribution

die ”Unexpected polling interval\n$prev line$line”;
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} elsif ($diff > $polling interval + $polling delta) {
# warn ”Large gap between polls: $diff > ”

# . ($polling interval + $polling delta) . ”\n$prev line$line”;

print ”[ $diff ”. $sample[$colnum{”polltime”}] . ” - ”.

$prev sample[$colnum{”polltime”}] . ” ]\n$prev line$line”;

}

my $updiff = &substr with wrap around($sample[$colnum{”up time”}],

$prev sample[$colnum{”up time”}]) / 100; # secs.

# Reboots:

# * type 1

# 1098908538 16 20804 11000000 65690 427 2 0 0 ...

# 1098908838 16 23350 11000000 0 0 0 0 0 ...

# * type 2

# 1099270071 3 976745742 11000000 1487926193 1862631 51100 57 0 ...

# 1099270392 3 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA

# 1099270672 3 27298 11000000 0 0 0 0 0 ...

# type 1

if ($sample[$colnum{”up time”}] / 100 < $polling interval - $polling delta

# type 2

or $updiff < 0) {

# Rebooted AP

if ($sample[$colnum{”up time”}] / 100 > $diff + $polling delta) {
die ”Up time after reboot is above polling gap\n$prev line$line”;

} else {
# Just rebooted

$num ap reboots++;

&reset prev sample;

&flush sample;

$late poll after reboot++

if ($sample[$colnum{”up time”}] / 100 >= $polling interval +

$polling delta);
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}

} elsif ($updiff > $diff + $polling delta) {
warn ”Up time is above polling gap\n$prev line$line”;

# It happens sometimes

# 1097905821 172.29.1.233 IOS 849811564 ...

# 1097912424 172.29.1.233 IOS 850478778 ...

# 6603 vs 6672

&flush sample;

} else {
&flush sample;

}
}
$prev line = $line;

}

$ts fd->close if (defined $ts fd);

print STDERR ”Number of APs found: $num aps\n”;

print STDERR ”Number of AP reboots: $num ap reboots\n”;

print STDERR ”Off by one errors: $off by one errors (inconsequential)\n”;

print STDERR ”Late polls after reboot: $late poll after reboot (careful!)\n”;

sub reset prev sample {
my $col;

foreach $col (@ts columns) {
$prev sample[$col] = 0;

}
}

sub reset prev sample except uptime {
my $col;

foreach $col (@ts columns) {
next if ($col == $colnum{”up time”});

$prev sample[$col] = 0;

}
}

sub reset prev sample non assoc {
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my $col;

foreach $col (@non assoc columns) {
next if ($col == $colnum{”up time”});

$prev sample[$col] = 0;

}
}

#

# Flush sample: invoked after the second and subsequent samples of the

# current AP

#

sub flush sample {

my $uptime diff = $sample[$colnum{”up time”}] -

$prev sample[$colnum{”up time”}];

return if ($sample[$colnum{”byte recv”}] eq ”NA”and

$sample[$colnum{”ucast pkt recv”}] eq ”NA”);

my $inter polling = $sample[$colnum{”poll time”}] - $start poll time;

printf $ts fd ”%s ”, $sample[$colnum{”poll time”}];

# print $ts fd ”$inter polling ”;

print $ts fd ($sample[$colnum{”os”}] . ” ”);

# Further protection from misleading wrap-around

# Relatively common cases for VxWorks data

if ((($sample[$colnum{”byte recv”}] < $prev sample[$colnum{”byte recv”}] and

$sample[$colnum{”ucast pkt recv”}] <

$prev sample[$colnum{”ucast pkt recv”}]) or

($sample[$colnum{”error pkt recv”}] <

$prev sample[$colnum{”error pkt recv”}] and

$sample[$colnum{”discarded pkt recv”}] <

$prev sample[$colnum{”discarded pkt recv”}]))

and $uptime diff > 0) {
if ($sample[$colnum{”assoc”}] < $prev sample[$colnum{”assoc”}]) {
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&reset prev sample except uptime;

} else {
&reset prev sample non assoc;

}
warn ”Assuming counter reset\n$prev line$line”;

}

warn ”AP ”. $sample[$colnum{”ap num”}] . ”: new interface speed (”.

