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Chapter 1

Introduction

An active galactic nucleus (AGN) is an extremely bright compact central region of a galaxy,
emitting substantial amounts of energy that spans across the entire electromagnetic spectrum.
These objects have characteristics that indicate it would be impossible for their luminosity to be
produced by stars. Moreover, AGN are the most luminous persistent sources of electromagnetic
radiation in the universe, with typical bolometric luminosity around 1042 to 1048 ergs per second,
with their visible emitting area being not much larger than the size of our solar system. For
example, the bolometric luminosity of a quasar, which is the most luminous type of AGN, is
∼ 1043 to 1048 ergs per second, while the respective luminosity of their host galaxy is ∼ 1042

to 1044 ergs per second, meaning that in a lot of cases AGN outshine their host galaxy. It is
estimated that around 10− 20% of the galaxies in our local universe host an AGN. We classify
an object as an AGN based on some specific observational characteristics which are listed below.
1) AGN emit approximately the same amount power over a broad range of wavelengths. The
range of emission covers wavelengths from X-rays to even radio waves, as seen in the left panel
of Fig.(1.1). AGN that show strong emission of radio waves are called radio-loud AGN, while
the rest are called radio-quiet AGN.
2) The optical/UV spectrum increases towards shorter wavelengths. This is indicated by
the label ”Big blue bump” in the left panel of Fig.(1.1). This is a characteristic exclusive to
AGN, for this behaviour at UV is not observed in normal galaxies, where the spectral energy
distribution (SED) is dominated by the collective light of the stars. The emission towards UV
in these galaxies decreases.
3) Presence of broad and narrow emission lines in the optical/infrared band, which arises from
cold material close and distant to the active nucleus, respectively.
The large luminosity, in combination with the small emitting area implies that a very efficient
mechanism is needed in order to produce this amount of energy per unit of time. Our current
understanding is that AGN are powered by the accretion of matter onto a super massive black
hole (SMBH) located at the central region of the host galaxy. The matter falling into the SMBH
will form a disc around it, due to angular momentum, which dictates the trajectories of particles
as they orbit the black hole. Interactions among these particles result in the redistribution of
angular momentum, causing them to adopt a more stable and less collision-prone orientation,
forming a disc. As the material falls towards the SMBH, potential energy is released due to
the gravitational pull. If this energy can be converted to thermal energy and heat the material
of the disc, then the disc can be very luminous in the optical/UV band. Below we give an
example in order to understand the efficiency of this mechanism.

3



Figure 1.1: Left panel : Schematic representation of the SED of different types of AGN (figure taken from
Koratkar and Blaes (1999)). Right panel : Extreme UV spectra of 60 radio-loud and 41 radio-quiet quasars.
Radio-quiet quasar flux level is shifted down for display purposes (figure taken from Zheng et al (1997)).

1.1 Gravitational power

Let us assume a particle, say an electron with mass me, that falls from infinity to a distance r
from a central SMBH, with mass MBH . Then, the change in potential energy will be equal to :

∆U = −G ·MBH ·me

r
. (1.1)

Let us assume a non-rotating SMBH, then the smallest possible stable circular orbit for the
electron will be equal to three times the Schwarzschild radius,

RS =
2 ·G ·M

c2
. (1.2)

We can substitute r = 3 ·RS using eq.(1.2) to eq.(1.1), giving us :

∆U = −G ·MBH ·me

3 ·RS

= −1

6
·me · c2. (1.3)

The Virial theorem, which describes a system in equilibrium, states that half of the change in
potential energy will be converted into kinetic energy and the other half will be converted to
radiation by heating the material. Using the Virial theorem and (1.3), we finally get :

Eheat = −∆U

2
=

1

12
·me · c2. (1.4)

The constant 1
12

≈ 0.08 is the efficiency coefficient of the process, which indicates that the
aforementioned mechanism is around 10 times more efficient than the one that produces energy
in the core of main sequence stars (the efficiency coefficient there is ϵ ≈ 0.007).
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1.2 AGN variability

A defining property of AGN is flux variability. AGN show flux variations at all wavelengths,
from radio to optical/UV and hard X-rays. Variations can be observed on timescales ranging
from minutes, in X-rays, to years, in infrared. Both the amplitude and the characteristic
frequencies increase with increasing energy. Variability provides information about the physical
processes occurring around the SMBH at the center of an AGN. We can separate the variability
into slow variations and fast variations. Slow variations refer to changes in the properties or
behavior of AGN that happen over relatively long timescales, ranging from weeks to years or
even decades, while fast variations refer to rapid and relatively short-term changes that occur
on timescales ranging from minutes to hours or days. Moreover, the slow variations provide
insights into the long-term evolution and underlying physical processes of AGN, while fast
variations provide information about the physical processes occurring near SMBHs.
Accretion discs can vary on various timescales. The most important disc timescales are the
following (taken from Czerny (2006)).

1) The dynamical timescale, tdyn = Ω−1
K =

√
G·M
r3

= 104 ·R
3
2
3 ·M8 (s), where M is the BH mass,

r the radius, R3 = r/(3 ·RS) and M8 = M/(108 ·M⊙). This timescale describes various motions
inside the system. These include the circular orbits motion, the local rotation in sync with the
epicyclic frequency (for instance, when a magnetic loop emerges from the discs surface, its lower
end becomes entangled on this timescale), the dynamical oscillations which occur perpendicular
to the discs surface, the timescale needed to attain hydro-static equilibrium and the timescale
for sound movement in the vertical direction of the disc.
2) The timescale of propagation of sound waves in the radial direction given by tsound−r =
tdyn · ( r

hd
), where hd is the thickness of the disc. Typically, the radius is greater than the

thickness of the disc, meaning that tsound−r is greater than tdyn.
3) The thermal timescale, which is defined as the ratio of internal energy to the rate of cooling
or heating. It is given by tth = α−1 · tdyn, where α is the disc viscosity, introduced by Shakura &
Sunyaev (1973). Assuming α = 0.1 as a value for the viscosity parameter, we get that tth is 10
times greater than tdyn. This timescale is neither dependant on the optical depth of the disc,
nor the cooling mechanism, meaning the same thermal timescale is present for a cold optically
thick disc and a hot optically thin disc.
4) The viscous timescale is established as the timescale governing the flow of mass, for instance
locally, as the ratio of the radius to the radial velocity. It is given by tvisc = tth · ( r

