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Abstract

Cloud computing is compelling because it simplifies the management of the infrastruc-

ture and allows elastic scaling of resources for applications. As a result, more and more

professionals and enterprises rely on the cloud to process and store their information.

This increasing demand for cloud resources forces providers to constantly expand their

infrastructure and maintain more servers, significantly increasing costs. At the same time,

cloud users care for application performance and tend to overprovision applications, which

results in a significant portion of the cloud resources being unused. Therefore, providers

must handle the tradeoff between application performance and resource utilization to

reduce the cost of the infrastructure and, at the same time, keep users satisfied.

In this dissertation, we propose techniques for resource management that increase

utilization while, at the same time, maintaining application performance above a user-

defined level. The system estimates the resources required to achieve a certain level of

performance and then places the application appropriately in the infrastructure.

First, we design and implement a profile-based approach in a sandboxed environment

and create performance models for each application. The system uses these profiles to

accurately correlate the allocated resources to application performance and minimize the

unused resources of the infrastructure. However, profile-based approaches have limitations:

(1) the system cannot handle “unknown” applications and (2) the runs required to generate

the profiles can be overwhelming.

Next, we address these limitations using a reactive approach, generating performance

models on-the-fly during the application execution. The system gradually learns the

behavior of each application using a feedback loop controller and constantly improves the

estimations about the required resources. Therefore, the reactive approach can handle

applications without prior knowledge of their performance profiles and adapt to workload
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changes. The limitation of reactive approaches is that they cannot handle well workloads

with rapid changes in their load.

Finally, we propose applying the reactive approach to serverless computing, where

we adjust the required resources based on the current changes in the workload. These

predictions help the system adjust quickly to sudden changes in the load and maintain the

tail latency of the application.

We evaluate the proposed system using synthetic workloads that resemble real data

center workloads. To achieve that, we develop a methodology that: (1) processes data

center traces from major providers, (2) extracts their most important characteristics, (3)

scales the workload to match the underlying infrastructure, and (4) executes the workload

using well-known cloud applications that match the ones used in the trace. Our results

show significant improvement in the utilization of the infrastructure without a visible drop

in application performance.

Keywords: Cloud computing, resource allocation, resource assignment, task scheduling,

workload generation, cloud deployment

Supervisor: Angelos Bilas, Professor
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University of Crete



Περίληψη

Το υπολογιστικό νέφος (cloud computing) είναι σημαντικό επειδή απλοποιεί τη διαχείριση του

υποδομής και επιτρέπει σχεδόν άπειρη κλιμάκωση των πόρων. ΄Αποτέλεσμα, όλο και περισσότεροι

επαγγελματίες και επιχειρήσεις βασίζονται στο νέφος για την επεξεργασία και αποθηκεύουν τις

πληροφορίες τους. Αυτή η αυξανόμενη ζήτηση για πόρους νέφους αναγκάζει τους παρόχους

(providers) να επεκτείνουν συνεχώς την υποδομή τους και να διατηρούν περισσότερους διακο-

μιστές (servers) γεγονός που αυξάνει σημαντικά το κόστος τους. Ταυτόχρονα, οι χρήστες του

νέφους νοιάζονται για την απόδοση της εφαρμογής και τείνουν να κάνουν υπερπαροχή πόρων

στις εφαρμογές τους, η οποία έχει ως αποτέλεσμα ένα σημαντικό τμήμα από τους πόρους του

νέφους να είναι αχρησιμοποίητο. Επομένως, οι πάροχοι πρέπει να χειριστούν την ανταλλαγή

μεταξύ απόδοση της εφαρμογής και χρήση πόρων για τη μείωση του κόστους της υποδομής και

ταυτόχρονα να κρατούν τους χρήστες ικανοποιημένους.

Σε αυτή τη διατριβή, προτείνουμε τη χρήση έξυπνης διαχείρισης πόρων, που αυξάνει τη χρήση

των πόρων στο όριο ενώ, ταυτόχρονα, διατηρεί την απόδοση των εφαρμογών πάνω από ένα ικα-

νοποιητικό επίπεδο σύμφωνα με το χρήστη. Το σύστημα εκτιμά τους πόρους που απαιτούνται για

την επίτευξη ενός συγκεκριμένου επιπέδου απόδοσης και στη συνέχεια τοποθετεί την εφαρμογή

κατάλληλα στην υποδομή.

Αρχικά, σχεδιάζουμε και εφαρμόζουμε μια προσέγγιση βασισμένη σε προφίλ απόδοσης, όπου

κάνουμε πολλαπλές εκτελέσεις σε ένα απομονωμένο περιβάλλον για τη δημιουργία μοντέλων

απόδοσης για το κάθεμια από τις διαθέσιμες εφαρμογές. Το σύστημα χρησιμοποιεί αυτά τα

προφίλ για να συσχετίσει με ακρίβεια τους δεσμευμένους πόρους με την απόδοση των εφαρμογών

και ελαχιστοποιούν τους αχρησιμοποίητους πόρους της υποδομής. Ωστόσο, οι προσεγγίσεις που

βασίζονται στο προφίλ έχουν κάποιους περιορισμούς: (1) το σύστημα δεν μπορεί να χειριστεί

«άγνωστες» εφαρμογές και (2) οι εκτελέσεις που απαιτούνται για τη δημιουργία των προφίλ

μπορεί να είναι υπερβολικά πολλές.
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Στη συνέχεια, αντιμετωπίζουμε αυτούς τους περιορισμούς χρησιμοποιώντας μια αναδραστική

προσέγγιση, όπου παράγουμε μοντέλα απόδοσης επί τόπου κατά την εκτέλεση της εφαρμογής.