$prev sample[$colnum{”iface speed”}] . ” => ”.

$sample[$colnum{”iface speed”}] . ”)\n$prev line$line”

if ($sample[$colnum{”iface speed”}] !=

$prev sample[$colnum{”iface speed”}]);

# Unreliable

# my $current assoc = ($sample[$colnum{”assoc”}] ne ”NA” and

# $sample[$colnum{”disassoc”}] ne ”NA” ?

# $sample[$colnum{”assoc”}] -

# $sample[$colnum{”disassoc”}] : ”NA”);

my $col;

foreach $col (@ts columns) {
my $diff;

if ($sample[$col] eq ”NA”) {
$diff = ”NA”;

# do not update prev sample, so gap can be computed

} else {
$diff = &substr with wrap around($sample[$col], $prev sample[$col]);

die ”Non-sensical up time $diff\n$prev line$line”

if ($col == $colnum{”up time”} and $diff > 1e6

and $inter polling + $polling interval < $diff / 100);

if ($diff < 0) {
if ($col == $colnum{”ucast pkt sent”} and $diff == -1) {

# Don’t worry about the following one (common Cisco bug):

# Negative diff between two samples (colnum=10: 12344195 - 12344196)

# 1100158382 7 1065519773 11000000 ... 12344196 ...

# 1100158682 7 1065549758 11000000 ... 12344195 ...

$off by one errors++;

} else {
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warn ”Negative difference between two samples (”.

$sample[$colnum{”os”}] .

” colnum=$col: $sample[$col] - $prev sample[$col])\n”

. ”$prev line$line”;

}

if ($sample[$colnum{”os”}] == ”VxW”and not $diff == -1) {
# 340s may reset within a poll

# 1097688901 152.19.141.142 VxW 1174000 11000000 30324 1226 ...

# 1097689201 152.19.141.142 VxW 1203900 11000000 467 16 ...

# 1097689501 152.19.141.142 VxW 1233900 11000000 1163 22 ...

&reset prev sample except uptime;

$diff = $sample[$col];

} elsif ($uptime diff > 0 and

($col == $colnum{”byte sent”} or $col == $colnum{”byte recv”})) {
$diff = $sample[$col] + 2**32 - 1 - $prev sample[$col];

warn ”Assuming wrap around (diff=$diff)”;

$prev sample[$col] = $sample[$col];

} else {
$diff = 0;

}

} else {
$prev sample[$col] = $sample[$col];

}
}
print $ts fd ”$diff”;

print $ts fd ($col == $ts columns[$#ts columns] ? ”\n” : ” ”);

}

# print $ts fd ”--$current assoc\n”;

foreach $col (@non ts columns) {
$prev sample[$col] = $sample[$col];

}
}

# Handle substraction with 32-bit wrap around

# substr(a,b) => a - b
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sub substr with wrap around {
my ($a, $b) = @ ;

if ($a <= 2**30 and $b >= 3*2**30) {
return $a + 2**32 - 1 - $b

} else {
return $a - $b;

}
}
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E.3 Process time series and handle missing values

#!/usr/local/bin/perl

#

# Felix Hernandez Campos

#

# February-March 2005

#

# SCRIPT NAME: ap ts2tot traf.pl

# -----------------------------------------------------------------------------

# USAGE

# -----------------------------------------------------------------------------

my ($progname) = $0 =∼ /([ˆ\/]+)$/;

my $usage=<<EOF;

Description:

Extract total traffic time-series using interpolation to handle

missing values. See PIMRC05 submission for more details (or read the code!).

Input format:

Output of ap agg2ap ts.pl

Output format:

Two columns:

1. Timestamp (end of bin) in seconds

2. Value

Usage:

$progname [options] < tr.ts

Options:

-h Show this help message.

