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GUDU: Geometrically-constrained Ultrasound Data
augmentation in U-Net for echocardiography semantic

segmentation

Abstract

Echocardiography is a very important medical examination that helps in the
computation of critical heart functions. Boundary identification, segmentation and
estimation of the volume of key parts of the heart, especially the left ventricle, is
an important but difficult and time-consuming process, even for the most experi-
enced cardiologists, due to shadows and speckle noise that characterize ultrasound
images. In recent years, research has focused on the automatic segmentation of
heart through artificial intelligence techniques and especially with the use of deep
learning. Our work is part of this research framework.

We implemented a neural network based on U-Net and trained it, using a
large public dataset of cardiac ultrasound images (CAMUS dataset), to extract
the areas of the left ventricle, myocardium and left atrium. In order to optimize
the training process, we have developed a data augmentation method based on the
medical practice in echocardiography.

The evaluation of our method by the independent platform of the public com-
petition CAMUS, showed an overall improvement in the segmentation accuracy
but also in the estimation of the volume and the ejection fraction of the left ven-
tricle. Specifically using the metric Dice for geometric metrics, the performance of
our method for the epicardium reached 0.956 for the end-diastolic phase and 0.950
for the end-systolic phase. For the clinical metrics of the left ventricle volume,
the Pearson correlation coefficient was used where our method gave 0.973, 0.974,
0.871 for the end-diastolic, end-systolic phase and ejection fraction respectively.





GUDU: Γεωμετρικά προσδιορισμένη αύξηση
δεδομένων για την σημασιολογική τμηματοποίηση

εικόνων υπερήχου καρδιάς με χρήση συνελικτικών

νευρωνικών δικτύων

Περίληψη

Η υπερηχοκαρδιογραφία είναι μια πολύ σημαντική ιατρική εξέταση που βοηθάει στον

υπολογισμό κρίσιμων καρδιακών λειτουργιών. Η οριοθέτηση, η τμηματοποίηση και ο

υπολογισμός του όγκου των βασικών μερών της καρδιάς και ιδιαίτερα της αριστερής

κοιλίας είναι μια σημαντική αλλά δύσκολη και χρονοβόρα διαδικασία, ακόμα και για

τους πιο έμπειρους καρδιολόγους, λόγω των σκιών και του αυξημένου κοκκώδη θο-

ρύβου που χαρακτηρίζουν τις εικόνες υπερήχου. Τα τελευταία χρόνια έχει στραφεί η

έρευνα στην αυτόματη τμηματοποίηση των μερών της καρδιάς μέσω τεχνικών τεχνη-

τής νοημοσύνης και ειδικά με την χρήση της βαθιάς μάθησης. Σε αυτό το πλαίσιο

εντάσσεται η δουλειά μας.

΄Εχουμε υλοποιήσει ένα τεχνητό συνελικτικό νευρωνικό δίκτυο και το έχουμε εκ-

παιδεύσει, χρησιμοποιώντας ένα μεγάλο δημόσιο σύνολο εικόνων υπερήχου καρδιάς

(τράπεζα CAMUS ), ώστε να εξάγει τις περιοχές της αριστερής κοιλίας, του μυο-
καρδίου και του αριστερού κόλπου. Για την καλύτερη και εξειδικευμένη εκπαίδευση

του, έχουμε αναπτύξει μια αύξηση δεδομένων βασιζόμενοι στην ιατρική πράξη της

υπερηχοκαρδιογραφίας.

Η αξιολόγηση της μεθόδου μας από την ανεξάρτητη πλατφόρμα του δημόσιου δια-

γωνισμού CAMUS, έδειξε σημαντικά ποσοστά βελτίωσης στην τμηματοποίηση αλλά
και στον υπολογισμό του όγκου και του κλάσματος εξώθησης της αριστερής κοιλίας.

Συγκεκριμένα χρησιμοποιώντας την μετρική Dice για τα γεωμετρικά μεγέθη, η επίδο-
ση της μεθόδου μας για το επικάρδιο έφτασε στο 0.956 για την διαστολική φάση και

0.950 για την συστολική. Για τα κλινικά μεγέθη του όγκου της αριστερής κοιλίας

χρησιμοποιήθηκε ο συντελεστής συσχέτισης Pearson όπου η μέθοδος μας απέδω-
σε 0.973, 0.974, 0.871 για την διαστολική φάση, τη συστολική φάση και το κλάσμα

εξώθησης αντίστοιχα.
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Chapter 1

Introduction

1.1 General

Cardiovascular diseases (CVDs) have become the leading cause of death in indus-
trialized countries [5]. Major advancements in cardiovascular research and practice
have been made in recent decades, with the goal of improving heart illness detection
and treatment, as well as lowering CVD mortality. Modern medical imaging tech-
niques, such as magnetic resonance imaging (MRI), computed tomography (CT),
and ultrasound (US), are now widely used because they allow for non-invasive
qualitative and quantitative assessment of cardiac anatomical structures and func-
tions, as well as support for diagnosis, disease monitoring, treatment planning,
and prognosis.

Even with the advancement of new technology, the ultimate choice on analy-
sis is heavily reliant on operator expertise. Diagnostic mistakes are a significant
unsolved issue. Furthermore, not only may cardiologists disagree on picture inter-
pretation, but the same observer might get various conclusions when a reading is
repeated. High workloads in clinical practice on a daily basis may contribute to
this inaccuracy, and all cardiologists require accurate perception in this sector [19]

Cardiac image segmentation is a critical initial step and can help cardiologists
in their observations and decisions in a variety of applications. Separates the pic-
ture anatomically into a number of semantically significant sections from which
quantitative measurements such as myocardial mass, wall thickness, left ventri-
cle (LV) and right ventricle (RV) volume, ejection fraction (EF), and so on may
be retrieved. The LV, RV, left atrium (LA), right atrium (RA), and coronary
arteries are typically the anatomical features of interest for cardiac image segmen-
tation. Figure 1.1 shows an overview of typical activities related to cardiac image
segmentation, including applications for the three most often utilized modalities,
MRI, CT, and ultrasound. In our work, we focus on Cardiac ultrasound imaging,
commonly known as echocardiography, a vital clinical technique for evaluating car-
diovascular function. Because of its mobility, low cost, and real-time capabilities,

1
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Figure 1.1: Overview of cardiac image segmentation tasks for different imaging
modalities. Figure source: ”Deep Learning for Cardiac Image Segmentation: A
Review” [5]

it is frequently employed as the first imaging assessment in clinical settings. Tra-
ditional methods such as active contours, level-sets, and active shape models have
been used to automate the segmentation of anatomical structures in ultrasound
images [26], but the achieved accuracy is limited by various ultrasound imaging
problems such as low signal-to-noise ratio, varying speckle noise, low image con-
trast (especially between the myocardium and the blood pool), edge dropout, and
shadows cast by structures such as dense muscle. This characteristic is common
to all kind of echocardiographic views (Figure 1.2), and is crucial to B-mode view
because is the most usual in clinical practice (B-mode in known as 2D view).

