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ABSTRACT 

 

 
Nowadays humanity is facing two urgent, interconnected problems; the exhaust of conventional 

energy resources and the need to reduce CO2 emissions and move towards a sustainable carbon 

emission free economy. Within the scope of sustainability, hydrogen economy presents a 

possible solution to both problems. Hydrogen is a completely clean, non-toxic burning fuel 

which when consumed in a fuel cell, the only by-product is pure water. Fuel-cell technology is 

currently under intensive research and development in view of the expected benefits in facing 

the environmental problems and the gradual depletion of conventional fuel reserves.  The main 

obstacle for the commercial development of fuel-cell powered vehicles is the efficient hydrogen 

storage. Among the existing technologies, an alternative way of storing hydrogen is the 

adsorption in porous materials, such as Metal Organic Frameworks (MOFs).  Many different 

strategies have been up-to-date employed to enhance the hydrogen storage capacity of MOFs. 

Τhe objective in this project is to design new materials that have improved sorption capacities 

through enhancing their interaction with H2. 

Within the scope of the multiscale approach, we investigate in silico the H2 capacity 

enhancement in several MOF-type nanomaterials, when these are properly functionalized with 

a variety of chemical species. Driven by the fact that the organic linkers of most MOFs have 

aromatic backbones such as benzene, we screen simple aromatic systems of the form C6H5X 

(where X stands for different functional groups) for their binding strength towards hydrogen. 

Ab initio calculations are employed to calculate the binding energy and favorable positions of 

hydrogen with a series of strategically selected functionalized benzenes. Subsequently, GCMC 

calculations with model potentials derived from the ab initio calculations, are employed to study 

the trend obtained from the meticulous ab initio search. The results from our bottom-up 

approach lead us to conclude that this functionalization strategy can be applied to various 

porous materials (MOFs, COFs, etc.), in order to enhance their hydrogen storage performance, 

especially at cryogenic temperatures. 

 

Key words: sustainability, fuel-cells, hydrogen storage, MOFs, functionalization, multi-scale, 

ab initio, GCMC.  
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ΠΕΡΙΛΗΨΗ 

 

Σήμερα, η ανθρώπινη δραστηριότητα εξαρτάται σχεδόν εξολοκλήρου από μη ανανεώσιμες 

πηγές ενέργειας όπως το φυσικό αέριο, ο άνθρακας και το πετρέλαιο προκειμένου να 

ικανοποιηθούν οι ολοένα αυξανόμενες ενεργειακές ανάγκες του πλανήτη. Η αναπόφευκτη 

μελλοντική εξάντληση των ορυκτών αυτών καυσίμων σε συνδυασμό με την έκλυση ρύπων 

κατά τη χρήση τους, καθιστούν επιτακτική την ανάγκη ανεύρεσης ενός νέου ενεργειακού 

μοντέλου. 

Το υδρογόνο αποτελεί έναν φορέα ενέργειας με πολλές προοπτικές που αναμένεται να έχει 

σημαντική συμβολή στην κατεύθυνση της επίλυσης του ενεργειακού προβλήματος. 

Συγκεκριμένα, η τεχνολογία των κυψελίδων καυσίμου (fuel cells) υπόκειται σε εντατική 

έρευνα και ανάπτυξη εξαιτίας τόσο των πλεονεκτημάτων της στην μείωση των 

περιβαλλοντικών επιπτώσεων όσο και της σταδιακής εξάντλησης των συμβατικών καυσίμων. 

Σήμερα, το βασικότερο εμπόδιο στην εμπορική αξιοποίηση της τεχνολογίας των κυψελίδων 

καυσίμου σε οχήματα, είναι το πρόβλημα της αποθήκευσης του υδρογόνου στο χώρο του 

οχήματος. Ανάμεσα στις υπάρχουσες τεχνολογίες, μια εναλλακτική μέθοδος αποθήκευσης του 

υδρογόνου η οποία ερευνάται εντατικά, είναι η προσρόφηση του σε πορώδη υλικά, όπως τα 

μέταλλο-οργανικά σκελετικά υλικά (Metal Organic Frameworks-MOFs). Η προσροφητική 

ικανότητα των υλικών αυτών δύναται να ενισχυθεί μέσω συγκεκριμένων στρατηγικών 

βελτίωσης. Κύριο στόχο της παρούσας μελέτης αποτελεί η κατάλληλη τροποποίηση τους ώστε 

να ενισχυθεί η αλληλεπίδραση τους με το H2, με αποτέλεσμα να προκύψουν νέα υλικά με 

βελτιωμένες ενέργειες δέσμευσης. Ο σχεδιασμός, η τροποποίηση και η μελέτη των υλικών 

αυτών πραγματοποιείται με υπολογιστικές μεθόδους πολλαπλής κλίμακας (multi-scale 

treatment).  

Στην παρούσα διατριβή μελετήθηκε με τη χρήση μεθόδων πολλαπλής κλίμακας η ενίσχυση της 

αλληλεπίδρασης μέσω του κατάλληλου εμπλουτισμού του υλικού με σειρά στρατηγικά 

επιλεγμένων λειτουργικών ομάδων. Καθώς ο οργανικός υποκαταστάτης πολλών MOF 

αποτελείται από βενζολικούς δακτυλίους, υπολογίστηκε με κβαντικές μεθόδους υψηλής 

ακρίβειας (ab initio) η αλληλεπίδραση του H2 με σειρά τροποποιημένων δακτυλίων την μορφής 

C6H5X (όπου X η εκάστοτε λειτουργική μονάδα) ως προς την ενέργεια δέσμευσης. Στη 

συνέχεια πραγματοποιήθηκαν κλασικές προσομοιώσεις Grand Canonical Monte Carlo 

(GCMC) σε συγκεκριμένες MOF δομές (IRMOF-8, IRMOF-16, IRMOF-14), προκειμένου να 
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διερευνηθεί εάν οι υψηλότερες ενέργειες δέσμευσης του H2 από τους τροποποιημένους 

οργανικούς υποκαταστάτες οδηγούν σε ενίσχυση της προσροφητικής ικανότητας του 

τροποποιημένου MOF υλικού. Η στρατηγική τροποποίησης του οργανικού υποκαταστάτη με 

τις ισχυρότερες ως προς την αλληλεπίδρασή του με το υδρογόνο λειτουργικές ομάδες μπορεί 

να επεκταθεί τόσο σε άλλες MOF δομές όσο και σε άλλο είδος πορωδών δομών (όπως π.χ. τα 

Covalent Organic Frameworks (COFs)), προκειμένου να ενισχυθεί η ικανότητα προσρόφησης 

τους σε υδρογόνο. 

 

Λέξεις Κλειδιά: ανανεώσιμες πηγές ενέργειας, υδρογόνο, κυψελίδες καυσίμου, μέταλλο-

οργανικά σκελετικά υλικά, μέθοδοι πολλαπλής κλίμακας, λειτουργικές ομάδες, GCMC. 
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Figure 70: Volumetric (g/L) and gravimetric (%wt) hydrogen uptake at T=300K of IRMOF-

14 and IRMOF-14-n (n: -OSO3H, -OPO3H2). 

Figure 71: Volumetric (g/L) and gravimetric (%wt) hydrogen uptake at T=77K of IRMOF-14 

and IRMOF-14-n (n: -OSO3H, -OPO3H2). 

Figure 72: Isosteric heat of adsorption (kJ/mol) of IRMOF-14 and IRMOF-14-n (n: -OSO3H, 

-OPO3H2). 

Figure 73: Snapshots of IRMOF-14 and IRMOF-14-OSO3H at T=77K. 

Figure 74: Snapshots of IRMOF-14 and IRMOF-14-OPO3H2 at T=77K. 
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CHAPTER 1                        Introduction 

 

1.1 Hydrogen Storage 

 

Our planet is facing the urgent need to reduce CO2 emissions and move towards a sustainable 

carbon emission free economy. Global carbon emission from fossil fuel combustion accounts 

for 90% of all emissions from human activity, making fossil fuels the principal CO2 emission 

source.  Meanwhile, fossil fuels reserves face depletion as global fossil fuel consumption is on 

the rise. Whilst depleting reserves could become a pressing issue 50-100 years from now, an 

important limit to fossil fuel production is climate change as CO2 emissions remain trapped in 

the atmosphere for long periods of time causing global temperature to increase. Today, there is 

a general shift towards environmental awareness, which has led to the rise of a number of 

alternative energy sources. Decreased emissions and reduction of environmental pollution are 

major benefits associated with the use of sustainable, green energy solutions. Within the scope 

of sustainability and with a great potential, hydrogen economy is in its early days.  

 

 

Figure 1: Primitive phase diagram of hydrogen showing the phase behavior with changes in temperature and 

pressure [1]. 

 

Hydrogen is a completely clean, non-toxic burning fuel with pure water as the only by-

product when consumed in a fuel cell.  
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Figure 2: Demonstration model of a fuel cell (black layered cube) in its enclosure (left). Scheme of a proton-

conducting fuel cell (right) [2]. 

 

Classified as an alternative energy fuel under the Energy Policy Act of 1992 [3], hydrogen is 

an energy carrier that can deliver or store a significant amount of energy. On a mass basis, 

hydrogen has nearly three times the energy content of gasoline, with 120 MJ/kg versus 44 

MJ/kg respectively. On the volume basis, however, the situation is reversed; the same amount 

of hydrogen requires more storage space than gasoline with liquid hydrogen having a density 

of 8MJ/L whereas gasoline 32 MJ/L [4]. 

Today, hydrogen is most commonly used in petroleum refining and fertilizer production, while 

transportation and utilities are emerging markets.  The extensive use of hydrogen as a fuel is 

being hindered, amongst others, by the lack of effective on-board hydrogen storage solutions. 

In other words, any practical application for vehicles must include a storage solution 

competitive with current gas technology. The major challenge is to effectively store enough 

hydrogen (~6 kg) to enable a practical driving range (~500 km) in a reasonably sized onboard 

tank. Current fuel cell vehicles, manufactured and sold by automotive companies such as 

Honda, Hyundai and Toyota, store hydrogen in high pressure (~700 bar) carbon-fiber-

reinforced fuel tanks [5]. Still, even at such high pressures, 6 kg of liquid hydrogen require a 

tank of 150L volume. Such high storage pressure is also an area of concern for consumer safety 

and compression expenditures. 
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Figure 3: A look on the inside of Toyota Mirai (left) [5] and the main parts of its carbon-fiber reinforced fuel 

tank (right) [6]. The Mirai tank has an internal volume of 122.4 L, with volumetric energy density up to 4.9 

MJ/L [7]. 

 

The goal is to design low-cost, light-weight materials that can reversibly and rapidly store 

hydrogen near ambient conditions. The U.S. Department of Energy (DOE) has set the ultimate 

technical targets of onboard hydrogen storage for light-duty fuel cell vehicles to be 2.2 kWh/kg 

for the usable gravimetric and 1.7 kWh/L for the usable volumetric capacities; amounts 

equivalent to 6.5 wt% H2 and 50 gr H2/L respectively, for the complete storage system (i.e. all 

stored hydrogen, media, reactants and system components). For 2025, these targets are 1.8 

kWh/kg (5.5 wt% H2) and 1.3 kWh/L (40 gr H2/ L system) [8]. To overcome the challenges in 

the existing technologies as well as meet the DOE targets, several strategic pathways have been 

proposed and are currently an active area of multidisciplinary research. Long-term solutions 

focus on both cryo-compressed and material-based hydrogen storage technologies with the 

latter including adsorbents, metal hydrides and chemical storage materials as their major 

representatives [9].   

 

 
 

 
Figure 4: Classification of the existing technologies for hydrogen storage. 
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Depending on the type of materials and therefore the type of the interaction with molecular 

hydrogen, the storage system adsorbs hydrogen either physically (binding energies of ~ 4-10 

kJ/mol) or chemically (~50-100 kJ/mol). Between the two, physisorption shows considerable 

promise since hydrogen adsorption is fast and fully reversible. Physisorption strongly correlates 

with surface area, with higher surface areas leading to greater gas uptake.  

 
 

Figure 5: Potential energy curve for chemisorbed and physisorbed hydrogen as a function of the distance from the 

adsorbent’s surface. The minima of the two curves correspond to the equilibrium distance for physisorbed (Ep) 

and chemisorbed (Ec) hydrogen. 

 

Nanoporous1 materials such as metal-organic frameworks (MOFs) are attractive candidates 

possessing high surface areas so that hydrogen could be stored in smaller, more manageable 

volumes and at relatively low pressures. 

 

 

 

 

 

 

 
1 The size of the pores in nanoporous materials is generally 100 nanometers or smaller. They can be subdivided into three 

categories according to IUPAC [95]; microporous (0.2-2 nm), mesoporous (2-50 nm), microporous (>50 nm). 
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1.2 Metal Organic Frameworks 

 

We have a class of materials in which we can change the 

components nearly at will. There is no other class of materials 

where one can do that. 

-Omar Yaghi 

 

Introduced by O. Yaghi in 1995 [10], Metal Organic Frameworks (MOFs) are a class of 

crystalline materials that belong to the broader category of coordination2 polymers and have 

attracted substantial attention in the last decade due to their unique properties. They are porous 

materials that stand out for their ultrahigh porosity (up to 90% free volume), extended internal 

surface areas (beyond 6000 m²/gr), tunable pore size and chemical composition. Their porosity 

allows the diffusion of guest molecules into the bulk structure, with the shape and size of pores 

governing the shape and size selectivity of the guests to be incorporated. 

 

 

Figure 6: MOFs in powder and pellet form [Source: Monash University]. 
 

 

Figure 7: Scanning electron microscope image of a MOF crystal [11]. 

 
2 A coordination polymer is an inorganic or organometallic polymer structure containing metal cation centers linked by ligands. 

More formally, a coordination polymer is a coordination compound with repeating coordination entities extending in 1, 2, or 3 

dimensions. 



28 
 

Their framework is composed of inorganic metal ions (primary building unit (PBU)) or metal 

clusters (secondary building units (SBUs)) bridged by coordinated multidentate organic 

ligands, such as carboxylates. Their geometry is determined by the coordination number, 

coordination geometry of the metal ions, and the nature of the functional groups. SBU 

geometries may vary, with different number of points of extension such as octahedron (six 

points), trigonal prism (six points), square paddle‐wheel (four points), and triangle (three 

points). In principle, a bridging ligand (ditopic, tritopic, tetratopic, or multitopic linkers) reacts 

with a metal ion with more than one vacant or labile site. The final framework topology of MOF 

is determined by both SBU connectors and organic ligand linkers [12]. 

 

 

Figure 8: Simplified scheme for the node-and-connector approach to prepare MOFs [12]. Different metal ions or 

clusters are mixed together with organic linkers using a suitable solvent. Coordination polymerization takes place 

between the precursors, resulting in a cross-linked network showing potential voids.  

 

 

Figure 9: The structure of MOF-5 or IRMOF-1, the most well studied and representative example of MOFs. 

Composed of zinc cations (the inorganic part) and 1,4-benzene dicarboxylate (BDC, the organic part). The yellow 

sphere shows the empty pore space [Source: Wikipedia]. 
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Building blocks can be combined in various ways to create novel materials. Complex networks 

containing different topologies and specific functions morphologies are constructed and 

employed for a wide variety of applications. The large porosity allows their applications in 

adsorption and separation of gaseous molecules, catalysis, microelectronics, optics, sensing 

applications, bioreactors, drug delivery, and others [13]. 

 

 

 

 

Figure 10: Building blocks of MOFs. Representative list of (A) Metal clusters (the polyhedral demonstrate the 

metal coordination) and (B) Organic linkers used to construct various types of MOFs [14]. 

 

(A) 

(Β) 
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Figure 11: Indicative examples of various combinations of organic linkers and metal clusters resulting in different 

MOF3 structures. 

 

MOFs can be characterized as “tailored materials”, as they can be designed to have the desired 

properties for specific applications. Stretching the limits of their physical properties, MOFs’ 

composition, structure and pore metrics can be varied, granting them versatile performances in 

various research fields. The pore size is allowed to be tuned and spatial cavity arrangement be 

controlled, by judicious selection of metal centers and organic ligands and also by adjusting 

their conditions of synthesis.  

 
3 Abbreviation MOF is usually used as a general name of the class of compounds. When followed by an ordinal number, it 

denotes an individual metal-organic framework (e.g. MOF-5, MOF-74, etc.). Other abbreviations include naming by initials 

of institution or place of discovery (e.g. UiO-n: Universitetet i Oslo, MIL-n: Materials of Institut Lavoisier, etc.) 
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Figure 12: The selection of the organic linker and connection geometry of the metal cluster lead to the desired 

topology. Each framework topology has its characteristic pore size and available surface [15]. 

 

The synthesis of MOFs involves reaction conditions and methods such as solvothermal, 

ionothermal, diffusion, microwave methods, ultrasound‐assisted, template‐directed syntheses, 

and others [16]. At their discovery, the method for synthesis of MOFs is solvothermal. 

Typically, metal precursors and organic linkers are dissolved in solvent and placed in a closed 

reaction vessel for the formation and self-assembly of MOF crystals. The common solvents 

used include N,N-dimethyl formamide (DMF), N,N-diethyl formamide (DEF), methanol, 

ethanol, and acetonitrile. The synthesis temperature is generally below 220°C, and the 

crystallization time varies from several hours to several tens of days.  

 

 

 

Figure 13: Timeline of the most common synthesis approaches for MOFs. [17] 
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Metal-Organic Frameworks are currently an extremely active area of research that holds great 

promises for advanced technological applications especially in gas-sorption/storage and 

separation. Through the great variety of organic molecules and metals that can be used, over 

the past 20 years the field has proliferated a huge number of publications with over 20,000 MOF 

structures published.  

 

Figure 14: Diagram illustrating the dynamics of interest in MOFs with the number of publications for the period 

1994-2017 [Source: Web of Science]. 

