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Περίληψη

Η παρούσα εργασία έχει ως κύριο στόχο την παρουσίαση άμεσων και επαναληπτικών μεθόδων για την
επίλυση μεγάλων και αραιών γραμμικών συστημάτων της μορφής Ax = b όπου b ∈ Cn και A ∈ Cn×n.

Στον τομέα της αριθμητικής ανάλυσης όσο και στους επιστημονικούς υπολογισμούς, είναι σημαντικό
να χρησιμοποιούμε όσο το δυνατόν λιγότερη μνήμη για την αποθήκευση δεδομένων ενός προβλήματος.
Τα αραιά συστήματα μας δίνουν την δυνατότητα εξοικονόμησης μνήμης αποθηκεύοντας μόνο τα μη
μηδενικά δεδομένα σε ειδικές μορφές, οι οποίες παρουσιάζονται στο δεύτερο κεφάλαιο. Ένα ακόμη
πλεονέκτημα των αραιών συστημάτων είναι το γεγονός ότι μπορούμε να μειώσουμε το υπολογιστικό
κόστος αφού γνωρίζουμε εκ των προτέρων το αποτέλεσμα των πράξεων με μηδενικά στοιχεία. Είναι
σημαντικό να μπορούμε να εξισορροπήσουμε τα τρία αυτά βασικά χαρακτηριστικά, δηλαδή τον χώρο
αποθήκευσης, το υπολογιστικό κόστος και την ευστάθεια της υπολογιστικής διαδικασίας ούτως ώστε να
οδηγηθούμε σε μια αποτελεσματική λύση του προβλήματος. Στο Κεφάλαιο 2 παρουσιάζονται, επίσης,
παραδείγματα προβλημάτων αρχικών τιμών τα οποία διακριτοποιούνται με τη μέθοδο των πεπερασμένων
διαφορών και οδηγούν σε αραιά γραμμικά συστήματα εξισώσεων.

Ακολούθως, στο Κεφάλαιο 3 παρουσιάζονται μέθοδοι της κατηγορίας Stationary Iterative Methods στην
οποία περιλαμβάνονται οι μέθοδοι Jacobi, Gauss–Seidel, καθώς επίσης και η μέθοδος της διαδοχικής
υπερχαλάρωσης (SOR). Δίνουμε έμφαση τόσο στην περιγραφή αυτών των επαναληπτικών σχημάτων,
όσο και στην ανάλυση των ιδιοτήτων σύγκλισης.

Στο Kεφάλαιο 4 παρουσιάζονται οι υπόχωροι Krylov και οι μέθοδοι απότομης καθόδου και συζυγών
κλίσεων. Τέλος, στο Κεφάλαιο 5 εξετάζουμε την αποτελεσματικότητα και τη σχετική απόδοση κατάλλη-
λων άμεσων και επαναληπτικών μεθόδων σε συστήματα γραμμικών εξισώσεων που προκύπτουν από τη
διακριτοποίηση της εξίσωσης του Helmholtz με μεθόδους πεπερασμένων διαφορών και πεπερασμένων
στοιχείων.
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Abstract

In this thesis presented an overview of direct and iterative methods for solving large sparse linear systems
such as Ax = b where A ∈ Cn×n and b ∈ Cn.

In numerical analysis and scientific computing, an important condition for the computations is the low
consuming of memory storage. A sparse linear system has the advantage that the amount of storage
required is greatly reduced and several storage schemes have been devised for this special category. The
respective theory was developed in the second chapter. In addition, the computational cost is reduced
since we know beforehand the result of arithmetic operations with zero. The main challenge in sparse
linear algebra is to balance storage, computational cost and stability to create an effective solution. In
chapter 2, it is also described the Finite Difference Methods, a class of numerical techniques for solving
differential equations by approximating derivatives with finite differences.

Later in chapter 3, there are developed the Stationary Iterative Methods. Some of them are the well–
known methods of Jacobi, Gauss–Seidel and SOR method as well. Consequently, we emphasize the
linear iterative schemes that constitute an important part of iterative methods.

Continuing into Chapter 4, we define the Krylov subspace. The jth Krylov subspace formed by the
linear combination of b,Ab, · · · ,A j−ib and comprises the base of Gradient methods. We will refer to the
steepest descent method and the conjugate gradient method which differ in the search direction.

Finally, in Chapter 5 we present the results of numerical experiments performed with the solution of
linear systems which result from the discretization of the Helmholtz equation, using finite difference and
finite element methods. The Python codes used in the numerical experiments performed in this thesis
are listed in Appendix A.
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CHAPTER1

Introduction

When discretizing partial differential equations, we often end up with a system of linear equations in
the form of Ax = b, where A is a, generally, sparse matrix, and b is a known vector. In the context of
partial differential equations, A typically arises from a finite difference, finite element, or finite volume
discretization of the differential operators in the equation.

Sparse linear systems are particularly challenging to solve because direct methods, like Gaussian elim-
ination of the Cholesky factorization can be very inefficient due to the large number of zero entries.
Therefore, iterative methods such as the Conjugate Gradient method or the Generalized Minimal Resid-
ual method are often used instead. These methods exploit the sparsity of the matrix to reduce the com-
putational complexity of the solution process.

Many specialized algorithms and libraries have been developed specifically for solving sparse linear
systems arising from partial differential equations, such as the Sparse Solvers Library (SPLIB) and the
SuiteSparse package. These libraries use a variety of techniques to accelerate the solution process, such
as reordering the matrix to reduce fill-in and using parallel processing.
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CHAPTER2

Direct methods for linear systems

2.1 Finite Difference Methods

Suppose that we have the function u ∈C4. Using Taylor’s formula we have

u(x+h) = u(x)+h
du
dx

+
h2

2
d2u
dx2 +

h3

6
d3u
dx3 +

h4

24
d4u
dx4 (ξ+) (2.1)

for some ξ+ ∈ (x,x+h). Therefore, from (2.1) we conclude that:

du
dx

=
u(x+h)−u(x)

h
+

h
2

d2u(x)
dx2 +O(h2). (2.2)

In a similar fashion,

u(x−h) = u(x)−h
du
dx

+
h2

2
d2u
dx2 − h3

6
d3u
dx3 +

h4

24
d4u
dx4 (ξ−), (2.3)

for some ξ− ∈ (x−h,x). Using (2.1) and (2.3) we obtain the approximation of the second derivative

d2u
dx2 =

u(x+h)−2u(x)+u(x−h)
h2 +

h2

12
d4u
dx4 (ξ ) (2.4)

The approximation (2.4) is called a centered difference approximation of the second derivative while
(2.1) is a so-called forward approximation of the first derivative and (2.3) is a backward approximation.
The combination of (2.1) and (2.3) gives the centered difference formula

du
dx

≈ u(x+h)−u(x−h)
2h

. (2.5)

For future reference we define the forward and backward difference operators by

δ+u(x) = u(x+h)−u(x), (2.6)
δ−u(x) = u(x)−u(x−h). (2.7)

Consider now the boundary value problem

−u′′(x) = f (x), x ∈ (0,1), (2.8)
u(0) = u(1) = 0, (2.9)

3



4 CHAPTER 2. DIRECT METHODS FOR LINEAR SYSTEMS

and a discretization of the interval [0,1]

xi = ih, i = 0, . . . ,n+1,

where h = 1
n+1 for some integer n ≥ 2. Motivated by (2.4), we define approximationsUi of the values of

u(xi), i = 0, . . . ,n+1, by

−Ui−1 +2Ui −Ui+1 = h2 fi, i = 1, . . . ,n, (2.10)

withU0 =Un+1 = 0 and fi = f (xi), i = 1, . . . ,n. The equations in (2.10) may be written as

AU = F,

whereU = (U1, . . . ,Un)
T , F = h2( f (x1), . . . , f (xn))

T , and

A =


2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 2

 . (2.11)

The tridiagonal matrix A is symmetric positive definite so a solution of the linear system represented by
(2.10) may be easily computed via the Cholesky factorization which we present below:

Theorem 2.1 (Cholesky factorization). Given a symmetric positive definite matrix A, there exists a lower
triangular matrix L such that

A = LLT .

Proof. We proceed by induction on the dimension of the matrix A. Indeed, for a 1×1 positive definite
matrix A = (α11), the assertion holds with L11 =

√
α11 (recall that the diagonal elements of a positive

definite matrix are positve). Assume now that it holds for all (n−1)× (n−1) positive definite matrices.
For A ∈ Rn,n symmetric positive definite, we write

A =

(
d uT

u H̃

)
,

where d = α11 > 0, u is a (n−1)−column vector and H̃ ∈ Rn−1,n−1. We observe that

A =

(
d 0
u√
d

In−1

)(
1 0
0 H

)(√
d uT

√
d

0 In−1

)
, (2.12)

where
H = H̃ − 1

d
uuT .

The matrix H is symmetric positive define matrix since for x ∈ Rn−1,x ̸= 0 and

y =
(
− 1

d xT u
x

)
∈ Rn,

we have

xT Hx = xT
(

H̃ − 1
d

uuT
)

x = yT
(

d uT

u H̃

)
y = yT Ay > 0,
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and clearly y ̸= 0. From the inductive hypothesis, H can be written as H = LHLT
H , where LH a lower

triangular matrix with positive diagonal elements. Therefore, as a result of (2.12), A is equal to

A =

(√
d 0

u√
d

In−1

)(
1 0
0 LH

)(
1 0
0 LT

H

)(√
d uT

√
d

0 In−1

)
=

(√
d 0

u√
d

LH

)(√
d uT

√
d

0 LT
H

)
,

so, for

L :=

(√
d 0

u√
d

LH

)
,

we have the required factorization A = LLT . The proof of the uniqueness of L is as follows:
Assume that there exists a lower triangular matrix M with positive diagonal elements such that A =

LLT = MMT . In this case L−1M = LT
(
MT
)−1. On the left side of equality we have a lower triangular

matrix and on the right side we have an upper triangular matrix so L−1M = LT
(
MT
)−1

= D, where D is
a diagonal matrix. Thus,

M = LD ⇒ Dii = Mii/Lii,

and
LT = DMT ⇒ Dii = Lii/Mii.

Therefore, L2
ii = M2

ii ⇒ Lii = Mii and D = In, which implies that M = L.

The elements of the matrix L may be easily computed by comparing the corresponding elements of the
matrices on either side of the factorization A = LLT . The algorithm below computes the elements of L
in a column-wise fashion:

for j = 1, . . . ,n do

L j j =

(
A j j −

j−1
∑

k=1
(L jk)

2
)1/2

for i = j+1, · · · ,n do

Li j =

(
Ai j −

j−1
∑

k=1
LikL jk

)
/L j j.

end
end

Observe that in the case of a tridiagonal matrix, the algorithm simplifies considerbly. We need only
compute the diagonal and sub-diagonal elements:

for j = 1, . . . ,n do

L j j =

(
A j j −

j−1
∑

k=1
(L jk)

2
)1/2

L j+1, j = A j+1, j/L j j.

end

Example 2.1.1. For the matrix A in (2.11), is easily seen that A = LLT where

L =



√
2 0 0 · · · · · · 0

−1/
√

2
√

3/2 0 · · · 0
0 −

√
2/3

√
2 · · · 0

... 0 −1/
√

2
√

3/2 0
... . . . . . .
0 αn−1,n αnn


. (2.13)
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The elements αn−1,n and αnn depend on the dimension n, i.e.,{
αn−1,n =−1/

√
2 and αnn =

√
3/2, when n = 2k, k ∈ N,

αn−1,n =−
√

2/3 and αnn =
√

2 when n = 2k+1, k ∈ N.

Having computed the Cholesky factorizaton of the matrix A the linear system AU = f reduces to

AU = f ⇒ LLTU = f .

In general, consider the solution of the linear system

L̃Ux = b,

where L̃ andU are given by

L̃ =


δ1
γ2 δ2 0

. . . . . .
γn−1 δn−1

0 γn δn

 , U =


ζ1 ε1

ζ2 ε2 0
. . . . . .

0 ζn−1 εn−1
ζn


Letting y =Ux, it suffices to solve the system

L̃y = f .

L̃ is a lower triangular matrix with a single nonzero sub–diagonal, so we may apply the back-substitution
algorithm shown below:

y1 = f1/δ1
for k = 2, · · · ,n do

yk = ( fk − γkyk−1)/δk
end

Having y, we can compute the solution x by solving the upper triangular systemUx = y. Once again, we
can apply the back-substitution algorithm, which now takes the form:

xn = yn/ζn

for k = n−1, . . . ,1 do
xk = (yx − εkxk+1)/ζk

end

We are now ready to solve the initial system LLTU = f . We write U = (U1, . . . ,Un)
T and let y = LTU ,

so that Ly = f . Given the form of L in (2.13), the following algorithm computes the solution y:

y1 = f1/
√

2
for k = 2, . . . ,n with step 2 do

yk = ( fk +(1/
√

2)yk−1)/
√

3/2
end
for k = 3, . . . ,n with step 2 do

yk = ( fk +(
√

2/3)yk−1)/
√

2
end

Having the solution y of the system Ly = f , we proceed with the solution of LTU = y, where LT is an
upper triangular matrix. We apply the backward substitution algorithm, which, in the case of even n is
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Un = yn/
√

3/2
for k = n−1, . . . ,1 with step 2 do

Uk = (yk +(1/
√

2)Uk+1)/
√

2
end
for k = n−2, . . . ,1 with step 2 do

Uk = (yk +(
√

2/3)Uk+1)/
√

3/2
end

and when n is odd
Un = yn/

√
2

for k = n−1, . . . ,1 with step 2 do
Uk = (yk +(

√
2/3)Uk+1)/

√
3/2

end
for k = n−2, . . . ,1 with step 2 do

Uk = (yk +(1/
√

2)Uk+1)/
√

2
end

2.1.1 An upwind scheme

Consider now the one-dimensional version of a convection-diffusion equation with Dirichlet boundary
conditions {

−αu′′+bu′ = 0, 0 < x < L = 1,
u(0) = 0, u(1) = 1,

(2.14)

whose exact solution is
u(x) =

1− eRx

1− eR . (2.15)

Here, R is the Péclet number, defined by R = bL/a. Given, n ≥ 1, integer, consider a partition of [0,L]
with nodes xi = ih, i = 0, . . . ,n+1, where h = L/(n+1).
We set u0 = u(0) = 0, un+1 = u(1) = 1, and compute approximations ui ≈ u(xi), i = 1, . . . ,n, by re-
placing the first and the second order derivatives in the equation, by the approximations (2.5) and (2.4),
respectively, so that

b
ui+1 −ui−1

2h
−α

ui+1 −2ui +ui−1

h2 = 0, i = 1, . . . ,n. (2.16)

Setting c = Rh/2 we may write the system of equations above as

− (1− c)ui+1 +2ui − (1+ c)ui−1 = 0, i = 1, . . . ,n. (2.17)

Equations (2.17) are equivalent to a tridiagonal system of equations Au = f , where, for the case n = 5,
the tridiagonal matrix A is giving by

A =
1
h2


2 −1+ c

−1− c 2 −1+ c
−1− c 2 −1+ c

−1− c 2 −1+ c
−1− c 2

 . (2.18)

It easy to see that if backward approximations had been used to obtain approximations of the derivates,
the tridiagonal matrix A, again for the case n = 5 would be

A =
1
h2


2+ c −1
−1− c 2+ c −1

−1− c 2+ c −1
−1− c 2+ c −1

−1− c 2+ c

 , (2.19)
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where now c = Rh. The choice of the discretization used depends on the sign of the coefficient b. It
can be shown that the forward difference formula for approximating the derivative is appropriate when
b < 0, while the backward difference formula is appropriate when b > 0. We can succinctly write both
schemes as

b
δ ∗

i ui

h
−α

ui−1 −2ui +ui+1

h2 = 0, i = 1, . . . ,n, (2.20)

by adopting the notational convention

δ ∗
i =

{
δ−

i if b > 0,
δ+

i if b < 0.
(2.21)

Using the Upwind Scheme code we can verify that this discetization produces accurate approximations
of the exact solution (2.15) of the convection–diffusion equation (2.14).

Figure 2.1: Finite difference solution and exact solution of the convection-diffusion equation (2.14) with
a = 2, b = 9 and N = 30

Figure 2.2: A comparison between the upwind scheme choice and the forward approximation, in the
case of b > 0

The figure above presents the convergence of the approximation solution to the exact solution using the
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upwind scheme (red line) and the forward approximation (green line) in the case of b > 0. Clearly, the
upwind scheme provides a more accurate approximation.

2.1.2 Cyclic Reduction

Consider now the two-dimensional problem

−
(

∂ 2u
∂x2

1
+

∂ 2u
∂x2

2

)
= f in Ω, (2.22)

with the boundary condition
u = 0 on Γ = ∂Ω, (2.23)

whereΩ=(0, l1)×(0, l2). We consider a uniform partition ofΩ=(0, l1)×(0, l2)with (n1+1)×(n2+1)
points.

x1,i = i×h1, i = 0, . . . ,n1 +1, x2, j = j×h2, j = 0, . . . ,n2 +1,

where
h1 =

l1
n1 +1

, h2 =
l2

n2 +1
.

If we use the second order finite difference scheme (2.4) for the discretization of the partial deriv-
atives, in (2.22) we obtain a symmetric, block–diagonal system of equations for the approximations
ui j ≈ u(x1,i,x2, j). The system matrix A, when n1 = 3 and n2 = 5, is

A =
1
h2

 B −I
−I B −I

−I B

 , B =


4 −1
−1 4 −1

−1 4 −1
−1 4

 .

We describe the method of cyclic reduction for solving a block-tridiagonal system of equations of the
form

1
h2

 B −I
−I B −I

−I B

u1
u2
u3

=

 f1
f2
f3

 (2.24)

where ui, f j for i = 1,2,3 and j = 1,2,3, are vectors of length 4.

To this end, we multiply the second row by B and add to it the first and the third rows, so that

1
h2

(
B2 −2I

)
u2 = (B f2 + f1 + f3), (2.25)

which we can easily solve. Having u2 we obtain u1 and u3 by solving similar tridiagonal systems. This
procedure may be generalized to n× n block-tridiagonal systems with n = 2p − 1 using the so-callled
Buneman variant, see [2] Let us assume that the matrix A has the form

D F
F D F

. . . . . . . . .
F D F

F D

 , (2.26)

whereF andD are q×qmatrices that satisfyDF =FD andwhere n= 2k−1. Notice that these conditions
hold for the discretization of Poisson’s equations described above. The integer n is determined by the
size of the mesh and can often be chosen to be of the particular form.
The basic ideas behind cyclic reduction is to halve the dimension of the problem repeatedly until we are
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left with a single q×q system for the q-vector x2k−1 . The system is then solved by standard means. The
previously eliminated xi are found by a back-substitution process. For example, in the case n = 7 we
have

Dx1 +Fx2+Dx3 +Fx4 +Dx5 +Fx6 +Dx7 = b1, (2.27)
Fx1 +Dx2 +Fx3+Dx4 +Fx5 +Dx6 +Fx7 = b2, (2.28)

Fx2 +Dx3 +Fx4+Dx5 +Fx6 +Dx7 = b3, (2.29)
Fx3 +Dx4 +Fx5+Dx6 +Fx7 = b4, (2.30)

Fx4 +Dx5 +Fx6+Dx7 = b5, (2.31)
Fx5 +Dx6 +Fx7 = b6, (2.32)

Fx6 +Dx7 = b7, (2.33)

For i = 2,4,6, we multiply equations i−1, i and i+1 by F,−D, and F , respectively and add the resulting
equation to obtain

(2F2 −D2)x2 +F2x4 = F(b1 +b3)−Db2,

F2x2 +(2F2 −D2)x4 +F2x6 = F(b3 +b5)−Db4,

F2x4 +(2F2 −D2)x6 = F(b5 +b7)−Db6.

This is a reduced block tridiagonal system of the form

D(1)x2 +F(1)x4+D(1)x4 = b(1)2 ,

F(1)x2 +D(1)x4 +F(1)x6 = b(1)2 ,

+Dx4F(1)x4 +D(1)x6 = b(1)6 ,

where D(1) = 2F2 −D2 and F(1) = F2 commute. Applying the same elimination strategy as above, we
multiply these three equations respectively by F(1), −D(1), and F(1). When these equations are added
together , we obtain a single equation(

2
[
F(1)

]2
−
[
D(1)

]2
)

x4 = F(1)
(

b(1)2 −b(1)6

)
−D(1)b(1)4 ,

which we write as
D(2)x4 = b(2)4 .

This completes the cyclic reduction. We now solve this small q×q system for x4. The vectors x2 and x6
are found by solving the systems

D(1)x2 = b(1)2 −F(1)x4,

D(1)x6 = b(1)6 −F(1)x4.

Finally, we use the first, third, fifth and seventh equations in (2.27) – (2.33) to compute x1,x3,x5, and x7,
respectively.

