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Abstract

In several industrial applications, monitoring large-scale infrastructures in order to
provide notifications for abnormal behavior is of high significance. For this purpose,
the deployment of large-scale sensor networks is the current trend. However, this
results in handling vast amounts of low-level, and often unreliable, data, while an
efficient and real-time data manipulation is a strong demand. In this thesis, we
propose an uncertainty-aware data management system capable of monitoring
interrelations between large and heterogeneous sensor data streams in real-time. To
this end, an efficient similarity function is employed instead of the typical correlation
coefficient to monitor dynamic phenomena for timely alerting notifications, and to
guarantee the validity of detected extreme events. Experimental evaluation with a set
of real data recorded by distinct sensors in an industrial water desalination plant
reveals a superior performance of our proposed approach in terms of achieving
significantly reduced execution times, along with increased accuracy in detecting
extreme events and highly correlated pairs of sensor data streams, when compared
with state-of-the-art data stream processing techniques.



Hepiinyn

e TOAMAEG PLOUNYOVIKES EQOPLOYEG 1 TOPOKOAOVONON VITOSOUMY PEYAANG KAILOKOG
elval VYNNG oNUOGIOG, TPOKEEVOL VO TTOPEXOVTOL Ol KOTAAANAES ELOOTOUCELS Y10
Un OVOUEVOUEVT] GLUTEPLPOPE. AvTdg glvar Kot 0 AdYog mov avéndnke n téon yo
™V avAarTuEn SIkTH®V oenTpOV peyaing kMpaxkos. Qotdco, avt n enetepyacio
amod To OlKTLO CUCONTAP®V KOTOANYEL GTO YEPICUO HEYOAOL OYKOL OEOOUEVDV
mAnpogopiag pe younin mowdwtro. H avolomotio ota dedouéva emeéepyaciog,
amotedel €vav OVOOTOATIKO TOPAYOVIO GTO. GLOTHUOTO Oloyeipong OedOUEVEDV
TPAYLATIKOV ¥pOVOL TV omoiwv 1 {ftnon sivan avénuévn. e avtiv v epyacio
npoteivovpe éva cvomuo encéepyociag dedopuévav yopic apefoatdotnta, T0 omoio
etvar wovo va mapakolovBel ™ cvumeplpopd Kot TG OAANAEMOPACELS HETOED
LEYAA®V KOl ETEPOYEVOV POV dedopévav and acntipec, o€ Tpayuatikd ypovo. H
TPOGEYYIoN HOG  ypnotpomolel pio ovvapnon OHoOTNTAS, Ovil TOV  TLTIKO
OGUVTEAEGTI] CLGYETIONG , £TCL MOTE VO TPAYLOTOTOEITOL 1 TapakolovOnon otV
e€EMEN  OLVOUIKAOV  QOVOUEVAOV  Ylo. TNV  €YKOIPT  OVOKOIVOGT  CNUOVTIKOV
gwomomoewv, KoOMG Kot Yoo TV €EAGQAAON TG €YKLPOTNTOC YO, OVIXVELGN
onuavtiK®av yeyovotov. H melpapatikn pog a&loAdynon og £va GOVOLO TPoyLOTIKMV
dedopéVmY To. omolo KaToypapovtal amd oacntipeg og pio Pounyovikn povada
AQOAATOONG VEPOV, eueavilel avEnuévn amddoon OGov aeopd oty emitevén
HEIOUEVODVY ¥pOVOV omdkplong tov cvotnuotos. EmmAéov, mapovoidler peydin
axpifelo oV aviyvevon vymid cvoyetilopevov pomv dedopévav, ce avtiBeon Le
SPOPETIKEG TEXVIKEG emeCepyaciog podV OEOOUEVDV.
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1. Introduction

Recent advances in information and communication technology (ICT) have led to a
significant progress in the design of devices incorporating wireless communication,
processing and storage capabilities, as well as diverse sensing and actuation
functionalities in a single unit that is compact, economical, autonomous and destined
to become ubiquitous. This revolution appears in the form of dense and distributed
large-scale self-organized wireless sensor networks (WSN) for carrying out various
tasks that are of great societal interest, such as environmental monitoring and
surveillance or monitoring and management in large-scale industrial infrastructures.
The HYDROBIONETS project’ is a characteristic example of such an infrastructure
for water resource management. Specifically, it targets at developing a real-time
micro-biological wireless networked control system for water desalination and
treatment plants, providing the fundamental design principles of a wireless BloMEM
network (WBN) with distributed multi-sensing and multi-actuation capabilities.

The HYDROBIONETS infrastructure focuses on the monitoring of the complete
water cycle in large-scale water treatment and desalination plants. The deployment of
a WBN aims at monitoring critical microbiological and electrochemical parameters
of water at different stages of the desalination process. The associated distributed,
autonomous sensing is further exploited to produce intelligent reasoning over the
data by supporting advanced operations, such as the detection of high fouling
concentration in seawater, the control of biocide and chlorine dosage by measuring
bacteria in seawater at different stages of water treatment (pre-filtered, pre-treatment
and reverse osmosis phases) at periodic time intervals. These functionalities
essentially provide the building blocks of the actuation process for water desalination
at different locations in the plant.

At the core of the HYDROBIONETS system, which curries out those operations, is
an efficient data processing module. This module comprises of distinct collaborating
computational nodes, which monitor and control several physical entities and
dynamic phenomena. The sensor data and metadata, which are produced in streams
by the sensors, can be either processed in real time or stored for further exploitation.
Those data can be raw (as produced by the sensors) or aggregated, which are
produced based on calculations at the node level. To accommodate the requirements
of our industrial paradigm we focus on the design and development of a set of tools
to deal with high-level analysis of the collected data. These tools will work on the
available data and they report and employ in a coherent manner an appropriate
statistical analysis in order to: (i) monitor continuously a dynamic system, (ii) detect
extreme events (e.g. presence of highly contaminant substances) and provide specific
alerts depending on the level of severity of the event, (iii) guarantee the validity of
the detected extreme events, and (iv) account for the underlying uncertainty of the
recorded data.

Rather than computing single stream statistics, such as average and standard
deviation, our data analysis is focusing on finding high correlations among pairs of
data streams from distinct sensors. More specifically, a system operator may rely on

! http://www.hydrobionets.eu/
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pairwise sensor stream correlations to reveal interrelations between seemingly
independent physical quantities monitored by distinct sensors. This can be further
exploited to guarantee the validity of a detected extreme event and provide the
necessary alerting notifications. For instance, temperature and pressure sensors,
which monitor an industrial plant, could provide evidence of an increasing bacteria
presence. Depending on their physical location in the plant we expect that
corresponding data streams will be highly correlated. Moreover, in
HYDROBIONETS, the measurements from heterogeneous sensors, distributed over
a geographic area, need to be processed efficiently in order to reconstruct the spatio-
temporal behavior of desired physical variables or to detect, identify and localize
sources and events of interest.

Whereas traditional statistical machine learning provides well-established
mathematical tools for data analysis [14][23][24][25], their performance is limited
when processing high-dimensional data streams. Specifically, existing techniques for
monitoring pairwise stream correlations exhibit several drawbacks. In a recent work
[27] the problem of maintaining data stream statistics over sliding windows is
studied, with the focus being only on single stream statistics. On the other hand, [28]
introduced an extension for monitoring the statistics of multiple data streams, but the
computation of correlated aggregates is limited to a small number of monitored
streams. In addition, StatStream [20] has been proven to be a successful data stream
monitoring system, which enables the computation of single- and multiple-stream
statistics. However, the main drawback of this technique is the difficulty to define an
appropriate “similarity” function for data streams describing dynamic phenomena
with unknown prior distributions, which is normally the case in an industrial
environment.

The aforementioned solutions do not apply in the case of monitoring and comparing
the behavior of data streams. The challenges of this study include: (i) the dynamic
evolution of the phenomena and lack of an a-priori knowledge of the characteristics
of their values and errors that may accur, (i1) the comparison between independent
physical quantities measured in different scales and (iii) the inherent data
uncertainty, due to the presence of incomplete, imprecise, and even sometimes
misleading data , which hind an accurate and reliable decision making.

In this thesis, we overcome the limitations of the previous approaches by introducing
a computationally efficient “similarity extraction” module, which enables the
monitoring of pairwise correlations between high-dimensional sensor data streams on
the fly. We note here that time synchronization is also performed between the
acquired data streams, prior to the extraction of highly correlated pairs, based on
their corresponding time stamps, which are available as a part of the transmitted
packets. In particular, instead of computing all pairwise correlations between the
original full-dimensional data streams, we exploit the compressibility property of the
discrete Fourier transform (DFT) to concentrate the inherent energy content of a
given signal in the first few high-amplitude coefficients, as in [20]. Then, a suitable
peak similarity measure is applied on the associated pairs of truncated DFTs as a
proxy for the corresponding correlation coefficients. Thus the problem of identifying
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highly correlated pairs of data streams is reduced to a problem of identifying pairs of
truncated DFTs with high peak similarity values.

It is worth also to stress that usually WSN nodes do not handle any quality aspect of
physical device data but rather interface with a high-level representation and
reconstruction of the sensed physical world. As a result, the HYDROBIONETS data
processing subsystem has to additionally cope with the data wuncertainty, where
stream data may be incomplete, imprecise, and even misleading [40], thus impeding
the task of an accurate and reliable decision making. Uncertainty-aware data
management [4] presents numerous challenges, in terms of collecting, modeling,
representing, querying, indexing and mining the data. Since many of these issues are
interrelated, they cannot be easily addressed independently. Uncertainty has been
recently recognized as an additional source of information that could be valuable
during data analysis, and thus, should be preserved. More specifically, a spreadsheet-
based approach is employed to identify, quantify, and combine the underlying
uncertainty from the most dominant potential sources of uncertainty, as presented in
[31].

Another major functionality assigned to our uncertainty-aware data processing
system 1is to perform high-level operations, and specifically to provide notifications
of extreme events by employing raw sensor data [25]. Two widely-used methods for
notifying a system operator whether the data has unexpected values are: (i)
compliance with operating limits (COL), and (ii) the method of peaks over a
threshold (POT) [41]. Since the detection of abnormal behavior is affected by the
underlying uncertainty, the above two extreme event detectors are modified
accordingly so as to account for the imprecise nature of the raw sensor data.

Our proposed system is completed with the integration of appropriate rules for
uncertainty propagation after a query execution has finished. The result of the
uncertainty of an aggregation will not be measured directly. For instance, what is the
error in Z = A + B, where A and B are two measurements with errors AA and AB
respectively? A first thought might be that the error in Z would be just the sum of the
errors in A and B, that is, (A + 4A) + (B + 4B) = (A + B) + (4A + AB). However,
this assumes that, when combined, the errors in 4 and B have the same sign and
maximum magnitude, that is, they always combine in the worst possible way. This
could only happen if the errors in the two variables were perfectly correlated.
Uncertainty propagation may be also viewed from the perspective of queries sent by
an operator, for actions to be taken on the recorded data streams (e.g., join,
aggregation). We identify the most appropriate methods to achieve a robust
estimation of (i) the raw data uncertainty and (i1) the uncertainty resulting from query
processing. This results also in a balanced trade-off between the computational
burden and the accurate estimation of the underlying uncertainty.

The performance of our proposed system is evaluated using a set of real-world data
provided by ACCIONA Agua, recorded by a set of distinct electromechanical
sensors in the La Tordera’s desalination plant®.Specifically, it achieves highly

? http://aca-web.gencat.cat/aca/documents/ca/sensibilitzacio/desal_Tordera/dessalinitzacio_en.pdf
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reduced execution times in conjunction with accurate estimation of the highly-
“similar” pairs of sensor streams, as well as a timely alerting performance, when
compared with existing widely used data analysis techniques.

To summarize, the main contribution of this thesis is threefold: (i) a fast and robust
method is proposed for uncertainty-aware monitoring of pairwise interrelations
(“similarities™) between distinct sensors, which outperforms state-of-the-art pairwise
correlation extraction methods; (ii) in contrast to common data management, which
relies on the raw measurements, we verify that the underlying data uncertainty is a
valuable source of information, which should be preserved, towards providing more
ubiquitous data descriptions; and (iii) the performance of two widely-used extreme
event detection methods is enhanced by incorporating the inherent data uncertainty
component.

Our utmost goal is to provide a valuable insight into the design and implementation
principles of an efficient and robust data processing system. The integration of the
above three functionalities in industrial monitoring and surveillance applications has
indicated the role of the underlying data uncertainty as an additional source of
information, which should be preserved across all stages of the data processing
chain.
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2. Problem Description

The problem of quality and quantity of water resources is a global challenge for the
upcoming years. Both an adequate amount of water and adequate water quality are
essential for public health and hygiene. Waterborne diseases are among the leading
causes of morbidity and mortality in low-and middle-income countries, frequently
called developing countries.

In recent years, treated wastewater has been used as a source of water for certain
applications. This is generally named “Water Reuse”. Wastewater reclamation is
gaining popularity worldwide as a means of conserving natural resources used for
drinking water supply. Recycled water is most commonly used for non-potable
purposes, such as agriculture, landscape, public parks, and industrial applications,
among others. Both water treatment and desalination plants play a major role in
terms of obtaining large quantities of water with good quality.

The above requirements, made the need for the implementation and deployment of a
large-scale Self-Organized Wireless BloMEM Network (WBN). The WBN will be
responsible for microbiological autonomous monitoring and decentralized control of
water quality in industrial environments. So, it gives us the opportunity to improve
the quality of life, safety and security of water supply. The HYDROBIONETS
project is a characteristic example of such an infrastructure for water resource
management. Specifically, it targets at developing a real-time microbiological
wireless networked control system for water desalination and treatment plants,
providing the fundamental design principles of a wireless BioMEM network with
multi-sensing and multi-actuation capabilities.

We propose a data processing subsystem, which aims to support the
HYDROBIONETS WSN infrastructure for multi-sensing and multi-actuation in
water treatment and desalination plants. In our case, a desalination pilot plant is
located in La Tordera, which is equipped with a number of various electrochemical
sensors, scattered in distinct locations, for monitoring several physical and
mechanical variables in the plant. The major contribution of this thesis is the main
component of this data processing subsystem. It is responsible for finding high
correlations among pairs of data streams. A system operator may use this
information to identify interrelations between seemingly unrelated physical
quantities monitored by distinct sensors, or to guarantee the validity of a detected
extreme event. Thus on-the-fly monitoring of potential correlations in the recorded
details is crucial to extract meaningful information and provide the necessary
notifications. Moreover, in HYDROBIONETS, measurements from heterogeneous
sensors, distributed over a geographic area, need to be processed efficiently in order
to reconstruct the spatio-temporal behaviour of desired physical variables or to
detect, identify and localize sources and events of interest.

This chapter describes the actuation process in HYDROBIONETS infrastructure.
More specifically in section 2.1 we mention the main objectives of the
HYDROBIONETS project and explain the phenomenon of biofouling developed due
to water treatment. In the section 2.2 we describe the sensing performed at various
points in the plant at different times. By describing the complexity of the phenomena
presented in such cyber-physical systems, we justify why we don’t use simple
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models for monitoring the actuation process on them. In fact, only with detailed data
analysis processing we can find spatiotemporal correlations, which allow us the
timely actuation in water treatment process. A major challenge arises from our data
analysis processing- the existence of uncertainty in our data streams. For this reason,
in subsection 2.2.1, we analyse the data quality characteristics for the sensors of
HYDROBIONETS’ project. Also we indicate how the knowledge of these key
dimensions of data quality enhances the non-existence of uncertainty in the data to be
processed. Finally, in section 2.3 we describe the requirements for high-level data
analysis.

2.1. Industrial Monitoring Setting

Our developed data processing system is at the core of the HYDROBIONETS
project, which focuses on the research and development of Self-Organized Wireless
BioMEM Networks and their integration in a global system to monitor the complete
water cycle in large-scale water treatment and desalination plants. The WBNs will
achieve a distributed monitoring and control of critical microbiological parameters of
water in the different stages of process in desalination plants. Water treatment plants as
a solution to water scarcity and water treatment for reuse has a number of advantages:

(i) low energy requirement for water production,

(i1) potential for using the water in different manner, and

(ii1) environmentally friendly.

Different technologies can be applied for water desalination and specifically seawater
desalination. The HYDROBIONETS project focuses on desalination by reverse osmosis
and in the waste-water treatment plants by Membrane Bio-Reactor (MBR). The use of
MBR technology has been proven to be a feasible and efficient method of producing
reclaimed water [1]. The osmotic membrane also is referred to as a semi-permeable
membrane because of its capability to allow some constituents to pass through it while
holding back others.

There are two major control problems that have been studied in this project:
(i) Control of the aeration process in membrane tanks to avoid fouling of the fibre
surface and adjusting also the level of aeration to save energy.
(i1) Control of the MBR cleaning procedure by estimating more precisely the need
and frequency of membrane cleaning, as well as the dose of chemicals to be
used.