Nowadays MOF databases of theoretically predicted (“hypothetical”) and experimentally 

synthesized (“real”) MOFs are being developed for managing the enormous amounts of data. 

They also give access to search more easily for desired properties, and MOFs with their 

tailorable pore size and functionality seem to be ideal for the computational design of novel 

functional materials.  

 

 

 

Figure 15: Visual summary of the hypothetical MOF generation strategy. Crystal structures of existing metal–

organic frameworks are obtained from X-ray diffraction data (left) and are subsequently divided into building 

blocks (middle) that can then be recombined to form new, hypothetical metal–organic frameworks (right) [18].  
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After O. Yaghi first reported the high H2 uptake capacity of MOF-5 in 2003 [19], MOFs have 

been intensively researched as hydrogen adsorbents. In order to be promising for H2 storage 

applications, a porous material should show an uptake4 that is ideally large and the adsorption 

should strong and reversible. Many experimental studies show that MOFs have very high H2 

adsorption capacities, up to 10 wt% at 77 Κ and 100 bar. For practical hydrogen storage 

materials, volumetric and gravimetric hydrogen capacities are the key factors that determine 

the size and weight of the MOF-filled tank required to store a certain amount of hydrogen for 

reasonable driving range. Therefore, they must be optimized so the tank is neither too large nor 

too heavy. 

Recently, the metal–organic frameworks M2(m-dobdc) (M = Co, Ni; m-dobdc4– = 4,6- 

dioxido-1,3-benzenedicarboxylate) and the isomeric frameworks M2(dobdc) (M = Co, Ni; 

dobdc4– = 1,4-dioxido-1,3-benzenedicarboxylate), which are known to have open metal cation 

sites that strongly interact with H2, were evaluated by Jeffrey R. Long and co-workers for their 

usable volumetric H2 storage capacities over a range of near-ambient temperatures relevant to 

on-board storage [20]. The testing of the four different compounds showed that the MOF called 

Ni2(m-dobdc) presented the highest hydrogen-storage capacity over a range of pressures and 

temperatures. At ambient temperature and a much lower tank pressure than used in current 

hydrogen vehicles, Ni2(m-dobdc) set a new record for hydrogen storage capacity of 11.9 g of 

fuel per liter of MOF crystal. The MOF had a significantly greater storage capacity than 

compressed hydrogen gas under the same conditions. 

 
4 The uptake curves are also called adsorption isotherms and the uptake can be presented as gravimetric (gr of H2 per gr of 

system) or volumetric (gr of H2 per L of system). 
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Figure 16: Hydrogen adsorption isotherms for (a) Co2(m-dobdc), (b) Ni2(m-dobdc), (c) Co2(dobdc), and (d) 

Ni2(dobdc) at −75 (black circles), −50 (navy squares), −40 (blue triangles), −25 (green upside-down triangles), 0 

(gold diamonds), 25 (yellow hexagons), 50 (orange stars), 75 (dark red pentagons), and 100 °C (bright red crosses) 

measured between 0 and 100 bar and plotted in terms of total volumetric and gravimetric capacity. The black line 

in each plot represents the volumetric density of pure compressed H2 at 25 °C [20]. 

Lin et al.  synthesized and studied three MOFs and found that the maximum amount of H2 

adsorbed increased with increasing pore size, while the maximum adsorbate density decreased 

with increasing pore size, indicating that the contrasting adsorbed H2 density with increasing 

pore size suggests that an optimum pore size exists [21]. Therefore, it was concluded that a 

strategy of only increasing pore volume may not give the optimum hydrogen storage material. 

Volumetric hydrogen uptake generally decreases with increasing pore size, because H2 

molecules in the void central space of large pores do not experience the attractive forces from 

pore surfaces. Molecular simulation results of Farha et al. [22] show hydrogen “monolayer” 

adsorption to be proportional to the surface area, whereas hydrogen “pore filling” adsorption is 

proportional to the pore volume. Other calculations suggest that pores with a width of 9 Å are 

optimal to maximize the hydrogen capacities at 77 K and 100 bar. [23] With this pore size, the 

overlap of the interaction from multiple walls leads to the highest H2 affinity.  

Many MOFs with suitable pores for H2 are constructed; their high H2 storage capacities are 

summarized in Table 1. 
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Table 1: Hydrogen uptakes of selected MOFs [24]. 

However, the strategy of only varying the pore size may not give the optimum hydrogen storage 

material and many different strategies have been up-to-date employed towards enhancing 

hydrogen storage capacity of MOFs. Since interaction of hydrogen molecules with the 

framework is weak, to increase hydrogen capacities, it is essential that both the surface area and 

the framework–hydrogen interaction strength are increased. Other than control of the pore size 

(e.g. increase of BET surface area, impregnation, catenation), some strategies include 

introduction of open metal sites in the metal oxide part as well as in the organic linker, doping 

of alkali elements onto the organic linker, functionalization of the organic linker and hydrogen 

spill-over [25].  

As a way to increase the H2 physisorption energy of MOFs, the functionalization of organic 

linkers shows a good effect and is the focus of this study. Currently, organic linkers of most 

MOFs have aromatic backbones such as benzene and naphthalene. According to the ab initio 

calculations performed so far, the H2 physisorption energy to aromatic organic linkers increases 

with the addition of –NH2, –CH3, and –OH groups due to their ability to enrich the aromatic 

system electronically [26]. 
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Figure 17: Strategies for improving hydrogen storage capacities in MOFs along with examples of the 

corresponding MOF candidates. 

 

The design flexibility and tuning of properties of MOFs have complicated the search and 

identification of optimal compositions as the parameter space is very extended. To this 

direction, computational methods are able to accelerate the demanding quest; recently, many 

high-throughput studies have searched the real and hypothetical MOF databases to identify 

MOFs that simultaneously exhibit high volumetric and gravimetric hydrogen uptakes.  

 

 

Table 2: Summary of recent high-throughput calculations of hydrogen storage in MOFs [27]. 

 

Notably, in the work of Siegel and coworkers [27], nearly 500,000 MOFs were screened 

computationally and the most promising candidates were assessed experimentally. Three MOF 

candidates, SNU-70, UMCM-9, and PCN-610/NU-100 were found to surpass the capacities of 

IRMOF-20, the record holder for balanced hydrogen capacity. 
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Figure 18: Crystal structures of MOFs identified by computational screening and were assessed experimentally 

afterwards [27]. Atom colors: C dark gray, H white, O red, Cu orange, Zn blue. 

 

 
 

Figure 19: The structure of IRMOF-20, the record-holder for balanced gravimetric and volumetric hydrogen 

capacities [28]. Atom colors: C dark gray, H white, O red, S orange, Zn blue. 
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1.3 Purpose of this study 

 

The main scope of this study is to identify promising functional groups that enhance the 

hydrogen storage capacities of MOFs and provide guidance for future material development. 

To this purpose, a combination of quantum chemical and classical simulation methodology is 

vital, demonstrating the importance of multiscale modeling on the studies of adsorptive 

properties of MOFs.  

Aiming to identify a promising functional group that binds strongly the hydrogen molecule and 

also build a valuable database for further theoretical and experimental studies, the interaction 

of hydrogen with a series of strategically functionalized aromatic molecules is studied in the 

first place, by using quantum mechanical methods. Taking one step further, electrostatic 

potential maps of the functionalized moieties and electron density redistribution plots were 

created in order to provide insights on the nature of the interaction of hydrogen with the 

functionalized molecules. Last but not least, by performing GCMC studies we would be able to 

evaluate if stronger interaction energies provided by the introduction of a functional group in 

the structure of the framework would lead to an enhanced hydrogen uptake at different 

thermodynamic conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



39 
 

CHAPTER 2                      Computational Methodology 

 

2.1 Multiscale modeling of materials 

 

The arts celebrate multiple perspectives.  

One of their major lessons is that there are  

many ways to see and interpret the world. 

-Elliot W. Eisner 

 

Some of the most fascinating and intriguing problems in all scientific fields involve multiple 

spatial or temporal scales.  Important problems include multiscale modeling of fluids, solids, 

polymers, proteins, as well as various physical and chemical phenomena like adsorption, 

chemical reactions, and diffusion. 

Multi-scale materials modeling in general can be defined as an approach that combines existing 

as well as emerging methods from diverse scientific disciplines to bridge the wide range of time 

and length scales that are inherent in a number of essential phenomena and processes in 

materials science and engineering.  

Materials are made up of atoms and the interactions among them at the microscopic level 

determine the behavior of the material at the macroscopic scale. The growth of multiscale 

modeling is strongly coupled with the unique advantages of this approach. Multiscale modeling 

can help in the direction of developing new materials, reduce product costs through innovations 

in material design, decrease the number of costly large-systems scale experiments and increase 

product quality and performance. 

In the context of materials simulations, one can distinguish four characteristic length levels;  

• the atomic scale (∼10-9 m or a few nanometers),  

• the microscopic scale (∼10-6 m or a few micrometers),  

• the mesoscopic scale (∼10-4 m or hundreds of micrometers) and  

• the macroscopic scale (∼10-2 m or centimeters and beyond). 

Phenomena at each length scale typically have a corresponding timescale. According to the 

four length scales mentioned above, the timescale ranges roughly from femtoseconds to 

picoseconds, to nanoseconds, to milliseconds and beyond [29]. 
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Figure 20: Molecular simulation methods at multiple length- and time scales. Hierarchical multiscale simulations 

utilize information obtained from simulations at a given (lower) characteristic length and time scales as an input 

for the next (upper) scale simulations.   

 

At each length and timescale, efficient computational methods have been developed over the 

years to handle the relevant phenomena. Multi-scale molecular modeling consists of two basic 

categories of computational methods that can be used in the study of materials; quantum 

mechanical calculations and simulations based on classical physics. 

 

Figure 21: Multi-scale methodology scheme, showing the different levels of theory and the corresponding size of 

systems under study. 

 

 



41 
 

 

Quantum chemistry (QM) methods can be employed to treat electrons explicitly at the atomic 

scale and can provide structural, electronic and dynamic properties of the system with high 

accuracy. Using no parameters to the system other than solving the Schrodinger equation from 

first principles, they cannot handle more than a few tens of atoms as their computational cost 

increases dramatically with the number of electrons of the system. On the other hand, methods 

based on Density Functional Theory, can be readily applied to systems containing several 

hundred of atoms. 

Classical simulations include several types of methods, such as Monte Carlo (MC), Molecular 

Dynamics (MD) and Molecular Mechanics (MM). Having the advantage of being able to treat 

larger systems, they can provide insight into atomic processes involving considerably larger 

systems, reaching up to millions of atoms and timescales up to a microsecond. They take into 

consideration the thermodynamic conditions of the system under study. However, their major 

disadvantage is that their results and accuracy depend on the parameters. For material properties 

at the microscopic scale, MD/MC simulations are usually performed employing classic 

interatomic potentials, which can often be derived from highly accurate QM or DFT 

calculations. 

Overall, within the concept of multiscale approach in general, we try to predict the performance 

and behavior of materials across all relevant length and timescales and try to achieve a balance 

among accuracy, efficiency, and realistic description. In this project, we followed a bottom-up 

approach, beginning with ab initio calculations to study the strength and the nature of the 

interaction between hydrogen guest molecules individual parts of MOF structures. Going one 

step up, we introduce the topology of our systems by studying the whole organic linker and 

metal cluster with DFT methods. The success of our computational model depends heavily on 

the step of the accurate description of the intermolecular interactions between the guest 

hydrogen molecules and the MOF atoms. In our approach, we use our ab initio derived results 

to fit the parameters of an already existing interatomic potential onto these results. Having an 

accurate description of the intermolecular interaction, we can perform Monte Carlo simulations 

in the Grand Canonical ensemble. From these simulations we measure the adsorption profile of 

our system, we extract the adsorption isotherms and we can directly compare to experiment as 

GCMC calculations give us directly the number of hydrogen molecules inside the MOF for 

different thermodynamic conditions. 
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2.2 Quantum Chemistry Methods 

 

I consider that I understand an equation  

when I can predict the properties of each solution 

 without actually solving it. 

- P. Dirac 

 

Quantum Chemistry is the application of quantum mechanical postulates in the study of 

molecular systems. Many of the properties of atoms, molecules and solids can be calculated by 

determining the eigenfunctions of the many-body Hamiltonian. While Schrodinger equation of 

the hydrogen atom can be solved exactly, for systems having more than a few electrons the 

exact solution is an impossible task. As P. Dirac commented in 1929, “The underlying physical 

laws necessary for the mathematical theory of a large part of physics and the whole of chemistry 

are thus completely known, and the difficulty is only that the exact application of these laws 

leads to equations much too complicated to be soluble.” 

Since molecular binding energies vary from hundredths to hundreds of kcal/mol depending on 

the governing nature of the interaction, the daunting challenge is to develop theoretical and 

computational approaches that are capable of accurately describing molecular binding over this 

wide range of values. Several methods have been formulated to find accurate approximations. 

There are two broad classes of methods, wave function-based and density-based, each 

subdivided into different approaches. In wave function-based methods, the wave function is 

written explicitly whereas in density-based, energy is written in terms of electron density.  

In this chapter, the basic concepts and approximations of ab initio and density functional 

methods are presented, in an attempt to provide a conceptual framework for the quantum 

chemistry calculations conducted in this study. 
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2.2.1 Ab initio methods 

 

In order to present the postulates of ab initio approaches we begin by formulating the electronic 

problem. With the time-independent Schrodinger equation as the starting point, we introduce 

the Born-Oppenheimer approximation as well as the basic ideas of the Hartree-Fock method. 

Subsequently, considering the limitations of the Hartree-Fock theory, we focus on more 

sophisticated methods that incorporate the effect of electron correlation and are able to give 

quantitatively accurate predictions. 

 

A. Born-Oppenheimer Approximation and the concept of the Potential Energy Surface 

 

Named after Max Born and J. Robert Oppenheimer in 1927 [30], the Born-Oppenheimer 

approximation (BO) lies at the core of quantum chemistry and molecular physics. The approach 

rests on the fact that since the masses of the nuclei are much greater than the masses of electrons 

(the resting mass of the lightest nucleus, the proton, is 1836 times heavier than the resting mass 

of one electron), the electrons can adjust almost instantaneously to any changes in the positions 

of the nuclei. Hence, to a good approximation, one can consider the electrons in a molecule to 

be moving in the field of fixed nuclei and the motion of the electrons can therefore be decoupled 

from the motion of the nuclei. 

 The BO or “clamped nuclei” approximation is intrinsic to the concept of the potential energy 

surface (PES). Considering a specific nuclear configuration for the molecular system under 

study, the Schrodinger equation is solved for the electrons in the static electric field generated 

by the fixed nuclei. Then, selecting a different nuclear geometry and repeating the calculations, 

a different solution to the electronic problem is derived. These solutions constitute the PES, 

whose global minimum corresponds to the most stable nuclear configuration. 

Many sorts of macroscopic concepts in Chemistry, such as energetics, reactivity, equilibria, 

etc., are traced back to the notion of the PES. The dimensionality of a PES equals the internal 

degrees of freedom of the system, i.e. 3N-6 (or 3N-5 for linear molecules). 
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Figure 22: A 2-dimensional slice of a molecule with three degrees of freedom; the bond angle is held fixed and 

defines the slice [31]. 

                                              

Due to the importance of the BO approximation, we consider a more detailed description.  

Our main interest is to find approximate solutions of the non-relativistic time-independent 

Schrodinger equation  �̂�|𝛹⟩ = 𝛦|𝛹⟩   (2.1). In atomic units, the Hamiltonian operator for a 

system of N electrons and M nuclei described by position vectors 𝒓𝒊 and 𝑹𝑨 respectively, is 
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where 𝒓𝒊𝑨 is the distance between the ith electron and the Ath nucleus, 𝒓𝒊𝒋 the distance between 

the ith and jth electron and 𝑹𝑨𝑩 the distance between the Ath and Bth nucleus. 𝑀𝐴 and 𝑍𝐴 are the 

mass and the atomic number of nucleus 𝐴, respectively. 
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Written in a more compact form, 

�̂� = �̂�𝑒 + �̂�𝑁 + �̂�𝑒𝑁 + �̂�𝑒𝑒 + �̂�𝑁𝑁   (2.3) 
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�̂�𝑒𝑁 = − ∑ ∑
𝑍𝐴

𝒓𝒊𝑨

𝑀
𝐴=1

𝑁
𝑖=1    (2.3𝛾), 

�̂�𝑒𝑒 = ∑ ∑
1

𝒓𝒊𝒋

𝑁
𝑗>𝑖

𝑁
𝑖=1    (2.3𝛿), 

�̂�𝑁𝑁 = ∑ ∑
𝑍𝐴𝑍𝐵

𝑹𝑨𝑩

𝑀
𝐵>𝐴

𝑀
𝐴=1    (2.3휀). 

The two first terms represent the kinetic energy of the electrons and the nuclei, respectively; 

the third term represents the Coulomb attraction between electrons and nuclei; the fourth and 

fifth terms represent the repulsion between electrons and between nuclei, respectively.  

In the light of the BO approximation, the kinetic energy of the nuclei, �̂�𝑁, can be neglected and 

the repulsion between the nuclei, �̂�𝑁𝑁, can be considered to be constant. The remaining terms 

of (2.3)  constitute the electronic Hamiltonian, �̂�𝑒𝑙𝑒𝑐 = �̂�𝑒 + �̂�𝑒𝑁 + �̂�𝑒𝑒   (2.4) , i.e. the 

Hamiltonian describing the motion of 𝑁 electrons in the field of 𝑀 point charges. The term �̂�𝑒𝑁 

is large and cannot be neglected; however, we can make the R dependence parametric so that 

total wave function is given as  |𝛹𝑡𝑜𝑡⟩ = |𝛹𝑒𝑙𝑒𝑐({𝒓𝒊}; {𝑹𝑨})⟩ |𝛹𝑛𝑢𝑐𝑙({𝑹𝑨})⟩   (2.5) where 𝛹𝑒𝑙𝑒𝑐  

depends explicitly on the electronic coordinates {ri} and parametrically on the nuclear 

coordinates {RA}. Having found the electronic energy eigenvalues by solving the electronic 

Schrodinger equation  �̂�𝑒𝑙𝑒𝑐|𝛹𝑒𝑙𝑒𝑐⟩ = 𝐸𝑒𝑙𝑒𝑐|𝛹𝑒𝑙𝑒𝑐⟩   (2.6), the total energy 𝐸𝑡𝑜𝑡 is derived by 

simply adding the term of the constant nuclear repulsion. 𝐸𝑡𝑜𝑡 = 𝐸𝑒𝑙𝑒𝑐 +

∑ ∑
𝑍𝐴𝑍𝐵

𝑹𝑨𝑩

𝑀
𝐵>𝐴

𝑀
𝐴=1  (2.7). Equations (2.4) to (2.7) constitute the electronic problem. 