Deep Convolutional Neural Networks (CNNs) have recently obtained cutting-
edge outcomes in biomedical image segmentation applications [5] [19]. The U-net
design [30] in particular, proven to be irrespective and fully effective and could
be extensively implemented with slight or large modifications. The U-net design
inspires the majority of the highest performing ventricular segmentation algorithms
and is also the base in our proposed segmentation method (see Chapter 2).

1.2 Dataset

One of the challenges in applying deep learning algorithms for ventricle segmen-
tation was the lack of an adequate and accurate dataset for training. However,
Leclerc et al. [23] offered a labeled dataset containing a range of echocardiograms
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Figure 1.2: ”Variety of echocardiographic images needed to be recognized by arti-
ficial intelligence systems.” Figure source: ”Utilization of Artificial Intelligence in
Echocardiography” [19]

of varying quality (good, medium, and poor). Furthermore, in order to provide
a trustworthy dataset, Leclerc et al. [23] incorporated shadows and dropouts in
echocardiograms. Poor quality echocardiograms, on the other hand, were over-
looked during the training phase, according to their work. Their CAMUS dataset
includes four- and two-chamber acquisitions from 500 patients, as well as manual
segmentation (references) of the Left Ventricle (LVEndo), Myocardium (MYO),
and Left Atrium (LA). Echocardiographic pictures were obtained using GE Vivid
E95 ultrasound scanners equipped with the GE M5S probe. Each patient’s apical
four-chamber and two-chamber view sequences were exported and manually anno-
tated at end diastole (ED) and end systole (ES). As a result, the CAMUS dataset
contains 2000 echocardiographic pictures.

Three cardiologists worked together to manually annotate the 2D echocardio-
graphic pictures in the CAMUS dataset, adhering to the same segmentation pro-
cedure.The first cardiologist established a consistent segmentation methodology,
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which the other cardiologists followed (Figure 1.3). The annotations of 50 pa-
tients from the CAMUS dataset are not available, and their segmentations must
be evaluated online by participating in their well organized evaluation platform
(see Chapter 3).

1.3 Related work

According to last published systematic review of Deep Learning echocardiography
image analysis [10], there is a limitation in the field due to the lack of public
datasets. A Google Scholar research in echocardiography image segmentation gives
methods and experimental investigations that employ private datasets and is hard
to compare our work with other methodologies. So it is only possible to present
the state-of-the-art for articles that used the CAMUS Dataset [23] and DICE
coefficient metric for evaluation of LV, MYO and ATR segmentation accuracy or
the crucial LV Volume in ml (for both End Diastolic and End Systolic phase)
and Ejection Fraction in same public data and more specific, in the same test set
that is available in CAMUS online platform after the registration. The mentioned
last paper Review (2021) [10], presents works that use CAMUS dataset for Left
ventricle ejection volume end fraction. Some works uses the non-notated test
dataset, we used in our proposed method. Some other uses only a part of training
dataset as validation and test set:

Leclerc et al. [23] who published the CAMUS dataset, assessed the extent
to which state-of-the-art Deep Convolutional Neural networks (DCNN) Encoder-
Decoder methods can evaluate 2D echocardiographic images, that is, segment car-
diac structures and estimate clinical indexes in a single data set and they work
on two versions of U-Net. U-Net 1 optimized for speed, and U-Net 2 optimized
for accuracy. They also implement a Anatomically Constrained Neural Network
(ACNN) original published by Oktay et al. [27] fitted to CAMUS dataset. Seg-
mentation results for geometrical and clinical metrics is presented analytically in
Tables 3.1, 3.2 discussed in Results Chapter 3 compared with our proposed method
results, because, by the time this text is written, these was the only results pub-
lished in Leader board in CAMUS online evaluation platform.

Leclerc et al. [21] presented a new mechanism of attention for refining the
endocardium segmentation and epicardium in 2D echocardiography. The model
used two U-Net networks to derive the region of interest from the image before
segmentation. The model used parameterized sigmoids to perform threshold oper-
ations. The architecture was trained from end-to-end and named Refining U-Net
(RU-Net). DICE results were (0.921 ± 0.054) for VE-Endo and (0.948 ± 0.006)
for VE-Epi.

Smistad et al. [34] transferred learning from a trained model to segment views
from A2C/A4C echocardiographic window data from 106 patients with ALAX
vision in conjunction with the CAMUS Dataset, which had 500 patients with
A2C/A4C views. However, the results were unsatisfactory, reducing accuracy.



1.3. RELATED WORK 5

They thus proposed a network with A2C, A4C and ALAXMulti-view segmentation
to segment the LV, Myocardium and Atrium, respectively with DICE of (0.921 ±
0.03), (0.786 ± 0.08) and (0.892 ± 0.08).

Leclerc et al. [22] presented a new multi-stage care network to improve the
robustness of the segmentation of ECHO 2D LV structures. The network was
built around the U-Net architecture and consisted of two stages: The first network
extracted the LV region and its mask. The second network used the extracted
image to segment the region. The solution’s performance was assessed with the
most extensive set of current open access 2D echocardiographic data, the CAMUS
Dataset. The average Correlation Coefficient result was 0.96 to detect EDV and
ESV, and the result for MAE was 7.6 ml. For EF, the correlation coefficient was
0.83 and 5.0 for MAE.

Amer et al. [3] proposed a new method based on Deep Learning called Res-
DUnet for LV segmentation and to estimate EF. The model was based on embed-
ded U-Net with extended convolution, where residual blocks were used instead of
U-net network units. Result was a DICE of 0.951 ± 0.030.

Zyuzin et al. [40] trained a model by combining the U-Net architecture with
Residual Blocks, and the U-net ResNet-34 architecture obtained respective DICE
results of 0.9348, 0.9459, 0.9038 for EDV, ESV and EF.

Furthermore search for recently related work, lead us to present papers or
articles that uses CAMUS dataset and have an interesting proposal and common
characteristics with our work:

Yasser Ali et al. [2] introduced a hybrid net, denoted by ResU (using U-Net and
a modified version of Res-Net), and an efficient automatic segmentation approach
for echocardigraphic images. They had a random rotation augmentation and the
model produced a average DICE score of 0.97 on the testing set for ED and ES.

Fei Liu et al. [24] proposed a novel PLANet method for the semantic segmen-
tation of 2D echocardiographic images. They evaluated the proposed PLANet on
the CAMUS dataset and they achieved DICE score 0.951 for ED and 0.931 for ES
on the testing set.

Nathan Painchaud et al. [29] proposed apost-processing pipeline to enforce
temporal consistency in 2D+time echocardiography segmentation. The temporal
consistency is enforced as a constrained regularization on the curves w.r.t. time of
seven clinically relevant. The evaluation of their method on CAMUS dataset gave
an average DICE Score 0.951.