2.2 The coordinate format

The storage of large sparse matrices is especially important for the performance of direct (and iterative)
solvers. Several storage schemes have been devised for storing sparse matrices.
The simplest storage scheme for sparse matrices is the so-called “coordinate format”. This scheme uses
three arrays:
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• An array AA containing all the nonzero elements of the sparse matrix A, in any order.

• An integer array JR containing their row indices.

• A second integer array JC containing their column indices.

All arrays are of length Nz, where Nz is the number of nonzero elements of A.

Example 2.2.1. The sparse matrix

A =


1 0 0 2 0
3 4 0 5 0
6 0 7 8 9
0 0 10 11 0
0 0 0 0 12

 (2.34)

will be represented by

AA 12 9 7 5 1 2 11 3 6 4 8 10

JR 5 3 3 2 1 1 4 2 3 2 3 4

JC 5 5 3 4 1 4 4 1 1 2 4 3

In the example above, the element order is arbitrary. However, usually the elements are stored either by
row or by column. If the elements were listed by row, the array JR would not be needed and could be
replace by an array containing the indices of the beginning of each row in AA. The resulting format is
the so-called Compressed Sparse Row (CSR) format. As before, we set the three arrays:

• An array AA containing all the nonzero elements of A stored row by row.

• A second integer array JA containing their column indices of αi j as stored in AA.

• An integer array IA contains the pointers to the beginning of each row in the arrays AA and JA.
Thus, if AR(k) = αi j and JA(k) = j, then for i ∈ {1, . . . ,n}, where n is the dimension of the matrix
A we have

– IA(i) = k, where αi j in AR(k) is the first element stored in AR for row i.

– IA(i) = IA(i+1) if all αi j = 0 in row i

– IA(n+1) = Nz +1.

The length of AA and JR is Nz while the length of IA is n+1.

Example 2.2.2. The above matrix may be stored as follows:

AA 1 2 3 4 5 6 7 8 9 10 11 12

JA 1 4 1 2 4 1 3 4 5 3 4 5

IA 1 3 6 10 12 13

A variation of the CSR format is the Compressed Sparse Column (CSC) scheme, where the elements are
listed column by column. Another variation is the Modified Sparse Row (MSR) format. There are only
two matrices where,

• The matrix AA which has, at the first n positions, the diagonal elements of the matrix, in order.
The position n+ 1 is empty and the rest of nonzero elements of A, distributed among the rest of
positions.
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• The matrix JA, whose elements distribute as follows: The n+ 1 positions contain the pointer to
the beginning of each row in AA and JA and for the rest of positions contain the corresponding
column of each element of AA(k) for k > n+1.

Example 2.2.3. For the matrix (2.34), the AA and JA according to MSR, are:

AA 1 4 7 11 12 * 2 3 5 6 8 9 10

JA 7 8 10 13 14 14 4 1 4 1 4 5 3

where * denoted the empty posistion.

Another storage format appropriate for diagonally structured matrices, that is matrices with nonzero
elements along a small number of diagonals is as follows: the diagonals are stored in a rectangular array
DIAG(1:n, 1:Nd), where Nd is the number of diagonals. The number of offsets of each diagonal is stored
in an second integer array IOFF(1:Nd).

Example 2.2.4.

A =


1 0 2 0 0
3 4 0 5 0
0 6 7 0 8
0 0 9 10 0
0 0 0 11 12


will be represented by the two arrays:

DIAG =

* 1 2
3 4 5
6 7 8
9 10 *
11 12 *

IOFF = -1 0 2

2.3 Solving sparse linear system using Python

Systems or linear equations with sparse coefficient matrices may be solved easily using Python’s SciPy
library, and more specifically the routines in the sub-packages scipy.sparse and scipy.sparse.linalg. A
short review of the available utility functions and solvers using the default CSC format is presented
here. The solution process for matrices stored tin the CSR format is presented in A.2. For both storage
schemes, the solution of a linear system is accomplished with the command spsolve(∗,∗).

2.3.1 Package Numpy

From the package Numpy we use the commands:

• np.size(A, axis=0) −→ Gives the number of rows of the matrix A

• np.ones(i) −→ Gives a vector with all elements equal to 1 and length i

2.3.2 Sparse matrices (scipy.sparse)

To build the coefficient matrix, we may use functions provided in the subpackage scipy.sparse. There
functions to define a sparse identity matrix, or an upper tridiagonal matrix, and several others:

• eye(m[, n, k, dtype, format]) −→ Sparse matrix with ones on the diagonal

• identity(n[, dtype, format]) −→ Identity matrix in sparse format

• diags(diagonals[, offsets, shape, format, dtype]) −→ Construct a sparse matrix from diagonals
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• block_diag(mats[, format, dtype]) −→ Build a block diagonal sparse matrix from the provided
blocks.

• tril(A[, k, format]) −→ Return the lower triangular part of a matrix in sparse format.

• triu(A[, k, format]) −→ Return the upper triangular part of a matrix in sparse format.

Given a sparse matrix, to find the values of its nonzero elements we could use the function:

• find(A) −→ Return the indices and values of the nonzero elements of a matrix.

We could also confirm that a matrix is a sparse matrix with the commands:

• issparse(x)

• isspmatrix(x)

2.3.3 Sparse Linear Algebra (scipy.sparse.linalg)

We can easily find the solution of a system by using the command spsolve. This command returns the
exact solution of a system, where the coefficient matrix is assumed to be stored in the CSC format.
However, converting the storage scheme to CSR, as is shown in the examples below, usually results tin
faster solution times.

2.3.4 Applications and examples

We consider five symmetric, positive definite matrices with corresponding sizes 4884×4884, 10974×
10974, 15439×15439, 23052×23052 and 30401×30401. The first four matrices arise from a structural
problem while the last one arises from a random problem (more details about them my be found at the
site Suite Sparse Matrix Collection). We can see, graphically, their sparsity structure of these matrices
using the command plt.spy:

Figure 2.3: Graph of bcsstk16 Figure 2.4: Graph of bcsstk17

https://sparse.tamu.edu/
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Figure 2.5: Graph of bcsstk25 Figure 2.6: Graph of bcsstk36

Figure 2.7: Graph of wathen100

Using the Python code A.2 we obtain the solution of the system Ax = b, where the right–hand side b is
the unit vector. The solution x and the time needed to find the solution of the system Ax = b by the code
A.2 are shown below:
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Figure 2.8: Results of run code A.2

We normalize the time using as unit time the required time for the matrix with the least number non zero
elements, that is the matrix labeled ‘bcsstk25’. The graph below shows the relation between time (in
seconds) and the number of non-zero elements.

Figure 2.9: Comparison plot between time (also normalized time) and non-zero elements





CHAPTER3

Stationary Iterative methods

There are several differences between direct and iterative methods for the solution of systems of linear
equations. Two of the main differences are detailed below: First, to obtain the solution of a system of
linear equations using a direct method means that we should perform a fixed amount of floating point
operations, depending only on the size of system matrix. For example, the LU factorization method
requiresO(n3) floating point operations, with n the number of equations. Moreover, in the case of a sparse
matrix the elementary row operations used in the LU factorization may introduce nonzero elements in
the system matrix. By contrast, if we use an iterative method, like Jacobi, then the matrix is not changed
and we can stop iterating when a sufficiently accurate solution has been obtained. Secondly, for a direct
method we need to store the entire matrix while with an iterative method, only matrix–vector products
are usually required

3.1 Stationary Iterative Methods

Suppose that we have the system Ax = b, where A ∈ Rn,n, b ∈ Rn and det(A) ̸= 0. Stationary Iterative
Methods to solve this system, start from an initial guess of the solution and compute approximations x(k)

for k = 1,2 . . ., using particular matrix splittings. The two best known Stationary Iterative Methods are
the Jacobi andGauss–Seidelmethods. Both of them require that the matrix has nonzero diagonal entries.
Observe that in this case, the system Ax = b may be written as

xi =
1
aii

(
bi −

i−1

∑
j=1

ai jx j −
n

∑
j=i+1

ai jx j

)
, i = 1, . . . ,n. (3.1)

3.1.1 A short description of Jacobi and Gauss-Seidel Methods

Jacobi’s Method is based on the following strategy: starting from a given initial guess of the solution,
x(0) ∈ Rn, and substituting it into the right side of the equation (3.1) we can find another approximation
x(1). Similarly, using the last approximationwe can find a, hopefully, better approximation to the solution.
This procedure stops when the error em = ∥x(m)− x∥ is small enough. Therefore, the equation (3.1) for
the (m+1)-st approximation is

x(m+1)
i :=

1
aii

(
bi −

i−1

∑
j=1

ai jx
(m)
j −

n

∑
j=i+1

ai jx
(m)
j

)
, i = 1, . . . ,n. (3.2)

17
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Formula (3.2) shows that x(m+1)
i depends only on the previous iterates x(m)

j , j = 1, . . . , i−1, i+1, . . . ,n,
hence the computation for every j can be computed in parallel, using n different compute units with the
same data, A,b,x(m).

Another approach for the estimation of x(m+1)
i is the Gauss-Seidel Method for which

x(m+1)
i :=

1
aii

(
bi −

i−1

∑
j=1

ai jx
(m+1)
j −

n

∑
j=i+1

ai jx
(m)
j

)
, i = 1, . . . ,n. (3.3)

Observe that the value of x(m+1)
i , except for xm

j , depends on x(m+1)
j which have already been computed.

At first glance, the Gauss-Seidel Method seems to approach faster the solution since x(m+1)
j comprises a

better approximation than x(m)
j , j = 1, . . . , i−1. However, there are systems for which Jacobi’s method

converges while Gauss-Seidel does not.

3.1.2 Matrix splittings for the Jacobi and the Gauss–Seidel methods

Suppose that

A =


a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n

a31 a32 a33 · · · a3n
...

...
... . . . ...

an1 an2 an3 · · · ann


and define the matrices D,L,U by

D =


a11

a22 0
a33

0 . . .
ann

 , L =


0

a21 0 0
a31 a32 0
...

... . . .
an1 an2 · · · an,n−1 0

 ,

U =


0 a12 a13 · · · a1n

0 a23 · · · a2n

0
...

0 . . . an−1,n
0


so the A = D+L+U . According to above definition of D,L and U , equations (3.2) and (3.3) may be
written as

Dx(m+1) = −(L+U)x(m)+b,

(L+D)x(m+1) = −Ux(m)+b,

respectively, or, equivalently

x(m+1) = −D−1(L+U)x(m)+D−1b, (3.4)
x(m+1) = −(L+U)−1Ux(m)+(L+U)−1b. (3.5)
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3.1.3 Convergence of iterative methods

We assume that x(m+1) is given by

Mx(m+1) = Nx(m)+b, A = M−N (3.6)
x(m+1) = M−1Nx(m)+M−1b, m ∈ N0 (3.7)

where M is an invertible matrix and N is such that A = M−N.

Remark: Observe that MJ = D, NJ =−(L+U) for Jacobi’s method, and MGS = L+D, NGS =−U for
Gauss-Seidel method.

Suppose now that the current approximation x(k) is the exact solution x, then x(k+1) should be also be the
exact solution. Therefore, by (3.7) it should be true that

x = M−1Nx+M−1b

⇒ Mx = Nx+b (3.8)
⇒ (M−N)x = b

Since A = M−N, it is obvious that if the sequence x(m) converges, its limit is the solution of the system
Ax = b. By subtracting (3.8) from (3.6), we get

x(m+1)− x = G(x(m)− x), m ∈ N0, (3.9)

where G is the so-called iteration matrix and is defined as

G = M−1N.

It is easy to see that if x(m)− x is the current error e(m) then from (3.9) we get

e(m) = Ge(m−1) = G(Ge(m−2)) = · · ·= Gme(0)

x(m) −x = Gm(x(0)− x) (3.10)

Suppose that ∥ · ∥ is an induced matrix norm. From the last equation we have

∥e(m)∥= ∥x(m)− x∥ ≤ ∥Gm∥∥x(0)− x∥= ∥Gm∥∥e(0)∥, m ∈ N0. (3.11)

There are initial vectors x(0), for all values of m, that satisfy the above with equality. Thus, we come to
the conclusion that the sequence (x(m))m∈N0 converges to x if and only if

lim
m→∞

Gm = 0 =⇒ lim
m→∞

∥Gm∥= 0, (3.12)

for every induced matrix norm. With the purpose of studying convergence, we will recall the following
definition of the spectral radius:

Definition 3.1. The spectral radius of a matrix P ∈ Cn,n is defined as

ρ(P) := max1≤i≤n|λi(P)|, (3.13)

where λi = λi(P) are the eigenvalues of P.

We have the following:

Lemma 3.1. Assume that ∥·∥ is a norm in Cn. Then, for every P ∈ Cn,n, it is true that

ρ(P)≤ ∥P∥. (3.14)

Conversely, for every P ∈ Cn,n and ε > 0, there is a norm ∥·∥ in Cn such that

∥P∥ ≤ ρ(P)+ ε. (3.15)
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Proof. We refer the reader to [11], section 3.9, for a proof.

Definition 3.2. We say that {Bk}∞
k=1 converges if and only if there is a matrix B ∈ Cm×n such that, for

every ε > 0 there exists an integer K > 0 such that, if k is any integer satisfying k ≥ K, then it follows
that

∥Bk −B∥max < ε,
where the norm ∥·∥may be any norm ofCm×n (because of the equivalence of norms). We write Bk −→ B.
We say that the square matrix A ∈ Cn×n is convergent to zero if and only if Ak −→ 0 ∈ Cn×n.

Considering last definition and using Lemma 3.1, it ia easy to prove the next result

Theorem 3.1. Let x be the solution of the system Ax = b. The following are equivalent:

(a) Iterative method (3.7) converges and this means that for every x(0) ∈ Cn ⇒ x(m) m→∞−−−→ x.

(b) ρ(G)< 1, where G the ireration matrix G = M−1N of (3.7).

(c) There is an induced matrix norm |||·||| such that |||G|||< 1.

(d) lim
m→∞

Gm = 0.

Proof. (a) =⇒ (b): From (a) we know that x(m) m−→∞−−−−→ x. According to 3.10

Gm(x(0)− x) m−→∞−−−−→ 0, x ∈ Cn. (3.16)

For any given y ∈ Cn, let x(0) = y+ x. Thus, the (3.16) can be written as

Gmy m−→∞−−−−→ 0, ∀y ∈ Cn. (3.17)

Suppose that λ is an eigenvalue of G and z its eigenvector. Then, Gmz = λ mz, m ∈ N0. However,
Gmz m→∞−−−→ 0, then for any norm ∥.∥ in Cn:

∥Gmz∥→ 0 ⇒ |λ |m∥z∥→ 0 ⇒ |λ |< 1 (3.18)

So, ρ(G) = maxi |λi(G)|< 1.

(b) =⇒ (c) : Suppose ρ(G) = max |λi(G)| < 1 and ε a positive number such that 0 < ε < 1− ρ(G).
According to lemma 3.1, there is an induced matrix norm |||·||| in Cn,n such that |||G||| ≤ ρ(G)+ ε < 1.

(c) =⇒ (d) : If |||G|||< 1, on the grounds that |||Gm|||= |||G ·G · · ·G||| ≤ |||G|||m, we have

|||Gm||| −→ 0 ⇐⇒ Gm m−→∞−−−−→ 0. (3.19)

(d) =⇒ (a) : If Gm m−→∞−−−−→ 0 for any norm ∥.∥ in Cn then, because of (3.10), we have

x(m) m−→∞−−−−→ 0 ∀x(0) ∈ Cn.

Most of the time, initial approximation x(0) is chosen arbitrarily. In order to terminate the iterative
method, it’s important to define a tolerance ε > 0 such that

∥x(N)− x(N−1)∥ ≤ ε (3.20)

As a consequence, we can prove that if the inequality (3.20) holds, then it’s true that

∥x− x(N)∥ ≤ εσ
1−σ

,

with σ = ∥G∥.
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Proposition 3.1. For any ε > 0, the inequality ∥x−x(N)∥≤ εσ
1−σ follows from ∥x(N)−x(N−1)∥≤ ε , where

∥G∥= σ < 1.

Proof. Let the function ϕ(x(N)) = x(N+1) = Gx(N) + M−1b, where x(N) is the N − th iteration of the
iterative method. We have the following inequality:

∥ϕ(x(N))−ϕ(x(N−1))∥ = ∥Gx(N)+M−1b−Gx(N−1)−M−1b∥
= ∥G(x(N)− x(N−1))∥
≤ ∥G∥∥x(N)− x(N−1)∥

We have also the relations:

∥x(2)− x(1)∥ = ∥ϕ(x(1))−ϕ(x(0))∥ ≤ ∥G∥∥x(1)− x(0)∥
∥x(3)− x(2)∥ = ∥ϕ(x(2))−ϕ(x(1))∥ ≤ ∥G∥∥x(2)− x(1)∥ ≤ ∥G∥2∥x(1)− x(0)∥

...
∥x(N+1)− x(N)∥ = ∥ϕ(x(N))−ϕ(x(N−1))∥ ≤ ·· · ≤ ∥G∥N∥x(1)− x(0)∥

So for k ∈ N

∥x(N+k)− x(N)∥ ≤ ∥x(N+k)− x(N+k−1)∥+∥x(N+k−1)− x(N)∥
≤ ∥x(N+k)− x(N+k−1)∥+∥x(N+k−1)− x(N+k−2)∥+∥x(N+k−2)− x(N)∥
≤ ·· ·
≤ ∥x(N+k)− x(N+k−1)∥+∥x(N+k−1)− x(N+k−2)∥+ · · ·+∥x(N+1)− x(N)∥
≤ ∥G∥N+k−1∥x(1)− x(0)∥+∥G∥N+k−2∥x(1)− x(0)∥+ · · ·+∥G∥N∥x(1)− x(0)∥

= σN(1+σ +σ2 + · · ·+σ k−1)∥x(1)− x(0)∥

= σN 1−σ k

1−σ
∥x(1)− x(0)∥

Therefore, the following inequality holds

∥x(N+k)− x(N)∥ ≤ σN

1−σ
∥x(1)− x(0)∥. (3.21)

Now define the continuous function g(x) := ∥x− x(N)∥. Because of continuity we have

∥x− x(N)∥= g(x) = g( lim
k→∞

xN+k) = lim
k→∞

g(x(N+k)) = lim
k→∞

∥x(N+k)− xN∥ ≤ σN

1−σ
∥x(1)− x(0)∥.

Define
y(0) = x(N−1) and y(1) = ϕ(y(0)) = ϕ(x(N−1)) = xN .

From (3.21) we have

∥y(1)− x∥ ≤ σ
1−σ

∥y(1)− y(0)∥= σ
1−σ

∥x(N)− x(N−1)∥ ≤ εσ
1−σ

.

Therefore,
∥x(N)− x∥ ≤ εσ

1−σ
which completes the proof.
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Considering the convergence criteria for the general stationary iterative method above, we must find
necessary conditions for the matrix A in order that either (b) or (c) of (3.1) are true. A particularly
useful is the so called diagonal dominance. We recall that a square matrix A is called strictly diagonally
dominant if

|αii|>
n

∑
j=1
j ̸=i

|αi j|, 1 ≤ i ≤ n, (3.22)

where we assume that αii ̸= 0, for all 1 ≤ i ≤ n.

Proposition 3.2. Let A be a strictly diagonally dominant matrix. Then

(i) A is invertible with nonzero elements in the main diagonal.

(ii) Iteration matrices GJ =−D−1(L+U), GGS =−(L+U)−1U of the methods Jacobi and Gauss-
Seidel, respectively, satisfy the inequalities ∥GJ∥∞ < 1, ∥GGS∥∞ < 1.

(iii) The Jacobi and Gauss-Seidel methods converge.

Proof. (i) : Let λ an eigenvalue of A and w ∈ Cn the corresponding eigenvector. Then, from Aw−λw,
we get:

n

∑
j=1

αi jw j = λwi, 1 ≤ i ≤ n,

that is
(αii −λ )wi =−

n

∑
j=1
j ̸=i

αi jw j, 1 ≤ i ≤ n.

As a result,

|αii −λ ||wi| ≤
n

∑
j=1
j ̸=i

|αi j||w j|, 1 ≤ i ≤ n. (3.23)

Let s, 1 ≤ s ≤ n, an index for which,
|ws|= max

1≤k≤n
|wk|.

Obviously, ws ̸= 0. From (3.23) with i = s, it follows that

|αss −λ | ≤
n

∑
j=1
j ̸=s

|αs j|
|w j|
|ws|

≤
n

∑
j=1
j ̸=s

|αs j|.