The cleaning in MBR systems is performed by chemical shock and backwashing
techniques, taking into account any sensor information, thus it is usually performed less
aggressively than needed. The duration of the cleanings depend on how severe the
biofouling is (which is currently estimated by observing the pressure drop measurements
or by membrane autopsy). If cleaning is not frequently needed, the associated costs are
relatively low.

Fouling refers to the accumulation of unwanted material on solid surfaces, most often in
an aquatic environment. The fouling material can consist of either living organisms
(biofouling) or a non-living substance (inorganic or organic). However, in practice, when
the fouling takes place, it includes all types of material, that is: organic, inorganic and
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bacterial fouling (biofouling). Fouling phenomena are common and diverse, ranging
from fouling of ship hulls, natural surfaces in the marine environment (marine fouling),
fouling of heat-transfer components through ingredients contained in the cooling water
or gases, and very often, in desalination membranes and MBR membranes.

The growth of a fouling layer due to the deposition of undesirable materials on the
membrane is a persistent problem in water treatment membrane processes. Particular
fouling, that is the deposition of suspended solids, colloids and microbiological cells
onto or into the membranes, is an especially delicate issue in the membrane filtration
operation. Its complete removal by intensive pretreatment of the feed water is not always
feasible. A technique for early warning and fouling monitoring is the desire of all
engineers to achieve the long-term and stable operating performance of a membrane
process.

To fulfill this requirement, an integrated technique is proposed for the online fouling
monitoring of a water treatment membrane filtration process. This online monitoring
technique provides dynamic and real-time information about a fouling phenomenon and
includes the process-oriented capabilities of

(i) in situ measurement of fouling layer thickness,

(i1) dynamic analysis of fouling layer structure and

(ii1) monitoring of membrane fouling potential in membrane filtration processes for

water treatment applications.

Membrane fouling has been, and continues to be, a major issue in the MBR systems.
Most MBR plants operate at relatively modest constant flux as a strategy to slow down
the membrane fouling rate and hence reduce the frequency of membrane chemical
cleaning. It is also prevented with aeration, which inhibits particles from attaching to the
surface of the ultrafiltration membranes. Biofouling that occurs in MBR systems is
associated with other foulants, such as suspended solids, nutrients etc. which are quite
difficult to differentiate. This is why when referring to MBR, this phenomena become
more general, since it is caused by both inorganic and organic matter, and is simply
called fouling.

To fulfill these requirements, an appropriately deployed WSN acquires
measurements from distinct physical variables recorded by various electrochemical
sensors, such as, temperature, turbidity, conductivity, oxygen content, pH, redox
potential, nitrate and chlorine. Based on the monitoring process further operations
take place including:

(1) the detection of high fouling potential,

(i)  the optimization of chemical cleaning of the ultrafiltration membranes,

(i11)  the MBR membranes cleaning, and

(iv)  the control of chlorine dosage during the reverse osmosis phase.

2.2. Sensing in La Tordera’s desalination pilot plant.

The autonomous control of the MBR fouling and cleaning procedures is achieved with
sensing and actuation functionalities. In HYDROBIONETS, there are two main classes
of important sensors, electrochemical sensors and bacteriological sensors (Chlorine and
Biofilm). Electrochemical sensors can measure quantities, such as temperature, turbidity,
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conductivity, oxygen content, pH, redox potential, nitrate and chlorine concentration,
etc., while bacteriological sensors used to measure bacteria, biocides and bio-fouling,
detecting and measuring traces of Escherichia coli, Salmonella, Shigella, Pseudomonas,
Legionella, etc.

Using the Chlorine and Biofilm (BioMEMs) sensor measurements at different locations
is expected to help to obtain a more precise measurement of water biofouling potential,
predicting earlier the possible growth of biofouling. The electrochemical sensors are
located before and after of the water desalination stages (pre-filtered, pre-treatment and
reverse osmosis) and they are characterized as conventional liquid analysis sensors. The
measurements of these sensors are using to achieve and synchronize, with the best way,
the operations of the water treatment. In most cases, to build in complex processes, the
sensor measurements need to be collected and jointly processed. The following
paragraphs report the main usage of BioMEMs and of selected electrochemical sensors
(pH, temperature, pressure).

The Biofilm sensor is able to measure fouling potential (not only bacteria) at constant
flow. The sensor measurements are using for measuring the fouling potential and for
chemical cleaning. More specifically, the information of the Biofilm sensor data helps us
for:

(i) the optimization for MBR cleaning procedure,

(i1) the optimization of biocide dosage at different stages of the water treatment and

(i11) the optimization of aeration in MBR systems.

By law, residual chlorine must be below a certain value and the MBR membranes cannot
be in contact with chlorine. The Chlorine sensor is used as a security system checking
that there is no residual chlorine before the MBR membranes. The chlorine sensor could
be used to optimize the dosing of chlorine and also to know the current concentration of
chlorine at different points of the process. Briefly, Chlorine sensor measurements are
used to control (i) chlorine entering into the membranes and (ii) chlorine at different
stages of the water treatment.

The complex phenomenon of biofouling can be ascertained by several variables, such as
pH and temperature of water. Also, the presence of sodium hydroxide and hydrochloric
acid in the water is testified by PH values and the water PH should be adjusted before its
input in the different stages of water desalination. The PH sensor measures the water pH
in frequent intervals and it is placed in different stages at water treatment plant, such as
in pre-treatment and reverse osmosis stage.

Pressure sensors give a signal when a certain process situation is achieved, for example:
high or low pressure. These sensors are located near in membranes and are capable to
give signal, before water pressure has increased significantly. Generally, they control
the water pressure lying in the interval from O to 3 bars. The water pressure is
associated directly with the phenomenon of biofouling, since the biofouling affects the
flux of water and, therefore, an increase of differential pressure occurs. The MBR
cleaning procedure is also optimized by the monitoring of pressure. By observing the
pressure measurements, is estimated how severe the biofouling is.
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Another important water property that should be monitored is the salinity. The quality of
water effluent from MBR membranes is increasing by reducing the salinity of reclaimed
water. The salinity property is tracked by conductivity sensor measurements.

The growth of biofouling starts when organic matter begins to accumulate on the surface
of the first MBR membrane on reverse osmosis phase. This organic matter consists
mainly of bacteria, whose growth is monitored by the biofilm sensor. The complex
phenomenon of biofouling can be affected negatively by several variables, such as
organic matter, pH and temperature of feed water. All these variables have to be
controlled during water treatment, as a modification in the acquired data streams,
indicates the existence of highly concentrated bacteria. The correlations between data
streams from the above sensors (i) warn us about the development of the biofouling
phenomenon and (ii) give us the guarantees for the existence of this.

Biofouling affects the flux of water that is processed through membranes and, therefore,
an increase of differential pressure occurs. In order to maintain the flux of product water,
high pressure pumps have to increase in frequency, resulting in higher energy
consumption. When differential pressure has increased, biofouling has already been
formed. The duration of the cleanings depend on how severe the biofouling is, which is
currently estimated by observing the pressure measurements or by membrane autopsy.

In the RO desalination process, a pressure to the saline water greater than a distinct value
will cause fresh water to flow faster through the MBR membranes, holding back the
salts. The higher the applied pressure is, the higher the rate of fresh water transports
across the membranes. Measuring the pressure and flow rate (this water property is
tracked by electromagnetic flowmeter sensor) of water at specific positions in the plant,
the analogue correlation between these measurements, inform us that the flow of fresh
water is properly carried out.

Redox measurements are used to control the chlorine dosage at different positions of the
process. Currently, the activation, deactivation and regulation (dosage) of the biocide
pumps is done based on redox measurements. Redox sensors have a low response time if
there is a sudden rise of chlorine concentration. So, if we observe reduced response from
redox sensor, then we check the chlorine concentration.

The autonomous sensing described above, proves how complex is the surveillance,
monitoring and management of large-scale infrastructures. The monitoring of dynamic
phenomena (such as the development of biofouling or the modifications in water
temperature/pH/pressure), as described in the last paragraphs, becomes more complex,
when the data wuncertainty is appearing in senor measurements. We consider the
uncertainty as an additional source of valuable information for data analysis which
should be preserved.

2.2.1. Managing Streaming Data and their Quality

In a typical wireless sensor network, measurements from heterogeneous sensors
distributed over a geographic area need to be processed in order to reconstruct the
spatiotemporal behavior of desired physical variables or to detect, identify, and
localize sources and events of interest. ~The HYDROBIONETS large-scale
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infrastructure was designed under constraints on cost, bandwidth and energy
resources while optimizing performance metrics such as reconstruction fidelity,
detection performance, latency etc. In this setting, data quality is becoming a crucial
issue in the design of real sensor systems. It is nowadays widely recognized that a
typical characteristic of sensor data is their uncertain and erroneous nature, due to
discharged batteries, network failures, and imprecise readings from low-cost sensors.
This poses significant limitations on data utilization, since applications using data
with low quality may yield unsound results. To address this issue, it is essential to
assess as early as possible the quality of data, and process data while reflecting the
data quality. Consistency, accuracy, reliability, and survivability concerns have to be
addressed in sensor data acquisition, storage, fusion and analysis. Some of these are
in fact straightforward to compute; others are very difficult to precisely infer.

In the rest of this section we survey state-of-the-art in declarative modeling of the
data uncertainty capturing various forms of data imperfections (e.g., impreciseness,
unreliability, incompleteness, etc.). Having acquired all the information needed to
describe the measurement capability of electrochemical sensors, we estimate the
inherent uncertainty preserving in the raw data streams. The estimation is carried out
in consecutive steps, namely, identification of all the potential sources of uncertainty,
followed by their quantification and propagation (each one of these steps is
described in detail in chapter 3).

A sensor network’s data stream presents, almost by definition, complex issues related
to data quality. Data is often missing, and when not missing is subject to potentially
significant noise and calibration effects. For example, temperature and moisture
sensors report voltages that must be converted to temperature (Celsius) and moisture
(partial pressure and dew point) units. Also, because sensing relies on some form of
physical coupling, the potential for faulty data is tremendous. Depending on where a
fault occurs in the data reporting, observations might be subject to unacceptable
noise levels (for example, due to poor coupling or analog-to-digital conversion) or
transmission errors (packet corruption or loss). Applications that draw on this data,
or end users hoping to perform an analysis, will need to contend with observations
that involve incomplete and/or incorrect [3].

In this context, data uncertainty may be the result of the fundamental limitations of
the underlying measurement infrastructures, the inherent ambiguity in the domain, or
they may be a side-effect of the rich probabilistic modeling typically performed to
extract high-level events from sensor row data. Uncertainty is a state of limited
knowledge, where we do not know which of two or more alternative statements is
true. Traditional approaches more or less consider uncertainty as a problem, as
something to be avoided or resolved during data gathering and integration. However,
uncertainty has recently been recognized as an additional source of information that
could be valuable and should be preserved. Uncertain data management [4] presents
a variety of challenges in terms of collecting, modeling, representing, querying,
indexing and mining the data. It should be stressed that many of these issues are
inter-related and cannot easily be addressed independently. Uncertainty can be
represented using quantitative methods, e.g., specifying the probability that a
statement is correct, or qualitative methods, e.g., using fuzzy sets and possibility
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theory to represent preferences about the correctness of a statement. Quantitative
models are the ones most frequently adopted [5], but qualitative approaches have
also been explored in the literature — usually with the aim of reducing the
complexity of manipulation of uncertainty. While traditional Statistical Machine
Learning (SML) has provided well-founded mathematical tools for uncertainty
management, such tools are not targeted at the declarative management and
processing of large scale data sets. Moving away from statistical approaches, several
data management works have focused on how to represent multiple alternative
statements that could be true based on our limited knowledge, and this leads to the
production of multiple possible integrated tuples, one for each choice.

In contrast to traditional database tuples, each uncertain tuple contains a set of
possible alternative values representing the various different options about what is
true. The reliability of a particular set of data is dependent upon the uses to which it
is put. Data which are completely inappropriate in one context may be totally
adequate in a different context (or vice versa). Data quality is therefore to some
extend a relative concept dependent upon the context. The emphasis has therefore
tended to switch away from simply trying to make the data as error free as possible
to providing potential users with the information which they require to make an
informed decision about the adequacy of the data for a particular purpose. This
information is referred to as metadata.

Table 1: Description of data quality metadata.

Metadata Description of measurement capability

Accuracy The closeness of agreement between a measured value and the true
value.

Precision The closeness between independent measurements of a quantity

under the same conditions.

Measurement | The set of values that the sensor can return as the result of an

Range observation under the defined environmental conditions with the
defined measurement properties.

Response The time between a change in the value of an observed quality and

Time a sensor 'settling' on an observed value.

Frequency The smallest possible time between one observation and the next

Latency The time between a request for an observation and the sensor
providing a result.

Resolution The smallest change that the sensor can detect regarding the

quantity it measures.

Metadata is data about data. In this context, each data set - or uncertain tuple (Figure
1) — should be accompanied by metadata explaining not only what it contains but
how and when it was collected, and details relating to its quality. The Table 1
indicates the type of information the metadata might include. In the literature there
are various models for describing uncertain/incomplete/probabilistic data sets, e.g
[6][7][8], but in all of them answering queries and representing their results is based
on annotating uncertain tuples with information about their lineage or provenance
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[9]. This provenance information captures the relationship among source and derived
data along with the query operators that were involved in the derivations, and can be
materialized in the repository where integrated data from various sources is stored
[10]. Then, provenance can later be used to compute annotations for integrated data
[11][12]-such as trust scores or probabilities—“on the fly”, based e.g., on the degree
of confidence any particular user has about the possible alternative values in the
sources and how they were combined through query operators during the integration
process.

Data Quality Parameters

Sensor
M it R
Measurement — Accuracy Precision easuremen es.ponse Frequency Latency Resolution
Value Range Time

Figure 1: Data quality parameters of uncertain tuples

To conclude, in most cases the uncertainty is supposed to be the “umbrella” term for
accuracy and precision. Essentially, it is the component of a reported value that
characterizes the range of values within which the true value is asserted to lie. An
uncertainty estimate should address error from all possible effects (both systematic
and random) and, therefore, usually is the most appropriate means of expressing the
accuracy and precision of results. The sensor accuracy describes the systematic
measurement error resulting from static errors in the measurement process [13], due
to miscalibration, retroactions of the measured method, or environmental influences
on the measured values. The precision is a measure of how well a measurement can
be made without reference to a theoretical or true value. Since precision is not based
on a true value there is no bias® or systematic error in the value, but instead it
depends only on the distribution of random errors [13]. Figure 2 depicts the target
model, which correlates the precision and accuracy with uncertainty. The notions of
error and bias are also shown. Using four different cases of shots at the center of the
target helps to distinguish the meaning of precision and accuracy:

e Not accurate, not precise (bottom left corner): The shots are neither accurate (not
close to the center) nor precise (not close to each other).

e Precise, not accurate (bottom right corner): The shots are precise (close
together), but not accurate (not close to the centre of the target).

e Accurate, not precise (top left corner): The shots are scattered across the target,
but the location of each of them is very close to the centre of the target. These
shots are accurate, but not precise.

e Precise and accurate (top right corner): The shots are very close to the centre of
the target (accurate) and very close together (precise). In this case the
uncertainty is fully determined and we notice that increasing accuracy and
precision, the uncertainty decreases.

? Bias is the difference between the average value of the large series of measurements and the
accepted true one.
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Figure 2: Target model to illustrate accuracy and precision. The centre of the target denotes the
(unknown) true value

To sum up, the accuracy of a set of observations is the difference between the
average of the measured values and the true value of the observed quantity. The
precision of a set of measurements is a measure of the range of values found, that is
the reproducibility of the measurements. The relationship of accuracy and precision
is depicted in Figure 2, where the red target denotes the unknown true value. In the
bottom left corner we can see that our results are imprecise and not accurate, so the
uncertainty for this measurement value has a very large range. In contrast, in the
right top corner case where we have high precision and accuracy, the uncertainty
value range is decreased. Finally, we can see that good precision doesn’t imply good
accuracy (in case of right bottom corner).

2.3. Requirements for High-Level Data analysis

The problem of producing data that are unreliable, low-level, and rarely usable
directly by applications, still affects the development of sophisticated integrated
sensing systems. Usually, applications do not deal with any aspect of physical device
data, but rather interface with a high-level representation and reconstruction of the
physical world created by a sensor infrastructure. As a result, we often witness
uncertain data streams, where data may be incomplete, imprecise, and even
misleading. Consequently, the final results presented to end applications are often of
unknown quality, thus, impeding the task of an accurate and reliable decision
making.