Truong Dang et al. [9] presented a novel weighted ensemble of deep learning
models for the problem of medical image segmentation. The probability predictions
by the segmentation algorithms are combined based on weighted combining for a
final prediction. The evaluation of their method on CAMUS dataset gave an
average DICE Score 0.929 for LV, 0.954 for MYO and 0.935 for ATR.
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Figure 1.3: Typical images extracted from the CAMUS dataset [23]. Endocardium
and epicardium of the left ventricle and left atrium wall are shown respectively in
green, red and blue. [Left] input images; [Right] corresponding manual annota-
tions.



Chapter 2

Proposed Learning Method

Figure 2.1: Overall training and testing method including the Ensemble Mean
prediction schema we used.

2.1 Data pre-processing

CAMUS dataset [23] include images of different resolution. Our training imple-
mentation, depends on U-Net architecture, with Convolutional, MaxPooling and

7
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Batch Normalization layers, all of which are invariant to the size of the input im-
age. Also U-Net architecture presupposes input size multiple of 2 [30]. In order to
overcome this issue, for every image, we make a new square image with the desired
size, resize and paste the old image in the center, keeping the same ratio and pad
with zero the non ROI (Region Of Interest) area as shown in Figure 2.2.

This procedure is applied to whole training dataset, including two-chamber
(2CH), four-chamber (4CH) view acquisition for both End Diastole (ED), End
Systolic (ES) and the corresponding ground truth images.

Considering that dataset contains images with width larger than 512 pixels,
we choose Nearest Neighbor Interpolation (NN) for downscaling resampling filter,
in resize procedure.

Figure 2.2: Pre-processing for two chamber, four chamber, both ED and ES and
the corresponding ground truth images of the dataset.

In order to succeed in all above image size transformations, resize etc, we use
the State of the art Python image processing tools, Pillow [7], a friendly Python
Imaging Library (PIL) fork by Alex Clark and Contributors and SimpleITK image
analysis library [38], a simplified, open-source interface to the Insight Segmenta-
tion and Registration Toolkit (ITK). SimpleITK help us to read the original med-
ical image data from the dataset and Pillow to do the necessary transformations.
NumPy [14], the fundamental package for scientific computing with Python also
used.
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2.2 Data augmentation

The importance of data augmentation is commonly accepted, especially for CNN
that are heavily reliant on big data to avoid overfitting. A successful data augmen-
tation process can improve both performance and generalization in case of limited
training data [32]. There are general and simple techniques in implementation
that work in most cases like geometric transformations, color space augmenta-
tions, kernel filters, mixing images, random erasing, feature space augmentation,
adversarial training and recently generative adversarial networks (GAN) that pro-
duce new pseudo realistic images.

We go one step further from the basics and we designed a specialized data
augmentation adapted to the echocadiographic image data. The central idea is
based on the fact that human hand is involved in echocardiography procedure
and is highly subjective the final ultrasound sequence result. Cardiologists and
radiologists follows a protocol during the medical examination. There are special
recommendations for the echocardiographic assessment of regional LV function,
LV mass, LV size etc and probe placement and orientation is highly crucial [20].
Small movements of the ultrasound probe with respect to tissue during the medical
examination, can give total different depiction of the cardiac parts (LA, LV, RV,
ATR etc). Also low contrast settings in ultrasound scanner can effects the human
eye ability to distinguish the borders between the cardiac parts, eg between LV
cavity and myocardium.

Based on the above all factors, we designed specifically for the cardiac ul-
trasound images three novel augmentation techniques, based on a virtual probe
orientation and a virtual low-contrast scanner setting that produces an intensity
transformation (Figure 2.3).

In order to succeed in three data augmentation techniques, we use the State
of the art Python image processing tools, Pillow [7], a friendly Python Imaging
Library (PIL) fork by Alex Clark and Contributors and NumPy [14], the funda-
mental package for scientific computing with Python.

2.2.1 ”Cone” random position augmentation

Instead of doing random rotations from the center of the images, we choose a more
specific way. We call ”cone” the ROI, because of the shape the echo gives to the
image. A virtual move of the probe can gives us different augmented images as
a result of the rotation from the top of the ”cone”. This is actually the rotation
around the axis, which is perpendicular to the image plane, passing through the
beginning of the ”cone”. We choose 6 random rotations (-3, -6, -9, 3, 6, 9 degrees)
in order the ROI to fit to the square frame of the image (Figure 2.4). This virtual
probe movement gives new images that are commonly produced via patient clinical
examination.
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Figure 2.3: Three augmentation techniques

2.2.2 Perspective random position augmentation

As above, we designed a second virtual movement of the probe, a twist around
vertical axes. We assume that this twist of the probe corresponds to a shift of the
ultrasound projection to a different plain. This small move can give a completely
different ultrasound image. (Figure 2.5).

Perspective Transformation data augmentation for object detection has already
performed with improvements in performance and the robustness of the detection
model on small datasets [36]. In our case we had to mimic images taken at the
angle that the camera (probe) moved from the original position in such a way as
shown in the figure 2.5. In order the final augmentation result to have a realistic
ultrasound image, we used a special designed plane measuring method [8]. In
[8] there is a detailed plane to plane homographies development based on the
camera model [31]. The mentioned method help us to determine the necessary
coefficients needed for performing the perspective transformation by giving the
vertices of the current and the resulting plane using a random choose of a plane
offset (Figure 2.6). This is actually the rotation around the axis which is vertical
on to the image, passing from the middle of the image top side. In case of 256×256
images, the plane pixel offset is a random choose from the set (-50, -40, -30, -20,
-10, 10, 20, 30, 40, 50). This method gives us eight possible new augmented images
(Figure 2.5).
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Figure 2.4: Probe virtual movement in a way shown in figure gives as 6 possible
augmented images. The top of the ”cone” is the center of the random rotation.

2.2.3 Myocardium intensity augmentation

Low contrast settings in ultrasound scanners can change the final image view
result and can make it difficult for the human eye to discern between cardiac
sections, such as the LV cavity and myocardium. For this type of augmentation
we used an already tested method by Simantiris et al. [33] based on intensity
transformation that was developed specifically for cardiac MR images, carefully
customized in our ultrasound image case. The intensities of the two locations
are altered to provide augmented images in order for the network to learn how
to accurately identify the left ventricular (LV) cavity from the myocardium. The
probability density functions of the two areas, the myocardium and the LV cavity,
are first calculated and the intensity contrast between the two distributions is
then decreased using the Bhattacharyya distance [4]. Detailed steps and used
formulas are in mentioned technique [33]. Figure 2.7 shows a myocardium intensity
transformation augmentation example.
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Figure 2.5: Probe virtual twist movement in a way shown in figure gives as 8
possible augmented images.

2.3 Proposed Network Architecture

We propose a neural network based on the original U-Net architecture [30], with
the ability to add one more down-sampling and up-sampling layer. U-net design
comprises of an encoder path (contracting down-sampling path) and a decoder path
(expansive up-sampling path) (Figure 2.8). Convolution operation, max pooling,
ReLU activation, concatenation, and up convolution layers make up the network,
with the ability to include Batch Normalization and Dropout layers in our im-
plementation. The input image is initially fed into the network. Image data is
subsequently sent throughout the network via all conceivable routes. The four
probability slices per class will show at the last layer, as an output of the Softmax
function. Each block represents a multi-channel feature map, with the spatial di-
mension of each box shown as the third dimension number. Blue and gray boxes
show convolution and Batch Normalization respectively, followed by a nonlinear
activation function, a rectified linear unit (ReLU in our case).