To sum up, we have shown that for every eigenvalue λ there is s, 1 ≤ s ≤ n, such that

|αss −λ | ≤
n

∑
j=1
j ̸=s

|αs j| (3.24)

This inequality is called Gerschgorin’s inequality. Thus, if there is a zero eigenvalue, then the inequality
(3.24) will provide a contradiction, because of (3.22). In conclusion the matrix A has only nonzero
eigenvalues, so it is invertible.
(ii) : DefineC as

C := max
1≤i≤n

1
|αii|

(3.25)

According to (3.22), C < 1. We will show that ∥GJ∥∞ ≤ C and ∥GGS∥∞ ≤ C. In the case of Jacobi’s
method, we have

∥GJ∥∞= ∥D−1(L+U)∥∞= max
1≤i≤n

n

∑
j=1
j ̸=i

|αi j|
|αii|

< max
1≤i≤n

|αii|
|αii|

= 1. (3.26)
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In the case of Gauss-Seidel method, we consider the vector u = GGSy, for y ∈ Rn, which satisfies

(L+U)u =−Uy

so that,

ui =
1

αii

{
−

i−1

∑
j=1

αi ju j −
n

∑
j=i+1

αi jy j

}
, i = 1, . . . ,n. (3.27)

We will prove by induction that
|ui| ≤C∥y∥∞, 1 ≤ i ≤ n. (3.28)

For i = 1

|u1|=
1

|α11|

∣∣∣ n

∑
j=2

α1 jy j

∣∣∣≤C∥y∥∞. (3.29)

Suppose now that the claim is true for 1, . . . , i−1. Then

|ui| ≤
1

|αii|

{ i−1

∑
j=1

|αi j||u j|+
n

∑
j=i+1

|αi j||y j|
}
≤ ∥y∥∞

1
|αii|

n

∑
j=1
j ̸=i

|αi j| ≤C∥y∥∞.

Thus, (3.28) holds for all 1 ≤ i ≤ n, and it may be written as

∀y ∈ Rn ∥u∥∞= ∥GGSy∥∞≤C∥y∥∞.

Therefore, we have the required estimate ∥GGS∥∞≤C ≤ 1, and so the proof of (ii) is completed.

Remark 3.1. For a symmetric and positive definite matrix A ∈Rn,n the Gauss-Seidel method converges,
while, in general, Jacobi’s method does not

With the purpose of finding a method which converges faster than either Jacobi or the Gauss–Seidel
method , speed-up techniques have been devised. One of these techniques is the Successive Over-
Relaxation (SOR) method which was invented along with the advent of other sparse system techniques.
Let x(m) be a known approximation of x and let x̃(m+1) be the approximation computed by the Gauss-
Seidel method. It is expected that the linear combination

x(m+1) = ω x̃(m+1)+(1−ω)x(m) (3.30)

will have smaller error than x̃(m+1) under specific assumptions and for appropriate values of the relaxation
parameter ω ̸= 0.

Consider the system Ax = b, where αii ̸= 0. For the SOR method we have

x(m+1)
i =

ω
αii

[
bi −

i−1

∑
j=1

αi jx
(m+1)
j −

n

∑
j=i

αi jx
(m)
j

]
+(1−ω)x(m)

i , 1 ≤ i ≤ n (3.31)

or in matrix form
(D+ωL)x(m+1) = [(1−ω)D−U ]x(m)+ωb. (3.32)

Obviously, the matrix (D+ωL) is invertible if αii ̸= 0 for all 1 ≤ i ≤ n. If ω = 1, then the SOR method
coincides with the Gauss-Seidel method. It can be proved that if A ∈ Rn,n is symmetric and positive
definite and 0 < ω < 2, then the SORmethod converges. A natural question arises: Are there any values
of ω ̸= 1 such that SOR converges faster than Gauss-Seidel method? The answer depends, of course, on
finding a parameterω which minimizes the spectral radius ρ(Gω) of the iteration matrixGω =M(−1)

ω Nω .
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3.2 Linear iterative schemes

As shown in previous section, Jacobi’s and Gauss-Seidel’s methods are expressed by iterative schemes.
That is to say, the estimation of xk+1 depends on known data like the matrix A, the xk and the vector b.
In general, iterative schemes are defined as follows:

Definition 3.3. Let A ∈ Cn×n with det(A) ̸= 0 and f ∈ Cn. An iterative scheme to find an approximate
solution to Ax = f is a process to generate a sequence of approximations {xk}∞

k=1 via an iteration of the
form

xk = ϕ(A, f ,xk−1, . . . ,xk−r), (3.33)

given the starting values x0, · · · ,xr−1 ∈ Cn. Here

ϕ(·, ·, · · · , ·) : Cn×n ×Cn ×·· ·×Cn −→ Cn (3.34)

is called the iteration function. In case of r = 1 the process is a two-layer scheme, otherwase it is a
multilayer scheme.

Definition 3.4. Let A ∈Cn×n with det(A) ̸= 0 and f ∈Cn. Set x = A−1 f . The two-layer iterative scheme

xk = ϕ(A, f ,xk−1), (3.35)

is said to be consistent if and only if x = ϕ(A, f ,x), i.e., x = A−1 f is a fixed point of ϕ(A, f , ·). The
scheme is linear if and only if

ϕ(A,α f1 +β f2,αx1 +βx2) = αϕ(A, f1,x1)+βϕ(A, f2,x2), (3.36)

∀α,β ∈ C and x1,x2 ∈ Cn.

Proposition 3.3. Let A ∈Cn×n with det(A) ̸= 0 and f ∈Cn. Any two-layer, linear, and consistent scheme
can be written in the form

xk+1 = xk +Cr(xk) = xk +C( f −Axk), (3.37)

for some matrix C ∈ Cn×n, where r(z) = f −Az is the residual vector.

Proof. A two layer scheme is defined by an iteration function

ϕ(·, ·, ·) : Cn×n ×Cn ×Cn −→ Cn.

Given ϕ , define the operator
Cz = ϕ(A,z,0).

This is a linear operator, due to the assumed linearity of the iteration function. Consequently, C can be
identified as a square matrix. It follows from this definition, using the consistency and linearity of ϕ ,
that

(In −CA)w = w−ϕ(A,Aw,0)
= ϕ(A,Aw,w)−ϕ(A,Aw,0)
= ϕ(A,0,w).

Furthermore by linearity, we can write

xk+1 = ϕ(A, f +0,0)+ϕ(A,0,xk)

= C f +(In −CA)xk

= xk +C( f −Axk),

as we intended to show.
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On the grounds that the equation (3.37) can be written as

C−1(xk+1 − xk)+Axk = f .

where C is invertible, we have the following definitions.

Definition 3.5. Let A ∈ Cn×n with det(A) ̸= 0 and f ∈ Cn. A scheme of the form

Bk+1(xk+1 − xk)+Axk = f , (3.38)

whereBk+1 ∈Cn×n is invertible is called an adaptive two-layer scheme. IfBk+1 =B, where B is invertible
and independent of k, then the scheme is called stationary two-layer scheme and the matrixB is called the
iterator. If Bk+1 =

1
αk+1

In, where αk+1 ∈ C∗, then we say that the adaptive two-layer scheme is explicit.

With regard to stationary two-layer schemes, we assume that B is invertible so that (3.38) becomes

xk+1 = xk +B−1( f −Axk). (3.39)

The last equality shows that if {xk} converges, then it must converge to x = A−1 f .

Definition 3.6. Let A ∈ Cn×n be invertible and f ∈ Cn. Suppose that x = A−1 f and consider the sta-
tionary two-layer scheme (3.39) defined by the invertible matrix B ∈Cn×n. The matrix T = In −B−1A is
called the error transfer matrix and satisfies

ek+1 = Tek,

where ek = x− xk is the error at step k.

Theorem 3.2. Let A ∈ Cn×n. The following are equivalent.

1. A is convergent to zero.

2. For some induced matrix norm
lim

k−→∞
∥Ak∥= 0.

3. For all induced matrix norms
lim

k−→∞
∥Ak∥= 0.

4. ρ(A)< 1.

5. For all x ∈ Cn,
lim

k−→∞
Akx = 0

Before proving the above theorem, we establish a useful inequality:

Proposition 3.4. For every matrix A ∈ Cn×n is true that

∥A∥max ≤ ∥A∥∞ ≤ n∥A∥∞

Proof. For a matrix A ∈ Cn×n, ∥ · ∥max and ∥ · ∥∞ norms define as

∥A∥max = max
1≤i, j≤n

|αi j|

and
∥A∥∞ = max

1≤i≤n

n

∑
j=1

|αi j|



26 CHAPTER 3. STATIONARY ITERATIVE METHODS

The left part of the inequality is obvious. We will prove the right part of the inequality.

∥A∥∞ = max
1≤i≤n

n

∑
j=1

|αi j| ≤ max
1≤i≤n

n

∑
j=1

max
1≤ j≤n

|αi j|= n max
1≤i, j≤n

|αi j|= n∥A∥∞,

which completes the proof.

Now we go back to proving the theorem:

Proof. 1 ⇒ 2 : Since A is convergent to zero, using (3.4),

1
n
∥Ak∥∞ ≤ ∥Ak∥max → 0.

Thus ∥Ak∥∞ → 0.

2 ⇒ 1 : Suppose that lim
k→∞

∥Ak∥= 0, for some inducedmatrix norm. Since all matrix norms are equivalent,

lim
k→∞

∥A∥∞ = 0.

Using (3.4),
∥Ak∥max ≤ ∥Ak∥∞ → 0.

Therefore, A is convergent to zero.

2 ⇒ 4 : From the Schur factorization theorem we have that A =UTUH , where T is upper triangular and
U is unitary. Then

Ak =UT kUH .

Also, it’s true that ρ(A) ≤ ∥A∥, for any induced matrix norm and if λ is an eigenvalue of A, then λ k is
an eigenvalue of Ak. Therefore,

0 ≤ ρk(A) = ρ(Ak)≤ ∥Ak∥.

Thus, if ∥Ak∥→ 0, it follows that
ρk(A)→ 0.

This implies ρ(A)< 1.

4 ⇒ 2 : By the lemma 3.1 there is an induced matrix norm ∥ · ∥⋆ such that

∥A∥⋆ ≤ ρ(A)+ ε,

for any ε > 0. Recall that the choice of ∥ ·∥⋆ depends upon A and ε > 0. Since, by assumption ρ(A)< 1,
there is an ε > 0 and an induced norm ∥ · ∥⋆, such that

∥Ak∥⋆ ≤ ρ(A)+ ε = θ < 1.

Then, using sub-multiplicativity,
∥Ak∥⋆ ≤ ∥A∥k

⋆ ≤ θ k → 0.

Consequently,
lim
k→∞

∥Ak∥⋆ = 0.

2 ⇒ 3 : This follows from the equivalence of norms. If convergence is observed in one induced norm, it
is observed in all induced norms.
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3 ⇒ 5 : Suppose that lim
k→∞

∥Ak∥= 0 for all induced matrix norms. Let x ∈ Cn be arbitrary. Then,

∥Akx∥∞ ≤ ∥Ak∥∞∥x∥∞ → 0

Since ∥Ak∥∞ → 0. Hence ∥Akx∥∞ → 0. This implies

lim
k→∞

Akx = 0.

5 ⇒ 1 : Suppose that, for any x ∈ Cn,
lim
k→∞

Akx = 0.

Then, it follows that, ∀x,y ∈ Cn,
yHAkx → 0.

Now, suppose y = ei and x = e j. Since

yHAkx = eH
i Ake j = [Ak]i, j,

then it follows that
lim
k→∞

[Ak]i, j = 0.

This implies that
lim
k→∞

∥Ak∥max = 0.

Hence, A is convergent to zero.

At this point it is useful to state a theorem about the convergence of linear schemes.

Theorem 3.3. Suppose that A,B ∈ Cn×n are invertible, f ,x0 ∈ Cn given and x = A−1 f .

1. The sequence {xk}∞
k=1 defined by the linear, two-layer, stationary iterative scheme (3.39) converges

to x for any starting point x0 iff ρ(T )< 1, where T is the error transfer matrix T = In −B−1A.

2. A sufficient condition for the convergence of {xk}∞
k=1 for any starting point x0 is the condition that

∥T∥< 1, for some induced matrix norm.

Proof. It’s true that
ek = Tek−1 = T 2ek−2 = · · ·= T ke0. (3.40)

Observe that
xk

k−→∞−−−→ x = A−1 f iff ek
k−→∞−−−→ 0

Suppose that xk −→ x = A−1 f , as k −→ ∞, for any x0. Then ek
k−→∞−−−→ 0 for any e0. Set e0 = w, where

(λ ,w) is any eigenpair of T, with ∥w∥∞ = 1. Then

ek = λ ke0,

and
|λ |k = |λ |k∥w∥∞ = ∥ek∥∞ → 0.

It follows that |λ |< 1. Since λ was arbitrary, ρ(T )< 1. If ρ(T )< 1, appealing to Theorem 3.2,

lim
k→∞

ek = lim
k→∞

T ke0 = 0,

for any e0. Hence, xk → x = A−1 f , as l → ∞, for any x0. Suppose now that ∥T∥ < 1 for some induced
matrix norm. Since, for any induced matrix norm,

ρ(T )≤ ∥T∥,
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it follows that ρ(T )< 1. Again, by Theorem 3.2,

lim
k→∞

ek = lim
k→∞

T ke0 = 0,

for any e0.

Theorem 3.4. Let A,B ∈Cn×n be invertible, x0, f ∈Cn and x = A−1 f . Let xk
∞
k=1 be the sequence gener-

ated by the linear, two-layer, stationary scheme (3.39). The following estimates hold

∥x− xk∥ ≤ ∥T∥k∥x− x0∥,

∥x− xk∥ ≤
∥T∥k

1−∥T∥
∥x1 − x0∥.

Proof. It follows that ek = T ke0. By using the consistency and sub-multiplicativity of the induced matrix
norm, we find

∥ek∥ ≤ ∥T k∥∥e0∥ ≤ ∥T∥k∥e0∥,

which proves the first estimate.
For the second one, observe that ek = T k−1e1, and thus Tek = T ke1. Substracting the last expression from
ek = T ke0, we find

(In −T )ek = T k(x1 − x0).

We have that ∥T∥< 1. Using the reverse triangle inequality for any x ∈ Cn,

∥(In −T )x∥ ≥ |∥x∥−∥T x∥| ≥ (1−∥T∥)∥x∥.

The inequality implies that, if (In −T )x = 0 then x = 0. Therefore, In −T is invertible.
To obtain the norm estimate, notice that

1 = ∥In∥= ∥(In −T )(In −T )−1∥= ∥(In −T )−1 −T (In −T )−1∥ ≥ ∥(In −T )−1∥−∥T∥∥(In −T )−1∥,

thus
∥(In −T )−1∥ ≤ 1

1−∥T∥
.

Hence,
ek = (In −T )−1T k(x1 − x0)

and using the consistency and sub-multiplicativity of the norm, we get

∥ek∥ ≤ ∥(In −T )−1∥∥T∥k∥x1 − x0∥ ≤
1

1−∥T∥
∥T∥k∥x1 − x0∥.

3.3 Matrix splitting methods

As we describe in subsection 3.1.2, a matrix A can be split as

A = L+D+U.

For a stationary two-layer method, if we choose B = D as iterator we would have the Jacobi method and
error transfer matrix

T = TJ = In −D−1A =−


0 a1,2

α1,1
· · · a1,n

α1,1
a2,1
α2,2

0 · · · a2,n
α2,2

...
... . . . ...

an,1
αn,n

· · · an,n−1
αn,n

0

 (3.41)
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Consider the system Ax = f . According to (3.2) and the matrix TJ , the estimating formula of x(k+1)
i can

be written in the form

x(k+1)
i =− 1

αi,i

n

∑
j ̸=i
j=1

αi, jxk
j +

1
αi,i

fi = [TJxk]i +[D−1 f ]i

In the same way, the Gauss-Seidel method defined by (3.3) with error transfer matrix

TGS =−(L+D)−1U =−(A−U)−1U. (3.42)

We prove a theorem which gives us an important conclusion about the relation between the convergence
of Jacobi method and the convergence of Gauss-Seidel method.

Theorem 3.5. Let A ∈ Cn×n be tridiagonal with non zero diagonal elements. Denote by TJ and TGS the
error transfer matrices of the Jacobi and Gauss-Seidel methods, respectively. Then we have

ρ(TGS) = ρ(TJ)
2.

In particular, one method converges iff the other method does.

Proof. Suppose that

A =



b1 c2 0 · · · 0

a2 b2
. . . . . . ...

0
. . . . . . cn−1 0

... . . . an−1 bn−1 cn

0 · · · 0 an bn


where bi ̸= 0, for all 1 ≤ i ≤ n. Let 0 ̸= µ ∈ C and define

M(µ) = DAD−1,

where D = diag[µ,µ2, · · · ,µn]. Then

M(µ) =



b1 µ−1c2 0 · · · 0

µa2 b2
. . . . . . ...

0
. . . . . . µ−1cn−1 0

... . . . µan−1 bn−1 µ−1cn

0 · · · 0 µan bn


It’s true that det(M(µ)) = det(M(1)) = det(A). Suppose the matrix Q(µ) = diag(µ,µ2, · · · ,µn) with
the property: Q(µ)Q−1(µ) = I and Q−1(µ) = Q(µ−1). In addition we have the equality

M(µ)Q(µ) = Q(µ)M(1) ⇒ Q−1M(µ)Q(µ) = M(1)

⇒ det(Q−1)det(M(µ))det(Q(µ)) = det(M(1))

⇒ det(M(µ)) = det(M(1)).

Let A = L+D+U where L,D,U define as usual. From (3.41) we have that TJ = In −D−1A. Therefore,
the eigenvalues of TJ are the zeros of the characteristic polynomial

pJ(λ ) = det(TJ −λ In)

= det(−D−1(L+U)−λ In)

= det[−D−1(L+U +λD)]

= det(−D−1)qJ(λ ),
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where we defined the polynomial

qJ(λ ) = det(L+λD+U).

On the other hand, form (3.42) we have that TGS =−(L+D)−1U, and so its eigenvalues are the zeros of

pGS(λ ) = det(TGS −λ In) = det(−(L+D)−1)qGS(λ ),

where
qGS(λ ) = det(λL+λD+U).

Notice now that 0 = qGS(0) = qJ(0). In addition, both matrices involved in the definitions of qJ and qGS,
respectively, are tridiagonal. By the previous statement about determinants of tridiagonal matrices we
have that, if λ ̸= 0,

qGS(λ 2) = det(λ 2L+λ 2D+U)

= λ ndet(λL+λD+λ−1U)

= λ ndet(L+λD+U)

= λ nqJ(λ )

and so this holds for all λ ∈ C. The previous reltion shows that

λ ∈ σ(TGS)⇒ λ
1
2 , −λ

1
2 ∈ σ(TJ)

and
(λ ∈ σ(TJ)⇐⇒−λ ∈ σ(TJ))⇒ λ 2 ∈ σ(TGS).

In previous section we referred to SOR method which define via (3.32). In this case the error transfer
matrix is given by

Tω = (L+ω−1D)−1((ω−1 −1)D−U)

and the iterator is
Bω = L+ω−1D.

It’s necessary to choose a valid value for ω to achieve convergence. A necessary condition for this is
given by the theorem below.

Theorem 3.6. Let A ∈ Cn×n have non zero diagonal entries. A necessary condition for convergence of
the relaxation method is that ω ∈ (0,2).

Proof. Since A ∈ Cn×n has non zero diagonal entries, the relaxation method is well defined. A neces-
sary and sufficient condition for convergence is ρ(Tω) < 1. Eigenvalues are roots of the characteristic
polynomial,

χT (λ ) = det(Tω −λ In) = (−1)n
n

∏
i=1

(λ −λi).

If λ = 0 then
χT (0) = det(Tω) =

n

∏
i=1

(λi).

However, if |det(Tω)| ≥ 1 then there must be at least one eigenvalue that satisfies |λi| ≥ 1, so the method
cannot converge. Thus,

|det(Tω)< 1.
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In previous sections we discussed the convergence properties of the Jacobi and Gauss–Seidel (GS)meth-
ods and we saw that GS converges faster than the Jacobi method. However, the results shown above
indicate that between these three methods, SOR is faster, given a suitable relaxation parameter ω .

In the example below we compare the convergence of GS and SOR methods for a specific matrix, the
48×48 matrix “bcsstk01” from the Suite Sparse Matrix Collection:

Example 3.3.1. Suppose the system Ax = b where A is the 48× 48 matrix and b is the unit vector. If
we try to approach the solution x with Jacobi’s method, then the result would be that the method did not
converges in 4000 iterations.
On the other hand, GS and SOR converge in less than 4000 iterations. Suppose that the relaxation
parameter is ω = 1.8, the number of max iterations is 4000 and estimate error is e = 10−4. Running the
code for GS and SOR methods we have the results below:

Figure 3.1: Results for GS and SOR methods

Observe that SOR converges faster with smaller residual error. This conclusion can be more obvious by
sketching the comparison plot between residual error and iteration as it shows below:

Figure 3.2: Comparison plot between residual error and iteration

http://sparse.tamu.edu/




CHAPTER4

Gradient methods and Krylov subspaces

4.1 Introductory concepts

Suppose we have the systemAx= f , whereA∈Cn×n is Hermitian positive definite (HPD). The following
theorem summarizes some ot the properties of HPD matrices.