Το σύστημα μαθαίνει σταδιακά τη συμπεριφορά κάθε εφαρμογής χρησιμοποιώντας έναν ελεγχτή

βρόχου ανάδρασης και βελτιώνει συνεχώς τις εκτιμήσεις σχετικά με τους απαιτούμενους πόρους.

Επομένως, η αναδραστική προσέγγιση μπορεί να χειριστεί εφαρμογές χωρίς προηγούμενη γνώση

των προφίλ απόδοσης τους και μπορεί να προσαρμοστεί στις αλλαγές του φόρτου εργασίας. Ο

περιορισμός των αναδραστικών προσεγγίσεων είναι ότι δεν μπορούν να χειριστούν καλά φόρτους

εργασίας με γρήγορες αλλαγές στα αιτήματα των χρηστών.

Τέλος, εφαρμόζουμε αυτές τις προβλέψεις σε περιβάλλοντα όπου υπαρχουν εκρήξεις εισερ-

χόμενων αιτημάτων. Αυτές οι προβλέψεις βοηθούν το σύστημα να προσαρμοστεί γρήγορα στις

ξαφνικές αλλαγές στο φόρτο εργασίας και να διατηρήσουν την καθυστέριση του χρόνου απόκρι-

σης της εφαρμογής σε χαμηλά επίπεδα.

Αξιολογούμε το προτεινόμενο σύστημα χρησιμοποιώντας συνθετικούς φόρτους εργασίας ε-

φαρμογών (workloads) που προσομοιώνουν πραγματικούς φόρτους εργασίας εφαρμογών, όπως

αυτούς που αντιμετοπίζουν οι πάροχοι νέφους. Για να το πετύχουμε αυτό, αναπτύσσουμε μια

μεθοδολογία που: (1) επεξεργάζεται ίχνη (traces) από κέντρα δεδομένων (data centers) από

μεγάλους παρόχους, (2) εξάγει τα πιο σημαντικά τους χαρακτηριστικά, (3) κλιμακώνει το φόρ-

το εργασίας ώστε να ταιριάζει με την υποκείμενη υποδομή και (4) εκτελεί το φόρτο εργασίας

χρησιμοποιώντας γνωστές εφαρμογές νέφους που ταιριάζουν με αυτές που χρησιμοποιούνται στο

ίχνος. Στα αποτελέσματά μας, παρουσιάζουμε σημαντική βελτίωση στο αξιοποίηση της υποδομής

χωρίς ορατή πτώση στην εφαρμογή εκτέλεση.

Λέξεις κλειδία: Υπολογισμός νέφους, κατανομή πόρων, ανάθεση πόρων, προγραμματισμός ερ-

γασιών, δημιουργία φόρτου εργασίας, ανάπτυξη νέφους

Επόπτης: ΄Αγγελος Μπίλας, Καθηγητής

Τμήμα Επιστήμης Υπολογιστών

Πανεπιστήμιο Κρήτης
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Chapter 1

Introduction

Cloud computing has transformed the way we manage hardware resources. First, IT com-

panies do not need to plan or commit to extensive infrastructure. They can scale their

applications according to the workload without making elaborate plans for resource pro-

visioning. Second, cloud computing provides the ability of short-term payments, which

allows for minimizing the cost when scaling compute resources. Third, cloud users can

devote more time developing their applications than managing the infrastructure.

For these reasons, the industry is shifting more and more towards cloud computing,

which increases the data being processed in the cloud [97, 141] and the demand for cloud

resources [56]. Hence, cloud providers are constantly increasing the available cloud re-

sources to cope with this growing demand. However, there are two technological limitations

that data centers face which prevents the constant increase of their infrastructure:

• Power is limited. Data centers require a large amount of power to operate, and

the electrical grid may not be able to supply the required power in all data center

locations [33, 117].

• Data centers consume a large amount of energy and the cost of this energy can be a

significant expense for data center operators [25, 113, 87].

One key factor for improving data center processing capacity is server utilization [123].

By increasing server utilization the available servers and, in general, data centers can

accommodate more applications per unit of time, which reduces the energy consumed and

1
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the power required per unit of work performed. Increasing utilization has plenty of room

for improvement, as the resource utilization in data centers is relatively low. For instance,

the typical CPU utilization for data centers is approximately 12% [131, 28, 65].

In this dissertation, we focus on resource management and more specifically we con-

tribute to the following categories of resource management:

Offline resource estimation: This approach [44, 59, 72, 43, 85, 140, 93] statistically pre-

dicts the performance of applications by running applications in a sandboxed environ-

ment [44, 43, 93], or analyzes performance metrics from historic data [85, 59, 140, 72].

Compared to the related work, we employ resource isolation to simplify performance profil-

ing. Therefore, we create accurate performance profiles by running applications separately

using only a few samples. Then, we can use these profiles to estimate the resources of the

concurrently running applications of a workload.