Once the electronic problem is solved, the problem for the motion of the nuclei can be tackled 

if we consider nuclei to move in the average field generated by the electrons. As the electrons 

move much faster than the nuclei, it is a reasonable approximation in (2.3) to replace the 

electronic coordinates by their average values. The nuclear Hamiltonian is thus: 
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�̂� = − ∑
1

2𝑀𝐴
𝛻𝐴

2

𝑀

𝐴=1

+ ⟨−
1

2
∑ 𝛻𝑖

2

𝑁

𝑖=1

− ∑ ∑
𝑍𝐴

𝒓𝒊𝑨

𝑀

𝐴=1

𝑁

𝑖=1

+ ∑ ∑
1

𝒓𝒊𝒋

𝑁

𝑗>𝑖

𝑁

𝑖=1

⟩ + ∑ ∑
𝑍𝐴𝑍𝐵

𝑹𝑨𝑩

𝑀

𝐵>𝐴

𝑀

𝐴=1

= − ∑
1

2𝑀𝐴
𝛻𝐴

2

𝑀

𝐴=1

+ 𝐸𝑒𝑙𝑒𝑐({𝑹𝐴}) + ∑ ∑
𝑍𝐴𝑍𝐵

𝑹𝑨𝑩

𝑀

𝐵>𝐴

𝑀

𝐴=1

= − ∑
1

2𝑀𝐴
𝛻𝐴

2

𝑀

𝐴=1

+ 𝐸𝑡𝑜𝑡({𝑹𝐴})   (2.8) 

 

The total energy 𝐸𝑡𝑜𝑡({𝑹𝐴}) constitutes the potential energy surface. Thus, the nuclei move in 

a potential energy surface obtained by solving the electronic problem. 

The solutions of the nuclear Schrodinger equation, �̂�𝑛𝑢𝑐𝑙|𝛹𝑛𝑢𝑐𝑙⟩ = 𝐸|𝛹𝑛𝑢𝑐𝑙⟩ ,  

describe the vibration, rotation, and translation of a molecule, and 𝐸 is the BO approximation 

to the total energy of (2.1) and includes the electronic, vibrational, rotational and translational 

energy. 

 

B. Hartree-Fock Approximation 

 

The electronic Schrodinger equation that results from the time-independent Schrodinger 

equation after invoking the Born-Oppenheimer approximation is still insoluble due to the 

interaction of the electrons. The essence of the Hartree-Fock approximation is to replace the 

complicated many-electron problem by a one-electron problem in which electron-electron 

repulsion is treated in an average way. 

The electronic problem for the simplest atom, hydrogen, which has only one electron can be 

solved exactly. Therefore, it is reasonable to start by assuming that electrons do not interact 

with each other (i.e. that �̂�𝑒𝑒 = 0). Taking this assumption, the Hamiltonian would be separable 

and the total electronic wavefunction describing the motions of N non-interacting electrons 

would be of the form 

𝛹𝐻𝑃(𝐫𝟏, 𝐫𝟐, … , 𝐫𝑵) =  𝜑𝟏(𝐫𝟏)𝜑𝟐(𝐫𝟐) … 𝜑𝜨(𝐫𝜨)   (2.9) 

which is known as a Hartree Product. However, this functional form fails to satisfy the 

antisymmetry principle, which states that a wavefunction describing fermions should be 

antisymmetric with respect to the interchange of any set of space-spin coordinates. Equation 

(2.9) includes only spatial coordinates. In order to have a complete description of the electron, 
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we have to take into account not only the three spatial coordinates 𝐫, but also a coordinate for 

spin. We call a generic spin coordinate ω, and the complete set of space-spin coordinates 𝐱 =

{𝐫, 𝜔}. We change the notation for orbitals from 𝜑(𝐫), a spatial orbital, to 𝜒(𝐱), a spin orbital, 

where the spin orbital is just the product of a spatial orbital and either the α(ω) or β(ω) spin 

function, for spin up and spin down respectively. With the full set of coordinates, the Hartree 

Product becomes  

𝛹𝐻𝑃(𝐱𝟏, 𝐱𝟐, … , 𝐱𝑵) =  𝜒𝟏(𝐱𝟏)𝜒𝟐(𝐱𝟐) … 𝜒𝜨(𝐱𝜨)   (2.10) 

For a two-electron problem, the antisymmetry principle can be satisfied by a wavefunction of 

the form 

𝛹(𝐱𝟏, 𝐱𝟐) =  
𝟏

√𝟐
[𝜒𝟏(𝐱𝟏)𝜒𝟐(𝐱𝟐) − 𝜒𝟏(𝐱𝟐)𝜒𝟐(𝐱𝟏)]   (2.11) 

Rewriting the above functional form as 

 

𝛹(𝐱𝟏, 𝐱𝟐) =  
𝟏

√𝟐
|
𝜒𝟏(𝐱𝟏) 𝜒𝟐(𝐱𝟏)
𝜒𝟏(𝐱𝟐) 𝜒𝟐(𝐱𝟐)

|  (2.12) 

 

we can easily see that if one tries to put two electrons in the same orbital at the same time, i.e. 

if  𝜒𝟏 = 𝜒𝟐  , then 𝛹(𝐱𝟏, 𝐱𝟐) = 0 which is nothing more than the Pauli exclusion principle, 

which is a consequence of the antisymmetry principle. 

Generalizing to N electrons, the antisymmetric wavefunction is written as a determinant of spin 

orbitals which is called Slater determinant  

 

𝛹 =  
𝟏

√𝑵!
|

𝜒𝟏(𝐱𝟏) 𝜒𝟐(𝐱𝟏) …
𝜒𝟏(𝐱𝟐) 𝜒𝟐(𝐱𝟐) …

𝜒𝑵(𝐱𝟏)
𝜒𝑵(𝐱𝟐)

⋮ ⋮ ⋱
𝜒𝟏(𝐱𝑵) 𝜒𝟐(𝐱𝑵) …

⋮
𝜒𝑵(𝐱𝑵)

|   (2.13) 

 

where one can see that all electrons are indistinguishable and that each electron is associated 

with every orbital. Interchanging the coordinates of two electrons corresponds to interchanging 

two rows of the Slater determinant, which changes the sign of the determinant. Thus, Slater 

determinants meet the requirement of the antisymmetry principle. When two electrons occupy 

the same spin-orbital (i.e. two columns are equal) the determinant is zero; no more than one 
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electron can occupy a spin-orbital (Pauli exclusion principle). Writing the determinant in a more 

compact form: 

𝛹 =  |𝜒𝒊(𝐱𝟏)𝜒𝒋(𝐱𝟐) … 𝜒𝒌(𝐱𝑵)⟩ = |𝜒𝒊𝜒𝒋 … 𝜒𝒌⟩ = |𝑖𝑗 … 𝑘⟩   (2.14) , 

where the normalization factor is implied. 

 

Knowing the functional form of the wavefunction, we proceed to the notation of the 

Hamiltonian. We define a one-electron operator ℎ(𝑖) as 

ℎ(𝑖) = −
1

2
∇𝑖

2 − ∑
𝑍𝐴

𝑟𝑖𝐴
𝐴

   (2.15) 

and a two-electron operator 𝑣(𝑖, 𝑗) as 

𝑣(𝑖, 𝑗) =
1

𝑟𝑖𝑗
   (2.16) 

and we can write the electronic Hamiltonian in the simpler form of 

𝐻𝑒�̂� = ∑ ℎ(𝑖)

𝑖

+ ∑ 𝑣(𝑖, 𝑗)

𝑖<𝑗

+ �̂�𝑁𝑁   (2.17) 

Since �̂�𝑁𝑁 is just a constant for a fixed set of nuclear coordinates {𝐑} we will ignore it as it does 

not change the eigenfunctions but only shifts them. The electronic energy, assuming that the 

wavefunction is normalized will be given by 

𝐸𝑒𝑙 = ⟨𝛹|𝐻𝑒�̂�|𝛹⟩   (2.18) 

For symmetric energy expressions, we can employ the variational theorem, which states that 

the energy is always an upper bound to the true energy. 

Hence, one can obtain better approximate wavefunctions by varying their parameters until the 

energy within the given functional space is minimized; the correct molecular orbitals being 

those who minimize the electronic energy 𝐸𝑒𝑙. The molecular orbitals can be expressed as a 

linear combination of a set of atomic orbital basis functions (LCAO). 

It can be shown that the Hartree-Fock energy 𝐸𝑒𝑙 can be rewritten in terms of integrals of the 

one- and two-electron operators as 

𝐸𝐻𝐹 = ∑⟨𝑖|ℎ|𝑖⟩ +  
1

2
𝑖

∑{⟨𝑖𝑖|𝑗𝑗⟩ − ⟨𝑖𝑗|𝑗𝑖⟩}

𝑖𝑗

   (2.19) 

where the one-electron integral is 

⟨𝑖|ℎ|𝑗⟩ = ∫ 𝑑x1𝜒𝑖
∗(x1) ℎ(𝐫1) 𝜒𝑗(x1)   (2.20) 

and the two-electron integral is 
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⟨𝑖𝑗|𝑘𝑙⟩ = ∫ 𝑑x1𝑑x2𝜒𝑖
∗(x1) 𝜒𝑗(x1)

1

𝑟12
𝜒𝑘

∗(x2)𝜒𝑙(x2)  (2.21) 

There exist efficient algorithms for computing such one- and two-electron integrals, with two-

electron integrals to be computationally demanding. In order to minimize the Hartree-Fock 

energy expression with respect to changes in the orbitals (𝜒𝑖 →   𝜒𝑖 + 𝛿𝜒𝑖) we use Lagrange’s 

method of undetermined multipliers and eventually arrive at the Hartree-Fock equations 

defining the orbitals 

ℎ(x1)𝜒𝑖(x1) + ∑ [∫ 𝑑x2|𝜒𝑗(x2)|
2

𝑟12
−1] 𝜒𝑖(x1)

𝑖≠𝑗

− ∑ [∫ 𝑑x2𝜒𝑗
∗(x2) 𝜒𝑖(x2)𝑟12

−1] 𝜒𝑗(x1) = 𝜖𝑖𝜒𝑖(x1)

𝑗≠𝑖

  (2.22) 

where 𝜖𝑖 is the energy eigenvalue associated with the orbital 𝜒𝑖. 

• The term ∑ [∫ 𝑑x2|𝜒𝑗(x2)|
2

𝑟12
−1] 𝜒𝑖(x1)𝑖≠𝑗  is called the Coulomb term and expresses the 

Coulomb interaction of an electron in spin orbital 𝜒𝑖  with the average charge 

distribution of the other electrons. We define a Coulomb operator as 

𝐽𝑗(x1) = ∫ 𝑑x2|𝜒𝑗(x2)|
2

𝑟12
−1   (2.23) 

which gives the average local potential at point x1 due to charge distribution from the 

electron in orbital 𝜒𝑗. 

• The term ∑ [∫ 𝑑x2𝜒𝑗
∗(x2) 𝜒𝑖(x2)𝑟12

−1]𝜒𝑗(x1)𝑗≠𝑖  looks like the Coulomb term except that it 

switches or exchanges spin orbitals 𝜒𝑖  and 𝜒𝑗 . It arises from the antisymmetry 

requirement of the wavefunction and does not have a simple classical analog. We can 

define an exchange operator in terms of its action on an arbitrary spin orbital 𝜒𝑖  as 

𝐾𝑗(x1) 𝜒𝑖(x1) = [∫ 𝑑x2𝜒𝑗
∗(x2) 𝜒𝑖(x2)𝑟12

−1] 𝜒𝑗(x1)   (2.24) 

In terms of these Coulomb and exchange operators, the Hartree-Fock equations become: 

[ℎ(x1)  + ∑ 𝐽𝑗(x1) − ∑ 𝐾𝑗(x1)] 𝜒𝑖(x1) = 𝜖𝑖𝜒𝑖(x1)

𝑗≠𝑖𝑗≠𝑖

   (2.25) 

where it is clear that Hartree-Fock equations are eigenvalue equations. 

If we realize that [ 𝐽𝑗(x1)−𝐾𝑗(x1)] 𝜒𝑖(x1) = 0 then we can introduce the Fock operator as: 

𝑓(x1) = ℎ(x1)  + ∑[𝐽𝑗(x1) − 𝐾𝑗(x1)]

𝑗

   (2.26) 

where we can define 𝑢𝐻𝐹(x1) = ∑ [𝐽𝑗(x1) − 𝐾𝑗(x1)]𝑗  as the Hartree-Fock potential which is 
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actually the average potential experienced by the ith electron due to the presence of the other 

electrons. The Hartree-Fock equations thus become: 

𝑓(x1)𝜒𝑖(x1) = 𝜖𝑖𝜒𝑖(x1)   (2.27) 

 

The Hartree-Fock potential 𝑢𝐻𝐹(x1), or equivalently the “field” seen by the ith electron, depends 

on the spin orbitals of the other electrons (i.e. the fock operator depends on its eigenfunctions). 

Hence, the HF equation is nonlinear and must be solved iteratively; the procedure is called the 

self-consistent-field (SCF) method. The basic idea of the SCF method is the following; by 

making an initial guess at the spin orbitals, one can calculate the average field 𝑢𝐻𝐹 seen by each 

electron and then solve the eigenvalue equation for a new set of spin orbitals. Using these new 

spin orbitals, one can obtain new fields and repeat the procedure until self-consistency is 

reached (i.e. until the fields no longer change and the spin orbitals used to construct the Fock 

operator are the same as its eigenfunctions). 

The solution of the HF eigenvalue problem yields a set {𝜒𝑘}of orthonormal HF spin orbitals 

with orbital energies {𝜖𝑘}. The N spin orbitals with the lowest energies are the occupied spin 

orbitals. The Slater determinant formed from these orbitals is the HF ground state wavefunction 

and is the best variational approximation to the ground state of the system. 

The integro-differential Hartree-Fock equations can be solved numerically only for atoms due 

to the spherical symmetry of their spin orbitals. Roothaan and Hall showed that by expanding 

the molecular orbitals into an appropriate spatial basis (i.e. a set of atomic orbital basis 

functions), the integro-differential equation can be converted to a set of equations that can be 

solved with linear algebra tools.  Denoting the atomic orbital basis functions as �̃�, we have the 

expansion 

𝜒𝑖 = ∑ 𝐶𝜇𝑖�̃�𝜇

𝛫

𝜇=1

   (2.28) 

for each spin orbital i. 

 

 

This leads to 

𝑓(x1) ∑ 𝐶𝑣𝑖�̃�𝑣(x1) = 𝜖𝑖 ∑ 𝐶𝑣𝑖�̃�𝑣(x1)

𝑣𝑣

   (2.29) 
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Left multiplying by �̃�𝜇
∗ (x1) and integrating yields a matrix equation 

∑ 𝐶𝑣𝑖 ∫ 𝑑x1�̃�𝜇
∗ (x1) 𝑓(x1) �̃�𝑣(x1) = 𝜖𝑖 ∑ 𝐶𝑣𝑖 ∫ 𝑑x1�̃�𝜇

∗ (x1) �̃�𝑣(x1)

𝑣𝑣

   (2.30) 

that can be simplified by introducing the matrix element notation 

𝑆𝜇𝜈 = ∫ 𝑑x1�̃�𝜇
∗ (x1) �̃�𝑣(x1)   (2.31) 

𝐹𝜇𝜈 = ∫ 𝑑x1�̃�𝜇
∗ (x1) 𝑓(x1) �̃�𝑣(x1)   (2.32) 

to the  

∑ 𝐹𝜇𝜈𝐶𝑣𝑖 = 𝜖𝑖 ∑ 𝑆𝜇𝜈𝐶𝑣𝑖

𝑣𝑣

   (2.33) 

 

or as matrices to the  

𝐹𝐶 = 𝑆𝐶ϵ   (2.34) 

where ϵ is a diagonal matrix of the orbital energies 𝜖𝑖. Considering the actual calculation of HF 

wavefunctions, we have to be more specific about the form of the spin orbitals. There are two 

types of spin orbitals; restricted spin orbitals, which are constrained to have the same spatial 

function for α and β spin functions, and unrestricted spin orbitals, which have different spatial 

functions for α and β spins. The restricted closed-shell set of spin orbitals leads to restricted 

closed-shell wavefunctions via the Roothaan-Hall equations. An unrestricted open-shell set of 

spin orbitals leads to unrestricted open-shell wavefunctions via the Pople-Nesbet equations. The 

Roothaan-Hall equation is a generalized matrix eigenvalue equation of the form 

𝐹𝐶 = 𝑆𝐶ϵ   (2.34) 

These equations have a non-trivial solution only if the secular equation is satisfied; 

det(𝐹 − 𝜖𝛼𝑆) = 0   (2.35) 

and can be solved with the use of the self-consistent method where in each cycle, a new set of 

𝐶 coefficients is produced until the convergence criteria are met. By procedure analogous of 

those used to derive the Roothaan equations, one can derive the corresponding unrestricted 

open-shell Pople-Nesbet equations 

𝐹𝛼𝐶𝛼 = 𝑆𝐶𝛼ϵ𝛼   (2.36) 

𝐹𝛽𝐶𝛽 = 𝑆𝐶𝛽ϵ𝛽   (2.37) 
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These equations can be solved in a manner similar to the way Roothaan’s equations are solved, 

except that 𝐹𝛼 and 𝐹𝛽 depend on both 𝐶𝛼  and 𝐶𝛽, thus the two matrix eigenvalue problems 

must be solved simultaneously. 