Theorem 4.1. Suppose that A ∈ Cn×n is Hermitian positive definite. Then the following are true:

1. The expression
(x,y)A = (Ax,y)2 = yHAx, ∀x,y ∈ Cn, (4.1)

defines an inner product on Cn.

2. The object ∥x∥A =
√

xHAx, where x ∈ Cn, defines a norm on Cn.

3. Let the eigenvalues of A be ordered so that 0 < λ1 ≤ λ2 ≤ ·· · ≤ λn. Then√
λ1∥x∥2 ≤ ∥x∥A ≤

√
λn∥x∥2,

for any x ∈ Cn.

4. Let f ∈Cn be given. Then x=A−1 f if and only if x minimizes the quadratic functionalEA :Cn →R,
defined by

EA(z) =
1
2

zHAz−ℜ(zH f ).

Proof. We prove each assertion of the theorem separately:

1. For all x ∈ Cn, it’s true that
(x,x)A = (Ax,x)2 = xHAx > 0,

because A is HPD, which implies that xHAx > 0, ∀x ∈ Cn, x ̸= 0.
Now, for x,y ∈ Cn,

(x,y)A = (Ax,y)2 = yHAx = yHAHx = (Ay)Hx

= xHAy

= (Ay,x)2

= (y,x)A,

33
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which establishes the symmetry of the inner product.
Finally, for x,y,w ∈ Cn and any λ1,λ2 ∈ C, we have

(λ1x+λ2y,w)A = (A(λ1x+λ2y),w)2

= wHA(λ1x+λ2y)

= wHAλ1x+wHAλ2y

= λ1(Ax,w)2 +λ2(Ay,w)2

= λ1(x,w)A +λ2(y,w)A.

Thus, (4.1) defines an inner product on Cn.

2. Observe that
∥x∥2

A = (x,x)A.

The fact that (·, ·)A is an inner product implies the positivity of ∥ · ∥A and the fact that ∥λx∥A =
|λ |∥x∥A, for λ ∈ C and x ∈ Cn. We will prove the triangle inequailty, i.e. the inequality

∥x+ y∥A ≤ ∥x∥A +∥y∥A.

First of all, we going to prove Cauchy inequality for the above inner product by calculating the
inner product of the vector x−λy with itself.

(x−λy,x−λy)A = (x,x)A − (x,λy)A − (λy,x)A +(λy,λy)A

= (x,x)A −λ (x,y)A −λ (y,x)A + |λ |2(y,y)A

For λ = (x,y)A
(y,y)A

:

0 ≤ (x−λy,x−λy)A = (x,x)A −
(y,x)A

(y,y)A
(x,y)A −

(x,y)A

(y,y)A
(y,x)A +

|(x,y)A|2

|(y,y)A|2
(y,y)A

= (x,x)A −2
(x,y)A(y,x)A

(y,y)A
+

|(x,y)A|2

(y,y)A

= (x,x)A −
|(x,y)A|2

(y,y)A

from which it follows that

|(x,y)A|2 ≤ (x,x)A(y,y)A = ∥x∥2
A∥y∥2

A. (4.2)

From (4.2) it follows that

∥x+ y∥2
A = (x+ y,x+ y)A

= (x,x)A +(x,y)A +(y,x)A +(y,y)A (4.3)
= ∥x∥2

A +∥y∥2
A +(x,y)A +(y,x)A.

However,

(x,y)A = (Ax,y)2 = (Ax)Hy

= xHAHy

= xHAy

= (Ay,x)2

= (y,x)A
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Thus, using the symmetry of the inner prodcut (·, ·)A and the Cauchy–Schwarz inequality (4.2),
relation (4.3) becomes

∥x+ y∥2
A = ∥x∥2

A +∥y∥2
A +2(x,y)A

≤ ∥x∥2
A +∥y∥2

A +2∥x∥2
A∥y∥2

A = (∥x∥A +∥y∥A)
2

This establishes that ∥ · ∥A is a norm.

3. Suppose S = {w1, . . . ,wn} is an orthonormal basis ofCn consisting of eigenvectors of A (i.e. Awi =

λiwi and (wi,w j) = wH
i w j = 0 for i ̸= j). Let x ∈ Cn be arbitrary, and write x =

n
∑

i=1
ciwi, for some

for uniquely determined constants ci ∈ C, i = 1, . . . ,n. Then

∥x∥2
A = xHAx = xH

n

∑
i=1

Aciwi = xH
n

∑
i=1

ciλiwi

=
n

∑
i=1

ciλi(xHwi)

=
n

∑
i=1

ciλi(
n

∑
j=1

c jwH
j wi)

=
n

∑
i=1

ciλi(
n

∑
j=1

c jδi j)

=
n

∑
i=1

ciciλi

=
n

∑
i=1

|c|2λi (4.4)

≤ λn

n

∑
i=1

|c|2 = λn∥x∥2
2.

Thus, ∥x∥A ≤
√

λn∥x∥2. For the left part of inequality, it’s obvious that we can take the lower bound
of (4.4)

∥x∥2
A ≥ λ1

n

∑
i=1

|c|2 = λ1∥x∥2
2,

and we have the needed ∥x∥A ≥
√

λ1∥x∥2.

4. Suppose that x = A−1 f . Let y ∈ Cn be arbitrary and consider

EA(x+ y) =
1
2
(x+ y)HA(x+ y)−ℜ(xH f )−ℜ(yH f ) (4.5)

=
1
2

xHAx+
1
2

yHAy+
1
2

xHAy+
1
2

yHAx−ℜ(xH f )−ℜ(yH f ).

Note that ℜ(A) = 1
2(A + AH), so that ℜ(yHAx) = 1

2(y
HAx + (yHAx)H), and xHAy = xHAHy =

(Ax)Hy = (yHAx)H . Then

EA(x+ y) =
1
2

xHAx+
1
2

yHAy+
1
2
(yHAx+(yHAx)H)−ℜ(xH f )−ℜ(yH f )

=
1
2

xHAx+
1
2

yHAy+ℜ(yHAx)−ℜ(xH f )−ℜ(yH f )

= EA(x)+
1
2

yHAy+ℜ(yH(Ax− f ))

= EA(x)+
1
2

yHAy ≥ EA(x).
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The last inequality holds because A is HPD so that yHAy is non-negative. Equality holds if and
only if y = 0, therefore x minimizes EA.
Conversely, suppose that x minimizes the functional EA, let u ∈Cn be an arbitrary unit vector, and
define g(s, t) = EA(x+αu), where α = s+ it, s, t ∈ R. Then

g(s, t) =
1
2
(x+αu)HA(x+αu)−ℜ((x+αu)H f )

=
1
2

xHAx+
1
2

xHAau+
1
2

αuHAx+
1
2

αuHAau−ℜ(xH f )−ℜ(αuH f )

A simple calculation shows that (4.6) may be written as

g(s, t) =
1
2

xHAx+ℜ(αuHAx)+
|α|2

2
uHAu−ℜ(xH f )−ℜ(αuH f )

= EA(x)+ℜ(αuHAx)+
|α|2

2
uHAu−ℜ(αuH f )

= EA(x)+
|α|2

2
uHAu+ℜ(αuH(Ax− f ))

= EA(x)+
|α|2

2
uHAu+ℜ(α)ℜ(uH(Ax− f ))−ℑ(α)ℑ(uH(Ax− f ))

= EA(x)+ sℜ(uH(Ax− f ))+ tℑ(uH(Ax− f ))+
s2 + t2

2
uHAu.

Considering all the above, g is a strictly convex, quadratic function on R2. On the grounds that x
minimizes g, we conclude that g has minimum at (s, t) = (0,0). Hence,

0 =
∂g
∂ s

(0,0) = ℜ(uH(Ax− f )),

and
0 =

∂g
∂ t

(0,0) = ℑ(uH(Ax− f )),

where u is arbitrary. Therefore, it follows that Ax = f .

This concludes the proof of the the theorem.

In Theorem 4.1 we showed that an HPD matrix defines an inner product. The converse is also true and
this is established in the following proposition.

Proposition 4.1. Suppose that (·, ·) : Cn ×Cn → C is an inner product. There exists a unique HPD
matrix A ∈ Cn×n such that

(x,y) = (Ax,y)2 = (x,y)A, ∀x,y ∈ Cn.

Definition 4.1. Suppose that (·, ·) : Cn×Cn →C is an inner product and A ∈Cn×n is its associated HPD
matrix. We say that B ∈ Cn×n is self-adjoint with respect to this inner product if and only if

(x,By) = (x,By)A = (Bx,y)A = (Bx,y), ∀x,y ∈ Cn.

We say that B is self-adjoint positive definite with respect to this inner product if and only if B is self-
adjoint and satisfies

(x,Bx) = (x,Bx)A > 0, ∀x ∈ Cn
⋆.

We say that two vectors x,y ∈ Cn are A-orthogonal (or A-conjugate) if and only if

(x,y) = (x,y)A = 0.
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We say that a set S ⊂ Cn of non-zero vectors is called A-orthogonal (or A-conjugate) if and only if
whenever x,y ∈ S, and x ̸= y, then

(x,y) = (x,y)A = 0.

We say that S ⊂ Cn is A-orthonormal iff S is A-orthogonal and

∥x∥A = 1, ∀x ∈ S.

Theorem 4.2. Suppose that A ∈ Cn×n is HPD and B ∈ Cn×n is self-adjoint with respect to (·, ·)A. Then
all of the eigenvalues of B are real and there is an A-orthonormal basis of Cn consisting of eigenvectors
of B.

Before proving this theorem, we will state two useful propositions:

Lemma 1. Let A ∈Cn×n. Then there exist matricesU,D ∈Cn×n withU unitary and D upper triangular,
such that

A =UDUH .

Proposition 4.2. Let A ∈Cn×n be self-adjoint (Hermitian). Then σ(A)⊆R and there is a unitary matrix
U ∈ Cn×n such that

A =UDUH ,

where D = diag[λ1, · · · ,λn]. Furthermore, there exists an orthonormal basis B = {u1, · · · ,un} of eigen-
vectors of A for the space Cn, and Aui = λiui, i = 1, · · · ,n.

Now we return to the proof of Theorem 4.2

Proof. Consider the matrixC = LHBL−H , where L is the lower triangular matrix of the Cholesky decom-
position of the matrix A, so that A = LLH . We have LH = L−1A and L = AL−H . Since B is self-adjoint
with respect to (·, ·)A we have that BHA = AB. We will show thatC is a Hermitian matrix. Indeed,

C = LHBL−H = L−1ABL−H

= L−1BHAL−H

= L−1BHL

= CH .

Applying Proposition 4.2, matrixC is equal to

LHBL−H =C =UDU−1,

where U ∈ Cn×n and D is a diagonal matrix with entries D = diag[λ1, . . . ,λn]. Hence, B is similar to a
diagonal matrix with real entries

B = (L−HU)D(L−HU)−1.

Setting M = L−HU, we have
BM = MD

which implies that the columns of the invertible matrix M are eigenvectors of B.

Let us now show that the columns of M form an A-orthonormal set. The columns of M are eigenvectors
of B so we know that they are A-orthogonal. We have to establish that ∥x∥A = 1, for any eigenvector x
of B. First, we know that the matrix L is an unitary matrix, i.e. L−1 = LH . As a consequence, we have
that

M−1 = (L−HU)−1 =U−1LH =UHLH =UHL−1 = (L−HU)H = MH .

By definition, if the invertible matrix is unitary, then its columns form an orthonormal set. Moreover it
is true that

xH
i xi = xH

i LL−1xi = xH
i LLHxi = xH

i Axi = (xi,xi)A = ∥xi∥2
A = 1,

so the columns of M form an A–orthonormal set.
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4.2 Gradient descent methods

Gradient descent methods are frequently used for the minimization of nonlinear functions. The general
idea of the method is to proceed along a direction of descent, computing at each step an appropriate step
size. The difficulty, of course, lies in detemining the steps size. In that respect, we will make use of the
following definitions:

Definition 4.2. Suppose that A ∈Cn×n is HPD, f ∈Cn, and define the quadratic functional EA : Cn →R
via

EA(z) =
1
2

zHAz−ℜ(zH f ).

A gradient descent method is a two-layer iterative scheme to approximate x = A−1 f . Starting from an
arbitrary initial guess x0, the iterations proceed as

xk = xk−1 +αkdk−1, k = 1,2,3, . . . .

where dk−1 ∈Cn is the (k−1)-st search direction, supplied by the algorithm, and αk ∈R is the step size
given by the condition

αk = argmin
α∈C

EA(xk−1 +αdk−1),

which is called a line search.

The next theorem gives a formula to calculate αk at each iteration step:

Theorem 4.3. Suppose that A ∈Cn×n is HPD, f ∈Cn, and define the quadratic functional EA : Cn →R
via

EA(z) =
1
2

zHAz−ℜ(zH f ).

Suppose that the search direction dk−1 ∈Cn
⋆, and previous iterate xk−1 ∈Cn in a gradient descent method

are given, and define rk−1 = f −Axk−1. Then, the step size can be computed exactly via the formula

αk = argmin
α∈C

EA(xk−1 +αdk−1) =
dH

k−1rk−1

dH
k−1Adk−1

.

Proof. Let α = s+ it, where s, t ∈ R. Define the function

g(s, t) = EA(xk−1 +αdk−1)

=
1
2
(xk−1 +αdk−1)

HA(xk−1 +αdk−1)−ℜ((xk−1 +αdk−1)
H f )

=
1
2

xH
k−1Axk−1 +

α
2

xH
k−1Adk−1 +

α
2

dH
k−1Axk−1 +

|α|2

2
dH

k−1Adk−1 −ℜ((xk−1 +αdk−1)
H f )

= EA(xk−1)+
|α|2

2
dH

k−1Adk−1 +ℜ(αdH
k−1Axk−1)−ℜ(αdH

k−1 f )

= EA(xk−1)−ℜ(αdH
k−1rk−1)+

|α|2

2
dH

k−1Adk−1

= EA(xk−1)− sℜ(dH
k−1rk−1)− tℑ(dH

k−1rk−1)+
s2 + t2

2
dH

k−1Adk−1.

This is a strictly positive quadratic function of two variables. Setting the first derivatives equal to zero,
we find

0 =
∂g
∂ s

(sk, tk) =−ℜ(dH
k−1rk−1)+ skdH

k−1Adk−1,

0 =
∂g
∂ t

(sk, tk) =−ℑ(dH
k−1rk−1)+ tkdH

k−1Adk−1
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which implies that

αk = sk + itk =
dH

k−1rk−1

dH
k−1Adk−1

.

4.3 The steepest descent method

As we have seen in the previous section, the gradient descent method’s search direction is supplied by
the algorithm. For the steepest descent method we use as search direction the one given by the residual:

Definition 4.3. Suppose that A ∈ Cn×n is HPD, and f ∈ Cn. The steepest descent method is a gradient
descent method for which the search direction dk−1 is defined to be the residual,

dk−1 = rk−1 = f −Axk−1,

so that the step size is precisely

αk =
rH

k−1rk−1

rH
k−1Ark−1

.

If L ∈ Cn×n is an HPD matrix, the L-preconditioned steepest descent method is a gradient descent
method with search direction

dk−1 = L−1rk−1,

so that the step size is precisely

αk =
rH

k−1L−1rk−1

rH
k−1L−1AL−1rk−1

.

Proposition 4.3. Suppose that A ∈ Cn×n is HPD, and f ∈ Cn. Suppose that {xk}∞
k=1 is computed using

the steepest descent method with the starting vector x0. Then the sequence of residual vectors {rk}∞
k=1,

rk = f −Axk, has the property that

(rk,rk+1)2 = rH
k+1rk = 0,

for k = 0,1,2, . . ..

Proof.

(rk+1,rk)2 = rH
k rk+1 = rH

k ( f −Axk+1)

= rH
k ( f −A(xk +αk+1dk))

= rH
k ( f −Axk −αk+1Adk)

= rH
k (rk −αk+1Ark)

= rH
k (rk −

rH
k rk

rH
k Ark

Ark)

= rH
k rk −

rH
k rk

rH
k Ark

rH
k Ark

= rH
k rk − rH

k rk

= 0,

which completes the proof.

As a consequence of the last proposition it follows that search directions are pairwise orthogonal. For
the error in the steepest descent method we have:
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Theorem 4.4. Suppose that A ∈Cn×n is HPD, f ∈Cn, and x = A−1 f . Suppose that {xk}∞
k=1 is computed

using the steepest descent method with the starting value x0 ∈ Cn. Then the error ek = x− xk satisfies

∥ek+1∥2
A = γk∥ek∥2

A,

where
γk = 1−

(rH
k rk)

2

(rH
k rk)(rH

k A−1rk)
.

Proof. Suppose x = A−1 f . Then, x minimizes the quadratic functional EA : Cn → R defined by

EA(z) =
1
2

zHAz−ℜ(zH f ),

so that the following holds for any z ∈ Cn

EA(z) = EA(x)+
1
2
∥z− x∥2

A. (4.6)

We have that rk = f −Axk, and the step size is

αk+1 =
rH

k rk

rH
k Ark

.

Note that αk+1 = αk+1 and rH
k rk = (rH

k rk). We then conclude that

EA(xk+1) = EA(xk +αk+1rk) =
1
2
(xH

k +αk+1rH
k )A(xk +αk+1rk)−ℜ(xH

k f +αk+1rH
k f )

=
1
2

xH
k Axk +

1
2

αk+1xH
k Ark +

1
2

αk+1rH
k Axk +

1
2

α2
k+1rH

k Ark −ℜ(xH
k f )−ℜ(αk+1rH

k f )

= EA(xk)+
1
2

αk+1(xH
k Ark + rH

k Axk)+
1
2

α2
k+1rH

k Ark −αk+1ℜ(rH
k rk)−αk+1ℜ(rH

k Axk)

= EA(xk)+αk+1ℜ(rH
k Axk)+

1
2

α2
k+1rH

k Ark −αk+1rH
k rk −αk+1ℜ(rH

k Axk)

= EA(xk)+
1
2

α2
k+1rH

k Ark −αk+1rH
k rk

= EA(xk)+
1
2

αk+1
rH

k rk

rH
k Ark

rH
k Ark −αk+1rH

k rk

= EA(xk)−
1
2
(rH

k rk)
2

rH
k Ark

. (4.7)

Combining equations (4.6) and (4.7) we get

EA(xk+1) = EA(x)+
1
2
∥xk+1 − x∥2

A ⇒ ∥ek+1∥2
A = 2(EA(xk+1)−EA(x))

⇒ ∥ek+1∥2
A = 2(EA(xk)−

1
2
(rH

k rk)
2

rH
k Ark

−EA(x))

⇒ ∥ek+1∥2
A = 2(EA(xk)−EA(x))−

(rH
k rk)

2

rH
k Ark

⇒ ∥ek+1∥2
A = ∥ek∥2

A −
(rH

k rk)
2

rH
k Ark

. (4.8)

Since rk = Aek, we have

∥ek∥2
A = eH

k Aek

= eH
k rk

= rH
k A−1rk. (4.9)
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Thus, (4.8) becomes

∥ek+1∥2
A = ∥ek∥2

A

(
1−

(rH
k rk)

2

(rH
k Ark)∥ek∥2

A

)
= ∥ek∥2

A

(
1−

(rH
k rk)

2

(rH
k Ark)(rH

k A−1rk)

)
= γk∥ek∥2

A,

which finishes the proof.

Lemma 2. (Kantorovich Inequality). Let the matrix A ∈ Cn×n be HPD with spectrum σ(A) = {λi}n
i=1,

with 0 < λ1 ≤ λ2 ≤ ·· · ≤ λn, and spectral condition number

κ = κ2(A) =
λn

λ1
.

Then, for any x ∈ Cn
⋆,

(xHAx)(xHA−1x)
(xHx)2 ≤ 1

4
(
√

κ +
√

κ−1)2.

Proof. Define µ =
√

λ1λn. Then

κ− 1
2 =

√
λ1√
λn

=
λ1√
λ1λn

≤ λi

µ
≤ λn

µ
= κ

1
2 (4.10)

and

κ− 1
2 =

√
λ1√
λn

=

√
λ1λn

λn
≤ µ

λi
≤ µ

λ1
= κ

1
2 .

Therefore, for all i = 1, · · · ,n,

2κ− 1
2 ≤ λi

µ
+

µ
λi

≤ 2κ
1
2 .

Now observe that the function
f (x) = x+

1
x

is strictly decreasing on (0,1) and strictly increasing on (1,∞). Set x = λi
µ . Using (4.10), if

1 ≤ x =
λi

µ
≤ κ

1
2 ,

then
2 = f (1)≤ f

(
λi

µ

)
≤ f (κ

1
2 ).