We design and implement a framework to isolate the access to resources for applications,

which is critical to simplify the training of performance profiles of our offline profiling

approach [111]. The framework dedicates hardware resources to competing workloads to

minimize their interference. It involves a stack of device drivers that create a full I/O path

in the Linux kernel. We focus on two key resources: in-memory buffers for the filesystem,

and space on SSD devices that serve as a transparent cache for block devices. This leads

to increased server efficiency allowing the execution of the same workloads with fewer

resources, or more workloads with the same resources. In our evaluation, we present results

using mixes of transactional, streaming and analytical workloads.

Afterwards, we provide a profiler on top of the isolation framework that generates

performance profiles for applications [107]. It performs controlled runs of applications on a

dedicated server to determine the resource requirements of newly admitted applications. It

ignores the interference dimension across applications because of its isolation mechanism.

Therefore, it only needs to analyze the resource requirements of individual applications

and not combinations of them, which is a significantly simpler problem to model. Our

profiler is deployed on the side of regular infrastructure and with minimal overheads.
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Reactive resource adaptation: In this approach [44, 143, 70, 104], the system adapts

the resources assigned to applications after it detects a change in the incoming load or

the running applications per se. Compared to the related work, we make the following

improvements: (1) we define performance-level objectives for applications and change

resources according to the workload to achieve them, (2) we manage arbitrary applications

by supporting any performance objectives and multiple types of resources, and (3) we

minimize resource fragmentation by increasing application consolidation in the servers.

First, we propose a workload generator [106] that generates realistic cloud workloads,

which we use to evaluate reactive resource adaptation. We develop a robust and practical

methodology to generate and execute real-world-like cloud workloads driven by analyzing

public data center traces. Towards this goal, we first determine which trace parameters are

the most characteristic to reflect them in generated actual executions. Parameter selection

is not straightforward because each trace contains hundreds of parameters. Second, we

develop models of these parameters for the generation of the data center workload. Finally,

we define a trace-specific application pool for the execution of the generated workloads.

Workload execution is a real challenge because traces do not contain all the necessary

variables to execute a workload. For example, we do not know the specific application types

that were executed during the trace creation.

Next, we design and implement a system for automated cloud resource management

that increases utilization without degrading application performance significantly for

generic and dynamic workloads [109]. The system estimates on-the-fly the number of

resources required to achieve a specific level of performance for applications, using a

Proportional Derivative Integral controller [103] per application. The PID is a simple but

effective technique that adapts the value of a resource proportionally to the difference be-

tween observed and targeted performances. Essentially, it builds a mapping of the targeted

performance to the required resources on the fly. Building this mapping online allows

it to adapt to varying input loads and different application phases for each application.

Adaptation is achieved by tuning the corresponding PID instance parameters to match

changing operating conditions. It employs a modified version of the PID that performs

online auto-tuning of its parameters and resource estimations concurrently [45].
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Application to serverless resource allocation: In serverless computing, the next phase of

cloud computing [105], the main focus is on how to minimize the start time of serverless

functions [27, 118]. We apply techniques of the reactive approach to serverless frame-

works to achieve millisecond latency for serverless functions. Our approach mitigates

the limitations of the current state-of-the-art serverless frameworks concerning resource

provisioning and assignment of serverless functions and mechanisms by applying our

reactive resource adaptation approach.

In our work, we design and implement a controller for serverless frameworks that

scale the resources of applications within hundreds of microseconds [110]. Our goal is

to minimize the tail latency of serverless functions during workload bursts. We apply

the reactive approach to serverless computing based on vertical elasticity that achieves

millisecond-level tail latency. To achieve that, we add two components to the autoscaling

mechanisms of the state-of-the-art serverless frameworks: (1) vertical elasticity that can

scale resources within hundreds of microseconds and (2) resource prediction to handle the

incoming load efficiently. That way, we minimize the times required to horizontally scale

the resources, which significantly improves the serverless function tail latency.

Cost-aware cloud deployment: Finally, we utilize our previous findings in the deployment

of cloud services to optimize costs associated with allocating cloud resources and selecting

cloud providers [39, 64]. Related work approaches this issue by monitoring usage and costs,

implementing strategies to reduce costs, and applying them when deploying applications

in the cloud.

In our work, we explore how to minimize the cost of deployment of cloud services on

real cloud providers [108]. We consider cost minimization of cloud services as the combined

problem of selecting resource assignment (RA), VM type, and provider. Our goal is to choose

the most suitable number, size, and type of VM instances that host an application. We focus

on distributed interactive services that execute for a long time and respond to incoming

request streams, e.g. a web server or a database server. Workloads are client applications

that generate bursty requests to cloud services. Dimensioning VMs based on the specific

resources required by a service, e.g. the number of VM cores, is often overlooked in related
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work and practice, as a means to simplify resource provisioning. Assigning resources to

VMs and servers based on actual service demands can significantly impact the cost.

This thesis addresses the challenge of improving the efficiency of using cloud

resources. We propose performance profiling based on isolation for static workloads

and a reactive approach based on a feedback loop controller for dynamic workloads.

Additionally, we apply our proposed techniques in serverless frameworks and for cost

minimization of cloud deployments.