hd
)2 assuming

an α disc model. If hd ≃ 0.1 · r, then tvisc is ≃100 times longer than tth.
Figure (1.2) shows a typical example of how AGN vary. Figure (1.2) shows the light curves of
Fairall9, which is a typical AGN, in many wavebands (figure taken from Hernandez Santisteban
et al (2020)). A light curve shows how the brightness of an object changes over time, by plotting
the flux in the y-axis and the time of the observation in the x-axis. The light curves in Fig.(1.2)
show data taken in a period of ∼8 months, almost daily, across multiple wavebands ranging
from extreme UV to almost 10000 Å. The data were taken using satellites and various ground
based telescopes. The observed light curves are plotted in the top of the left panel in Fig.
(1.2), with the top maroon light curve having the longest wavelength. The rest are placed in
order of decreasing wavelength, until the purple light curve, which corresponds to the shortest
wavelength band.
The object is variable at all wavelengths and at all the sampled timescales. Moreover, we
observe that the same variations are present in all the light curves. Therefore, it is interesting to
study the correlation between the light curves, both at long and short timescales, and investigate
if there are any delays. In Fig.(1.2), in the top of the left panel, the dashed lines show the best-fit
parabola fitted to the observed light curves. These parabola fit the data relatively well and are
indicative of the long term variations in Fairall9 at the different wavebands. Furthermore, the
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black open diamonds found on the parabola show the minimum flux in each light curve. Long
term variations are detected first in the longer wavelength bands and propagate to the shorter
wavelength bands. We observe that a delay is present among the minimum of the parabola
(negative time lags). These delays, with respect to the shortest wavelength, are displayed in
the top right panel in Fig.(1.2).
The fast variations on short timescales are studied by removing the parabolic fit from the
original data. These curves are shown in the lower part of the left panel in Fig.(1.2). We can
quantitatively determine the delay between those curves, using methods that will be described
in Chapter 3, to determine the time lags. The bottom right panel in Fig.(1.2) shows the time
lags as a function of wavelength. The time lags were determined by using the W2 waveband light
curve as reference. The time lag plot shows that variations are detected first in the shorter
wavelength bands and propagate to the longer wavelength bands (positive time lags). Lags
increasing with wavelength are indicative of X-ray illumination of the disc. The behaviour of
the fast variations is typical in AGN, but delays between the slow variations is not (i.e. negative
time lags).

Figure 1.2: Left panel : The Fairall9 light curves for wavelengths ranging from ∼ 1900Å to ∼ 10000Å (upper
part, from bot to top with increasing wavelength). The dashed lines are indicative of the best-fit parabola
fitted to the observed data. The black open diamonds show the minimum flux of the best-fit parabola. The
lines in the lower part of the panel represent the residual light curves, taken from the subtraction of the
aforementioned parabola from the original data. Right panel : Top panel shows the delays between the
long-term variations, with respect to the W2 parabola, as a function of wavelength. The bottom panel shows
the time lag spectrum of the fast variations, quantitatively measured by using the W2 as the reference for the
computation of the time lags of the other wavebands. Figure taken from Hernandez Santisteban et al (2020).

In this work, our first objective is to quantitatively investigate the phenomena of the negative
time lags present in the slow variations of Fairall9. To do that, we are going to determine the
longest sampled timescale by applying the discrete Fourier transform to the light curves across
all the wavebands. Then, we will calculate the delays between the wavebands in a quantitative
way by applying methods that are described below. Our second objective is to repeat the same
analysis using data for many AGN, in order to study the behaviour of their slow variations and
see whether the presence of negative time lags in the long term variations in AGN is common
or not.
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Chapter 2

Fourier Transform of Light Curves

2.1 Definitions

Let us assume a variable process, for example light emission from an AGN. This process will
be continuous however, in practice, we observe astronomical objects over a given period of time.
This results in a number of observations, at different times, which we call the ”light curve” of
the observed object. Let us assume a collection of observations, x(t), which were performed
at equidistant times so that t = k · ∆t, k = 0, 1, ..., N − 1, and Δt is the time separation
between successive observations. We also assume that N is an even number. The discrete
Fourier transform of the light curve (i.e. of the N data points) is defined as follows

Xn =
N−1∑
k=0

x(k ·∆t) · e
−2πikn

N =
N−1∑
k=0

x(k ·∆t) · [cos(2πkn
N

)− i · sin(2πkn
N

)] = Un − i · Vn, (2.1)

where n = −N
2
, ..., N

2
− 1, Un =

∑N−1
k=0 x(k ·∆t) · cos(2πkn

N
) and Vn =

∑N−1
k=0 x(k ·∆t) · sin(2πkn

N
).

Xn are the Fourier components of the light curve. They are a complex number, with real and
imaginary part Un and Vn respectively. If we apply the inverse discrete Fourier transform, then
we can recover the data points x(tk = k ·∆t), from Xn as follows:

x(k ·∆t) =
1

N
·

N
2
−1∑

n=−N
2

Xn · e
2πikn

N =
1

N
·

N
2
−1∑

n=−N
2

Xn · e
2πink∆t

N∆t =

=
1

N
·

N
2
−1∑

n=−N
2

Xn · e2πitkfn ,

(2.2)

where fn = n
N ·∆t

. We show in the Appendix that eq.(2.2) holds. The equation above can be
rewritten as follows:

x(tk) =
1

N
· [X0 · e2πitk0 +X−N

2
· e2πitkf−N/2 +

−1∑
n=−N

2
+1

Xn · e2πitkfn +

N
2
−1∑

n=1

Xn · e2πitkfn ]. (2.3)

According to eq.(2.1), X−n = X∗
n, for all n. Therefore,
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x(tk) =
1

N
· [X0 +X∗

N
2
· e−2πitkfN/2 +

N
2
−1∑

n=1

X−n · e−2πitkfn +

N
2
−1∑

n=1

Xn · e2πitkfn ] =

=
1

N
· [X0 +X∗

N
2
· e−iπk +

N
2
−1∑

n=1

X−n · e−2πitkfn +

N
2
−1∑

n=1

Xn · e2πitkfn ].

(2.4)

The equation above shows that the light curve can be decomposed into N
2
+ 1 sinusoids, with

frequency fn, n = 0, 1, ..., N
2
. The first sinusoid, S0(t), is a constant, equal to the light curve

mean:

S0(t) =
1

N
·X0 =

1

N
·
N−1∑
k=0

X(k ·∆t). (2.5)

The sinusoid at frequency fN
2
= 1

2∆t
is equal to:

SN
2
(tk) =

1

N
·X∗

N
2
· e−iπk (2.6)

We note that cos(−πk) = cos(πk) and sin(πk) = 0, for all k, while Vn=N
2

= 0. Therefore

eq.(2.6) becomes:

Sn=N
2
=

1

N
· [Un=N

2
· cos(πk)]. (2.7)

The sinusoids at frequencies fn, with n = 1, 2, ..., N
2
− 1, are given by the last two terms in

eq.(2.4).

