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Abstract 
 

In several industrial applications, monitoring large-scale infrastructures in order to 

provide notifications for abnormal behavior is of high significance. For this purpose, 

the deployment of large-scale sensor networks is the current trend. However, this 

results in handling vast amounts of low-level, and often unreliable, data, while an 

efficient and real-time data manipulation is a strong demand. In this thesis, we 

propose an uncertainty-aware data management system capable of monitoring 

interrelations between large and heterogeneous sensor data streams in real-time. To 

this end, an efficient similarity function is employed instead of the typical correlation 

coefficient to monitor dynamic phenomena for timely alerting notifications, and to 

guarantee the validity of detected extreme events. Experimental evaluation with a set 

of real data recorded by distinct sensors in an industrial water desalination plant 

reveals a superior performance of our proposed approach in terms of achieving 

significantly reduced execution times, along with increased accuracy in detecting 

extreme events and highly correlated pairs of sensor data streams, when compared 

with state-of-the-art data stream processing techniques. 
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Περίληψη 
 

Σε πολλές βιομηχανικές εφαρμογές η παρακολούθηση υποδομών μεγάλης κλίμακας 

είναι υψηλής σημασίας, προκειμένου να παρέχονται οι κατάλληλες ειδοποιήσεις για 

μη αναμενόμενη συμπεριφορά. Αυτός είναι και ο λόγος που αυξήθηκε η τάση για 

την ανάπτυξη δικτύων αισθητήρων μεγάλης κλίμακας. Ωστόσο, αυτή η επεξεργασία 

από τα δίκτυα αισθητήρων καταλήγει στο χειρισμό μεγάλου όγκου δεδομένων 

πληροφορίας με χαμηλή ποιότητα. Η αναξιοπιστία στα δεδομένα επεξεργασίας, 

αποτελεί έναν ανασταλτικό παράγοντα στα συστήματα διαχείρισης δεδομένων 

πραγματικού χρόνου των οποίων η ζήτηση είναι αυξημένη. Σε αυτήν την εργασία 

προτείνουμε ένα σύστημα επεξεργασίας δεδομένων χωρίς αβεβαιότητα, το οποίο 

είναι ικανό να παρακολουθεί τη συμπεριφορά και τις αλληλεπιδράσεις μεταξύ 

μεγάλων και ετερογενών ροών δεδομένων από αισθητήρες, σε πραγματικό χρόνο. Η 

προσέγγισή μας χρησιμοποιεί μία συνάρτηση ομοιότητας, αντί τον τυπικό 

συντελεστή συσχέτισης , έτσι ώστε να πραγματοποιείται η παρακολούθηση στην 

εξέλιξη δυναμικών φαινομένων για την έγκαιρη ανακοίνωση σημαντικών 

ειδοποιήσεων, καθώς και για την εξασφάλιση της εγκυρότητας για ανίχνευση 

σημαντικών γεγονότων. Η πειραματική μας αξιολόγηση σε ένα σύνολο πραγματικών 

δεδομένων τα οποία καταγράφονται από αισθητήρες σε μία βιομηχανική μονάδα 

αφαλάτωσης νερού, εμφανίζει αυξημένη απόδοση όσον αφορά στην επίτευξη 

μειωμένων χρόνων απόκρισης του συστήματος. Επιπλέον, παρουσιάζει μεγάλη 

ακρίβεια στην ανίχνευση υψηλά συσχετιζόμενων ροών δεδομένων, σε αντίθεση με 

διαφορετικές τεχνικές επεξεργασίας ροών δεδομένων. 
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1. Introduction 
 

Recent advances in information and communication technology (ICT) have led to a 

significant progress in the design of devices incorporating wireless communication, 

processing and storage capabilities, as well as diverse sensing and actuation 

functionalities in a single unit that is compact, economical, autonomous and destined 

to become ubiquitous. This revolution appears in the form of dense and distributed 

large-scale self-organized wireless sensor networks (WSN) for carrying out various 

tasks that are of great societal interest, such as environmental monitoring and 

surveillance or monitoring and management in large-scale industrial infrastructures.  

The HYDROBIONETS project
1
 is a characteristic example of such an infrastructure 

for water resource management. Specifically, it targets at developing a real-time 

micro-biological wireless networked control system for water desalination and 

treatment plants, providing the fundamental design principles of a wireless BioMEM 

network (WBN) with distributed multi-sensing and multi-actuation capabilities. 

The HYDROBIONETS infrastructure focuses on the monitoring of the complete 

water cycle in large-scale water treatment and desalination plants. The deployment of 

a WBN aims at monitoring critical microbiological and electrochemical parameters 

of water at different stages of the desalination process. The associated distributed, 

autonomous sensing is further exploited to produce intelligent reasoning over the 

data by supporting advanced operations, such as the detection of high fouling 

concentration in seawater, the control of biocide and chlorine dosage by measuring 

bacteria in seawater at different stages of water treatment (pre-filtered, pre-treatment 

and reverse osmosis phases) at periodic time intervals. These functionalities 

essentially provide the building blocks of the actuation process for water desalination 

at different locations in the plant.  

At the core of the HYDROBIONETS system, which curries out those operations, is 

an efficient data processing module. This module comprises of distinct collaborating 

computational nodes, which monitor and control several physical entities and 

dynamic phenomena. The sensor data and metadata, which are produced in streams 

by the sensors, can be either processed in real time or stored for further exploitation. 

Those data can be raw (as produced by the sensors) or aggregated, which are 

produced based on calculations at the node level. To accommodate the requirements 

of our industrial paradigm we focus on the design and development of a set of tools 

to deal with high-level analysis of the collected data. These tools will work on the 

available data and they report and employ in a coherent manner an appropriate 

statistical analysis in order to: (i) monitor continuously a dynamic system, (ii) detect 

extreme events (e.g. presence of highly contaminant substances) and provide specific 

alerts depending on the level of severity of the event, (iii) guarantee the validity of 

the detected extreme events, and (iv) account for the underlying uncertainty of the 

recorded data.  

 

Rather than computing single stream statistics, such as average and standard 

deviation, our data analysis is focusing on finding high correlations among pairs of 

data streams from distinct sensors. More specifically, a system operator may rely on 

                                                 
1
 http://www.hydrobionets.eu/ 
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pairwise sensor stream correlations to reveal interrelations between seemingly 

independent physical quantities monitored by distinct sensors. This can be further 

exploited to guarantee the validity of a detected extreme event and provide the 

necessary alerting notifications. For instance, temperature and pressure sensors, 

which monitor an industrial plant, could provide evidence of an increasing bacteria 

presence. Depending on their physical location in the plant we expect that 

corresponding data streams will be highly correlated. Moreover, in 

HYDROBIONETS, the measurements from heterogeneous sensors, distributed over 

a geographic area, need to be processed efficiently in order to reconstruct the spatio-

temporal behavior of desired physical variables or to detect, identify and localize 

sources and events of interest.  

 

Whereas traditional statistical machine learning provides well-established 

mathematical tools for data analysis [14][23][24][25], their performance is limited 

when processing high-dimensional data streams. Specifically, existing techniques for 

monitoring pairwise stream correlations exhibit several drawbacks. In a recent work 

[27] the problem of maintaining data stream statistics over sliding windows is 

studied, with the focus being only on single stream statistics. On the other hand, [28] 

introduced an extension for monitoring the statistics of multiple data streams, but the 

computation of correlated aggregates is limited to a small number of monitored 

streams. In addition, StatStream [20] has been proven to be a successful data stream 

monitoring system, which enables the computation of single- and multiple-stream 

statistics. However, the main drawback of this technique is the difficulty to define an 

appropriate “similarity” function for data streams describing dynamic phenomena 

with unknown prior distributions, which is normally the case in an industrial 

environment. 

 

The aforementioned solutions do not apply in the case of monitoring and comparing 

the behavior of data streams. The challenges of this study include: (i) the dynamic 

evolution of the phenomena and lack of an a-priori knowledge of the characteristics 

of their values and errors that may accur, (ii) the comparison between independent 

physical quantities measured in different scales and (iii) the inherent data 

uncertainty, due to the presence of incomplete, imprecise, and even sometimes 

misleading data , which hind an accurate and reliable decision making. 

 

In this thesis, we overcome the limitations of the previous approaches by introducing 

a computationally efficient “similarity extraction” module, which enables the 

monitoring of pairwise correlations between high-dimensional sensor data streams on 

the fly. We note here that time synchronization is also performed between the 

acquired data streams, prior to the extraction of highly correlated pairs, based on 

their corresponding time stamps, which are available as a part of the transmitted 

packets. In particular, instead of computing all pairwise correlations between the 

original full-dimensional data streams, we exploit the compressibility property of the 

discrete Fourier transform (DFT) to concentrate the inherent energy content of a 

given signal in the first few high-amplitude coefficients, as in [20]. Then, a suitable 

peak similarity measure is applied on the associated pairs of truncated DFTs as a 

proxy for the corresponding correlation coefficients. Thus the problem of identifying 
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highly correlated pairs of data streams is reduced to a problem of identifying pairs of 

truncated DFTs with high peak similarity values. 

 

It is worth also to stress that usually WSN nodes do not handle any quality aspect of 

physical device data but rather interface with a high-level representation and 

reconstruction of the sensed physical world. As a result, the HYDROBIONETS data 

processing subsystem has to additionally cope with the data uncertainty, where 

stream data may be incomplete, imprecise, and even misleading [40], thus impeding 

the task of an accurate and reliable decision making. Uncertainty-aware data 

management [4] presents numerous challenges, in terms of collecting, modeling, 

representing, querying, indexing and mining the data. Since many of these issues are 

interrelated, they cannot be easily addressed independently. Uncertainty has been 

recently recognized as an additional source of information that could be valuable 

during data analysis, and thus, should be preserved. More specifically, a spreadsheet-

based approach is employed to identify, quantify, and combine the underlying 

uncertainty from the most dominant potential sources of uncertainty, as presented in 

[31]. 
 

Another major functionality assigned to our uncertainty-aware data processing 

system is to perform high-level operations, and specifically to provide notifications 

of extreme events by employing raw sensor data [25]. Two widely-used methods for 

notifying a system operator whether the data has unexpected values are: (i) 

compliance with operating limits (COL), and (ii) the method of peaks over a 

threshold (POT) [41]. Since the detection of abnormal behavior is affected by the 

underlying uncertainty, the above two extreme event detectors are modified 

accordingly so as to account for the imprecise nature of the raw sensor data. 

 

Our proposed system is completed with the integration of appropriate rules for 

uncertainty propagation after a query execution has finished. The result of the 

uncertainty of an aggregation will not be measured directly. For instance, what is the 

error in Z = A + B, where A and B are two measurements with errors ΔΑ and ΔΒ 

respectively? A first thought might be that the error in Z would be just the sum of the 

errors in A and B, that is, (𝛢 + 𝛥𝛢) + (𝛣 + 𝛥𝛣) = (𝛢 + 𝛣) + (𝛥𝛢 + 𝛥𝛣). However, 

this assumes that, when combined, the errors in A and B have the same sign and 

maximum magnitude, that is, they always combine in the worst possible way. This 

could only happen if the errors in the two variables were perfectly correlated. 

Uncertainty propagation may be also viewed from the perspective of queries sent by 

an operator, for actions to be taken on the recorded data streams (e.g., join, 

aggregation).  We identify the most appropriate methods to achieve a robust 

estimation of (i) the raw data uncertainty and (ii) the uncertainty resulting from query 

processing. This results also in a balanced trade-off between the computational 

burden and the accurate estimation of the underlying uncertainty. 

 

The performance of our proposed system is evaluated using a set of real-world data 

provided by ACCIONA Agua, recorded by a set of distinct electromechanical 

sensors in the La Tordera’s desalination plant
2
.Specifically, it achieves highly 

                                                 
2
 http://aca-web.gencat.cat/aca/documents/ca/sensibilitzacio/desal_Tordera/dessalinitzacio_en.pdf   
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reduced execution times in conjunction with accurate estimation of the highly-

“similar” pairs of sensor streams, as well as a timely alerting performance, when 

compared with existing widely used data analysis techniques.  

 

To summarize, the main contribution of this thesis is threefold: (i) a fast and robust 

method is proposed for uncertainty-aware monitoring of pairwise interrelations 

(“similarities”) between distinct sensors, which outperforms state-of-the-art pairwise 

correlation extraction methods; (ii) in contrast to common data management, which 

relies on the raw measurements, we verify that the underlying data uncertainty is a 

valuable source of information, which should be preserved, towards providing more 

ubiquitous data descriptions; and (iii) the performance of two widely-used extreme 

event detection methods is enhanced by incorporating the inherent data uncertainty 

component. 

 

Our utmost goal is to provide a valuable insight into the design and implementation 

principles of an efficient and robust data processing system. The integration of  the 

above three functionalities in industrial monitoring and surveillance applications has 

indicated the role of the underlying data uncertainty as an additional source of 

information, which should be preserved across all stages of the data processing 

chain. 
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2. Problem Description  
 

The problem of quality and quantity of water resources is a global challenge for the 

upcoming years. Both an adequate amount of water and adequate water quality are 

essential for public health and hygiene. Waterborne diseases are among the leading 

causes of morbidity and mortality in low-and middle-income countries, frequently 

called developing countries.  

In recent years, treated wastewater has been used as a source of water for certain 

applications. This is generally named “Water Reuse”. Wastewater reclamation is 

gaining popularity worldwide as a means of conserving natural resources used for 

drinking water supply. Recycled water is most commonly used for non-potable 

purposes, such as agriculture, landscape, public parks, and industrial applications, 

among others. Both water treatment and desalination plants play a major role in 

terms of obtaining large quantities of water with good quality. 

The above requirements, made the need for the implementation and deployment of a 

large-scale Self-Organized Wireless BioMEM Network (WBN). The WBN will be 

responsible for microbiological autonomous monitoring and decentralized control of 

water quality in industrial environments. So, it gives us the opportunity to improve 

the quality of life, safety and security of water supply.  The HYDROBIONETS 

project is a characteristic example of such an infrastructure for water resource 

management. Specifically, it targets at developing a real-time microbiological 

wireless networked control system for water desalination and treatment plants, 

providing the fundamental design principles of a wireless BioMEM network with 

multi-sensing and multi-actuation capabilities. 

We propose a data processing subsystem, which aims to support the 

HYDROBIONETS WSN infrastructure for multi-sensing and multi-actuation in 

water treatment and desalination plants. In our case, a desalination pilot plant is 

located in La Tordera, which is equipped with a number of various electrochemical 

sensors, scattered in distinct locations, for monitoring several physical and 

mechanical variables in the plant. The major contribution of this thesis is the main 

component of this data processing subsystem. It is responsible for finding high 

correlations among pairs of data streams. A system operator may use this 

information to identify interrelations between seemingly unrelated physical 

quantities monitored by distinct sensors, or to guarantee the validity of a detected 

extreme event. Thus on-the-fly monitoring of potential correlations in the recorded 

details is crucial to extract meaningful information and provide the necessary 

notifications. Moreover, in HYDROBIONETS, measurements from heterogeneous 

sensors, distributed over a geographic area, need to be processed efficiently in order 

to reconstruct the spatio-temporal behaviour of desired physical variables or to 

detect, identify and localize sources and events of interest.  

This chapter describes the actuation process in HYDROBIONETS infrastructure. 

More specifically in section 2.1 we mention the main objectives of the 

HYDROBIONETS project and explain the phenomenon of biofouling developed due 

to water treatment.  In the section 2.2 we describe the sensing performed at various 

points in the plant at different times. By describing the complexity of the phenomena 

presented in such cyber-physical systems, we justify why we don’t use simple 
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models for monitoring the actuation process on them.  In fact, only with detailed data 

analysis processing we can find spatiotemporal correlations, which allow us the 

timely actuation in water treatment process. A major challenge arises from our data 

analysis processing· the existence of uncertainty in our data streams. For this reason, 

in subsection 2.2.1, we analyse the data quality characteristics for the sensors of 

HYDROBIONETS’ project. Also we indicate how the knowledge of these key 

dimensions of data quality enhances the non-existence of uncertainty in the data to be 

processed. Finally, in section 2.3 we describe the requirements for high-level data 

analysis.  

2.1. Industrial Monitoring Setting 
 

Our developed data processing system is at the core of the HYDROBIONETS 

project, which focuses on the research and development of Self-Organized Wireless 

BioMEM Networks and their integration in a global system to monitor the complete 

water cycle in large-scale water treatment and desalination plants.  The WBNs will 

achieve a distributed monitoring and control of critical microbiological parameters of 

water in the different stages of process in desalination plants. Water treatment plants as 

a solution to water scarcity and water treatment for reuse has a number of advantages:  

(i) low energy requirement for water production,  

(ii) potential for using the water in different manner, and  

(iii)  environmentally friendly. 

 

Different technologies can be applied for water desalination and specifically seawater 

desalination. The HYDROBIONETS project focuses on desalination by reverse osmosis 

and in the waste-water treatment plants by Membrane Bio-Reactor (MBR). The use of 

MBR technology has been proven to be a feasible and efficient method of producing 

reclaimed water [1]. The osmotic membrane also is referred to as a semi-permeable 

membrane because of its capability to allow some constituents to pass through it while 

holding back others.  

 

There are two major control problems that have been studied in this project: 

(i) Control of the aeration process in membrane tanks to avoid fouling of the fibre 

surface and adjusting also the level of aeration to save energy. 

(ii) Control of the MBR cleaning procedure by estimating more precisely the need 

and frequency of membrane cleaning, as well as the dose of chemicals to be 

used.  

 

The cleaning in MBR systems is performed by chemical shock and backwashing 

techniques, taking into account any sensor information, thus it is usually performed less 

aggressively than needed. The duration of the cleanings depend on how severe the 

biofouling is (which is currently estimated by observing the pressure drop measurements 

or by membrane autopsy). If cleaning is not frequently needed, the associated costs are 

relatively low.  