The major task of HYDROBIONETS project is to monitor and control the fouling
phenomena developed during the different stages of the water treatment. The growth
of a fouling layer due to the deposition of undesirable materials on the membrane is a
persistent problem in water treatment and desalination plants. Specific types of
fouling, such as, the deposition of suspended solids, colloids, and microbiological
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cells, onto or into the membranes, are a severe issue which impedes the normal
operation of the membranes. Complete removal of fouling mass by intensive pre-
treatment of the feed water is not always feasible. Motivated by this, developing
techniques for monitoring the fouling formation and providing early warning
notifications for pre-defined alerts is a necessity in order to achieve the long-term
and stable operation of the filtration membranes, while reducing the energy
consumption and maintenance expenses. Some examples of the alerters framework
of HYDROBIONETS’ project include (i) the detection of high fouling concentration
in seawater, (i1) the control of biocide and chlorine dosage by measuring bacteria in
seawater at different stages of water treatment (pre-treatment, pre-filtered and reverse
osmosis phases) and (iii) the optimization of chemical cleaning of the ultrafiltration
membranes. These functionalities essentially provide the building blocks of the
actuation process for water desalination at different locations in the plant. Thought
appropriate alerts we enable the monitoring and notification in the
HYDROBIONETS’ infrastructure, when in a sensing node the values change or they
are out of the ordinary.

The main contribution of this thesis is the identification of an appropriate
infrastructure for the monitoring of a dynamic system. This infrastructure extracts the
interrelations between pre-defined pairs of data streams, driven by their behaviour
across the time. The observation of the streams behaviour contributes:
(1) In the overall monitoring of dynamic phenomena that aren’t characterized by
a specific distribution. This monitoring provides timely and valid actuation
process in dynamic systems, as in the case of HYDROBIONETS project
(i) To guarantee the validity of detected extreme events in uncertain data
streams.
The design of this infrastructure becomes more complex when arising the following
challenges due to the data analysis:
(1) The appearance of uncertainty in our data that if we don’t take into
consideration will affect the decision making in our system
(i1) The interrelation/comparison between data streams with different scaling. For
example, in the case of comparison between a temperature and a pressure
data stream, the first one is measured in the Celsius scale and the second one
is measured in bars scale.
(111)The monitoring of the concurrent behaviour in our data streams across the
time.
(iv) The data should be processed quickly and at low cost due to the large amount
of data we have to manage.

Ours goals in this thesis include (i) the identification of appropriate monitoring tools
for the characterization of the system behaviour in real time, and (i) the provision of
the most appropriate data services to manipulate the BioMEM uncertain sensor
measurements. By this way we provide timely and valid actuation for our system.
Uncertainty awareness of the acquired data streams consists the basis of the proposed
tools for monitoring the BIoMEM sensor network and alerting in case of abnormal
events. These actions along with the observation of the streams behaviour are
integrated in an uncertainty-aware data processing infrastructure, as described in the
following chapter.
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3. Hydrobionets Data Processing Services

Taking important decisions is often based on the results of a prior quantitative
analysis. Whenever decisions are based on analytical results, it is necessary to have
some indication of the quality of the results. That is, the extent to which they can be
relied on for the purpose of interest. Confidence in the obtained data is a prerequisite
to meeting this objective, especially when the users of these results work in
“sensitive” areas, such as those concerned with public health and hygiene. To this
end, we need to monitor continuously and in an online fashion the interrelations
between a number of distinct data streams produced by sensors at different stages of
water treatment (e.g., pre-filtering, pre-treatment and reverse osmosis), while
accounting for their inherent imprecision expressed in terms of uncertainty. Although
this uncertainty component may be due to hardware defections or environmental
variations, its effects can be only observed and quantified from the recorded sensor
measurements.

The appearance of uncertainty in our data streams may lead to wrong decisions
concerning the source and existence of an extreme event. Timely actuation is crucial,
so providing guarantees for a detected extreme event is also of high significance.
Besides, the propagation of the uncertainty information through the operator queries
may affect the progress of the water treatment, since we have a self-organized sensor
network. In order to add an extra control in the quality of the alerters framework we
should be able to extract efficiently the correlation information arising from data
streams interrelations.

Rather than single stream statistics, such as average and standard deviation, data
analysis is focusing on finding high correlations among pairs of data streams from
distinct sensors. For instance, temperature and pressure sensors which monitor an
industrial plant could provide evidence of an increasing bacteria presence.
Depending on their physical location in the plant we expect that corresponding data
streams to be highly correlated, since this pair of data streams displays analogous
behavior in our case.

More generally, a desalination plant operator may rely on such stream correlation
engine to reveal interrelations between seemingly independent physical quantities
monitored by distinct sensors, or to guarantee the validity of a detected extreme
event (e.g. high chlorine concentration in the water) and provide the necessary
notifications. Moreover, in HYDROBIONETS, measurements from heterogeneous
sensors, distributed over a geographic area, need to be processed efficiently in order
to reconstruct the spatio-temporal behavior of desired physical variables or to detect,
identify and localize sources and events of interest. Whereas traditional statistical
machine learning provides well-established mathematical tools for data analysis [14]
their performance is limited when processing high- dimensional data streams.

Another major functionality assigned to our uncertainty-aware data processing
infrastructure is to perform high-level operations, as the notification of extreme
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events from raw sensor data. Since the detection of abnormal behavior is affected by
the underlying uncertainty, incorporation of the estimated uncertainty for the
extraction of potential correlation between pairs of data streams is expected to yield
more meaningful results. This thesis introduces a set of statistical techniques yielding
efficient detection of rare events in complicated datasets, to be employed in the final
HYDROBIONETS infrastructure.

Data Visualization
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Figure 3: The uncertainty-aware data management infrastructure in HYDROBIONETS project

T

Figure 3 presents the overall infrastructure of data management in
HYDROBIONETS’ project, which combines the previous functionalities. Emphasis
should be given to the uncertainty-aware data processing system. This generic
structure consists of the following three building blocks:

Correlation estimation module: The fast correlations extraction between uncertain
data streams constitutes the key component for the identification interrelations
between seemingly unrelated physical quantities. The HYDROBIONETS
infrastructure comprises of collaborating computational nodes, which observe and
control distinct physical entities and dynamic phenomena. The existence of
correlation among several distinct types of sensors arises naturally. Rather than
single stream statistics, such as average and standard deviation, data analysis is
focusing on finding high correlations among pairs of data streams from distinct
sensors. More details about this module will be presented in chapter 4, since it
constitutes the major contribution of this thesis.

Uncertainty quantification module: Given that uncertainty has been recognized as an
additional source of valuable information for data analysis which should be
preserved, in contrast to existing data management systems, our approach
incorporates an appropriate submodule to handle the inherent data uncertainty. More
specifically, a spreadsheet-based approach is employed to identify, quantify, and

27



combine the underlying uncertainty from the most dominant potential sources of
uncertainty.

Alerter module: This module combines the received data streams along with their
quantified uncertainty, the extracted correlations and the detectors for extreme events to
estimate the presence of extreme events and provide the necessary notifications (queries
or decision making).

The uncertainty-aware data management infrastructure of HYDROBIONETS’
project is completed with the integration of the operator queries module. This module
transmits the recorded information between the user and the system taking into account
the uncertainty propagation, based on the rules will be described in section 3.2. The
combination of the above modules enables higher-level analysis, which forms the
basis for the development of an integrated uncertainty-aware data management
system for monitoring dynamic sensor networks and alerting in case of abnormal
events.

This thesis is the result of our work to select and implement appropriate analytical
techniques for the HYDROBIONETS project, concerning
(1) on the fly monitoring and extraction of pairwise correlations between
high-dimensional sensor data streams
(1))  modeling, management and propagation of uncertainty in the generated
raw data streams, and
(iii)  designing appropriate alerting tools notifying for extreme events.

The scope of this chapter is to describe the services which are selected and used to
compose the modules of the uncertainty-aware data management infrastructure of
HYDROBIONETS project. To be more specific, in section 3.1 different approaches
are presented for modeling the uncertainty in data streams. The one of them has
emerged for the HYDROBIONETS project needs as described in [31]. The section
3.2 describes the rules for uncertainty propagation and finally, the section 3.3 is
referring in two widely used techniques for extreme events detection by
incorporating the underlying estimated data uncertainty.

3.1. Uncertainty modeling in data streams

The definition of measurement uncertainty is as follows: “A parameter associated
with the result of a measurement that characterizes the dispersion of the values that
could reasonably be attributed to the measurand’”, where a parameter can be, for
instance, a standard deviation, or the width of a confidence interval. In general,
measurement uncertainty consists of several distinct components. Some of these
components may be evaluated directly from the available information from each
sensor of the recorded measurements (see Table 1), while the rest of the components
can be evaluated based on an empirical assumption for the probability distributions
according to our experience or some other prior information.

* Measurand refers to a clear and unambiguous statement of what is being measured, along with a
quantitative formulation relating the value of the measurand to the parameters on which it depends.
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3.1.1. Existing approaches

While the problem of managing and processing uncertain data has been studied in the
traditional database literature since the 80’s [32], the attention of researchers was
only recently focused on the specific case of uncertain time series. Two main
approaches have emerged for modeling uncertain time series and both of them are
based on this general definition: An uncertain time series X is defined as a sequence

of random variables <x1 , X, ,...,xn> where x; is the random variable modeling the real

valued number at timestamp .

In the first approach [24], an uncertain time series is modeled by a streaming time
series of random variables, where each random variable represents the uncertainty of
the value in the corresponding timestamp (Figure 4[a]). The probability density
function (pdf) over the uncertain values is estimated by using some a priori
knowledge of the general characteristics of the data distribution, namely its means
and variance. In [26], uncertainty is modeled by means of repeated observations at
each timestamp, as depicted in Figure 4[b](in each orthogonal shape there are the
corresponding repeated observations for each observation).

il

time

time
(a) Uncertainty modeling by means of pdf (b) Uncertainty modeling by means of repeated
estimation observations

Figure 4: Examples of modelling the uncertainty in time series X={x1,...xn}

These two techniques are based on the assumption that the values of the time series
are independent from one another. That is, the value at each timestamp is assumed to
be independently drawn from a given distribution. Evidently, this is a simplifying
assumption, since neighboring values in time series usually have a strong temporal
correlation. The main difference between [26] and [24] is that the first represents the
uncertainty of the time series values by recording multiple observations for each
timestamp. This can be considered as sampling from the distribution of the value
errors. In contrast, [24] consider each value of time series to be a continuous random
variable following a certain probability distribution. The amount of preliminary
information, i.e. a priori knowledge of the characteristics of the time series values
and their errors, varies greatly among the techniques. The approach of [26] does not
need to know the distribution of the time series values, or the distribution of the
value errors. It simply operates on the observations available at each timestamp. On
the other hand, [24] needs to know the distribution of the error at each value of the
data stream. In particular, this technique requires knowing the standard deviation of
the uncertainty error, and a single observed value for each timestamp. Also, it
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assumes that the standard deviation of the uncertainty error remains constant across
all timestamps.

These approaches can’t be used by HYDROBIONETS project infrastructure, since
the knowledge of the distribution is limited due to the nature of our data streams. We
assume that uncertainty is an additional source of information that is valuable and
should be preserved. So the quantification of the inherent uncertainty plays a
fundamental role on the certification in high-consequence decisions.

3.1.2. Uncertainty quantification

Having acquired the raw sensor data from the distinct electrochemical sensors
distributed across the plant, our proposed infrastructure (Figure 3) estimates their
corresponding inherent uncertainty. The estimation is carried out in two consecutive
steps, namely, identification of all the potential sources of uncertainty, followed by
their quantification and propagation. In the following, each one of the identification
sources and quantification steps is described, as in [31]. The rules of propagation
step are described in section 3.2.

Step 1: Identification of uncertainty sources

Identification of uncertainty sources comprises the first step towards the design of
our integrated uncertainty-aware data management system. In practice, the
underlying uncertainty may arise due to several distinct sources, such as, an
incomplete definition of the observed quantities, sampling effects and interferences,
varying environmental conditions, and inherent uncertainties of the equipment.

A very convenient way to determine the most dominant uncertainty sources, along
with their potential interdependencies, is to exploit the so-called cause and effect (or
Ishikawa) diagram. This diagram also ensures comprehensive coverage, while
helping to avoid double counting of sources. Once the set of most significant
uncertainty sources is formed, their effects can be usually represented in terms of a
measurement model.

As a typical example, Figure 5 shows a cause and effect diagram for a temperature
sensor. The first source of uncertainty is the sensor’s functionality by itself.
However, its performance is affected by several distinct factors, such as, its
sensitivity and precision, the calibration, the operating temperature, and the water
flow-rate and pressure. On the other hand, the accuracy of the recorded values
depends also on the sensors’ deployment density and location, as well as on the
sampling process we use. Possible misplacement or a very sparse time-sampling is
expected to increase the uncertainty, especially when the monitored variable varies
rapidly across time.
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Figure 5: Cause and effect diagram for a temperature sensor

Step 2: Quantification of uncertainty

The identification of uncertainty sources is followed by a quantification process. This
is done by estimating the uncertainty of each individual source and then combining
them appropriately to obtain a single overall uncertainty. The underlying data
uncertainty in a given data stream is distinguished into two separate categories, type
A (aleatoric, or statistical) and #ype B (epistemic, or systematic) uncertainty:

Uncertainties of #ype A are characterized by the estimated variances o’ (or the

standard deviations 0, ), which are obtained by statistical analysis of the observations

in the raw data streams. Following the sl/iding window approach, as it was described

in a previous section, the variance o of the i-th sensor is estimated from its

measurements in the current window. This is equivalent to obtaining a standard
uncertainty from a probability density function (pdf) derived from an observed
frequency (empirical) distribution. Let y be a data stream with N values {y/, ..., yN},
which corresponds to a specific observed variable. Then, the standard uncertainty of
»y, which is denoted by u(y), is expressed in terms of the corresponding standard

deviation o , estimated directly from the observations y, as follows,

()=~ (12)
u(y)=——=

NN
For uncertainties of type B, the estimated “variance” s f is obtained from an assumed

probability density function based on prior knowledge for the corresponding source
of uncertainty, which may include:

(1) data from previous measurements,

(i1) experience or knowledge of the properties of instrumentation and materials used,
(111) manufacturer’s specifications, and

(iv) data calibration.
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In general, concerning type B uncertainties, the quantification is performed either by
means of an external information source, or from an assumed distribution. Typical
assumptions for the prior distributions include the Gaussian (e.g., when an estimate is
made from repeated observations of a randomly varying process, or when the
uncertainty is given as a standard deviation or a confidence interval), the uniform
(e.g., when a manufacturer’s specification, or some other certificate, give limits
without specifying a confidence level and without any further knowledge of the
distribution’s shape), and the triangular distribution (e.g., when the measured values
are more likely to be close to a value a than near the bounds of an interval with mean
equal to a).

Having estimated the individual uncertainties, expressed as standard uncertainties,
the next step is to combine them in the form of a combined standard uncertainty.
Although in practice there may exist correlations between the individual uncertainty
sources, however, it is usually impossible to compute those correlations accurately.
For this purpose, it is more convenient to rely on an assumption of independence
between the individual uncertainty sources.

In the following, let y denote the observed variable associated with the acquired data
stream y. Furthermore, let y = f{x,,...,x;}! be an observed variable, which depends on
L input variables x; through a functional relation f{*). Then, the combined standard
uncertainty of y, for independent input variables x;, / = 1, ..., L, is given by:

0. () = Z(SLJ w2 (x,) (13)

1=1 \ 0X;

where u(x,) denotes the standard uncertainty of the input variable x, (either of type

A, or of type B), while the partial derivatives 0f/0x, , the so-called sensitivity
coefficients, quantify how much the output y varies with changes in the values of the
input variables x, /=1, ... L. Finally, the combined standard uncertainty, which may

be thought of as equivalent to one standard deviation, is transformed into an overall
expanded uncertainty, U, via multiplication with a coverage factor £, that is,

Uy)=k-u,(y) (14)
where the value of k is determined in terms of the desired confidence level as shown
in Table 2.

Table 2: Coverage factor as a function of confidence level for the Gaussian distribution

Coverage factor (k) Confidence level (%)
k=1 67%
k=1.96 95%
k=2.576 99%
k=3 99.7%

The most convenient way to summarize all this information and compute the overall
uncertainty is by means of spreadsheet tables. A spreadsheet table lists the dominant
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sources of uncertainty and categorizes them according to their type. Based on that,
the individual standard uncertainties are stated explicitly, along with the overall

combined uncertainty. An example of such a table for a temperature sensor is shown
in Table 3.

Table 3: Example of a spreadsheet table for a temperature sensor.