Sn(tk) =
1

N
· [

N
2
−1∑

n=1

X−n · e−2πitkfn +

N
2
−1∑

n=1

Xn · e2πitkfn ] =

=
1

N
· {

N
2
−1∑

n=1

(Un + i · Vn) · [cos(2πfntk)− i · sin(2πfntk)]+

+

N
2
−1∑

n=1

(Un − i · Vn) · [cos(2πfntk) + i · sin(2πfntk)]} =

=
1

N
· {2 ·

N
2
−1∑

n=1

Un · cos(2πfntk) + 2 ·
N
2
−1∑

n=1

Vn · sin(2πfntk)−

− i ·
N
2
−1∑

n=1

Un · sin(2πfntk) + i ·
N
2
−1∑

n=1

Vn · cos(2πfntk)+

+ i ·
N
2
−1∑

n=1

Un · sin(2πfntk)− i ·
N
2
−1∑

n=1

Vn · cos(2πfntk)} ⇒

Sn(tk) =
2

N
· {

N
2
−1∑

n=1

Un · cos(2πfntk) +
N
2
−1∑

n=1

Vn · sin(2πfntk)}

(2.8)
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Equation above shows that each of the Sn(t) sinusoids is the sum of cosine and sine functions
whose amplitude is determined by the real and imaginary parts of Xn, as determined by eq(2.1).

2.2 Fourier Decomposition of Fairall9 Light Curves

As an example, we present in this section the results from the application of the discrete
Fourier transform analysis using real data. We will study the light curves of Fairall9, a Seyfert
1 galaxy taken from Hernandez Santisteban et al (2020). Fairall 9 was observed for approxi-
mately 10 months, from Modified Julian Date (MJD) 58250 to 58550 with Swift satellite and
ground based telescopes. The Swift Observatory is a satellite that was launched on the 20th of
November 2004 and carries three telescopes: the X-ray telescope (XRT), the Ultraviolet/Optical
Telescope (UVOT) and the Burst Alert Telescope (BAT). In this work we will be using data
collected from the UVOT telescope. The telescope has a diameter of 30 cm and a field of view
of 17 arcmin2. It is equipped with 6 filters, namely UVW2, UVM2, UVW1, U, B and V, with
effective wavelengths 1928Å, 2246Å, 2600Å, 3465Å, 4392Å, and 5468Å respectively. Hernandez
Santisteban et al also presented observations of Fairall9 taken from the Las Cumbres Obser-
vatory (LCO). The LCO is a network of astronomical observatories with 7 sites, all of which
are professional astronomical observatories. For the observation of Fairall9, LCO used 7 filters,
namely u’, B, g’, V, r’,i’ and z’, with effective wavelengths 3580Å, 4393Å, 4754Å, 5469Å, 6204Å,
7698Å and 9665Å respectively. Figure (2.1) shows the observed W2 and g-band light curves.
We will demonstrate the application of the discrete Fourier transform method using these light
curves and we will decompose them into various sinusoids.

Figure 2.1: Swift W2 and LCO g-band light curves for Fairall9 (black and red dots, respectively). X-axis units
are in ”Modified Julian Date”. MJD is calculated by subtracting 2,400,000.5 days from the Julian date. Julian
date is counted as the number of days since noon on January 1st, 4712 BC. The vertical dashed lines indicates
the start and finish of the observations we considered.

Fairall9 was observed using the UVOT W2 filter 219 times, from MJD 58251.66 to MJD
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58528.27, for a duration of ∼277 days. It was also observed in the g-band by the LCO 403
times in ∼258 days, from MJD 58271.43 to MJD 58529.03. Figure (2.1) shows the resulting
W2 and g-band light curves. In this figure, the vertical dashed line indicates the starting date
and finishing date of the light curves that we used in our analysis (tstart,W2 = 58285.736 MJD,
tstart,g = 58284.394 MJD, tfinish,W2 = 58523.507 MJD and tfinish,g = 58524.426 MJD). The
data before and after the dashed lines were discarded because there were large gaps in the
LCO observations, and the cadence of the Swift observations was low. After tstart the average
time between the Swift observations and the LCO observations is ∆tW2,obs = 1.24 days and
∆tg,obs = 0.62 days respectively, while the number of points is NW2,obs = 197 and Ng,obs = 395
respectively.

2.3 Light Curve Interpolation

We are going to use the light curves plotted in Fig.(2.1) to compute the discrete Fourier
transformation and hence determine their Fourier components. If we wish to use eq.(2.1), then
obviously the light curve must be evenly sampled. This is not the case with the light curves
plotted in Fig.(2.1) even after tstart. Using the observed light curves, we need to create evenly
sampled ones. Using linear interpolation we can easily achieve this.
Let us assume a continuous function y = f(x), and two points f(x1) = (x1, y1) and f(x2) =
(x2, y2). Suppose we need to find the values of the function for several points xi in between x1

and x2. As a first approximation, we can assume a straight line which connects the two points.
Given the x′

is, we are able to compute y′is as long as we determine the equation of a straight
line that connects (x1,y1) and (x2,y2). This can be done as follows:

y = a+ b · x =

{
y1 = a+ b · x1

y2 = a+ b · x2

(2.9)

Using eq. (2.9) we get the following equation for a and b :

a = y1 − x1 ·
(
y1 − y2
x1 − x2

)
, b =

(
y1 − y2
x1 − x2

)
. (2.10)

By substituting a and b from eq.(2.10) in eq.(2.9) we finally get :

y(x) = y1 + (x− x1) ·
(
y1 − y2
x1 − x2

)
. (2.11)

The values y(x), using (2.11), will be close to f(x), for any x between x1 and x2 as long
as the distance between x1 and x2 is small in comparison to the curvature of y(x). Below we
describe how we created an evenly sampled light curve by applying linear interpolation to the
observed light curve.
We set the bin size, ∆teven, of the evenly sampled light curves to be equal to the mean time
interval between the observations in the light curves (∆tW2,obs and ∆tg,obs). The first point
in the evenly sampled light curves will be the actual observation at tstart,W2 and tstart,g (these
are for example the times indicated by the vertical lines in Fig.(2.1)). The number of points
will be equal to Neven, such that Neven · ∆t is just above the final observation. In our case
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NW2,even = 197 and Ng,even = 395. We will compute the flux feven(teven,i) using eq.(2.11)
and the actual observations that are just before and after after teven,i where teven,i = i · ∆t,
i = 1, ..., Neven. We also add a Gaussian noise to each feven(teven,i) point, by adding a random
Gaussian number of mean zero and variance σ2

PN which should be representative of the variance
that is introduced to the light curve by the experimental Poisson noise. To achieve this, we
computed the mean value of the error squared of the original observations, σ2 =

∑Nobs

i=1 σ2
i /Nobs,

where σi is the error of the flux of each observation, and we set σ2
PN = σ2 i.e. we assume

that the mean error squared represents the variance introduced by using the observational
noise to the light curve. So at each point, i · ∆teven, the final flux estimation is equal to
feven(i · ∆teven) + N(0, σ2

PN), where N(0, σ2
PN) represents the random Gaussian variable with

mean zero and variance σ2
PN .