 

Fouling refers to the accumulation of unwanted material on solid surfaces, most often in 

an aquatic environment. The fouling material can consist of either living organisms 

(biofouling) or a non-living substance (inorganic or organic). However, in practice, when 

the fouling takes place, it includes all types of material, that is: organic, inorganic and 
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bacterial fouling (biofouling). Fouling phenomena are common and diverse, ranging 

from fouling of ship hulls, natural surfaces in the marine environment (marine fouling), 

fouling of heat-transfer components through ingredients contained in the cooling water 

or gases, and very often, in desalination membranes and MBR membranes.   

 

The growth of a fouling layer due to the deposition of undesirable materials on the 

membrane is a persistent problem in water treatment membrane processes. Particular 

fouling, that is the deposition of suspended solids, colloids and microbiological cells 

onto or into the membranes, is an especially delicate issue in the membrane filtration 

operation. Its complete removal by intensive pretreatment of the feed water is not always 

feasible. A technique for early warning and fouling monitoring is the desire of all 

engineers to achieve the long-term and stable operating performance of a membrane 

process.  

 

To fulfill this requirement, an integrated technique is proposed for the online fouling 

monitoring of a water treatment membrane filtration process. This online monitoring 

technique provides dynamic and real-time information about a fouling phenomenon and 

includes the process-oriented capabilities of  

(i)  in situ measurement of fouling layer thickness,  

(ii)  dynamic analysis of fouling layer structure and 

(iii)  monitoring of membrane fouling potential in membrane filtration processes for 

water treatment applications.  

 

Membrane fouling has been, and continues to be, a major issue in the MBR systems. 

Most MBR plants operate at relatively modest constant flux as a strategy to slow down 

the membrane fouling rate and hence reduce the frequency of membrane chemical 

cleaning. It is also prevented with aeration, which inhibits particles from attaching to the 

surface of the ultrafiltration membranes.  Biofouling that occurs in MBR systems is 

associated with other foulants, such as suspended solids, nutrients etc. which are quite 

difficult to differentiate. This is why when referring to MBR, this phenomena become 

more general, since it is caused by both inorganic and organic matter, and is simply 

called fouling. 
 

To fulfill these requirements, an appropriately deployed WSN acquires 

measurements from distinct physical variables recorded by various electrochemical 

sensors, such as, temperature, turbidity, conductivity, oxygen content, pH, redox 

potential, nitrate and chlorine. Based on the monitoring process further operations 

take place including:  

(i) the detection of high fouling potential,  

(ii) the optimization of chemical cleaning of the ultrafiltration membranes,  

(iii) the MBR membranes cleaning, and  

(iv) the control of chlorine dosage during the reverse osmosis phase. 

2.2. Sensing in La Tordera’s desalination pilot plant. 
 

The autonomous control of the MBR fouling and cleaning procedures is achieved with 

sensing and actuation functionalities. In HYDROBIONETS, there are two main classes 

of important sensors, electrochemical sensors and bacteriological sensors (Chlorine and 

Biofilm). Electrochemical sensors can measure quantities, such as temperature, turbidity, 
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conductivity, oxygen content, pH, redox potential, nitrate and chlorine concentration, 

etc., while bacteriological sensors used to measure bacteria, biocides and bio-fouling,  

detecting and measuring traces of Escherichia coli, Salmonella, Shigella, Pseudomonas, 

Legionella, etc.  

 

Using the Chlorine and Biofilm (BioMEMs) sensor measurements at different locations 

is expected to help to obtain a more precise measurement of water biofouling potential, 

predicting earlier the possible growth of biofouling. The electrochemical sensors are 

located before and after of the water desalination stages (pre-filtered, pre-treatment and 

reverse osmosis) and they are characterized as conventional liquid analysis sensors. The 

measurements of these sensors are using to achieve and synchronize, with the best way, 

the operations of the water treatment. In most cases, to build in complex processes, the 

sensor measurements need to be collected and jointly processed. The following 

paragraphs report the main usage of BioMEMs and of selected electrochemical sensors 

(pH, temperature, pressure). 
 

The Biofilm sensor is able to measure fouling potential (not only bacteria) at constant 

flow. The sensor measurements are using for measuring the fouling potential and for 

chemical cleaning. More specifically, the information of the Biofilm sensor data helps us 

for:  

(i) the optimization for MBR cleaning procedure,   

(ii)   the optimization of biocide dosage at different stages of the water treatment and  

(iii)   the optimization of aeration in MBR systems. 

 

By law, residual chlorine must be below a certain value and the MBR membranes cannot 

be in contact with chlorine. The Chlorine sensor is used as a security system checking 

that there is no residual chlorine before the MBR membranes. The chlorine sensor could 

be used to optimize the dosing of chlorine and also to know the current concentration of 

chlorine at different points of the process. Briefly, Chlorine sensor measurements are 

used to control (i) chlorine entering into the membranes and (ii) chlorine at different 

stages of the water treatment. 

 

The complex phenomenon of biofouling can be ascertained by several variables, such as 

pH and temperature of water. Also, the presence of sodium hydroxide and hydrochloric 

acid in the water is testified by PH values and the water PH should be adjusted before its 

input in the different stages of water desalination. The PH sensor measures the water pH 

in frequent intervals and it is placed in different stages at water treatment plant, such as 

in pre-treatment and reverse osmosis stage. 

 

Pressure sensors give a signal when a certain process situation is achieved, for example: 

high or low pressure. These sensors are located near in membranes and are capable to 

give signal, before water pressure has increased significantly. Generally, they control 

the water pressure lying in the interval from 0 to 3 bars. The water pressure is 

associated directly with the phenomenon of biofouling, since the biofouling affects the 

flux of water and, therefore, an increase of differential pressure occurs. The MBR 

cleaning procedure is also optimized by the monitoring of pressure. By observing the 

pressure measurements, is estimated how severe the biofouling is. 
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Another important water property that should be monitored is the salinity. The quality of 

water effluent from MBR membranes is increasing by reducing the salinity of reclaimed 

water. The salinity property is tracked by conductivity sensor measurements.  

 

The growth of biofouling starts when organic matter begins to accumulate on the surface 

of the first MBR membrane on reverse osmosis phase. This organic matter consists 

mainly of bacteria, whose growth is monitored by the biofilm sensor.  The complex 

phenomenon of biofouling can be affected negatively by several variables, such as 

organic matter, pH and temperature of feed water. All these variables have to be 

controlled during water treatment, as a modification in the acquired data streams, 

indicates the existence of highly concentrated bacteria. The correlations between data 

streams from the above sensors (i) warn us about the development of the biofouling 

phenomenon and (ii) give us the guarantees for the existence of this. 

 

Biofouling affects the flux of water that is processed through membranes and, therefore, 

an increase of differential pressure occurs. In order to maintain the flux of product water, 

high pressure pumps have to increase in frequency, resulting in higher energy 

consumption. When differential pressure has increased, biofouling has already been 

formed. The duration of the cleanings depend on how severe the biofouling is, which is 

currently estimated by observing the pressure measurements or by membrane autopsy. 

 

In the RO desalination process, a pressure to the saline water greater than a distinct value 

will cause fresh water to flow faster through the MBR membranes, holding back the 

salts. The higher the applied pressure is, the higher the rate of fresh water transports 

across the membranes. Measuring the pressure and flow rate (this water property is 

tracked by electromagnetic flowmeter sensor) of water at specific positions in the plant, 

the analogue correlation between these measurements, inform us that the flow of fresh 

water is properly carried out.  

 

Redox measurements are used to control the chlorine dosage at different positions of the 

process. Currently, the activation, deactivation and regulation (dosage) of the biocide 

pumps is done based on redox measurements. Redox sensors have a low response time if 

there is a sudden rise of chlorine concentration. So, if we observe reduced response from 

redox sensor, then we check the chlorine concentration. 

 

The autonomous sensing described above, proves how complex is the surveillance, 

monitoring and management of large-scale infrastructures. The monitoring of dynamic 

phenomena (such as the development of biofouling or the modifications in water 

temperature/pH/pressure), as described in the last paragraphs, becomes more complex, 

when the data uncertainty is appearing in senor measurements. We consider the 

uncertainty as an additional source of valuable information for data analysis which 

should be preserved.  

2.2.1. Managing Streaming Data and their Quality 

 

In a typical wireless sensor network, measurements from heterogeneous sensors 

distributed over a geographic area need to be processed in order to reconstruct the 

spatiotemporal behavior of desired physical variables or to detect, identify, and 

localize sources and events of interest.  The HYDROBIONETS large-scale 
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infrastructure was designed under constraints on cost, bandwidth and energy 

resources while optimizing performance metrics such as reconstruction fidelity, 

detection performance, latency etc.  In this setting, data quality is becoming a crucial 

issue in the design of real sensor systems.  It is nowadays widely recognized that a 

typical characteristic of sensor data is their uncertain and erroneous nature, due to 

discharged batteries, network failures, and imprecise readings from low-cost sensors. 

This poses significant limitations on data utilization, since applications using data 

with low quality may yield unsound results. To address this issue, it is essential to 

assess as early as possible the quality of data, and process data while reflecting the 

data quality. Consistency, accuracy, reliability, and survivability concerns have to be 

addressed in sensor data acquisition, storage, fusion and analysis. Some of these are 

in fact straightforward to compute; others are very difficult to precisely infer.  

 

In the rest of this section we survey state-of-the-art in declarative modeling of the 

data uncertainty capturing various forms of data imperfections (e.g., impreciseness, 

unreliability, incompleteness, etc.). Having acquired all the information needed to 

describe the measurement capability of electrochemical sensors, we estimate the 

inherent uncertainty preserving in the raw data streams. The estimation is carried out 

in consecutive steps, namely, identification of all the potential sources of uncertainty, 

followed by their quantification and propagation (each one of these steps is 

described in detail in chapter 3). 

 

A sensor network’s data stream presents, almost by definition, complex issues related 

to data quality. Data is often missing, and when not missing is subject to potentially 

significant noise and calibration effects. For example, temperature and moisture 

sensors report voltages that must be converted to temperature (Celsius) and moisture 

(partial pressure and dew point) units. Also, because sensing relies on some form of 

physical coupling, the potential for faulty data is tremendous. Depending on where a 

fault occurs in the data reporting, observations might be subject to unacceptable 

noise levels (for example, due to poor coupling or analog-to-digital conversion) or 

transmission errors (packet corruption or loss). Applications that draw on this data, 

or end users hoping to perform an analysis, will need to contend with observations 

that involve incomplete and/or incorrect [3].  

 

In this context, data uncertainty may be the result of the fundamental limitations of 

the underlying measurement infrastructures, the inherent ambiguity in the domain, or 

they may be a side-effect of the rich probabilistic modeling typically performed to 

extract high-level events from sensor row data. Uncertainty is a state of limited 

knowledge, where we do not know which of two or more alternative statements is 

true. Traditional approaches more or less consider uncertainty as a problem, as 

something to be avoided or resolved during data gathering and integration. However, 

uncertainty has recently been recognized as an additional source of information that 

could be valuable and should be preserved. Uncertain data management [4] presents 

a variety of challenges in terms of collecting, modeling, representing, querying, 

indexing and mining the data. It should be stressed that many of these issues are 

inter-related and cannot easily be addressed independently. Uncertainty can be 

represented using quantitative methods, e.g., specifying the probability that a 

statement is correct, or qualitative methods, e.g., using fuzzy sets and possibility 
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theory to represent preferences about the correctness of a statement. Quantitative 

models are the ones most frequently adopted [5], but qualitative approaches have 

also been explored in the literature — usually with the aim of reducing the 

complexity of manipulation of uncertainty. While traditional Statistical Machine 

Learning (SML) has provided well-founded mathematical tools for uncertainty 

management, such tools are not targeted at the declarative management and 

processing of large scale data sets. Moving away from statistical approaches, several 

data management works have focused on how to represent multiple alternative 

statements that could be true based on our limited knowledge, and this leads to the 

production of multiple possible integrated tuples, one for each choice. 
 

In contrast to traditional database tuples, each uncertain tuple contains a set of 

possible alternative values representing the various different options about what is 

true. The reliability of a particular set of data is dependent upon the uses to which it 

is put. Data which are completely inappropriate in one context may be totally 

adequate in a different context (or vice versa). Data quality is therefore to some 

extend a relative concept dependent upon the context. The emphasis has therefore 

tended to switch away from simply trying to make the data as error free as possible 

to providing potential users with the information which they require to make an 

informed decision about the adequacy of the data for a particular purpose. This 

information is referred to as metadata. 

 

Table 1: Description of data quality metadata. 

Metadata Description of measurement capability 

Accuracy The closeness of agreement between a measured value and the true 

value. 

Precision The closeness between independent measurements of a quantity 

under the same conditions. 

Measurement 

Range 

The set of values that the sensor can return as the result of an 

observation under the defined environmental conditions with the 

defined measurement properties. 

Response 

Time 

The time between a change in the value of an observed quality and 

a sensor 'settling' on an observed value. 

Frequency The smallest possible time between one observation and the next 

Latency The time between a request for an observation and the sensor 

providing a result. 

Resolution The smallest change that the sensor can detect regarding the 

quantity it measures. 

 

Metadata is data about data. In this context, each data set - or uncertain tuple (Figure 

1) – should be accompanied by metadata explaining not only what it contains but 

how and when it was collected, and details relating to its quality. The Table 1 

indicates the type of information the metadata might include. In the literature there 

are various models for describing uncertain/incomplete/probabilistic data sets, e.g 

[6][7][8], but in all of them answering queries and representing their results is based 

on annotating uncertain tuples with information about their lineage or provenance 
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[9]. This provenance information captures the relationship among source and derived 

data along with the query operators that were involved in the derivations, and can be 

materialized in the repository where integrated data from various sources is stored 

[10]. Then, provenance can later be used to compute annotations for integrated data 

[11][12]–such as trust scores or probabilities–“on the fly”, based e.g., on the degree 

of confidence any particular user has about the possible alternative values in the 

sources and how they were combined through query operators during the integration 

process. 

 

 

Figure 1: Data quality parameters of uncertain tuples 

 

To conclude, in most cases the uncertainty is supposed to be the “umbrella” term for 

accuracy and precision. Essentially, it is the component of a reported value that 

characterizes the range of values within which the true value is asserted to lie. An 

uncertainty estimate should address error from all possible effects (both systematic 

and random) and, therefore, usually is the most appropriate means of expressing the 

accuracy and precision of results. The sensor accuracy describes the systematic 

measurement error resulting from static errors in the measurement process [13], due 

to miscalibration, retroactions of the measured method, or environmental influences 

on the measured values. The precision is a measure of how well a measurement can 

be made without reference to a theoretical or true value.  Since precision is not based 

on a true value there is no bias
3
 or systematic error in the value, but instead it 

depends only on the distribution of random errors [13].  Figure 2 depicts the target 

model, which correlates the precision and accuracy with uncertainty. The notions of 

error and bias are also shown.  Using four different cases of shots at the center of the 

target helps to distinguish the meaning of precision and accuracy: 

 

 Not accurate, not precise (bottom left corner): The shots are neither accurate (not 

close to the center) nor precise (not close to each other). 

 Precise, not accurate (bottom right corner): The shots are precise (close 

together), but not accurate (not close to the centre of the target). 

 Accurate, not precise (top left corner): The shots are scattered across the target, 

but the location of each of them is very close to the centre of the target. These 

shots are accurate, but not precise. 

 Precise and accurate (top right corner): The shots are very close to the centre of 

the target (accurate) and very close together (precise). In this case the 

uncertainty is fully determined and we notice that increasing accuracy and 

precision, the uncertainty decreases. 

 

 

                                                 
3
 Bias is the difference between the average value of the large series of measurements and the 

accepted true one. 
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Figure 2: Target model to illustrate accuracy and precision. The centre of the target denotes the 

(unknown) true value 

To sum up, the accuracy of a set of observations is the difference between the 

average of the measured values and the true value of the observed quantity. The 

precision of a set of measurements is a measure of the range of values found, that is 

the reproducibility of the measurements. The relationship of accuracy and precision 

is depicted in Figure 2, where the red target denotes the unknown true value. In the 

bottom left corner we can see that our results are imprecise and not accurate, so the 

uncertainty for this measurement value has a very large range. In contrast, in the 

right top corner case where we have high precision and accuracy, the uncertainty 

value range is decreased. Finally, we can see that good precision doesn’t imply good 

accuracy (in case of right bottom corner).  

2.3. Requirements for High-Level Data analysis 
 

The problem of producing data that are unreliable, low-level, and rarely usable 

directly by applications, still affects the development of sophisticated integrated 

sensing systems. Usually, applications do not deal with any aspect of physical device 

data, but rather interface with a high-level representation and reconstruction of the 

physical world created by a sensor infrastructure. As a result, we often witness 

uncertain data streams, where data may be incomplete, imprecise, and even 

misleading. Consequently, the final results presented to end applications are often of 

unknown quality, thus, impeding the task of an accurate and reliable decision 

making.  

 

The major task of HYDROBIONETS project is to monitor and control the fouling 

phenomena developed during the different stages of the water treatment. The growth 

of a fouling layer due to the deposition of undesirable materials on the membrane is a 

persistent problem in water treatment and desalination plants. Specific types of 

fouling, such as, the deposition of suspended solids, colloids, and microbiological 
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cells, onto or into the membranes, are a severe issue which impedes the normal 

operation of the membranes. Complete removal of fouling mass by intensive pre-

treatment of the feed water is not always feasible. Motivated by this, developing 

techniques for monitoring the fouling formation and providing early warning 

notifications for pre-defined alerts is a necessity in order to achieve the long-term 

and stable operation of the filtration membranes, while reducing the energy 

consumption and maintenance expenses. Some examples of the alerters framework 

of HYDROBIONETS’ project include (i) the detection of high fouling concentration 

in seawater, (ii) the control of biocide and chlorine dosage by measuring bacteria in 

seawater at different stages of water treatment (pre-treatment, pre-filtered and reverse 

osmosis phases) and (iii) the optimization of chemical cleaning of the ultrafiltration 

membranes. These functionalities essentially provide the building blocks of the 

actuation process for water desalination at different locations in the plant. Thought 

appropriate alerts we enable the monitoring and notification in the 

HYDROBIONETS’ infrastructure, when in a sensing node the values change or they 

are out of the ordinary.  