This implies that

2 ≤ λi

µ
+

µ
λi

≤ κ
1
2 +κ− 1

2 .

On the other hand, if

κ− 1
2 ≤ x =

λ1

µ
≤ 1,

then
f (κ− 1

2 )≥ f
(

λi

µ

)
≥ f (1) = 2,
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which implies that

κ− 1
2 +κ

1
2 ≥ λi

µ
+

µ
λi

≥ 2.

Therefore, it’s true for every case that

2 ≤ λi

µ
+

µ
λi

≤ κ
1
2 +κ− 1

2 . (4.11)

Suppose that (λi,wi) is an eigenpair of A, where {wi}n
i=1 is an orthogonal basis for Cn. Then

(µ−1A+µA−1)wi =

(
λi

µ
+

µ
λi

)
wi.

Let x ∈ Cn
⋆ be arbitrary. There exist unique constants xi ∈ C such that

x =
n

∑
i=1

ciwi.

Then

1
µ

xHAx+µxHA−1x =
n

∑
i=1

n

∑
j=1

1
µ

cic jwH
i Aw j +µcic jwH

i A−1w j

=
n

∑
i=1

|ci|2
(

λi

µ
wH

i wi +
µ
λi

wH
i wi

)
=

n

∑
i=1

|ci|2
(

λi

µ
+

µ
λi

)
≤ (κ

1
2 +κ− 1

2 )∥x∥2
2.

From the inequality

|ab| ≤ 1
2
|a|2 + 1

2
|b|2,

for any a,b ∈ R, it follows that

ab ≤ |ab| ≤ 1
4
(|a|+ |b|)2.

Using the last inequality with

a =
1
µ

xHAx, b = µxHA−1x,

we obtain

(xHAx)(xHA−1x)≤ 1
4

(
1
µ

xHAx+µxHA−1x
)2

≤ 1
4

(
κ

1
2 +κ− 1

2

)2
(xHx)2,

from which the assertion of the lemma follows readily.

Theorem 4.5. Suppose that A ∈Cn×n is HPD, f ∈Cn, and x = A−1 f . Suppose that {xk}∞
k−1 is computed

using the steepest descent method with the starting value x0 ∈ Cn. Then the following estimate holds

∥ek∥A ≤
(

κ −1
κ +1

)k

∥e0∥A,

where κ = κ2(A).
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Proof. From Theorem 3.4 we have

∥ek∥2
A = γk−1∥ek−1∥2

A

= γk−1γk−2∥ek−2∥2
A

= · · ·
= γk−1γk−2 · · ·γ0∥e0 ∥2

A.

Using the Kantorovich inequality (2) for γk we observe that

γk = 1−
(rH

k rk)
2

(rH
k rk)(rH

k A−1rk)
≤ 1− 4

(κ− 1
2 +κ 1

2 )2
=

(
1√
κ +

√
κ
)2

−4(
1√
κ +

√
κ
)2

=
1
κ +2+κ −4(

1√
κ +

√
κ
)2

=

(√
κ − 1√

κ

)2

(√
κ + 1√

κ

)2

=

(
κ −1
κ +1

)2

.

So,

∥ek∥2
A ≤

(
κ −1
κ +1

)2k

∥e0∥2
A =⇒ ∥ek∥A ≤

(
κ −1
κ +1

)k

∥e0∥A.

Remark 4.1. We observe that, for large spectral condition number κ

κ −1
κ +1

≈ 1− 2
κ
.

In other words, the convergence rate deteriorates as κ → ∞.

4.4 The conjugate gradient method

Recall that finding the solution of Ax = f , where A ∈ Cn×n is Hermitian Positive Definite (HDP) and
f ∈ Cn is equivalent to minimizing the functional

EA(z) =
1
2

zHAz−ℜ(zH f ),

that is, finding
x = argmin

z∈C
EA(z).

A smarter way to solve this system is to minimize the functional over a sequence of increasing larger
subspaces of Cn.We begin with some necessary definitions.

Definition 4.4. Given A ∈ Cn×n and 0 ̸= q ∈ Cn, the Krylov subspace of degree m is

Km(A,q) = span{Akq|k = 0, · · · ,m−1}.
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Definition 4.5. Suppose thatA∈Cn×n is HPD, f ∈Cn
⋆, and x=A−1 f . The zero-start conjugate gradient

method is an iterative scheme for producing a sequence of approximations {xk}∞
k=1 from the starting point

0= x0 ∈Cn according to the following formula: setting Kk = Kk(A, f ), the k−th iterate is obtained by

xk = argmin
z∈Kk

EA(z). (4.12)

By construction, Km(A,q) ⊆ Km+1(A,q). Thus, we are minimizing over a non-decreasing family of
nested subspaces of Cn.

Remark 4.2. Someone may possibly wonder which is the most appropriate value for the starting vector
x0 such that the conjugate gradient method converges faster. Later we will see the importance of starting
the method with a non-zero starting vector x0.

Definition 4.6. Suppose that A∈Cn×n is HPD, f ∈Cn, x = A−1 f , andW is a subspace ofCn. The vector
xW ∈W is called the Galerkin approximation of x in W if and only if

(AxW ,w)2 = ( f ,w)2, ∀w ∈W. (4.13)

In the following theorem we prove the existence and uniqueness of the Galerkin approximation.

Theorem 4.6. Suppose thatA∈Cn×n is HPD, f ∈Cn, x=A−1 f ,andW is a subspace ofCn. TheGalerkin
approximation xW ∈W exists and is unique.

Proof. Let B = {w1, · · · ,wk} be an A-orthonormal basis for W, i.e.,

(wi,w j)A = (Awi,w j)2 = δi, j,

for all 1 ≤ i, j ≤ k ≤ n. Then (4.13) holds if and only if

(AxW ,wi)2 = ( f ,wi)2, i = 1, · · · ,k. (4.14)

Since B is a basis, there are unique constants c1, · · · ,ck ∈ C such that xW =
k
∑
j=1

c jw j. Plugging this into

(4.14) we get

(
k

∑
j=1

c jAw j,wi)2 = ( f ,wi)2

⇒
k

∑
j=1

c j(w j,wi)A = ( f ,wi)2

⇒ ci = ( f ,wi)2, i = 1, . . . ,k.

Thus ci, i = 1, · · · ,k exist and they are unique by definition.

The next property summarizes some important properties of the Galerkin approximations.

Proposition 4.4. Suppose that A ∈ Cn×n is HPD, f ∈ Cn,x = A−1 f , W is a subspace of Cn, and xW is
the Galerkin approximation to x in W.

1. The residual is orthogonal to W. That is, if r = f −AxW , we have

(r,w)2 = 0, ∀w ∈W.

2. Galerkin orthogonality: Define the error e = x− xW . Then we have

(Ae,w)2 = 0, ∀w ∈W.
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3. Optimality:
(Ae,e)2 ≤ (A(x−w),x−w)2, ∀w ∈W.

Proof. Since xW is the Galerkin approximation to x in W, it’s true that

(AxW ,w)2 = ( f ,w)2, ∀x ∈W.

1. According to the last observation we have that

(r,w)2 = ( f −AxW ,w)2

= ( f ,w)2 − (AxW ,w)2

= ( f ,w)2 − ( f ,w)2

= 0.

2. For the proof of the Galerkin orthogonality, we have that

(Ae,w)2 = (A(x− xW ),w)2

= (Ax,w)2 − (AxW ,w)2

= (Ax,w)2 − ( f ,w)2

= (Ax− f ,w)2

= 0.

3. Before proving the optimality of the Galerkin orthogonality, we need to recall some important
properties. Firstly, we know that ifW is a subspace of Cn then for every x,y ∈W it’s also true that
x− y ∈W . Secondly, the Cauchy-Schwarz inequality for the A-norm says that for any u,v ∈ Cn

|(u,v)A| ≤ ∥u∥A∥v∥A. (4.15)

So we have that
(Ae,x− y)2 = 0, ∀x,y ∈W.

Therefore,

∥e∥2
A = (Ae,e)2 = (Ae,x− xW )2

= (Ae,e)2

= (Ae,x− xW )2 +(Ae,xW −w)2

= (Ae,x− xW + xW −w)2

= (Ae,x−w)2

= (e,x−w)A ≤ ∥e∥A∥x−w∥A.

In the case of ∥e∥A = 0, the result is trivial, while in the case of ∥e∥A > 0, we have

∥e∥A ≤ ∥x−w∥A,

and the result follows.

Theorem 4.7. Suppose that A ∈ Cn×n is HPD, f ∈ Cn, and W is a subspace of Cn. Then, the following
are equivalent:
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1. The vector xW ∈W is a minimizer of EA over W:

xW = argmin
z∈W

EA(z).

2. The vector xW ∈W is a Galerkin approximation of x = A−1 f :

(AxW ,w)2 = ( f ,w)2, ∀w ∈W.

Theorem 4.8. Let A be HPD, f ∈ Cn
⋆, and x = A−1 f . We have that dimKm(A, f ) = m and, as a conse-

quence, the sequence {xk}∞
k=1, generated by the zero-start conjugate gradient method is such that there

is an integer m⋆ ∈ {1, · · · ,n} for which

xk ̸= x, k = 1, . . . ,m⋆−1, xk = x, k ≥ m⋆.

Proof. Let Km = Km(A, f ). Notice that dimKm ≤ m. We have to show that the equality dimKm = m
holds. We will proceed by induction. Set m = 1, · · · ,k and notice that, since f ̸= 0,

K1 = span{ f}⇒ dimK1 = 1.

Assume that for all m = 1, . . . ,k with k < n−1 we have dimKk = k and xk ̸= x. Therefore, the residual
rk = f −Axk ̸= 0. Observe that xk = argmin

z∈Kk

EA(z) and so xk ∈ Kk. So, Axk ∈ Kk+1 and the corollary to

this is that rk ∈ Kk+1. Now we have that xk ∈ Kk is a minimizer of EA over Kk, so using Theorem 4.7
we observe that

(rk,w)2 = ( f −Axk,w)2 = ( f ,w)2 − (Axk,w)2 = 0 ∀xk ∈ Kk.

Thus the residual rk must be orthogonal to Kk. The last equality above shows that rk ̸= 0 and by ex-
tension rk ∈ Kk+1\Kk. The last conclusion is only possible if dimKk+1 > dimKk. As a consequence
dimKk+1 = k+1.

Theorem 4.8 shows that the exact solution can be found in at most n steps. This can be expressed as an
iterative scheme for two reasons. First, we should avoid the case of a very large n and so the method
could stop after a specific number of iterations. Second, experience shows that rounding errors make the
calculation of the exact solution almost impossible.

We going to rephrase the conjugate gradient method in a more convenient equivalent form. As stated in
Definition 4.12, at step k we need to store k vectors of a basis of Kk(A, f ), as we need to minimize over
it. The theorem below shows that this action is not necessary.

Theorem 4.9. Suppose that A ∈ Cn×n is HPD, f ∈ Cn
⋆, and x = A−1 f . The sequence generated by the

zero-start conjugate gradient method, {xk}m⋆
k=1, is the same sequence as that generated by the following

recursive algorithm:

x0 = 0,r0 = f −Ax0 = f , p0 = r0 = f
for k = 0,1, · · · ,m⋆−1 do

if k ≥ 1 then
pk = rk −µk pk−1

µk =
(Ark,pk−1)2

(Apk−1,pk−1)2

end
xk+1 = xk +λk+1 pk

λk+1 =
(rk,pk)2
(Apk,pk)2

rk+1 = rk −λk+1Apk
end
if k = m⋆−1 then

pm⋆ = 0
end
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Clearly,
rm⋆ = 0 = pm⋆ .

In addition,
0 ̸= rk ∈ Kk+1\Kk, 0 ̸= pk ∈ Kk+1\Kk, k = 0, · · · ,m⋆−1,

and
(r j,ri)2 = (p j, pi)A = 0,

for all 0 ≤ j < i ≤ m⋆−1.

Proof. Suppose that the solution is obtained after m⋆− 1 iterations. We will prove the theorem by in-
duction on k. The cases for k ≤ 2 are clearly true. So we have the induction hypothesis that the formulae
and properties of the theorem are true for 0 ≤ k ≤ m− 1. Therefore, we are going to study the case of
k ≤ m ≤ m⋆−1.

Assume that {xk}m+1
k=1 is generated by the zero-start conjugate gradient algorithm. It’s true that xm ̸= x

and rm = f −Axm ̸= 0. In addition, xk+1 ∈ Kk+1 where xk+1 is given by (4.12). As we concluded in the
proof of Theorem 4.8, rm ∈ Km. Since xm is a Galerkin approximation to x, the Galerkin orthogonality
(4.7) shows that

0 = (Aem,y)2 = (A(x− xm),y)2 (4.16)
= (Ax,y)2 − (Axm,y)2 (4.17)
= ( f ,y)2 − (Axm,y)2 (4.18)
= ( f −Axm,y)2 (4.19)
= (rm,y)2, (4.20)

where y ∈ Km. So rm is orthogonal to an arbitrary component of Km, that is rm ∈ Km+1\Km. The
induction hypothesis guarantees that {r0, · · · ,rm−1} is an orthogonal set and a basis for Km. Also, the
Galerkin orthogonality implies that rm is orthogonal to this basis so {r0, · · · ,rm−1,rm} is an orthogonal
basis for Km+1.

Denote by K ⊥
m the orthogonal complement of Km in Km+1 in the A-inner product, that is,

K ⊥
m = {w ∈ Km+1 |(Aw,y)2 = 0,∀y ∈ Km}.

Observe that rm ∈K ⊥
m soK ⊥

m ̸= {0}. Notice thatKm+1 can be written as the direct sum of its subspaces
Km and K ⊥

m , i.e.

Km+1 = Km
⊥
⊕K ⊥

m .

From the properties of the direct sum, we have that

dim(Km+1) = dim(Km)+dim(K ⊥
m ).

Since dim(Km+1) = m + 1 and dim(Km) = m we conclude that dim(K ⊥
m ) = 1. Thus any element

ξm+1 ∈ Km+1 can be written as
ξm+1 = ξm +µ pm,

for some µ ∈ C, pm ∈ K ⊥
m ∩Cn

⋆, and ξm ∈ Km.

Now consider the element

w = xm +λm+1 pm, λm+1 =
(rm, pm)2

(Apm, pm)2
.

We observe the following:
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1. rm ∈ Km+1\Km, ξm ∈ Km so rm ⊥ ξm and (rm,ξm)2 = 0.

2. pm ∈ K ⊥
m so from the definition of K ⊥

m we have that (Apm,ξm)2 = 0 since ξm ∈ Km.

Then,

(Aw− f ,ξm+1)2 = (A(xm +λm+1 pm)− f ,ξm +µ pm)2

= (Axm − f ,ξm)2 +µ(Axm − f , pm)2 +λm+1(Apm,ξm)2 +µλm+1(Apm, pm)2

= −(rm,ξm)2 −µ[(rm, pm)2 −λm+1(Apm, pm)2]

= −µ[(rm, pm)2 −λm+1(Apm, pm)2]

= −µ [(rm, pm)2 −
(rm, pm)2

(Apm, pm)2
(Apm, pm)2]

= 0.

Therefore,
(Aw− f ,ξm+1)2 = 0, ∀ξm+1 ∈ Km+1.

But xm+1 ∈Km+1 is the unique element that has this property in the last equation. Therefore,w= xm+1. In
other words, xm+1 ∈ Km+1 is the Galerkin approximation defining the (m+1)-st iterate in the zero-start
conjugate gradient algorithm if and only if

xm+1 = xm +λm+1 pm, λm+1 =
(rm, pm)2

(Apm, pm)2
.

From the last equation we can compute the (m+1)-st residual:

rm+1 = f −Axm+1

= f −Axm −λm+1Apm

= rm −λm+1Apm

By the induction hypothesis, {p0, · · · , pm−1} is an A-orthogonal set and, hence, it forms a basis for Km.
Since rm ∈ Km+1 has a component in K ⊥

m , its A-orthogonal projection, q, into K ⊥
m is non-zero:

q = rm −
m−1

∑
i=0

(Arm, pi)2

(Api, pi)2
pi = rm −

m−1

∑
i=0

(rm, pi)A

(pi, pi)A
pi. (4.21)

But for 0 ≤ i ≤ m−2 we have Api ∈ Km so (Api,rm)2 = 0. Thus, equation (4.21) becomes

q = rm − (Arm, pm−1)2

(Apm−1, pm−1)2
pm−1 ∈ K ⊥

m .

Taking

pm = q = rm − (Arm, pm−1)2

(Apm−1, pm−1)2
pm−1 ∈ K ⊥

m ,

it follows that {p0, · · · , pm−1, pm} is an A-orthogonal set.

Considering all of the above, we may consider asking how to choose between a direct method (Cholesky
factorization) and an iterative method (Conjugate Gradient) when we have a large sparse matrix? Some
answers arise from the following example.

Example 4.4.1. Suppose the system Ax = b, where A is a symmetric positive definite matrix. First we
are going to solve it using the Cholesky Factorization method and then using the Conjugate Gradient
method. We use the matrices “bcsstk01” and “bcsstk16”. The next table sums up the results.
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Table 4.1: Results for bcsstk01

Choleksy Factorization Conjugate Gradient method
Convergence True True

Time 0.0003273 0.0041463
Residual error 5.658646e-13 6.573808e-05

Table 4.2: Results for bcsstk16

Choleksy Factorization Conjugate Gradient method
Convergence True True

Time 0.1650811 0.1376722
Residual error 3.774699e-12 0.000628

Observe that the Cholesky Factorization converges to a solution with a residual error less than 10−4

while the Conjugate Gradient method has a bigger residual error.

Corollary 4.1. Suppose that A ∈ Cn×n is HPD, f ∈ Cn
⋆ and x = A−1 f . The sequence generated by the

zero-start conjugate gradient method, {xk}m⋆
k=1 has the following property for all k ∈ {1, · · · ,m⋆},

xk ∈ Kk\Kk−1.

This implies that
⟨x1, · · · ,xk⟩= Kk.

Corollary 4.2. Suppose that A∈Cn×n is HPD, f ∈Cn
⋆ and x=A−1 f . If the zero-start conjugate gradient

(CG) algorithm is employed to produce the approximation sequence {x j}m⋆
j=1, then, for all 1 ≤ i ≤ m⋆

Ki(A, f ) = ⟨ f ,A f , · · · ,Ai−1 f ⟩ (4.22)
= ⟨x1, · · · ,xi⟩ (4.23)
= ⟨p0, · · · , pi−1⟩ (4.24)
= ⟨r0, · · · ,ri−1⟩ (4.25)

Theorem 4.10. For A ∈ Cn×n HPD, f ∈ Cn
⋆ given and x = A−1 f , let {xi}m

i=0 for m ∈ {1, · · · ,n} denote
any sequence of vectors with x0 = 0 that satisfies:

K j = K j( f ,A) = ⟨ f ,A f , · · · ,A j−1 f ⟩= ⟨x1, · · · ,x j⟩= ⟨r0, · · · ,r j−1⟩, r j−1 ̸= 0

for all j = 1, . . . ,n, with orthogonality relations:

rH
k rl = 0 ∀ 0 ≤ k < l ≤ m. (4.26)

Then the jth iterate x j is the unique vector in K j that minimizes the error function ϕ(y) = ∥x− y∥A.
Furthermore, ϕ is monotonically decreasing:

∥e j∥A = ∥x− x j∥A = ϕ(x j)≤ ϕ(x j−1) = ∥x− x j−1∥A = ∥e j−1∥A
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Proof. Let z ∈ K j be arbitrary. Define w = x j − z ∈ Ki, then:

ϕ 2(z) = ∥x− z∥2
A = ∥x− x j + x j − z∥2

A = ∥e j +w∥2
A = (e j +w)HA(e j +w)

= ∥e j∥2
A +wHAe j + eH

j Aw+∥w∥2
A

= ∥e j∥2
A +wHr j +(Ae j)

Hw+∥w∥2
A

= ∥e j∥2
A +wHr j + rH

j w+∥w∥2
A

= ∥e j∥2
A +2ℜ(wHr j)+∥w∥2

A,

where r j = f −Ax j = Ax−Ax j = Ae j. Since w ∈K j = ⟨r0, · · · ,r j−1⟩, there exists unique α0, · · · ,α j−1 ∈
C such that

w =
j−1

∑
i=0

αiri.

So

wHr j =
j−1

∑
i=0

αirH
i r j

and the fact that rH
k rl = 0 ∀ 0 ≤ k < l ≤ m follows from wHr j = 0. Hence

ϕ 2(z) = ∥e j∥2
A +∥w∥2

A ≥ ∥e j∥2
A.