Probabili Standard
Source of uncertainty Value (+) o .ty Divisor uncertainty
distribution
u(x)
Calibration C, Normal 2 C,/2
=
% Precision (Resolution) G, Rectangular V3 Cy/ 3
) Q
3 ” Sensitivity G Rectangular NE) Cs;/\3
>
= Sensor density Cy Rectangular NE) Cy/ 3
Sampling Cs Rectangular NE) Cs/ |3
< Temperature Cr - gr
&
ey Pressure Cp - Up
Combined standard uncertainty v, ,())
Coverage factor k,
Expanded uncertainty U,

The final output of the above spreadsheet-based approach is the assignment of the
combined and expanded uncertainty values to the current windows of all the sensors.
This completes the first building block of our uncertainty-aware data processing
system as presented in [31]. In the following section we describe the uncertainty
propagation building block, namely, the rules for further query processing by
accounting the estimated uncertainties.

3.2. Uncertainty propagation in derived data streams

In the previous section, we referred to the quantification of uncertainty of individual
components for the HYDROBIONETS sensors, as described in [31]. The next step is
to apply appropriate rules for propagating the estimated uncertainties upon a specific
query operation, since the recorded sensor data streams are exploited to support and
optimize production automation processes, as well as complex application decisions.

After asserting the uncertainty of raw data streams obtained from HYDROBIONETS
sensors, they go through various operators to produce final results. Since sensors
allow for the automatic collection of a huge volume of data, the additional
propagation of data uncertainty results in an overhead for data transfer and
management, which may shape up as very expensive. Furthermore, if data
uncertainty information is lost, the executed data processing steps have to be
mirrored in a data quality processing framework.
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To extract the complex knowledge that we need, sensor data is merged, transformed,
and aggregated by applying traditional data stream queries, complex signal analysis,
or elementary numerical operators. During the data stream processing, the initial
sensor-inherent errors are amplified. Additionally, new errors may be introduced.
Finally, if the sensor data are incorrect or misleading, derived decisions are likely
flawed. Hence, it is also important to capture uncertainty of such processing results.

So, the quantification of uncertainty in our data has to be processed with the right
way from the query operators to avoid invalid decision making. With the rules that
introduced in the following, we extend the existing operators, selection-aggregation-
join, to take into account the uncertainty of data. Mathematical functions are
introduced to compute the effects of different operators on the uncertainty
components accuracy and precision. A sensor measurement has imperfections that
give rise to an error in the measurement result, as it was mentioned in 2.2.1
Moreover, we also have to consider carefully the uncertainty issues, which are
introduced by each operator separately. Identifying such issues has as ultimate goal
to minimize the false positive and false negative cases that may arise from the
adjustment of the operators on uncertain data streams.

Selection: During selection, data items are extracted for further processing based on
the constraint evaluation of a certain measurement attribute. Tuples that do not
satisfy the selection criterion are discarded from the data stream. In [33], a threshold
control is introduced as the first step of the condition evaluation in selection. The
incoming data stream is evaluated against a given threshold, resulting either in the
boolean frue if the threshold holds or false for exceeding a threshold. The accuracy
and precision data quality parameters of a measurement value (o, €), as well as a user
defined threshold (a;) define a new uncertainty range o0 = a; + a + ¢. In the context of
selection, this approach reveals the following shortcomings for data items lying in
the uncertain range o:
(1) Sensor measurements in the uncertain range are selected, even though the true
value may not exceed the threshold constraint.
(i1) Data items are not selected, although the selection condition may be met by the
true value.
The false positives and false negatives may balance if there is a uniform data
distribution in the uncertain range. The false selection leads to erroneous results if
aggregation operators are applied during further data processing. The aggregated
value is either too high because too many data items have been selected, or to low
because relevant data items are missing.

Definition 1 (Windowed uncertain selection): Assuming that a selection condition
F will be applied to each state of a window W over stream S, the selection operator
for uncertain data streams can be defined as

a}’V(S(T)) = op (W(S(T)))

= {s € W(S(x)): F(s) holds APr {dist (avg (W(S(T))),s) < e}
= a}
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where dist(.,.) is the Euclidean distance function between two objects, avg(..) is the
average of all values in the current sliding window W(S(r)) and ¢, a are the
precision and accuracy data quality parameters.

True
Megative

(TN}

Figure 6: Definition of true/false positives and true/false negatives.

According to the previous definition of selection operation on uncertain data streams,
for every object s within sliding windows, the distance between s and the average of
all values in the current sliding window is computed. If the probability of that
distance being less or equal to the threshold ¢, is greater than threshold a and the
condition F holds for object s, then s is reported to the selection answer. Note that

with the constraint Pr {dist (avg (W(S (T))) ,S) < 6} = « the false positive results

are discarded.

Aggregation: During aggregation, each group of data items is summarized to
compute a single data result, the aggregate. The aggregation operators compress the
incoming data to one output value or create a synopsis consisting of several data
items. This data value represents not only a certain point in time but a whole time
interval. The time-stamp has to be adjusted to the form [#, t.] to represent this fact.
The time-frame defining the grouping for an aggregation operator is independent
from the window size w for data quality calculation. An aggregation operator takes N
tuples modeled as N random variables, and performs an operation such as sum or
min/max on these variables. The data uncertainty of one aggregate is calculated
based on all incoming tuples’ uncertainty information.

The result of the uncertainty of an aggregation will not be measured directly. For
instance, what is the error in Z = A + B, where A and B are two measurements with
errors AA and AB respectively? A first thought might be that the error in Z would be
just the sum of the errors in 4 and B, that is, (A + 44A) + (B+A4B) = (A+ B) +
(AA + AB). However, this assumes that, when combined, the errors in 4 and B have
the same sign and maximum magnitude, that is, they always combine in the worst
possible way. This could only happen if the errors in the two variables were perfectly
correlated. We establish that the correlation structure among these variables
determines appropriate techniques to compute uncertainty in aggregation results [36].
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Table 4 introduces some simple rules for expressing the uncertainty in aggregation
results.

If a variable Z depends on one or two variables (A and B) which have independent
errors (AA and AB) then the rules for calculating the error in Z is tabulated in the
following table for a variety of simple relationships’. These rules may be
compounded for more complicated situations.

Table 4: Rules for calculating the errors in aggregation results

Relation between Z and (A,B) | Relation between errors AZ and (AA,AB)
Z=A+B AZ? = AA* + AB?
Z=A-B AZ? = AA? — AB?

2 2 2
Z=AB (ﬁ) - (ﬁ) N (A_B)
Z A B
2 2 2
Z=A/B (ﬁ) - (ﬁ) N (A_B)
Z A B
Z=A" Az =n oA
Z A

The support of (conditioning) aggregation operations on data streams involving
continuous-valued uncertain attributes includes one more difficulty. Even if the
input stream contains continuous-valued uncertain attributes, which are modeled by
continuous random variables, conditioning operations (e.g., filters and group) can
introduce uncertainty about tuple existence, which needs to be modeled by discrete
random variables. Hence, for complex queries involving conditioning and
aggregation, the distributions for both continuous and discrete random variables must
be computed, which is a hard problem [34].

Definition 2 (Windowed uncertain aggregation): For each combination of values
that belongs to W(S(v))W TN an aggregation function f (such as SUM,MIN,MAX
or AVG) is applied. The aggregation output is one stream of tuples of the form
(f(sl-, Sjy e sn), T, e){f{si:%‘:
timestamp of the objects, while f(si,sj, ...,sn)f{"‘"i* SirsSu) is the final aggregate

value if it is smaller than a (user-specified) threshold ¢, and e is the error in the
aggregation result according to the rules of Table 4. More formally,

50 sl = I8 ) VWG

f(a‘l) aj! "-ian) S & /\Tm = minT

«_»

+Sn ). T.€) for each sliding window. “t” is the smallest

Join: This symmetric binary operator may be applied between two streams. There is
no restriction that windows of the same type or the same scope must be specified
over each stream. Each newly arriving tuple within window W; of stream S; is
checked for possible matches against the current state of window W, of stream S, and
vice versa. Matching is performed according to the join condition J involving
attributes from both streams (e.g., S;.4; = S>.4;). If matching tuples are found, the

> http://teacher.nsrl.rochester.edu/phy_labs/AppendixB/AppendixB.html
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resulting joined element must be assigned a new timestamp value. Joining is an
important operation in queries that target data streams that have no navigable
relationships to each other. A join of two data sources is the association of objects in
one data source with objects that share a common attribute in the other data streams.
Join operator can be used to represent or to detect complex events in sensor networks
and it is the fundamental operation for relating information from different streams.

The problem of join processing is challenging in the context of uncertain data
because the join-attribute is probabilistic in nature. Therefore, the join operation
needs to be redefined in the context of probabilistic data. An important aspect of join
operation is that the uncertainty model significantly affects the nature of join
processing. The evaluation strategies of joins vary significantly with the nature of the
join attributes. Recent research on probabilistic databases has mostly focused on join
attributes modeled by discrete random variables. Another consideration supports
joins based on the possible worlds’ semantics. In every possible world, each random
variable takes a specific value, thus a join can proceed just as in a traditional
database. However, when data uncertainty is captured using continuous random
variables, join methods based on possible world semantics hardly work because the
possible values of a continuous random variable cannot be enumerated (the number
of such possible values is infinite and each possible value has probability 0).

Next, we formally define the problem of join on uncertain data streams, which
consists of three distinct components. Initially, we focus on the uncertainty impact of
the time-stamp-based join of synchronous and asynchronous data streams and
illustrate the handling of jumping windows during the window-wise data stream join
execution.

Join of synchronous streams: The simplest join approach assumes synchronous
sensor data streams, and builds one-to-one tuple pairs based on identical time-
stamps, as shown in Figure 7. Equal data stream rates do not suffice for this
approach. The sensor data could be measured shifted against each other, so that no
identical time-stamps exist. During the join of two data streams D; and D,, data
uncertainties U, and Up are not affected but copied to the resulting data stream. This
results in a memory limitation. To keep all this information requires an increased
memory space, which, in turn, affects system’s performance.

D1[T]=D2[T]
Di= {T,A,Ua} L D2= {T,B,Us}

D1 x Dz ={T,A,B,Ua,Ue }

Figure 7: Elementary join of equal time-stamps

Join of asynchronous streams: The assumption of synchronous data streams does not
hold for typical application scenarios. In [35], sampling and interpolation techniques
are used to adapt the stream rates and overcome phase shifts in the data streams.
Then, the complex operator has to be split up as shown in Figure 8 to allow the
tracking of the uncertainty impact. The data streams D, and D, are sampled and/or
interpolated to be joined afterwards using the time-stamp-based, synchronous join
approach.
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Figure 8: Joining asynchronous data streams.

Window join of data streams: Conceptually, a join operator must ensure that every
tuple in one of its inputs is compared with every tuple in the other. When these input
sets are unbounded, as is the case for infinite streams and continuous queries, we
have the problem that the comparison of two infinite inputs would require infinite
storage. The window-wise data stream join is recommended to comply with
restricted memory and CPU resource constraints in data stream environments. In
[33], the jumping windows are introduced to reduce the data overhead produced by
the uncertainty transfer. The uncertainty information is propagated not for every
single measurement value, but rather aggregated over a certain period of time.

While a sliding window join of two data streams is executed not all streaming tuples
find join partners, independent from the specific join implementation. Thus, the
window-wise join of data streams includes an implicit sampling on one or both
affected data streams. To track the influence of this sampling on the data uncertainty
component precision, the implicit sampling rate has to be recorded for each jumping
window, while it overlaps with the sliding join window (Figure 9 a). As soon as the
sliding join has left the jumping window (Figure 9 b), the precision can be updated,
and the data quality can be propagated to the next operator in the processed query.

Sliding Join Window Sliding Join Window
I, - Y]
W 4 I
Xy ' P |
l |
(a) | (b) |
Jumping Windows Jumping Windows

Figure 9: Sliding window join

Definition 3 (Windowed uncertain join): At each timestamp r € T, the windowed
uncertain join between two streams returns the concatenation of pairs of matching
tuples taken from either window state. In particular:

S1(1) Xy, Sp(7) = W1(S1(T)) X W1(S1(T))
= {<S1;52;Tm)‘ s, E W1(S1(T))'52
€ Wy(S1(x)) AJ(51,52) A Pr{dist(sy,s;) < €}
= antT,min T}
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Given two uncertain data streams S; and S, a distance threshold ¢ and a
probabilistic threshold a € €(0,1], the join on uncertain data streams continuously
monitors pairs of uncertain objects siand s,. Each tuple within window Wj of
streamS; is checked for possible matches against the current state of window W, of
stream S, and vice versa. Matching is performed according to the join condition J
involving attributes from both streams.

According to the previous definition of join operation on uncertain data streams, for
every object pair (sy,S,) within sliding windows W, (S,(7))and W,(S,(7))
respectively, the joining probability of s;being within & distance from s, is
computed. If the resulting probability is greater or equal to a probabilistic threshold
a, then this pair (s, ;) is reported as the join answer, otherwise, it is a false alarm
and can be safely discarded (users need to register two parameters, distance threshold
€ and probabilistic threshold «) [37].

In this section, we presented an efficient way to propagate uncertainty in data
streams. For a comprehensive evaluation of sensor measurements, we defined the
uncertainty in the context of streaming data and proposed two uncertainty
components: accuracy and precision. Operators retrieved from traditional data
stream querying and the signal processing domain is applied to extract complex
knowledge from raw data streams. We analyzed these operators to track the problems
that uncertainty causes during propagating this in a raw data stream. Moreover,
techniques and metrics are gathered and presented to calculate uncertainty in the
output of operators’ selection, aggregation and join. In the following section we
describe the building block for the detection of extreme events. We present two
modified extreme event detectors in order to account for the inherent data
uncertainty.

3.3. Uncertainty-aware detection of extreme events

Concerning the design of mechanisms notifying for extreme events, the estimated
uncertainty, in conjunction with appropriate assumptions for the prior probabilistic
models, can be exploited in a statistical framework for the detection of extreme
values. Extreme value theory allows, under specific conditions, to predict rare
events, which diverge from a “normal” pattern because of their rareness. For
instance, in the HYDROBIONETS framework, a typical extreme event is the
detection of high chlorine concentration in the water, or a high concentration of
biofilms on the desalination membranes. As mentioned before, early warning for
abnormal behavior is crucial when working in large-scale industrial environments.

In our developed uncertainty aware data processing system, the identification of
critical events is performed by means of two robust and computationally efficient
methods. More specifically, we enhance the performance of two widely used
techniques for extreme events detection by incorporating the underlying estimated
data uncertainty. The first one, namely, the compliance with operating limits,
performs simple comparisons of predetermined user-specified operating limits with
the recorded measurements augmented by their estimated uncertainty. This
modification maintains the computational efficiency of the original version, while
improving its adaptivity to imprecise measurements. In a similar way, the second
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approach, the so-called Peaks-Over-Threshold (POT) method, is modified
accordingly so as to identify the time instants when the measurements (also

augmented by the estimated combined or expanded uncertainty) exceed an estimated
threshold.

Compliance with operating limits

The simplest way to exploit the estimated combined or expanded uncertainty to
design an alerting mechanism is as shown in Figure 10. More specifically, let [

denote an upper operating limit dictated by a manufacturer or a specification
standard. Although, for convenience, we restrict ourselves in the case of an upper
limit, however, the same remarks are straightforward when compliance with a lower

operating limit /, is required.

Upper l 'l'
Control

(i) (i) (i) (iv)

Result plus Result Result below Result minus
uncertainty above limit limit but limit uncertainty
above limit but limit within below limit
within uncertainty
uncertainty

Figure 10: Compliance conditions for a measurement result.

As shown in Figure 10, there are four possible cases for a measurement and its
associated expanded uncertainty interval, y +U, when compared with an upper limit

[, namely,

(1) both the measurement and the expanded uncertainty interval are above the
upper limit /u,

(i1)) the measurement is larger than /u and the expanded uncertainty interval
contains /u,

(i11) the measurement is lower than /u and the expanded uncertainty interval
contains /u, and

(iv) both the measurement and the expanded uncertainty interval are below /u.

Case (i) clearly triggers an alerting notification for the occurrence of an extreme
event, while (iv) is the only one which is in compliance with the specifications. On
the other hand, in cases (ii) and (iii) we could not infer with absolute certainty
whether an alert should appear or not. However, in a socially “sensitive” application,
such as the water treatment, a system operator should classify cases (i1) and (ii1) as
possible divergences from normal operation, and thus draw more attention on the
associated monitored variables. Notice also that, in contrast to the original version of
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this method, which supports only two cases (above or below /u), the modified one
exploits two additional ones due to the presence of uncertainty.

Despite its simplicity, the main drawback of this method is that it can be very
sensitive to an under- or over-estimate of the expanded uncertainty, as well as of the
measurement value, increasing the probability of false alerts. However, with
appropriate setup of the hardware (sensors) and continuous monitoring of the
environmental conditions, we could increase our trust to this method.