 

The main contribution of this thesis is the identification of an appropriate 

infrastructure for the monitoring of a dynamic system. This infrastructure extracts the 

interrelations between pre-defined pairs of data streams, driven by their behaviour 

across the time. The observation of the streams behaviour contributes: 

(i) In the overall monitoring of dynamic phenomena that aren’t characterized by 

a specific distribution. This monitoring provides timely and valid actuation 

process in dynamic systems, as in the case of HYDROBIONETS project 

(ii) To guarantee the validity of detected extreme events in uncertain data 

streams. 

The design of this infrastructure becomes more complex when arising the following 

challenges due to the data analysis:  

(i) The appearance of uncertainty in our data that  if we don’t take into 

consideration will affect the decision making in our system 

(ii) The interrelation/comparison between data streams with different scaling. For 

example, in the case of comparison between a temperature and a pressure 

data stream, the first one is measured in the Celsius scale and the second one 

is measured in bars scale. 

(iii)The monitoring of the concurrent behaviour in our data streams across the 

time. 

(iv) The data should be processed quickly and at low cost due to the large amount 

of data we have to manage. 

 

Ours goals in this thesis include (i) the identification of appropriate monitoring tools 

for the characterization of the system behaviour in real time, and (ii) the provision of 

the most appropriate data services to manipulate the BioMEM uncertain sensor 

measurements. By this way we provide timely and valid actuation for our system. 

Uncertainty awareness of the acquired data streams consists the basis of the proposed 

tools for monitoring the BioMEM sensor network and alerting in case of abnormal 

events. These actions along with the observation of the streams behaviour are 

integrated in an uncertainty-aware data processing infrastructure, as described in the 

following chapter. 
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3. Hydrobionets Data Processing Services 
 

Taking important decisions is often based on the results of a prior quantitative 

analysis. Whenever decisions are based on analytical results, it is necessary to have 

some indication of the quality of the results. That is, the extent to which they can be 

relied on for the purpose of interest. Confidence in the obtained data is a prerequisite 

to meeting this objective, especially when the users of these results work in 

“sensitive” areas, such as those concerned with public health and hygiene. To this 

end, we need to monitor continuously and in an online fashion the interrelations 

between a number of distinct data streams produced by sensors at different stages of 

water treatment (e.g., pre-filtering, pre-treatment and reverse osmosis), while 

accounting for their inherent imprecision expressed in terms of uncertainty. Although 

this uncertainty component may be due to hardware defections or environmental 

variations, its effects can be only observed and quantified from the recorded sensor 

measurements. 

 

The appearance of uncertainty in our data streams may lead to wrong decisions 

concerning the source and existence of an extreme event. Timely actuation is crucial, 

so providing guarantees for a detected extreme event is also of high significance. 

Besides, the propagation of the uncertainty information through the operator queries 

may affect the progress of the water treatment, since we have a self-organized sensor 

network. In order to add an extra control in the quality of the alerters framework we 

should be able to extract efficiently the correlation information arising from data 

streams interrelations.  

Rather than single stream statistics, such as average and standard deviation, data 

analysis is focusing on finding high correlations among pairs of data streams from 

distinct sensors. For instance, temperature and pressure sensors which monitor an 

industrial plant could provide evidence of an increasing bacteria presence. 

Depending on their physical location in the plant we expect that corresponding data 

streams to be highly correlated, since this pair of data streams displays analogous 

behavior in our case. 

 

More generally, a desalination plant operator may rely on such stream correlation 

engine to reveal interrelations between seemingly independent physical quantities 

monitored by distinct sensors, or to guarantee the validity of a detected extreme 

event (e.g. high chlorine concentration in the water) and provide the necessary 

notifications. Moreover, in HYDROBIONETS, measurements from heterogeneous 

sensors, distributed over a geographic area, need to be processed efficiently in order 

to reconstruct the spatio-temporal behavior of desired physical variables or to detect, 

identify and localize sources and events of interest. Whereas traditional statistical 

machine learning provides well-established mathematical tools for data analysis [14] 

their performance is limited when processing high- dimensional data streams.   

 

Another major functionality assigned to our uncertainty-aware data processing 

infrastructure is to perform high-level operations, as the notification of extreme 
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events from raw sensor data. Since the detection of abnormal behavior is affected by 

the underlying uncertainty, incorporation of the estimated uncertainty for the 

extraction of potential correlation between pairs of data streams is expected to yield 

more meaningful results. This thesis introduces a set of statistical techniques yielding 

efficient detection of rare events in complicated datasets, to be employed in the final 

HYDROBIONETS infrastructure.  

 

 

Figure 3: The uncertainty-aware data management infrastructure in HYDROBIONETS project 

 

Figure 3 presents the overall infrastructure of data management in 

HYDROBIONETS’ project, which combines the previous functionalities. Emphasis 

should be given to the uncertainty-aware data processing system. This generic 

structure consists of the following three building blocks:  

Correlation estimation module: The fast correlations extraction between uncertain 

data streams constitutes the key component for the identification interrelations 

between seemingly unrelated physical quantities. The HYDROBIONETS 

infrastructure comprises of collaborating computational nodes, which observe and 

control distinct physical entities and dynamic phenomena. The existence of 

correlation among several distinct types of sensors arises naturally. Rather than 

single stream statistics, such as average and standard deviation, data analysis is 

focusing on finding high correlations among pairs of data streams from distinct 

sensors. More details about this module will be presented in chapter 4, since it 

constitutes the major contribution of this thesis. 

Uncertainty quantification module: Given that uncertainty has been recognized as an 

additional source of valuable information for data analysis which should be 

preserved, in contrast to existing data management systems, our approach 

incorporates an appropriate submodule to handle the inherent data uncertainty. More 

specifically, a spreadsheet-based approach is employed to identify, quantify, and 
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combine the underlying uncertainty from the most dominant potential sources of 

uncertainty.  

Alerter module: This module combines the received data streams along with their 

quantified uncertainty, the extracted correlations and the detectors for extreme events to 

estimate the presence of extreme events and provide the necessary notifications (queries 

or decision making).   

 

The uncertainty-aware data management infrastructure of HYDROBIONETS’ 

project is completed with the integration of the operator queries module.  This module 

transmits the recorded information between the user and the system taking into account 

the uncertainty propagation, based on the rules will be described in section 3.2. The 

combination of the above modules enables higher-level analysis, which forms the 

basis for the development of an integrated uncertainty-aware data management 

system for monitoring dynamic sensor networks and alerting in case of abnormal 

events. 

This thesis is the result of our work to select and implement appropriate analytical 

techniques for the HYDROBIONETS project, concerning  

(i) on the fly monitoring and extraction of pairwise correlations between 

high-dimensional sensor data streams  

(ii) modeling, management and propagation of uncertainty in the generated 

raw data streams, and  

(iii) designing appropriate alerting tools notifying for extreme events.  

The scope of this chapter is to describe the services which are selected and used to 

compose the modules of the uncertainty-aware data management infrastructure of 

HYDROBIONETS project. To be more specific, in section 3.1 different approaches 

are presented for modeling the uncertainty in data streams. The one of them has 

emerged for the HYDROBIONETS project needs as described in [31]. The section 

3.2 describes the rules for uncertainty propagation and finally, the section 3.3 is 

referring in two widely used techniques for extreme events detection by 

incorporating the underlying estimated data uncertainty. 

3.1. Uncertainty modeling in data streams 
 

The definition of measurement uncertainty is as follows: “A parameter associated 

with the result of a measurement that characterizes the dispersion of the values that 

could reasonably be attributed to the measurand
4
”, where a parameter can be, for 

instance, a standard deviation, or the width of a confidence interval. In general, 

measurement uncertainty consists of several distinct components. Some of these 

components may be evaluated directly from the available information from each 

sensor of the recorded measurements (see Table 1), while the rest of the components 

can be evaluated based on an empirical assumption for the probability distributions 

according to our experience or some other prior information. 

 

 

                                                 
4
 Measurand refers to a clear and unambiguous statement of what is being measured, along with a 

quantitative formulation relating the value of the measurand to the parameters on which it depends. 
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3.1.1. Existing approaches 

 

While the problem of managing and processing uncertain data has been studied in the 

traditional database literature since the 80’s [32], the attention of researchers was 

only recently focused on the specific case of uncertain time series. Two main 

approaches have emerged for modeling uncertain time series and both of them are 

based on this general definition: An uncertain time series X is defined as a sequence 

of random variables nxxx ,...,, 21  where ix  is the random variable modeling the real 

valued number at timestamp i. 

 

In the first approach [24], an uncertain time series is modeled by a streaming time 

series of random variables, where each random variable represents the uncertainty of 

the value in the corresponding timestamp (Figure 4[a]). The probability density 

function (pdf) over the uncertain values is estimated by using some a priori 

knowledge of the general characteristics of the data distribution, namely its means 

and variance. In [26], uncertainty is modeled by means of repeated observations at 

each timestamp, as depicted in Figure 4[b](in each orthogonal shape there are the 

corresponding repeated observations for each observation). 

 

 
 

(a) Uncertainty modeling by means of pdf 

estimation 

(b) Uncertainty modeling by means of repeated 

observations 

Figure 4: Examples of modelling the uncertainty in time series X={x1,...xn} 

These two techniques are based on the assumption that the values of the time series 

are independent from one another. That is, the value at each timestamp is assumed to 

be independently drawn from a given distribution. Evidently, this is a simplifying 

assumption, since neighboring values in time series usually have a strong temporal 

correlation. The main difference between [26] and [24] is that the first represents the 

uncertainty of the time series values by recording multiple observations for each 

timestamp. This can be considered as sampling from the distribution of the value 

errors. In contrast, [24] consider each value of time series to be a continuous random 

variable following a certain probability distribution. The amount of preliminary 

information, i.e. a priori knowledge of the characteristics of the time series values 

and their errors, varies greatly among the techniques. The approach of [26] does not 

need to know the distribution of the time series values, or the distribution of the 

value errors. It simply operates on the observations available at each timestamp. On 

the other hand, [24] needs to know the distribution of the error at each value of the 

data stream. In particular, this technique requires knowing the standard deviation of 

the uncertainty error, and a single observed value for each timestamp. Also, it 
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assumes that the standard deviation of the uncertainty error remains constant across 

all timestamps. 

 

These approaches can’t be used by HYDROBIONETS project infrastructure, since 

the knowledge of the distribution is limited due to the nature of our data streams. We 

assume that uncertainty is an additional source of information that is valuable and 

should be preserved. So the quantification of the inherent uncertainty plays a 

fundamental role on the certification in high-consequence decisions.  

3.1.2. Uncertainty quantification 

 

Having acquired the raw sensor data from the distinct electrochemical sensors 

distributed across the plant, our proposed infrastructure (Figure 3) estimates their 

corresponding inherent uncertainty. The estimation is carried out in two consecutive 

steps, namely, identification of all the potential sources of uncertainty, followed by 

their quantification and propagation. In the following, each one of the identification 

sources and quantification steps is described, as in [31]. The rules of propagation 

step are described in section 3.2. 

 

Step 1: Identification of uncertainty sources 

Identification of uncertainty sources comprises the first step towards the design of 

our integrated uncertainty-aware data management system. In practice, the 

underlying uncertainty may arise due to several distinct sources, such as, an 

incomplete definition of the observed quantities, sampling effects and interferences, 

varying environmental conditions, and inherent uncertainties of the equipment. 

  

A very convenient way to determine the most dominant uncertainty sources, along 

with their potential interdependencies, is to exploit the so-called cause and effect (or 

Ishikawa) diagram. This diagram also ensures comprehensive coverage, while 

helping to avoid double counting of sources. Once the set of most significant 

uncertainty sources is formed, their effects can be usually represented in terms of a 

measurement model.  

 

As a typical example, Figure 5 shows a cause and effect diagram for a temperature 

sensor. The first source of uncertainty is the sensor’s functionality by itself. 

However, its performance is affected by several distinct factors, such as, its 

sensitivity and precision, the calibration, the operating temperature, and the water 

flow-rate and pressure. On the other hand, the accuracy of the recorded values 

depends also on the sensors’ deployment density and location, as well as on the 

sampling process we use. Possible misplacement or a very sparse time-sampling is 

expected to increase the uncertainty, especially when the monitored variable varies 

rapidly across time. 
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Figure 5: Cause and effect diagram for a temperature sensor 

Step 2: Quantification of uncertainty  

The identification of uncertainty sources is followed by a quantification process. This 

is done by estimating the uncertainty of each individual source and then combining 

them appropriately to obtain a single overall uncertainty. The underlying data 

uncertainty in a given data stream is distinguished into two separate categories, type 

A (aleatoric, or statistical) and type B (epistemic, or systematic) uncertainty:   

 

Uncertainties of type A are characterized by the estimated variances 2

i  (or the 

standard deviations i ), which are obtained by statistical analysis of the observations 

in the raw data streams. Following the sliding window approach, as it was described 

in a previous section, the variance 2

i  of the i-th sensor is estimated from its 

measurements in the current window. This is equivalent to obtaining a standard 

uncertainty from a probability density function (pdf) derived from an observed 

frequency (empirical) distribution. Let y be a data stream with N values {y1, …, yN}, 

which corresponds to a specific observed variable. Then, the standard uncertainty of 

y, which is denoted by u(y), is expressed in terms of the corresponding standard 

deviation
y , estimated directly from the observations iy  as follows, 

N
yu

y
)(                                                         (12) 

For uncertainties of type B, the estimated “variance” 
2

js  is obtained from an assumed 

probability density function based on prior knowledge for the corresponding source 

of uncertainty, which may include: 

(i) data from previous measurements,  

(ii) experience or knowledge of the properties of instrumentation and materials used,  

(iii)  manufacturer’s specifications, and 

(iv)  data calibration.  
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In general, concerning type B uncertainties, the quantification is performed either by 

means of an external information source, or from an assumed distribution. Typical 

assumptions for the prior distributions include the Gaussian (e.g., when an estimate is 

made from repeated observations of a randomly varying process, or when the 

uncertainty is given as a standard deviation or a confidence interval), the uniform 

(e.g., when a manufacturer’s specification, or some other certificate, give limits 

without specifying a confidence level and without any further knowledge of the 

distribution’s shape), and the triangular distribution (e.g., when the measured values 

are more likely to be close to a value a than near the bounds of an interval with mean 

equal to a).  

 

Having estimated the individual uncertainties, expressed as standard uncertainties, 

the next step is to combine them in the form of a combined standard uncertainty. 

Although in practice there may exist correlations between the individual uncertainty 

sources, however, it is usually impossible to compute those correlations accurately. 

For this purpose, it is more convenient to rely on an assumption of independence 

between the individual uncertainty sources.  

 

In the following, let y denote the observed variable associated with the acquired data 

stream y. Furthermore, let y = f{x1,…,xL} be an observed variable, which depends on 

L input variables xl through a functional relation f(∙). Then, the combined standard 

uncertainty of y, for independent input variables xl, l = 1, ..., L, is given by: 




















L

l

l

l

c xu
x

f
yu

1

2

2

)()(                                            (13) 

where )( lxu denotes the standard uncertainty of the input variable lx  (either of type 

A, or of type B), while the partial derivatives lxf   , the so-called sensitivity 

coefficients, quantify how much the output y varies with changes in the values of the 

input variables lx  l=1, … L. Finally, the combined standard uncertainty, which may 

be thought of as equivalent to one standard deviation, is transformed into an overall 

expanded uncertainty, U, via multiplication with a coverage factor k, that is,  

)()( yukyU c                                                        (14) 

where the value of k is determined in terms of the desired confidence level as shown 

in Table 2. 

Table 2: Coverage factor as a function of confidence level for the Gaussian distribution 

Coverage factor (k) Confidence level (%) 

k=1 67% 

k=1.96 95% 

k=2.576 99% 

k=3 99.7% 

 

The most convenient way to summarize all this information and compute the overall 

uncertainty is by means of spreadsheet tables. A spreadsheet table lists the dominant 
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sources of uncertainty and categorizes them according to their type. Based on that, 

the individual standard uncertainties are stated explicitly, along with the overall 

combined uncertainty. An example of such a table for a temperature sensor is shown 

in Table 3. 

Table 3: Example of a spreadsheet table for a temperature sensor. 

Source of uncertainty Value (±) 
Probability 

distribution 
Divisor 

Standard 

uncertainty 
u(x) 

T
y

p
e 

B
 

S
en

so
r 

Calibration C1 Normal 2 C1 / 2 

Precision (Resolution) C2 Rectangular 3  C2 / 3  

Sensitivity C3 Rectangular 3  C3 / 3   

         Sensor density C4 Rectangular 3  C4 / 3  

       Sampling C5 Rectangular 3  C5 / 3  

T
y

p
e 

A
        Temperature CT -   

      Pressure CP -   

Combined standard uncertainty uc,b(y)  

Coverage factor  kb  

Expanded uncertainty Ub  

 

The final output of the above spreadsheet-based approach is the assignment of the 

combined and expanded uncertainty values to the current windows of all the sensors. 

This completes the first building block of our uncertainty-aware data processing 

system as presented in [31]. In the following section we describe the uncertainty 

propagation building block, namely, the rules for further query processing by 

accounting the estimated uncertainties. 

3.2. Uncertainty propagation in derived data streams 

In the previous section, we referred to the quantification of uncertainty of individual 

components for the HYDROBIONETS sensors, as described in [31]. The next step is 

to apply appropriate rules for propagating the estimated uncertainties upon a specific 

query operation, since the recorded sensor data streams are exploited to support and 

optimize production automation processes, as well as complex application decisions.  

After asserting the uncertainty of raw data streams obtained from HYDROBIONETS 

sensors, they go through various operators to produce final results. Since sensors 

allow for the automatic collection of a huge volume of data, the additional 

propagation of data uncertainty results in an overhead for data transfer and 

management, which may shape up as very expensive. Furthermore, if data 

uncertainty information is lost, the executed data processing steps have to be 

mirrored in a data quality processing framework.   
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To extract the complex knowledge that we need, sensor data is merged, transformed, 

and aggregated by applying traditional data stream queries, complex signal analysis, 

or elementary numerical operators. During the data stream processing, the initial 

sensor-inherent errors are amplified. Additionally, new errors may be introduced. 