1.1 Contributions

The specific contributions of this dissertation are:

1. We design and implement a resource partitioning mechanism in the Linux kernel

that simplifies the modeling of estimating resources for cloud workloads. We design

and implement a practical and accurate approach for resource estimation based on

resource isolation and application performance profiling.

2. We define a methodology for the generation and execution of representative cloud

workloads based on data center traces of major cloud providers. We design and im-

plement an efficient feedback loop controller that estimates application resources

on-the-fly, without prior knowledge and recurrent patterns, that address the limita-

tions of static profiling techniques.

3. We design and implement a novel adaptive controller for serverless frameworks that

manages the resources of serverless functions and achieves millisecond latency.

4. Finally, we propose a cost model based on the VM offerings of different cloud providers

for deploying cloud services.

1.2 Organization

The rest of this dissertation is organized as follows. Chapter 2 presents the first part of

the isolation framework that concerns the I/O path. Then, it presents the offline profiler
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along with an extended version of the isolation framework that manages all resources of

a server. Chapter 3 presents the workload generator. Next, it presents the adaptive cloud

resource management system. Chapter 4 presents the controller for millisecond function

execution of serverless frameworks. Chapter 5 presents our approach to minimizing the

deployment costs for cloud services. Chapter 6 reviews related work. Finally, Chapter 7

presents directions for future work and concludes this thesis.



Chapter 2

Offline Resource Estimation

2.1 QuMan: Profile-based Resource Estimation

This section describes QuMan and its main components: (a) The Framework for Isolation

of Memory, I/O path, CPU and SSD cache (FRIMICS), which is a mechanism that ensures

isolation across applications (Section 2.2.5), (b) a profiler, which identifies resource require-

ments for each application (Section 2.3), and (c) an admission controller, which admits

applications to a server based on specific policies (Section 2.3.1).

2.1.1 Overview

Figure 2.1 shows a flowchart of how QuMan assigns server resources to applications. QuMan

considers that all incoming applications have equal priorities and admits them as First

Come First Served (FCFS). Applications can choose a performance threshold that satis-

fies their execution. Note that we do not enforce any restrictions on the nature of the

performance metric, because QuMan is going to convert it into a Performance Index in

its downstream analysis (Section 2.1.2). For each application, QuMan decides whether

there are enough resources to accommodate its performance requirements and if so, it

allocates a proper slice of FRIMICS to the application. Otherwise, it drops the application

and it notifies the resource allocator about the failure. QuMan determines the performance

behavior of all submitted applications using profiling.

The profiler either fetches statistical models that predict the performance of known

7
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QuMan
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Figure 2.1: QuMan’s flowchart for assigning resources to application and performing admission control.

applications, or creates them by executing the application in different hardware configura-

tion settings. The first time that a profiler encounters a particular application, it submits

it together with its original input into a sandboxed node to perform controlled runs with

different resource configurations and collect the necessary datapoints. Then it produces a

performance prediction function, which (i) it exposes to the admission controller, and (ii) it

stores along with the application profile, so future submissions of the same applications do

not repeat sandboxed runs. Note, that the profiling is expected to work well with short tasks,

which dominate commercial datacenter workloads [90, 16, 37]. However, a non-negligible

part of the workloads include also applications with long tasks, which put pressure on the

profiler because they need unrealistically a lot of time for profiling. QuMan follows the

best practices of literature ([44]) and alleviates this pressure by profiling only a small part

from the beginning (first 100 seconds) of long tasks. This keeps profiling overheads to a

minimum for tasks that take hours or days to complete.

When the profiler returns the performance prediction function, the admission controller

of QuMan uses it to determine on what hardware configuration the application should run,

depending on the desired policy of the cluster operator. If, for example, operators prefer
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to run applications while they respect their performance requirements, they can follow

the user-oriented policy (Section 2.3.1). If, on the other hand, they prefer to maximize

the server utilization in a performance aware manner, they can use the provider-oriented

policy. The provider-oriented policy optimizes an index that describes the performance-

utilization tradeoff, called QUCI, and in the presence of workload changes it dynamically

adjusts resource allocation of applications to keep QUCI optimal. QuMans mechanisms

can handle those requests due to the dynamic nature of FRIMICS’s slices. The application

suffers a penalty on its performance during the reallocation procedure, however FRIMICS

guarantees that the penalty is contained only to that application.

2.1.2 Performance Index

We define as Performance Index of an application the slowdown in its performance, when it

executes on a portion of server resources compared to the standalone execution. Regardless

of what performance metric users are interested in, be it latency, throughput, or execution

time, Performance Index is a number without units and in the range between 0 and 1. To

extract Performance Index, QuMan requires to know the metric that users are interested in

and the file that reports it. This definition of Performance Index assumes that an application

achieves its optimal performance when it runs on all available resources, even if it does not

use all resources, which is typically the case. We acknowledge that there are applications

that may slow down as resources increase, e.g. as the number of CPU cores increases.

However, we expect that these applications should apply self-throttling mechanisms and

avoid scaling to more cores than what they have been designed for, and that separate

mechanisms should detect such behavior.