Peaks-over-threshold

Similarly to the previous method, we also extend the original POT method [38][39]
in order to account for the underlying data uncertainty. More specifically, we
consider ¥ ={y,,..., ¥y} to be a data stream with N measurement values, which are
spread out by the corresponding estimated expanded uncertainty, that is, y, =y, U
where we assume for the cumulative distribution function (CDF) F, that for z >0,
F(z)=Pr(y £z)<1. Given a user-defined threshold p we study the statistical
properties of the exceedances ), of over the threshold level p by fitting them with an
appropriate distribution. In the following, we mainly rely on a threshold-dependent
complementary CDF (or, equivalently, exceedance probability), which is given by

F(p+2)

F(p)

where F(z) =1-F(z), for z >0, denotes the tail of F.

F(2)=Pi(J-p>z|¥>p)= (15)

The above identities can now be used to estimate tails and quantiles, to be used as
refinements of the threshold p, adapted to the measurements statistics, within a
predetermined level of confidence. To this end, let Np be the subset of indices
J €{l,..N}forwhichy, > p,thatis N, ={j e{l,.N}:y, > p}.
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(a) Original time-series (b) Peaks over threshold

Figure 11: Original time-series and its peaks over threshold

Then we denote by E,,....E v, the excesses of ¥, 7,,...5,, that is, the heights of the

exceedances over p , as shown in figure 18b . F (p)is estimated simply as the
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— N _
relative frequency, F(p)= Tp , while F, (z) is approximated by the generalized

Pareto (GP) distribution as follows

Fp(z)z(l+yo_(zp)jy ,2>0 (16)

where the parameters 7y, o(p) can be obtained via maximum likelihood (ML)
estimation from the acquired sensor measurements directly. By combining (15)-(16)
we obtain the overall tail estimator as follows,

_ N 7y
F(p+z)z—”[1+7/ z Jy , z20 (17)
N o(p)

Finally, for a given pe(0,1) we obtain an estimator for the p-th quantile, z,, as
follows,

14 N

Y
2, =p+ 22 {i(l—p)] -1 (18)
P
This quantile can be further employed as a refinement of the initial threshold p in
subsequent time windows of the data streams. Another benefit of using a
probabilistic framework, as is the case of POT, instead of the simple compliance with
operating limits, is that we can also estimate the average time interval between
successive extreme events of similar intensity. This elapsed time is called refurn
period, and is defined as the inverse of the exceedance probability as follows

1

F()
We notice here that this does not mean that if an extreme event with a return period
TR occurs, then the next will occur in about 7R time units (e.g., days, months, years).
Instead, it means that, in any given time unit, there is a 1/7R chance that it will
happen, regardless of when the last similar event was.

(19)

R

Overall, we observe that the two techniques make different initial assumptions about
the amount of information available for the uncertain time series, and have different
input requirements. The POT method allows us to work with larger sample
populations, which ensures better fits to a distribution function. However, this comes
at the cost of assuming that the data are considered to be identically distributed,
which may not be always the case in practice. This block-based method best suits to
block-structured data (e.g., yearly, monthly, weekly). On the other hand, the first
method may be very sensitive to an under- or over-estimate of the expanded
uncertainty, as well as of the measurement result, yielding to false alerts.
Consequently, when deciding which technique to use, users should take into account
the information available on the uncertainty of the time series to be processed.
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4. Data Streams Correlation Frameworks

The processing, management and mining of data streams have attracted on increasing
amount of interest recently. Data streams appear in a variety of settings, such as
environmental and medical systems. Typical data stream applications include sensor
monitoring and sensor data analysis. In all these situations, the data sources generate
data with no end in sight, making it impossible to store all the historical data. The
best approach is the data processing to be performed in an on-line fashion, to avoid
the complete data storage and to “catch” abnormal behaviour of the applications.
There are many fascinating research problems in such settings, like clustering [15],
summarization [16] and forecasting [17][18]. The correlation analysis is a way of
measuring the linear relationship between dimensional data streams. Here we focus
on a less-studied problem, namely on computing correlations on uncertain data
streams. Our goal is to monitor k numerical uncertain sequences, Xi,...,Xx and to
determine automatically all the pairs of sequences that have a correlation above a
specific threshold. That is we want to report all the pairs of streams X; and X, for
which stream X; follows the stream X above a specific correlation threshold ¢.

The proposed data processing subsystem aims to support the HYDROBIONETS
wireless sensor network infrastructure for multi-sensing and multi-actuation in water
treatment and desalination plants. In our case, a desalination pilot plant is located in
La Tordera, which is equipped with a number of various electrochemical sensors,
scattered in distinct locations, for monitoring several physical and mechanical
variables in the plant. In order to perform timely actuation and provide guarantees for
the validity of a detected extreme event, we need to monitor continuously and online
the correlations between predetermined pairs of data streams produced by sensors at
different stages of the water treatment (pre-filtered, pre-treatment and reverse
osmosis phases), as well as their inherent uncertainty. So, the problem we address in
this thesis is defined as follows:

Problem: “Given m co-evolving uncertain data streams of equal length n, detect at
any point of time the occurrence of an extreme event, along with the top-k pairs of
streams which are highly correlated.”

Without loss of generality, we can assume that two data streams X and Y have the
same length n. Intuitively, two data streams are highly correlated if they look very
similar as involving in time. Figure 12 shows five data streams evolving over time.
We can notice that the blue-red and the red-green data streams present “similar”
behaviour across the time, so we consider that they are highly correlated. Besides, in
the case of the red-green streams, after a time-point there is no correlation. If the data
streams X and Y were static, the problem would be trivial: simply compute the
Pearson’s cross-correlation function. However, when X and Y consist of uncertain
measurements, observe different dynamic data with different distributions, have big
data volume and continuously increase in length, the problem is challenging. In this
chapter we will develop the technique for fast computing correlations above a
specific threshold in simple data streams and in section 4.3 we will propose the way
to combine this technique with uncertain data streams.
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Figure 12: Example of correlated sequences.

We need a method which will monitor data streams and this method should
determine whether there is a correlation above a specific threshold (the threshold is
determined by the user) among a stream X and other streams. Specifically we need a
method that has the following characteristics:

o Computational efficiency: Fast and robust computation for detecting any
abnormal system behaviour in an almost time-continuous fashion.

e Agility: The memory space requirement should also be linear on the length ».

e Accuracy: Given that the exact computations require increased space and
time resources, we rely on suitable approximations with minimal
approximation error.

The technical problem we are focus on is “on the fly” monitoring of pairwise
correlations between high-dimensional uncertain sensor data streams. As we
mentioned in the section 2.2, there is a great complexity between correlations in
sensor data streams we have to examine. Considering these correlations and data
uncertainty we define correctly the HYDROBIONETS project alerters. We propose
the way to define the correlations between two data streams, that don’t measure the
same physical phenomenon and therefore they are characterized by alterative
distributions. Moreover, the physical phenomena follow distributions that are not
known in advance, because they are evolving dynamically.

The framework we propose uses careful approximations, exploiting the compression
property of the Discrete Fourier Transform. The net effect is that our framework has
good performance in terms of speed and memory, while it maintains excellent
accuracy. Our experiments on real and realistic streams provided by ACCIONA

44



Agua show that our framework is faster than the straightforward correlation
computation, while maintaining relative error in low level.

This chapter describes the major functionality assigned to our uncertainty-aware data
processing system: Finding correlations among pairs of data streams, which monitor
dynamic phenomena and their distributions, may be completely different. Initially,
in section 4.1 we describe the use of correlation extraction. The section 4.2 describes
briefly the key ideas adopted by our method and in the section 4.3 we analyse the
monitoring of pair-wise correlation. Lastly, the section 4.4 gives the related work on
data streams correlation monitoring and presents their vulnerabilities, if we apply
them in HYDROBIONETS project.

4.1. Monitoring Stream Interrelations

The most commonly used technique for investigating the relations between
quantitative variables, is the correlation computation. The goal of a correlation
analysis is to detect whether two or more variables co-vary, and to quantify the
strength of the relationship between these variables. There are two main uses for
correlation computation®:

(1) Testing hypotheses about cause-and-effect relationships. In this case, the
values of the X-variable are determined and we observe whether variation in
X causes variation in Y (for example, giving different values to water PH and
measuring the biofouling). This kind of correlations, are exploited once
during the design phase of a system to obtain the necessary information about
data interrelations.

(i1) Detecting whether two variables are associated without necessarily inferring a
cause-and-effect relationship. If an association is found, the inference is that
variation in X may cause variation in Y, or variation in Y may cause variation
in X or variation in some other factor may affect both X and Y. These
correlations are computed and controlled throughout the system operation
because they can be changed. These changes are monitored and used for the
best outcome of the operation system.

In summary, correlation extraction from data streams is used to assess the strength
and direction of the relationships between them. Correlation between data streams
indicates a predictive relationship (e.g. to predict misleading values of a data stream)
that can be exploited for further analysis in for-casting or simulation tools.

Depending on the monitored phenomenon and the environmental conditions, the
behaviour of the recorded data streams may evolve significantly over time. Changes
in data characteristics (e.g., statistical distribution) may indicate anomalies in the
“normal” behaviour of the monitored streams, or alterations in the data acquisition or
transmission process. Quantification of the degree of interrelation between pairs of
seemingly different sensors, in conjunction with the detection of behaviours
variations, is crucial for a meaningful and reliable decision making in an industrial
infrastructure, as is our case.

% https://explorable.com/correlation-and-regression
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To be more specific, the use of correlation extraction in HYDROBIONETS data
concerning the monitoring of water desalination is threefold:

1. Continuous monitoring of a dynamic system: In section 2.2 we discussed the
sensing performed in different points in the plant. In Table 5 we summarize the most
interesting patterns that we have defined for data streams interrelations in the
HYDROBIONETS project:

Table 5: Description for data streams interrelation patterns in HYDROBIONETS project.

Pattern Description Type of data Involved Sensors
streams
interrelation
P1 If we observe a high flow Analogous (a) Electromagnetic
rate in the fresh water (this flowmeter sensor
water property is tracked (b) Pressure sensor

by electromagnetic
flowmeter sensor) then we
check the pressure in the
saline water.

P2 If we observe low response Inversely (a) Redox sensor
time in redox sensor, then Analogous (b) Chlorine sensor
we check the chlorine
concentration, because
there is a sudden rise of

this.
P3 Increase in pH or Analogous (a) PH or Temperature
temperature measurements Sensors
presage the growth of (b) Biofilm sensor
biofouling.
P4 If we observe reduce to the Inversely (a) Conductivity
water salinity, then we Analogous sensor
check the quality of the (b) Chemical sensor
water effluent from MBR
membranes.
P5 If we observe fluctuations Analogous (a) Pressure sensor
in differential pressure, (b) Biofilm sensor

then we check the
concentration of biofouling
in the water.
P6 If we observe increase of Analogous (a) Temperature sensor
the water temperature near (b) Pressure sensor
in membranes, we expect
the increase of water
pressure in nearby point

The correlations concerning the above patterns are monitored continuously
throughout the water desalination process, since we observe the right performance of
the dynamic phenomena performed in this process. Besides, as we can see in the
following, these interrelations notify the existence of events of interest.
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2. Simultaneous monitoring of the system: Via the data streams correlation
extraction, we have the opportunity to observe the water treatment behaviour in
specific points in the plant. Figure 13 presents the sensors distribution in the different
stages of the water treatment (pre-filtered, pre-treatment-reverse osmosis) in La
Tordera’s desalination pilot plant.

The uncertainty-aware data processing system gives us the opportunity to monitor
the system behaviour in specific points into the plant. The set of the available
electrochemical sensors is divided into subsets of highly correlated sensors. In every
different phase of the water treatment, different subsets of sensors are used. This
clustering enables a more convenient and meaningful monitoring of the overall
infrastructure, since we have the capability to identify the possible errors in the
specific phases in water treatment. This way we can intervene directly in the
desalination process and we benefit in time (since we know exactly where the error
occurs) and cost (since we prevent the process of a wrong procedure).

3. Distinguishing efficiently between occasional and extreme events constitutes
a major issue in the design of data management systems. This is the third major use
of correlation extraction in our infrastructure. It is of great importance to ensure in
real or almost real time, especially when we deal with massive data sets, that a true
extreme event occurs and not some coincidence or system/network failure. On the
other hand, the degree of correlation between two or more sensor data streams
characterizes their interrelations and dependencies. For this, the identification of
highly correlated streams can be exploited as a further guarantee to verify the
existence of a detected extreme event.

For instance, consider the case of two data streams recorded by a pressure and a
temperature sensor, respectively. When the two sensors are placed nearby, we expect
that a high pressure is associated with an increased temperature, which means that
the correlation of these two streams should be relatively high. Thus, we assume that a
potential notification for an extreme temperature should be related with a high
measured pressure. If this is not the case, this information can be further exploited by
a system operator to focus more on that part of the industrial infrastructure and
perform a more thorough examination. The only ambiguous point here is related to
the determination of “high correlation”. The degree of “high correlation” is related to
the specific application and the end-user, who has the flexibility to define how much
strict this degree will be.

Timely actuation is a crucial issue, while providing guarantees for the validity of a
detected extreme event is also of high significance. The transparency of the results
should be more assured, since the uncertainty of data is arising from hardware
defections or environmental variation in our infrastructure. To this end, we need to
monitor continuously and in an online fashion the interrelations between a number of
distinct data streams produced by sensors at different stages of water treatment (e.g.,
pre-filtering, pre-treatment and reverse osmosis), while accounting for their inherent
imprecision expressed in terms of uncertainty.
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4.2. Preliminaries

In this section we introduce and analyse some concepts that are using in our
approach, presented in section 4.3.

4.2.1. Data streams and sliding windows

A data stream D comprises a continuous stream of m tuples, consisting of » attribute
values A; (1 <1 < n) and the timestamp ¢. For an efficient data uncertainty
management, the stream is partitioned into windows each of which is identified by its
starting point ¢, its end point ¢., the window size w and the sleep step s. A window
contains the sensor measurements and each measurement is characterized from
uncertainty information. This model is depicted in Figure 14.
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Figure 14: Data uncertainty model

Data streams must be handled either online or from databases, as data items flow
rapidly into the system from our sensors. Over this dynamic data, the system must
provide timely and incremental responses to multiple continuous queries, ideally
keeping in pace with the data arrival rate. Since the size of the stream is potentially
unbounded, the state of the data is not known in advance, so responses clearly
depend on the set of stream tuples available during query evaluation. Streaming data
is usually retained in memory and not physically stored on disk. Thus, it is not
practically feasible to “remember” the entire history of rapidly accumulating stream
elements due to resource limitations. The operators of the physical algebra keeping
state information such as the join and aggregation usually cannot produce exact
answers for unbounded input streams with a finite amount of memory. Besides, users
can only be interested in the data recently arriving within a fixed time period.

To overcome such difficulties, windows have been introduced in query formulation.
Such constructs generally emphasize on the latest data by taking advantage of an
ordering among tuples, usually established through timestamp values attached to
every item. Intuitively, at any time instant, a window operator (we will refer to it as
“window”) specifies a finite set of recent tuples from the unbounded stream; this
finite portion of the stream will be subsequently used to evaluate the query and
produce results corresponding to that time instant. As time advances, fresh items get
included in the window at the expense of older tuples that stop taking part in
computations. A window is generally considered as a mechanism for adjusting
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flexible bounds on the unbounded stream in order to fetch a finite, yet ever-changing
set of tuples, which may be regarded as a temporal relation.

There are two ways to physically build windows: (i) attribute-based windows, and
(i) count-based windows. In the first case, an attribute is designated as the
windowing attribute (usually time), and consecutive tuples for which this attribute is
within a certain interval constitute a window (e.g., stock reports over the last 10
minutes). Here, tuples are assumed to arrive in increasing order of their windowing
attributes. In the second case, a certain number of consecutive tuples constitute a
window (e.g., the last 10 readings from a sensor).

Definition 4 (Window over data stream): Let Wi be a window with conjunctive

condition E applied at time instant ty € T over the items of a data stream S, i.e.,
over its current contents S(zy). Then:

V1, €T, 1; =7 Wg(S(1;)) = {s € S(z)): E(s, T) holds}
provided that for any large, but always finite n € N.

Therefore, each window is applied over the items of a single uncertain data stream S.
The stream S consists of uncertain objects (denoted by s) and at every 7; returns a
concrete finite set of tuples Wg(S(z;)) € S(z;) which is called the window state at this
time instant. The conjunctive condition E relates to the type of sliding window
(attribute/count based). For the rest of the document we will refer to Wy as W.