The equality holds for w = 0, so z = x j. Hence x j ia the unique minimizer of ϕ over K j.
Since K j−1( f ,A)⊆ K j( f ,A) we have the result

∥e j∥A = ϕ(x j) = inf{ϕ(z)|z ∈ K j( f ,A)} ≤ inf{ϕ(z)|z ∈ K j−1( f ,A)}= ϕ(x j−1) = ∥e j−1∥A

Theorem 4.11. Suppose that the zero-start conjugate gradient method is applied to solve Ax = f , where
A ∈ Cn×n is HPD and f ∈ Cn

⋆. Then, if the iteration has not already converged (ri−1 ̸= 0), then there is
a unique polynomial

pi ∈ P⋆
i = {p ∈ Pi | p(0) = 1}

that minimizes ∥p(A)e0∥A over all p ∈ P⋆
i . The iterate xi has the error ei = pi(A)e0 and consequently,

∥ei∥A

∥e0∥A
≤ inf

p∈P⋆
i

max
λ∈σ(A)

|p(λ )| (4.27)

Proof. We have
EA(z) =

1
2

zHAz−ℜ(zH f ) =
1
2
∥z∥2

A −
1
2
(zH f + f Hz)

and
1
2
∥z− x∥2

A −
1
2

f HA−1 f =
1
2
(z− x)HA(z− x)− 1

2
f HA−1 f

=
1
2

zHAz− 1
2

zHAx− 1
2

xHAz+
1
2

xHAx− 1
2

f HA−1 f

=
1
2

zHAz−ℜ(zH f )+
1
2
∥x∥2

A −
1
2

f HA−1 f

=
1
2

zHAz−ℜ(zH f )+
1
2
∥A−1 f∥2

A −
1
2

f HA−1 f

=
1
2
∥z∥2

A −ℜ(zH f )+
1
2

f HA−1AA−1 f − 1
2

f HA−1 f

=
1
2
∥z∥2

A −ℜ(zH f )

= EA(z).
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Therefore, by the definition of the zero-start CG method, we have

xi = argmin
z∈Ki

∥x− z∥A min
z∈Ki

∥x− z∥A = ∥x− xi∥A = ∥ei∥A

= argmin
z∈Ki

EA(z)

= argmin
z∈Ki

1
2
∥z− x∥2

A −
1
2

f HA−1 f .

Since x0 = 0 we have e0 = x and consequently, r0 = f −Ax0 = f . For any z ∈ Ki, there are constants
c j ∈ C, 1 ≤ j ≤ i such that:

z =
i

∑
j=1

(−c j)A j−1 f ⇒ x− z = x+
i

∑
j=1

(−c j)A j−1 f .

It follows that,

x− z = e0 +
i

∑
j=1

(−c j)A j−1r0

= e0 +
i

∑
j=1

(−c j)A jA−1r0

= e0[I +
i

∑
j=1

c jA j]

= e0 p(A),

where

p(x) = 1+
i

∑
j=1

c jx j ∈ P⋆
i = {p ∈ Pi : p(0) = 1}. (4.28)

It follows that the minimization problem is equivalent to minimize the above polynomial, i.e. is equiva-
lent to

pi = argmin
p∈P⋆

i

∥p(A)e0∥A min
p∈P⋆

ℶ

∥p(A)e0∥A = min
z∈Ki

∥x− z∥A = ∥ei∥A

Therefore,
∥ei∥A = inf

p∈P⋆
i

∥p(A)e0∥A ≤ inf
p∈P⋆

i

∥p(A)∥A∥e0∥A

which implies that
∥ei∥A

∥e0∥A
≤ inf

p∈P⋆
i

∥p(A)∥A. (4.29)

Suppose that z ∈ Cn
⋆ and let {w1, . . . ,wn} be an orthonormal eigenbasis of A. Let σ(A) = {λ1, · · · ,λn}

denote the set of eigenvalues of A with

Aw j = λ jw j, j = 1, . . . ,n

Thus, z can be expressed as

z =
n

∑
j=1

α jw j,

for some constants α j ∈ C, j = 1, · · · ,n. Observe that

Az =
n

∑
j=1

α jAw j =
n

∑
j=1

α jλ jw j
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and (w j,wi)2 = 0 ∀i ̸= j. Therefore

∥z∥2
A = zHAz =

n

∑
j=1

α jwH
j α jλ jw j =

n

∑
j=1

|α j|2λ j. (4.30)

From (4.28) we claim that

p(A)w j = w j +
i

∑
k=1

ckAkw j = w j +
i

∑
k=1

ckλ k
j w j

p(λ j)w j = w j +
i

∑
k=1

ckλ k
j w j

In the same way as in (4.30) we have

∥p(A)z∥2
A = zH p(A)HAp(A)z

=
n

∑
j=1

α jwH
j p(A)HAp(A)α jw j

=
n

∑
j=1

|α j|2 p(λ j)
HwH

j Ap(λ j)w j

=
n

∑
j=1

|α j|2|p(λ j)|2wH
j Aw j

=
n

∑
j=1

|α j|2|p(λ j)|2λ j.

The last equation divided by ∥z∥2
A becomes,

∥p(A)z∥2
A

∥z∥2
A

=

n
∑
j=1

|α j|2|p(λ j)|2λ j

n
∑
j=1

|α j|2λ j

≤ max
λ∈σ(A)

|p(λ )|2.

In conclusion
∥p(A)∥A ≤ max

λ∈σ(A)
|p(λ )| (4.31)

Combining (4.31) and (4.29) we have the desired result

∥ei∥A

∥e0∥A
≤ inf

p∈P⋆
i

∥p(A)∥A ≤ inf
p∈P⋆

i

max
λ∈σ(A)

|p(λ )|.

The next theorem is required to define the well-known Chebyshev Polynomials. For this reason, we are
going to give a summary of Chebyshev Polynomials referring to the definition as well as some results
about them.

Definition 4.7. Let x ∈ [−1,1] and x = cos(θ). The polynomial

Tk(x) = cos(kθ), k ∈ N0 (4.32)

is called the Chebyshev Polynomial of degree k. In the case of |x|> 1, the polynomial is

Tk(x) = cosh(kθ), k ∈ N0 (4.33)

where x = cosh(θ).
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Proposition 4.5. The Chebyshev polynomials satisfy the following three-term recurrence relation

Tn+1 = 2xTn(x)−Tn−1(x), n = 1,2, . . . ,

with T0(x) = 1 and T1(x) = x ∀x ∈ [−1,1]. In addition Tk(1) = 1 and Tk(−1) = (−1)k.

Proof. Consider the trigonometric formula

cos((n±1)θ) = cos(nθ)cos(θ)∓ sin(nθ)sin(θ).

Then

Tn+1(x)+Tn−1(x) = cos[(n+1)θ ]+ cos[(n−1)θ ]
= cosnθ cosθ − sinnθ sinθ + cosnθ cosθ + sinnθ sinθ
= 2cosnθ cosθ
= 2cosθTn(x)

= 2xTn(x).

Now, we have x = cosθ ⇒ θ = cos−1(x) so, for x ∈ [−1,1]⇒ θ ∈ [0,π] and the following relations hold

Tk(x) = cos(k cos−1(x)),

Tk(1) = cos(k cos−1(1)) = cos(k2nπ) = 1, n ∈ Z,
Tk(−1) = cos(k cos−1(−1)) = cos(k(2n+1)π) = (−1)k ∈ Z.

This completes the proof.

Definition 4.8. Let f ∈ C0([a,b],R) be given and n ∈ N0 := N∪{0} be fixed. The polynomial p ∈ Pn

is the best polynomial approximation of f in L∞([a,b]) norm or a minmax polynomial if and only if

∥ f − p∥∞ = inf
q∈Pn

∥ f −q∥∞ (4.34)

Definition 4.9. Let f (x) ∈C[a,b]. Then,

1. x ∈ [a,b] is called a (+)-point for f (x) if f (x) = ∥ f∥∞

2. x ∈ [a,b] is called a (−)-point for f (x) if f (x) =−∥ f∥∞

3. A set of distinct points a ≤ x0 < x1 < · · · < xn ≤ b is called an alternating set for f (x) if the xi’s
are alternately (+)-points and (−)-points, that is, if | f (xi)|= ∥ f∥∞ and f (xi) =− f (xi−1) for all
i = 1, . . . ,n.

Now we are able to state and prove the following theorem:

Theorem 4.12. For any n ≤ 1, the formula p(x) = xn − 2−n+1Tn(x) defines a polynomial p ∈ Pn−1
satisfying

2−n+1 = max
|x|≤1

|xn − p(x)|< max
|x|≤1

|xn −q(x)|, (4.35)

for any other q ∈ Pn−1, i.e. p(x) is the minmax polynomial for f (x) = xn.

Proof. The definition of minmax polynomial implies that

∥ f − p∥∞ = inf
q∈Pn

∥ f −q∥∞, q ∈ Pn,

that is
max
|x|≤1

|xn − p(x)|= ∥ f − p∥∞ = ∥2−n+1Tn(x)∥∞ ≤ 21−n∥Tn(x)∥∞ = 21−n.
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Thus, if we show that 21−n < max
|x|≤1

|xn−q(x)| for any other q ∈ Pn−1, then p(x) is the minmax polynomial

of f . Suppose p is the minmax polynomial of xn. If q is another minmax polynomial of xn then,

|xn −q|> |xn − p| ⇒ max
|x|≤1

|xn − p|< max
|x|≤1

|xn −q|

We have that the coefficient of xn in the expression 2−n+1Tn(x) is 1 because of the following:

T0(x) = 1

T1(x) = x

T2(x) = 2xT1(x)−T0(x) = 2x2 −1

T3(x) = 2xT2(x)−T1(x) = 22x3 −3x

T4(x) = 2xT3(x)−T2(x) = 23x4 −8x2 +1
...

Tn(x) = 2xTn−1 −Tn−2(x) = 2n−1xn −·· ·

Therefore,
21−nTn(x) = 21−n2n−1xn −·· ·

and
p(x) = xn −21−nTn(x) ∈ Pn−1.

Setting xk = cos((n− k)π
n ) for k = 0,1, . . . ,n. Then −1 = x0 < x1 < · · ·< xn = 1 and

Tn(x) = Tn(cos[(n− k)
π
n
])

= cos(n(n− k)
π
n
)

= cos((n− k)π)
= (−1)n−k.

Also we have that

|Tn(x)|= |Tn(cosθ)|= |cos(nθ)| ≤ 1, for −1 ≤ x ≤ 1.

From the Definition 4.9, observe that x0 < · · · < xn is an alternating set containing n+ 1 points. Thus,
using the next theorem, p must be the best approximation to xn out of Pn−2.

Theorem 4.13. Let f ∈C[a,b] and let p ∈ Pn. If f − p has an alternating set containing n+2 (or more)
points, then p is the best approximation to f out of Pn.

Proof. Let x0,x1, . . . ,xn+1 be an alternating set for f − p, and suppose that some q ∈ Pn is a better ap-
proximation to f than p, that is, ∥ f −q∥< ∥ f − p∥. In particular, we must have

| f (xi)− p(xi)|= ∥ f − p∥> ∥ f −q∥= | f (xi)−q(xi)|,

for i = 0, . . . ,n+1. The inequality | f − p|> | f −q| implies that q− p has the same sign as f − p. So,

q− p = ( f − p)− ( f −q)

alternates in sign n+2 times (because f − p does). Thus, q− p would have at least n+1 zeros. However
since q− p ∈ Pn, we must have q = p which is a contradiction. So p is the best approximation to f out
of Pn.
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Theorem 4.14. Among all polynomials in Pn, n ≥ 1 whose leading coefficient is 1, the polynomial

p(x) = 21−nTn(x)

is the one with the smallest L∞ norm.

Proof. Any polynomial e ∈ Pn whose leading coefficient is 1, can be written as the difference between
f (x) = xn and a polynomial q ∈ Pn−1. By the previous theorem

min
q∈Pn

∥ f −q∥∞ = ∥21−nTn∥∞.

Therefore among all polynomials in Pn whose leading coefficient is 1, the polynomial p(x) = 21−nTn(x)
has the smallest deviation from zero.

Theorem 4.15. LetA∈Cn×n be HPD and f ∈Cn
⋆. The error for the zero-start conjugate gradient method

satisfies

∥ek∥A ≤ 2

(√
k2(A)−1√
k2(A)+1

)k

∥e0∥A

Proof. Suppose that σ(A) = {λ1, . . . ,λn}, 0 ≤ λ1 ≤ ·· · ≤ λn. From a previous theorem

∥ek∥A ≤ max
λ∈[λ1,λn]

|qk(λ )|∥e0∥A, (4.36)

where qk is a polynomial of degree at most k, such that qk(0) = 1. Since this polynomial is arbitrary, we
set

qk(t) =
1

Tk (1/p)
Tk

(
1
p

(
1− 2

λ1 +λn
t
))

,

where p = λn−λ1
λn+λ1

and Tk(x) is the Chebyshev polynomial. We obtain the bound

max
λ∈[λ1,λn]

|qk(λ )| = max
λ∈[λ1,λn]

∣∣∣ 1
Tk(1/p)Tk

(
1
p

(
1− 2

λ1+λn
λ
))∣∣∣

≤
∣∣∣ 1

Tk(1/p)

∣∣∣ max
λ∈[λ1,λn]

∣∣∣Tk

(
1
p

(
1− 2

λ1+λn
λ
))∣∣∣

≤
∣∣∣ 1

Tk(1/p)

∣∣∣ ∣∣∣Tk

(
1
p

(
λ1+λn−2λ1

λ1+λn

))∣∣∣
≤

∣∣∣ 1
Tk(1/p)

∣∣∣ |(−1)k|.

Since p < 1 ⇒ 1
p > 1, so we set 1

p = coshσ ⇒ σ = cosh−1
(

1
p

)
. As a consequence,

Tk (1/p) = cosh(kσ) =
1
2
(ekσ + e−kσ )≥ 1

2
ekσ .

It holds that

σ = cosh−1 (1/p) ⇒ coshσ =
1
p

⇒ 1
p
=

e2σ +1
2eσ

⇒ pe2σ −2eσ + p = 0.

Defining ω = eσ , we have

ω =
1
p
+

√
1− p2

p
.
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Therefore,

σ = ln

(
1
p
+

√
1
p2 −1

)
,

and

ekσ =

(
1
p
(1+

√
1− p2)

)k

.

Observe that
p =

λn −λ1

λn +λ1
=

λn/λ1 −1
λn/λ1 +1

=
κ2(A)−1
κ2(A)+1

.

Finally, according (4.4), we have the inequality

1
Tk(1/p)

≤ 2(e−σ )k = 2

(
p

1+
√

1− p2

)k

= 2

(
κ2(A)−1

(
√

κ2(A)+1)2

)k

= 2

(
(
√

κ2(A)−1)(
√

κ2(A)+1)

(
√

κ2(A)+1)2

)k

= 2

(
(
√

κ2(A)−1)

(
√

κ2(A)+1)

)k

.

The desired inequality follows from the last relation and (4.36)

∥ek∥A ≤ 1
Tk(1/p)

∥e0∥A ≤ 2

(
(
√

κ2(A)−1)

(
√

κ2(A)+1)

)k

∥e0∥A.

4.4.1 Non-zero starting values

In general, we can think of the case of non-zero starting values as a variation of CG method with zero
starting values. By a transformation of problem’s data we obtain an equivalent problemwith zero-starting
values and hence the previous technique can be applied.

Definition 4.10. Suppose that A ∈Cn×n is HPD, f ∈Cn
⋆ and x = A−1 f . The conjugate gradient method

is an iterative scheme for producing a sequence of approximations {xk]
∞
k=1 where

xk = x′k + x0, x′k = argmin
z∈Kk

EA(z+ x0), (4.37)

where Kk = Kk(A,r0) with r0 = f −Ax0 and starting point x0 ∈ Cn.

Proposition 4.6. Suppose that A ∈ Cn×n is HPD, f ∈ Cn
⋆, x = A−1 f , x0 ∈ Cn and set

x′ = x− x0, r0 = f −Ax0.

The sequence {x′k]
∞
k=1 generated by the zero-start conjugate gradient method is equivalent to the sequence

{xk]
∞
k=1 generated by the conjugate gradient (4.37) with starting vector x0 to approximate the solution to

Ax = f in the sense that
xk = x0 + x′k and x− xk = x′− x′k.

Furthermore as long as x0 ̸= x there is an integer m⋆ ∈ {1, . . . ,n} such that

xk ̸= x, k = 1, . . . ,m⋆−1 and xk = x, k ≥ m⋆.
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Proof. We have that

EA(z) =
1
2
∥z∥2

A −ℜ(zH f ), ∀z ∈ Cn,

and define
ẼA(z) =

1
2
∥z∥2

A −ℜ(zHr0), ∀z ∈ Cn,

so that

EA(z+ x0) =
1
2
∥z+ x0∥2

A −ℜ(xH
0 f + zH f )

=
1
2
∥z∥2

A +
1
2
∥x0∥2

A +
1
2

zHAx0 +
1
2

xH
0 Az−ℜ(xH

0 f )−ℜ(zH f )

= EA(x0)+
1
2
∥z∥2

A −ℜ(−zHAx0 + zH f )

= EA(x0)+
1
2
∥z∥2

A −ℜ(zHr0)

= EA(x0)+ ẼA(z).

By definition we conclude that

x′k = argmin
z∈Kk

EA(z+ x0) = argmin
z∈Kk

ẼA(z)

Remark 4.3. The standard conjugate gradient method to approximate the solution of Ax = f is equiva-
lent to the zero-start conjugate gradient method to approximate the solution of Ax′ = r0.

4.4.2 Preconditioned conjugate gradient method

Proposition 4.7. Suppose that A,L ∈ Cn×n are HPD, f ∈ Cn
⋆, x = A−1 f ∈ Cn

⋆. Let L = BHB, where
B ∈ Cn×n is invertible. Define

C = B−HAB−1.

Then C is HPD and L−1A is similar to C,

C = P−1(L−1A)P.

Consequently,
σ(L−1A) = σ(C)⊂ (0,∞).

The following are equivalent for x ∈ Cn:

1. Ax = f

2. L−1Ax = L−1 f

3. Bx = y, Cy = q where q = B−H f

The equation Cy = q is called the preconditioned system.

Proposition 4.8. Suppose that B,C,L and q are defined as in previous proposition. The sequence gen-
erated by the zero-start conjugate gradient method to approximate the solution to the preconditioned
system

Cy = q,

denoted by {yk}∞
k=1, is the same sequence as that generated by the following recursive algorithm:
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y0 = 0,s0 = q−Cy0 = q,d0 = s0 = q
for k = 0,1, · · · do

if k ≥ 1 then
dk = sk +νkdk−1, νk = (sk,sk)2 / (sk−1,sk−1)2

end
yk+1 = yk +θk+1dk, θk+1 = (sk,sk)2 / (Cdk,dk)2
sk+1 = sk −θk+1Cdk
if dk+1 = 0 then

stop
end

end

Corollary 4.3. With the same assumptions and notation as in Proposition 4.8, define for 0 ≤ k ≤ m⋆,
the vectors

xk = B−1yk

rk = BHsk

pk = B−1dk,

which are generated by the following recursive algorithm:

x0 = 0,r0 = f , p0 = L−1 f
for k = 0,1, · · · do

if k ≥ 1 then
pk = L−1rk −νk pk−1, νk = (L−1rk,rk)2 / (L−1rk−1,rk−1)2

end
xk+1 = xk +θk+1 pk, θk+1 = (L−1rk,rk)2 / (Apk, pk)2
rk+1 = rk −θk+1Apk
if pk+1 = 0 then

stop
end

end

4.4.3 Krylov subspace methods for non HPD problems

In previous paragraphs we discussed solving linear systems of the form Ax = f , where A is an HPD
matrix. Now we will study the case of a linear system, Ax = f , where A is a non HPD matrix.

So suppose the linear system where A ∈ Cn×n is non HPD. Conjugate Gradient method is not applied to
this system but it is applicable to the equivalent system

AHAx = AH f .

The last one is an HPD system and is known as the system of normal equations and that because

AHAx = AH f ⇒ AH ( f −Ax) = 0

⇒ AHr = 0.

Thus, the system consists of normal equations. This approach is called Conjugate Gradient Normal
equation Residual (CGNR) method.
The algorithm of CGNR has the following form:
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r0 = f −Ax0, z0 = AHr0, p0 = z0.
for k = 0,1, · · · do

wi = Api

αi = (zi,zi)2 / (wi,wi)2
xi+1 = xi +αi+1wi

ri+1 = ri −αi+1wi

zi+1 = AHri+1
βi = (zi+1,zi+1)2 / (zi,zi)2
pi+1 = zi+1 +βi pi

end

Define now, the vector y as x = AHy so that the given system becomes

AAHy = f , (4.38)

which again is known as the system of normal equations. The application of the CG method to (4.38)
is called Conjugate Gradient Normal equation Error (CGNE) method. The algorithm of CGNE method
is:

r0 = f −Ax0, z0 = AHr0, p0 = z0.
for k = 0,1, · · · do

αi = (zi,ri)2 / (pi, pi)2
wi = A∗ pi

xi+1 = xi +αi+1wi

ri+1 = ri −αi+1wi

zi+1 = AHri+1
βi = (zi+1,ri+1)2 / (zi,ri)2
pi+1 = AHzi+1 +βi pi

end

We will define the GMRES method which be used to find the xn ∈ Kn that minimizes the residual
rn = ∥ f −Axn∥2.