Figure (2.2) shows a part of the observed and the interpolated W2 light curves. The two
appear to be in good agreement. As long as there are no major gaps between the observations,
we expect the interpolated evenly sampled light curve to be close to the observed one. If this is
the case then we expect the number of points of the interpolated and the observed light curve
to be approximately the same. Indeed, we get NW2 = 197 and Ng = 395 both in the observed
and the interpolated light curves. Moreover, the points of the new light curves should be close
to the observed light curve points. In our case, the mean time difference between i · ∆teven
and tobs,i or tobs,i+1 (depending which is closer to i ·∆teven) is 0.42 days for the W2 band and
0.31 days for the g-band light curves. The result is notably smaller than the time scales where
significant variations appear in the observed light curves, which is of the order of a few days.
For this reason, assuming a linear trend between successive points in the observed light curves
was a reasonable conclusion. We conclude that, using linear interpolation, results in evenly
sampled light curves which are very close to the original ones, for all the sources we are going
to study in this work. Figure (2.2) shows a part of the observed and the interpolated W2 light
curves.

Figure 2.2: Part of the observed and interpolated light curves of the W2 band (filled and open circles
respectively). The continuous line connects the interpolated data.
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2.4 The Longest Sampled Time-Scale

Having applied the interpolation method to the Fairall9 light curves, we are now able to use
the discrete Fourier transform in order to decompose them to various components. In order to
demonstrate how this works, we are going to present the results for the W2 light curve. Using
eq.(2.5), eq.(2.7) and eq.(2.8), we can compute the sinusoids that contribute to the observed
variations at any frequency, fn = n

N ·∆t
. In Figure (2.3), the filled circles represent the evenly

sampled W2 light curve, which we constructed through linear interpolation from the observed
light curve, as explained in the preceding section. The solid line in the top of this plot shows
Sn=0 + Sn=1, i.e. the sum of the sinusoids with frequencies n = 0 and n = 1. The frequency
fn=1 =

1
N ·∆t

is the longest sampled frequency in the light curve. It corresponds to the longest
variation that is fully sampled by the light curve.

Figure 2.3: The constructed (evenly sampled) W2 light curve, together with the sinusoids for frequencies fn=0

and fn=1 (top line in the plot) and fn=2,...,20(shownbythelinesinthebottomoftheplot).

The lower portion of the plot displays sinusoidal curves corresponding to frequencies ranging
from fn=2 up to fn=20. They show the sampled variations (around zero) of frequencies which are
increasing from 2

N ·∆t
up to 20

N ·∆t
. As it is shown in the plot, the amplitude of these variations

decreases with increasing frequency. It is evident that by summing all the sinusoids, Sn(t),
n = 0, ..., N

2
, we can reconstruct the observed light curve.
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Chapter 3

Cross Correlation Analysis

3.1 Stationary Processes

A random (or stochastic) process is generally a time-varying (or space-varying) quantity,
X(t), where a precise value for X(t) at a time t cannot be determined theoretically. Instead
there is a range of possible values with an associated probability distribution describing the
relative likeliness of each possible value. Let us assume for example the observation of the
solar flux at a given time. If we repeat the observation at a later time we will almost certainly
get a different value, despite the fact that the solar flux is constant, even if we use the same
equipment and exposure time. This happens because there are a lot of random parameters that
affect both the emission of light from the Sun’s photosphere and the detection of light from
the detector. For example, excited atoms or free electrons have a certain probability of light
emission in the Sun’s photosphere. Therefore we do not expect exactly the same number of
photons emitted in the photosphere per unit time. Furthermore, there is a non-zero probability
of scattering or getting absorbed, as light is traveling through the photosphere (as well as the
Earth’s atmosphere) towards the observer. Therefore we do not expect exactly the same number
of solar photons arriving on the detectors surface per unit time. Regarding the detector, there
is also a probability associated with the way the light is going to interact with the material.
Because of that, for a given number of photons aiming at the detector, we do not expect that
the detector will always detect the same percentage of them. Therefore, if we observe the Sun
at different periods, many times, we will detect different numbers of photons. The collection
of all these possible records is called the ”ensemble” and each particular record which results
from observations is called a ”realization”.
A random process is stationary, when the statistical properties of the process (like the mean
and variance) do not change over time. Basically, if we take any realization of a stationary
process and divide it up into a number of time intervals, the various sections of the realization
should look mostly the same.

3.2 Cross Correlation Function

Let us assume two stochastic processes X1(t), X2(t) where t = 0,±1,±2, .... We say that
X1(t), X2(t) is a stationary bivariate process if their mean (µ1, µ2) and variances (σ2

1, σ
2
2) are

not functions of time, meaning they do not change if time is shifted. If we want to describe the
correlation structure between these two processes, we need to introduce the cross-covariance
function (CCV F ) which is defined as follows :

CCV F (τ) = E{[X1(t)− µ1] · [X2(t+ τ)− µ2]}, (3.1)
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where τ is the lag (say the time difference between two observations), and E[f(t, τ)] denotes
the expectation value of f(t, τ). We can also introduce the cross-correlation function (CCF ),
which is the normalized version of eq.(3.1), given by:

CCF (τ) =
CCV F (τ)

σ1 · σ2

. (3.2)

Let us now assume two time series x1,i and x2,i, which are the result of observing the
realization of two processes, namely X1(t) and X2(t), at discrete times ti (i = 1, ..., N) with
equal sampling (∆t = ti+1 − ti). Then, we can estimate CCF (t) as follows :

ˆCCF (τk) =
( 1
N
) ·

∑N−k
i=1 (x1,i − x1) · (x2,i+k − x2)

[( 1
N
) ·

∑N
i=1(x1,i − x1)2]1/2 · [( 1

N
) ·

∑N
i=1(x2,i − x2)2]1/2

, (3.3)

where x1, x2 are the sampled mean values of x1,i and x2,i, and τk = k ·∆t, k = 0, 1, ..., N − 1.
Using eq.(3.3) we can estimate the cross correlation between two light curves when they are
evenly sampled, have the same bin size, ∆t, and they have the same number of points. However,
in many cases, the aforementioned conditions are not fulfilled. In practice, most of the times,
observations result in light curves which are not evenly sampled. Furthermore, light curves in
various wave bands may not have the same bin size and the same number of points. A situation
like this is shown in Fig.(3.1).