 

 

 

Figure 23: Illustration of the SCF procedure. 

 

The quality of the initial guess orbitals influences the number of iterations necessary for 

achieving convergence. The simplest way to generate a set of initial orbitals is to diagonalize 

the Fock matrix consisting only of one-electron contributions, i.e. totally neglecting the 

electron-electron repulsion. This is generally a poor guess; more sophisticated procedures 

involve taking the initial set of MO coefficients from a semi empirical calculation such as 

Extended Hückel Theory (EHT) [32]. The EHT method has the advantage that it is readily 

parametrized for all elements. 

 

C. Electron Correlation and Post-Hartree-Fock Methods 

 

Within the Hartree–Fock method, the antisymmetric wave function is approximated by a 

single Slater determinant. The single-determinant approximation does not take into account 

Coulomb correlation, leading to a total electronic energy different from the exact solution. 

Although with a sufficiently large basis set the HF wavefunction is able to account for ~99% 

of the total energy, the remaining ~1% is more than significant for describing chemically 

important effects such as dispersion. In order to calculate total energies with a chemical 

accuracy of ~1 kcal/mol, one has to use more sophisticated methods including electron 

correlation and large basis sets. 

https://en.wikipedia.org/wiki/Hartree%E2%80%93Fock_method
https://en.wikipedia.org/wiki/Wave_function
https://en.wikipedia.org/wiki/Slater_determinant
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The correlation energy is defined as the difference between the exact total energy of the system 

and the Hartree-Fock energy. The Hartree-Fock ground state is of the single determinant form: 

|𝛹0⟩ = |𝜒1𝜒2 … 𝜒𝑎𝜒𝑏 … 𝜒𝑁⟩, comprising of N occupied spin-orbitals. A determinant that differs 

from |𝛹0⟩ by N spin-orbitals is called a N-tuply excited determinant. In order to take into 

account multiple determinants, one can consider the HF ground state to be a reference state and 

classify other possible determinants by how they differ from the reference state. The additional 

determinants can be used to represent approximate excited states of the system, or if used in a 

linear combination with |𝛹0⟩ they can provide a more accurate description of the ground state 

or any excited state of the system. A singly excited determinant is one in which an electron 

occupying a spin-orbital 𝜒𝑎 has been excited to a virtual spin-orbital 𝜒𝑟: 

|𝛹𝑎
𝑟⟩ = |𝜒1𝜒2 … 𝜒𝑟𝜒𝑏 … 𝜒𝑁⟩   (2.38) 

A doubly excited determinant is one in which two electrons have been promoted from 𝜒𝑎 and 

𝜒𝑏 to 𝜒𝑟 and 𝜒𝑠 respectively. 

|𝛹𝑎𝑏
𝑟𝑠 ⟩ = |𝜒1𝜒2 … 𝜒𝑟𝜒𝑠 … 𝜒𝑁⟩   (2.39) 

We can write the exact wavefunction for any state of the system as  

|𝛹0⟩ = 𝑐0|𝛹0⟩ + ∑ 𝑐𝑎
𝑟|𝛹𝑎

𝑟⟩

𝑎𝑟

+ ∑ 𝑐𝑎𝑏
𝑟𝑠 |𝛹𝑎𝑏

𝑟𝑠 ⟩
𝑎<𝑏
𝑟<𝑠

+ ∑ 𝑐𝑎𝑏𝑐
𝑟𝑠𝑡 |𝛹𝑎𝑏𝑐

𝑟𝑠𝑡 ⟩
𝑎<𝑏<𝑐
𝑟<𝑠<𝑡

+ ⋯   (2.40) 

The infinite set of N-electron determinants {|𝛹𝑖⟩} = {|𝛹0⟩, |𝛹𝑎
𝑟⟩, |𝛹𝑎𝑏

𝑟𝑠 ⟩, … } is a complete set for 

the expansion of any N-electron wavefunction. The exact energies of the ground and excited 

states of the system are the eigenvalues of the Hamiltonian matrix formed from the complete 

set {|𝛹𝑖⟩}. The lowest eigenvalue of the Hamiltonian matrix, Ε, is the exact nonrelativistic 

ground state energy of the system within the BO approximation. The difference between this 

exact energy and the Hartree-Fock-limit energy, 𝐸0, is the correlation energy 𝐸𝑐𝑜𝑟𝑟 = 𝛦 − 𝐸0.  

There are three main methods for accounting the effect of electron correlation: Configuration 

Interaction (CI) [33], Many-body Perturbation theory (MBPT), and Coupled Cluster theory 

(CC) [34,35]. 
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Møller–Plesset perturbation theory (MP) 

 

The Møller–Plesset perturbation theory is a special case of Rayleigh-Schrödinger perturbation 

theory (PT) which is a systematic procedure for finding the correlation energy. In PT, the total 

Hamiltonian of the system is divided in two parts; a zero-order part, 𝐻0 , which has known 

eigenfunctions and eigenvalues, and a small perturbation part, 𝑉.  

𝐻 = 𝐻0 + 𝜆𝑉   (2.41) 

The exact energy is expressed as an infinite sum of contributions of increasing complexity  

𝛦 = 𝛦𝑖
(0)

+ 𝜆𝛦𝑖
(1)

+ 𝜆2𝛦𝑖
(2)

+ ⋯   (2.42) 

and the exact wavefunction in terms of the approximate wavefunctions as 

|𝛹𝑖⟩ = |𝛹𝑖
(0)

⟩ + 𝜆 |𝛹𝑖
(1)

⟩ + 𝜆2 |𝛹𝑖
(2)

⟩ + ⋯   (2.43) 

Substituting these expansions into the Schrödinger equation, collecting terms according to 

powers of 𝜆, multiplying the resulting equations by 𝛹𝑖
(0)

 and integrating over all space yields 

the following expressions for the 𝑛th-order (MP𝑛) energies 

𝛦𝑖
(0)

= ⟨𝛹𝑖
(0)

|𝐻|𝛹𝑖
(0)

⟩    (2.44) 

𝛦𝑖
(1)

= ⟨𝛹𝑖
(0)

|𝑉|𝛹𝑖
(0)

⟩    (2.45) 

𝛦𝑖
(2)

= ⟨𝛹𝑖
(0)

|𝑉|𝛹𝑖
(1)

⟩    (2.46) 

𝛦𝑖
(3)

= ⟨𝛹𝑖
(0)

|𝑉|𝛹𝑖
(2)

⟩    (2.47) 

Since we are interested in obtaining a perturbation expansion for the correlation energy, in MP 

theory we choose the Hartree-Fock Hamiltonian as our zeroth-order Hamiltonian 

𝐻0 = ∑ 𝑓(𝑖)

𝑖

= ∑[ℎ(𝑖) + 𝑢𝐻𝐹(𝑖)]

𝑖

    (2.48) 

and 

𝑉 = ∑ ∑ 𝑟𝑖𝑗
−1

𝑗>𝑖
𝑖

+ 𝑉𝐻𝐹 = ∑ ∑ 𝑟𝑖𝑗
−1

𝑗>𝑖
𝑖

− ∑ 𝑢𝐻𝐹(𝑖)

𝑖

   (2.49) 

while the Hartree-Fock wavefunction |𝛹0⟩ is an eigenfunction of 𝐻0 

𝐻0|𝛹0⟩ = 𝛦0
(0)

|𝛹0⟩    (2.50) 

where 

𝛦0
(0)

= ∑ 휀𝑎

𝑎

   (2.51) 
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is the zeroth order energy and 휀𝑎 the energies of the spin-orbitals.  

For the first order energy we have: 

𝛦0
(1)

= ⟨𝛹0|𝑉|𝛹0⟩ = −
1

2
∑⟨𝑎𝑏‖

𝑎𝑏

𝑎𝑏⟩    (2.52) 

and the Hartree-Fock energy is the sum of zeroth and first order energies 

𝐸0 = 𝛦0
(0)

+ 𝛦0
(1)

= ∑ 휀𝑎

𝑎

−
1

2
∑⟨𝑎𝑏||𝑎𝑏⟩

𝑎𝑏

   (2.53) 

Thus, the first correction of the Hartree-Fock energy corresponds to the second order of 

perturbation theory, i.e. the MP2. 

𝛦0
(2)

= ∑
|⟨𝛹0| ∑ ∑ 𝑟𝑖𝑗

−1
𝑗>𝑖𝑖 |𝛹𝑎𝑏

𝑟𝑠 ⟩|
2

휀𝑎 + 휀𝑏 − 휀𝑟 − 휀𝑠𝑎<𝑏
𝑟<𝑠

= ∑
|⟨𝑎𝑏||𝑟𝑠⟩|2

휀𝑎 + 휀𝑏 − 휀𝑟 − 휀𝑠𝑎<𝑏
𝑟<𝑠

    (2.54) 

Expressions for higher order terms follow similarly, although with much greater algebraic and 

computational complexity. Because of its relatively modest computational cost, second-order 

Møller-Plesset perturbation (MP2) theory is one of the most widely used methods in quantum 

chemistry for studying noncovalent interactions. Depending on the size of the molecular system 

under study, more accurate calculations, such as coupled-cluster calculations with single, 

double, and perturbative triple excitations [CCSD(T)], may be computationally prohibited; the 

cost of benchmark-quality CCSD(T) formally scales as O(N7), where N is proportional to the 

system size, whereas MP2 scales as O(N5). 

 

D. Basis Set Approximation 

 

One of the approximations inherent in essentially all ab initio methods is the introduction of a 

basis set. A basis set is a set of mathematical functions from which the wavefunction is 

constructed. Expanding an unknown function, such as a molecular orbital, in a set of known 

functions is not an approximation if the basis set is complete, i.e. an infinite number of functions 

is used. However, in actual calculations, the expansion to an infinite set of functions is an 

impossible task. Thus, one has to identify mathematical functions that allow wavefunctions to 

approach the complete basis set limit in as efficient a manner as possible. In principle, the 

smaller the basis set, the poorer the representation. The type of basis functions used also 

influences the accuracy; the better a single basis function is able to reproduce the unknown 

function, the fewer basis functions are necessary for achieving a given level of accuracy.  
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There are two types of basis functions commonly used in electronic structure calculations; 

Slater Type Orbitals (STO) and Gaussian Type Orbitals (GTO). Slater type orbitals have the 

functional form 

𝜑𝑛,𝑙,𝑚
𝑆𝑇𝑂 (휁, 𝐫) = 𝜑𝑛,𝑙,𝑚

𝑆𝑇𝑂 (휁, 𝑟, 𝜃, 𝜑) = 𝛮𝑟𝑛−1𝑒−𝜁𝑟𝑌𝑙
𝑚(𝜃, 𝜑)   (2.55) 

where 𝛮 is a normalization constant and 𝑌𝑙
𝑚 are spherical harmonic functions. The exponential 

dependence on the distance between the nucleus and the electron (𝑒−𝜁𝑟), reflects the exact 

orbitals for the hydrogen atom. However, STOs do not have any radial nodes; nodes are 

introduced by constructing linear combinations of STOs. The calculation of the two-electron 

integrals cannot be performed analytically with the use of STOs. 

Gaussian type orbitals can be written in terms of polar coordinates as: 

𝜑𝑛,𝑙,𝑚
𝐺𝑇𝑂 (𝛼, 𝐫) = 𝜑𝑛,𝑙,𝑚

𝐺𝑇𝑂 (𝛼, 𝑟, 𝜃, 𝜑) = 𝛮𝑟𝑛−1𝑒−𝛼𝑟2
𝑌𝑙

𝑚(𝜃, 𝜑)   (2.56) 

or Cartesian coordinates as: 

𝜑𝑖,𝑗,𝑘
𝐺𝑇𝑂(𝛼, 𝑥, 𝑦, 𝑧) = 𝛮𝑥𝑖𝑦𝑗𝑧𝑘𝑒−𝛼(𝑥2+𝑦2+𝑧2)   (2.57) 

where 𝛼 is an exponent controlling the width of the GTO, and 𝑖, 𝑗, 𝑘, are non-negative integers 

that dictate the nature of the orbital in a Cartesian sense. 

 

Figure 24: Slater vs Gaussian-type orbital [36]. 

 

GTOs with 𝑖 = 𝑗 = 𝑘 = 0 have spherical symmetry and are called s-type GTOs, with 𝑖 = 𝑗 =

𝑘 = 1 are p-type GTOs, with 𝑖 = 𝑗 = 𝑘 = 2 are d-type GTOs, etc. 

In terms of computational efficiency, GTOs are superior to STOs due to the ease of which the 

required integrals can be calculated. However, the 𝑟2 exponential dependence makes GTOs 

inferior to STOs in two ways; GTOs fail to represent the proper behavior near the nucleus and 

also decay too fast with the distance. In order to combine the best feature of GTOs (i.e. 

computational efficiency) with that of STOs (proper radial shape), a linear combination of 
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GTOs is used to approximate STOs. The linear combination of Gaussians is referred to as a 

“contracted” basis function, and the individual Gaussians from which it is formed are the 

“primitive” Gaussians. 

 

 

Figure 25: Approximating an STO with a linear combination of GTOs [37]. 

 

The STO-nG basis sets, where n is the number of primitive Gaussians are known as “single-ζ” 

basis sets and constitute the most common “minimal” basis set. 

Given the number of the functions used per orbital , basis sets can be classified to Single Zeta, 

Double Zeta (DZ), Triple Zeta (TZ), Quadruple Zeta (QZ) and Quintuple Zeta (5Z) which 

correspond to basis sets with one, two, three, four, five functions for each orbital respectively. 

Another classification is based on the fact that the chemical bonding occurs between valence 

orbitals; valence orbitals can vary widely as a function of chemical bonding whereas core 

orbitals are only weakly affected. “Split-valence” basis sets are basis sets in which there are 

multiple basis functions corresponding to each valence atomic orbital and are called valence 

double, triple, quadruple-zeta, and so on, basis sets. Amongst the most widely used split-valence 

basis sets are those of Pople et al. These basis sets include 3-21G, 6-21G, 4-31G, 6-31G, and 

6-311G. In the same category belong also the basis sets developed by Dunning and coworkers, 

with the difference that these basis sets were optimized not only for HF calculations, but also 

for calculations including electron correlation. Examples include cc-pVDZ, cc-pVTZ, etc. 

where the acronym stands for “correlation-consistent polarized Valence (Double/Triple/etc.) 

Zeta”. 

Molecular orbitals require more mathematical flexibility than atoms. This flexibility is added 

via polarization functions which correspond to quantum numbers of higher angular momentum. 
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For independent-particle wavefunctions, where electron correlation is not considered, the first 

set of polarization functions describes adequately most of the important charge polarization 

effects. Adding a single set of polarization functions (i.e. p-functions on hydrogens and d-

functions on heavy atoms) to the DZ basis, forms a Double Zeta plus Polarization (DZP) type 

basis. If methods including electron correlation are used, higher angular momentum functionals 

are essential. If two sets of polarization functions are added to a TZ basis, a Triple Zeta plus 

Double Polarization (TZ2P or TZPP) type basis is obtained. 

The highest energy MOs of anions, highly excited electronic states, and loose supramolecular 

complexes, tend to be much more spatially diffuse than other MOs. In order to provide the 

necessary flexibility to allow a weakly bound electron to localize far from the remaining 

density, basis sets are “augmented” with diffuse basis functions. In the Pople family of basis 

sets [38], the presence of diffuse functions is indicated by a ‘+’ in the basis set name (e.g. 6-

31+G(d)). In the Dunning family of cc-pVnZ basis sets [39], diffuse functions on all atoms are 

indicated by the ‘aug’ prefix (e.g. aug-cc-pVTZ). 

A well performing for general-purpose computations family of basis sets are the Karlsruhe basis 

sets [40] by Ahlrichs and coworkers that were designed as the second-generation default (or 

“def2” ) basis sets in the Turbomole [41] program (e.g. def2-TZVPP is a Triple Zeta basis with 

two sets of Polarization functions). 

 

 

 

Figure 26: Convergence to the exact solution for methods that include electron correlation. The larger the one-

electron expansion (basis set size) and the larger the many-electron expansion (number of determinants), the better 

the results. 
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Basis Set Superposition Error (BSSE) 

 

In calculating molecular interactions, the use of finite basis sets introduces the so-called “basis 

set superposition error (BSSE)”. It consists of the fact that when the atoms of interacting 

molecules approach one another, their basis functions overlap. Each monomer "borrows" 

functions from other nearby components, effectively increasing its basis set. This effect 

increases as the atoms orientate themselves in closer distances, creating an effectively varying 

basis set with the interatomic distance.  

 

 

Figure 27: Origin of the basis set superposition error. (a) A and B far apart from each other; (b) basis orbitals 

overlap when A couples to B; (c) the region in blue indicates the part of the basis orbitals centered at B that are 

available to describe A. 

 

In the case of a dimer, interaction energies (𝛥𝐸) between two atoms or molecules A and B are 

calculated as the difference between the product complex AB and its components A and B: 

𝛥𝐸 = 𝐸𝐴𝐵
𝐴𝐵(𝐴𝐵) − 𝐸𝐴

𝐴(𝐴) − 𝐸𝐵
𝐵(𝐵)   (2.58) 

where the subscript denotes the geometry of the system and the superscript the used basis sets. 

The interaction energies calculated according to (2.58) lead to artificial stabilization energies 

with severe complications for systems with dominant dispersion forces or hydrogen bonds. 