Figure 15 illustrates the scenario of sliding windows over one uncertain data stream
S. Each uncertain data stream consists of a sequence of continuously-arriving
uncertain objects at different timestamps, that is, S = {s[1], s[2],....,s[f],....}, where
s[7] is an uncertain object at timestamp 7, and ¢ is the current timestamp. Specifically,
as shown in Figure 15 an operator always considers the most recent w uncertain data
in stream, that is, Wg(S) = {s[¢t- w+ 1], s[t-w +2],...,s[]} at the current timestamp
t. In other words, when a new uncertain object s[¢ + 1] comes in at the next
timestamp (¢ + 1), the new object s[¢ + 1] is appended to S. Meanwhile, the old object
s[t - w+ 1] expires and is evicted from the memory. Thus, operators at timestamp (¢
+ 1) is conducted on a new sliding window {s[¢- w + 2],...,s[¢ + 1]} of size w.

’ Time domain T is regarded as an ordered, infinite set of discrete time instants t € T. A time interval
[t1, 2] € T consists of all distinct time instants T € T for which t; <t <1,.
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Figure 15: Illustration of sliding window on uncertain data streams

As expected, the separation of data streams in sliding windows brings problems of
completeness and synchronization in the final results. These problems aren’t
qualified because it is out of the scope of this thesis. To conclude, the available
electrochemical sensors may report a measurement within a predefined period of
time, usually in the scale of a few seconds or minutes. Data processing of raw data
streams is performed on the basis of sliding windows. In particular, a sliding window
of recent measurement values is maintained, while the window moves with a
predetermined step size when new measurements become available. Furthermore, as
the contents of the sliding windows evolve over time, it makes sense for users to ask
a query once and receive updated answers over time.

4.2.2. Pearson’s Correlation function

A similarity measure is a relation between a pair of objects and a scalar number.
Common intervals used to mapping the similarity are [-1,1] or [0,1], where 1
indicates the maximum of similarity. The most common similarity function used to
perform complete or partial matching between time series is the cross-correlation
function or Pearson’s correlation function. The cross-correlation between two time
series x and y of the same length N and same starting timestamp is defined as:

N-1

> (x, = ¥)(3, = ¥) 0

r = n=0

| JZ(xn—?c)z JZm—})Z

n=0

where x and y are the means of x and y respectively. The correlation r,, provides

the degree of linear dependence between two vectors x and y from perfect
relationship (r,,=1), to perfect negative linear relation (7, = -1). Equation (1) means

that the cross-correlation coefficient can be computed by simple summation of the
distinct data stream objects, which support incrementally computation. Based on this
equation, we can design a straightforward approach to detect the correlation.
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Intuitively, once the sliding window receives the new data objects, we incrementally
update the basic summations (e.g., ij and an ) of the subsequences x and y,

within the sliding window. After processing the data objects in current window, if the
correlation condition is satisfied, the current correlated subsequences should be kept,
and when the following data objects come in, we make the incremental calculation of
cross-correlation again.

It is obvious that the naive solution can continuously detect the correlations between
the engaged data streams. However, for each new data object we have to recalculate
the cross-correlation coefficient, which will result in high computation complexity.
The major cost is produced by the sum of inner-product as described in Equation (1).
In the area of signal processing and statistical analysis, the sum of inner-product is
usually calculated by Discrete Fourier Transform (DFT) for efficiency purpose.
Therefore, we propose to make use of the theoretical results of DFT to design a more
sophisticated approach for correlation detection.

4.2.3. Data Reduction in Data Streams

Data streams are observations made in sequence and the relationship between its
consecutive data items gives us the opportunity to reduce the size of the data without
substantial loss of information. Data reduction [29] is often the first step to tackling
massive time series data because it will provide a synopsis of the data. A "quick and
dirty" analysis of the synoptic data can help us to spot a small portion of the data
with interesting behaviour. Further thorough investigation of such interesting data
can reveal the patterns of ultimate interest.

Data reduction techniques will reduce the massive data into a manageable synoptic
data structure while preserving the characteristic of the data as much as possible. It is
the basis for fast analysis and discovery in a huge amount of data. Data reduction is
especially useful for massive data streams due to the high dimensionality of the data
streams (we referred to the dimensionality in 2.2.1). Almost all high-performance
analytical techniques for time series rely on some data reduction techniques. Because
data reduction for data streams results in the reduction of the dimensionality of them,
it is also called dimensionality reduction for data streams.

Many data reduction techniques can be used for time series data. In this subsection
we will mention the most common of them. We analyze in details the data reduction
with Discrete Fourier Transform (DFT), which is the first proposed data stream
reduction technique in the data mining community and is widely used in practice.
Discrete Wavelet Transform (DWT) is a new signal processing technique based on
Fourier Transform. It gains popularity in data streams analysis as it appears low
computation cost. Singular value decomposition (SVD) is an optimal data reduction
technique based on traditional principal components analysis. It is an attractive data
reduction technique because it can provide optimal data reduction in some
circumstances. A very new data reduction technique is the random projection
technique. Random projection of time series has great promise and yields many nice
results because it can provide approximate answers with guaranteed bounds of errors.
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In Table 6, we summarize the characteristics of the above reduction techniques (the »
parameter denotes the data stream length).

Table 6: Comparison of data reduction techniques

Data Reduction Random
technique DFT DWT SVD Projection
Time complexity nlogn n m. o nk
p, n
Based on Yes Yes Yes No
orthogonal
transform
Approximation of Yes Yes Yes No
data streams
Require existence Yes Yes Yes No
of principal
components
Compact support No Yes Yes Not relevant

The lower time complexity in computing the data reduction for each data stream with
lengthn, is presented for DFT technique. DFT, DWT and SVD are all based on
orthogonal transforms. From the coefficients of the data reduction, we can
reconstruct the approximation of the time series. By comparison, random projection
is not based on any orthogonal transform. We cannot reconstruct the approximation
of the time series. To approximate a time series by a few coefficients, the DFT, DWT
and SVD require the existence of some principal components in the time series data.
Random projection, by contrast, does not make any assumption about the data. This
makes random projection very desirable for data streams having no obvious trends
such as price differences in stock market data.

Discrete Fourier Transform

Discrete Fourier Transform (DFT) converts a finite list of samples of a function into
the list of coefficients of a finite combination of complex sinusoids, ordered by their
frequencies, that has those same samples values®. It can be considered that DFT
converts the sampled function from its original domain (in our case from time
domain) to the frequency domain. Based on this assumption, we overcome the
problem of comparing dissimilar streams. We mentioned in chapter 2 that data
streams from different sensors should be compared for managing the
HYDROBIONETS data infrastructure. One problem that we have to resolve in this
case is the comparing data streams that they not be measured on the same scale. For
example, suppose that we are interested in comparing the temperature and pressure
data streams near the membranes (pattern P6 from Table 5). The temperature is
measured in Celsius scale (50-100 °C) and the pressure is measured in Bars scale (0-
1 Bars). To overcome this problem, we transform our data streams into frequency

¥ http://en.wikipedia.org/wiki/Discrete_Fourier_transform
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domain. Based on DFT we reduce, except from the stream length, the affection of the
diversity in the data stream values.

In the following, we will first introduce the basic knowledge of DFT, and provide
important lemmas and properties in DFT theory, which based on them our DFT-
based solution is elaborated.

Let x = { x(0), x(1),..., x(n),... x(N — 1)} be a N-point sequence, and the
Discrete Fourier Transform of x be X' = { X(1), X(2),...,X(k),....X(N — 1)}, we have

X(k) = ﬁ Ex(n)e_j%lm ke[0,N—1] @)

The Inverse Discrete Fourier Transformation (IDFT) of X is

1 _ 2z

x(n) = X(e' V" ne[0.N-1] 3)

=
N N

Note that x and X are of the same size and the DFT of a data stream is another data
stream. In the following table, we summarize the most important properties of DFT:

Table 7: DFT theorems and properties

Property Data stream Transform stream
representation representation
Periodicity x(n) = x(n+N) X(k) = X(k+N)
Linearity ax(n)+by(n) aX(k)+b¥Y(n)
Symmetry x(n):even X(k):even
x(n):odd X(k):odd
Convolution x(n)*y(n) X(k)Y (k)
N-1
Inner product <x(n), y(n)> z x(k) (k)
k=0
Parseval’s theorem ! & .
D x(m)y(n) 7 2 X ()Y (k)
n=0 k=0

For the most real data streams the first few coefficients contain most of the energy
and it is reasonable to expect those coefficients to capture the raw shape of the data
streams. Figure 16 shows a data stream and its corresponding DFT coefficients of the
measurements of a temperature sensor, placed near to MBR membranes in pre-
treatment phase. From the symmetry property of DFT, we know that for a real data
stream, their k-th DFT coefficients from the beginning are the conjugates of its k-th
coefficient from the end. This is verified in the same figure.
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Figure 16: Temperature data stream and its DFT coefficients

The validity of our approach for using the DFT reduction for reducing the stream
length and the affection of the data diversity is based on the compactness of the DFT
representations. That is, the concentration of the main portions of the energy for a
given stream in the first few significant (high-amplitude) DFT coefficients. Figure 17
illustrates this property for four data streams recorded in ACCIONA’s plant, from
which it is apparent that the main energy content of the streams is concentrated in the
first few low-frequency DFT coefficients.
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Figure 17 : Amplitudes of DFT coefficients for four real data streams acquired in ACCIONA's

plant.
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Exploiting the compression property of the DFT to concentrate the inherent energy
content of a given signal in the first few high-amplitude coefficients we could
reconstruct our data stream using only the first few coefficients. The first step for
taking the approximation X of our data stream is to compute the DFT of the data
stream x . As second step, we have to define how many coefficients will be used for
the data stream reconstruction. We notice here, that as we use more and more DFT
coefficients, the DFT approximation gets better (Figure 18). After that, we have to
compute the inverse DFT of the coefficients (we refer to this stream as X ) that we
decided to keep in the previous step. The final step of reconstruction is to get the real
part of X. Figure 18 shows the DFT approximation of the temperature data stream
using the first 10, 40 and 75 DFT coefficients (The initial temperature length was
150 measurements).
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Figure 18: Approximation of temperature data stream with DFT reduction technique. From top
to bottom, the data stream is approximated by 10,40 and 75 DFT coefficients respectively.

To conclude, data reduction based on the DFT works by retaining only the first few
DFT coefficients of a data stream as a concise representation of the data stream. Note
that the symmetry of DFT coefficients for real data streams means that the energy
contained in the last few DFT coefficients are also used implicitly. The data streams
reconstructed from these few DFT coefficients is the DFT approximation of the
original data streams.
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4.3. Fast online pairwise correlation estimation

The typical approach for extracting pairwise sensor stream correlations is by means
of the Pearson’s correlation coefficient. For two given streams x, y of equal length N,
which are time-synchronized in windows of size w, the correlation coefficient is
given by (1). However, for each newly acquired measurement value, the correlation
coefficient has to be recalculated, which yields an increased computational
complexity, especially for high-dimensional data streams or for a large number of
sensors. In particular, the major cost comes from the summation of inner products of
the form:

(50 7.) = 23, @,

Motivated by this limitation, in our proposed UADM system we implement a
computationally efficient method for nearly real-time extraction of highly correlated
data streams by combining discrete Fourier transforms (DFT) over sliding windows
with a proper stream similarity measure. In order to account for the underlying
uncertainty or other data ambiguities, we restrict ourselves on the detection of pairs
of streams whose correlation is above a specific threshold.

DFT and Euclidean distance based approach

Let xwand yw denote two time windows of length w corresponding to the same time-
interval. Working in a DFT framework, each sample x; (similarly, y:) can be
expressed in terms of a linear combination of exponential functions

1 N-1 "
X, = X, e k=1..w (5)
N

where Xy is the set of N DFT coefficients, with N < w. In this way, the computational
cost for computing the inner product between the two time windows (and
subsequently the correlation coefficient) is reduced from w to N. The fast and
efficient computation of the DFT guarantees that it can be used to compute inner
products and, thus, correlations over sliding windows of any size.

The above DFT-based approach enables the fast monitoring of synchronized streams
over a given time window, whose correlation exceeds a predefined threshold. This is
dictated by the following lemma, which gives a correspondence between the
correlation coefficient and the Euclidean distance between two data streams.

Lemma 1 [30]: The correlation coefficient of two data streams x, and y, of length w
is expressed in terms of a Euclidean distance as follows

corr(x,y) = 1-—d*(,9) ©)
2w
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where d(x,yp) is the Euclidean distance between x,y, that is, the original data

streams normalized to mean zero and variance equal to one (for more details please
see Appendix A).

By reducing the correlation coefficient to Euclidean distance, we can apply the
techniques described in [20] to report data streams with correlation coefficients
higher than a specific threshold:

Lemma 2 [20]: Let the DFTs of the normalized data streams x,y be X andY,
respectively. Then,

corr(x,y)ZE:dM()?,I})S,QW(I—g) (7)
where & is a given threshold and d,,(X,Y) is the Euclidean distance between the

corresponding truncated DFTs, which are derived by keeping the first M <w/2
DFT coefficients.

Lemma 2 implies that pairs of windowed sensor streams for which
d,, ()A( Y )>2w(l—¢&) cannot have correlation coefficients above threshold €. By

ignoring those pairs, we can get a set of likely correlated stream pairs. This approach
which proposed in [20], is indicated for fast correlation monitoring, but it is not a
good similarity measure of the data streams behaviour.

The method we propose for fast similarity computation among uncertain data streams
compares the related data streams, driven by their behaviour across the time. In Table
5 we defined some basic patterns for monitoring the HYDROBIONETS cyber
physical system. In all cases we observe the simultaneous behaviour (analogous/
inversely analogous) of the pre-defined data streams. For example, for the pattern p1,
the related streams have analogous interrelation. This means that if the values of one
stream are increasing, we expect that the values for the related stream are also
increasing, under normal conditions. Otherwise, we have an unpredictable evolution
in our system that needs our attention.

The approximation of the correlation coefficient via the Euclidean distance is not
limited only in the computation of the above interrelations because this approach is
very sensitive and leads us easily to incorrect conclusions. As we can see from
Equation (6), the correlation coefficient is (inversely) related to the Euclidean
distance between standardized versions of the data. This approach considers that data
streams with small Euclidean distance are more correlated than other data streams
with longer Euclidean distance. Based on this assumption, the data streams depicted
in Figure 19 in case (b) are more correlated than the data streams depicted in case (a),
even though that they have similar behaviour in both cases. The major difference in
our approach is that we consider the data streams in both cases highly correlated,
since they present similar behaviour across the time.
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Figure 19: Euclidean distance is not a good similarity measure for data streams behaviour
monitoring.

Fast pairwise similarity computation

In our data management system, we search for data stream pairs whose correlation is
above a predefined threshold ¢, in a fixed-sized sliding window. More specifically,
let s be the reference stream, and (y.,y,...yc) be the set of streams with which we
compute the pairwise correlations in the current time interval. For a predetermined
correlation threshold &, the output of the process will be a subset of streams y,, for
which the correlation with s is above ¢,

In our proposed system, the problem of extracting highly correlated pairs of sensors’
data streams is translated into a problem of identifying highly “similar” sensors’ data
streams, where the “similarity” is measured by an appropriately designed function.
As in the previous DFT-based approach, the first step for each data stream values in
the current window of length w, x;, x... x,, i to normalize to mean zero and
variance one, that is,

¥, = ®)

o, =2l - ©

As a second step, the corresponding DFT of the normalized windowed data is
computed. The data compression capability of the DFT is exploited to reduce (i) the
computational cost by approximating the original data by a highly reduced set of
coefficients and (ii) the scaling in data stream values which monitor different
quantities.

where
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The final step towards our fast and robust extraction of highly “similar” sensor data
streams is to identify those pairs (s, y.) with similarity above a given threshold &4. In
order to avoid computing the similarity between all pairs of streams (s, y.), we reduce
the set of candidate streams only to those streams that will be highly similar with s
with high probability.

For this purpose, we introduce peak similarity, psim, as an appropriate similarity
measure (in Appendix B- Similarity measures we mention three different measures
for the estimation of similarity between data streams). More specifically, the
similarity between two windowed data streams s, y is computed by employing a
truncated set of the first M high-amplitude DFT coefficients, where M =~ w/2, and the
peak similarity measure is defined as follows:

1 & |Si _Yt|
o 10
pslm(s’y) M;Z_1:|: 2maX(|Sl’Yl|):| ( )

In order to account for the potential loss of information caused by the truncation of
the set of DFT coefficients, the peak similarity measure does not employ the same
threshold ¢, for finding the similar streams. Instead, we determine a new threshold
Emnew» With our proposed method reporting as “highly-correlated” pairs those streams
s and yc for which psim(s,y.) > em nen- However, special attention should be given on
the selection of the threshold value &4, .. From our experimental evaluation,
employing data from a set of various distinct sensors, we observed that if we choose
an “elastic” enough threshold &, ., then the subset of streams yc with the highest
peak similarity with s will also contain the highly correlated streams with s (that is,
those with correlation coefficient above &;). In our implementation we set &4, pew = €m
- e, where e is a small positive number (in our experimental evaluation described
below we set e < 0.05).