Finally, if the sensor data are incorrect or misleading, derived decisions are likely 

flawed. Hence, it is also important to capture uncertainty of such processing results. 

 

So, the quantification of uncertainty in our data has to be processed with the right 

way from the query operators to avoid invalid decision making. With the rules that 

introduced in the following, we extend the existing operators, selection-aggregation-

join, to take into account the uncertainty of data. Mathematical functions are 

introduced to compute the effects of different operators on the uncertainty 

components accuracy and precision. A sensor measurement has imperfections that 

give rise to an error in the measurement result, as it was mentioned in 2.2.1  

Moreover, we also have to consider carefully the uncertainty issues, which are 

introduced by each operator separately. Identifying such issues has as ultimate goal 

to minimize the false positive and false negative cases that may arise from the 

adjustment of the operators on uncertain data streams. 

Selection:  During selection, data items are extracted for further processing based on 

the constraint evaluation of a certain measurement attribute. Tuples that do not 

satisfy the selection criterion are discarded from the data stream. In [33], a threshold 

control is introduced as the first step of the condition evaluation in selection. The 

incoming data stream is evaluated against a given threshold, resulting either in the 

boolean true if the threshold holds or false for exceeding a threshold. The accuracy 

and precision data quality parameters of a measurement value (α, ε), as well as a user 

defined threshold (ab) define a new uncertainty range δ = ab + a + ε. In the context of 

selection, this approach reveals the following shortcomings for data items lying in 

the uncertain range δ: 

(i) Sensor measurements in the uncertain range are selected, even though the true 

value may not exceed the threshold constraint. 

(ii) Data items are not selected, although the selection condition may be met by the 

true value. 

The false positives and false negatives may balance if there is a uniform data 

distribution in the uncertain range. The false selection leads to erroneous results if 

aggregation operators are applied during further data processing. The aggregated 

value is either too high because too many data items have been selected, or to low 

because relevant data items are missing.  

Definition 1 (Windowed uncertain selection):  Assuming that a selection condition 

F will be applied to each state of a window W over stream S, the selection operator 

for uncertain data streams can be defined as  

𝜎𝐹
𝑊(𝑆(𝜏)) = 𝜎𝐹 (𝑊(𝑆(𝜏))) 

                    = {𝑠 ∈ 𝑊(𝑆(𝜏)): 𝐹(𝑠) ℎ𝑜𝑙𝑑𝑠 ˄ Pr {𝑑𝑖𝑠𝑡 (𝑎𝑣𝑔 (𝑊(𝑆(𝜏))) , 𝑠) ≤ 𝜀}

≥  𝛼}   
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where 𝑑𝑖𝑠𝑡(. , . ) is the Euclidean distance function between two objects, avg(..) is the 

average of all values in the current sliding window W(S(τ)) and ε, a  are the 

precision and accuracy data quality parameters. 

 

Figure 6: Definition of true/false positives and true/false negatives. 

According to the previous definition of selection operation on uncertain data streams, 

for every object s within sliding windows, the distance between s and the average of 

all values in the current sliding window is computed. If the probability of that 

distance being less or equal to the threshold ε, is greater than threshold a and the 

condition F holds for object s, then s is reported to the selection answer. Note that 

with the constraint Pr {𝑑𝑖𝑠𝑡 (𝑎𝑣𝑔 (𝑊(𝑆(𝜏))) , 𝑠) ≤ 𝜀} ≥ 𝛼 the false positive results 

are discarded.  

Aggregation: During aggregation, each group of data items is summarized to 

compute a single data result, the aggregate. The aggregation operators compress the 

incoming data to one output value or create a synopsis consisting of several data 

items. This data value represents not only a certain point in time but a whole time 

interval. The time-stamp has to be adjusted to the form [tb, te] to represent this fact. 

The time-frame defining the grouping for an aggregation operator is independent 

from the window size w for data quality calculation. An aggregation operator takes N 

tuples modeled as N random variables, and performs an operation such as sum or 

min/max on these variables. The data uncertainty of one aggregate is calculated 

based on all incoming tuples’ uncertainty information.  

The result of the uncertainty of an aggregation will not be measured directly. For 

instance, what is the error in Z = A + B, where A and B are two measurements with 

errors ΔΑ and ΔΒ respectively? A first thought might be that the error in Z would be 

just the sum of the errors in A and B, that is, (𝛢 + 𝛥𝛢) + (𝛣 + 𝛥𝛣) = (𝛢 + 𝛣) +
(𝛥𝛢 + 𝛥𝛣). However, this assumes that, when combined, the errors in A and B have 

the same sign and maximum magnitude, that is, they always combine in the worst 

possible way. This could only happen if the errors in the two variables were perfectly 

correlated. We establish that the correlation structure among these variables 

determines appropriate techniques to compute uncertainty in aggregation results [36].  
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Table 4 introduces some simple rules for expressing the uncertainty in aggregation 

results.  

If a variable Z depends on one or  two variables (A and B) which have independent 

errors (ΔΑ and ΔΒ) then the rules for calculating the error in Z is tabulated in the 

following table for a variety of simple relationships
5
. These rules may be 

compounded for more complicated situations. 

Table 4: Rules for calculating the errors in aggregation results 

Relation between Z and (A,B) Relation between errors ΔΖ and (ΔΑ,ΔΒ) 

Ζ = Α + Β ΔΖ2 = ΔΑ2 + ΔΒ2 

Ζ = Α - Β ΔΖ2 = ΔΑ2 − ΔΒ2 

Ζ = ΑΒ (
ΔΖ

Ζ
)

2

= (
ΔΑ

Α
)

2

+ (
ΔΒ

Β
)

2

 

Ζ = Α/Β (
ΔΖ

Ζ
)

2

= (
ΔΑ

Α
)

2

+ (
ΔΒ

Β
)

2

 

Ζ = Α
n
 

ΔΖ

Ζ
= n

ΔΑ

Α
 

 

The support of (conditioning) aggregation operations on data streams involving 

continuous-valued uncertain attributes includes one more difficulty.  Even if the 

input stream contains continuous-valued uncertain attributes, which are modeled by 

continuous random variables, conditioning operations (e.g., filters and group) can 

introduce uncertainty about tuple existence, which needs to be modeled by discrete 

random variables. Hence, for complex queries involving conditioning and 

aggregation, the distributions for both continuous and discrete random variables must 

be computed, which is a hard problem [34]. 

Definition 2 (Windowed uncertain aggregation): For each combination of values 

that belongs to ))(( SW , an aggregation function f (such as SUM,MIN,MAX 

or AVG) is applied. The aggregation output is one stream of tuples of the form 

〈𝑓(𝑠𝑖, 𝑠𝑗 , … , 𝑠𝑛), 𝜏, 𝑒〉  for each sliding window. “τ” is the smallest 

timestamp of the objects, while 𝑓(𝑠𝑖, 𝑠𝑗 , … , 𝑠𝑛)  is the final aggregate 

value if it is smaller than a (user-specified) threshold ε, and e is the error in the 

aggregation result according to the rules of  Table 4. More formally, 

𝛾𝐿
𝑓𝑊

(𝑆, 𝜏) =  𝛾𝐿
𝑓

(𝑊(𝑆(𝜏))) =  {
〈𝑓(𝑠𝑖, 𝑠𝑗 , … , 𝑠𝑛) , 𝜏𝑚, 𝑒〉 ∶  ∀ 𝑠 ∈ 𝑊(𝑆(𝜏)) ˄ 

 𝑓(𝑎𝑖, 𝑎𝑗 , … , 𝑎𝑛) ≤ 𝜀  ˄ 𝜏𝑚 = min 𝜏 
} 

Join: This symmetric binary operator may be applied between two streams. There is 

no restriction that windows of the same type or the same scope must be specified 

over each stream. Each newly arriving tuple within window W1 of stream S1 is 

checked for possible matches against the current state of window W2 of stream S2 and 

vice versa. Matching is performed according to the join condition J involving 

attributes from both streams (e.g., S1.Ai = S2.Aj). If matching tuples are found, the 

                                                 
5
  http://teacher.nsrl.rochester.edu/phy_labs/AppendixB/AppendixB.html 
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resulting joined element must be assigned a new timestamp value. Joining is an 

important operation in queries that target data streams that have no navigable 

relationships to each other. A join of two data sources is the association of objects in 

one data source with objects that share a common attribute in the other data streams. 

Join operator can be used to represent or to detect complex events in sensor networks 

and it is the fundamental operation for relating information from different streams. 

The problem of join processing is challenging in the context of uncertain data 

because the join-attribute is probabilistic in nature. Therefore, the join operation 

needs to be redefined in the context of probabilistic data. An important aspect of join 

operation is that the uncertainty model significantly affects the nature of join 

processing. The evaluation strategies of joins vary significantly with the nature of the 

join attributes. Recent research on probabilistic databases has mostly focused on join 

attributes modeled by discrete random variables. Another consideration supports 

joins based on the possible worlds’ semantics. In every possible world, each random 

variable takes a specific value, thus a join can proceed just as in a traditional 

database. However, when data uncertainty is captured using continuous random 

variables, join methods based on possible world semantics hardly work because the 

possible values of a continuous random variable cannot be enumerated (the number 

of such possible values is infinite and each possible value has probability 0). 

Next, we formally define the problem of join on uncertain data streams, which 

consists of three distinct components. Initially, we focus on the uncertainty impact of 

the time-stamp-based join of synchronous and asynchronous data streams and 

illustrate the handling of jumping windows during the window-wise data stream join 

execution. 

Join of synchronous streams: The simplest join approach assumes synchronous 

sensor data streams, and builds one-to-one tuple pairs based on identical time-

stamps, as shown in Figure 7. Equal data stream rates do not suffice for this 

approach. The sensor data could be measured shifted against each other, so that no 

identical time-stamps exist. During the join of two data streams D1 and D2, data 

uncertainties UA and UB are not affected but copied to the resulting data stream. This 

results in a memory limitation. To keep all this information requires an increased 

memory space, which, in turn, affects system’s performance. 

 

Figure 7: Elementary join of equal time-stamps 

Join of asynchronous streams: The assumption of synchronous data streams does not 

hold for typical application scenarios. In [35], sampling and interpolation techniques 

are used to adapt the stream rates and overcome phase shifts in the data streams. 

Then, the complex operator has to be split up as shown in Figure 8 to allow the 

tracking of the uncertainty impact. The data streams D1 and D2 are sampled and/or 

interpolated to be joined afterwards using the time-stamp-based, synchronous join 

approach. 
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Figure 8: Joining asynchronous data streams. 

Window join of data streams: Conceptually, a join operator must ensure that every 

tuple in one of its inputs is compared with every tuple in the other. When these input 

sets are unbounded, as is the case for infinite streams and continuous queries, we 

have the problem that the comparison of two infinite inputs would require infinite 

storage. The window-wise data stream join is recommended to comply with 

restricted memory and CPU resource constraints in data stream environments. In 

[33], the jumping windows are introduced to reduce the data overhead produced by 

the uncertainty transfer. The uncertainty information is propagated not for every 

single measurement value, but rather aggregated over a certain period of time.  

While a sliding window join of two data streams is executed not all streaming tuples 

find join partners, independent from the specific join implementation. Thus, the 

window-wise join of data streams includes an implicit sampling on one or both 

affected data streams. To track the influence of this sampling on the data uncertainty 

component precision, the implicit sampling rate has to be recorded for each jumping 

window, while it overlaps with the sliding join window (Figure 9 a). As soon as the 

sliding join has left the jumping window (Figure 9 b), the precision can be updated, 

and the data quality can be propagated to the next operator in the processed query. 

 

 

Figure 9: Sliding window join 

 Definition 3 (Windowed uncertain join):  At each timestamp  , the windowed 

uncertain join between two streams returns the concatenation of pairs of matching 

tuples taken from either window state. In particular: 

𝑆1(𝜏) ⋈𝑊 𝑆2(𝜏) =  𝑊1(𝑆1(𝜏))  ⋈  𝑊1(𝑆1(𝜏))

=  {〈𝑠1, 𝑠2, 𝜏𝑚〉 ∶  𝑠1  ∈  𝑊1(𝑆1(𝜏)), 𝑠2  

∈  𝑊2(𝑆1(𝜏)) ˄ 𝐽(𝑠1, 𝑠2) ˄ 𝑃𝑟{𝑑𝑖𝑠𝑡(𝑠1, 𝑠2) ≤ 𝜀}

≥ 𝑎 ˄ 𝜏𝑚 𝑚𝑖𝑛 𝜏} 
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Given two uncertain data streams S1 and S2, a distance threshold ε, and a 

probabilistic threshold a (0,1], the join on uncertain data streams continuously 

monitors pairs of uncertain objects 𝑠1and 𝑠2. Each tuple within window 𝑊1 of 

stream𝑆1 is checked for possible matches against the current state of window 𝑊2 of 

stream 𝑆2 and vice versa. Matching is performed according to the join condition J 

involving attributes from both streams.  

According to the previous definition of join operation on uncertain data streams, for 

every object pair (𝑠1, 𝑠2) within sliding windows ))(( 11 SW and ))(( 22 SW

respectively, the joining probability of 𝑠1being within ε distance from 𝑠2 is 

computed. If the resulting probability is greater or equal to a probabilistic threshold 

α, then this pair (𝑠1, 𝑠2) is reported as the join answer, otherwise, it is a false alarm 

and can be safely discarded (users need to register two parameters, distance threshold 

ε and probabilistic threshold 𝛼) [37]. 

In this section, we presented an efficient way to propagate uncertainty in data 

streams. For a comprehensive evaluation of sensor measurements, we defined the 

uncertainty in the context of streaming data and proposed two uncertainty 

components:  accuracy and precision.  Operators retrieved from traditional data 

stream querying and the signal processing domain is applied to extract complex 

knowledge from raw data streams. We analyzed these operators to track the problems 

that uncertainty causes during propagating this in a raw data stream. Moreover, 

techniques and metrics are gathered and presented to calculate uncertainty in the 

output of operators’ selection, aggregation and join. In the following section we 

describe the building block for the detection of extreme events. We present two 

modified extreme event detectors in order to account for the inherent data 

uncertainty. 

3.3. Uncertainty-aware detection of extreme events 
 

Concerning the design of mechanisms notifying for extreme events, the estimated 

uncertainty, in conjunction with appropriate assumptions for the prior probabilistic 

models, can be exploited in a statistical framework for the detection of extreme 

values. Extreme value theory allows, under specific conditions, to predict rare 

events, which diverge from a “normal” pattern because of their rareness. For 

instance, in the HYDROBIONETS framework, a typical extreme event is the 

detection of high chlorine concentration in the water, or a high concentration of 

biofilms on the desalination membranes. As mentioned before, early warning for 

abnormal behavior is crucial when working in large-scale industrial environments.  

In our developed uncertainty aware data processing system, the identification of 

critical events is performed by means of two robust and computationally efficient 

methods. More specifically, we enhance the performance of two widely used 

techniques for extreme events detection by incorporating the underlying estimated 

data uncertainty. The first one, namely, the compliance with operating limits, 

performs simple comparisons of predetermined user-specified operating limits with 

the recorded measurements augmented by their estimated uncertainty. This 

modification maintains the computational efficiency of the original version, while 

improving its adaptivity to imprecise measurements. In a similar way, the second 
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approach, the so-called Peaks-Over-Threshold (POT) method, is modified 

accordingly so as to identify the time instants when the measurements (also 

augmented by the estimated combined or expanded uncertainty) exceed an estimated 

threshold. 

Compliance with operating limits 

The simplest way to exploit the estimated combined or expanded uncertainty to 

design an alerting mechanism is as shown in Figure 10. More specifically, let ul  

denote an upper operating limit dictated by a manufacturer or a specification 

standard. Although, for convenience, we restrict ourselves in the case of an upper 

limit, however, the same remarks are straightforward when compliance with a lower 

operating limit ml  is required. 

 

Figure 10: Compliance conditions for a measurement result. 

As shown in Figure 10, there are four possible cases for a measurement and its 

associated expanded uncertainty interval, bUy  when compared with an upper limit 

ul  namely, 

(i) both the measurement and the expanded uncertainty interval are above the 

upper    limit lu,  

(ii) the measurement is larger than lu and the expanded uncertainty interval 

contains lu,  

(iii) the measurement is lower than lu and the expanded uncertainty interval 

contains lu, and  

(iv) both the measurement and the expanded uncertainty interval are below lu.  

 

Case (i) clearly triggers an alerting notification for the occurrence of an extreme 

event, while (iv) is the only one which is in compliance with the specifications. On 

the other hand, in cases (ii) and (iii) we could not infer with absolute certainty 

whether an alert should appear or not. However, in a socially “sensitive” application, 

such as the water treatment, a system operator should classify cases (ii) and (iii) as 

possible divergences from normal operation, and thus draw more attention on the 

associated monitored variables. Notice also that, in contrast to the original version of 
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this method, which supports only two cases (above or below lu), the modified one 

exploits two additional ones due to the presence of uncertainty.  

 

Despite its simplicity, the main drawback of this method is that it can be very 

sensitive to an under- or over-estimate of the expanded uncertainty, as well as of the 

measurement value, increasing the probability of false alerts. However, with 

appropriate setup of the hardware (sensors) and continuous monitoring of the 

environmental conditions, we could increase our trust to this method. 

 

Peaks-over-threshold 

Similarly to the previous method, we also extend the original POT method [38][39] 

in order to account for the underlying data uncertainty. More specifically, we 

consider },...,{~
1 Nyyy   to be a data stream with N measurement values, which are 

spread out by the corresponding estimated expanded uncertainty, that is, Uyy ii ~  

where we assume for the cumulative distribution function (CDF) F, that for ,0z  

1)~Pr()(  zyzF . Given a user-defined threshold ρ we study the statistical 

properties of the exceedances iy
~  of over the threshold level ρ by fitting them with an 

appropriate distribution. In the following, we mainly rely on a threshold-dependent 

complementary CDF (or, equivalently, exceedance probability), which is given by          

)(

)(
)~|~Pr()(






F

zF
yzyzFp


                                   (15) 

where )(1)( zFzF  , for z 0, denotes the tail of F.  