As an example of Performance Index calculation consider a web server application,

where either throughput or latency can be used as a performance metric. In the case

of throughput, the Performance Index is defined as the requests/second the web server

achieves with a resource allocation, divided by the requests/second it achieves when

allocating all available resources. In case the latency is the desired performance metric,

the Performance Index is defined as the latency the web server achieves with all available
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resources, divided by the latency it achieves on a portion of the server resources.

Performance Index, as a function of the amount of each resource, typically takes the three

possible shapes of Figure 2.2: linear, convex, or concave. For example, applications that are

highly concurrent with little synchronization, such as Machine Learning training models

which are known to scale linearly or sub-linearly [124, 29] may follow the linear curve.

Applications that exhibit some sort of working set behavior concerning memory may follow

the concave curve, since less memory affects performance, but more memory does not help

beyond a certain point. For example, assume that an application with a working set of 1MB

receives an 8MB cache. For cache sizes greater than 8MB, the effect on its performance

is minor until its cache allocation reduces below 1MB. The effect of further reductions

can be quite small at first, but dramatic later on. Less memory affects performance, but

more memory does not help beyond a certain point. Finally, the Performance Index of

applications that are sensitive to SSD cache size may follow the convex curve; the more the

cache size reduces, the more page faults access the disk and severely affect the performance.
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Figure 2.2: The three main patterns we assume for application Performance Index.
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Table 2.1: Vanguard modules roles and responsibilities.

Module Layer Sliced Resource

pFS VFS
Namespace management
and CPU affinity control

pJournal Journaling
Log Devices

and Transactions

pCache DRAM Cache
I/O Cache buffers

and NUMA placement
pFlash SSD-Cache SSD space, device access path

2.2 Isolation Framework Design and Implementation

Our intuition for eliminating interference among workloads is enforcing separate I/O paths

and guaranteeing undisturbed access to the underlying hardware. Essentially, we need to

isolate each I/O related resource of the server, so that each VM utilizes a separate “slice”

of the server, emulating that way a “standalone” execution. Our approach operates at the

host, without requiring changes to VMs and application code. Our main contribution is the

design and implementation of an I/O stack for the Linux kernel that significantly minimizes

the performance degradation due to interference, as encountered in VM Hosts and other

cloud and utility computing scenarios.

The I/O path consists of hardware resources (CPU cores, memory buffers, storage

devices) and the associated systems software servicing the I/O requests initiated by applica-

tions. We apply the concept of slicing at various levels of the I/O stack. Table 2.1 shows the

layer and resource that each module of Vanguard “slices”. Every level/module is dedicated

to the control of specific resources, We slice different resources in each layer, allowing us to

distribute them independently and optimally for every scenario.

I/O Stack

Figure 2.3 juxtaposes the existing I/O stack in Linux (left) with our Vanguard design (right).

In Linux, the following software layers are present:

• the Linux kernel VFS, which serves as the entry point for filesystems via software

hooks;
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• a POSIX-compliant filesystem that uses a transaction log for meta-data and in some

cases for data protection;

• the unified page and buffer cache, that caches filesystem blocks in DRAM;

• any block-level filter drivers for I/O virtualization such as software RAID and SSD

Caching;

• the block-level I/O scheduler for storage device performance optimization;

• the SATA or SCSI controller drivers for interfacing with storage devices.

A crucial observation is that all application workloads co-located on a host issue their

I/O requests to a shared filesystem, which in turn uses the global page cache for holding

recently used blocks of data in DRAM for all of them, usually with no distinction between

workloads. Further down the I/O stack, all I/O requests are served by going through shared

and potentially contended code-paths for access to the storage devices that provide the

backing storage for the filesystem. In our results, we demonstrate that this approach leads to

unacceptable performance interference between co-located workloads, whereas Vanguard

exhibits significantly better performance under the same conditions.

To avoid extensive modifications to the Linux kernel, we implement our design as

a stack of loadable modules. The entry point for application code is a journal-based

filesystem (pJournal and pFS) that follows VFS conventions, so that application code does

not need modifying or rebuilding. Having a filesystem in place, we achieve control of the

processing flow for I/O requests; specifically, we bypass the unified buffer/page cache,

instead using our own DRAM caching layer (pCache) providing us with per-workload pools

of filesystem buffers. A further degree of control is the capability to provide per-workload

instances of the filesystem journal, thus providing each workload with a separate access

path to the underlying storage devices. In this chapter, we evaluate the effectiveness of

this approach for a variety of workloads running on a virtualization host that has two

types of devices, solid-state devices (SSDs) and hard disks, arranged so that the SSDs serve

as a transparent cache (pFlash) for the underlying hard disks( [78]). With Vanguard we

achieve three prerequisites for performance isolation: (1) enforce per-workload limits
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Figure 2.3: Overall design of the native (left) and Vanguard (right) I/O stack.

on the amount of I/O memory and SSD cache, (2) reduce contention across workloads

due to synchronization and global policies in the hypervisor, and (3) allow I/O memory

and threads to be placed with improved thread/data affinity, on servers that exhibit more

pronounced NUMA and contention effects. We do not explicitly regulate traffic in the

memory and system interconnects; however, our evaluation shows that regulating resource

allocations across workloads is sufficient to reduce performance interference.
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Table 2.2 provides an overview of the internal structures of Vanguard, listing the thread-

safe data structures and execution contexts involved in each layer. The following infor-

mation is listed for each data structure: function, data structure type (e.g. array, list, hash

table), number of instances (e.g. per-slice vs global), and persistence. For each execution

context, we identify the type of context (e.g. thread context vs bottom-half context), as

well as the number of instances and placement (e.g. per slice, per CPU core). As shown in

this table almost all data structures used in our design have a separate instance per slice

to eliminate contention. The only data structures that differ are: (a) the memory pool in

pCache has per CPU per slice instances to ensure locality and (b) the VFS layer that is not

modified so that applications still see a compatible filesystem.