One obvious solution to the BSSE is the use of extremely large basis sets. This is, however, 

hardly feasible for most of the systems. In order to eliminate the BSSE, Boys and Bernardi 

introduced the counterpoise correction (CP) [42]. In the counterpoise correction, the artificial 

stabilization is countered by letting the separate atoms improve their basis sets by borrowing 

functions of an empty basis set. To realize such an empty basis set, a ghost atom is used. Ghost 

atoms have the basis orbitals of the according atom, but no charge or mass; they are basis set 
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functions which have no electrons or protons. The original Boys and Bernardi formula for the 

interaction energy between fragments A and B is: 

𝛥𝐸𝐶𝑃 = 𝐸𝐴𝐵
𝐴𝐵(𝐴𝐵) − 𝐸𝐴

𝐴(𝐴) − 𝐸𝐵
𝐵(𝐵)

− [𝐸𝐴
𝐴𝐵(𝐴𝐵) − 𝐸𝐴

𝐴𝐵(𝐴) + 𝐸𝐵
𝐴𝐵(𝐴𝐵) − 𝐸𝐵

𝐴𝐵(𝐵)]   (2.59) 

Here, 𝐸𝑋
𝑌(𝑍) is the energy of fragment X calculated at the optimized geometry of fragment Y 

with the basis set of fragment Z. 

Thus, one needs to do a total the following series of calculations; First, optimize the geometry 

of the dimer and the monomers with some basis set Z in order to get 𝐸𝐴𝐵
𝐴𝐵(𝐴𝐵) , 𝐸𝐴

𝐴(𝐴) and 

𝐸𝐵
𝐵(𝐵), i.e. the uncorrected interaction energy 𝛥𝐸. Subsequently, delete fragment A (B) from 

the optimized structure of the dimer and re-run the single point calculation with basis set Z to 

get 𝐸𝐵
𝐴𝐵(𝐴𝐵) and 𝐸𝐴

𝐴𝐵(𝐴).  

Finally, calculate the energies of A and B at the dimer geometry but with the dimer basis set to 

compute 𝐸𝐴
𝐴𝐵(𝐴𝐵) and 𝐸𝐵

𝐴𝐵(𝐵). 

 

 

2.2.2 Density Functional Theory 

 

From the previous analysis it has become clear that solving the many-particle equation for the 

ground state wavefunction and energy is a daunting task even for the smallest system. The 

problem with these methods is the huge computational effort, which makes it virtually 

impossible to apply them efficiently to larger, more complex systems. An alternative route is to 

shift the focus from the wavefunction Ψ, to a fundamental observable, namely the electronic 

density 𝑛. 

In 1964, Hohenberg and Kohn laid the foundations of Density Functional Theory (DFT) [43]. 

In this theory, the key variable is the electron density 𝑛(𝐫)  

𝑛(𝐫) = 𝑁 ∫ 𝛹∗( 𝐫, 𝐫𝟐, … , 𝐫𝑵)𝛹(𝐫, 𝐫𝟐, … , 𝐫𝑵)𝑑𝐫2𝑑𝐫𝑁   (2.60) 

which is a function of the three spatial coordinates. The electron density and the total energy 

depend parametrically from the nuclear positions as 𝑛(𝐫) = 𝑛(𝐫; 𝐑𝟏, 𝐑𝟐, … , 𝐑𝑀 )  and 𝐸 =

𝐸(𝐑𝟏, 𝐑𝟐, … , 𝐑𝑀 ) respectively. 

DFT was made possible by the existence of two ingeniously simple theorems put forward and 

proven by Hohenberg and Kohn. The first H–K theorem demonstrates that the ground 

state properties of a many-electron system are uniquely determined by an electron density. 

https://en.wikipedia.org/wiki/Ground_state
https://en.wikipedia.org/wiki/Ground_state
https://en.wikipedia.org/wiki/Electronic_density
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Since the density depends on only three spatial coordinates, the many-body problem 

of N electrons with 3N spatial coordinates can be reduced to three spatial coordinates, through 

the use of functionals of the electron density. The second H–K theorem states that a universal 

functional for the energy can be defined in terms of the electron density. The exact ground state 

is the global minimum value of this functional. 

Within the BO approximation, the electronic energy, 𝐸𝑒𝑙𝑒𝑐, can be written as a functional of the 

electron density as 

𝐸𝑒𝑙𝑒𝑐[𝑛(𝐫)] = 𝑇[𝑛(𝐫)] + 𝑉𝑒𝑁[𝑛(𝐫)] + 𝑉𝑒𝑒[𝑛(𝐫)]   (2.61) 

where 𝑇[𝑛(𝐫)]  is the kinetic energy of the electrons, 𝑉𝑒𝑁[𝑛(𝐫)]  is the nuclear-electron 

attraction energy, and 𝑉𝑒𝑒[𝑛(𝐫)] is the electron-electron interaction energy. 

• 𝑉𝑒𝑁 can be computed as 

𝑉𝑒𝑁[𝑛(𝐫)] = ∑ ∫
𝑍𝐴

|𝐫 − 𝐑𝐴|

𝑀

𝐴=1

𝑛(𝐫) 𝑑𝐫   (2.62) 

• 𝑉𝑒𝑒 can be separated in two parts; 𝐽[𝑛(𝐫)] and 𝑄[𝑛(𝐫)] where 𝐽 is the classical electron-

electron repulsion energy that can be computed according to 

𝐽[𝑛(𝐫)] =
1

2
∬

𝑛(𝐫𝟏)𝑛(𝐫𝟐)

𝑟12
𝑑𝐫1𝑑𝐫2   (2.63) 

and 𝑄 is the quantum electron-electron interaction energy that has no classical analog 

and cannot be computed analytically. 

• 𝑇 is the kinetic energy of the electrons which cannot be directly written in terms of the 

electron density since it contains a derivative term 

𝑇[𝑛(𝐫)] = −
1

2
∫ 𝛹∗( 𝐫𝟏, … , 𝐫𝑵)∇𝟐𝛹(𝐫𝟏, … , 𝐫𝑵)𝑑𝐫   (2.64) 

In order to solve this problem, instead of the full many-particle system, an auxilliary 

system of single-particle orbitals is considered, namely the Kohn-Sham orbitals, that 

have the same ground state density as the real system. 

𝑛(𝐫) = ∑|𝜑𝑖(𝐫)|2

𝑁

𝑖=1

   (2.65) 

The kinetic energy can then be written as the sum of the kinetic energies of the Kohn-

Sham orbitals. The kinetic energy 𝑇 can be therefore expressed as the single-particle 

kinetic energy (𝑇𝑠) plus a correction 𝛥𝑇, i.e., 𝑇 = 𝑇𝑠 +  𝛥𝑇, where 

𝑇𝑠[{𝜑𝑖(𝐫)}] = −
1

2
∫ 𝜑𝑖

∗ (𝐫)∇𝟐𝜑𝑖(𝐫)𝑑𝐫   (2.66) 

https://en.wikipedia.org/wiki/Functional_(mathematics)
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Since the single-particle kinetic energy 𝑇𝑠 is not equal to the kinetic energy of the real many-

particle kinetic energy 𝑇, the difference 𝛥𝑇 between these two terms is combined with 𝑄, to 

define the exchange-correlation energy 𝐸𝑥𝑐[𝑛(𝐫)]; namely, 

𝐸𝑥𝑐[𝑛(𝐫)] = 𝑇[𝑛(𝐫)] − 𝑇𝑠[{𝜑𝑖(𝐫)}] + 𝑄[𝑛(𝐫)]   (2.67) 

The only unknown term is now the exchange-correlation functional with the objective of DFT 

being the development of accurate approximate functionals for 𝑇[𝑛(𝐫)]  and 𝑄[𝑛(𝐫)] .  

The exchange & correlation energy is often represented as a sum of an exchange functional 

𝐸𝑥[𝑛(𝐫)] and a correlation functional 𝐸𝑐[𝑛(𝐫)] and is defined as the difference between the 

exact total energy of a system and the classical Hartree energy. The exchange energy is the 

Pauli repulsion (omitted in the Hartree term). Correlations are a result of the collective behavior 

of the electrons to screen and decrease the Coulombic interaction. Unlike the exchange term, 

the correlations become more pronounced for opposite spins, since the electrons are more likely 

to occupy nearby locations. Both exchange and correlation tend to keep electrons apart. 

In the past 30 years, many non-empirical and semi-empirical density functionals have been 

developed. A major difficulty in their development is that density functionals are not 

systematically improvable, i.e. there is no guarantee that finer functional forms yield more 

accurate results across all types of interactions. One possible DFT hierarchy is represented by 

the “Jacob’s Ladder” of John Perdew. 

 

 

Figure 28: Perdew's metaphorical Jacob's Ladder [44]. 

 

The ladder is composed of five rungs corresponding to increasingly sophisticated models for 

the unknown exchange-correlation functional and has its foundations in the “Hartree World” 
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where the exchange-correlation energy is zero and the electron-electron interaction is provided 

solely by  𝐽[𝑛(𝐫)]. Moving up the ladder introduces additional ingredients into the functional 

form, culminating in the “Heaven” of chemical accuracy. 

The simplest exchange-correlation approximation is the Local Spin-Density Approximation 

(LSDA) with functionals depending only on the electron density. The electron density can be 

locally considered as a homogeneous electron gas; this is a serious approximation for atoms 

and molecules since their electron density changes drastically with distance. The LSDA 

exchange functional has an exact analytic form  

𝐸𝑥
𝐿𝐷𝐴[𝑛(𝐫)] = −

3

4
(

3

𝜋
)

1
3⁄

∫ 𝑛(𝐫)
4

3⁄ 𝑑𝒓   (2.68) 

while there is no exact analytic form for the LSDA correlation functional; it can be given by 

parametrization on accurate Quantum Monte Carlo data. Some popular LSDA exchange 

functionals are the VWN5 [45], PZ81 [46], and PW92 [47]. 

In order to improve upon the errors that LSDA approximation introduces, one has to account 

inhomogeneities in the density. The Generalized Gradient approximation (GGA) functionals 

account for this effect by depending also on the density gradient, ∇𝑛. Popular GGA exchange 

functionals include B88 [48], PW91 [49], and PBE [50]. Popular GGA correlation functionals 

include P86 [51], LYP [52], PW91 [49], and PBE [50]. These components can be combined to 

define GGA exchange-correlation functionals, with probably the most popular one to be the 

PBE exchange-correlation functional. In addition to combining separable exchange and 

correlation functionals, it is possible to semi-empirically parametrize GGA exchange-

correlation functionals. 

Going one step up the Jacob’s Ladder, one can further improve the accuracy by introducing on 

the functional a dependence on the Laplacian of the density, ∇2𝑛, or the kinetic energy density; 

both these ingredients capture second derivative information and are actually related. 

Functionals that depend on either of these, are known as meta-Generalized Gradient 

Approximations (meta-GGA or mGGA). Popular non-empirical meta-GGA exchange-

correlation functionals include PKZB  [53], TPSS [54], MS0 [55]. Semi-empirical meta-GGA 

include functionals such as M06-L [56].  

However, there are three additional limitations to the aforementioned exchange-correlation 

functionals; self-interaction, long-range dynamic correlation (i.e. dispersion) and strong 

correlation. In order to account for self-interaction, the local exchange functional can be 
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replaced by the exact exchange functional (Hartree-Fock), while employing a local correlation 

functional that gives exactly zero correlation energy for any one-electron system (such as LYP). 

The idea of mixing only a global fraction of exact exchange with the exchange-correlation 

functional is a successful solution that defines the next rung of Jacob’s Ladder; the Hybrid 

GGA functionals. Most global hybrid GGA functionals have an exact exchange mixing 

parameter between 20%-25%. The most popular non-empirical global hybrid GGA functional 

is PBE0 [57] (with 25% exact exchange), while the most popular semi-empirical global hybrid 

GGA is B3LYP [58] (with 20% exact exchange). B3LYP functional has the form 

𝐸𝑥𝑐
𝐵3𝐿𝑌𝑃 = 𝐸𝑥𝑐

𝐿𝐷𝐴 + 𝛼0(𝐸𝑥
𝐻𝐹 − 𝐸𝑥

𝐿𝐷𝐴) + 𝛼𝑥(𝐸𝑥
𝐺𝐺𝐴 − 𝐸𝑥

𝐿𝐷𝐴) + 𝛼𝑐(𝐸𝑐
𝐺𝐺𝐴 − 𝐸𝑐

𝐿𝐷𝐴)   (2.69) 

where  𝛼0 = 0.20, 𝛼𝑥 = 0.72, and 𝛼𝑐 = 0.81 are the three empirical parameters. 

A weakness of local and hybrid exchange-correlation functionals is their inability to properly 

account for dispersion interactions. On improving the description of non-covalent interactions, 

Grimme and co-workers developed the DFT-D method  [59–62] which is a damped, atom-atom 

empirical potential that can be used as a correction on top of the aforementioned functionals. 

So far, three generations of DFT-D tails have been developed; D1 [59], D2  [60], and D3  [61]. 

The D3 tail correction can be used either with the original damping function, D3(0), or the 

Becke-Johnson’s, D3(BJ)  [62]. In general, dispersion corrections should be used with 

functionals that tend to underbind both strong and weak non-covalent interactions. 

Finally, all of the aforementioned density functionals may fail at describing multi-reference 

systems that are strongly correlated as HF and KS-DFT are both single-determinant methods. 

Thus, it may be necessary to include information from multiple determinants. 
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2.3 Classical Approaches 

 

Classical simulations can be used to study structural, diffusion, and adsorption properties of 

porous materials. Molecular Mechanics or Force-Field (FF) methods use classical models to 

predict the energy of a molecule as a function of its conformation. While in Quantum Chemistry 

methods one of the major challenges is to calculate the electronic energy for a given nuclear 

configuration to give a potential energy surface, in Force Field (FF) methods, this step is 

bypassed by writing the electronic energy as a parametric function of the nuclear coordinates 

and fitting the parameters to experimental or higher-level computational data. The “building 

blocks” in FF methods are atoms; electrons are not considered as individual particles. Bonding 

information are provided explicitly, rather than being the result of solving the electronic 

Schrodinger equation.  

In this chapter we start by introducing briefly what is a FF, which are the main interactions and 

terms that come into play in a standard FF and what are the challenges of an accurate description 

of the interatomic forces. Force field-based approaches include Monte Carlo (MC) and 

Molecular Dynamics (MD) simulations; Herein, Monte Carlo in the Grand Canonical ensemble 

(GCMC) is presented since it is applied for predicting macroscopic properties (such as 

adsorption isotherms, isosteric heats, etc.) of guest hydrogen molecules in porous MOF 

structures.  

 

2.3.1 Force-Field Energy 

 

The potential energy of any system can be written as a sum of different potentials with simple 

interpretation (bond deformations, electrostatics, dispersion forces, etc.). For an arbitrary 

geometry of a molecule is expressed as a superposition of valence (or bonded) interactions 

( 𝐸𝑣𝑎𝑙 ) that depend on the specific connections (bonds) of the structure and non-bonded 

interactions (𝐸𝑛𝑏) that depend only on the distance between atoms [63]; 

𝐸 = 𝐸𝑣𝑎𝑙 + 𝐸𝑛𝑏    (2.70) 

Bonded interactions consist of bond stretching, angle bending, torsional components, etc. 

relating atoms that are linked by covalent bonds, while non-bonded interactions include van der 

Waals and electrostatic components. Additional non-bonded terms can be included, such as 

polarization and hydrogen bonding interactions. 
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Figure 29: Illustration of the fundamental force field energy terms. The molecular mechanics model considers 

atoms as spheres and bonds as springs. 

 

Therefore, the classical molecular energy (𝑈)  can be described as a Taylor expansion in bonds, 

bends, torsions, etc. 

𝑈 = ∑ 𝑢𝑏(𝑟)

𝑏𝑜𝑛𝑑𝑠

+ ∑ 𝑢𝜃(𝜃)

𝑏𝑒𝑛𝑑𝑠

+ ∑ 𝑢𝜑(𝜑)

𝑡𝑜𝑟𝑠𝑖𝑜𝑛𝑠

+ ∑ 𝑢𝑛𝑏(𝑟)

𝑛𝑜𝑛−𝑏𝑜𝑛𝑑𝑖𝑛𝑔

+ ∑ 𝑢𝜒(𝜒)

𝑜𝑢𝑡−𝑜𝑓−𝑝𝑙𝑎𝑛𝑒 𝑏𝑒𝑛𝑑𝑠

+ ∑ 𝑢𝑏𝑏(𝑟, 𝑟′)

𝑏𝑜𝑛𝑑−𝑏𝑜𝑛𝑑

+ ∑ 𝑢𝑏𝜃(𝑟, 𝜃)

𝑏𝑜𝑛𝑑−𝑏𝑒𝑛𝑑

+ ∑ 𝑢𝜃𝜃′(𝜃, 𝜃′)

𝑏𝑒𝑛𝑑−𝑏𝑒𝑛𝑑

+ ∑ 𝑢𝑏,𝜑(𝑟, 𝜑, 𝑟′)

𝑏𝑜𝑛𝑑−𝑡𝑜𝑟𝑠𝑖𝑜𝑛

+ ∑ 𝑢𝑏,𝜑(𝑟, 𝜑, 𝜃′)

𝑏𝑒𝑛𝑑−𝑡𝑜𝑟𝑠𝑖𝑜𝑛

+ ⋯   (2.71) 

The above equation is historically referred to as a force field5. 

Non-bonding interactions are usually divided into van der Waals (vdW) and electrostatic 

interactions, with the former being dominant in physical adsorption processes and the latter 

significantly affecting the adsorbate uptake. 

Van der Waals interactions between two atoms arise from the balance between repulsive and 

attractive forces with repulsion due to the overlap of the electron clouds of both atoms and the 

attractive component resulting from the interactions between induced dipoles. The Lennard-

Jones (12-6) potential [64] is commonly used to describe vdW interactions due to its 

computational simplicity. 