Uncertainty-aware fast pairwise similarity computation

Towards the design of an integrated uncertainty-aware data management system, we
extend the above peak similarity measure in order to monitor similarities between
uncertain data streams. For this, Equation (10) is not applied directly on the raw data
streams, but on the original recordings by also accounting for their estimated
uncertainty. We notice here, that the estimation of uncertainty in raw data streams is
discussed in 3.1.2. Let U; be the uncertainty value for the current window of each
sensor data stream.

The similarity monitoring of uncertain data streams, also affects the choice of the
thresholds used to decide whether two streams are highly similar or not. Specifically,
the threshold &, ..., = &/, - € 1s set based on the streams s; = U; and s, = U,, where U,
and U are the corresponding estimated uncertainties of the two streams.

From the above, we derive an uncertainty-aware extension of psim which is given by
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where S, Y are the truncated DFTs of the uncertain streams § =s+U, (or
§s=s-U,) and y=y+U, (or y=y-U, ), respectively, with U and U,

denoting the uncertainties estimated in the current window of s and y, respectively.
The basic algorithm describing the previous infrastructure is presented in Figure 20:

Algorithm FindStreamCorrelations
Input:
o A reference stream S and its corresponding uncertainty value Ug ( S+ Us)
o A set of data streams (denoting as Yc ={y1,y>...y.}) and the corresponding
uncertainty values U; for each y; (y+U;)
o The correlation threshold &,

Output:
A subset C of streams Yc for which the correlation with S is above &,

for each input stream (S and Yc) do
//Normalize to mean 0 and variance 1 based on (8) and (9)
x = NormalizationOf (S and Yc¢);
end for
for each normalized data stream x do
//Compute the Discrete Fourier Transform
X=DFT(x);
end for
//Determine the new correlation threshold
Ethnew = Eth - €
for each data stream y; (from the input set Yc) do
//Compute  the peak  similarity measure  with  the  reference
//stream S via (11)
peak similarity = psim(S* Us yi+U));
//Decision making
if peak similarity > & e, then
Add y; to the output subset C;
end if
end for
Return C;
End of FindStreamCorrelations

Figure 20: Algorithm for detecting correlations in uncertain data streams, above &,

Finally, the steps implementing our proposed fast and robust uncertainty-aware
similarity measure are shown in Figure 21:
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Figure 21: Flow diagram for fast computation of uncertainty-aware pairwise sensor stream
similarity

4.4. Related Work

In this section we present the related work recording the data stream correlation
monitoring. We introduce the major points of each technique and we annotate the
reasons we cannot apply these techniques in our application.

Yasushi Sakurai et al. [19] proposed BRAID algorithm which can detect lag
correlations between data streams. It can handle data streams of semi-infinite length
and they use careful approximations exploiting the Nyquist sampling theorem. They
proposed to find the first maximum point on the global cross-correlation coefficient
curve of two data streams, which takes times delay as a variant. They introduced an
approximation by keeping a geometric progression of the lag values and using a base
window they calculate the correlation coefficient. Their goal is to monitor &
numerical data streams, Xj,...,Xx and at any point of time to determine two things:
(1) which pairs of data streams have a lag correlation and (ii) what is the lag
correlation length.

This approach cannot be applied in the HYDROBIONETS data processing
infrastructure, since [19] focuses on lag correlations estimation on data streams. It
monitors the stream correlations in different time intervals of each data stream. In
our infrastructure we are interested in data stream correlations extraction in same
time intervals, since through the data stream correlations in the same periods of time
we:
(1) Monitor the evolution of the dynamic phenomena developed in different
stages of the desalination process.
(i) Detect-identify-localize sources and events of interest
(111) Perceive any abnormal sensor behavior (coincidence or system/network
failure)
(iv) Get the guarantees for the validity of a detected extreme event and
provide the necessary notifications for the activation of the corresponding
alerter.
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Zhu and Shasha et al. [20] proposed the StatStream model based on time series data
streams. Their system's goal is to compute in almost constant time the statistics for
multi-stream analysis problems. The core function that they compute is Pearson
correlation function (1) over sliding windows. They do this using Fourier transforms
and random-vector based sketches primarily depending on how "cooperative" the
data is. First of all, they get the discrete Fourier coefficients by applying the Discrete
Fourier Transform (DFT) on a base window (e serial sequence of sensor
measurements), then map data streams into a grid structure and calculate the
correlation coefficients between streams in adjacent grids.

StatStream assumes that a data stream cannot be regarded as having a terminating
point, and works on the data stream continuously, in order to meet real-time
requirements. To be explicit, a data stream is regarded as a sequence, rather than a
set. StatStream provides a basis for stating that any statistics presenting in the data
stream at time t will be reported at time t+v, where v is a constant and is independent
of the size and duration of the stream. StatStream establishes three major time
periods: 1) timepoints - the system quantum, ii) basic window - a consecutive
subsequence of time points which comprise a digest, and iii) sliding window - a user-
defined consecutive subsequence of basic windows that will form the basis for the
time period over which a query may be executed. While this provides a great deal of
flexibility in dealing with intervals, StatStream expects to have at least one value per
timepoint and, if one is not present, an interpolated value is used. The interpolation in
the face of missing data may insert a false reading in our data and lead us in false
decisions. Moreover, because multiple values being reported in one timepoint,
StatStream provides a summary value. The synthesis of summary values over time
produces the same stream characteristics, so there is no clear indication that an
irregularity has occurred, nor an action can take place to rectify the mistake. This
summarization can also obscure the point where a value, or a set of values, has
crossed the significance threshold.

The highly correlated stream pairs which are reported from StatStream are based in a
hash technique, using a grid structure. The grid structure is geometrically and evenly
partitioned into a number of cells. Each stream is located into one cell based on its
DFT coefficients. The correlation coefficient is computed only for neighboring
streams and in that way, StatStream discovers streams with correlations above a
specific threshold.

We cannot apply the StatStream technique in our data, because our application
monitors dynamic phenomena. For these dynamic phenomena we don’t know the
distribution that they follow a-priori, so we cannot find a good hash function that
puts whole streams with similar behavior (in the time) in nearby cells. There is one
more weakness: In our uncertainty-aware data processing system, the user specifies
the threshold for the strength of the correlated streams (how “similar” they are). A
high threshold declares more correlated streams. So, the hash function should be
adjusted to the user specified threshold, to put the highly correlated data streams in
nearby cells. The main drawback of this technique to be integrated in our
infrastructure is the difficulty to define an appropriate “similarity” function for data
streams describing dynamic phenomena with unknown prior distributions, which is
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normally the case in an industrial environment. Finally, the StatStream method
monitors tens of thousands of data streams. Their approach performs well in dealing
with large amount of data and it is designed for ad hoc’ query rather than continuous
query. This restriction has strict constraints on time delay. It wouldn’t be effective
for our application management, since we have less pairs of data streams to monitor.

Qing Xie et al [21] focus on local correlation detection, which may occur in burst in
certain duration, and then disappear. They propose a framework to deal with the
continuous detection of local Pearson correlation coefficient with time delay. Similar
to conventional approaches for data streaming processing, a sliding window is
applied in their framework. Given the maximal time delay allowed, and a minimal
correlation value, they analyze the subsequences in the sliding window, and they find
if there is any correlation occurring. Since the time delay factor is involved, their
solution also employs the Discrete Fourier Transform (DFT). They take the
advantage of the properties of DFT, and solve the cross-correlation coefficient with
random time shift by reverse DFT on the inner product of two stream sequences. If
the correlation is identified, incremental evaluation will be performed until the
correlation is lost. Otherwise they can slide the window to the next candidate
location.

Another characteristic of this work is that they apply a linear representation to
approximate the data streams to accelerate the correlation analysis. They apply
piecewise linear representation to use line segments for the approximation of data
stream points and indicate the data stream from microscopic view. They are based on
the feature of line segments and can make early pruning in the correlation candidates.

The main contribution of this work lies on the identification of /ocal correlations in
data streams that occur in burst. The proposed technique supports early pruning of
correlation pairs. We cannot apply this technique in our processing correlation
framework, because we are interested in the similarity of whole data streams and not
for local changes in signal similarity that detects the local correlation. Besides, they
use the Pearson’s correlation coefficient to detect continuously the local correlation
between the engaged streams. For each new data point and each possible time delay,
they have to recalculate the cross-correlation coefficient which results in high
computation complexity. It will be a problem for us, to recalculate the correlation
coefficient every time new data of our sensors are arrived. Using the DFT approach,
the sum of inner-product of the Pearson’s correlation coefficient can be reduced for
efficiency purpose.

In [22] the summary of two techniques [24] [26] is presented, that have been
proposed for modeling the similarity matching problem for uncertain time series.
One issue in this work is the data uncertainty modeling in time series and another is
the methods they are using for the similarity matching in data streams. The general
idea in these three techniques is that the data uncertainty is modeling with
probabilistic methods (for a detailed description please see 3.1.1), which play the role

? An Ad-Hoc query is a query that cannot be determined prior to the moment the query is issued. It is
created in order to get information when need arises.
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of filters to reduce the signal noise. After the use of filters, they compare the time
series data involving the concept of distance measures to solve the similarity
matching problem in uncertain time series. Given a user-supplied query, a similarity
search returns the most similar subsequences of the time-series, which satisfy the
user-query, according to some distance functions. Our goal in HYDROBIONETS
project is the interrelation and behavior monitoring of the data streams in same time
intervals, since this information (i) helps us to the overall system monitoring and (ii)
give us the guarantees for the validity of detected extreme events.

To be more specific, in [26] the uncertainty is modeled by means of repeated
observations at each timestamp. Assuming two uncertain time series X and Y, the
technique proceeds as follows. Firstly, the two uncertain sequences X, Y are
materialized to all possible certain sequences: TSx = {< uji, ...,uUn1 >, ...,< Ujg, ..vy Upg
>} (where ujj is the j™ observation in timestamp i), and similarly for Y with TSy .
Then they compute all possible distances between X and Y (dists(X,Y) ). The result
set of the user defined query is determined by a probability computation, which is
formulated by the means of the counting distances:

|{dists(X, Y)< g}|
\dists (X,Y)|
infeasible, because of the very large space that leads to an exponential computational

Pr(dist(X,Y)<¢) =

The computation of this result set is

cost: |dists(X,Y)|=ssy, where s} ,syare the number of samples at each timestamp
of X, Y respectively and n, is the length of the sequence.

Inspired by the Euclidean distance, [24] resolves the similarity matching problem by
computing the sum of the differences of the streaming time series random variables.
Each random variable represents the uncertainty of the value in the corresponding
timestamp. This formulation is statistically complex, since it works under the
assumption that all the time series values follow a specific distribution, and we don’t
have such knowledge since we observe dynamic phenomena that evolve over time.
Besides, with this technique we cannot compute an exact value of the Euclidean
distance between two uncertain time series, since only the mean and the deviation of
each random variable at each timestamp are available. The uncertain distance
between two uncertain series is also a random variable, something that increases the
uncertainty factor in our infrastructure.

To conclude, both [26] and [24] compute the similarity between two sequences of the
same length, by summing the ordered point-to-point distances between them. In this
sense, they assume that the comparing variables are measured exactly on the same
scale (e.g all temperature data streams are scaled on a Centigrade scale).In our case,
for HYDROBIONETS data processing, this assumption is not valid, since we have to
monitor the similarity in different data streams, e.g between temperature and pressure
data streams or water flow rate and pressure.

Whereas traditional statistical machine learning provides well-established

mathematical tools for data analysis [23][24][25], their performance is limited when
processing high-dimensional data streams. To sum up, existing techniques for

65



monitoring pairwise stream correlations exhibit several drawbacks: In the recent
work of [27], the problem of maintaining data stream statistics over sliding windows
is studied, with the focus being only on single stream statistics. On the other hand,
[28] introduced an extension for monitoring the statistics of multiple data streams,
but the computation of correlated aggregates is limited to a small number of
monitored streams. In addition, StatStream [20] has been proven a successful data
stream monitoring system, which enables the computation of single- and multiple-
stream statistics. However, the main drawback of this technique is the difficulty to
define an appropriate “similarity” function for data streams describing dynamic
phenomena with unknown prior distributions, which is normally the case in an
industrial environment.

To overcome the limitations of the previous approaches, our uncertainty-aware data
processing system is equipped with a computationally efficient “similarity
extraction” module, which enables the monitoring of pairwise correlations between
high-dimensional and heterogeneous sensor data streams in a fast online fashion. To
this end, instead of computing all pairwise correlations between the original full-
dimensional data streams, we exploit the compressibility property of the discrete
Fourier transform (DFT) to concentrate the inherent energy content of a given sensor
stream in the first few high-amplitude coefficients, as in [20]. Then, an appropriate
similarity measure, which incorporates the estimated underlying uncertainty, is
defined and applied on the associated pairs of truncated DFTs as a proxy of the
corresponding correlation coefficients.
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5. Analysing Hydrobionet Data Streams

The performance of the proposed system, in terms of managing the underlying data
uncertainty and providing early warnings, is evaluated on two real datasets provided
by ACCIONA Agua:

e Data from electrochemical sensors: This dataset consists of measurements
from 29 sensors of several types (pressure, temperature, conductivity, turbidity, pH,
flow, and redox). The corresponding measurements cover a period of 1 month at a
sampling rate of one measurement every three minutes. Full sensor specifications
(such as, sensor precision, sensitivity, and resolution), along with the corresponding
measurements were provided for each individual sensor.

e Data from Biofilm sensors: This dataset consists of measurements from 4
Biofilm and neighboring temperature sensors, located in different stages on the water
treatment plant. The corresponding measurements cover a period of 2 months with
low sampling rate due to maintenance or non-operating purposes. Due to the
limitation of this data set (we have at our disposal about 100 measurement values),
we present some indicatively results using our approach on this data.

The overall inherent uncertainty of the recorded sensor data is quantified over sliding
windows. If not stated explicitly otherwise in the subsequent results, the sliding
window size is set to 80 samples, which corresponds to a time interval of
approximately 4 hours, while the step size is fixed to 1 sample that corresponds to a
time-step of about 3 minutes. The expanded uncertainty is computed by fixing the
coverage factor to k£ = 1.96, which is equivalent to a 95% confidence level.

Our experimental evaluation attempts to answer the following questions:

e What is the response of our system when we monitor the behavior of similar
or dissimilar streams? Does the accuracy of our results increase when the
sliding window size increases?

e What are the results of our method when a stream presents values out of
sensor measurement range and is this a coincidence or an extreme event?

e What are the results of our approximation method to choose the top-k highly
correlated streams? Does these results correspond to the results from
Pearson’s correlation? What are the results when the uncertainty of the
measurement values is computed?

e How many streams can this approach handle simultaneously and what is the
time cost?

e What is the precision of our results using as benchmark the correlation
factor?
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e How good are the time savings when using our approach compared with
other methods (Pearson’s correlation, StatStream, BRAID)?

We perform the experimental evaluation on a 2.27 GHz Intel Core 15 PC with 4 GB
main memory. Our approach runs in the high performance interpreted environment
of MATLAB, using the language’s powerful array-based computation and the local
functions for computing the DFT and Pearson’s correlation.

Stability of our approach

Concerning the stability of our proposed fast pairwise stream similarity monitoring
approach, as a first step we examine the response of our approach when we monitor
the behavior of similar or dissimilar streams. Figure 22 (a) and Figure 23 (a), show
one stream pair with similar behavior and one stream pair with dissimilar behavior
respectively. In both cases, we have 1000 stream values and we calculate peak
similarity and Pearson’s correlation values for increasing sliding window size
(20:20:100) and overlapping factor 50%.

(a) Streams with similar behaviour
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Figure 22: Comparison between peak similarity and correlation coefficient values for streams
with similar behaviour, averaged over different sliding window sizes.
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Figure 23 Comparison between peak similarity and correlation coefficient values for streams
with dissimilar behaviour, averaged over different sliding window sizes.

Figure 22 (b) and Figure 23 (b) present the average Pearson’s correlation and peak
similarity values over different sliding window sizes. Indeed, both figures show that
our approach is suitable for monitoring the stream behaviour. In case of similar
streams, we have high peak similarity values (as the correlation values), in contrary
with dissimilar streams that we have clearly lower values. In Table 8§ we summarize
these results for both cases.

Table 8: Correlation and Peak similarity (using DFT reduction technique) values, for measuring
the behaviour of similar or dissimilar streams.

WS
Method 20 40 60 80 100

Peak 0,95380 |0,95744 | 0,95750 | 0,95867 0,95908 | Similar
similarity streams
Correlation | 0,98170 | 0,98309 | 0,98321 | 0,98323 0,98326

Peak 0,22099 |0,22163 | 0,22343 | 0,22487 0,22550 | Dissimilar
similarity streams
Correlation | 0,18710 | 0,18327 | 0,18158 | 0,18145 0,18055

In addition, a main feature that we observe is that the peak similarity values are less
than the corresponding correlation coefficient values. This deflection is expected,
since our approach measures the similarity between streams by using a common
similarity measure (peak similarity) in combination with the DFT reduction
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technique. The size of sliding window doesn’t affect our results, since we notice little
changes after the third decimal digit.