Figure 3.1: Top: One realization of two continuous random processes a(t) and b(t) (plotted by solid lines),
which were observed in 12 different nights (resulting in the observations, A(ti) and B(ti), which are shown by
the filled dots). We observe that b(t) is intrinsically delayed relative to a(t). Middle : Approximation of a(t),
say ainter(t) achieved by linear interpolation between A(ti)’s. The 12 B(ti)’s are correlated with the
interpolated points of ainter(t) at times τ . Bottom : Similarly to the middle panel, the plot shows how the 12
A(ti)’s are correlated with the interpolated points of binter(t) at times −τ . Figure taken from C. Martin
Gaskell and Bradley M. Peterson (1987).
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The continuous lines a(t) and b(t) in the top panel of this figure show one realization of two,
continuous, random processes. As we can see, the two processes are obviously correlated, but
with a delay (process b(t) is delayed with respect to process a(t)). The filled dots indicate 12
different observations of a(t) and b(t) (say A(ti) and B(ti)) from different nights.
The solid line in the middle panel shows the line that is produced assuming a linear interpola-
tion between observations A(ti). Before and after the first and last observations the interpolated
light curve is equal to A(t1) and A(tlast). The solid line in the bottom panel shows the results
from the linear interpolation between the points in light curve B(ti). Before and after the first
and last observations the interpolated light curve is equal to B(t1) and B(tlast). Suppose now
we want to compute the CCF between a(t) and b(t) at a lag τ . We can achieve that by using
A(ti), B(ti), the respective interpolated light curves and eq.(3.3) as follows. Firstly, we can use
the B(ti) observations, the points A(ti+ τ) from the interpolated A(t) light curve, and eq.(3.3)
to compute ˆCCFBA(τ). Then, we can also use the A(ti) observations, the points B(ti−τ) from
the interpolated B(t) light curve, and eq.(3.3) to compute ˆCCFAB(−τ). Gaskell and Peterson
(1987) suggested that we should use as a final estimate of the cross correlation between the two
light curves, ˆCCF (τ), the mean of ˆCCFBA(τ) and ˆCCFAB(−τ).

3.3 Application in the case of the Fairall9 longest sam-

pled variations

As an example, we are going to apply the aforementioned methods to compute the time delays
between the longest time scale sinusoids in the light curves of AGN at different wavelengths.

Figure 3.2: The longest variability components (n = 1 and n = 0) in the W2 and g-band light curves of
Fairall9.

Figure (3.2) shows the sum of the longest variability components (Sn=0+Sn=1) in the W2 and
g-band light curves of Fairall9. Our objective is to investigate if there are any delays between
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these components. The vertical black solid line and the red dashed line show the lowest values
of the W2 and g-band components respectively. It is clear that the minimum flux in the W2
component is delayed with respect to the minimum flux in the g-band component. If we want to
quantify this delay we need to compute the CCF between the components plotted in Fig.(3.2).
In order to study the correlation between the two variability components shown in Fig.(3.2) we

are going use a python program called “PyCCF”1. The code works like the method described in
section (3.2) (and Peterson et al (1998)). It uses linear interpolation on two unevenly sampled
light curves, it cross correlates the light curves and calculates the peak and the lag centroid of
the cross-correlation function. In our case, the sinusoids are evenly sampled by construction.
However, the longest variability components shown in Fig.(3.2) do not have the same number
of points in both bands, because the original W2 and g-band light curves did not have the same
number of points. That being the case, we need to apply the interpolation step in the PyCCF
code, by determining an interpolation bin size. We set the bin size at ∆tinterp = 0.5 days, which
is slightly smaller than both ∆tW2,obs and ∆tg,obs (as suggested by the code instructions).
The program computes the CCF(τ) at each lag τ , twice, as it is explained in section 3.2.

PyCCF later determines the time-lag at which ˆCCF (τ) is maximum, say CCFmax(τ) and
then calculates the average centroid time-lag, τcent,obs, as the mean of the time-lags for which
CCF (τ) ≥ 0.8 · CCFmax(τ). The left panel at Fig.(3.3) shows the CCF between the longest
time scale sinusoids in the W2 and g-band light curves. The CCF is defined in such a way
so that, when the W2 component precedes the g-band component, CCFmax will appear at
a positive lag. The vertical line indicates τmax, i.e. the time lag where the CCF maximum
appears. In this case, τmax = −5 days. The dashed horizontal line shows all the CCF values
which are 80% of CCFmax. The range that is used to compute tcent is between the two time
lags that the dashed line is intercepted with the CCF curve.
The code also performs a Monte Carlo experiment to improve the accuracy in determining

the time lag between the two components and to determine its corresponding error. It creates
N (=10000 in our case) pairs of W2 and g-band variability components by randomly sampling
the original curves (shown in Fig.(3.2)). For each of these pairs of synthetic components, the
program computes a tcent,synth. In this way, the code creates a distribution of centroid time
lags. This distribution is shown in the right panel of Fig.(3.3). For the final estimation of the
time lag between the curves shown in Fig.(3.2), tcent, the code uses the median of the tcent,synth
distribution shown in the right panel of Fig.(3.3).

Figure 3.3: Left panel : dotted horizontal line indicates the 0.8 ·CCFmax. Vertical solid line shows the time lag
at CCFmax. Right panel : Monte Carlo tcent,synth distribution. Vertical line indicates the median tcent.