𝑢𝑖𝑗(𝑟) = 4휀𝑖𝑗 [(
𝜎𝑖𝑗

𝑟𝑖𝑗
)

12

− (
𝜎𝑖𝑗

𝑟𝑖𝑗
)

6

]   (2.72) 

 
5 The name force field arose from the lowest order approximation using only springs with force constants. 
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where 휀 and 𝜎 being the effective interaction and size parameters of a particle. The 𝑟−12 term 

is the Pauli repulsion that dominates at short ranges whereas the 𝑟−6  term describes the 

dispersion attraction at long ranges.  

 

Figure 30: The Lennard-Jones potential. 

 

Van der Waals forces act between any pair of atoms belonging to different molecules, but they 

also intervene between sufficiently separated atoms that belong to the same molecule. In 

principle, a set of parameters (𝜎𝑖𝑗 and 휀𝑖𝑗) should be defined for each pair of atoms, but most 

FFs specify the 𝜎  and 휀  per atom-type and use a set of mixing rules (e.g. Lorentz-

Berthelot [65]) to calculate the interaction between two particles. 

For example, the Lorentz-Berthelot mixing rules [65] for UFF [66] and DREIDING [63] give 

𝜎𝑖𝑗 =
𝜎𝑖𝑖+𝜎𝑗𝑗

2
   (2.73) and 휀𝑖𝑗 = √휀𝑖𝑖휀𝑗𝑗    (2.74). 

 

Figure 31: Lorentz-Berthelot combination rule for the Lennard-Jones potential. 
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Although the molecular electron density can be obtained with high accuracy from high-level 

QM calculations, the problem of reducing such density to a manageable description to be used 

in a molecular mechanics simulation is not trivial.  Most partition schemes assign partial 

charges to each atom; the electrostatic energy is then computed according to6  

𝑢𝑖𝑗(𝑟) =
1

8𝜋휀0
∑

𝑞𝑖𝑞𝑗

|𝑟𝑖 − 𝑟𝑗|
𝑖≠𝑗

   (2.75) 

where 휀0 is the electric permittivity of vacuum and 𝑞𝑖  the partial charge of atom 𝑖 . 

In order to treat the non-converging behavior of the above equation, the Ewald summation [67] 

is used. The appropriate way to obtain reliable partial charges consists of performing an ab 

initio calculation and then derive them from the QM potential. However, they cannot be derived 

unambiguously as atomic charges are not experimental observables; many different methods 

have been developed to determine them (e.g. CHELPG) and they do not always produce the 

same distribution of point charges. 

 

Table 3: Common Force Field terms. 

 

Some examples of popular generic force fields include AMBER [68], COMPASS [69], 

DREIDING [63], UFF [66], CHARMM [70], GROMOS [71], etc. Each FF has its particular 

strengths and weaknesses related to the data and procedure employed in its parametrization, so 

the final choice depends on the particular problem being considered. 

A complete description of molecular adsorption in porous materials should account for 

adsorbate-adsorbent and adsorbate-adsorbate intermolecular interactions, as well as 

 
6 The following expression counts all interactions and divides by a factor of 2 to compensate for double counting. 
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intramolecular interactions for the adsorbate and the adsorbent. For adsorbate-adsorbate 

interactions, well-determined FFs are available for various adsorbate molecules (e.g.  the 

Darkrim-Levesque model for H2 [72]). The intramolecular interactions for the adsorbent (i.e. 

the framework) can be omitted if the adsorbent framework can reasonably be approximated as 

rigid. If the size of the adsorbates (i.e. guest molecules) are not comparable to the window sizes 

of the host framework, then lattice flexibility of the framework does not have a strong influence 

on the adsorption of the guest molecules and intramolecular interactions of the adsorbent are 

not needed. The most challenging part of defining an appropriate FF for a system of molecules 

adsorbed in nanoporous materials is the accurate description of the adsorbate-adsorbent 

interactions; in our case, the interaction between H2 guest molecules and the MOF atoms. 

 

2.3.2 Ab initio derived Force-Fields 

 

While generic and experimentally-derived FFs work well for many simple systems, they often 

fail to describe interactions in more complex porous materials. Since first-principles quantum 

mechanical approaches are capable of accurately predicting intermolecular interactions, 

deriving FFs from QM data without experimental input is a promising solution. A first-

principles FF consists of a suitable interatomic potential form with a set of parameters that can 

reproduce an underlying set of data from QM calculations. In general, deriving a reliable and 

accurate first-principles FF for a new system requires the following: 

1. A suitable adsorbent model that can capture all essential characteristics of the porous 

framework. For MOF materials that consist of metal corners and organic linkers, cluster 

models are constructed in order to represent different local fragments of the framework. For 

example, in order to derive FFs for adsorption of H2 in MOFs, Han et al. [73] used a benzene 

molecule and a metal-based cluster to stand for the organic linker and the metal node part 

of their framework under study. 

2. A reliable QM method that can accurately characterize the adsorbate-adsorbent interactions. 

The accuracy of an ab initio derived FF depends first and foremost on the accuracy of the 

QM method used; the QM method should correctly describe dispersion energies, since they 

are critical in the description of molecular adsorption in porous materials. MP2 that includes 

electron correlation can be reliably used -if not computationally prohibited- to calculate the 

adsorbate-adsorbent interaction energies. 
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3. A sufficient number of adsorbate-adsorbent configurations to represent all important sites 

of adsorption. Ideally, one should choose and perform QM calculations of configurations 

that represent all of the important degrees of freedom on the overall PES. One or more 

potential energy surfaces of interactions are acquired by letting adsorbate molecules follow 

one or more certain paths to the adsorption sites of the adsorbent models. Typically, the 

intermolecular distance between adsorbate and adsorbent site is adjusted to be closer or 

longer than the energy minimized state. 

4. A physically meaningful FF potential form that fits well to the QM data. 

The non-bonded intermolecular interactions consist of van der Waals and electrostatic 

components. Especially for the case of guest molecules with permanent dipole or 

quadrupole moments, the accuracy of electrostatic components is crucial. The most 

common method to treat electrostatic interactions between adsorbate and adsorbent 

molecules is by point charge models; first assigning partial point charges to atoms and then 

summing up the pairwise interaction among these point charges. For adsorbate molecules, 

well-determined models are available where the atomic charges are assigned to reproduce 

experimental quadrupole moments (e.g. the DL model for H2). For adsorbent molecules, 

atomic charges are determined from QM calculations; a common scheme being 

CHELPG [74]. For the description of vdW interactions the Lennard-Jones (12-6) 

potential [64] is commonly used due to its computational simplicity. 

5. A reliable parametrization algorithm. Once the form of the FF potential function is known 

and used to calculate the corresponding PES, one has to determine the parameters that best 

describe the acquired QM data. This is generally achieved by optimizing an objecting 

function that measures the difference between the FF and QM energies. 

 

Figure 32: Example of the FF fitting from first principles. Beginning with the UFF potential form, parameters are 

varied to produce the QM data, resulting in a good agreement (solid line). 
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2.3.3 Monte Carlo simulations 

 

To study thermodynamic properties at the molecular level, one needs to collect information 

about the positions of the atoms averaged over a long time. Monte Carlo (MC) method [75] is 

a broad class of computational algorithms that rely on repeated random sampling to obtain 

numerical results and is useful for simulating systems with many coupled degrees of freedom. 

Each microscopic state of the system is a point in the 6N phase space. The measurements of 

macroscopic variables such as temperature T, volume V and pressure P involve taking averages 

over the phase-space curve of the system.  

MC method focuses on static properties; the system does not evolve over time.  

Intrinsic principle to the MC method is ergodicity, which states that time averaging is equivalent 

to the ensemble7  given an infinitely long simulation “time”. The average behavior of the 

macroscopic system in equilibrium is given by the average taken over a suitable ensemble 

consisting of an infinite number of randomized mental copies of the system of interest. Each 

state8 of the system does not depend on the previous state. In principle, each molecular state 

can be created from scratch; however, for computational efficiency, most MC algorithms base 

a new snapshot on the modification of the current (old) snapshot by performing trial moves. 

Specifically, at each iteration, the algorithm picks a candidate for the next sample value based 

on the current sample value. Then, with some probability, the candidate is either accepted (in 

which case the candidate value is used in the next iteration) or rejected (in which case the 

candidate value is discarded, and current value is reused in the next iteration). Common moves 

include the translation and/or rotation of a molecule, insertion, deletion, etc. 

The expectation value of a variable A is given by 〈𝐴〉 = ∑ 𝐴𝑖𝑃𝑖𝑖  that sums over all microstates 

in the phase space with A the value of the variable 𝐴𝑖 in the 𝑖𝑡ℎ microstate and 𝑃𝑖 its probability. 

Instead of calculating the whole phase space, the MC algorithm scans the most probable 

microstates and dumps the less probable as the contribution is minimal to the expectation value 

(importance sampling). If 𝑃𝑒𝑞(𝑜) and 𝑃𝑒𝑞(𝑛) denote the probability of finding the system in 

states (𝑜)  and (𝑛)  respectively, and 𝑎(𝑜 → 𝑛)  and 𝑎(𝑛 → 𝑜)  denote the conditional 

probability to perform a trial move from 𝑜 → 𝑛 and 𝑛 → 𝑜, respectively, then an arbitrary initial 

distribution eventually relaxes to the equilibrium distribution when: 

 
7 a group of microstates with the same macroscopic state (e.g. N, V and T) 

8 The states of the system are also called snapshots. 
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𝑃𝑒𝑞(𝑜)𝑎(𝑜 → 𝑛)𝑃𝑎𝑐𝑐(𝑜 → 𝑛) = 𝑃𝑒𝑞(𝑛)𝑎(𝑛 → 𝑜)𝑃𝑎𝑐𝑐(𝑛 → 𝑜)   (2.76) 

 

In equilibrium, the flow from the old state 𝑜 to any other state 𝑛 is exactly equal to the reverse 

flow. In the Metropolis algorithm [76],  𝑎(𝑜 → 𝑛) = 𝑎(𝑛 → 𝑜)  and the acceptance rule is 

chosen as  𝑃𝑎𝑐𝑐(𝑜 → 𝑛) = 𝑚𝑖𝑛 (1,
𝑃𝑒𝑞(𝑛)

𝑃𝑒𝑞(𝑜)
)   (2.77). 

 

 

Figure 33: Classical MC moves. 
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2.3.4 Grand Canonical Monte Carlo of adsorption processes 

In adsorption studies, we are interested in the amount of the molecules adsorbed as a function 

of pressure and temperature of the material with which the adsorbent is in contact. To this 

direction, the most common ensemble for adsorption is the grand canonical or μVT [77]. In this 

ensemble, the chemical potential μ, the volume V and the temperature T are held fixed, while 

the number of particles N is allowed to fluctuate.  

In the Grand Canonical ensemble, the partition function is given by 

Ξ(𝜇, 𝑉, 𝑇) = ∑
𝑉𝑁𝑒𝛽𝜇𝑁

Λ3𝑁𝑁!

∞

𝑁=0

∫ 𝑒−𝛽𝑈(𝒔𝑁;𝒉) 𝑑𝑁𝒔   (2.78) 

where 𝒔 are the positions in fractional coordinates9 and Λ = (
ℎ2𝛽

2𝜋𝑚
)

1/2

  (2.79) is the thermal de 

Broglie wavelength which represents the critical length scale at which interactions are 

neglected. The probability of a particular configuration is 

𝑃(𝒔𝑁 , 𝑉) ∝
𝑉𝑁𝑒𝛽𝜇𝑁

Λ3𝑁𝑁!
𝑒−𝛽𝑈(𝒔𝑁;𝒉)  (2.80); 

this is the distribution that will be sampled. The acceptance rules for particle move, insertion 

and deletion in the grand canonical ensemble are thus: 

𝑎𝑐𝑐(𝑠 → 𝑠′) =  𝑚𝑖𝑛(1, 𝑒−𝛽[𝑈𝑛(𝒔𝑁;𝒉)−𝑈𝑜(𝒔𝑁;𝒉)]  )   (2.81)  for particle move; 

𝑎𝑐𝑐(𝑁 → 𝑁 + 1) = 𝑚𝑖𝑛 (1,
𝑉𝑒𝛽𝜇

Λ3(𝑁+1)
𝑒−𝛽[𝑈𝑛(𝒔(𝑁+1);𝒉)−𝑈𝑜(𝒔𝑁;𝒉)] )   (2.82) for particle insertion; 

𝑎𝑐𝑐(𝑁 → 𝑁 − 1) = 𝑚𝑖𝑛 (1,
Λ3𝑁

𝑉𝑒𝛽𝜇 𝑒−𝛽[𝑈𝑛(𝒔(𝑁−1);𝒉)−𝑈𝑜(𝒔𝑁;𝒉)]  )   (2.83) for particle deletion. 

In order to measure the chemical potential μ, we consider the Widom method [78], often 

referred to as the “particle-insertion” method. For sufficiently large N, the chemical potential is 

given by 𝜇 = −
1

𝛽
ln (𝑄𝑁+1 𝑄𝑁)⁄    (2.84) , where 𝑄  is the partition function in the NVT 

ensemble. 

Taking into account that  𝑄(𝑁, 𝑉, 𝑇) =
1

Λ3𝑁𝑁!
∫ 𝑉𝑁𝑒−𝛽𝑈(𝒔𝑁;𝒉)𝑑𝒔𝑁    (2.85), the chemical potential 

becomes  𝜇 = 𝜇𝑖𝑑𝑒𝑎𝑙 + 𝜇𝑒𝑥𝑐𝑒𝑠𝑠   (2.86)  , an expression that decouples the ideal-gas 

 
9 For ensembles where the simulation cell is allowed to change, it is more convenient to redefine the positions in 

fractional coordinates using 𝒔 = 𝒉−1𝒓 (the factor ℎ3 is the phase-space volume). In fractional coordinates, it is 

easier to describe a volume change while leaving the particle positions the same.  
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contribution from that of an excess part. From the aforementioned expression, 𝜇𝑖𝑑𝑒𝑎𝑙 can be 

calculated analytically (e.g. via the Peng-Robinson EOS [79]), while the 𝜇𝑒𝑥𝑐𝑒𝑠𝑠  is measured 

via Widom’s method. We can write 

𝜇𝑒𝑥𝑐 = −
1

𝛽
ln 〈∫ 𝑑𝒔(𝑁+1) 𝑒

−𝛽(𝑈𝑛(𝒔(𝑁+1);𝒉)−𝑈𝑜(𝒔𝑁;𝒉))〉𝑁    (2.87) 

where 〈… 〉𝑁 denotes a canonical ensemble averaging over the configurational space of the N-

particle system. This ensemble average can be sampled by the conventional Metropolis scheme. 

In order to compute the average of the integral over the position N+1, we begin by an NVT MC 

simulation on the system of N particles. At frequent intervals during the simulation (e.g. after 

every MC trial move) we insert a ghost atom in our system, i.e. we randomly generate a 

coordinate 𝒔(𝑁+1), and compute the 𝑒
−𝛽(𝑈𝑛(𝒔(𝑁+1);𝒉)−𝑈𝑜(𝒔𝑁;𝒉))

 value. By averaging this value over 

all generated trial positions, we obtain the desired average. The significance of the Widom 

method lies in the simplicity of its scheme and to the insight into the meaning of the chemical 

potential that it provides – an insight often hard to be extracted from most statistical 

thermodynamics’ definitions. 

In order to set-up and run a GCMC simulation, an energy model should be defined for all the 

possible interatomic interactions. The simulation starts from an initial configuration of the 

system; the crystal structure of the parent (i.e. unmodified) MOF can be taken from 

crystallographic information files available from structural databases, whereas the positions of 

the atoms of the introduced FGs can be specified from ab initio of DFT optimizations of the 

corresponding functionalized part. Each simulation is divided in two phases; an equilibration 

phase (where the system evolves from the initial configuration to achieve stable structural and 

thermodynamic properties) and a production phase (where all the desired properties are 

computed).  
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Figure 34: Equilibration and production phases in an MC simulation [80]. 

 

The duration of the simulation is measured in ‘MC steps’ or ‘MC cycles. An MC step is actually 

an MC move, either accepted or rejected. Since one needs to sample longer if there are more 

molecules in the system, an MC cycle takes the number of particles into account; in each cycle, 

one MC move per particle is attempted on average. To avoid poor sampling at low densities, 

the number of steps per cycle is set to have a lower limit of 20. Thus, a cycle is defined as 

𝑁𝑐𝑦𝑐𝑙𝑒𝑠 = max(20, 𝑁) 𝑁𝑠𝑡𝑒𝑝𝑠   (2.88).  

To be able to represent and calculate properties of an infinite periodic system, one has to employ 

periodic boundary conditions (PBC). The simulation box is surrounded by an infinite number 

of replicas of itself and only the N atoms inside the main cell are considered explicitly; when a 

molecule in the main box moves, its periodic image in each of the surrounding boxes moves in 

exactly the same way. If a molecule leaves the central box, one of its images will enter the box 

through the opposite face. The minimum image convention is a common form of PBC where 

each individual particle in the simulation interacts with the closest image of the remaining 

particles in the system. 
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Figure 35: 2-D representation of periodic boundary conditions (left). The central cell (filled with yellow) 

represents the simulation box. Filled circles represent particles in the simulation box and open circles represent 

their periodic image in other cells. Bold and dashed lines show the movement of two particles near the boundary; 

as a particle leaves the simulation box, its image enters the box from the opposite end [81]. Example of the 

minimum image convention; the interaction will be computed between α and the image β’ (right) [82]. 

 

In order for the particles not “see” their own image, the smallest perpendicular width of the 

chosen unit cell should be larger than twice the spherical cut-off; this requirement determines 

the minimum amount of crystallographic unit cells to be used in the simulation. 
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CHAPTER 3                                                    Results and Discussion 

 

3.1 Functional group screening – ab initio results 

A promising strategy for increasing the H2 adsorption capabilities of MOFs is the 

functionalization of their organic linker components to incorporate stronger adsorption sites. 