Definition 4.11. Let A ∈ Cn×n be nonsingular, f ∈ Cn
⋆ and x0 ∈ Cn be arbitrary. The sequence {xk}∞

k=1
obtained by minimizing

∥r(z)∥2 = ∥ f −Az∥2

over
x0 +Kk(A, f −Ax0),

gives rise to the Generalized Minimal Residual (GMRES) method.

We saw that in the Conjugate Gradient method, the residuals form an orthogonal basis for Kk(A, f ) =
⟨r0, · · · ,rk−1⟩. In contrast, in GMRES this basis formed by:

w(i) = Av(i)

for k = 1, . . . , i do
w(i) = w(i)− (wi,v(k))v(k)

end
v(i+1) = w(i)/∥w(i)∥

This is a modified Gram-Schmidt orthogonalization and applied to the Krylov sequence {Akr(0)} is called
the Arnoldi method. The GMRES iterates are constructed as

x(i) = x(0)+ y1v(1)+ · · ·+ yiv(i),

where yk minimizes the residual norm ∥ f −Ax(i)∥.
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Based on drawbacks of Conjugate Gradient method and GMRES method we introduce the BiConjugate
Gradient method (BiCG). We will start the presentation of BiCG, name the main drawbacks of these
two methods. Firstly, CG method is suitable for HPD matrices. In contrast, GMRES is applicable to non
HPD matrices however, is requires more storage because of the large amount of residual minimizations.
BiCG method constructs four sequences of vectors. Two sequences of residuals, r(i), r̃(i) which define as

r(i) = r(i−1)−αiAp(i), ˜r(i) = r̃(i−1)−αiAp̃(i),

and two sequences of search directions p(i), p̃(i) which define as:

p(i) = r(i−1)+βi−1 p(i−1), p̃(i) = r̃(i−1)+βi−1 p̃(i−1),

where αi and βi are given by

αi =
r̃(i−1)T

r(i−1)

p̃(i)T Ap(i)
, βi =

r̃(i)
T
r(i)

r̃(i−1)T r(i−1)
.

These vectors ensure the bi-orthogonal relations

r̃(i)
T
r( j) = p̃(i)

T
Ap( j), if i ̸= j.

BiCG method is the basis for some successful iterative methods. One of them is BiCGSTAB method
for nonsymmetric linear systems developed by Hendrik Albertus van der Vorst (see [10] ). BiCGSTAB
has faster and smoother convergence than BiCG.

The unpreconditioned BiCGSTAB algorithm starts with an initial guess of x0. Τhe initial residual is
given by r0 = b−Ax0 and we choose an arbitrary vector r0, such that (r̂0,r0) ̸= 0, e.g., r̂0 = r0. The
algorithm is as below:

x0 = initial guess
r0 = b−Ax0
r̂0 an arbitrary vector such that (r̂0,r0) ̸= 0
ρ0 = α = ω0 = 1
v0 = p0 = 0
for i = 1,2,3, · · · do

ρi = (r̂0,ri−1);β = (ρi/ρi−1)(α/ωi−1)
pi = ri−1 +β (pi−1 −ωi−1vi−1)
vi = Api

α = ρi/(r̂0,vi)
s = ri−1 −αvi

t = As
ωi = (t,s)/(t, t)
xi = xi−1 +α pi +ωis
if xi is accurate enough then

quit
end
ri = s−ωit

end



CHAPTER5

The Helmholtz Equation

5.1 The Helmholtz equation

The study of many physical problems related to steady–state oscillations leads to the Helmholtz equa-
tion, named after Hermann von Helmholtz (1821–1894). It has various applications in physics, includ-
ing optics, acoustics, electrostatics and quantum mechanics. In this work we concentrate on the two-
dimensional Helmholtz equation

∆u+ k2n(x,y)u = 0, (5.1)

as a model of sound propagation. Equation (5.1) with a suitable radiation condition at infinity describes
the propagation and scattering of time–harmonic waves. Here, u represents the acoustic pressure, n(x,y)
the index of refraction, and k the wave number, equal to 2π f/c0, where f is the frequency and c0 is
some reference sound speed. We will consider (5.1) in a finite rectangular waveguide Ω and assume the
so-called Sommerfeld radiation condition

lim
r→∞

r1/2
(

∂u
∂ν

− iku
)
= 0 on ∂Ω. (5.2)

Discretizations of the Helmholtz problem (5.1) using, say, finite difference methods, result in a linear
system

Au = b,

where A is a complex, non-Hermitian, indefinite, large, sparse matrix. This complex linear system is
usually solved by a Gauss elimination type direct method, or by Krylov subspace methods like the quasi–
minimal residual (QMR) or bi-conjugate gradient methods. Some Krylov subspace methods are used on
the equivalent real system of double size. We consider the model problem, see [9]

−∆u−a2(x,y)u+ iq2u = f in Ω = (0,1)2, (5.3)
∂u
∂v

+ iαu = 0 on Γ ≡ ∂Ω, (5.4)

where q and α are real constants and a is a real-valued, bounded and sufficiently smooth function. We
assume that this problem has a unique and sufficiently smooth solution in H1(Ω).
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5.2 A finite difference method for the model problem

In the model problem for the Helmholtz equation (5.3)–(5.4), we split the exact solution u and the right-
hand side f into their real uR, fR and imaginary parts uI , fI ,respectively. It is easily seen that (5.3) is
equivalent to the following two problems

−∆uR −a2(x,y)uR = fR +q2uI in Ω, (5.5)
∂uR

∂v
= αuI on ∂Ω, (5.6)

and

−∆uI −a2uI = fI +q2uR in Ω, (5.7)
∂uI

∂v
=−αuR on ∂Ω. (5.8)

Consider a regular partition of the Ω

(xi,y j) = (ih, jh), i, j = 0,1, . . . ,N +1,

where h = 1
N+1 is the step size and N > 1, integer, is the number of the interior points along each direc-

tion. We discretize the equation (5.3) using a second order, central difference scheme. As discussed in
Section 2.1, using Taylor’s theorem we have

u(x−h,y)≈ u(x,y)−h
∂u
∂x

+
h2

2
∂ 2u
∂x2 , (5.9)

u(x+h,y)≈ u(x,y)+h
∂u
∂x

+
h2

2
∂ 2u
∂x2 , (5.10)

u(x,y−h)≈ u(x,y)−h
∂u
∂y

+
h2

2
∂ 2u
∂y2 , (5.11)

u(x,y+h)≈ u(x,y)+h
∂u
∂y

+
h2

2
∂ 2u
∂y2 . (5.12)

Adding (5.9) and (5.10), and then (5.11) and (5.12) we obtain the central difference approximations

∂ 2u
∂x2 (xi,y j)≈

1
h2 [ui+1, j +ui−1, j −2ui, j],

∂ 2u
∂y2 (xi,y j)≈

1
h2 [ui, j+1 +ui, j−1 −2ui, j],

where uk,l ≈ u(xk,yl), 0≤ k, l ≤N+1. Using these approximations in (5.3) we obtain the finite difference
scheme

− 1
h2 [ui+1, j +ui−1, j +ui, j−1 +ui, j+1 −4ui, j]−a2

i, jui, j + iq2ui, j = fi, j, 0 ≤ i, j ≤ N +1,

where ai, j = a(xi,y j). We let gi, j = 4+h2(iq2−a2
i, j) and bi, j = h2 fi, j, so that the finite difference scheme

may be written as

−ui+1, j −ui−1, j −ui, j−1 −ui, j+1 +gi, jui, j = bi, j, 0 ≤ i, j ≤ N +1. (5.13)

The discretization of the boundary condition (5.4) is as follows:

1. On the top edge the unit outward normal is ν⃗1 = (0,1) and the boundary condition reduces to

∂u
∂y

+ iαu = 0,
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which we discretize using the central difference formula
ui,N+2 −ui,N

2h
+ iαui,N+1 = 0, 1 ≤ i ≤ N.

Now, for j = N +1 and 1 ≤ i ≤ N, we have from (5.13) that

−ui+1,N+1 −ui−1,N+1 −ui,N −ui,N+2 +gi,N+1ui,N+1 = bi,N+1, 1 ≤ i ≤ N.

Eliminating the fictitious term ui,N+2 we obtain the equation

−ui+1,N+1 −ui−1,N+1 −2ui,N +(gi,N+1 + i2hα)ui,N+1 = bi,N+1, 1 ≤ i ≤ N. (5.14)

2. On the bottom edge the unit outward normal ν⃗2 = (0,−1) and the boundary condition reduces to

−∂u
∂y

+ iαu = 0, 1 ≤ i ≤ N,

which we discretize using the central difference formula

−ui,1 −ui,−1

2h
+ iαui,0, 1 ≤ i ≤ N.

Now, for j = 0 and 1 ≤ i ≤ N, we have from (5.13) that

−ui+1,0 −ui−1,0 −ui,−1 −ui,1 +gi,0ui,0 = bi,0, 1 ≤ i ≤ N.

Eliminating the fictitious term ui,−1 we obtain the equation

−ui+1,0 −ui−1,0 −2ui,1 +(gi,0 + i2hα)ui,0 = bi,0, 1 ≤ i ≤ N. (5.15)

3. On the right edge the unit outward normal ν⃗3 = (1,0) and the boundary condition reduces to

∂u
∂x

+ iαu = 0,

which we discretize using the central difference formula
uN+2, j −uN, j

2h
+ iαuN+1, j = 0, 1 ≤ j ≤ N.

Now, for i = N +1 and 1 ≤ j ≤ N, we have from (5.13) that

−uN+2, j −uN, j −uN+1, j−1 −uN+1, j+1 +gN+1, juN+1, j = bN+1, j, 1 ≤ j ≤ N.

Eliminating the fictitious term uN+2, j we obtain the equation

−uN+1, j−1 −2uN, j −uN+1, j+1 +(gN+1, j + i2hα)uN+1, j = bN+1, j, 1 ≤ j ≤ N. (5.16)

4. On the left edge the unit outward normal ν⃗4 = (−1,0) and the boundary condition reduces to

−∂u
∂x

+ iαu = 0,

which we discretize using the central difference formula

−
u1, j −u−1, j

2h
+ iαu0, j = 0, 1 ≤ j ≤ N.

Now, for i = 0 and 1 ≤ j ≤ N, we have from (5.13) that

−u1, j −u−1, j −u0, j−1 −u0, j+1 +g0, ju0, j = b0, j, 1 ≤ j ≤ N.

Eliminating the fictitious term u−1, j we obtain the equation

−u0, j−1 −2u1, j −u0, j+1 +(g0, j + i2hα)u0, j = b0, j, 1 ≤ j ≤ N. (5.17)
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Figure 5.1: Graph of the domain Ω = (0,1)× (0,1) and the corresponding outward unit normal vectors.

Equations (5.13), for 1 ≤ i, j ≤ N, and (5.14)–(5.17) comprise a (N + 2)2 × (N + 2)2 system of linear
equations of the form

Au = b, (5.18)
where

u = [u0,0,u1,0, . . . ,uN+1,0,u0,1,u1,1, . . . ,uN+1,1, . . . ,u0,N+1,u1,N+1, . . .uN+1,N+1]
T ,

b = [b0,0,b1,0, . . . ,bN+1,0,b0,1,b1,1, . . . ,bN+1,1, . . . ,b0,N+1,b1,N+1, . . .bN+1,N+1]
T ,

and

A =


D0 −2I
−I D1 −I

. . . . . . . . .
−I DN −I

−2I DN+1

 ∈ C(N+2)2×(N+2)2
.

Here, I ∈ R(N+2)×(N+2) is the identity matrix, and

D j =

{
D̂ j for j = 1, . . . ,N,

D̂ j + i2hαI for j = 0,N +1,

with

D̂ j =


g0, j + i2hα −2

−1 g1, j −1
. . . . . . . . .

−1 gN, j −1
−2 gN+1, j + i2hα

 , j = 0, . . . ,N +1.

Obviously the matrix A is a non symmetric matrix. We can symmetrize it as follows: define the diagonal
matrix

J = diag
(

1√
2
,1, . . . ,1,

1√
2

)
∈ R(N+2)×(N+2), (5.19)

and set S = J⊗ J where ⊗ denotes the Kronecker product.

Definition 5.1. If A is a m×n matrix and B is a q× p matrix, then the Kronecker product A⊗B is the
pm×qn block matrix:

A⊗B=

α11B · · · α1nB
... . . . ...

αm1B · · · αmnB


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Set S = J⊗ J and consider the system
Av = c, (5.20)

where A = SAS−1, v = Su, c = Sb, so that

A =



D0 −
√

2I
−
√

2I D1 −I
−I D2 −I

. . . . . . . . .
−I DN −

√
2I

−
√

2I DN+1


, (5.21)

D j =

{
D̂ j for j = 1, . . . ,N,

D̂ j + i2hαI, for j = 0,N +1,
(5.22)

with

D̂ j =


g0, j +2hαi −

√
2

−
√

2 g1, j −1
. . . . . . . . .

−1 gN, j −
√

2
−
√

2 gN+1, j +2hαi

 , j = 0, · · · ,N +1. (5.23)

It is easy to see that the system Av = c is equivalent to (5.18) , with A a complex symmetric matrix. We
now split A, v and c in real and imaginary parts

A = A1 + iA2, v = vR+ ivC, c = cR+ icC,

and transform the complex linear system (5.20) into the following equivalent real, block system

Ãṽ = c̃, (5.24)

where

ṽ =
[

vR
vC

]
∈ R2(N+2)2

, c̃ =
[

cR
cC

]
∈ R2(N+2)2

,

Ã =

[
A2 A1
A1 −A2

]
∈ R2(N+2)2×2(N+2)2

, (5.25)

A1 =



B0 −
√

2I
−
√

2I B1 −I
−I B2 −I

. . . . . . . . .
−I BN −

√
2I

−
√

2I BN+1


∈ R(N+2)2×(N+2)2

, (5.26)

A2 = diag(C0,C1, · · · ,C1,C0) ∈ R(N+2)2×(N+2)2
, (5.27)

with

C0 = diag(2hα,0, . . . ,0,2hα)+(2hα +h2q2)I, (5.28)
C1 = diag(2hα,0, . . . ,0,2hα)+h2q2I, (5.29)
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and

B j =



b0, j −
√

2
−
√

2 b1, j −1
−1 b2, j −1

. . . . . . . . .
−1 bN, j −

√
2

−
√

2 bN+1, j


,

where bi, j = 4−h2α2
i, j.

We solve the real system (5.24) using two variations of the block SOR method defined by the iteration
matrix

TSOR = (L+ω−1D)−1[(ω−1 −1)D−U ], (5.30)

the first one denoted by BSOR1, where

D1 =

[
A2 0
0 −A2

]
, L1 =

[
0 0

A1 0

]
, U1 =

[
0 A1
0 0

]
(5.31)

with corresponding iteration matrix

TBSOR1 =

[
(1−ω)I −A−1

2 A1

ω(1−ω)A−1
2 A1 −ωA−1

2 A1A−1
2 A1 +(1−ω)I

]
(5.32)

and the other one denoted by BSOR2 where

D2 =

[
A1 0
0 A1

]
, L2 =

[
0 0

−A2 0

]
, U2 =

[
0 A2
0 0

]
(5.33)

with corresponding iteration matrix

TBSOR2 =

[
(1−ω)I A−1

1 A2

−ω(1−ω)A−1
1 A2 −ωA−1

1 A2A−1
1 A2 +(1−ω)I

]
. (5.34)

Thus, for these iteration matrices, we have the iterative schemes(
vR
vC

)(n+1)

= TBSOR1

(
vR
vC

)(n)

+(L+ω−1D)−1
(

cC
vR

)(n+1)

for BSOR1 and (
vR
vC

)(n+1)

= TBSOR2

(
vR
vC

)(n)

+(L+ω−1D)−1
(

cR
vC

)(n+1)

for BSOR2. These schemes may be written as

• BSOR1

v(n+1)
R = (1−ω)v(n)R −A−1

2 A1v(n)C +ωA−1
2 cC

v(n+1)
C = ω(1−ω)A−1

2 A1v(n)R +
[
(1−ω)I −ωA−1

2 A1A−1
2 A1

]
v(n)C +ω2A−1

2 A1A−1
2 cC−ωA−1

2 cR

• BSOR2

v(n+1)
R = (1−ω)v(n)R +A−1

1 A2v(n)C +ωA−1
1 cR

v(n+1)
C =−ω(1−ω)A−1

1 A2v(n)R +
[
(1−ω)I −ωA−1

1 A2A−1
1 A2

]
v(n)C −ω2A−1

1 A2A−1
1 cR+ωA−1

1 cC
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and organize their computations as follows: In the first scheme, we multiply v(n+1)
R by ωA−1

2 A1 and
substitute the term ω2A−1

2 A1A−1
2 cC into the formula for v(n+1)

C . For the second scheme, we multiply the
v(n+1)
R by −ωA−1

1 A2 and substitute the term −ω2A−1
1 A2A−1

1 cR into the formula for v(n+1)
C . Thus,

• BSOR1

v(n+1)
R = (1−ω)v(n)R −ωA−1

2 A1v(n)C +ωA−1
2 cC,

v(n+1)
C = ωA−1

2 A1v(n+1)
R +(1−ω)v(n)C −ωA−1

2 cR,

• BSOR2

v(n+1)
R = (1−ω)v(n)R +ωA−1

1 A2v(n)C +ωA−1
1 cR,

v(n+1)
C =−ωA−1

1 A2v(n+1)
R +(1−ω)v(n)C +ωA−1

1 cC,

where ω is the relaxation parameter of the SOR method.

5.3 A finite element method for the model problem

We consider equation (5.3) posed in a two-dimensional waveguide consisting of a single water layer
overlying an acoustically-soft bottom of variable topography. The upper boundary is assumed to be a
horizontal pressure-release surface. The acoustic field is generated by a time-harmonic source located at
(xs,ys), see Figure 5.2.

*

y = DF

x1

y Γ1

Γ2

Γ4

xN xFx2

Ω

Γ3

(xs, ys)

y = DN

Figure 5.2: Schematic represenatation of the waveguide.

We take q = f = 0 and a, the real wavenumber, as a sufficiently smooth function of the form

a(x,y) =


aN for x ≤ x1,

aint(x,y) for x1 < x < x2,

aF for x ≤ x2.

Equation (5.3) is supplemented by appropriate radiation conditions, see [5] for details. The weak for-
mulation of the boundary value problem is descritized by a finite element method with continuous in
Ω piecewise linear functions. A regular triangulation with triangles of maximal diameter h is imposed
on Ω. In the numerical experiments reported below we took Ω = [170,220]× [0,50] and a triangulation
consisting of 4671 elements.

Denote the resulting linear system of equations by Ax = b. The matrix A is complex, symmetric but not
Hermitian. Its condition number was approximately 1.8×107, necessitating the use of a preconditioner.
In the present case, we applied a preconditioning matrix based on the LU factorization, more specifi-
cally a sparse matrix resulting from an incomplete LU factorization. In contrast with the complete LU
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factorization, in the incomplete LU factorization (ILU) computes a sparse lower triangular matrix L and
a sparse upper triangular matrixU such that the residual matrix R = LU −A satisfies certain constraints.
Here, we discuss the ILU(0) factorization, the simplest form of the family of ILU preconditioners. ILU(0)
is the incomplete LU factorization technique with no fill–in1, and consists of taking the zero pattern P
to be precisely the zero pattern of A. Consider the 5–point 2 matrix A, any lower and upper triangular

Figure 5.3: The ILU(0) factorization for a five–point matrix as it shown in [6]

matrix L andU which have the same structure as the lower and upper part of A, respectively, as it shows
in Figure 5.3. The resulting matrix of the product LU would have the pattern shown at the bottom-left
corner of Figure 5.3. The structure of LU is almost the same as the structure of A except of two extra
diagonals which appear with nonzero elements. These extra diagonals are called fill–in elements. If these
fill–in elements are ignored, then it is possible to find L and U so that their product is equal to A in the
other diagonals. This is the ILU(0) preconditioner, with 0 representing the number of extra diagonals
which are not ignored. Similarly, we may define ILU(p) incomplete factorizations which differ from
ILU(0) in keeping the “pth–order fill–ins”.

Now we apply some iterative methods to solve the system resulting from the finite element discretization
of the Helmholtz equation using the finite element method. We refer to the python code in Appendix A
for the details of the solution process. Lines 7− 32 contain the Python code necessary for reading the
elements of the system matrix and its sparsisty pattern. In short,

• A is a complex array contains the complex values αi j stored row by row, from row 1 to n.