Furthermore, the positive error of the final tcent is calculated by subtracting the median of the
tcent,synth distribution from their 90th percentile score, while the negative error of the final tcent

1For details visit: http://ascl.net/code/v/1868
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is calculated by subtracting the 10th percentile score of the Monte Carlo iteration time lags
from their median score. Through this process we get the time lag of the g-band light curve
relative to the W2 band, which will be set as the reference band in all the objects we will be
using for our analysis. In this particular example the time lag was found to be: -4.8(+0.3, -0.5)
days.
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Chapter 4

Data Analysis

4.1 The sample of AGN and light curves

Our objective in this work is to compute the longest variability component in the light curves
of as many AGN as possible across multiple wavebands, to determine the delays between these
components and study their dependence on wavelength. Table (4.1) lists the AGN selected
for our analysis, ordered by decreasing black hole mass. These objects were chosen due to
their extensive observations using both the Swift satellite and various ground-based telescopes,
spanning a significant period of time across multiple wavelengths. The data are accessible in
existing literature and can be used for determining the delays between the longest variability
components, as described in the previous Chapters.
The first column of Table (4.1) lists the name of the objects we are going to study, namely

Fairall9, Mrk509, NGC5548, NGC4151 and Mrk142. The Fairall9 data were taken from Her-
nandez Santisteban et al (2020) and the Mrk142 data were taken from Cackett et al (2020). The
Mrk509, NGC4151 and NGC5548 data were taken from Edelson et al (2019) and Fausnaugh
et al (2016) (NGC5548 data for the i-band data). The second column in Table (4.1) lists the
redshift and the black hole mass of the ojects in our sample. Redshifts are taken from NED1.
The BH masses for Fairall9, Mrk509 and Mrk142 were taken from Bentz & Katz (2015), while
the BH masses for NGC4151 and NGC5548 were taken from Bentz et al (2022) and Horne et al
(2021) respectively. The third column lists the waveband, while the fourth column shows the
number of the observations in the respective light curve. In the fifth and sixth columns, the
date range and the duration, T, of the light curves are listed respectively, while in the seventh
column we list the average time between observations, ∆tobs.
Figures (4.1) to (4.5) show the light curves for each source across various wavelengths. The

vertical dashed lines in Figs. (4.1), (4.3), and (4.5), indicate the starting point (tstart) and
ending point (tstop) of the data used in our analysis. We opted not to utilize the entire duration
of the light curves for these objects due to substantial gaps between observations in at least one
band, either before tstart or after tstop. We also wish to keep the duration of the light curves,
in the various wavebands, to be roughly equal. The values listed in columns 4 through 7 in
Table (4.1) correspond to the light curves that fall within the dashed boundaries seen in Figs.
(4.1), (4.3), and (4.5). In the 6th column, the numbers in parenthesis indicate the light curve
duration in the rest frame of each source, i.e. Trf = T/(1 + z).

1The NASA/IPAC Extragalactic Database (NED) is funded by the National Aeronautics and Space Admin-
istration and operated by the California Institute of Technology. https://ned.ipac.caltech.edu/
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Table 4.1: BH mass and light curve properties of the objects we study in this work.

Object
MBH (M⊙)
and redshift

Band N
Date Range

(MJD)
T

(days)
∆tobs
(days)

Fairall9 W2 193 58285.736 - 58523.507 237.8(227.1) 1.24
Fairall9 W1 191 58285.734 - 58523.505 237.8 1.26
Fairall9 US 201 58284.936 - 58523.505 238.6 1.2
Fairall9 2 · 108 BL 418 58284.383 - 58524.413 240 0.58
Fairall9 z = 0.047 gL 393 58284.394 - 58524.425 240 0.62
Fairall9 VL 418 58284.414 - 58524.416 240 0.58
Fairall9 rL 387 58284.417 - 58524.428 240 0.63
Fairall9 iL 388 58284.420 - 58524.430 240 0.63
Fairall9 zL 375 58284.423 - 58524.432 240 0.65
Mrk509 W2 233 57829.857 - 58102.491 272.6(263.6) 1.17
Mrk509 1.1 · 108 W1 228 57829.852 - 58102.486 272.6 1.2
Mrk509 z = 0.034 U 245 57829.853 - 58102.488 272.6 1.11
Mrk509 B 245 57829.854 - 58102.489 272.6 1.11
Mrk509 V 238 57829.859 - 58102.493 272.6 1.15
NGC5548 W2 258 56705.983 - 56829.920 123.9(121.8) 0.5
NGC5548 W1 261 56705.979 - 56829.918 123.9 0.48
NGC5548 7.7 · 107 U 267 56705.980 - 56829.918 123.9 0.47
NGC5548 z = 0.017 B 271 56705.981 - 56829.919 123.9 0.46
NGC5548 V 263 56705.986 - 56829.922 123.9 0.48
NGC5548 i 137 56705.610 - 56829.409 123.8 0.93
NGC4151 W2 251 57438.045 - 57507.289 69.2(69.0) 0.28
NGC4151 1.7 · 107 W1 268 57438.040 - 57507.284 69.2 0.26
NGC4151 z = 0.0033 U 310 57438.042 - 57507.286 69.2 0.22
NGC4151 B 311 57438.043 - 57507.288 69.2 0.22
NGC4151 V 303 57438.046 - 57507.291 69.2 0.23
Mrk142 UVW2 131 58486.067 - 58580.231 94.2(90.2) 0.72
Mrk142 UVW1 133 58486.062 - 58580.226 94.2 0.71
Mrk142 2 · 106 U 132 58486.063 - 58580.228 94.2 0.71
Mrk142 z = 0.044 B 145 58486.064 - 58580.229 94.2 0.65
Mrk142 g 215 58486.018 - 58580.454 94.4 0.44
Mrk142 r 211 58486.017 - 58580.456 94.4 0.45
Mrk142 i 210 58486.018 - 58580.458 94.4 0.45
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Figure 4.1: The Fairall9 light curves. Vertical dashed lines indicate the start and finish of the data we will be
using in our analysis. Light curves are odrdered by increasing wavelength from top to bottom.

Figure 4.2: Same as in Fig. (4.1), but for Mrk509.
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Figure 4.3: Same as in Fig. (4.1), but for NGC5548.

Figure 4.4: Same as in Fig. (4.1), but for NGC4151.
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Figure 4.5: Same as in Fig. (4.1), but for Mrk142.