Table 2.2: Data structures and execution contexts for the layers of the Vanguard partitioned
I/O stack.

Layer
Data Structures (protected/thread-safe) Execution Contexts

function structure instances stored function instances

pFS

slice map array 1 MEM/DSK

application thread inline

container block allocator
depends on

DSK
disk space

container list linked list per slice MEM/DSK
VFS inode cache Linux structure 1 MEM

block map array per inode MEM/DSK

pJournal
transaction FIFO circular array per slice DSK application thread inline

transaction buffer linked list per slice MEM log write-back thread per slice
block map hash table per slice MEM device completion s/w interrupt

pCache

block map hash table per slice MEM
application thread inline

pipeline thread per slice

memory pool stack

per slice

MEM

evictor thread per slice
per NUMA device completion, s/w interrupt

top-half

per CPU
device completion

per slice
bottom-half workq

pFlash
block map hash table per slice MEM request thread per slice/core

element array per slice MEM device completion s/w interrupt
dependencies

Next, we discuss each layer in detail.

2.2.1 Journaling Filesystem

We design a new VFS compliant filesystem pFS. Existing filesystems employ techniques

such as extents and allocation groups to combat scalability issues. We apply the ’slicing ’

concept to completely decouple different workloads running on a single filesystem instance,
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i.e. multiple independent pFS slices co-exist below a single mountpoint. All slices access

dedicated block ranges in the underlying storage and in-memory data structures, reducing

contention and interference across slices. Slice parameters are user defined and are chosen

on a per workload basis.

A step further to slicing resources is their assignment to user processes. In pFS we

implement a mechanism to assign a slice to a process for all I/O issuing tasks, depending

on their related memory buffers. By implementing task placement in the filesystem, we

reduce performance interference and improve system efficiency in multiple areas:

• Minimize remote accesses, therefore eliminating interference caused by NUMA ef-

fects and memory controller contention;

• Minimize task migrations, thereby mitigating CPU scheduler load and reduce inter-

ference in the CPU caches.

A similar approach is presented in [142], where the I/O threads are placed to the processors

closer to the underlying SSD, resulting in twice the I/O performance. In [88] using Vanguard,

we show the improvement in memory throughput when applying task placement, where

we minimize NUMA effects in the system.

Much research has been done on finding fair/optimal resource allocation in servers

running multiple workloads. In this chapter, we focus on eliminating interference; for this

reason, we have chosen to implement a simple policy for assigning slices to workloads. We

implement a round-robin policy where every directory within the root of pFS is assigned

a ’target’ slice. We copy the data for each workload to a top-level directory to ensure their

undisturbed access to the I/O path.

pFS manages storage space by allocating containers for each slice (similar in function to

the allocation groups in the XFS filesystem) and extents within containers.

Our slicing approach reduces interference but complicates the fault tolerance of the

filesystem. We implement pJournal not only to implement fault tolerance, but also to slice

the journal’s operation. pJournal implements atomic operation sequences(transactions)

with all-or-nothing semantics. slicing in the journaling layer corresponds to providing

different block ranges (and potentially devices) for the transaction log of each pJournal
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slice. Transactions are accelerated by an in-memory transaction buffer that mirrors the

active part of the transaction log on disk.

Read operations are served directly from the underlying device slice, unless the data

blocks are found in the transaction buffer of pJournal. Lookup operations on the transaction

buffer are served by a hash-table in-memory structure. The handling of metadata writes

is more complex, as we need to preserve atomicity. First, we copy the buffers from the

I/O request into the in-memory transaction buffers. Subsequently, we mark the data from

transactions as ended and write them to the transaction log.

Several transactions are grouped together, and served as one batch. The batching results

in large writes to the transaction log. Having the data in the persistent transaction log allows

for replay of completed transactions to recover from failures. A separate thread (one for

each slice of pJournal) performs writes to the transaction log. This thread finally issues the

original write requests to the device slice.

Transaction identifiers are unique across all instances of pJournal. A shared atomic

counter across journal instances, provides the next transaction identifier. A co-ordination

protocol ensures filesystem consistency for transactions that span across instances, such

as moving a top-level directory.

2.2.2 DRAM I/O Cache

pCache [88] provides a partitioned DRAM I/O cache to reduce memory contention due to

global policies and to allow NUMA placement. In typical servers today all workloads use

the shared Linux page cache. Concurrent workloads compete for memory buffers from

the page cache, potentially stealing buffers or polluting the cache in a way that destroys

aggregate performance, due to the common replacement policy. Also, the page cache

uses a single look-up structure, which can lead to thread synchronization overheads. In

Vanguard we provide one DRAM cache instance per slice mitigating the effects of both the

replacement policies, look-up structures, and NUMA effects.

pCache supports multiple independent caches over a shared pool of buffers, with a

hash table per cache instance. Each hash table consists of double-linked bucket lists
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and each entry contains a packed array of elements. An element describes a page-sized

buffer and contains an atomic reference counter, flags and a timestamp. The cache is fully

associative and implements a timestamp-based LRU approximation for replacement. The

cache supports both write-back and write-through policies.