The above identities can now be used to estimate tails and quantiles, to be used as 

refinements of the threshold ρ, adapted to the measurements statistics, within a 

predetermined level of confidence. To this end, let Nρ be the subset of indices 

},...1{ Nj for which jy
~ , that is }~:},...1{{  ju yNjN . 

 

(a) Original time-series 

 

(b) Peaks over threshold 

Figure 11: Original time-series and its peaks over threshold 

 

Then we denote by 
N

 ,....1 the excesses of 
Nyyy ~,...~~

2,1
, that is, the heights of the 

exceedances over ρ , as shown in figure 18b . )(F is estimated simply as the 

Ei 
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relative frequency, 
N

N
F


 )( , while )(zFp  is approximated by the generalized 

Pareto (GP) distribution as follows 
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where the parameters γ, σ(ρ) can be obtained via maximum likelihood (ML) 

estimation from the acquired sensor measurements directly. By combining (15)-(16) 

we obtain the overall tail estimator as follows, 
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Finally, for a given )1,0(p  we obtain an estimator for the p-th quantile, zp, as 

follows, 
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This quantile can be further employed as a refinement of the initial threshold ρ in 

subsequent time windows of the data streams. Another benefit of using a 

probabilistic framework, as is the case of POT, instead of the simple compliance with 

operating limits, is that we can also estimate the average time interval between 

successive extreme events of similar intensity. This elapsed time is called return 

period, and is defined as the inverse of the exceedance probability as follows 
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zF
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p

R                                                          (19) 

We notice here that this does not mean that if an extreme event with a return period 

TR occurs, then the next will occur in about TR time units (e.g., days, months, years). 

Instead, it means that, in any given time unit, there is a 1/TR chance that it will 

happen, regardless of when the last similar event was.  

 

Overall, we observe that the two techniques make different initial assumptions about 

the amount of information available for the uncertain time series, and have different 

input requirements. The POT method allows us to work with larger sample 

populations, which ensures better fits to a distribution function. However, this comes 

at the cost of assuming that the data are considered to be identically distributed, 

which may not be always the case in practice. This block-based method best suits to 

block-structured data (e.g., yearly, monthly, weekly). On the other hand, the first 

method may be very sensitive to an under- or over-estimate of the expanded 

uncertainty, as well as of the measurement result, yielding to false alerts. 

Consequently, when deciding which technique to use, users should take into account 

the information available on the uncertainty of the time series to be processed. 
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4. Data Streams Correlation Frameworks 
 

The processing, management and mining of data streams have attracted on increasing 

amount of interest recently. Data streams appear in a variety of settings, such as 

environmental and medical systems. Typical data stream applications include sensor 

monitoring and sensor data analysis. In all these situations, the data sources generate 

data with no end in sight, making it impossible to store all the historical data. The 

best approach is the data processing to be performed in an on-line fashion, to avoid 

the complete data storage and to “catch” abnormal behaviour of the applications. 

There are many fascinating research problems in such settings, like clustering [15], 

summarization [16] and forecasting [17][18]. The correlation analysis is a way of 

measuring the linear relationship between dimensional data streams. Here we focus 

on a less-studied problem, namely on computing correlations on uncertain data 

streams. Our goal is to monitor k numerical uncertain sequences, X1,…,Xk and to 

determine automatically all the pairs of sequences that have a correlation above a 

specific threshold. That is we want to report all the pairs of streams Xi and Xj, for 

which stream Xi follows the stream Xj above a specific correlation threshold t.  

 

The proposed data processing subsystem aims to support the HYDROBIONETS 

wireless sensor network infrastructure for multi-sensing and multi-actuation in water 

treatment and desalination plants. In our case, a desalination pilot plant is located in 

La Tordera, which is equipped with a number of various electrochemical sensors, 

scattered in distinct locations, for monitoring several physical and mechanical 

variables in the plant. In order to perform timely actuation and provide guarantees for 

the validity of a detected extreme event, we need to monitor continuously and online 

the correlations between predetermined pairs of data streams produced by sensors at 

different stages of the water treatment (pre-filtered, pre-treatment and reverse 

osmosis phases), as well as their inherent uncertainty. So, the problem we address in 

this thesis is defined as follows: 

 

Problem: “Given m co-evolving uncertain data streams of equal length n, detect at 

any point of time the occurrence of an extreme event, along with the top-k  pairs of 

streams which are highly correlated.” 

 

Without loss of generality, we can assume that two data streams X and Y have the 

same length n. Intuitively, two data streams are highly correlated if they look very 

similar as involving in time. Figure 12 shows five data streams evolving over time. 

We can notice that the blue-red and the red-green data streams present “similar” 

behaviour across the time, so we consider that they are highly correlated. Besides, in 

the case of the red-green streams, after a time-point there is no correlation. If the data 

streams X and Y were static, the problem would be trivial: simply compute the 

Pearson’s cross-correlation function. However, when X and Y consist of uncertain 

measurements, observe different dynamic data with different distributions, have big 

data volume and continuously increase in length, the problem is challenging. In this 

chapter we will develop the technique for fast computing correlations above a 

specific threshold in simple data streams and in section 4.3 we will propose the way 

to combine this technique with uncertain data streams.  
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Figure 12: Example of correlated sequences. 

 

We need a method which will monitor data streams and this method should 

determine whether there is a correlation above a specific threshold (the threshold is 

determined by the user) among a stream X and other streams. Specifically we need a 

method that has the following characteristics:  

 Computational efficiency: Fast and robust computation for detecting any 

abnormal system behaviour in an almost time-continuous fashion. 

 Agility: The memory space requirement should also be linear on the length n. 

 Accuracy: Given that the exact computations require increased space and 

time resources, we rely on suitable approximations with minimal 

approximation error.   

The technical problem we are focus on is “on the fly” monitoring of pairwise 

correlations between high-dimensional uncertain sensor data streams. As we 

mentioned in the section 2.2, there is a great complexity between correlations in 

sensor data streams we have to examine. Considering these correlations and data 

uncertainty we define correctly the HYDROBIONETS project alerters. We propose 

the way to define the correlations between two data streams, that don’t measure the 

same physical phenomenon and therefore they are characterized by alterative 

distributions. Moreover, the physical phenomena follow distributions that are not 

known in advance, because they are evolving dynamically. 

The framework we propose uses careful approximations, exploiting the compression 

property of the Discrete Fourier Transform. The net effect is that our framework has 

good performance in terms of speed and memory, while it maintains excellent 

accuracy. Our experiments on real and realistic streams provided by ACCIONA 
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Agua show that our framework is faster than the straightforward correlation 

computation, while maintaining relative error in low level. 

This chapter describes the major functionality assigned to our uncertainty-aware data 

processing system: Finding correlations among pairs of data streams, which monitor 

dynamic phenomena and their distributions, may be completely different.  Initially, 

in section 4.1 we describe the use of correlation extraction. The section 4.2 describes 

briefly the key ideas adopted by our method and in the section 4.3 we analyse the 

monitoring of pair-wise correlation. Lastly, the section 4.4 gives the related work on 

data streams correlation monitoring and presents their vulnerabilities, if we apply 

them in HYDROBIONETS project. 

4.1. Monitoring Stream Interrelations  

The most commonly used technique for investigating the relations between 

quantitative variables, is the correlation computation. The goal of a correlation 

analysis is to detect whether two or more variables co-vary, and to quantify the 

strength of the relationship between these variables. There are two main uses for 

correlation computation
6
: 

(i) Testing hypotheses about cause-and-effect relationships. In this case, the 

values of the X-variable are determined and we observe whether variation in 

X causes variation in Y (for example, giving different values to water PH and 

measuring the biofouling).  This kind of correlations, are exploited once 

during the design phase of a system to obtain the necessary information about 

data interrelations. 

(ii) Detecting whether two variables are associated without necessarily inferring a 

cause-and-effect relationship. If an association is found, the inference is that 

variation in X may cause variation in Y, or variation in Y may cause variation 

in X or variation in some other factor may affect both X and Y. These 

correlations are computed and controlled throughout the system operation 

because they can be changed. These changes are monitored and used for the 

best outcome of the operation system. 

In summary, correlation extraction from data streams is used to assess the strength 

and direction of the relationships between them. Correlation between data streams 

indicates a predictive relationship (e.g. to predict misleading values of a data stream) 

that can be exploited for further analysis in for-casting or simulation tools.  

Depending on the monitored phenomenon and the environmental conditions, the 

behaviour of the recorded data streams may evolve significantly over time. Changes 

in data characteristics (e.g., statistical distribution) may indicate anomalies in the 

“normal” behaviour of the monitored streams, or alterations in the data acquisition or 

transmission process. Quantification of the degree of interrelation between pairs of 

seemingly different sensors, in conjunction with the detection of behaviours 

variations, is crucial for a meaningful and reliable decision making in an industrial 

infrastructure, as is our case. 

                                                 
6
 https://explorable.com/correlation-and-regression 
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To be more specific, the use of correlation extraction in HYDROBIONETS data 

concerning the monitoring of water desalination is threefold:  

1. Continuous monitoring of a dynamic system: In section 2.2 we discussed the 

sensing performed in different points in the plant. In Table 5 we summarize the most 

interesting patterns that we have defined for data streams interrelations in the 

HYDROBIONETS project: 

Table 5: Description for data streams interrelation patterns in HYDROBIONETS project. 

Pattern Description Type of data 

streams 

interrelation 

Involved Sensors 

P1 If we observe a high flow 

rate in the fresh water (this 

water property is tracked 

by electromagnetic 

flowmeter sensor) then we 

check the pressure in the 

saline water. 

Analogous (a) Electromagnetic 

flowmeter sensor 

(b) Pressure sensor 

 

P2 If we observe low response 

time in redox sensor, then 

we check the chlorine 

concentration, because 

there is a sudden rise of 

this. 

Inversely 

Analogous 
(a)  Redox sensor 

(b)  Chlorine sensor 

P3 Increase in pH or 

temperature measurements 

presage the growth of 

biofouling. 

Analogous (a) PH or Temperature 

sensors 

(b)  Biofilm sensor 

P4 If we observe reduce to the 

water salinity, then we 

check the quality of the 

water effluent from MBR 

membranes. 

Inversely 

Analogous 

(a) Conductivity 

sensor 

(b)  Chemical sensor 

P5 If we observe fluctuations 

in differential pressure, 

then we check the 

concentration of biofouling 

in the water. 

Analogous 

 
(a) Pressure sensor 

(b) Biofilm sensor 

P6 If we observe increase of 

the water temperature near 

in membranes, we expect 

the increase of water 

pressure in nearby point  

Analogous (a) Temperature sensor 

(b) Pressure sensor 

 

The correlations concerning the above patterns are monitored continuously 

throughout the water desalination process, since we observe the right performance of 

the dynamic phenomena performed in this process. Besides, as we can see in the 

following, these interrelations notify the existence of events of interest. 
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2. Simultaneous monitoring of the system: Via the data streams correlation 

extraction, we have the opportunity to observe the water treatment behaviour in 

specific points in the plant. Figure 13 presents the sensors distribution in the different 

stages of the water treatment (pre-filtered, pre-treatment-reverse osmosis) in La 

Tordera’s desalination pilot plant. 

 

The uncertainty-aware data processing system gives us the opportunity to monitor 

the system behaviour in specific points into the plant. The set of the available 

electrochemical sensors is divided into subsets of highly correlated sensors.  In every 

different phase of the water treatment, different subsets of sensors are used. This 

clustering enables a more convenient and meaningful monitoring of the overall 

infrastructure, since we have the capability to identify the possible errors in the 

specific phases in water treatment. This way we can intervene directly in the 

desalination process and we benefit in time (since we know exactly where the error 

occurs) and cost (since we prevent the process of a wrong procedure).  

 

3. Distinguishing efficiently between occasional and extreme events constitutes 

a major issue in the design of data management systems. This is the third major use 

of correlation extraction in our infrastructure. It is of great importance to ensure in 

real or almost real time, especially when we deal with massive data sets, that a true 

extreme event occurs and not some coincidence or system/network failure. On the 

other hand, the degree of correlation between two or more sensor data streams 

characterizes their interrelations and dependencies. For this, the identification of 

highly correlated streams can be exploited as a further guarantee to verify the 

existence of a detected extreme event.  

 

For instance, consider the case of two data streams recorded by a pressure and a 

temperature sensor, respectively. When the two sensors are placed nearby, we expect 

that a high pressure is associated with an increased temperature, which means that 

the correlation of these two streams should be relatively high. Thus, we assume that a 

potential notification for an extreme temperature should be related with a high 

measured pressure. If this is not the case, this information can be further exploited by 

a system operator to focus more on that part of the industrial infrastructure and 

perform a more thorough examination. The only ambiguous point here is related to 

the determination of “high correlation”. The degree of “high correlation” is related to 

the specific application and the end-user, who has the flexibility to define how much 

strict this degree will be. 

Timely actuation is a crucial issue, while providing guarantees for the validity of a 

detected extreme event is also of high significance.  The transparency of the results 

should be more assured, since the uncertainty of data is arising from hardware 

defections or environmental variation in our infrastructure. To this end, we need to 

monitor continuously and in an online fashion the interrelations between a number of 

distinct data streams produced by sensors at different stages of water treatment (e.g., 

pre-filtering, pre-treatment and reverse osmosis), while accounting for their inherent 

imprecision expressed in terms of uncertainty.  
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Figure 13: Sensor distribution in La'torderas desalination plant.
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4.2. Preliminaries 

In this section we introduce and analyse some concepts that are using in our 

approach, presented in section 4.3. 

4.2.1. Data streams and sliding windows 

 

A data stream D comprises a continuous stream of m tuples, consisting of n attribute 

values Ai (1 ≤ i ≤ n) and the timestamp t. For an efficient data uncertainty 

management, the stream is partitioned into windows each of which is identified by its 

starting point tb, its end point te, the window size w and the sleep step s. A window 

contains the sensor measurements and each measurement is characterized from 

uncertainty information. This model is depicted in Figure 14. 

 

 

Figure 14: Data uncertainty model 

Data streams must be handled either online or from databases, as data items flow 

rapidly into the system from our sensors. Over this dynamic data, the system must 

provide timely and incremental responses to multiple continuous queries, ideally 

keeping in pace with the data arrival rate. Since the size of the stream is potentially 

unbounded, the state of the data is not known in advance, so responses clearly 

depend on the set of stream tuples available during query evaluation. Streaming data 

is usually retained in memory and not physically stored on disk. Thus, it is not 

practically feasible to “remember” the entire history of rapidly accumulating stream 

elements due to resource limitations. The operators of the physical algebra keeping 

state information such as the join and aggregation usually cannot produce exact 

answers for unbounded input streams with a finite amount of memory. Besides, users 

can only be interested in the data recently arriving within a fixed time period. 

To overcome such difficulties, windows have been introduced in query formulation. 

Such constructs generally emphasize on the latest data by taking advantage of an 

ordering among tuples, usually established through timestamp values attached to 

every item. Intuitively, at any time instant, a window operator (we will refer to it as 

“window”) specifies a finite set of recent tuples from the unbounded stream; this 

finite portion of the stream will be subsequently used to evaluate the query and 

produce results corresponding to that time instant. As time advances, fresh items get 

included in the window at the expense of older tuples that stop taking part in 

computations. A window is generally considered as a mechanism for adjusting 
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flexible bounds on the unbounded stream in order to fetch a finite, yet ever-changing 

set of tuples, which may be regarded as a temporal relation. 

There are two ways to physically build windows: (i) attribute-based windows, and 

(ii) count-based windows. In the first case, an attribute is designated as the 

windowing attribute (usually time), and consecutive tuples for which this attribute is 

within a certain interval constitute a window (e.g., stock reports over the last 10 

minutes). Here, tuples are assumed to arrive in increasing order of their windowing 

attributes. In the second case, a certain number of consecutive tuples constitute a 

window (e.g., the last 10 readings from a sensor).  

 

Definition 4 (Window over data stream): Let WE be a window with conjunctive 

condition E applied at time instant τ0 ∈ Ƭ7
 over the items of a data stream S, i.e., 

over its current contents S(τ0). Then: 

 

∀ 𝜏𝑖 ∈ 𝑇, 𝜏𝑖 ≥ 𝜏0, 𝑊𝐸(𝑆(𝜏𝑖)) = {𝑠 ∈ 𝑆(𝜏𝑖): 𝐸(𝑠, 𝑇) ℎ𝑜𝑙𝑑𝑠} 

 

provided that for any large, but always finite n ∈ N.  

 

Therefore, each window is applied over the items of a single uncertain data stream S. 

The stream S consists of uncertain objects (denoted by s) and at every τi returns a 

concrete finite set of tuples WE(S(τi)) ⊂ S(τi) which is called the window state at this 

time instant. The conjunctive condition E relates to the type of sliding window 

(attribute/count based). For the rest of the document we will refer to WE as W.  

 

Figure 15 illustrates the scenario of sliding windows over one uncertain data stream 

S. Each uncertain data stream consists of a sequence of continuously-arriving 

uncertain objects at different timestamps, that is, S = {s[1], s[2],….,s[t],….}, where 

s[i] is an uncertain object at timestamp i, and t is the current timestamp. Specifically, 

as shown in Figure 15 an operator  always considers the most recent w uncertain data 

in stream, that is, WE(S) = {s[t-  w + 1],   s[t - w + 2],…,s[t]} at the current timestamp 

t. In other words, when a new uncertain object s[t + 1] comes in at the next 

timestamp (t + 1), the new object s[t + 1] is appended to S. Meanwhile, the old object 

s[t - w + 1] expires and is evicted from the memory. Thus, operators at timestamp (t 

+ 1) is conducted on a new sliding window {s[t - w + 2],…,s[t + 1]} of size w.  