EOF

# -----------------------------------------------------------------------------

# PRAGMAS

# -----------------------------------------------------------------------------

use strict;

# -----------------------------------------------------------------------------

149



# MAIN

# -----------------------------------------------------------------------------

#

# OPTIONS

#

use Getopt::Std;

my (%opts);

if (not getopts(”hs:”, \%opts) or $opts{”h”}) {
print ”$usage”;

exit;

}

# Polling interval (in seconds)

my $poll int = 300;

# Safe delta to handle poll retranmissions (4 attempts every 5 seconds)

my $delta poll = 25;

# Columns in input trace

my @columns =

( ”poll time”, ”os”, ”up time”,

”byte recv”, ”ucast pkt recv”, ”non ucast pkt recv”, ”error pkt recv”,

”discarded pkt recv”,

”byte sent”, ”ucast pkt sent”, ”non ucast pkt sent”, ”error pkt sent”,

”discarded pkt sent”,

”assoc”, ”auth”, ”roamed in”, ”roamed away”, ”deauth”, ”disassoc”);

# column number lookup by name (more readable than by index)

my %colnum;

my $i;

for ($i = 0; $i < @columns; $i++) {
$colnum{$columns[$i]} = $i;

}

# Find gaps in sampling and use interpolation to reconstruct the

# values if needed (downtime/reboots are replaced by zero)
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my $last ts;

my (%poll gap cdf, %reboot gap cdf);

while (<STDIN>) {

if (/ˆ\#/) {
print $ if (/ˆ\# Start/);

} else {

# print $ ;

my @sample = split;

die ”ERROR: Unexpected number of columns ”. (scalar @sample) .

” != ”. (scalar @columns) if (@sample != @columns);

# Total traffic

my $value = ($sample[$colnum{”byte recv”}] + $sample[$colnum{”byte sent”}]);

my $diff = $sample[$colnum{”poll time”}] - $last ts;

# Detect gaps (taking into account extra time due to retransmissions)

if ($last ts ne ””and $diff > $poll int + $delta poll) {

my $up time = $sample[$colnum{”up time”}] / 100;

if ($up time < $diff - $delta poll) {
#

# Reboot Gap => nothing really happened

#

print STDERR ”Reboot Gap $diff $last ts\n”;

# Print zeros for samples in the gap

my $zero steps = int(($diff + $delta poll) / $poll int) - 1;

my $ts = $last ts + $poll int;
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my $i;

for ($i = 0; $i <= $zero steps - 1; $i++) {
print ”$ts 0\n”;

$ts += $poll int;

}
die ”ERROR: Unexpected end ts\n$ ”

if (abs($ts - $sample[$colnum{”poll time”}]) >= $delta poll);

# And new sample

print ($sample[$colnum{”poll time”}] . ” $value\n”);

} else {
#

# Polling Gap => interpolate missing values

#

if ($up time > $diff + $delta poll) {
print STDERR ”WARNING: up time difference is larger than polling difference\n$ ”;

$up time = $diff;

}

my $extra steps = int(($up time - $delta poll) / $poll int);

my $diff steps = int(($diff + $delta poll) / $poll int);

print STDERR ”Polling Gap $diff $last ts\n”;

# check diff between up times and polling timestamps

if (($extra steps + 1) > $diff steps) {
die ”ERROR: Too many interpolation steps\n$ ”;

} elsif (($extra steps + 1) == $diff steps) {
# expected difference => interpolate

my $i;

my $interpolated value = $value / $diff steps;

my $ts = $last ts + $poll int;

for ($i = 0; $i < $diff steps; $i++) {
printf ”$ts %.2f\n”, $interpolated value;

$ts += $poll int;

}
die ”ERROR: Unexpected end ts\n$ ”
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if (abs($ts - $poll int - $sample[$colnum{”poll time”}]) >=

$delta poll);

} else {
# Could add code here to handle a reboot followed by a missing poll

die ”ERROR: Short reboot\n$ ”;