Max pooling is next, a type of non-linear down-sampling that decreases the
size of a feature map. The number of feature channels is expanded by a factor of
two after each max pooling process. Convolution and max-pooling are combined
to create a contracting path, which increases the number of feature maps. Fur-
thermore, the resolution of feature maps has been reduced. Usually in common
CNN networks, all feature vectors are mapped to a single output vector. To build
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Figure 2.6: Custom perspective transformation based on a virtual probe twist and
a plane to plane homographies method (a 256×256 image case paradigm).

a high-resolution segmentation map, the U-net has an extra expansive path. This
expansion path is made up of a series of up-convolutions (transposed convolution)
and concatenation of features maps obtained from the contracting path.

The up-convolution layer, maps each feature vector to the 2×2 output window
using a learning kernel, followed by the activation function (eg ReLU). For bet-
ter localization and learning representations, higher resolution features are copied
from the contracting path to the matching expansion level. By concatenating the
output of the transposed convolution layer with the feature maps from the down-
sampling at the same level at every block of the up-sampling, we get more accurate
localization. The segmentation map in our case consists 4 channels (classes/labels):
Background, Left Ventricle, Myocardium, Left atrium. It is computed by a pixel-
wise soft-max function over the final feature map.

Our method is based on the ability to use multi-training parameters in training
procedure (2.5), including all the crucial network architecture parameters, such as
the depth of the U-Net (number of layers), the capability of Dropout and Batch
Normalization layers, and the number of filters. This fully parametric availability
of the network architecture gives us the ability to determine the lowest resolution in
feature maps, the total number of training parameters and increases the flexibility
to choose parameters that effects the accuracy and robustness during the training
process.
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Figure 2.7: Myocardium intensity transformation augmentation paradigm.

2.4 Loss Function

We used 2 different loss functions in our training process (2.5). First the Keras
[6] build in Categorical Cross Entropy Loss function and then a custom Dice loss
function based on Simantiris et al. [33] tested method, customized for our case.

The Categorical Cross Entropy Loss function formula is:

LCCE = − 1

N

N∑
i

3∑
c=0

Tic log(Yic) (2.1)

where N is the number of batch samples, c the label of the class (4 classes), Tic is
1 if sample i is in class c and 0 otherwise and Yic is the predicted probability that
sample i is in class c.

Above definition shows that loss depends only on the probability assigned to the
true class and has no dependence on how the rest of the probability is distributed.
Cross entropy assumes that all misclassification costs are of equal importance. So
for a given sample of class 1 if an algorithm assigns p1 = 0.2 to class 1 then it
doesn’t matter how the rest of the probability mass is distributed across the rest
of the classes, the loss will be the same.

We need a more flexible loss function that is closer to Dice Similarity used for
the Accuracy measure and also to give us the ability to penalize misclassifications
based on the characteristics of the echocardiography.
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Figure 2.8: Instance of the proposed U-Net architecture, with Batch Normalization
layers, without Dropout layers, depth: 5 (No extra block layer), Input image
size: 256×256, number of filters: 32. This parameters give us lower feature map
size: 16×16 and total number of training parameters: 8M. The main structure of
this figure is automatically designed by VisualKeras [12], a Python package that
visualize Keras neural network architectures

So used a loss function based on the soft Dice similarity:

LD =

3∑
c=0

(
1−

2
∑

s Y (s, c)T (s, c) + e∑
s(Y

2(s, c) + T (s, c)) + e

)
(2.2)

where the summation on s is over all the pixels of the images in a mini-batch. Y
denote the networks prediction and T the ground truth. The c parameter takes
values 0, 1, 2, 3, denoting the labels for Background, Left Ventricle, Myocardium
and Left Atrium respectively.

Also we use a method proposed by Simantiris et al [33] to penalize the case
of pixels belongs to the Left Ventricle that are neighbors with pixels of the back-
ground, because the LV cavity is always surrounded by the myocardium and not
adjacent to background. This penalty is simply calculated my the formula:

LLB =
∑
u

∑
t∈N(u)

Y (u, 1)Y (t, 0) (2.3)
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where the first summation on u is again over all the pixels of each image in the
mini-batch for the predictions of label ’1’ (LV) and the second summation of t is
over the immediate neighborhood of pixel u of each image in the mini-batch for
predictions of label ’0’ (Background).

With the same thinking, we penalize the case of pixels belongs to the Left
atrium that are neighbors with pixels of the Myocardium:

LAM =
∑
u

∑
t∈N(u)

Y (u, 3)Y (t, 2) (2.4)

where also the first summation on u is again over all the pixels of each image in
the mini-batch for the predictions of label ’3’ (ATR) and the second summation
of t is over the immediate neighborhood of pixel u of each image in the mini-batch
for predictions of label ’2’ (Myocardium).

Finally the total loss function formula is:

L = LD + αLLB + βLAM (2.5)

2.5 Training

Training process starts with the augmentation method 2.1 in the original CAMUS
training dataset [23] consisting of 450 cardiac ultrasound image sets per patient.
Every patient set includes four images, two corresponding to the two-chamber
(2CH) view acquisition for both End Diastole (ED) and End Systolic (ES) and two
corresponding to the four-chamber (4CH) view acquisition for both End Diastole
(ED) and End Systolic (ES). We deal the training process separate for two-chamber
(both ED and ES) and separate for four-chamber (both ED and ES). This leads
us to two independent training procedures that produces two different calculated
weights files, one for the two-chamber training images and a second one for four-
chamber (the same in validation/testing process 2.6).

So, for every training procedure, we have 900 original images available (450
for ED and 450 for ES), pre-process them as stated in 2.1 and obtain another
2700 images augmented in three different ways as presented in 2.1 (900 images per
every augmentation method). We then distribute them into 9 folds (400 images
per fold), making sure each fold approximately contains data from each one of
the 3 quality groups (good, medium and poor image quality). Performing 9-fold
cross validation scheme for our training, gives us 8-folds for training set (3200
images) and 100 original, not augmented images for validation set. The validation
set remains as was (original), so that images in this set were never introduced
to the network during the training stage, as original or augmented. Also during
training, we noticed that both validation loss and validation accuracy remain in
same levels for all validation folds, proving that our augmentation method lead to
a stable performance for all the folds. This made us to decide to make the multi
– training process with the same validation set (fold 8) in order to speed up the
whole process.
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For all the training instances, we used the Adam optimizer [18] in order to have
the same base algorithm for all the different training parameters. The first part
of the Table 2.1 shows the parameters that can change to implement the multi –
training schema of our method.