 

                                                 
7
 Time domain T is regarded as an ordered, infinite set of discrete time instants τ ∈ T. A time interval 

[τ1, τ2] ∈ T consists of all distinct time instants τ ∈ T for which τ1 ≤ τ ≤ τ2. 
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Figure 15: Illustration of sliding window on uncertain data streams 

As expected, the separation of data streams in sliding windows brings problems of 

completeness and synchronization in the final results. These problems aren’t 

qualified because it is out of the scope of this thesis. To conclude, the available 

electrochemical sensors may report a measurement within a predefined period of 

time, usually in the scale of a few seconds or minutes. Data processing of raw data 

streams is performed on the basis of sliding windows. In particular, a sliding window 

of recent measurement values is maintained, while the window moves with a 

predetermined step size when new measurements become available. Furthermore, as 

the contents of the sliding windows evolve over time, it makes sense for users to ask 

a query once and receive updated answers over time. 

4.2.2. Pearson’s Correlation function 

 

A similarity measure is a relation between a pair of objects and a scalar number. 

Common intervals used to mapping the similarity are [-1,1] or [0,1], where 1 

indicates the maximum of similarity. The most common similarity function used to 

perform complete or partial matching between time series is the cross-correlation 

function or Pearson’s correlation function. The cross-correlation between two time 

series x  and y  of the same length N and same starting timestamp is defined as: 

 

(1) 

 

 

where x  and y  are the means of x  and y  respectively. The correlation 
xyr provides 

the degree of linear dependence between two vectors x  and y  from perfect 

relationship (
xyr =1), to perfect negative linear relation (

xyr = -1). Equation (1) means 

that the cross-correlation coefficient can be computed by simple summation of the 

distinct data stream objects, which support incrementally computation. Based on this 

equation, we can design a straightforward approach to detect the correlation.  
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Intuitively, once the sliding window receives the new data objects, we incrementally 

update the basic summations (e.g.,  2

nx  and  nx ) of the subsequences x  and y , 

within the sliding window. After processing the data objects in current window, if the 

correlation condition is satisfied, the current correlated subsequences should be kept, 

and when the following data objects come in, we make the incremental calculation of 

cross-correlation again.  

It is obvious that the naive solution can continuously detect the correlations between 

the engaged data streams. However, for each new data object we have to recalculate 

the cross-correlation coefficient, which will result in high computation complexity. 

The major cost is produced by the sum of inner-product as described in Equation (1). 

In the area of signal processing and statistical analysis, the sum of inner-product is 

usually calculated by Discrete Fourier Transform (DFT) for efficiency purpose. 

Therefore, we propose to make use of the theoretical results of DFT to design a more 

sophisticated approach for correlation detection. 

4.2.3. Data Reduction in Data Streams 

 

Data streams are observations made in sequence and the relationship between its 

consecutive data items gives us the opportunity to reduce the size of the data without 

substantial loss of information. Data reduction [29] is often the first step to tackling 

massive time series data because it will provide a synopsis of the data. A "quick and 

dirty" analysis of the synoptic data can help us to spot a small portion of the data 

with interesting behaviour. Further thorough investigation of such interesting data 

can reveal the patterns of ultimate interest.  

 

Data reduction techniques will reduce the massive data into a manageable synoptic 

data structure while preserving the characteristic of the data as much as possible. It is 

the basis for fast analysis and discovery in a huge amount of data. Data reduction is 

especially useful for massive data streams due to the high dimensionality of the data 

streams (we referred to the dimensionality in 2.2.1). Almost all high-performance 

analytical techniques for time series rely on some data reduction techniques. Because 

data reduction for data streams results in the reduction of the dimensionality of them, 

it is also called dimensionality reduction for data streams. 

 

Many data reduction techniques can be used for time series data. In this subsection 

we will mention the most common of them. We analyze in details the data reduction 

with Discrete Fourier Transform (DFT), which is the first proposed data stream 

reduction technique in the data mining community and is widely used in practice. 

Discrete Wavelet Transform (DWT) is a new signal processing technique based on 

Fourier Transform. It gains popularity in data streams analysis as it appears low 

computation cost. Singular value decomposition (SVD) is an optimal data reduction 

technique based on traditional principal components analysis. It is an attractive data 

reduction technique because it can provide optimal data reduction in some 

circumstances. A very new data reduction technique is the random projection 

technique. Random projection of time series has great promise and yields many nice 

results because it can provide approximate answers with guaranteed bounds of errors. 
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In Table 6, we summarize the characteristics of the above reduction techniques (the n 

parameter denotes the data stream length).  

 

Table 6: Comparison of data reduction techniques 

Data Reduction 

technique 

 

DFT 

 

DWT 

 

SVD 

Random 

Projection 

Time complexity nn log  n  2n
n

m
  

nk  

Based on 

orthogonal 

transform 

Yes  Yes  Yes  No  

Approximation of 

data streams 

Yes  Yes  Yes  No  

Require existence 

of principal 
components 

Yes  Yes  Yes  No  

Compact support No  Yes  Yes  Not  relevant  

 

The lower time complexity in computing the data reduction for each data stream with 

length n , is presented for DFT technique. DFT, DWT and SVD are all based on 

orthogonal transforms. From the coefficients of the data reduction, we can 

reconstruct the approximation of the time series. By comparison, random projection 

is not based on any orthogonal transform. We cannot reconstruct the approximation 

of the time series. To approximate a time series by a few coefficients, the DFT, DWT 

and SVD require the existence of some principal components in the time series data. 

Random projection, by contrast, does not make any assumption about the data. This 

makes random projection very desirable for data streams having no obvious trends 

such as price differences in stock market data. 

 

Discrete Fourier Transform 

Discrete Fourier Transform (DFT) converts a finite list of samples of a function into 

the list of coefficients of a finite combination of complex sinusoids, ordered by their 

frequencies, that has those same samples values
8
. It can be considered that DFT 

converts the sampled function from its original domain (in our case from time 

domain) to the frequency domain. Based on this assumption, we overcome the 

problem of comparing dissimilar streams. We mentioned in chapter 2 that data 

streams from different sensors should be compared for managing the 

HYDROBIONETS data infrastructure. One problem that we have to resolve in this 

case is the comparing data streams that they not be measured on the same scale. For 

example, suppose that we are interested in comparing the temperature and pressure 

data streams near the membranes (pattern P6 from Table 5). The temperature is 

measured in Celsius scale (50-100 
o
C) and the pressure is measured in Bars scale (0-

1 Bars). To overcome this problem, we transform our data streams into frequency 

                                                 
8
 http://en.wikipedia.org/wiki/Discrete_Fourier_transform 
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domain. Based on DFT we reduce, except from the stream length, the affection of the 

diversity in the data stream values. 

 

In the following, we will first introduce the basic knowledge of DFT, and provide 

important lemmas and properties in DFT theory, which based on them our DFT-

based solution is elaborated. 

 

Let  x  = { x (0), x (1),…, x (n),… x (N – 1)} be a N-point sequence, and the 

Discrete Fourier Transform of x be  X = { X(1), X(2),…,X(k),…,X(N – 1)}, we have 

 

X(k) =  
N

1
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kn
N
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enx
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       k[0, N – 1]                  (2) 

 

The Inverse Discrete Fourier Transformation (IDFT) of X is 

 

)(nx =  
N

1
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
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N
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kn
N
j

ekX



       n[0, N – 1]                       (3) 

 

Note that x  and X are of the same size and the DFT of a data stream is another data 

stream. In the following table, we summarize the most important properties of DFT:  

 

Table 7: DFT theorems and properties 

Property Data stream  

representation 

Transform stream 

representation 

Periodicity x(n) = x(n+N) X(k) = X(k+N) 

Linearity ax(n)+by(n) aX(k)+bY(n) 

Symmetry x(n):even 

x(n):odd 

X(k):even 

X(k):odd 

Convolution x(n)*y(n) X(k)Y(k) 

Inner product )(),( nynx  




1

0

)()(
N

k

kykx  

Parseval’s theorem 





1

0

)()(
N

n

nynx  




1

0
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N

k
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For the most real data streams the first few coefficients contain most of the energy 

and it is reasonable to expect those coefficients to capture the raw shape of the data 

streams. Figure 16 shows a data stream and its corresponding DFT coefficients of the 

measurements of a temperature sensor, placed near to MBR membranes in pre-

treatment phase. From the symmetry property of DFT, we know that for a real data 

stream, their k-th DFT coefficients from the beginning are the conjugates of its k-th 

coefficient from the end. This is verified in the same figure.  
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Figure 16: Temperature data stream and its DFT coefficients 

 

The validity of our approach for using the DFT reduction for reducing the stream 

length and the affection of the data diversity is based on the compactness of the DFT 

representations. That is, the concentration of the main portions of the energy for a 

given stream in the first few significant (high-amplitude) DFT coefficients. Figure 17 

illustrates this property for four data streams recorded in ACCIONA’s plant, from 

which it is apparent that the main energy content of the streams is concentrated in the 

first few low-frequency DFT coefficients. 

 

 

Figure 17 : Amplitudes of DFT coefficients for four real data streams acquired in ACCIONA's 

plant. 
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Exploiting the compression property of the DFT to concentrate the inherent energy 

content of a given signal in the first few high-amplitude coefficients we could 

reconstruct our data stream using only the first few coefficients. The first step for 

taking the approximation x~  of our data stream is to compute the DFT of the data 

stream x . As second step, we have to define how many coefficients will be used for 

the data stream reconstruction. We notice here, that as we use more and more DFT 

coefficients, the DFT approximation gets better (Figure 18).  After that, we have to 

compute the inverse DFT of the coefficients (we refer to this stream as X
~

) that we 

decided to keep in the previous step. The final step of reconstruction is to get the real 

part of X
~

. Figure 18 shows the DFT approximation of the temperature data stream 

using the first 10, 40 and 75 DFT coefficients (The initial temperature length was 

150 measurements). 

 

 

Figure 18: Approximation of temperature data stream with DFT reduction technique. From top 

to bottom, the data stream is approximated by 10,40 and 75 DFT coefficients  respectively. 

 

To conclude, data reduction based on the DFT works by retaining only the first few 

DFT coefficients of a data stream as a concise representation of the data stream. Note 

that the symmetry of DFT coefficients for real data streams means that the energy 

contained in the last few DFT coefficients are also used implicitly. The data streams 

reconstructed from these few DFT coefficients is the DFT approximation of the 

original data streams.  
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4.3. Fast online pairwise correlation estimation 

The typical approach for extracting pairwise sensor stream correlations is by means 

of the Pearson’s correlation coefficient. For two given streams x, y of equal length N, 

which are time-synchronized in windows of size w, the correlation coefficient is 

given by (1). However, for each newly acquired measurement value, the correlation 

coefficient has to be recalculated, which yields an increased computational 

complexity, especially for high-dimensional data streams or for a large number of 

sensors. In particular, the major cost comes from the summation of inner products of 

the form: 





w

i

iiww yxyx
1

,                                                     (4). 

 

Motivated by this limitation, in our proposed UADM system we implement a 

computationally efficient method for nearly real-time extraction of highly correlated 

data streams by combining discrete Fourier transforms (DFT) over sliding windows 

with a proper stream similarity measure. In order to account for the underlying 

uncertainty or other data ambiguities, we restrict ourselves on the detection of pairs 

of streams whose correlation is above a specific threshold. 

DFT and Euclidean distance based approach 

Let xw and yw denote two time windows of length w corresponding to the same time-

interval. Working in a DFT framework, each sample xi (similarly, yi) can be 

expressed in terms of a linear combination of exponential functions      
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fk ,...1,
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
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
                                          (5) 

 

where Xf  is the set of N DFT coefficients, with N < w. In this way, the computational 

cost for computing the inner product between the two time windows (and 

subsequently the correlation coefficient) is reduced from w to N. The fast and 

efficient computation of the DFT guarantees that it can be used to compute inner 

products and, thus, correlations over sliding windows of any size.  

 

The above DFT-based approach enables the fast monitoring of synchronized streams 

over a given time window, whose correlation exceeds a predefined threshold. This is 

dictated by the following lemma, which gives a correspondence between the 

correlation coefficient and the Euclidean distance between two data streams.  

 

Lemma 1 [30]: The correlation coefficient of two data streams x, and y, of length w 

is expressed in terms of a Euclidean distance as follows 

 

 )ˆ,ˆ(
2

1
1),( 2 yxd

w
yxcorr                                               (6) 
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where )ˆ,ˆ( yxd  is the Euclidean distance between yx ˆ,ˆ , that is, the original data 

streams normalized to mean zero and variance equal to one (for more details please 

see Appendix A). 

 

By reducing the correlation coefficient to Euclidean distance, we can apply the 

techniques described in [20] to report data streams with correlation coefficients 

higher than a specific threshold: 

 

Lemma 2 [20]: Let the DFTs of the normalized data streams yx ˆ,ˆ  be X̂  and Ŷ , 

respectively. Then, 

 

)1(2)ˆ,ˆ(),(   wYXdyxcorr M                                 (7) 

where   is a given threshold and )ˆ,ˆ( YXdM  is the Euclidean distance between the 

corresponding truncated DFTs, which are derived by keeping the first 2/wM   

DFT coefficients.  

 

Lemma 2 implies that pairs of windowed sensor streams for which 

)1(2)ˆ,ˆ(  wYXdM  cannot have correlation coefficients above threshold ε. By 

ignoring those pairs, we can get a set of likely correlated stream pairs. This approach 

which proposed in [20], is indicated for fast correlation monitoring, but it is not a 

good similarity measure of the data streams behaviour.  

  

The method we propose for fast similarity computation among uncertain data streams 

compares the related data streams, driven by their behaviour across the time. In Table 

5 we defined some basic patterns for monitoring the HYDROBIONETS cyber 

physical system. In all cases we observe the simultaneous behaviour (analogous/ 

inversely analogous) of the pre-defined data streams. For example, for the pattern p1, 

the related streams have analogous interrelation. This means that if the values of one 

stream are increasing, we expect that the values for the related stream are also 

increasing, under normal conditions. Otherwise, we have an unpredictable evolution 

in our system that needs our attention.  

The approximation of the correlation coefficient via the Euclidean distance is not 

limited only in the computation of the above interrelations because this approach is 

very sensitive and leads us easily to incorrect conclusions. As we can see from 

Equation (6), the correlation coefficient is (inversely) related to the Euclidean 

distance between standardized versions of the data. This approach considers that data 

streams with small Euclidean distance are more correlated than other data streams 

with longer Euclidean distance. Based on this assumption, the data streams depicted 

in Figure 19 in case (b) are more correlated than the data streams depicted in case (a), 

even though that they have similar behaviour in both cases. The major difference in 

our approach is that we consider the data streams in both cases highly correlated, 

since they present similar behaviour across the time. 
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Figure 19: Euclidean distance is not a good similarity measure for data streams behaviour 

monitoring. 

 

Fast pairwise similarity computation 

In our data management system, we search for data stream pairs whose correlation is 

above a predefined threshold εth, in a fixed-sized sliding window. More specifically, 

let s be the reference stream, and (y1,y2,..,yC) be the set of streams with which we 

compute the pairwise correlations in the current time interval. For a predetermined 

correlation threshold εth, the output of the process will be a subset of streams yc, for 

which the correlation with s is above εth. 

In our proposed system, the problem of extracting highly correlated pairs of sensors’ 

data streams is translated into a problem of identifying highly “similar” sensors’ data 

streams, where the “similarity” is measured by an appropriately designed function. 

As in the previous DFT-based approach, the first step for each data stream values in 

the current window of length w, x1, x2,… xw, is to normalize to mean zero and 

variance one, that is, 

x

i
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xx
x




ˆ                                                           (8) 
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ix xx
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2)(                                                       (9) 

As a second step, the corresponding DFT of the normalized windowed data is 

computed. The data compression capability of the DFT is exploited to reduce (i) the 

computational cost by approximating the original data by a highly reduced set of 

coefficients and (ii) the scaling in data stream values which monitor different 

quantities. 
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The final step towards our fast and robust extraction of highly “similar” sensor data 

streams is to identify those pairs (s, yc) with similarity above a given threshold εth. In 

order to avoid computing the similarity between all pairs of streams (s, yc), we reduce 

the set of candidate streams only to those streams that will be highly similar with s 

with high probability.  

 

For this purpose, we introduce peak similarity, psim, as an appropriate similarity 

measure (in Appendix B- Similarity measures we mention three different measures 

for the estimation of similarity between data streams). More specifically, the 

similarity between two windowed data streams s, y is computed by employing a 

truncated set of the first M high-amplitude DFT coefficients, where M ≈ w/2, and the 

peak similarity measure is defined as follows: 
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In order to account for the potential loss of information caused by the truncation of 

the set of DFT coefficients, the peak similarity measure does not employ the same 

threshold εth for finding the similar streams. Instead, we determine a new threshold 

εth,new, with our proposed method reporting as “highly-correlated” pairs those streams 

s and yc for which psim(s,yc) > εth,new. However, special attention should be given on 

the selection of the threshold value εth,new. From our experimental evaluation, 

employing data from a set of various distinct sensors, we observed that if we choose 

an “elastic” enough threshold εth,new, then the subset of streams yc with the highest 

peak similarity with s will also contain the highly correlated streams with s (that is, 

those with correlation coefficient above εth). In our implementation we set εth,new = εth 

- e, where e is a small positive number (in our experimental evaluation described 

below we set e < 0.05). 

 

Uncertainty-aware fast pairwise similarity computation 

Towards the design of an integrated uncertainty-aware data management system, we 

extend the above peak similarity measure in order to monitor similarities between 

uncertain data streams. For this, Equation (10) is not applied directly on the raw data 

streams, but on the original recordings by also accounting for their estimated 

uncertainty. We notice here, that the estimation of uncertainty in raw data streams is 

discussed in 3.1.2. Let Ui be the uncertainty value for the current window of each 

sensor data stream.  