A critical issue that arises by applying our method in HYDROBIONETS’ project, is
our method’s behaviour, when (i) one stream presents some values out of
measurement range and this is a coincidence and (ii) two streams detect an extreme
event.

Figure 24 (a) presents two streams with similar behaviour and one stream records a
value out of the sensor’s measurement range. In this case, our method should
guarantee that we have a coincidental event, by recognizing inverse behaviour than
the expected. By assuming that the streams in Figure 24 (a) have analogous
behaviour, we expect under normal conditions to be highly correlated. In case of an
abnormal event (that is recorded by one stream), we expect low correlation. Actually,
in Figure 24 (b) (or in Table 9) we can see the similarity values for the above case
from 4 different methods. The compared streams have length 1500 stream values,
and the results are the averages of the computations in different sliding window sizes
(from 500 to 100 with step size 100) with overlapping factor 50%.

(a) Sensor value out of measurement range
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Figure 24: Averaged similarity values for one pair of data streams, with a value to be out of the
sensor’s measurement range, as the window size decreases.

These four different methods we used for monitoring the similarity between data
streams in Figure 24 (a), are the Pearson’s, Spearman’s, Kendall’s correlations and
our Peak similarity approach. Both Spearman’s and Kendall’s similarity results
present this pair of streams highly correlated, since both methods are not sensitive to
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outliers. This behaviour is not suitable for our monitoring in Hydrobionets project.
Instead, Pearson’s correlation and Peak similarity approach recognize the existence
of this outlier, since their results indicate low correlation between these two streams.
In this case, we can realise that there isn’t analogous behaviour between the two
streams and we can ignore the outlier of the first stream. It worths to notice, that as
the sliding window size decreases, the corresponding results of our approach and of
Pearson’s correlation also decreases. This behaviour is the expected, since the
influence of the outliers is more as the size of the sliding window that includes the
outlier, decreases. That is the reason the similarity values are smaller as the window
size decreases.

Table 9: Similarity values from four different methods in case of the existence of an outlier.

WS
Method 500 400 300 200 100
Peak similarity 0,67788 | 0,66784 0,65703 0,65118 0,64986
Correlation 0,74104 | 0,72984 0,70803 0,68037 0,65316
Spearman’s rho 0,99790 | 0,99857 0,99881 0,99959 0,99790
Kendall’s tau 0,99658 | 0,99684 0,99667 0,99765 0,99658

Figure 25 depicts the output of the COL extreme event detector when a temperature
sensor records an extreme event. As we can see, this method identifies as extreme
events only those measurements which are strictly higher than 17. The temperature
and pressure sensor streams have analogous behaviour (as defined in pattern P6 in
Table 5 ), so both of them are increasing in the case of the extreme event. We expect

that these two streams would be highly correlated.

Extreme Event Detection
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Figure 25: Extreme event detection from the COL method, when we monitor the temperature
and pressure data streams.
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Figure 26: Averaged peak similarity values over different sliding window sizes (a) comparing
original sensor measurements without incorporating uncertainty and (b) results with confidence
intervals by incorporating the estimated expanded uncertainty.

Figure 26 presents the values of our approach, when we monitor a pair of streams
which detects an extreme event. The streams we compare have length of 600 stream
values. The plotted values are the corresponding averages of our approach over
different sliding windows sizes. The window size ranges from 50 to 150, with step
size 20 and overlapping factor 50% of the window size. Furthermore, in Figure 26
(b) we can see the averaged values when accounting for the underlying data
uncertainty (with k=1.96). In both cases the response of our approach indicates that
this pair of streams is highly correlated throughout the monitoring period. By this
way we can guarantee the existence of the extreme event detected by COL method.

Performance of our pairwise stream similarity approach

A critical issue that arises from our approximation method in HYDROBIONETS’
project is the valid match for the top-k highly correlated streams with regard to
Pearson’s correlation results. In Figure 27 (b) we can see the peak similarity and
Pearson’s correlation values between a reference pressure stream and other types of
streams (the labels Prx, Tx, FFx, FLx, PHx, Cx, BFx, TRx denote pressure,
temperature, feed flow, filtrate, flow, Ph, conductivity and turbidity sensor streams
respectively). We computed the average of the similarity values between streams
with length 2000 measurement values, with sliding window size 100 measurement
values and with overlapping factor 50% of the window size. Taking the provision of
highly correlated streams in both cases (for peak similarity and Pearson’s correlation
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methods) is the same: Fl,, Fl;, Ty, PRy, T,, TRy, Cy, FF,, T3, PH,, PH;, TR;,, FFy,
BF,, C,.

An interesting point that we have to examine is whether the computation of
uncertainty in our data streams affects these results. In Figure 27 (a) we can see the
similarity values from peak similarity and Pearson correlation methods for the above
streams after we have calculated the uncertainty in our data streams. The results
about the provision of highly correlated streams are exactly the same: Fl,, Fl;, Tj,
PRl, Tz, TRl, Cl, FFz, T3, PH2, PHl, TR2, FF], BFl, Cz. To conclude, the uncertainty
estimation in our data streams, doesn’t affect the final results for finding the top-k
highly correlated data streams.

(a)Correlation and Peak similarity With Uncertainty
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Figure 27:Peak similarity and Pearson’s correlation values between one reference stream
(pressure stream) and 15 other types of streams (a) including the uncertainty of data (b) without
the uncertainty computation.

Our proposed approach computes the streams similarity at the end of each sliding
window. We can increase the number of compared streams at the cost of increasing
the delay in reporting results. Figure 28 shows the execution time by finding the pairs
of streams which are related above a user defined threshold with a referenced stream,
as the number of comparing streams increases. For this experiment the data streams
are generated using the random walk pattern. For streams s,

s, =100+ (u; —0.5),
j=1

where i=1,2,...n (n=stream length) and uj. is a set of uniform random real numbers in
[0.1]. The streams have length 1000 stream values and the similarity results are the
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averages of similarity computations in sliding windows with size 100 and
overlapping factor 50 stream values.

Execution time vs Mumber of compared streams
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Figure 28: The number of streams that our proposed approach with peak similarity method can
handle in an online fashion.

Comparing with other methods

As mentioned before, the computational complexity, and subsequently the execution
time of our results is an important factor which affects the overall performance of our
proposed uncertainty-aware data management system. To this end, we compare the
performance of our proposed approach, in terms of execution times for increasing
stream lengths against the typical Pearson’s correlation coefficient and two other
state-of-the-art methods, namely, BRAID [19] and StatStream [20]. BRAID can
handle data streams of semi-finite length, incrementally, quickly, and can estimate
lag correlations with little error. On the other hand, as mentioned before, StatStream
resembles more our approach, by finding high correlations among sensor pairs based
on DFTs and a three-level time interval hierarchy.

For the BRAID algorithm we set the correlation lag to be equal to zero. For the
StatStream algorithm, a simple hash function is used based on the mean value of
each stream. Keeping the integer part of the mean values, the streams are mapped to
appropriate cells in a grid structure. Doing so, only the correlations between
neighbouring cells are computed.

Figure 29 compares the execution times of our proposed method with the other three
alternatives (Pearson’s correlation, BRAID and StatStream), as a function of the
stream length. The similarity values are computed over one pair of streams with
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different stream length. The results reveal a significant improvement in execution
time achieved by our method, which is more prominent for higher stream lengths.
We observe that the execution time of our method remains almost constant over the
whole selected range of stream lengths, in contrast to the naive and BRAID methods,
whose execution times increase rapidly as the stream length increases.
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Figure 29: Comparison of execution times, as a function of the stream length for four methods:
a)Peak similarity (our proposed), b) StatStream, c)BRAID and d) Naive Method (correlation
coefficient)

Our proposed approach and StatStream are performed with low execution time
because the similarity values from both methods are estimated with few stream
values due to DFT approximation. BRAID algorithm is characterized by gradual
increase for increasing stream length, since it employs all the values of the recorded
streams. The increased execution time of StatStream, compared to our approach is
due to the hash function, which involves more computations for the stream mapping.
We expect though that the performance of StatStream could be enhanced, by
designing a more efficient hash function.

There are different similarity measures as presented in Appendix B, and one might
wonder why we don’t use one of them. We computed the precision results, by
applying each different similarity measure to our approximation method. We use as
true reference set the results from Pearson’s correlation coefficient. Precision is the
percentage of the similar pairs of streams above a pre-defined threshold identified by
the different similarity measures, which are truly similar (we compare them with the
true reference set). This experiment is performed between one reference stream and
300 different data streams (they were generated using the random walk pattern) with
1500 stream values length. The similarity values are computed over sliding windows
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with size 100 and overlapping factor 50 stream values. For each 500 stream values
we compute the averages of the recorded similarity values and we report the highly
correlated (e,4,>0.75) stream pairs between the reference and the other streams. Based
on these results, we compute the precision measure. In Table 10, we can see the
precision results, by applying the different similarity measures referred to Appendix
B- Similarity measures in our approximation technique.

Table 10: Precision results from different similarity measures

Common similarity 0.763 0.756 0.758
Mean similarity 0.773 0.766 0.774
Root mean similarity 0.791 0.788 0.793
Peak similarity 0.961 0.954 0.937

Our experimental evaluation is completed with the applying of our proposed
approximation method for monitoring the data streams behaviour, between Biofilm
and temperature sensor data streams from the second real data set provided by
ACCIONA Agua. In Figure 30 we can see the behaviour of Biofilm-Temperature
sensor data streams pairs for the few available samples of this data set.
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Figure 30: Behaviour between the pairs of Biofilm and Temperature sensor data streams.
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Table 11 includes the similarity values and the corresponding errors for the
behaviour of the four pairs of Biofilm-temperature sensor data streams. For this
experiment we computed the average of the similarity results between the
corresponding pairs of Biofilm and temperature sensors, concerning a sliding
window with size 30 and overlapping factor 20 stream values. Unfortunately, we
cannot conclude to valid inferences for applying our proposed similarity technique to
bacteriological data streams. The available data set is limited and we cannot examine
interesting cases.

Table 11: Similarity values for four pairs of Biofilm and Temperature sensor data streams with
the corresponding error

Pair 1 Pair 2 Pair 3 Pair 4
Correlation 0.56485 0.56846 0.51653 0.62063
Peak similarity 0.52092 0.53632 0.47652 0.59708
Error 0.04392 0.032134 0.04 0.02354

Furthermore, our future work includes the performance study of our system, by
applying our approximation similarity approach to bacteriological data streams, since
these streams present completely different distributions.
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6. Conclusions and future work

Designing efficient data management systems capable of accounting for the inherent
data uncertainty and providing early warning notifications is a challenging task in
large-scale industrial infrastructures. The major issue of this thesis includes the
proposition of an integrated uncertainty-aware data management system, which also
supports timely detection of extreme events and fast online monitoring of pairwise
sensor similarities in order to guarantee the validity of the detected extreme events.
Comparison with state-of-the-art stream processing techniques revealed an improved
performance of our proposed framework in terms of achieving accurate detection of
extreme events, in conjunction with extraction of highly similar (correlated) pairs of
possibly heterogeneous sensors, with significantly decreased execution times.

As a final outcome, we envisage to provide a set of data services to manipulate
sensor measurements in large-scale industrial infrastructures, as well as to identify
appropriate monitoring tools for the characterization of the generated data quality in
real time. As a further extension, we will focus on the design of an automatic rule for
the time-varying adaptation of the threshold &, ., as well as the design of novel
similarity measures of even lower computational complexity, while still
approximating accurately the behavior of the correlation coefficient. In our future
research we intend to concentrate on the application of the uncertainty propagation
rules for quantifying the uncertainty between sensor data streams produced by
heterogeneous data sources. Future work will involve the extension of peak
similarity measure in a multiscale framework by employing more power transforms
than the Discrete Fourier Transform. A characteristic example is the Wavelet
Transform to extract the inherent frequency content of sensor streams. The next stage
of our research includes the performance study of our system by applying our
approximation similarity approach to bacteriological data streams, since these
streams present completely different distributions.
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Appendix A- Correlation and Euclidean distance

The purpose of a measure of similarity is to compare two lists of numbers (i.e.
vectors), and compute a single number which evaluates their similarity. Most
measures were developed in the context of comparing pairs of variables (such as
income or attitude toward abortion) across cases (such as respondents in a survey). In
other words, the objective is to determine to what extent two variables co-vary,
which is to say, have the same values for the same cases.

One problem with comparing two variables is that they may not be measured on the
same scale. The general principle is that a measure of similarity should be invariant
under admissible data transformations, which is to say changes in scale. Thus, a
measure designed for interval data, such as the familiar Pearson correlation
coefficient, automatically disregards differences in variables that can be attributed to
differences in scale. All valid interval scales, applied to the same objects, can
translated into each other by a linear transformation. This means that to see how
similar two interval variables are, we must first do away with differences in scale by
either standardizing the data (this is what the correlation coefficient does), or by
trying to find the constants m and b such that the transformed variable mX+b is as
similar as possible to Y, and then reporting that similarity. Likewise, a measure
designed for ordinal data should respond only to differences in the rank ordering, not
to the absolute size of scores. A measure designed for ratio data should control for
differences due to a multiplicative factor.

Euclidean Distance

The basis of many measures of similarity and dissimilarity is Euclidean distance. The
distance between vectors X and Y is defined as follows:

cfrx,y)a/z;rxi-yi s

In other words, Euclidean distance is the square root of the sum of squared
differences between corresponding elements of the two vectors. Note that the
formula treats the values of X and Y seriously: no adjustment is made for differences
in scale. Euclidean distance is only appropriate for data measured on the same scale.
As we can see in the following (in the section on correlation), the correlation
coefficient is (inversely) related to the Euclidean distance between standardized
versions of the data.

Euclidean distance can be re-expressed in terms of the differences in level, scatter
and shape of the variables.

diy = X —y)* =Xixf + Xiyf —2X:ixy; (Equation 1)
The scatter or standard deviation of a variable x can be written as
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So,

n(sy + myzc) = Z xiZ
i
Substituting this in the equation for distance squared, we get
diy = n(sy + m3) +n(s, + my) —23;x;y; (Equation 2)

The correlation between x and y can be written as

2i XY
LML
=3 mym,,

Txy =

SxSy
Therefore,

n(sxsyrxy+mxmy) = z X Vi

L

Substituting that into Equation 2, we get
dzy = n(sy + mg) + n(s, + my) — 2n(sySyry+m,my)

d2
Xy
=St mz + s, + mi — 25,5,1,—2m,m,,

2
dxy — 2 2
—= = (my + mj — 2m,ymy) + (Sx +Sy,) — 25xSyTyy

dz,
— = (Mmye —my)2 + (S +5Sy) — 25,5yTy

So the average squared Euclidean distance is a function of the means, standard
deviations and correlation between the variables.

Correlation

The correlation between vectors X and Y are defined as follows:

%Z.Xi}’i‘ﬁfxﬂy
r(;&:}:;]: i

Ox Ty

where uyand p, are the means of X and Y respectively, and oy and o are the
standard deviations of X and Y. The numerator of the equation is called the
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covariance of X and Y, and is the difference between the mean of the product of X
and Y subtracted from the product of the means. Note that if X and Y are
standardized, they will each have a mean of 0 and a standard deviation of 1, so the
formula reduces to:

NELFI=LY my,

Whereas Euclidean distance was the sum of squared differences, correlation is
basically the average product. There is a further relationship between the two. If we
expand the formula for Euclidean distance, we get this:

d(xay):\/i(xi _yi)z :\/inz +Zy52 _2Zx[yi

But if X and Y are standardized, the sums sz and Z y® are both equal to n. That

leaves ny as the only non-constant term, just as it was in the reduced formula for

the correlation coefficient. Thus, for standardized data, we can write the correlation
between X and Y in terms of the squared distance between them:

2 * ¥
d(X.Y)

*} *=j—
nx.Y) o
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Appendix B- Similarity measures

As it was mentioned in [42], the similarity between two sequences of the same length
can be calculated from different similarity measures. Let two data streams,

X =x,,x,,.x,and ¥ = y,,,,..y, some similarity measures are:

X. — V.
e Common similarity: numSim(X,Y)=1- M

|xi|—|yi|

D 1<
e Mean similarity: #sim(X,Y) = —ZnumSim(xi )
n

i=1

e 1<
e Root mean square similarity: rtsim(X,Y) = \/ —ZnumSim(xi )

i=1

These measures provide values in range [0,1]. The upper boundary indicates that the
vectors are exactly the same and the 0 value indicates the independence.

85