Each cache instance is supported mainly by two threads:

• The evictor thread that implements the replacement policy, flushes dirty elements

and keeps the cache within user-specified size limits.

• The pipeline thread, responsible for processing cache requests. In the case of cache

misses, the pipeline thread handles the I/O request processing.

For cache hits on the other hand, which are expected to be as fast as a memory copy,

context switch overheads are not tolerable. For this purpose, the application’s I/O issuing

user-space thread context is used (Inlining), to avoid the penalty of two context switches

(back-and-forth) between the application context and the pipeline thread.

pCache isolates locks in two dimensions: CPU cores and pCache slices. pCache data

structures are duplicated across both dimensions. Each pCache slice has its own hash table,

which results in reduced lock contention on the bucket list locks. Per-request metadata

are allocated from per-CPU dedicated pools, further reducing lock contention across CPU

cores. Data buffers are allocated from pools which are split across both CPU cores and

pCache slices, reducing lock contention even further by using both dimensions for isolation.

2.2.3 SSD Cache

Completing our I/O-Stack we include pFlash, a block-level write-back SSD cache, derived

from our own previous work [78]. pFlash is a transparent cache, as it exports a block device

with size equal to the size of the device being cached. Our slicing technique splits the SSD

device in several independent cache instances. Every slice is given a different block range

and size of SSD space, selected by the user for its intended workload. For every pFlash slice

we maintain separate LRU lists for the eviction policy. This greatly improves the eviction I/O

pattern, increasing the I/O throughput observed at the underlying hard disks. With slices
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an I/O-intensive workload cannot cause consume SSD space beyond the limit imposed by

its slice.

2.2.4 Vanguard Summary

For each I/O path slice, the following instances of our modules are in place: one allocator

slice, one pCache slice, and one pJournal instance. For the pJournal instance, two instances

of the pFlash are used for the core and journal space, respectively. The I/O path for work-

loads executing within VMs proceeds as follows: An application I/O request from inside the

VM is either served from the VM’s page-cache or reaches a virtual device. In the latter case,

the request goes through the virtio channel, reaches the hypervisor (kvm module in the

host’s kernel) and gets forwarded to qemu, which then issues a read/write system-call to

the host’s filesystem (where the virtual disk image is placed). For native configurations I/O

requests first go through the page-cache; only misses are served from pFlash (either SSD

or HDD). In Vanguard, the request will be dispatched by pFS to the proper pCache slice.

Misses are served by pFlash for the specific slice.

2.2.5 FRIMICS

FRIMICS uses cgroups [98] for CPU and application memory isolation and a modified

version of Vanguard [111] to isolate the I/O path. Vanguard statically partitions the I/O path

of a server and isolates the access to I/O caches (memory and SSD), I/O buffers, allocator

and control structures that include synchronization. QuMan extends Vanguard in two ways:

(a) It provides a mechanism for dynamic slice creation, resizing, and deletion; and (b) It

converts I/O buffer allocation mechanism to be NUMA aware. Future versions of QuMan

will also isolate the LLC and the network.

The cgroups mechanisms provide two ways for limiting CPU usage by a process: relative

and absolute. The relative mechanism uses the cpu.shares parameter that specifies the

percentage of CPU offered to a cgroup, relative to the active set of cgroups, which is the

set of cgroups with a running process. The underlying mechanism of cgroups divides the

CPU in 1024 shares and depending on the value of cpu.shares for each cgroup and the
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number of active cgroups, it allocates to it a portion of the remaining shares. The absolute

mechanism allows users to define explicitly the access period of the CPU and the total time

that a process takes. However, the libraries that implement this method induce significant

overhead. For this reason, FRIMICS uses the relative approach.

FRIMICS combines the share-enabled dynamic CPU allocation of cgroups, with their

static memory allocation, by controlling their NUMA placement. To map I/O buffer al-

location to slices, FRIMICS uses CPU shares in combination with CPU masks. The CPU

masks limit the CPU assignment only to specific NUMA nodes that are compatible with

the I/O buffer allocation. In addition, QuMan ensures that the total shares of the running

applications will be at most 100. FRIMICS converts the allocated CPU of each application,

directly to CPU shares. For example, if an application requires 50% CPU it will get 50 CPU

shares instead. Although this allocation policy is not equivalent to statically allocating CPU

cores to applications, it is similar however on a highly loaded server.

Indirect LLC isolation: FRIMICS does not explicitly isolate CPU caches (specifically the

LLC) and memory bandwidth, however it mitigates the interference in those resources by

placing applications to a single NUMA node, when there are enough resources available;

or uses neighboring NUMA nodes when applications are larger. Therefore, it indirectly

reduces interference in per-core caches and directly traffic across different NUMA nodes,

which can significantly improve I/O throughput up to 2x [89].