• JA is an integer array contains the column indices of the elements αi j as stored in the array A

• IA is an integer array contains the pointers to the beginning of each row in the arrays A and JA.

Our main purpose is to apply the GMRES and BiCGSTAB iterative methods to this system. However,
using the python-supplied functions for GMRES and BICGSTABwe need to transformA to csc form. So,
at lines 38−43we compute a new array Rowswhich contains the corresponding row of each element and
then we transform A to a csc form. In lines 46−48 we compute the preconditioning matrix. Finally, for

1fill–in: the entries of a matrix change from zero to a non–zero value
2for the definition see section 2.2.2 of [6]
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comparison purposes, we also use the direct method SuperLU and compare the outputs. The following
table shows the needed average time of each method:

Table 5.1: Comparison of GMRES, BiCGStab and SuperLU

GMRES BiCGStab SuperLU
Convergence True True True
Average Time 0.0011098 0.0004747 0.0024724

Observe that BiCGStab converges faster than the others even though the difference between them isn’t
as big as it could be.
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APPENDIXA

First appendix

Python code for ”upwind scheme”
1

2 impor t numpy as np
3 from sc ipy . l i n a l g impor t solve_banded
4 impor t ma t p l o t l i b . pyp lo t as p l t
5

6 a = 2; b = 9; N = 30
7 h = 1 / (N+1)
8 x = np . l i nspace (0 , 1 , N+2)
9

10 c1=(b*h ) / ( 2 * a )
11 c2=(b*h ) / a
12

13 Ab = np . zeros ( ( 3 ,N) )
14 Z =np . zeros (N)
15 Z [N-1]=1
16

17 i f ( np . s ign ( b ) ==1) :
18 Ab[0 , 1 : ] = ( - 1 ) *np . ones (N-1 )
19 Ab[1 , : ] = (2 + c2 ) *np . ones (N)
20 Ab[2 , :N- 1 ] = ( -1 - c2 ) *np . ones (N-1 )
21 else :
22 Ab[0 , 1 : ] = ( -1+c1 ) *np . ones (N-1 )
23 Ab[1 , : ] = 2*np . ones (N)
24 Ab[2 , :N- 1 ] = ( -1 - c1 ) *np . ones (N-1 )
25

26

27 so l = solve_banded ( ( 1 , 1 ) , Ab , Z )
28 S = np . zeros (N+2)
29 S[ 1 :N+1] = so l
30 S[N+1]=1
31

32 p l t . p l o t ( x , S)
33 p l t . show ( )

Listing A.1: Upwind Scheme
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Python code for the solution of a system with the CSR format of A
1 impor t ma t p l o t l i b . pyp lo t as p l t
2 impor t sc ipy . i o as s io
3 impor t sc ipy . sparse
4 impor t numpy as np
5 from sc ipy . sparse . l i n a l g impor t spsolve
6 impor t t ime
7 from sc ipy . sparse impor t cs r_mat r i x
8

9 N_ l i s t = [ ’ bcsstk25 . mat ’ , ’ bcsstk16 . mat ’ , ’ bcsstk17 . mat ’ , ’ wathen100 . mat ’ , ’ bcsstk36 . mat ’ ]
10 Second_method = np . ones ( len ( N_ l i s t ) )
11 Nonzero = np . ones ( len ( N_ l i s t ) )
12 Second_method2 = np . ones ( len ( N_ l i s t ) )
13

14 f o r i i n range (0 , len ( N_ l i s t ) ) :
15 mat=sc ipy . i o . loadmat ( N_ l i s t [ i ] )
16

17 i f i ==3:
18 p r i n t ( ’ Mat r i x : ’ , N_ l i s t [ i ] )
19 A = mat [ ’ Problem ’ ] [ 0 ] [ 0 ] [ 2 ]
20

21 p l t . spy (mat [ ’ Problem ’ ] [ 0 ] [ 0 ] [ 2 ] , p rec i s i on = 0.2 , markersize = 0 .2 )
22 p l t . show ( )
23

24 N=mat [ ’ Problem ’ ] [ 0 ] [ 0 ] [ 2 ] . s i ze
25 sum_of_rows = np . s ize (A, ax is = 0)
26 b=np . ones ( sum_of_rows )
27

28 T=sc ipy . sparse . f i n d (A)
29 K=np . s ize (T , ax is = 1)
30 Nonzero [ i ]=K
31 p r i n t ( ’Non- zero elements : ’ ,K)
32

33 B= csr_mat r i x (A)
34

35 sum_of_cols = np . s ize (B, ax is = 1)
36 b=np . ones ( sum_of_cols )
37

38 k=t ime . per f_counter ( )
39 x2= spsolve (B, b )
40 t = t ime . per f_counter ( )
41

42 p r i n t ( ’ Solve i n ’ , t - k , ’ seconds ’ )
43 p r i n t ( x2 )
44 Second_method [ i ] = t - k
45

46 p r i n t ( )
47 else :
48 p r i n t ( ’ Mat r i x : ’ , N_ l i s t [ i ] )
49 A = mat [ ’ Problem ’ ] [ 0 ] [ 0 ] [ 1 ]
50 p l t . spy (mat [ ’ Problem ’ ] [ 0 ] [ 0 ] [ 1 ] , p rec i s i on = 0.2 , markersize = 0 .2 )
51 p l t . show ( )
52

53 N=mat [ ’ Problem ’ ] [ 0 ] [ 0 ] [ 1 ] . s i ze
54 sum_of_rows = np . s ize (A, ax is = 0)
55 b=np . ones ( sum_of_rows )
56

57 T=sc ipy . sparse . f i n d (A)
58 K=np . s ize (T , ax is = 1)
59 Nonzero [ i ]=K
60

61 p r i n t ( ’Non- zero elements : ’ ,K)
62 B= csr_mat r i x (A)
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63

64 sum_of_cols = np . s ize (B, ax is = 1)
65 b=np . ones ( sum_of_cols )
66

67 k=t ime . per f_counter ( )
68 x2= spsolve (B, b )
69 t = t ime . per f_counter ( )
70

71 p r i n t ( ’ Solve i n ’ , t - k , ’ seconds ’ )
72 p r i n t ( x2 )
73 Second_method [ i ] = t - k
74

75 p r i n t ( )
76 p r i n t ( ’ Next mat r i x : ’ )
77

78 new_unit2 = Second_method [ 0 ]
79 f o r i i n range (0 , len ( N_ l i s t ) ) :
80 temp=Second_method [ i ]
81 Second_method2 [ i ]= temp / new_unit2
82

83 axis_x =[252241 , 290378 , 428650 , 471601 , 11443140]
84 de f au l t _ x_ t i c k s = range ( len ( ax is_x ) )
85 axis_y2 =[Second_method2 [ 0 ] , Second_method2 [ 1 ] , Second_method2 [ 2 ] , Second_method2 [ 3 ] ,

Second_method2 [ 4 ] ]
86 axis_y =[Second_method [ 0 ] , Second_method [ 1 ] , Second_method [ 2 ] , Second_method [ 3 ] , Second_method

[ 4 ] ]
87

88 f i g , ax = p l t . subp lo ts ( )
89 ax . p l o t ( de fau l t _x_ t i c ks , ax is_y )
90 p l t . x t i c k s ( de fau l t _x_ t i c ks , ax is_x )
91 ax . se t_x labe l ( ’Non- zero elements ’ )
92 ax . se t_y labe l ( ’ Time ( seconds ) ’ )
93

94 ax2 = ax . tw inx ( )
95 ax2 . p l o t ( de fau l t _x_ t i c ks , axis_y2 )
96 ax2 . se t_y labe l ( ’ Normalized t ime ’ )
97

98 p l t . show ( )
99

Listing A.2: Solve in CSR format
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Python code for Jacobi’s method
1 impor t sc ipy . i o as s io
2 impor t sc ipy . sparse
3 impor t numpy as np
4 from numpy impor t l i n a l g as LA
5 impor t ma t p l o t l i b . pyp lo t as p l t
6 impor t t ime
7

8 #Def ine a mat r i x A
9 A = mat [ ’ Problem ’ ] [ 0 ] [ 0 ] [ 1 ]
10 n , nc = A. shape
11 b = np . ones ( n )
12

13 # Stop i f | | b - A x_k | | < t o l
14 t o l = 2.0e -4
15

16 # Al low at most maxi ters i t e r a t i o n s
17 maxi ters = 4000
18

19 # I n i t i a l guess i s x = 0
20 x = np . zeros ( n )
21 xnew = np . zeros ( n )
22 resvec = np . zeros ( maxi ters )
23 N = 0
24

25 tbeg = t ime . per f_counter ( )
26 whi le N < maxi ters :
27 res = np . l i n a l g . norm (b - A . dot ( x ) )
28 resvec [N] = res
29 f o r i i n range ( n ) :
30 xnew [ i ] = b [ i ]
31 f o r j i n range ( i ) : xnew [ i ] -= A [ i , j ] * x [ j ]
32 f o r j i n range ( i +1 ,n ) : xnew [ i ] -= A [ i , j ] * x [ j ]
33 xnew [ i ] /= A [ i , i ]
34

35 i f LA . norm ( b - A @ xnew) < t o l :
36 break
37

38 f o r i i n range ( n ) : x [ i ] = xnew [ i ]
39 N += 1
40

41 tend = t ime . per f_counter ( )
42

43 # Check f o r convergence
44 i f N < maxi ters :
45 p r i n t ( f ’ Jacobi converged ’ )
46 p r i n t ( f ’Number o f i t e r a t i o n s = {N:5d } . | | b - A x | | = { res : . 6 g } ’ )
47 p r i n t ( f ’ Times : { tend - tbeg } seconds ’ )
48 xax is = range (N+1)
49 p l t . p l o t ( xaxis , resvec [ :N+1 ] )
50 p l t . y l im ( [ 0 , 125] )
51 p l t . x l abe l ( ’ I t e r a t i o n ’ )
52 p l t . y l abe l ( r ’ $ \ | b - A x ^ { ( k ) } \ | _2$ ’ )
53 p l t . show ( )
54 else :
55 p r i n t ( f ’ Jacobi d id not converge ’ )

Listing A.3: Jacobi method
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Python code for Gauss-Seidel method
1 impor t sc ipy . i o as s io
2 impor t sc ipy . sparse
3 impor t numpy as np
4 from numpy impor t l i n a l g as LA
5 impor t ma t p l o t l i b . pyp lo t as p l t
6 impor t t ime
7

8 #Def ine a mat r i x A
9 mat = sc ipy . i o . loadmat ( ’ bcsstk02 . mat ’ )
10 A = mat [ ’ Problem ’ ] [ 0 ] [ 0 ] [ 1 ]
11 n , nc = A. shape
12 b = np . ones ( n )
13

14 # Stop i f | | b - A x_k | | < t o l
15 t o l = 1.0e -4
16

17 # Al low at most maxi ters i t e r a t i o n s
18 maxi ters = 4000
19

20 # I n i t i a l guess i s x = 0
21

22 x = np . zeros ( n )
23 xnew = np . zeros ( n )
24 resvec = np . zeros ( maxi ters )
25 N = 0
26 tbeg = t ime . per f_counter ( )
27 whi le N < maxi ters :
28 res = np . l i n a l g . norm (b - A . dot ( x ) )
29 resvec [N] = res
30 f o r i i n range ( n ) :
31 xnew [ i ] = b [ i ]
32 f o r j i n range ( i ) : xnew [ i ] -= A [ i , j ] * xnew [ j ]
33 f o r j i n range ( i +1 ,n ) : xnew [ i ] -= A [ i , j ] * x [ j ]
34 xnew [ i ] /= A [ i , i ]
35

36 i f LA . norm ( b - A @ xnew) < t o l :
37 break
38

39 f o r i i n range ( n ) : x [ i ] = xnew [ i ]
40 N += 1
41 tend = t ime . per f_counter ( )
42

43 i f N < maxi ters :
44 p r i n t ( f ’Gauss - Se ide l converged ’ )
45 p r i n t ( f ’Number o f i t e r a t i o n s = {N:5d } . | | b - A x | | = { res : . 6 g } ’ )
46 p r i n t ( f ’ Times : { tend - tbeg } seconds ’ )
47

48 xax is = range (N+1)
49 p l t . p l o t ( xaxis , resvec [ :N+1 ] )
50 p l t . y l im ( [ 0 , 125] )
51 p l t . x l abe l ( ’ I t e r a t i o n ’ )
52 p l t . y l abe l ( r ’ $ \ | b - A x ^ { ( k ) } \ | _2$ ’ )
53 p l t . show ( )
54

55 else :
56 p r i n t ( f ’Gauss - Se ide l d id not converge ’ )

Listing A.4: Gauss-Seidel method
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Python code for SOR method
1 impor t ma t p l o t l i b . pyp lo t as p l t
2 impor t sc ipy . i o as s io
3 impor t sc ipy . sparse
4 from sc ipy . sparse . l i n a l g impor t spsolve
5 impor t numpy as np
6 impor t t ime
7

8 # Set up a t e s t problem
9 mat=sc ipy . i o . loadmat ( ’ bcsstk01 . mat ’ )
10 A = mat [ ’ Problem ’ ] [ 0 ] [ 0 ] [ 1 ]
11 p r i n t ( type (A) )
12 n = A. shape [ 0 ]
13 b = np . ones ( n )
14 x0 = np . zeros ( n )
15

16 # Use the r e l a xa t i o n parameter omega
17 omega = 1.8
18

19 # I t e r a t i o n s w i l l s top when | | b - A x_k | | < t o l
20 t o l = 1.0e -4
21

22 # . . . or maxi t steps have been attempted
23 maxit = 4000
24

25 # Keep t rack o f the res i dua l a t each i t e r a t i o n
26 resvec = np . zeros ( maxi t )
27

28 # The SOR i t e r a t i o n s
29 x = x0 [ : ]
30 N = 0
31 tbeg = t ime . per f_counter ( )
32 whi le N < maxi t :
33 res = np . l i n a l g . norm (b - A . dot ( x ) )
34 resvec [N] = res
35 i f res < t o l : break
36

37 f o r i i n range ( n ) :
38 s = 0
39 f o r j i n range ( i ) :
40 s = s + A[ i , j ] * x [ j ]
41 f o r j i n range ( i +1 ,n ) :
42 s = s + A[ i , j ] * x [ j ]
43

44 x [ i ] = (omega / A [ i , i ] ) * ( b [ i ] - s ) + (1 - omega) * x [ i ]
45 N = N + 1
46 tend = t ime . per f_counter ( )
47

48 # Check f o r convergence
49 i f N < maxi t :
50 p r i n t ( f ’SOR converged ’ )
51 p r i n t ( f ’Number o f i t e r a t i o n s = {N:5d } . | | b - A x | | = { res : . 6 g } ’ )
52 p r i n t ( f ’ Times : { tend - tbeg } seconds ’ )
53 xax is = range (N+1)
54 p l t . p l o t ( xaxis , resvec [ :N+1 ] )
55 p l t . y l im ( [ 0 , 125] )
56 p l t . x l abe l ( ’ I t e r a t i o n ’ )
57 p l t . y l abe l ( r ’ $ \ | b - A x ^ { ( k ) } \ | _2$ ’ )
58 p l t . show ( )
59 else :
60 p r i n t ( f ’SOR did not converge ’ )

Listing A.5: SOR method
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Python code for Cholesky factorization
1 impor t sc ipy
2 impor t sc ipy . i o as s io
3 impor t numpy as np
4 impor t t ime
5 from sc ipy . sparse . l i n a l g impor t sp lu
6

7 mat = sc ipy . i o . loadmat ( ’ bcsstk16 . mat ’ )
8 A = mat [ ’ Problem ’ ] [ 0 ] [ 0 ] [ 1 ]
9 n , nc = A. shape
10 b = np . ones ( n )
11

12 tbeg = t ime . per f_counter ( )
13 B = splu (A)
14 x=B. solve ( b )
15 tend = t ime . per f_counter ( )
16

17 p r i n t ( np . a l l c l o s e (A @ x - b , np . zeros ( n ) , r t o l =1e -04 , a t o l =1e -04) )
18 p r i n t ( tend - tbeg )
19 p r i n t ( np . l i n a l g . norm ( b - A . dot ( x ) ) )
20 p r i n t ( x )

Listing A.6: Cholesky factorization

Python code for Conjugate Gradient method
1 impor t numpy as np
2 from sc ipy . sparse . l i n a l g impor t cg
3 impor t sc ipy
4 impor t sc ipy . i o as s io
5 impor t t ime
6

7 mat = sc ipy . i o . loadmat ( ’ bcsstk16 . mat ’ )
8 A= mat [ ’ Problem ’ ] [ 0 ] [ 0 ] [ 1 ]
9 n , nc = A. shape
10 b = np . ones ( n )
11

12 tbeg = t ime . per f_counter ( )
13 x , ex i t_code = cg (A, b , t o l =1e -05)
14 tend = t ime . per f_counter ( )
15

16 p r i n t ( ex i t_code )
17 p r i n t ( np . a l l c l o s e (A . dot ( x ) - b , np . zeros ( n ) , r t o l =1e -04 , a t o l =1e -04) )
18 p r i n t ( tend - tbeg )
19 p r i n t ( np . l i n a l g . norm ( b - A . dot ( x ) ) )
20 p r i n t ( x )

Listing A.7: Conjugate Gradient method



80 APPENDIX A. FIRST APPENDIX

Iterative and Direct methods applied for matrix A
1 impor t sc ipy
2 impor t t ime
3 impor t numpy as np
4 from s t a t i s t i c s impor t mean
5 impor t sc ipy . sparse as sparse
6

7 fd = open ( ’ helmsys . out ’ , ’ r ’ ) ;
8

9 l i n e = fd . r ead l i ne ( )
10 N, NNZ = ( i n t ( x ) f o r x i n l i n e . s p l i t ( ) )
11

12 p r i n t (N* *2 , NNZ, 100*NNZ/N* *2 )
13

14 IA = np . zeros (N+1 , dtype= i n t )
15 f o r i i n range (N+1) :
16 IA [ i ] = i n t ( fd . r ead l i ne ( ) ) - 1
17

18 JA = np . zeros (NNZ, dtype= i n t )
19 f o r i i n range (NNZ) :
20 JA [ i ] = i n t ( fd . r ead l i ne ( ) ) - 1
21

22 A = np . zeros (NNZ, dtype=np . cdouble )
23 f o r i i n range (NNZ) :
24 rp , i p = ( f l o a t ( x ) f o r x i n l i n e . s p l i t ( ) )
25 A[ i ] = complex ( rp , i p )
26

27 b = np . zeros (N, dtype=np . cdouble )
28 f o r i i n range (N) :
29 rp , i p = ( f l o a t ( x ) f o r x i n l i n e . s p l i t ( ) )
30 b [ i ] = complex ( rp , i p )
31

32 fd . c lose ( )
33

34 #Condi t ion number o f A
35 p r i n t ( np . l i n a l g . cond (A) )
36

37 #Compute rows ’ vec to r
38 k=-1
39 Rows = np . zeros (NNZ, dtype = i n t )
40 f o r i i n range (NNZ) :
41 i f JA [ i ] <JA [ i - 1 ] :
42 k+=1
43 Rows [ i ] = k
44

45 #Precond i t i one r
46 A = sc ipy . sparse . csc_matr ix ( ( A,Rows, IA ) )
47 A_iLU = sparse . l i n a l g . s p i l u (A)
48 M = sparse . l i n a l g . L inearOperator ( (N,N) , A_iLU . so lve )
49

50 Meth_ l i s t = [ ’GMRES ’ , ’ BiCGStab ’ , ’ SuperLu ’ ]
51 f o r j i n range ( len ( Me th_ l i s t ) ) :
52 Times = [ ]
53 f o r i i n range (5 ) :
54 i f j ==0:
55 tbeg = t ime . per f_counter ( )
56 x , exi tCode = sparse . l i n a l g . gmres (A, b , r e s t a r t =10 ,M=M)
57 tend = t ime . per f_counter ( )
58 t d i f = tend - tbeg
59 Times . append ( t d i f )
60 e l i f j ==1:
61 tbeg = t ime . per f_counter ( )
62 x , exi tCode = sparse . l i n a l g . b icgs tab (A, b ,M=M)
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63 tend = t ime . per f_counter ( )
64 t d i f = tend - tbeg
65 Times . append ( t d i f )
66 else :
67 tbeg = t ime . per f_counter ( )
68 sp i l u = sc ipy . sparse . l i n a l g . s p i l u (A)
69 x = sp i l u . so lve ( b )
70 tend = t ime . per f_counter ( )
71 t d i f = tend - tbeg
72 Times . append ( t d i f )
73 p r i n t ( ’ Average f o r ’ , Me th_ l i s t [ j ] , ’ : ’ , mean( Times ) )
74 p r i n t ( ’ Converge : ’ , np . a l l c l o s e (A . dot ( x ) , b ) )
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