 

The similarity monitoring of uncertain data streams, also affects the choice of the 

thresholds used to decide whether two streams are highly similar or not. Specifically, 

the threshold εth,new = εth - e is set based on the streams s1 ± U1 and s2 ± U2, where U1 

and U2 are the corresponding estimated uncertainties of the two streams.  

 

From the above, we derive an uncertainty-aware extension of psim which is given by 
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where ,
~
S  Y

~
 are the truncated DFTs of the uncertain streams sUss ~  (or 

sUss ~ ) and 
yUyy ~   (or 

yUyy ~  ),  respectively, with  sU and 
yU  

denoting the uncertainties estimated in the current window of s and y, respectively. 

The basic algorithm describing the previous infrastructure is presented in Figure 20: 

 

Algorithm FindStreamCorrelations 

Input:  

 A reference stream S and its corresponding uncertainty value US  ( S± US ) 

 A set of data streams (denoting as Yc ={y1,y2…yc}) and the corresponding 

uncertainty values Ui  for each yi. (yi±Ui ) 

 The correlation threshold εth 

 

Output: 

      A subset C of streams Yc for which the correlation with S is above εth 

 

for each input stream (S and Yc)  do 

   //Normalize to mean 0 and variance 1 based on (8) and (9) 

   x̂ = NormalizationOf (S and Yc); 

end for 

for each normalized data stream x̂  do 

        //Compute the Discrete Fourier Transform 

        X=DFT( x̂ ); 

end for 

//Determine the new correlation threshold  

εth,new = εth - e  

for each data stream yi (from the input set Yc) do 

//Compute the peak similarity measure with the reference                                                

//stream S via (11) 

        peak_similarity = psim(S± US, yi±Ui); 

      //Decision making 

        if   peak_similarity > εth,new then  

            Add yi to the output subset C; 

        end if 

end for 

Return C; 

End of FindStreamCorrelations 

Figure 20: Algorithm for detecting correlations in uncertain data streams, above εth 

 

Finally, the steps implementing our proposed fast and robust uncertainty-aware 

similarity measure are shown in Figure 21: 
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Figure 21: Flow diagram for fast computation of uncertainty-aware pairwise sensor stream 

similarity 

 

4.4. Related Work 
 

In this section we present the related work recording the data stream correlation 

monitoring. We introduce the major points of each technique and we annotate the 

reasons we cannot apply these techniques in our application.  

Yasushi Sakurai et al. [19] proposed BRAID algorithm which can detect lag 

correlations between data streams. It can handle data streams of semi-infinite length 

and they use careful approximations exploiting the Nyquist sampling theorem. They 

proposed to find the first maximum point on the global cross-correlation coefficient 

curve of two data streams, which takes times delay as a variant. They introduced an 

approximation by keeping a geometric progression of the lag values and using a base 

window they calculate the correlation coefficient. Their goal is to monitor k 

numerical data streams, X1,…,Xk and at any point of time to determine two things: 

(i) which pairs of data streams have a lag correlation and (ii) what is the lag 

correlation length.  

This approach cannot be applied in the HYDROBIONETS data processing 

infrastructure, since [19] focuses on lag correlations estimation on data streams. It 

monitors the stream correlations in different time intervals of each data stream. In 

our infrastructure we are interested in data stream correlations extraction in same 

time intervals, since through the data stream correlations in the same periods of time 

we:  

(i) Monitor the evolution of the dynamic phenomena developed in different 

stages of the desalination process. 

(ii)  Detect-identify-localize sources and events of interest 

(iii) Perceive any abnormal sensor behavior (coincidence or   system/network 

failure)  

(iv)  Get the guarantees for the validity of a detected extreme event and 

provide the necessary notifications for the activation of the corresponding 

alerter.  
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Zhu and Shasha et al. [20] proposed the StatStream model based on time series data 

streams. Their system's goal is to compute in almost constant time the statistics for 

multi-stream analysis problems. The core function that they compute is Pearson 

correlation function (1) over sliding windows. They do this using Fourier transforms 

and random-vector based sketches primarily depending on how "cooperative" the 

data is. First of all, they get the discrete Fourier coefficients by applying the Discrete 

Fourier Transform (DFT) on a base window (e serial sequence of sensor 

measurements), then map data streams into a grid structure and calculate the 

correlation coefficients between streams in adjacent grids.  

 

StatStream assumes that a data stream cannot be regarded as having a terminating 

point, and works on the data stream continuously, in order to meet real-time 

requirements. To be explicit, a data stream is regarded as a sequence, rather than a 

set. StatStream provides a basis for stating that any statistics presenting in the data 

stream at time t will be reported at time t+v, where v is a constant and is independent 

of the size and duration of the stream. StatStream establishes three major time 

periods: i) timepoints - the system quantum, ii) basic window - a consecutive 

subsequence of time points which comprise a digest, and iii) sliding window - a user-

defined consecutive subsequence of basic windows that will form the basis for the 

time period over which a query may be executed. While this provides a great deal of 

flexibility in dealing with intervals, StatStream expects to have at least one value per 

timepoint and, if one is not present, an interpolated value is used. The interpolation in 

the face of missing data may insert a false reading in our data and lead us in false 

decisions. Moreover, because multiple values being reported in one timepoint, 

StatStream provides a summary value. The synthesis of summary values over time 

produces the same stream characteristics, so there is no clear indication that an 

irregularity has occurred, nor an action can take place to rectify the mistake. This 

summarization can also obscure the point where a value, or a set of values, has 

crossed the significance threshold.  

 

The highly correlated stream pairs which are reported from StatStream are based in a 

hash technique, using a grid structure. The grid structure is geometrically and evenly 

partitioned into a number of cells. Each stream is located into one cell based on its 

DFT coefficients. The correlation coefficient is computed only for neighboring 

streams and in that way, StatStream discovers streams with correlations above a 

specific threshold.  

 

We cannot apply the StatStream technique in our data, because our application 

monitors dynamic phenomena. For these dynamic phenomena we don’t know the 

distribution that they follow a-priori, so we cannot find a good hash function that 

puts whole streams with similar behavior (in the time) in nearby cells. There is one 

more weakness: In our uncertainty-aware data processing system, the user specifies 

the threshold for the strength of the correlated streams (how “similar” they are). A 

high threshold declares more correlated streams. So, the hash function should be 

adjusted to the user specified threshold, to put the highly correlated data streams in 

nearby cells. The main drawback of this technique to be integrated in our 

infrastructure is the difficulty to define an appropriate “similarity” function for data 

streams describing dynamic phenomena with unknown prior distributions, which is 
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normally the case in an industrial environment. Finally, the StatStream method 

monitors tens of thousands of data streams. Their approach performs well in dealing 

with large amount of data and it is designed for ad hoc
9
 query rather than continuous 

query. This restriction has strict constraints on time delay. It wouldn’t be effective 

for our application management, since we have less pairs of data streams to monitor.   

 

Qing Xie et al [21] focus on local correlation detection, which may occur in burst in 

certain duration, and then disappear. They propose a framework to deal with the 

continuous detection of local Pearson correlation coefficient with time delay. Similar 

to conventional approaches for data streaming processing, a sliding window is 

applied in their framework. Given the maximal time delay allowed, and a minimal 

correlation value, they analyze the subsequences in the sliding window, and they find 

if there is any correlation occurring. Since the time delay factor is involved, their 

solution also employs the Discrete Fourier Transform (DFT). They take the 

advantage of the properties of DFT, and solve the cross-correlation coefficient with 

random time shift by reverse DFT on the inner product of two stream sequences. If 

the correlation is identified, incremental evaluation will be performed until the 

correlation is lost. Otherwise they can slide the window to the next candidate 

location. 

 

Another characteristic of this work is that they apply a linear representation to 

approximate the data streams to accelerate the correlation analysis. They apply 

piecewise linear representation to use line segments for the approximation of data 

stream points and indicate the data stream from microscopic view. They are based on 

the feature of line segments and can make early pruning in the correlation candidates.  

 

The main contribution of this work lies on the identification of local correlations in 

data streams that occur in burst. The proposed technique supports early pruning of 

correlation pairs. We cannot apply this technique in our processing correlation 

framework, because we are interested in the similarity of whole data streams and not 

for local changes in signal similarity that detects the local correlation. Besides, they 

use the Pearson’s correlation coefficient to detect continuously the local correlation 

between the engaged streams. For each new data point and each possible time delay, 

they have to recalculate the cross-correlation coefficient which results in high 

computation complexity. It will be a problem for us, to recalculate the correlation 

coefficient every time new data of our sensors are arrived. Using the DFT approach, 

the sum of inner-product of the Pearson’s correlation coefficient can be reduced for 

efficiency purpose. 

 

In [22] the summary of two techniques [24] [26] is presented, that have been 

proposed for modeling the similarity matching problem for uncertain time series. 

One issue in this work is the data uncertainty modeling in time series and another is 

the methods they are using for the similarity matching in data streams. The general 

idea in these three techniques is that the data uncertainty is modeling with 

probabilistic methods (for a detailed description please see 3.1.1), which play the role 

                                                 
9
 An Ad-Hoc query is a query that cannot be determined prior to the moment the query is issued. It is 

created in order to get information when need arises.  
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of filters to reduce the signal noise. After the use of filters, they compare the time 

series data involving the concept of distance measures to solve the similarity 

matching problem in uncertain time series. Given a user-supplied query, a similarity 

search returns the most similar subsequences of the time-series, which satisfy the 

user-query, according to some distance functions. Our goal in HYDROBIONETS 

project is the interrelation and behavior monitoring of the data streams in same time 

intervals, since this information (i) helps us to the overall system monitoring and (ii) 

give us the guarantees for the validity of detected extreme events.  

 

To be more specific, in [26] the uncertainty is modeled by means of repeated 

observations at each timestamp. Assuming two uncertain time series X and Y, the 

technique proceeds as follows. Firstly, the two uncertain sequences X, Y are 

materialized to all possible certain sequences: TSX = {< u11, ...,un1 >, ...,< u1s, ..., uns 

>} (where uij is the j
th

 observation in timestamp i), and similarly for Y with TSY . 

Then they compute all possible distances between X and Y ( ),( YXdists ). The result 

set of the user defined query is determined by a probability computation, which is 

formulated by the means of the counting distances:
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
 . The computation of this result set is 

infeasible, because of the very large space that leads to an exponential computational 

cost: 
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n

X ss , are the number of samples at each timestamp 

of X,Y respectively and n, is the length of the sequence.  

 

Inspired by the Euclidean distance, [24] resolves the similarity matching problem by 

computing the sum of the differences of the streaming time series random variables. 

Each random variable represents the uncertainty of the value in the corresponding 

timestamp. This formulation is statistically complex, since it works under the 

assumption that all the time series values follow a specific distribution, and we don’t 

have such knowledge since we observe dynamic phenomena that evolve over time. 

Besides, with this technique we cannot compute an exact value of the Euclidean 

distance between two uncertain time series, since only the mean and the deviation of 

each random variable at each timestamp are available. The uncertain distance 

between two uncertain series is also a random variable, something that increases the 

uncertainty factor in our infrastructure.     

 

To conclude, both [26] and [24] compute the similarity between two sequences of the 

same length, by summing the ordered point-to-point distances between them. In this 

sense, they assume that the comparing variables are measured exactly on the same 

scale (e.g all temperature data streams are scaled on a Centigrade scale).In our case, 

for HYDROBIONETS data processing, this assumption is not valid, since we have to 

monitor the similarity in different data streams, e.g between temperature and pressure 

data streams or water flow rate and pressure.  

   

Whereas traditional statistical machine learning provides well-established 

mathematical tools for data analysis [23][24][25], their performance is limited when 

processing high-dimensional data streams. To sum up, existing techniques for 
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monitoring pairwise stream correlations exhibit several drawbacks: In the recent 

work of [27], the problem of maintaining data stream statistics over sliding windows 

is studied, with the focus being only on single stream statistics. On the other hand, 

[28] introduced an extension for monitoring the statistics of multiple data streams, 

but the computation of correlated aggregates is limited to a small number of 

monitored streams. In addition, StatStream [20] has been proven a successful data 

stream monitoring system, which enables the computation of single- and multiple-

stream statistics. However, the main drawback of this technique is the difficulty to 

define an appropriate “similarity” function for data streams describing dynamic 

phenomena with unknown prior distributions, which is normally the case in an 

industrial environment.  

 

To overcome the limitations of the previous approaches, our uncertainty-aware data 

processing system is equipped with a computationally efficient “similarity 

extraction” module, which enables the monitoring of pairwise correlations between 

high-dimensional and heterogeneous sensor data streams in a fast online fashion. To 

this end, instead of computing all pairwise correlations between the original full-

dimensional data streams, we exploit the compressibility property of the discrete 

Fourier transform (DFT) to concentrate the inherent energy content of a given sensor 

stream in the first few high-amplitude coefficients, as in [20]. Then, an appropriate 

similarity measure, which incorporates the estimated underlying uncertainty, is 

defined and applied on the associated pairs of truncated DFTs as a proxy of the 

corresponding correlation coefficients. 
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5. Analysing Hydrobionet Data Streams 
 

The performance of the proposed system, in terms of managing the underlying data 

uncertainty and providing early warnings, is evaluated on two real datasets provided 

by ACCIONA Agua:  

 

 Data from electrochemical sensors: This dataset consists of measurements 

from 29 sensors of several types (pressure, temperature, conductivity, turbidity, pH, 

flow, and redox). The corresponding measurements cover a period of 1 month at a 

sampling rate of one measurement every three minutes. Full sensor specifications 

(such as, sensor precision, sensitivity, and resolution), along with the corresponding 

measurements were provided for each individual sensor. 

 Data from Biofilm sensors: This dataset consists of measurements from 4 

Biofilm and neighboring temperature sensors, located in different stages on the water 

treatment plant.  The corresponding measurements cover a period of 2 months with 

low sampling rate due to maintenance or non-operating purposes. Due to the 

limitation of this data set (we have at our disposal about 100 measurement values), 

we present some indicatively results using our approach on this data. 

 

The overall inherent uncertainty of the recorded sensor data is quantified over sliding 

windows. If not stated explicitly otherwise in the subsequent results, the sliding 

window size is set to 80 samples, which corresponds to a time interval of 

approximately 4 hours, while the step size is fixed to 1 sample that corresponds to a 

time-step of about 3 minutes. The expanded uncertainty is computed by fixing the 

coverage factor to k = 1.96, which is equivalent to a 95% confidence level.  
 

Our experimental evaluation attempts to answer the following questions: 

 

 What is the response of our system when we monitor the behavior of similar 

or dissimilar streams? Does the accuracy of our results increase when the 

sliding window size increases? 

 

 What are the results of our method when a stream presents values out of 

sensor measurement range and is this a coincidence or an extreme event? 

 

 What are the results of our approximation method to choose the top-k highly 

correlated streams? Does these results correspond to the results from 

Pearson’s correlation? What are the results when the uncertainty of the 

measurement values is computed? 

 

 How many streams can this approach handle simultaneously and what is the 

time cost? 

 

 What is the precision of our results using as benchmark the correlation 

factor? 

 



  

 

68 

 

 

 How good are the time savings when using our approach compared with 

other methods (Pearson’s correlation, StatStream, BRAID)? 

 

We perform the experimental evaluation on a 2.27 GHz Intel Core i5 PC with 4 GB 

main memory. Our approach runs in the high performance interpreted environment 

of MATLAB, using the language’s powerful array-based computation and the local 

functions for computing the DFT and Pearson’s correlation. 

 

Stability of our approach 
 

Concerning the stability of our proposed fast pairwise stream similarity monitoring 

approach, as a first step we examine the response of our approach when we monitor 

the behavior of similar or dissimilar streams. Figure 22 (a) and Figure 23 (a), show 

one stream pair with similar behavior and one stream pair with dissimilar behavior 

respectively. In both cases, we have 1000 stream values and we calculate peak 

similarity and Pearson’s correlation values for increasing sliding window size 

(20:20:100) and overlapping factor 50%.  

 

 

Figure 22: Comparison between peak similarity and correlation coefficient values for streams 

with similar behaviour, averaged over different sliding window sizes. 
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Figure 23 Comparison between peak similarity and correlation coefficient values for streams 

with dissimilar behaviour, averaged over different sliding window sizes. 

Figure 22 (b) and Figure 23 (b) present the average Pearson’s correlation and peak 

similarity values over different sliding window sizes. Indeed, both figures show that 

our approach is suitable for monitoring the stream behaviour. In case of similar 

streams, we have high peak similarity values (as the correlation values), in contrary 

with dissimilar streams that we have clearly lower values. In Table 8 we summarize 

these results for both cases.  

Table 8: Correlation and Peak similarity (using DFT reduction technique) values, for measuring 

the behaviour of similar or dissimilar streams. 

       WS 

Method 

 

20 

 

40 

 

60 

 

80 

 

100 

 

Peak 

similarity 

0,95380 0,95744 0,95750 0,95867 0,95908 Similar 

streams 

Correlation 0,98170 0,98309 0,98321 0,98323 0,98326 

Peak 

similarity 

0,22099 0,22163 0,22343 0,22487 0,22550 Dissimilar 

streams 

Correlation 0,18710 0,18327 0,18158 0,18145 0,18055 

 

In addition, a main feature that we observe is that the peak similarity values are less 

than the corresponding correlation coefficient values. This deflection is expected, 

since our approach measures the similarity between streams by using a common 

similarity measure (peak similarity) in combination with the DFT reduction 
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technique. The size of sliding window doesn’t affect our results, since we notice little 

changes after the third decimal digit. 

A critical issue that arises by applying our method in HYDROBIONETS’ project, is 

our method’s behaviour, when (i) one stream presents some values out of 

measurement range and this is a coincidence and (ii) two streams detect an extreme 

event. 

Figure 24 (a) presents two streams with similar behaviour and one stream records a 

value out of the sensor’s measurement range. In this case, our method should 

guarantee that we have a coincidental event, by recognizing inverse behaviour than 

the expected. By assuming that the streams in Figure 24 (a) have analogous 

behaviour, we expect under normal conditions to be highly correlated. In case of an 

abnormal event (that is recorded by one stream), we expect low correlation. Actually, 

in Figure 24 (b) (or in Table 9) we can see the similarity values for the above case 

from 4 different methods. The compared streams have length 1500 stream values, 

and the results are the averages of the computations in different sliding window sizes 

(from 500 to 100 with step size 100) with overlapping factor 50%.  