4.2 Fourier Decomposition

We used the light curves plotted in the figures of the previous section and we computed their
longest variability components. The original light curves are not evenly sampled. In order to
apply the discrete Fourier transform method described in Chapter 2, we need to to produce
evenly sampled light curves using linear interpolation, as we explained in section 2.3. We will
then use these evenly sampled light curves to compute the longest variability components in
the light curves using eq.(2.8) for n = 1.
Figures (4.6) through (4.10) show the sum of Sn=0 + Sn=1, for all the sources listed in Table
(4.1). In the case of Mrk509, NGC5548 and NGC4151 we plot the longest variability compo-
nents at all wavebands. However, for the remaining 2 sources, Fairall9 and Mrk142, we plot
them in a limited number of bands which cover the full frequency range of the available wave-
bands.
The dashed vertical lines indicate the minimum or maximum flux of the longest variability

component in the longest wavelength band, located in the bottom of each figure. In the case
of Fairall9, Mrk509 and NGC5548, the minimum is well defined and the vertical lines can help
us make a first estimation about the delays between the longest variability components at dif-
ferent wavelengths. In the case of NGC4151 and Mrk142 the minimum is not well defined. For
that reason, the dashed vertical line indicates the maximum flux value of the component in the
longest wavelength band.
Ιn Fairall9, these lines show that the minimum flux appears at later times in the bands with

shorter wavelength. This implies that a delay is present between the variations of the variability
components, which increases with decreasing wavelength. However, this is not the case for the
other sources. The clearest example is Mrk142, where the opposite trend is obvious. There is
also a delay between the longest sinusoids in the light curve, but in this particular source, the
variations initially appear at shorter wavelengths and then propagate to longer wavelengths.
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Figure 4.6: The longest variability components (i.e. Sn=0 + Sn=1) in the Fairall9 light curves, at various
wavelengths. The vertical dashed line indicates the minimum flux value of the variability component in the
longest wavelength band (z-band).

Figure 4.7: Same as in Fig. (4.6), but for Mrk509.
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Figure 4.8: Same as in Fig. (4.6), but for NGC5548.

Figure 4.9: Same as in Fig. (4.6), but for NGC4151. Vertical lines in this case indicate the maximum flux of
the plotted variability component in the longest wavelength band (V -band)
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Figure 4.10: Same as in Fig. (4.9), but for Mrk142.

4.3 Cross correlation results

In order to quantify the delays between the variability components plotted in Figs. (4.6)-
(4.10), we compute their CCF , as described below. We use the ”PyCCF” code, as discussed
in section 3.3, in order to compute the time lags between the longest variability components in
the various wavebands, for all sources in the sample. The time lag is computed with respect
to the W2 band, which was chosen as the reference band for all sources. Our cross-correlation
results are presented in Table (4.2). In the first column of the Table we list the effective
wavelength for each waveband. The first and second column of each source list the τcent of the
CCF between the longest variability component in that band and in W2, and the quantity
V amp = Fmax−Fmin

Fmean
, where Fmax, Fmin and Fmean are the maximum, minimum and mean flux

of the longest variability component. This quantity does not have units and is a measure of the
variability amplitude, in percentage, around the mean flux of each component. It is evident
that the variability amplitude of each component is decreasing as the wavelength increases in
all sources.
Figures (4.11)-(4.14) show a plot of τcent versus λ. In all these plots, the horizontal line is
drawn to indicate τcent = 0. We keep the x-axis scale the same in all plots to emphasize
that Fairall9 and Mrk142 have the widest wavelength coverage. It is clear that in Fairall9,
variations in the longest component initially propagate from the longest wavelength to shorter
wavelengths. The delays are of the order ∼days between W1 and W2, and ∼8 days between
the z-band and W2. However, this trend is observed only in Fairall9. In NGC5548, NGC4151
and Mrk142, the delays increase with increasing wavelength. The situation in Mrk509 is a bit
unclear. The delays appear to be negative, but roughly constant at all wavelengths.
Nevertheless, the comparison drawn from the delays-versus-wavelength plots shown in Figs.(4.11)-

(4.13) may be misleading. More specifically, the rest frame frequency of the longest variability
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component in the light curve of Fairall9, f1,rf , is not the same in all the sources. Infact,
f1,rf,F9 = 4.4 · 10−3 d−1 is lower than f1,rf in NGC5548, NGC4151 and Mrk142 (f1,rf,NGC5548 =
8.2 · 10−3 d−1, f1,rf,NGC4151 = 1.4 · 10−2 d−1 and f1,rf,Mrk142 = 1.1 · 10−2 d−1). However, fre-
quencies in AGN scale inversely proportional to BH mass. Hence, for a meaningful comparison
between delays detected in different sources, we must examine delays for variability components
with frequencies similar to f1,rf,F9, taking into account the differences in BH masses between
the sources. The ratio of the Fairall9 BH mass over the BH mass of the other sources in the
sample is : ∼1.8, ∼2.6, ∼11.8 and 100, for Mrk509, NGC5548, NGC4151 and Mrk142 re-
spectively. This implies that we should compare delays between variability components whose
frequency is fcomp,Mrk509 ∼ 1.8f1,rf,F9, fcomp,NGC5548 ∼ 2.6f1,rf,F9, fcomp,NGC4151 ∼ 11.8f1,rf,F9

and fcomp,Mrk142 = 100f1,rf,F9. These frequencies correspond to the variability components
with n = 2, n = 1, n = 3, and n = 40 for these objects, respectively. We computed the delays
between those components in the various wavebands and W2. The results are listed in Table
(4.2), with the numbers in parenthesis, in the first column of each source, except Mrk142. In
the case of Mrk142, the n = 40 component has a low amplitude and is dominated by variations
caused by the Poisson noise process. For this reason, we are unable to determine the delays
between the intrinsic variability components with n = 40 in this particular source.
Figure (4.14) shows the f1,rf time lags for Fairall9, as well as the fcomp time lags for Mrk509,
NGC5548 and NGC4151. Clearly, when we compare the delays between components with
equivalent frequencies in the various sources we do not detect the same trend. Contrary to
Fairall9, the time lags in the other three sources appear to increase with longer wavelengths.