To this purpose, functional groups were strategically selected to be screened for their binding 

strength towards hydrogen. The selection was based on electrophilic aromatic substitution10 

pathways.  

 

Figure 36: Some of the most important electrophilic substitutions. 

 

Benzene has six π electrons delocalized in six p orbitals that overlap above and below the plane 

of the ring. Electrophilic substituents can exert resonance and inductive effects; resonance 

effects occur through the pi system and can be either electron donating (e.g. -OCH3) where pi 

electrons are pushed towards the arene, or electron withdrawing (e.g. -CH=O) where pi 

 
10 The electrophilic aromatic substitution is an organic reaction in which an atom that is attached to an aromatic system (usually 

the hydrogen atom) is replaced by an electrophile. 
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electrons are drawn away from the ring; inductive effects occur through the sigma system due 

to electronegativity effects. They, too, can be either electron donating (e.g. -Me) where sigma 

electrons are pushed towards the arene, or electron withdrawing (e.g. -CF3). 

 

Figure 37: Examples of electron donating and electron withdrawing functional groups (left). Comparison of the 

electrostatic potential surface of benzene, an electron donating FG (-OCH3) and an electron withdrawing FG (-

NO2) (right). Color spectrum with red as the highest electrostatic potential energy value regions and blue as the 

lowest. 

 

In order to study the strength of the interaction of the chosen monomers towards hydrogen, in 

the first place we have to find their most stable conformation. One cannot easily guess the shape 

of all possible conformations, especially for larger and more complex molecules. 

Conformational search algorithms serve as an automated means for generating many different 
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conformers and them comparing them based on their relative energies. In this study, we 

performed a thorough conformational search for each monomer, using the conformational 

search tools of Avogadro [83] (i.e. systematic rotor, random rotor, weighted rotor and genetic 

algorithm search) along with extensive literature search for experimental data. The energetically 

most favorable configurations for each monomer are shown in Fig. 39.  

 

Figure 38: A 1-D representation of the energy of all possible conformers of a simple molecule. Geometry 

optimization methods start with an initial geometry and then change that geometry to find an energetically more 

stable conformation. 

 

 

 

 

 

 

 

 

 

 

 

 



80 
 

 

 

Figure 39: The optimized monomer geometries for all the functionalized benzenes that were studied thoroughly 

for their binding strength towards hydrogen. 
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Subsequently, in an attempt to identify both local minima and the energetically most favorable 

configuration of each system, various initial configurations for the dimer C6H5–X…H2 were 

considered and optimized.  

 

 

Figure 40: Example of various initial configurations of the dimer C6H5-NH2…H2 that were created and optimized. 

The energetically most stable configuration (global minimum) is shown on the right. 

 

Binding sites along with their energy values are obtained from ab initio calculations performed 

with the ORCA 4.2 software package [84]. By virtue of consistency, all geometry optimizations 

were held at the MP2 level of theory using the approximate resolution of the identity (RI-

MP2) [85] and the frozen-core approximation. For all atoms, calculations were performed in 

the def2-TZVPP basis and the appropriate auxiliary basis set for the RI approximation was 

assigned with the automatic auxiliary basis set algorithm implemented in ORCA. All structures 

were optimized without any symmetry constraints. Numerical frequency calculations were 

performed to all the different optimized structures arisen, to verify them as stationary points on 

the potential energy surface. Binding energy values were corrected for the Basis Set 

Superposition Error (BSSE) by the full counterpoise method proposed by Boys and 

Bernardi [42]. 
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Table 4: Sorted binding energy values for all the FGs in this study. 11 FGs stand out for their binding strength 

towards hydrogen, with 20 up to 80% enhancement when compared with benzene. 
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Figure 41: Global minima of the optimized geometries for the least interacting FGs. Binding energies up to -4.6 

kJ/mol (the binding energy of benzene). The center of the ring is illustrated as a pink sphere to guide the eye. 

 

 

Figure 42: Global minima of the optimized geometries for FGs with moderate binding energies.  

Values from -4.7 to -5.0 kJ/mol. 
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Figure 43: Global minima of optimized geometries for FGs with binding energies from -5.1 to -5.4 kJ/mol. 

 

 

Figure 44: Global minima of optimized geometries for the best performing FGs, with energy enhancement over 

20% when compared to benzene. The best performing FG is -OSO3H, which shows 80% enhancement of binding 

strength. 

 

For the majority of the systems studied, the most energetically favorable position for H2 is above 

the ring; a position where dihydrogen’s axis is almost perpendicular to the aromatic plane and 

points to about the middle of the ring. As binding energy towards hydrogen increases, the 

inclination of the H2 axis with respect to the normal of the aromatic plane deviates and 
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differences in the distance between the aromatic plane and the closer H of H2 are observed. It 

is thus clear that hydrogen interacts with the pi system of the functionalized rings and the 

strength of the interaction correlates with the ability of the substituents to enrich the aromatic 

system electronically. Few FGs, namely the C6H5-SO3H, C6H5-PO3H2, C6H5-OPO3H2 and 

OSO3H, were able to outperform the delocalized aromatic electron distribution and thus exhibit 

an increased interaction, with binding energies >20% enhanced when compared to benzene. 

From these, C6H5-OSO3H stands out with an enhancement of ~80%. This is a special case as it 

combines the interaction with the delocalized cloud and the interaction of the polarized 

hydrogen of the FG with the quadrupole moment of the H2 molecule.  An interesting case of a 

well performing FG is C6H5-OCONH2 in which hydrogen seems to take advantage of both the 

delocalized pi system of the ring and the FG’s influence. 

In an attempt to gain insights on the nature of the interaction of hydrogen with the functionalized 

benzenes, electrostatic potential maps of the monomers and electron density redistribution plots 

of the complexes were generated.  

The electrostatic potential that is created by a system of nuclei and electrons is formulated 

directly from Coulomb’s law and is a physical observable that can be determined both 

experimentally and computationally [86]. When evaluated in the surface of a molecule, it shows 

how the molecule is “seen” by an approaching reactant and thus is a useful guide to the 

molecule’s reactive behavior. The surface of the molecule can be a considered as contour of its 

electron density (𝜌(𝐫)), with 𝜌(𝐫) = 0.001 au (
electrons

bohr3 ) being a good choice as it lies beyond 

the Van der Waals radii of the atoms comprising most molecules. Colored electrostatic potential 

maps were generated for all the monomers C6H5-X, by mapping the calculated electrostatic 

potentials onto the 0.001 au electron density isosurface, using gOpenMol [87,88]. The color 

scale indicates regions of high and low electrostatic potential, depending on the electron density 

of these regions. The electrostatic potential in all illustrated structures ranges from +0.03 to -

0.03 Hartree · 𝑒−1.  
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Figure 45: The electrostatic potential maps of the structures under study. Calculated at the MP2/def2-TZVPP level 

with ORCA 4.2 [84] and visualized with gOpenMol [87,88]. With blue and red the regions of low and high 

electrostatic potential respectively, ranging from -0.03 to +0.03 Hartree · 𝑒−1. 
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Figure 45: The electrostatic potential maps of the structures under study. Calculated at the MP2/def2-TZVPP level 

with ORCA 4.2 [84] and visualized with gOpenMol [87,88]. With blue and red the regions of low and high 

electrostatic potential respectively, ranging from -0.03 to +0.03 Hartree · 𝑒−1. 

 

It can be seen that for the weakest interacting candidates (top set of maps) the FG withdraws 

electrons from the pi electron cloud of the ring, leaving a more neutral (green) electrostatic 

potential. For the strongest interacting candidates (bottom set of maps), however, some FGs 

seem to withdraw electron density from the ring (e.g. -OSO3H) whereas others donate electrons 

reinforcing the electron density above the ring (e.g. -OCONH2). Electrostatic potential maps 

are useful in predicting the geometry of the molecular system and the nature of the interactions 

between two molecules especially when electrostatic interactions are dominant; in our case that 
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the electrostatic interactions are not dominant to the binding of H2, the electrostatic potential 

maps alone are not sufficient to explain the trend obtained from the FG screening. 

In order to provide a visualization of the changes in the electron density upon interaction with 

hydrogen, electron density difference plots were calculated at the MP2/def2-TZVPP level of 

theory, as the difference of the electron density of the dimer minus the sum of the isolated 

monomers within the conformation of the dimer. The density of each monomer at the complex 

geometry was calculated in the presence of ghost basis functions of the other monomer. 

Densities were plotted with a contour value of 0.001 au by using gOpenMol [87,88]. With blue 

and green the regions that gain and lose electron density upon the formation of the complex, 

respectively. 

 

 
 

Figure 46: Electron-density redistribution plots of the optimized geometries for the least interacting FGs, with 

binding energies up to -4.6 kJ/mol.  
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Figure 47: Electron-density redistribution plots of the optimized geometries for FGs with moderate binding 

energies from -4.7 to -5.0 kJ/mol. 

 

 

 
 

Figure 48: Electron-density redistribution plots of the optimized geometries for FGs with binding energies from 

-5.1 to -5.4 kJ/mol. 
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Figure 49: Electron-density redistribution plots of the optimized geometries for the best performing FGs. 

 

Hydrogen is a “hard” molecule with a HOMO-LUMO gap of about 11.19 eV that is not likely 

to be significantly polarized by electric fields unless they are strong. Due to its low-lying 𝜎𝑔 

orbital and high-lying 𝜎𝑢
∗ orbital, it does not readily donate or receive electrons. However, its 

permanent quadrupole moment can interact with fields within the MOF environment, such as 

those created from the introduction of FGs in the organic linker. 

 As discussed before, for most of the systems, the most energetically favorable site for the H2 

molecule is a position above the ring, where the axis is almost perpendicular to the aromatic 

plane and point to about the middle of the ring. Although challenged by the large HOMO-

LUMO gap, some charge transfer interaction can occur between hydrogen and the 

functionalized ring and is worth examined on future studies.  

The largest electron density redistributions are observed for the strongest interacting functional 

groups, whereas for the weakest interacting FGs hydrogen’s polarization is smaller or equal to 

the case of benzene. Thus, it is evident that the binding strength is analogous to the extent of 

the electron redistribution on the and H2…C6H5-X complex; similar binding strengths of 

interaction correlate with similar ways of interaction.  
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Among the strongest interacting candidates, H2…C6H5-SO3H, H2…C6H5-PO3H2, H2…C6H5-

OPO3H2 and H2…C6H5-OSO3H exhibit polarization of the electron cloud of hydrogen and 

prominent polarization of the electron density of the atoms of the FGs. The strong polarization 

effect comes with the fact that these FGs draw the hydrogen molecule from the pi system of the 

ring towards their side. For the cases of H2…C6H5-OCONH2, H2…C6H5-SOOH, and 

H2…C6H5-SO2NH2, hydrogen has changed its orientation in such a way that exploits both the 

pi system of the ring and the FG’s field. Thus, although the electron energy redistribution is not 

that big, the binding strength is high. 
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3.2 Towards GCMC simulations 

From the ab initio screening of the functional groups, 4 of the best performing candidates were 

selected for further GCMC studies, namely -OCONH2, -SO2NH2, -OPO3H2 and -OSO3H. In 

order to proceed to the GCMC simulations, we have to calculate the interatomic potential 

parameters for all different species of interacting particles and select a suitable MOF structure 

to introduce the chosen functionalities. The introduction of the different FGs requires the 

optimization of the whole linker structure in order to obtain accurate positions of the FG atoms. 

Last but not least, atomic charges should be assigned in all MOF atoms. 

 

Interatomic Potential fitting 

 

In order to describe accurately the intermolecular interactions between the guest hydrogen 

molecules and the MOF atoms, we used ab initio derived results and fitted the parameters of 

the DREIDING [63] potential to these results. At the beginning we optimized the benzene ring 

and applied the CHELPG population analysis [74] in order to get the point charges for the ring 

atoms. Then, we made use of an in-home code that takes as input: 

1. The geometries for each ab-initio point.  

2. The point charges for the ring as calculated using CHELPG analysis [74].  

3. The ε and σ for the guest hydrogen molecule, together with the point charges. These 

data are taken from literature according to the model we use for GCMC simulations and 

are not meant to be fitted; these values are kept constant.  

4. The ε and σ values for the atoms of the ring. These are the parameters that need to be 

fitted.  

For each one of the different geometries of the ab-initio points, the code calculates the distances 

between each atom of the guest molecule and each atom of the ring. For every pair of each 

distance the code calculates the total energy (in our case this is the sum of Lennard Jones 

potential plus the coulomb interactions) as the sum of energies for all the pairs for the specific 

point. This is the classical energy calculated for the specific point. The procedure is repeated 

for all different points and at the end we get the curve for the classical potential and compare 

with the one taken from QM calculations. 
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In order to fit the parameters, we change the ε and σ values for the various atoms of the ring 

(i.e. we change the values corresponding to step (4) from the aforementioned list) and the code 

repeats the procedure. This is repeated until we get a fair agreement between classical and 

quantum points.  

 

Figure 50: Fitting of the (ε, σ) parameters of the Dreiding potential on the QM data obtained from the ab initio 

scan of H2 over benzene. 

 

Subsequently, in order to accurately model the interaction of H2 with the functional group 

atoms, we fitted the parameters of the DREIDING [63] potential form to the interaction energy 

values calculated with ab initio methods. To that purpose, functionalized linkers were 

represented with functionalized benzenes. The demanding/non trivial step is that we have to fit 

parameters for many different atom types at the same time, since the functional group contains 

many different atoms whose parameters ε and σ need to be fitted. Changing the values for many 

different atom types at the same time is not preferred since it is very hard to get a reliable set of 

parameters. For this reason, before starting the whole procedure we examine the local minima 

of the dimers H2…C6H5-X as taken from the ab initio calculations of the screening for the 

stronger binding energies. Our aim is to find minima around the FG where for each different 

minimum, a different functional group atom plays the dominant role for the interaction energy 

for the specific site. In this way, when we fit the specific curve, we mainly deal with the 

parameters ε and σ for the specific atom type. By doing so for all different atoms, we get the ε 

and σ values for all atoms of the functional group. 

In order to obtain the QM points, i.e. the interaction energies between the hydrogen molecule 

and the C6H5-X moiety, a rigid scan of 40 single point calculations was performed in the 
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MP2/def2-TZVPP level for each functional group selected. During these calculations, we held 

fixed the position of the functionalized benzene at the global (or local) minimum energy 

configuration of the dimer and sampled a selected distance, moving hydrogen from 5.5 to 1.5 

Å towards the functional group position.  

 

Figure 51:  Fitting of the (ε, σ) parameters for the H2…C6H5-OCONH2 interaction. With green, the ab initio 

scanning around the global minimum conformation of the dimer; red, blue and black correspond to scanning 

directions around local minima. 
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Figure 52:  Fitting of the (ε, σ) parameters for the 

H2…C6H5-SO2NH2 interaction. With green, the ab initio 

scanning around the global minimum conformation of the 

dimer; red and blue correspond to scanning directions 

around local minima. 

 

 

 

Figure 53:  Fitting of the (ε, σ) parameters for the 

H2…C6H5-OPO3H2 interaction. With green, the ab initio 

scanning around the global minimum conformation of the 

dimer; red and blue correspond to scanning directions 

around local minima. 
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Figure 54:  Fitting of the (ε, σ) parameters for the H2…C6H5-OSO3H interaction. With green, the ab initio scanning 

around the global minimum conformation of the dimer; red, blue and black correspond to scanning directions 

around local minima. 

 

The pronounced difference between DREIDING and the ab initio curve in some of the cases, 

verifies the importance of the described fitting procedure and demonstrates the imminent danger 

of employing classical FFs without first checking their validity on our system under study. 

 

MOF selection and preparation 

For applying our linker functionalization strategy, numerous MOF structures as well as other 

porous materials’ structures (e.g. COFs, ZIFs, etc.) are suitable. Herein, we choose IRMOF-08 

and IRMOF-16 as simple cases with their organic linker part being appropriate for chemical 

modification. IRMOF-08 was functionalized with -OCONH2, -SO2NH2, and -OSO3H, while 

the bulkier -OPO3H2 was introduced to the IRMOF-16 structure along with -OSO3H. As it will 

be shown from our results, in order to shed light on the interesting results that come up for the 

IRMOF-16 series, IRMOF-14 was also selected for functionalization with the -OPO3H2 and -

OSO3H FGs. 
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Figure 55: Structures of the IRMOF-n (n=1-8, 10, 12, 14, 16) series [89]. IR stands for IsoReticular, implying that 

these structures share the same metal corner and differentiate on their organic linker part. 

 

In order to study the FG-modified and parent selected IRMOFs for their uptake, we first have 

to run ab initio calculations to determine the positions of the FGs inside the MOF structures as 

well as the partial charges of all MOF atoms. To this purpose, we used the cluster 

approximation. We separated the ligand from its environment and terminated the hydroxyl 

groups with a Li atom to represent the effect of the charge density of the missing metal cluster. 

The different organic linkers were doubly functionalized, as shown in the following Fig. 56. 

The metal corner was calculated separately, as shown in Fig. 57. Since MP2 is computationally 

expensive for a system of this many atoms, all geometry optimizations were performed at the 

B3LYP [58] level of theory, employing the RI approximation [90]. Def2-TZVP basis set 

together with the corresponding auxiliary basis set for the RI approximation were used. All 

structures were optimized with the ORCA 4.2 [84] package and without any symmetry 

constraints. The optimized minimum-energy structures were verified as stationary points on the 

PES by performing numerical frequency calculations. Partial charges for atoms in each model 

cluster were calculated with the CHELPG population analysis [74] and balanced afterwards to 

yield a neutral MOF structure. 
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Figure 56: The IRMOFs selected and functionalized for this study along with the cluster models chosen to 

represent their organic linker part. All structures shown are optimized with the B3LYP/def2-TZVP method. 