Image size is the input image square dimension after pre-procces (see 2.1).
We used 3 different image dimensions, 128×128, 256×256 and 512×512. During
validation process, we noticed that 256×256 dimension was most convenient for our
H/W resources (RAM, processing time etc) with actually same results as 512×512,
so most of the training instances was with this dimension.

Weights balance is mapping class indices (integers) to a weight (float) value,
used for weighting the loss function (during training only). This can be useful
to tell the model to ”pay more attention” to samples from an under-represented
class. Actually this parameter has the form w(c) = [abcd] where the w(0) = a
is the “attention” value for Background, w(1) = b for LV, w(2) = c for MYO
and w(3) = d for ATR, and consists of a multiply parameter to the loss function
(eg w(c)∗(2.1)). In our implementation we have to give more attention to Left
Ventricle area, so the w(1) = b is higher in most training cases (eg 1511).

Loss func is the loss function used for training, Categorical cross entropy or
Soft Dice. Weights balance works for both loss functions, but Soft Dice has the
extra penalty properties described in 2.4.

U-Net depth describes the number of down-sampling block layer including the
bottom. Original U-Net architecture has 5 layers depth. We add the capability
to have one more down-sampling block in order to further decrease the lowest
resolution and to increase the number of feature maps. Increasing the depth,
increases the total number of training parameters and the complexity of the total
network.

Learning rate (lr) is the value for learning rate in Adam optimizer. We tested
only two values 0.001 and 0.0001.

Batch size is the number of samples per gradient update. We tested only two
values, 10 and 32 as proposed in Lecrec et al. [23]

Batch norm is the network capability to includes Batch Normalization layers
after every Convolutional layer (gray blocks in Figure 2.8)

No filters is an integer that gives the dimensionality of the output space, i.e. the
number of output filters in the convolution. In U-Net architecture that we follow
in our implementation, this dimensionality is doubling after every down-sampling
block and is divisible by two in up-sampling (2.8).

A sample of the learning curves is depicted in Figure 2.9, showing the loss
and accuracy history (both for training and validation set). We used Keras [6]
capability to early stop the training process after 7 epochs that the validation
loss don’t improve. This method decreases the total epoch number needed to
converge (in about 25 epochs, as shown in Figure 2.9. As mentioned before, all
the folds show similar behavior during the training and our network was able to
train the whole set with a particular validation fold in approximately 20 minutes
for 256 × 256 size images with 32 starting filters on an NVidia Titan V GPU
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Figure 2.9: Training loss and accuracy for fold 8. Figure created with Matplotlib
python library [15]

using Keras/Tensorflow ([6], [1]) and about 10 minutes for 16 starting filters. This
time doubles with 512 × 512 size images. We also used Keras capability to store
the calculated weights only for the best validation loss instance during converging
process (see the red x notation in Figure 2.9). As mentioned before, we used fold
8 for our training method, but all the folds had approximately the same metrics.
Table 2.1 shows 20 training instances with approximately the same validation loss
and validation accuracy for both 2CH and 4CH (average 0.062, 0.976 for 2CH and
average 0, 055, 0, 979 for 4CH respectively).

2.6 Validation

As the evaluation metrics (validation loss, validation accuracy) is pretty the same,
for different training parameters, we decided to measure the more morphological
characteristics using the calculated weights on the validation set (100 images, 50
2CH and 50 4CH). For this reason, and for the same training instances, through
the calculated weights, we measure the pixel-wise Confusion Matrix and 3 clinical
indices: i) the ED volume (LVED in ml), ii) the ES volume (LVES in ml) iii) the
ejection fraction (LVEF as a percentage) for which we computed two metrics: the
Pearson correlation coefficient (corr) and the Mean Absolute Error (MAE) (See
the second part of Table 2.2).

Confusion Matrix is a summary of prediction results on a classification prob-
lem. In our semantic segmentation problem, we have 4 classes available for each
pixel (pixel-wise segmentation). So in confusion matrix, the number of correct and
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Table 2.1: Training history in the same validation set (fold 8), with twenty training
instances of different U-Net parameters. Validation loss and validation accuracy
results remain in same levels. This lead us to extract more morphological charac-
teristics.

Two Chamber Four Chamber

image
size

weights
balance

loss
func

unet
depth

lr
batch
size

batch
norm

No
Filters

No
params

Val Loss Val Acc Val Loss Val Acc

1 256 1353
Cross
entropy

6 1e-4 10 Yes 32 35M 0,079 0,975 0,070 0,979

2 512 1551
Cross
entropy

6 1e-3 10 No 32 35M 0,061 0,976 0,050 0,980

3 256 None Dice 6 1e-3 32 No 16 8M 0,062 0,975 0,058 0,979

4 512 None
Cross
entropy

6 1e-3 32 No 16 8M 0,062 0,975 0,051 0,979

5 512 1551
Cross
entropy

6 1e-3 32 No 16 8M 0,061 0,975 0,050 0,980

6 512 1941
Cross
entropy

6 1e-3 32 No 16 8M 0,060 0,975 0,050 0,979

7 512 1511
Cross
entropy

6 1e-3 32 No 16 8M 0,058 0,975 0,052 0,979

8 256 1511 Dice 6 1e-3 32 No 16 8M 0,064 0,975 0,055 0,979
9 256 None Dice 6 1e-3 32 No 32 35M 0,060 0,976 0,056 0,979
10 256 1511 Dice 6 1e-3 32 No 32 35M 0,060 0,976 0,059 0,979
11 256 None Dice 5 1e-4 10 No 64 35M 0,063 0,975 0,056 0,979
12 256 1511 Dice 5 1e-4 10 No 64 35M 0,063 0,975 0,055 0,980
13 256 1511 Dice 6 1e-4 10 No 64 135M 0,062 0,976 0,055 0,980
14 256 1511 Dice 6 1e-4 32 No 64 135M 0,062 0,975 0,056 0,979
15 256 1511 Dice 6 1e-3 32 Yes 32 35M 0,056 0,978 0,053 0,981
16 256 1511 Dice 6 1e-3 32 Yes 16 8M 0,061 0,976 0,056 0,980
17 256 1711 Dice 6 1e-3 32 Yes 32 35M 0,057 0,977 0,051 0,981
18 256 1911 Dice 6 1e-3 32 Yes 32 35M 0,058 0,977 0,057 0,980
19 128 None Dice 5 1e-3 32 Yes 32 8M 0,062 0,976 0,059 0,979
20 128 1511 Dice 5 1e-3 32 Yes 32 8M 0,059 0,976 0,057 0,980

incorrect predictions are summarized with count values and broken down by each
class. This is the key to the confusion matrix, that it shows the ways in which our
classification model is confused when it makes predictions. It gives us insight not
only into the errors being made by our classifier but more importantly the types
of errors that are being made. This means that overcomes the limitation of using
classification loss and accuracy alone. Confusion matrix is calculated from the
expected outcomes and predictions by counting the number of correct predictions
for each class and the number of incorrect predictions for each class, organized
by the class that was predicted. These numbers are then organized into a matrix,
where each row corresponds to a predicted class (predicted label) and each column
corresponds to an actual class (True label). The counts of correct and incorrect
classification are then filled into the table. The total number of correct predictions
for a class go into the expected row for that class value and the predicted column
for that class value. In the same way, the total number of incorrect predictions for
a class go into the expected row for that class value and the predicted column for
that class value.