Table 4.2: Time lag results for Fairall9, Mrk509, NGC5548, NGC4151 and Mrk142

Fairall9 Mrk509 NGC5548 NGC4151 Mrk142
λ τcent Vamp τcent Vamp τcent Vamp τcent Vamp τcent Vamp

(Å) (Days) (Days) (Days) (Days) (Days)
1928 0.49 0.54 0.26 0.14 0.18
2600 -0.2±0.5 0.38 −3.0+0.5

−0.9 0.41 0.6±0.4 0.20 0.2±0.1 0.15 0.0+0.4
−0.2 0.19

(2.0±0.5) (1.5±0.1)
3465 -3.7±0.5 0.32 −1.0+0.5

−0.9 0.38 −0.4+0.2
−0.4 0.18 0.9+0.2

−0.1 0.15 0.2+0.2
−0.4 0.16

(6.0±0.4) (1.2±0.1)
4393 −4.8+0.3

−0.5 0.26 −2.5+0.9
−0.5 0.33 2.2±0.4 0.13 2.3±0.1 0.09 3.4±0.2 0.10

(6.5±0.4) (-1.1±0.1)
4754 −4.8+0.3

−0.5 0.23 - - - - - - 0.4+0.2
−0.4 0.11

5469 -7.3±0.5 0.19 −3.5+0.9
−0.5 0.24 2.6±0.4 0.10 1.4±0.10 0.06 - -

(8.0±0.4) (1.1±0.1)
6204 −6.0+0.5

−0.3 0.15 - - - - - - 1.4±0.2 0.07
7698 −11.2+0.5

−0.3 0.13 - - 1±0.4 0.05 - - 3.2±0.2 0.08
9665 −8.3+0.3

−0.5 0.11 - - - - - - - -
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Figure 4.11: Left panel : The τcent versus λ plot for Fairall9. Right panel : Same as in the left panel, but for
Mrk509.

Figure 4.12: Same as in Fig.(4.11), but for NGC5548 and NGC4151.

Figure 4.13: Same as in Fig.(4.11), but for Mrk142.
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Figure 4.14: Same as in Fig.(4.11), but for all sources (except Mrk142), where τcent is the delay between
variations in variability components with the same frequency, normalized to BH mass, which is equal to
f1,rf,F9.
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Chapter 5

Summary and Conclusions

Our main objective in this work was to compute the longest variability component in the
light curves of as many AGN as possible, across multiple wavebands and determine the delays
between these components, while studying their dependence on wavelength. In order to achieve
this, we used archival data of 5 sources, namely Fairall9, Mrk509, NGC5548, NGC4151 and
Mrk142, that were available in the literature. These objects have been observed regularly
by both the Swift satellite and various ground based telescopes, over a long period of time,
across multiple wavebands. Therefore, the available light curves can be used in our analysis,
by applying the discrete Fourier transform and calculating the delays between the longest
variability components by cross-correlating them. To accomplice this, we followed the steps
summarized below.
1) We created evenly sampled light curves for the aforementioned objects in all the wavebands,
by using linear interpolation, as described in Chapter 2. We also added a random number to
the new, evenly sampled light curves, in order to further simulate the observational noise of a
real data set.
2) We performed a Fourier analysis, using the discrete Fourier transform, and determined the
longest time-scale Fourier components in each waveband, for all the sources in our sample.
To create these components, we used the new, evenly sampled light curves and applied the
discrete Fourier transform and then the inverse discrete Fourier transform, but only for the
longest sampled frequency, that corresponds to n = 1 as desribed in detail in Chapter 2. The
longest variability components for each source are plotted in Chapter 4, in Figs.(4.6)-(4.10).
3) We cross-correlated the longest variability component in the W2 waveband with all the
other wavebands and determined the delays between them, as explained in Chapter 3. The
resulting time lags are listed in Table(4.2) and the delay-vs-wavelength figures are shown in
Figs.(4.11)-(4.13). We plotted the delays-vs-wavelength and found that for the longest vari-
ability component of Fairall9, the results are in agreement with Hernandez Santisteban et al
(2020).
4) We computed the maximum variability amplitude of the long variability components. The
results are listed in Table (4.2) in the second column of each source. The variability amplitude
of these components decreases as wavelength increases in all sources.
5) We computed the delays for the components of the sources with the same rest frame
frequency, when normalized by the BH mass. We should normalize frequencies to MBH , if
indeed frequencies in AGN scale inversely proportional to BH mass. The results are listed in
Table (4.2) in the second column of each source, inside the parenthesis, and are plotted in
Fig.(4.14). We observe that the results do not change after comparing the delays between the
W2 waveband and the other wavebands in the same timescale by normalizing their rest frame
frequencies. Fairall9 is the only source that exhibits variations that propagate from longer to
shorter wavelengths.
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Hernandez Santisteban has proposed that the long term time lags in Fairall9 may be due to
accretion rate fluctuations in the accretion rate that travel inward from the outer accretion
disc toward the inner region. In fact, for a given BH mass, the accretion rate determines the
temperature and, consequently, the luminosity of the disc. Therefore, if ṁ varies, at a radius
R, the locally emitted flux from the disc at that radius should also exhibit variations. If the ṁ
variations propagate inwards, then variations of the same frequency should appear at all radii,
but with a time delay. This delay would be equal to the time it takes for the ṁ variations to
travel from the outer radius Rout to the inner radius Rin.
If ṁ variations that propagate through the disc are responsible for the variations that we
observe in Fairall9, then we would expect to observe similar behaviour in other AGN. However,
when we study the delays between components with the same time-scales by normalizing to
the BH mass of each source, we do not detect timelags that behave like the ones in Fairall9.
Moreover, the case of Mrk142 is quite important. When we normalize to BH mass, the length
of Mrk142’s light curves are ∼40 times longer than that for Fairall9, meaning that the latter’s
delay behaviour is not due to it being observed for a relatively longer period of time. In Mrk142,
as well as the other 3 sources, we see delays towards longer wavelengths, which is what we would
expect in the case of X-ray illuminated discs.
Nevertheless, in order to adequately investigate the case of Fairall9, it would seem that we
need new data, in order to determine whether this is a transient phenomena or permanent. If
it were transient, it could be due to a pressure variation that propagates inwards the accretion
disk, caused by either an orbiting star or some other object that affects the accretion disk.
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Appendix

x(κ ·∆t) =
1

N
·
N−1∑
n=0

Xn · e
2πikn

N =
1

N
·

N
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n=−N
2
+1
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N =
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X−n · e
−2πikn

N +

N
2
−1∑
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Xn · e
2πikn

N ].

(5.1)

We will substitute Xn using eq.(2.1) with new parameter k’

x(κ ·∆t) =
1

N
· [

N−1∑
k′=0

x(κ′ ·∆t) · e
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=
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N
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e
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(5.2)
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We observe that the last term in the equation above has two finite geometric sums and can be
written as follows,

N
2
−1∑

n=0

[e
±2πi(k−k′)

N ]n =
1− [e

±2πi(k−k′)
N ]

N
2

1− e
±2πi(k−k′)

N

. (5.3)

For k′ ̸= k and using eq.(5.3), the last term in eq.(5.2) becomes
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Now if we use the above we get that
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For k′ = k we get that :
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So we conclude that
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= δk′,k. (5.4)

Using eq.(5.4), we can rewrite eq.(5.2) as follows
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(5.5)
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