}
}

} elsif ($diff < 0) {
die ”ERROR: Unexpected negative different of polling timestamps\n$ ”;

} else {
#

# No Gap

#

print ($sample[$colnum{”poll time”}] . ” $value\n”);

}

$last ts = $sample[$colnum{”poll time”}];

}

}
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E.4 Synethetic trace generator

% oughput syn] = synthetic generator flowsizesThroughputPerInterval(179, 6,

% 0.068324, 1.6442, 304.04, 1, -1.434, 2.7667, 1.6683e-010, 0.99134, 11.784, 139,session real 6min);

function [traffic flow ts,throughput syn] = synthetic generator flowsizesThroughputPerInterval(N, L, alpha1,

beta1, c1, k1, mu, sigma, alpha2, beta2, c2, k2,numOfSessionArrivals);

% DESCRIPTION

% The only difference from the first version is that it calculates flow

% arrival times in a different mannter.

% Input:

%

% N : [1x1] , duration of the trace [in hours]

% L : [1x1] , duration of intervals [in minutes], where

% the Poisson arrival rate can be considered to be constant

% numOfSessionArrivals :

% Fixed from the real trace and represents the number of session per

% interval of length L.

%

% Output:

num TI = floor(N*60/L) % number of time intervals

int len = L*60; % interval duration in seconds

counter = 1;

counter total flows = 0;

counter in traffic flow ts = 1;

flow arrivals = [];

session arrivals = [];

traffic flow ts = zeros( 11000000,2);

session vector = zeros( 1, 10000 );

for n = 1:num TI % for each time interval

n

%session vector = zeros( 1, 10000 );

% Generate session arrivals
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prev arrival time = 0;

count sessions = 1;

session arrival rate = numOfSessionArrivals(n)/int len;

while( (prev arrival time <= int len) && (session arrival rate∼=0) )

% this loop runs once for each time interval

u = rand;

cur inter arival = -(1/session arrival rate)*log(u);

if( prev arrival time <= int len )

session vector( 1,count sessions ) = cur inter arival;

count sessions = count sessions + 1;

end

prev arrival time = max( cumsum( session vector(1,1:count sessions) ) );

%prev arrival time = max( cumsum( session vector ) );

end

if( session arrival rate∼=0 )

% temp vec = cumsum( session vector(1,1:count sessions) );

temp vec = cumsum( session vector );

temp vec = temp vec + (n-1)*int len;

%clear(’session vector’);

[r,c] = size( temp vec );

for i=1:count sessions

num flows = floor(randbipareto(1, alpha1, beta1, c1, k1))’;

flow sizes = floor(randbipareto(num flows, alpha2, beta2, c2, k2))’;

%[rr,cc] = size( flow sizes )

counter total flows = counter total flows + num flows;

flow interarrival = lognrnd(mu,sigma,1,num flows); % flow inter-arrival times measured in seconds

flow interarrival = cumsum( flow interarrival );

flow interarrival = flow interarrival + temp vec(1,i);
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vector len = length( flow interarrival );

for j=1:vector len

traffic flow ts(counter in traffic flow ts,1) = flow interarrival(1,j);

traffic flow ts(counter in traffic flow ts,2) = flow sizes(1,j);

counter in traffic flow ts = counter in traffic flow ts + 1;

end

clear(’flow interarrival’);

end

end

%counter total flows

%count sessions

%break;

end

counter in traffic flow ts

counter total flows

disp ’Calculating Throughput timeseries’;

throughput syn = zeros(179,1);

for i=1:counter in traffic flow ts-1

bin = floor( traffic flow ts(i,1)/3600 );

bin = bin + 1;

if( bin > 179 )

else

throughput syn(bin,1) = throughput syn(bin,1) + traffic flow ts(i,2);

end

end

disp ’Processing Throughput timeseries’;

for i=1:179

throughput syn(i,1) = ((throughput syn(i,1)*8)/1000)/3600;

end
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