Figure 2.10 shows the Confusion Matrix that corresponds to the 18th calculated
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Table 2.2: Validation metrics table. After the calculation of weight files, we work
on validation set (fold 8) to produce the Confusion Matrix (table show only LV
area Confusion Matrix scores), and Pearson correlation coefficient (corr) and the
Mean Absolute Error (MAE) for LVED, LVES , LVEF

Confusion Matrix CORRe MAE

image
size

weights
balance

loss
func

unet
depth

lr
batch
size

batch
norm

No
Filters

No
params

LVed LVes LVedv LVesv LVef LVedv LVesv LVef

1 256 1353
Cross
entropy

6 1e-4 10 Yes 32 35M 0,911 0,912 0,970 0,970 0,903 7,478 5,210 3,730

2 512 1551
Cross
entropy

6 1e-3 10 No 32 35M 0,935 0,942 0,976 0,974 0,914 6,201 4,203 3,537

3 256 None Dice 6 1e-3 32 No 16 8M 0,942 0,936 0,969 0,964 0,888 6,543 5,254 4,016

4 512 None
Cross
entropy

6 1e-3 32 No 16 8M 0,924 0,932 0,976 0,970 0,912 7,022 4,818 4,089

5 512 1551
Cross
entropy

6 1e-3 32 No 16 8M 0,947 0,949 0,978 0,974 0,915 6,002 5,061 4,106

6 512 1941
Cross
entropy

6 1e-3 32 No 16 8M 0,939 0,945 0,974 0,971 0,930 6,329 4,699 3,582

7 512 1511
Cross
entropy

6 1e-3 32 No 16 8M 0,930 0,940 0,975 0,974 0,915 6,376 4,369 3,616

8 256 1511 Dice 6 1e-3 32 No 16 8M 0,940 0,940 0,969 0,968 0,899 6,514 5,008 4,084
9 256 None Dice 6 1e-3 32 No 32 35M 0,948 0,944 0,977 0,975 0,924 5,912 4,413 3,446

10 256 1511 Dice 6 1e-3 32 No 32 35M 0,950 0,945 0,978 0,969 0,904 5,627 3,745 3,794
11 256 None Dice 5 1e-4 10 No 64 35M 0,939 0,938 0,976 0,969 0,911 6,052 4,512 3,528
12 256 1511 Dice 5 1e-4 10 No 64 35M 0,942 0,942 0,977 0,974 0,920 6,263 4,928 4,163
13 256 1511 Dice 6 1e-4 10 No 64 135M 0,948 0,942 0,974 0,973 0,912 6,276 4,671 3,975
14 256 1511 Dice 6 1e-4 32 No 64 135M 0,951 0,942 0,972 0,970 0,907 6,554 4,845 3,551
15 256 1511 Dice 6 1e-3 32 Yes 32 35M 0,946 0,935 0,980 0,980 0,932 5,998 3,702 3,225

16 256 1511 Dice 6 1e-3 32 Yes 16 8M 0,929 0,929 0,977 0,977 0,930 6,182 3,784 3,312

17 256 1711 Dice 6 1e-3 32 Yes 32 35M 0,931 0,931 0,979 0,976 0,920 5,730 4,217 3,453

18 256 1911 Dice 6 1e-3 32 Yes 32 35M 0,957 0,954 0,978 0,976 0,914 5,821 4,624 3,593

19 128 None Dice 5 1e-3 32 Yes 32 8M 0,952 0,949 0,971 0,969 0,911 6,648 4,806 4,075
20 128 1511 Dice 5 1e-3 32 Yes 32 8M 0,944 0,939 0,974 0,966 0,896 5,910 5,249 4,403

weights file of the Table 2.2. The matrix values is based on the total images of the
validation set. This batch of images consists 6.553.600 pixels (50 (2CH images)
+ 50 (4CH images) multiply by 256×256 dimension). The left part of the matrix
shows the pixel-wise counts as described before and the right part of the matrix
shows the normalized percentage outcomes. It’s clear that confusion matrix gives
us a more precise view of the segmentation performance.

Clinical metrics, correlation coefficient (corr) and mean absolute error (MAE)
for ED, ES volume and ejection fraction percentage, are calculated indirectly by
the predicted pixels of the Left Ventricle and the given information of ED, ES vol-
ume and ejection fraction true values, by CAMUS training dataset. More clearly,
Camus training dataset, for every patient, gives in a configuration file, addition
information. This information includes Sex, Age, Image Quality, LV ED Volume
(in ml), and LV ES Volume (in ml), calculated by three expert cardiologist [23] and
Simpson’s rule [11], the simplest and more accurate math formula that produces
the Volume of LV, given the 2D dimensions extracted from area notations. LV
Ejection Fraction is already calculated by the formula:

LVEF =
LVEDV − LVESV

LVEDV
(2.6)

Given this ground truth LV Volume information in validation set, we use the
calculated number of pixels of LV area, after the prediction, and the rule of three



2.6. VALIDATION 21

Figure 2.10: Confusion Matrix that corresponds to the 16th calculated weights file
of the Table 2.2 obtained by validation set (100 images of 256×256 dimension,
6.553.600 total pixels).

to calculate the LV Volume in prediction images (both for ED and ES). We simply
assume that number of pixels of LV area correlates with the corresponding Volume
(in ml) according to Simpson rule. So, the rule of three gives us the formula to
calculate the LV ED Volume (in ml) in image prediction:

LVEDVpred
=

LVEDVgt ∗ LVEDVpred−pixels

LVEDVgt−pixels

(2.7)

where LVEDVgt , is the given ground truth LV ED Volume (in ml), LVEDVpred−pixels

is the number of predicted pixels with LV ED label (LV ED predicted area) and
LVEDVgt−pixels

is the number of ground truth pixels with LV ED label (LV ED
ground truth area).

Accordingly, the formula to calculate the LV ES Volume (in ml) in image
prediction:

LVESVpred
=

LVESVgt ∗ LVESVpred−pixels

LVESVgt−pixels

(2.8)

where LVESVgt , is the given ground truth LV ES Volume (in ml), LVESVpred−pixels

is the number of predicted pixels with LV ES label (LV ES predicted area) and
LVESVgt−pixels

is the number of ground truth pixels with LV ES label (LV ES
ground truth area).

So, we can finally calculate the percentage Ejection Fraction for the image
prediction with the general formula 2.6.

The above formulas give us the capability to calculate the Pearson Correlation
coefficient (CORRe) (Columns 13-15, Table 2.2), between the given ground truth
LV Volumes (ED and ES) and more important the CORRe between the real LV
ejection fraction and the predicted, for the whole validation set (50 (2CH images)
+ 50 (4CH images)).
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Accordingly, we have the capability to measure the MAE (Last 3 columns,
Table 2.2), between the given ground truth LV Volumes (ED and ES) and more
important the MAE between the real LV ejection fraction and the predicted, for
the whole validation set.