 

Figure 24: Averaged similarity values for one pair of data streams, with a value to be out of the 

sensor’s measurement range, as the window size decreases. 

These four different methods we used for monitoring the similarity between data 

streams in Figure 24 (a), are the Pearson’s, Spearman’s, Kendall’s correlations and 

our Peak similarity approach.  Both Spearman’s and Kendall’s similarity results 

present this pair of streams highly correlated, since both methods are not sensitive to 
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outliers. This behaviour is not suitable for our monitoring in Hydrobionets project.  

Instead, Pearson’s correlation and Peak similarity approach recognize the existence 

of this outlier, since their results indicate low correlation between these two streams. 

In this case, we can realise that there isn’t analogous behaviour between the two 

streams and we can ignore the outlier of the first stream. It worths to notice, that as 

the sliding window size decreases, the corresponding results of our approach and of 

Pearson’s correlation also decreases. This behaviour is the expected, since the 

influence of the outliers is more as the size of the sliding window that includes the 

outlier, decreases. That is the reason the similarity values are smaller as the window 

size decreases.  

Table 9: Similarity values from four different methods in case of the existence of an outlier. 

                    WS 

  Method 

 

500 

 

400 

 

300 

 

200 

 

100 

Peak similarity 0,67788 0,66784 0,65703 0,65118 0,64986 

Correlation 0,74104 0,72984 0,70803 0,68037 0,65316 

Spearman’s rho 0,99790 0,99857 0,99881 0,99959 0,99790 

Kendall’s tau 0,99658 0,99684 0,99667 0,99765 0,99658 

   

Figure 25 depicts the output of the COL extreme event detector when a temperature 

sensor records an extreme event. As we can see, this method identifies as extreme 

events only those measurements which are strictly higher than 17. The temperature 

and pressure sensor streams have analogous behaviour (as defined in pattern P6 in 

Table 5 ), so both of them are increasing in the case of the extreme event. We expect 

that these two streams would be highly correlated.  

 

Figure 25: Extreme event detection from the COL method, when we monitor the temperature 

and pressure data streams. 
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Figure 26: Averaged peak similarity values over different sliding window sizes (a) comparing 

original sensor measurements without incorporating uncertainty and (b) results with confidence 

intervals by incorporating the estimated expanded uncertainty. 

Figure 26 presents the values of our approach, when we monitor a pair of streams 

which detects an extreme event. The streams we compare have length of 600 stream 

values. The plotted values are the corresponding averages of our approach over 

different sliding windows sizes. The window size ranges from 50 to 150, with step 

size 20 and overlapping factor 50% of the window size. Furthermore, in Figure 26 

(b) we can see the averaged values when accounting for the underlying data 

uncertainty (with k=1.96). In both cases the response of our approach indicates that 

this pair of streams is highly correlated throughout the monitoring period. By this 

way we can guarantee the existence of the extreme event detected by COL method.  

 

Performance of our pairwise stream similarity approach 

A critical issue that arises from our approximation method in HYDROBIONETS’ 

project is the valid match for the top-k highly correlated streams with regard to 

Pearson’s correlation results. In Figure 27 (b) we can see the peak similarity and 

Pearson’s correlation values between a reference pressure stream and other types of 

streams (the labels Prx, Tx, FFx, FLx, PHx, Cx, BFx, TRx denote pressure, 

temperature, feed flow, filtrate, flow, Ph, conductivity and turbidity sensor streams 

respectively). We computed the average of the similarity values between streams 

with length 2000 measurement values, with sliding window size 100 measurement 

values and with overlapping factor 50% of the window size. Taking the provision of 

highly correlated streams in both cases (for peak similarity and Pearson’s correlation 
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methods) is the same: Fl2, Fl1, T1, PR1, T2, TR1, C1, FF2, T3, PH2, PH1, TR2, FF1, 

BF1, C2. 

An interesting point that we have to examine is whether the computation of 

uncertainty in our data streams affects these results. In Figure 27 (a) we can see the 

similarity values from peak similarity and Pearson correlation methods for the above 

streams after we have calculated the uncertainty in our data streams. The results 

about the provision of highly correlated streams are exactly the same: Fl2, Fl1, T1, 

PR1, T2, TR1, C1, FF2, T3, PH2, PH1, TR2, FF1, BF1, C2. To conclude, the uncertainty 

estimation in our data streams, doesn’t affect the final results for finding the top-k  

highly correlated data streams. 

 

Figure 27:Peak similarity and Pearson’s correlation values between one reference stream 

(pressure stream) and 15 other types of streams (a) including the uncertainty of data (b) without 

the uncertainty computation. 

Our proposed approach computes the streams similarity at the end of each sliding 

window. We can increase the number of compared streams at the cost of increasing 

the delay in reporting results. Figure 28 shows the execution time by finding the pairs 

of streams which are related above a user defined threshold with a referenced stream, 

as the number of comparing streams increases. For this experiment the data streams 

are generated using the random walk pattern. For streams s,  





i

j

ji us
1

),5.0(100  

where i=1,2,…n (n=stream length) and uj is a set of uniform random real numbers in 

[0.1].  The streams have length 1000 stream values and the similarity results are the 
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averages of similarity computations in sliding windows with size 100 and 

overlapping factor 50 stream values. 

 

 

Figure 28: The number of streams that our proposed approach with peak similarity method can 

handle in an online fashion. 

Comparing with other methods 

As mentioned before, the computational complexity, and subsequently the execution 

time of our results is an important factor which affects the overall performance of our 

proposed uncertainty-aware data management system. To this end, we compare the 

performance of our proposed approach, in terms of execution times for increasing 

stream lengths against the typical Pearson’s correlation coefficient and two other 

state-of-the-art methods, namely, BRAID [19] and StatStream [20]. BRAID can 

handle data streams of semi-finite length, incrementally, quickly, and can estimate 

lag correlations with little error. On the other hand, as mentioned before, StatStream 

resembles more our approach, by finding high correlations among sensor pairs based 

on DFTs and a three-level time interval hierarchy. 

For the BRAID algorithm we set the correlation lag to be equal to zero. For the 

StatStream algorithm, a simple hash function is used based on the mean value of 

each stream. Keeping the integer part of the mean values, the streams are mapped to 

appropriate cells in a grid structure. Doing so, only the correlations between 

neighbouring cells are computed.  

Figure 29 compares the execution times of our proposed method with the other three 

alternatives (Pearson’s correlation, BRAID and StatStream), as a function of the 

stream length. The similarity values are computed over one pair of streams with 
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different stream length. The results reveal a significant improvement in execution 

time achieved by our method, which is more prominent for higher stream lengths. 

We observe that the execution time of our method remains almost constant over the 

whole selected range of stream lengths, in contrast to the naïve and BRAID methods, 

whose execution times increase rapidly as the stream length increases.  

 

Figure 29: Comparison of execution times, as a function of the stream length for four methods: 

a)Peak similarity (our proposed), b) StatStream, c)BRAID and d) Naïve Method (correlation 

coefficient) 

Our proposed approach and StatStream are performed with low execution time 

because the similarity values from both methods are estimated with few stream 

values due to DFT approximation. BRAID algorithm is characterized by gradual 

increase for increasing stream length, since it employs all the values of the recorded 

streams. The increased execution time of StatStream, compared to our approach is 

due to the hash function, which involves more computations for the stream mapping. 

We expect though that the performance of StatStream could be enhanced, by 

designing a more efficient hash function. 

There are different similarity measures as presented in Appendix B, and one might 

wonder why we don’t use one of them. We computed the precision results, by 

applying each different similarity measure to our approximation method. We use as 

true reference set the results from Pearson’s correlation coefficient. Precision is the 

percentage of the similar pairs of streams above a pre-defined threshold identified by 

the different similarity measures, which are truly similar (we compare them with the 

true reference set). This experiment is performed between one reference stream and 

300 different data streams (they were generated using the random walk pattern) with 

1500 stream values length. The similarity values are computed over sliding windows 
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with size 100 and overlapping factor 50 stream values. For each 500 stream values 

we compute the averages of the recorded similarity values and we report the highly 

correlated (εth>0.75) stream pairs between the reference and the other streams. Based 

on these results, we compute the precision measure. In Table 10, we can see the 

precision results, by applying the different similarity measures referred to Appendix 

B- Similarity measures in our approximation technique.  

Table 10: Precision results from different similarity measures 

Common similarity 0.763 0.756 0.758 

Mean similarity 0.773 0.766 0.774 

Root mean similarity 0.791 0.788 0.793 

Peak similarity 0.961 0.954 0.937 

 

Our experimental evaluation is completed with the applying of our proposed 

approximation method for monitoring the data streams behaviour, between Biofilm 

and temperature sensor data streams from the second real data set provided by 

ACCIONA Agua. In Figure 30 we can see the behaviour of Biofilm-Temperature 

sensor data streams pairs for the few available samples of this data set. 

  
 

  

Figure 30: Behaviour between the pairs of Biofilm and Temperature sensor data streams. 
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Table 11 includes the similarity values and the corresponding errors for the 

behaviour of the four pairs of Biofilm-temperature sensor data streams. For this 

experiment we computed the average of the similarity results between the 

corresponding pairs of Biofilm and temperature sensors, concerning a sliding 

window with size 30 and overlapping factor 20 stream values. Unfortunately, we 

cannot conclude to valid inferences for applying our proposed similarity technique to 
bacteriological data streams. The available data set is limited and we cannot examine 

interesting cases. 

Table 11: Similarity values for four pairs of Biofilm and Temperature sensor data streams with 

the corresponding error 

 Pair 1 Pair 2 Pair 3 Pair 4 

Correlation 0.56485 0.56846 0.51653 0.62063 

Peak similarity 0.52092 0.53632 0.47652 0.59708 

Error 0.04392 0.032134 0.04 0.02354 

 

Furthermore, our future work includes the performance study of our system, by 

applying our approximation similarity approach to bacteriological data streams, since 

these streams present completely different distributions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

78 

 

 

6. Conclusions and future work 
 

Designing efficient data management systems capable of accounting for the inherent 

data uncertainty and providing early warning notifications is a challenging task in 

large-scale industrial infrastructures. The major issue of this thesis includes the 

proposition of an integrated uncertainty-aware data management system, which also 

supports timely detection of extreme events and fast online monitoring of pairwise 

sensor similarities in order to guarantee the validity of the detected extreme events. 

Comparison with state-of-the-art stream processing techniques revealed an improved 

performance of our proposed framework in terms of achieving accurate detection of 

extreme events, in conjunction with extraction of highly similar (correlated) pairs of 

possibly heterogeneous sensors, with significantly decreased execution times.  

 

As a final outcome, we envisage to provide a set of data services to manipulate 

sensor measurements in large-scale industrial infrastructures, as well as to identify 

appropriate monitoring tools for the characterization of the generated data quality in 

real time. As a further extension, we will focus on the design of an automatic rule for 

the time-varying adaptation of the threshold εth,new, as well as the design of novel 

similarity measures of even lower computational complexity, while still 

approximating accurately the behavior of the correlation coefficient. In our future 

research we intend to concentrate on the application of the uncertainty propagation 

rules for quantifying the uncertainty between sensor data streams produced by 

heterogeneous data sources. Future work will involve the extension of peak 

similarity measure in a multiscale framework by employing more power transforms 

than the Discrete Fourier Transform. A characteristic example is the Wavelet 

Transform to extract the inherent frequency content of sensor streams. The next stage 

of our research includes the performance study of our system by applying our 

approximation similarity approach to bacteriological data streams, since these 

streams present completely different distributions.  
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Appendix A- Correlation and Euclidean distance 
 

The purpose of a measure of similarity is to compare two lists of numbers (i.e. 

vectors), and compute a single number which evaluates their similarity. Most 

measures were developed in the context of comparing pairs of variables (such as 

income or attitude toward abortion) across cases (such as respondents in a survey). In 

other words, the objective is to determine to what extent two variables co-vary, 

which is to say, have the same values for the same cases. 

 

One problem with comparing two variables is that they may not be measured on the 

same scale. The general principle is that a measure of similarity should be invariant 

under admissible data transformations, which is to say changes in scale. Thus, a 

measure designed for interval data, such as the familiar Pearson correlation 

coefficient, automatically disregards differences in variables that can be attributed to 

differences in scale. All valid interval scales, applied to the same objects, can 

translated into each other by a linear transformation. This means that to see how 

similar two interval variables are, we must first do away with differences in scale by 

either standardizing the data (this is what the correlation coefficient does), or by 

trying to find the constants m and b such that the transformed variable mX+b is as 

similar as possible to Y, and then reporting that similarity. Likewise, a measure 

designed for ordinal data should respond only to differences in the rank ordering, not 

to the absolute size of scores. A measure designed for ratio data should control for 

differences due to a multiplicative factor. 

 

Euclidean Distance 
  

The basis of many measures of similarity and dissimilarity is Euclidean distance. The 

distance between vectors X and Y is defined as follows: 

 

In other words, Euclidean distance is the square root of the sum of squared 

differences between corresponding elements of the two vectors. Note that the 

formula treats the values of X and Y seriously: no adjustment is made for differences 

in scale. Euclidean distance is only appropriate for data measured on the same scale. 

As we can see in the following (in the section on correlation), the correlation 

coefficient is (inversely) related to the Euclidean distance between standardized 

versions of the data. 

 

Euclidean distance can be re-expressed in terms of the differences in level, scatter 

and shape of the variables. 

 

𝑑𝑥𝑦
2 = ∑ (𝑥𝑖 − 𝑦𝑖)2

𝑖 = ∑ 𝑥𝑖
2

𝑖 + ∑ 𝑦𝑖
2 − 2 ∑ 𝑥𝑖𝑦𝑖𝑖𝑖      (Equation 1) 

 

 

The scatter or standard deviation of a variable x can be written as 
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𝑠𝑥 =
∑ 𝑥𝑖

2
𝑖

𝑛
− 𝑚𝑥

2 

So,  

 

𝑛(𝑠𝑥 + 𝑚𝑥
2) = ∑ 𝑥𝑖

2

𝑖

 

 

Substituting this in the equation for distance squared, we get 

 

𝑑𝑥𝑦
2 = 𝑛(𝑠𝑥 + 𝑚𝑥

2) + 𝑛(𝑠𝑦 + 𝑚𝑦
2) − 2 ∑ 𝑥𝑖𝑦𝑖𝑖      (Equation 2) 

 

The correlation between x and y can be written as 

 

𝑟𝑥𝑦 =

∑ 𝑥𝑖𝑦𝑖𝑖

𝑛 − 𝑚𝑥𝑚𝑦

𝑠𝑥𝑠𝑦
 

Therefore, 

 

𝑛(𝑠𝑥𝑠𝑦𝑟𝑥𝑦+𝑚𝑥𝑚𝑦) = ∑ 𝑥𝑖𝑦𝑖

𝑖

 

Substituting that into Equation 2, we get 

 

𝑑𝑥𝑦
2 = 𝑛(𝑠𝑥 + 𝑚𝑥

2) + 𝑛(𝑠𝑦 + 𝑚𝑦
2) − 2𝑛(𝑠𝑥𝑠𝑦𝑟𝑥𝑦+𝑚𝑥𝑚𝑦) 

 

𝑑𝑥𝑦
2

𝑛
= 𝑠𝑥 + 𝑚𝑥

2 + 𝑠𝑦 + 𝑚𝑦
2 − 2𝑠𝑥𝑠𝑦𝑟𝑥𝑦−2𝑚𝑥𝑚𝑦 

 

𝑑𝑥𝑦
2

𝑛
= (𝑚𝑥

2 + 𝑚𝑦
2 − 2𝑚𝑥𝑚𝑦) + (𝑠𝑥 + 𝑠𝑦) − 2𝑠𝑥𝑠𝑦𝑟𝑥𝑦 

 

𝑑𝑥𝑦
2

𝑛
= (𝑚𝑥 − 𝑚𝑦)2  +  (𝑠𝑥 + 𝑠𝑦) −  2𝑠𝑥𝑠𝑦𝑟𝑥𝑦 

 

So the average squared Euclidean distance is a function of the means, standard 

deviations and correlation between the variables. 

 

Correlation 
  

The correlation between vectors X and Y are defined as follows: 

  

 
where  and   are the means of X and Y respectively, and   and   are the 

standard deviations of X and Y. The numerator of the equation is called the 
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covariance of X and Y, and is the difference between the mean of the product of X 

and Y subtracted from the product of the means. Note that if X and Y are 

standardized, they will each have a mean of 0 and a standard deviation of 1, so the 

formula reduces to:  

 
Whereas Euclidean distance was the sum of squared differences, correlation is 

basically the average product. There is a further relationship between the two. If we 

expand the formula for Euclidean distance, we get this: 

   
i i i

iiii

n

i

ii yxyxyxyxd 2)(),( 222
 

  

But if X and Y are standardized, the sums  2x and  2y  are both equal to n. That 

leaves  xy as the only non-constant term, just as it was in the reduced formula for 

the correlation coefficient. Thus, for standardized data, we can write the correlation 

between X and Y in terms of the squared distance between them: 
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Appendix B- Similarity measures 
 

As it was mentioned in [42], the similarity between two sequences of the same length 

can be calculated from different similarity measures. Let two data streams, 

nxxxX ,.., 21 and nyyyY ,.., 21 some similarity measures are: 

 

 Common similarity:  
ii

ii

yx

yx
YXnumSim




1),(  

 Mean similarity: 



n

i

ii yxnumSim
n

YXtsim
1

),(
1

),(  

 Root mean square similarity: 



n

i

ii yxnumSim
n

YXrtsim
1

2),(
1

),(  

 

These measures provide values in range [0,1]. The upper boundary indicates that the 

vectors are exactly the same and the 0 value indicates the independence.  