 

 

Figure 57: The metal cluster model selected to represent the metal corner of the IRMOF series. 
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3.3 GCMC results 

In order to evaluate the trend obtained from the ab initio screening, we studied the hydrogen 

uptake profile of both the parent structure of IRMOF-8, IRMOF-16, IRMOF-14 and the 

functionalized with the best X candidates. Linkers were doubly functionalized. Positions of the 

IRMOF framework atoms were obtained from crystallographic information files available at 

the Cambridge Structural Database (CSD) [91]. Functionalized linker geometries were taken 

from geometry optimizations performed at the B3LYP/def2-TZVP level of theory. 

H2 interactions with all framework other than the functional group atoms were calculated 

employing DREIDING parameters [63] for framework atoms and empirically derived 

parameters for H2. Interactions of hydrogen with the functional group atoms were calculated 

employing the parameters obtained from the ab initio force-field fitting. All parameters were 

mixed using the Lorentz-Berthelot mixing rules [65,92]. 

Coulomb interactions were taken into account by calculating the partial atomic charges. These 

calculations were performed at the B3LYP/def2-TZVP level of theory for both the metal cluster 

and the modified organic linker, employing the CHELPG [74] method. The Darkrim-Levesque 

(D-L) model [72] was used to represent for H2 where charges of +0.468 are placed on the H 

nuclei and a -0.936 charge at the center of mass in order to represent the H2 quadrupole. The 

H-H bond length is held fixed at 0.741 Å. All Coulomb interactions were handled using the 

Ewald summation technique [67]. Quantum effects were taken into account by the Feynman-

Hibbs effective potential [93]. 

GCMC calculations [89] were performed with the RASPA software package [94]. 

Periodic boundary conditions were applied in all three dimensions. 

All Lennard-Jones interactions were calculated up to a cut-off distance of 12.8 Å. 

Simulations were performed in supercells incorporating enough repeat units such that all edge 

lengths were greater than 25.6 Å, i.e. twice the LJ cut-off radius. 

Framework was considered rigid with all framework atoms held fixed throughout the 

simulations. For each simulation point, 50000 cycles were performed for system equilibration 

followed by an additional 50000 cycles for sampling over the ensemble averages.  

Each cycle comprised of N steps, where N was the number of molecules in the system at the 

current loading. Monte Carlo moves attempted are translation, reinsertion, creation and 

deletion. The total gravimetric and volumetric uptake isotherms at 77 and 300K were obtained. 
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IRMOF-08 

IRMOF-08 was functionalized with -OCONH2, -SO2NH2, and -OSO3H. The results from the 

GCMC simulations are summarized in Fig. 58 and Fig. 59 where the volumetric (g/L) and 

gravimetric (%wt) uptake are shown for T=300K and T=77K respectively. 

 

 

Figure 58: Volumetric (g/L) and gravimetric (%wt) hydrogen uptake at T=300K of IRMOF-08 and IRMOF-08-

n (n: -OSO3H, -OCONH2, -SO2NH2). 

 

For T=300 K, it can be seen that volumetric uptake is enhanced from the introduction of FGs 

whereas for the gravimetric uptake the unmodified IRMOF-08 outperforms all FGs. This 

discrepancy is due to the fact that the uptake is influenced, among others, by three competing 

factors; the strength of the binding sites, the bulk and the weight of the FGs. In the case of the 

volumetric uptake, although FGs are bulky, the stronger binding sites that they introduce in the 

framework offer an enhancement up to 10-20% for high loadings. For the gravimetric uptake 

on the other hand, the strength of the introduced binding sites is not able to compensate the 

weight of the FGs. In general, at ambient conditions (T=300K) the binding energy enhancement 

from the functionalization is weak to compete with the thermal energy of H2.  
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At cryogenic conditions (T=77K) the resulting isotherms are shown in Fig. 59. 

 

Figure 59: Volumetric (g/L) and gravimetric (%wt) hydrogen uptake at T=77K of IRMOF-08 and IRMOF-08-n 

(n: -OSO3H, -OCONH2, -SO2NH2). 

The volumetric uptake is enhanced in the case of the functionalized IRMOF-08 compared to 

the parent structure, with an enhancement up to ~60% for the case of IRMOF-08-SO2NH2 at 

P=5bar. At low loadings (i.e. P < 5bar) the first hydrogen molecules fill the structure and “feel” 

the effect of the stronger binding sites that FGs introduce. At higher loadings, where more and 

more hydrogens enter the pore, their interaction with the FGs is screened by the H2-H2 

interactions. Thus, the percentage of enhancement drops but is still present; in the case of 

IRMOF-08-SO2NH2 is 10-20%. Overall, the strength of the introduced binding sites of all three 

different FGs beats the effect of their bulk for the whole pressure range, with -SO2NH2 being 

the most promising FG. 

The gravimetric uptake shows an interesting behavior where a crossing of the different 

isotherms is observed. At high loadings (i.e. P > 10bar), parent IRMOF-08 outperforms the 

functionalized candidates; the strength of the introduced binding sites cannot compensate the 

weight of the FGs, resulting in a prominent difference. At low loadings (i.e. P < bar), on the 

other hand, the increased strength of the introduced binding sites competes the weight of the 

FGs; at very low loadings (i.e. P < 1 bar) where the effect of the increased binding strength is 

not yet significantly screened, all functionalized structures outperform their unmodified 
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counterpart. IRMOF-08-SO2NH2 and IRMOF-08-OCONH2 outperform the parent IRMOF-08 

for pressures up to 5bar, whereas the crossing for the case of IRMOF-08-OSO3H and parent 

IRMOF-08 occurs at P=2bar. For P > 2 bar, parent IRMOF-08 outperforms its OSO3H-

functionalized counterpart. This effect can be attributed also to the fact that the OSO3H-

functionalized linker is heavier that the SO2NH2- and OCONH2-functionalized. 

Isosteric heats of adsorption for H2 on parent and modified IRMOF-08 as functions of the 

uptake are shown in Fig. 60 and can be compared to the binding energy values obtained from 

the ab initio calculations. Isosteric heat of adsorption serves as an indicator of the strength of 

the interaction between an adsorbate and a solid adsorbent. 

 

Figure 60: Isosteric heat of adsorption (kJ/mol) of IRMOF-08 and IRMOF-08-n (n: -OSO3H, -OCONH2, -

SO2NH2). 

The qualitative trends show all structures to bind stronger at lower loadings and then leveling 

off. At zero loadings, i.e. when the first hydrogen molecules interact with the framework, 

isosteric heats of adsorption are comparable to the QM results and can be an indicator of the 

quality of the GCMC calculations. 

Isosteric heats presented at Fig. 60 are in good agreement with the QM results; at zero loading, 

IRMOF-SO2NH2 and IRMOF-OSO3H have similar isosteric heats at ~6.1 kJ/mol with IRMOF-

OCONH2 having a lower value at ~5.8 kJ/mol, whereas the unmodified IRMOF-08 structure 

shows a significantly lower value, below 5 kJ/mol. From the ab initio calculations, the absolute 

binding energies of H2…C6H6, H2…C6H5-OCONH2, H2…C6H5-SO2NH2 and H2…C6H5-

OSO3H are 4.6, 5.6, 5.6 and 8.3 kJ/mol respectively. On an initial estimate based on the QM 

results, one would expect that -OSO3H FG would give the bigger enhancement when introduced 

in the framework. However, this is not the case since the ab initio screening was carried out on 
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the simplified model of C6H5-X, whereas the linker of the IRMOF-08 is naphthalene 

dicarboxylate; although the pi system of benzene and naphthalene is comparable, differences 

are reasonable and expected. In addition, the ab initio calculations were employed in an isolate 

molecular environment and not within the pores of a robust material. 

In Fig. 61-63 we present snapshots for the parent and the FG-modified IRMOF-08 taken from 

the GCMC simulations at T=77K and low to moderate pressures (i.e. 0.1, 1, and 5 bar). The 

enhancement of the hydrogen uptake can be clearly seen as one can directly compare the 

number of hydrogen molecules inside the cell. 

 

 

Figure 61: Snapshots of IRMOF-08 and IRMOF-08-OCONH2 at T=77K. 
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Figure 62: Snapshots of IRMOF-08 and IRMOF-08-SO2NH2 at T=77K. 

 

 

Figure 63: Snapshots of IRMOF-08 and IRMOF-08-OSO3H at T=77K. 
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IRMOF-16 

IRMOF-16 was selected to be functionalized with the bulkier FGs -OSO3H and  

-OPO3H2. The results from the GCMC simulations are summarized in Fig. 64 and Fig. 65 where 

the volumetric (g/L) and gravimetric (%wt) uptake are shown for T=300K and T=77K 

respectively. 

 

Figure 64: Volumetric (g/L) and gravimetric (%wt) hydrogen uptake at T=300K of IRMOF-16 and IRMOF-16-

n (n: -OSO3H, -OPO3H2). 

For T=300K, it can be seen that the volumetric uptake shows no enhancement by the 

introduction of FGs in the structure; in fact, the uptake profile is the exactly the same for 

IRMOF-16 and IRMOF-16-n, reveling a perfect counterbalance of the gain from the increased 

interaction and the loss of volume. 

The gravimetric uptake shows that the strength of the introduced binding sites is not able to 

compensate the weight of the FGs, with the unmodified structure clearly outperforming the 

functionalized counterparts for all pressures. 

The fact that there is no difference at all in the volumetric uptake at all pressures, is in need of 

further research. In the first place, we survey the isosteric heats of adsorption in order to 

establish the validity of the performed GCMC calculations. 
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Figure 65: Isosteric heat of adsorption (kJ/mol) of IRMOF-16 and IRMOF-16-n (n: -OSO3H, -OPO3H2). 

 

Isosteric heats of Fig. 65 show that at zero loading, IRMOF-16-OSO3H and IRMOF-16-

OPO3H2 have similar isosteric heats around ~4.1 kJ/mol whereas the unmodified IRMOF-16 

structure shows a lower value of ~3.8 kJ/mol. From the ab initio calculations, the absolute 

binding energies of H2…C6H6, H2…C6H5-OSO3H and H2…C6H5-OPO3H2 are 4.6, 8.3 and 5.7 

kJ/mol respectively. Focusing on the case of -OSO3H, the isosteric heat shows half binding 

strength compared to the ab initio calculation. Again, the ab initio screening was carried out on 

the simplified model of C6H5-X, whereas the linker of the IRMOF-16 is terphenyl dicarboxylate 

thus differences are reasonable and expected; however, these differences cannot be attributed 

to this reason.  

Taking a closer look at the linker, we observe that the double functionalization of the terphenyl 

dicarboxylate results in a stable geometry with a slight rotation of the middle phenyl ring in 

order for the bulky FGs to be incorporated. This effect is shown in Fig. 66. The slight rotation 

of the middle phenyl ring affects the pi electron distribution of the linker, therefore affecting 

the binding performance of the FGs towards hydrogen. This effect leads us to the reasonable 

hypothesis that the functionalization of the IRMOF-16 linker results in the loss of the strong 

binding sites due to rotation of the linker. In order to check the validity of our hypothesis we 

chose to functionalize a structure of the IRMOF family with a robust linker, i.e. with no 

rotational degrees of freedom; IRMOF-14 served as the appropriate candidate with its pyrene 

dicarboxylate linker shown in Fig. 66. 
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Figure 66: The IRMOF-16-OSO3H linker (left) and the robust IRMOF-14-OSO3H linker (right). 

 

For T=77K, the following isotherms were obtained: 

 

Figure 67: Volumetric (g/L) and gravimetric (%wt) hydrogen uptake at T=77K of IRMOF-16 and IRMOF-16-n 

(n: -OSO3H, -OPO3H2). 

The volumetric uptake is enhanced in the case of the functionalized IRMOF-16 compared to 

the parent structure, with an enhancement more than 50% for both FGs at P=5bar. From the 

two FGs, -OPO3H2 has a greater uptake for all the range of pressures. For the gravimetric uptake 

on the other hand, the situation is reversed, with the unfunctionalized stucture presenting a 

significantly greater uptake at high loadings. At low pressures, parent IRMOF-16 and IRMOF-

16-OPO3H2 have comparable gravimetric uptakes, outperforming that of IRMOF-16-OSO3H. 

In Fig. 68-69 we present snapshots for the parent and the FG-modified IRMOF-16 taken from 

the GCMC simulations at T=77K and low to moderate pressures (i.e. 0.1, 1, and 5 bar).  
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Figure 68: Snapshots of IRMOF-16 and IRMOF-16-OSO3H at T=77K.  

 

 

 

Figure 69: Snapshots of IRMOF-16 and IRMOF-16-OPO3H2 at T=77K. 
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IRMOF-14 

 

IRMOF-14 was functionalized with the -OSO3H and -OPO3H2 FGs. The results from the 

GCMC simulations are summarized in Fig. 70 and Fig. 71 where the volumetric (g/L) and 

gravimetric (%wt) uptake are shown for T=300K and T=77K respectively. 

 

Figure 70: Volumetric (g/L) and gravimetric (%wt) hydrogen uptake at T=300K of IRMOF-14 and IRMOF-14-

n (n: -OSO3H, -OPO3H2). 

 

For T=300K, the volumetric uptake shows no notable enhancement by the introduction of FGs 

in the structure; the uptake profile is almost the same for IRMOF-14 and IRMOF-14-n.  

The gravimetric uptake shows that the strength of the introduced binding sites is not able to 

compensate the weight of the FGs, with the unmodified structure clearly outperforming the 

functionalized counterparts for all pressures. 
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Figure 71: Volumetric (g/L) and gravimetric (%wt) hydrogen uptake at T=77K of IRMOF-14 and IRMOF-14-n 

(n: -OSO3H, -OPO3H2). 

 

For T=77K, the volumetric uptake is significantly enhanced in the case of the functionalized 

IRMOF-14 compared to the parent structure, with a ~20% enhancement for OSO3H- and more 

than ~40% for OPO3H2-functionalized at P=5bar. From the two FGs, -OPO3H2 shows greater 

uptake for all the range of pressures. For the gravimetric uptake on the other hand, the situation 

is again reversed for high loadings, with the unfunctionalized stucture presenting a significantly 

greater uptake. At P >1bar, parent IRMOF-14 and IRMOF-14-OPO3H2 outperform IRMOF-

14-OSO3H, while at very low pressures (P~0.1bar), both functionalized candidates show a 

much greater uptake than that of the parent structure. 
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Figure 72: Isosteric heat of adsorption (kJ/mol) of IRMOF-14 and IRMOF-14-n (n: -OSO3H, -OPO3H2). 

 

Isosteric heats of Fig. 72 show that at zero loading, IRMOF-14-OSO3H and IRMOF-14-

OPO3H2 have similar isosteric heats ~6.2 kJ/mol whereas the unmodified IRMOF-14 structure 

shows a lower value of ~5.3 kJ/mol. From the ab initio calculations, the absolute binding 

energies of H2…C6H6, H2…C6H5-OSO3H and H2…C6H5-OPO3H2 are 4.6, 8.3 and 5.7 kJ/mol 

respectively. Since the ab initio screening was carried out on the simplified model of C6H5-X, 

whereas the linker of the IRMOF-14 is the pyrene dicarboxylate, differences are reasonable and 

expected. In addition, and as mentioned before, in the case of IRMOF-08, the ab initio 

calculations were employed in an isolate molecular environment and not within the pores of a 

robust material. 

 

In Fig. 73-74 we present snapshots for the parent and the FG-modified IRMOF-14 taken from 

the GCMC simulations at T=77K and low to moderate pressures (i.e. 0.1, 1, and 5 bar).  
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Figure 73: Snapshots of IRMOF-14 and IRMOF-14-OSO3H at T=77K. 

 

 

Figure 74: Snapshots of IRMOF-14 and IRMOF-14-OPO3H2 at T=77K. 
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CONCLUDING REMARKS 

In this work, we studied the effect of linker functionalization of MOF structures on the 

enhancement of their hydrogen uptake capacities, by means of multi-scale molecular 

simulations. In the first place, we studied with ab initio methods the binding strength towards 

hydrogen of 58 functionalized benzenes of the form C6H5-X (X: the different FGs). From this 

set, 37 FGs (Fig. 42-44) showed higher binding energies compared to benzene, with 11 of them 

presenting a binding enhancement over 20% (Fig. 44). Notably, -OSO3H FG stands out with an 

enhancement of ~80%. In the context of surface modification, the FGs that exhibit an 

enhancement over 20% are recommended as promising for potential linker functionalization of 

MOF candidates. In order to describe accurately the intermolecular interactions between the 

guest hydrogen molecules and the MOF atoms, we used ab initio derived results and fitted the 

parameters of the DREIDING potential onto these results. All of our studied cases indicate that 

available Force-Fields fail to describe accurately our systems, highlighting the importance of 

the fitting procedure. The effect of linker functionalization on the H2 adsorption uptake of 

MOFs was studied employing Grand Canonical Monte Carlo simulations at cryogenic and 

ambient conditions. We functionalized three different MOF candidates from the IRMOF family 

(IRMOF-08, IRMOF-16 and IRMOF-14) with the FGs that showed the strongest binding 

towards hydrogen according to our ab initio calculations (-OCONH2, -SO2NH2, -OSO3H and -

OPO3H2). A significant enhancement of the volumetric uptake at 77K was observed for all 

cases. While structural features clearly influence the packing of H2 molecules within an 

adsorbent, of equal importance are the specific binding locations within the pores and the 

relative binding strength at these sites. Taking into consideration the weight of the FGs as well 

as other important factors (e.g. pore environment), the adsorption is in agreement with the 

strength of interaction between the adsorbate (H2) and the organic parts of the adsorbent (MOF). 

However, within the scope of practical applications, the absolute uptake percentages illustrate 

clearly that considerable work is still required in the field. 

Overall, our work has set up a systematic and transferable database that can be used for 

experimental and further computational studies on the enhancement of hydrogen uptake 

capacities of porous materials in general (i.e. MOFs, COFs, ZIFs, etc.).  
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