2.6.1 Ensemble prediction

After the calculation of CORRe and MAE, the next step to our ensemble method
is to choose the five best performance calculated weight files. The first criterion is
the highest CORRe of LVef and the second criterion is the lowest MAE of LVef

performed to the validation fold (see underline numbers in Table 2.2).

Figure 2.11: Visualization of calculated class probabilities for the 27th test image.
(a) The input test image, (b) the probabilities of Background class, (c) the prob-
abilities of Left Ventricle class, (d) the probabilities of Myocardium class, (e) the
probabilities of Left Atrium.

Every calculated weight file is used for computing pixel-wise probabilities for
the four classes. This is actually the output of our model (2.8) where the final
blog consists 4 slices, one for each class, with the calculated probabilities for every
pixel in 2-D.

Prediction process for each image starts with the calculation of these proba-
bilities (2.11) and ends with labeling the maximum probability per pixel (argmax
function).

Instead of computing the labels from one prediction, we use the five best cal-
culated weights (bold notation in Table 2.2), to produce five different probabilities
per class. This gives us the ability to generalize the final probability prediction
per pixel by taking the mean of probabilities per class. Mean probability per class
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Figure 2.12: Proposed Ensemble’s prediction method: Five best performance cal-
culated weights, give five different, but close, probabilities per class. We take the
mean probability per class to predict with argmax the labels.

gives us the final segmentation map by labeling the maximum probability per pixel
(Figure 2.12)

2.6.2 Method issues

Before going to Post-processing section we can determine some issues that came
up from Table 2.2 and Confusion Matrix paradigm (2.10).

The first issue is the very high number of training parameters produced by
adding one more layer in U-Net model or by increasing the initial number of filters
in entry level of the model. Although this seems to give better performance in
validation clinical metrics (e.g. lines 9, 15, 17, 18 of Table 2.2, with 35M training
parameters), we have to think if this leads to a inconvenient heavy model. Line
16 of Table 2.2 shows that we can have similar good results with considerably less
parameters to learn (8M) by fine-tuning the rest of the parameters. This seems
to be also the conclusion in Leclerc et. al [23] paper, where the U-Net 1 with
minimum training parameters has same or better performance than the U-Net 2
with higher number of parameters.

The second issue is the importance of the Batch Normalization (BN). It seems
that in most cases leads to a better performance. This is also described in Xiao
Yun Zhou et. al paper [39], where after an extended experimentation, the conclu-
sion is that BN improves the accuracy of training U-Net for biomedical semantic
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segmentation. Batch Normalization also reduces the need of Dropout Layers (See
also: [17]) and that’s why we didn’t perform any Dropout layer in our model
implementation.

The third issue has to do with the penalties we applied in miss-classification
combined with the Dice Loss Function. It’s clear that seems to work and is im-
portant to implement also in case of Categorical Cross Entropy loss function to
see the deference.

The forth issue regards the capability to include a different Optimizer as train-
ing parameter in our parametric model. It seems that there is a discussion in
academic community that in some cases, SGD optimizer with momentum can give
a big improvement over Adam in segmentation problems [37].

2.7 Post-processing

Prediction for validation set already discussed in previous sections. It produces 100
square segmented images and all metrics of table 2.2 is based on this prediction.
There is no need for post processing. Also, prediction on test set also produces 100
square segmented images with the same dimension as the feeding on the network,
for example 256×256. But in case of prediction on test set, we have to go back
in the initial dimension of the images in order to have the segmentation map in
correct dimension. This is because, evaluation and clinical metrics on test set
(see Chapter 3) are calculated by CAMUS online evaluation platform [23] and
presupposes the initial dimension and format of the images.

Figure 2.13: Post - processing procedure (the last two stages). Erase any small
connecting components (prediction outlier) and resize to original image size, re-
moving the extra zero padding areas added during pre - processing.
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Consequently the first post-processing step is to reconstruct the product of seg-
mentation map (a square 4 label image) to the initial dimension of the original test
image. This is done by reversing the procedure of ”making square and padding”
we saw in preprocessing section (2.1), applied to the predicted label images and
using the programming tools MedPy [25] and Pillow [7]. MedPy help us to read
the initial configuration file that includes the original image dimension, and Pillow
tools are used for cropping the extra zero padding and resizing to the original
dimension. NumPy [14], the fundamental package for scientific computing with
Python also used.

We have also add a check if prediction produces small connecting components
that are performed as outliers in our segmentation process (Figure 2.13). In this
case, we carefully erase them from the final prediction map, using the morphology
tools of SkImage Python library [35]. We saw that these outliers where more
possible to produced in case we didn’t use the penalties we discussed in Loss
function section and only in very poor image quality.
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Results and Discussion

We have already discussed the evaluation metrics, after training, in validation set
(Table 2.2), where we have available the ground truth images and also the correct
LVedv, LVesv and LVef . This availability gave us the opportunity to focus on which
parameters give the best metrics of the LVef and the MAE.

Choosing the five best calculated weight files, the next step is to make the
predictions, with the same ensemble method, to test set given by CAMUS evalua-
tion challenge. Online evaluation platform in CAMUS testing phase, provides 50
patients, also two and four chamber for both ED and ES. This time there are not
available the ground truth images and the correct metrics for LVedv, LVesv and
LVef .

We have to participate to CAMUS challenge to get access to the involved test
dataset and also to submit our segmentation results through a dedicated online
evaluation platform by uploading the corresponding files, where:

• For each patient, we have to upload four files: two corresponding to the
two-chamber (2CH) view acquisition for both End Diastole (ED) and End
Systolic (ES) and two corresponding to the four-chamber (4CH) view acqui-
sition for both End Diastole (ED) and End Systolic (ES).

• Each file has to be named according to a special naming convention

• All results should be saved into a raw/mhd image format. Each segmented
image should involve discrete values using the convention: 0 for background,
1 for left ventricle, 2 for myocardium and 3 for left atrium

• Each segmented image should be expressed in the corresponding input US
image space.

• In order to optimize the computation of the different error measures, we are
invited to respect the same properties as the ones of the reference segmented
images whose information are provided by a special protocol for LV Endo,
LV Epi and LA segmentation.
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After the test prediction and uploading the correct files, CAMUS evaluation
platform provides a full functional mechanism to measure both geometrical and
clinical metrics.

3.1 Geometrical Metrics

It’s important to measure the degree of accuracy of the left ventricular endo-
cardium and epicardium as the left atrium. This will be done through global
and local measures of similarity with the reference contours. A set of geometrical
metrics are computed per structure:

• For left ventricle endocardium (LV endo), (a) the average Dice value for
the left ventricle cavity at ED and at ES, (b) the average mean absolute
distance for the endocardial contour of the left ventricle at ED and at ES,
(c) the average Hausdorff distance for the endocardial contour of the left
ventricle at ED and at ES.

• For left ventricle endocardium (LV epi), (a) the average Dice value for the
area composed by the myocardium and the left ventricle cavity at ED and
at ES, (b) the average mean absolute distance for the epicardial contour of
the left ventricle at ED and at ES, (c) the average Hausdorff distance for the
epicardial contour of the right ventricle at ED and at ES.

• For left atrium (LA), (a) The average Dice value for the left atrium region
at ED and at ES, (b) the average mean absolute distance for the left atrium
contours at ED and at ES, (c) the average Hausdorff distance for the left
atrium contours at ED and at ES.

Table 3.1, shows the above metrics for LV endo and LV epi for the proposed
method, measured by CAMUS evaluation platform after our last submission, com-
pared with the three evaluated methods of the current leader board.

Table 3.1: Segmentation Accuracy (LVendo and LVepi) of the 3 evaluated methods
and the proposed method on the test set

Methods
LVendo LVepi

ED ES ES ES

DSI MAD HD DSI MAD HD DSI MAD HD DSI MAD HD

U-Net-1 0.936 1.7 5.3 0.912 1.7 5.5 0.956 1.7 5.2 0.946 1.9 5.7
U-Net-2 0.922 1.6 5.7 0.899 1.7 5.3 0.932 2.0 6.4 0.923 2.1 6.4
ACNNs 0.936 1.7 5.6 0.913 1.7 5.6 0.953 1.9 5.9 0.945 2.0 5.9

Proposed 0.941 1.5 4.9 0.922 1.5 4.9 0.956 1.7 5.3 0.950 1.8 5.3

We have to notice that except from the best Dice metric for LVendo end LVepi,
our proposed method has the lower average Hausdorff distance, a crucial metric
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in case of segmentation. The Hausdorff distance [16] calculates the maximum
distance between the contours of the predicted and the ground truth image. A
low Hausdorff distance value represents a good segmentation result. The unit of
the Hausdorff distance is millimeter (mm), which is calculated from information
in the echo images. We believe that we can improve further more the geometrical
metrics after the implementation of the tasks we describe in Future work section
(4.2).

3.2 Clinical Metrics

Maybe the most important is the degree of accuracy of the derived clinical indices
because the are ones that are the most widely used in cardiac clinical practice,
specially for the Left ventricular cavity. For this purpose, CAMUS online platform
provides the mechanism to measure:

• The Correlation coefficient computed from the set of End Diastolic Volumes
(EDV), the set of End Systolic Volumes (ESV), the set of Ejection Fraction
(EF) measurements

• The Bias computed from the set of EDV, the set of ESV, the set of EF
measurements

• The Limits of agreement (LOA = 1.96 times the standard deviation) com-
puted from the set of EDV, the set of ESV, the set of EF measurements

Table 3.2, shows the correlation, bias and standard deviation (calculated by
LOA) for LVedv, LVesv and LVef for the proposed method, measured by CAMUS
evaluation platform after our last submission, compared with the three evaluated
methods of the current leader board. Clinical metrics indices were computed with
the Simpson’s rule [11] from the segmentation results of each algorithm.

Table 3.2: Clinical Metrics of the 3 evaluated methods and the proposed method
on the test set

Methods
LVef LVed LVes

corr bias std corr bias std corr bias std

U-Net-1 0.845 0.1 7.3 0.926 7.2 15.6 0.960 4.4 10.2
U-Net-2 0.792 2.6 8.5 0.963 -2.4 11.1 0.972 -3.0 7.6
ACNNs 0.807 0.3 8.3 0.928 2.8 15.5 0.954 2.0 10.1

Proposed 0.871 1.6 8.0 0.973 3.0 11.4 0.974 0.4 9.4

We have to notice that although our proposed method has the best performance
in LVed, LVes and total LVef , we still have high values for Bias and std. This fact



30 CHAPTER 3. RESULTS AND DISCUSSION

shows that meybe we have the opportunity to further improve the clinical metrics
after the implementation of the tasks we describe in Method issues subsection
(2.6.2), specially the LVef .

In conclusion, it is really encourage that in both evaluation cases (ge-
ometrical and clinical metrics) measured by the independent CAMUS
platform tools (based on C++ ITK libraries), our proposed method
gives the best performance compared to the other three evaluated meth-
ods, specially in case of clinical metrics that is most important.
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Figure 3.1: Camus online evaluation platform results. Screenshot after login
from http://camus.creatis.insa-lyon.fr/challenge/#challenges. Red numbers are
our computed results, black numbers are the current leader-board results.



32 CHAPTER 3. RESULTS AND DISCUSSION



Chapter 4

Conclusion

4.1 Summary

In this work, we presented a novel ensemble of deep learning models for the problem
of cardiac ultrasound (echocardiography) image segmentation. The probability
predictions by several training instances are combined based on ensemble mean
method. Five best performance calculated weights, was used to find the mean
probability per area of interest (Background, Left Ventricle, Myocardium and Left
Atrium) and produce the corresponding labels. Pearson Correlation coefficient
(CORRe) and mean absolute error (MAE) between the real LV ejection fraction
and the predicted, was used as a metric criteria.

In order to improve the learning capability and the generality of our U-net
based Neural Network, we designed and implement a specialized data augmen-
tation, adapted to the echocadiographic image data. Three novel augmentation
techniques implemented, two virtual probe orientations and a virtual low-contrast
scanner setting, based on the fact that human hand is involved in echocardiography
procedure and is highly subjective the final ultrasound image result.

Our results on the testing dataset of CAMUS online competition shows that
the proposed data augmentation method and ensemble mean prediction method
achieves an overall improvement compared to several benchmark techniques.

4.2 Future work

We concede that the proposed approach has several advantages, that mainly has
to do with the simplicity of the methods pipeline. Future plans include to ex-
periment with the interesting state-of-the-art Generative Adversarial Networks
(GANs) introduced by [13] to produce augmented samples which are not manually
designed but learned by a neural network. We also plan to test our approach on
other datasets to determine, if the adaptation could be applied in a wide range
of similar data from different clinical centers and different ultrasound scanners.
We think that a good start is to evaluate our calculated weights with ultrasound
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images extracted from EchoNet-Dynamic dataset [28], a publicly available dataset
of de-identified echocardiogram videos or maybe to produce a mixed new training
dataset taking images from both datasets and re-train our proposed model.
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Colandy Nunes Dourado, and Ronaldo Martins da Costa. Artificial in-
telligence applied to support medical decisions for the automatic analysis
of echocardiogram images: A systematic review. Artificial intelligence in
medicine, 120:102165, 2021.

[11] ED Folland, AF Parisi, PF Moynihan, D Ray Jones, Ch L Feldman, and
DE Tow. Assessment of left ventricular ejection fraction and volumes by real-
time, two-dimensional echocardiography. a comparison of cineangiographic
and radionuclide techniques. Circulation, 60(4):760–766, 1979.

[12] Paul Gavrikov. visualkeras. https://github.com/paulgavrikov/

visualkeras, 2020.

[13] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adver-
sarial nets. Advances in neural information processing systems, 27, 2014.

[14] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gom-
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