Dynamic slice creation and modification: FRIMICS accepts requests to create new slices

with a certain amount for each resource: CPU cores, memory, I/O buffers, and SSD cache.

When deleting a slice, FRIMICS flushes all pending requests from DRAM I/O cache and

SSD cache to the underlying storage before it frees resources. Resizing a slice follows the

same steps with slice delete and create. Finally, FRIMICS offers the ability to assign a new

or re-assign a used slice to an application.

Memory allocation: An implication of the memory allocation mechanism of FRIMICS

is that it handles separately kernel I/O buffers, both in terms of placement and usage.

However, cgroups do not distinguish between application memory and kernel I/O buffers
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during allocation and they include both types of memory with a single limit for each

container. Therefore, when FRIMICS allocates memory for slices, it uses the sum of both

types of memory in the cgroups limit.

2.3 Profiler

For a newly submitted application, the profiler estimates and provides to admission con-

troller policies two functions:

1. A Performance Index prediction function that takes as input a hardware configuration,

expressed as fractions of a server’s CPU, memory and IO.

2. A CPU utilization function that takes as input a hardware configuration and predicts

the expected CPU utilization of the configuration. Note that the CPU utilization differs

from the CPU allocation and it is usually lower. The CPU allocation corresponds to

the maximum CPU utilization the application can achieve. It will match the allocation

only if 1) the application has constant CPU demand throughout its execution and 2)

the profiler predicts CPU requirements with 100% accuracy. Thus, the CPU utilization

function acts as a proxy that measures the existence of performance bottlenecks

in various allocations. Although a CPU is not always a key performance driver, its

use in comparison to allocated CPU provides valuable insights as to the existence

of any performance bottlenecks regardless of the resource of origin. For example, a

memory-sensitive application will have page faults in the absence of enough memory,

and this will affect the CPU utilization significantly.

The profiler performs several sample runs for each new application. It performs these

runs in a dedicated server and in parallel to actual application execution. Hence, the

profiling does not affect the scheduling of QuMan. This procedure will take from a few to

at most a thousand seconds depending on the application and its input size. Afterwards,

it feeds the results into a statistical model to predict how the application scales up. The

profiler uses slices of increasing resources in each dimension separately to create a training

set of data points for the Performance Index model. Note that the profiler is agnostic to
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application input parameters. For example training a machine learning model for 100

iterations is completely independent from training the same model with 200 iteration,

and thus the two combinations get profiled independently. However, we do not re-profile

applications if they execute on similar sized input datasets.

Initially, for each newly admitted application, the profiler uses a dedicated server to per-

form controlled runs on the user provided sample input on slices with different resources.

It constructs a 4-d representation of the Performance Index. Each run provides two data

points, each of which is a tuple (X,Y). X ∈ R3 is a vector that contains the configuration

in terms of CPU, memory size, and SSD cache size of the slice on which the application

ran. Y ∈ R is the measured Performance Index and CPU utilization respectively for each

datapoint. For example, consider profile runs of BLAST on a server that consists of 8 CPU

cores, 16 GB of memory, and 32 GB of SSD cache. If a run that uses all available resources

takes 19 seconds and causes 93.7% CPU utilization, it will produce datapoints (<8, 16,

32>, 1) for Performance Index and (<8, 16, 32>, 93.7) for CPU utilization. If another run

on the same server of the same software uses 4 CPU cores and same amount of memory

and SSD, it finishes in 39 seconds and causes 87% CPU utilization (of those cores), it will

produce datapoints (<4, 16, 32>, 0.49) for Performance Index and (<4, 16, 32>, 87) for CPU

utilization.

Next, the profiler fits the observed datapoints for each metric, Performance Index and

CPU utilization, with two S-shaped logistic functions. We use the logistic function for

two reasons: First, it simplifies the expression of Performance Index as a function of the

available resources. An S-shaped logistic curve, as shown in Figure 2.4, consists of three

distinct areas, each resembling one of the three patterns we assume for the shape of the Per-

formance Index (Figure 2.2). Therefore, an S-shaped curve models all cases, with different

parameters. Second, CPU utilization is expected to follow the shape of Performance Index

for applications whose performance follows Figure 2.2. The two curves for an application

do not necessarily have the same shape, for example one can be convex and the other

concave, but this is not a problem as we consider two distinct fitting functions.

Also note, that although FRIMICS provides resource isolation on more that three re-

sources, the logistic regression of the profiler uses only three resources as features. There
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is a tradeoff in using more resources in the profiler; a possible increase in the number of

features of the logistic regression might produce more accurate models, but it will require

exponentially more datapoints to avoid underfitting. Given that every datapoint requires

sample runs, and to keep the profiler simple both simple and accurate, we use only three

features: the number of CPU cores, memory capacity and SSD cache capacity.
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Figure 2.4: The three possible ways that an application’s performance change when the hardware resources on
which it executes reduce. Note, that although the figure displays a single-dimensional resource for demonstra-
tion purposes, our modeling uses a three-dimensional space, as it is not straightforward how the combination
of these resources affects application performance.

The logistic function that we use to fit the observed datapoints (X,Y), is defined as:

fϑ(X) = C1 − e−Xβ

1 + e−Xβ
(2.1)

where C is scalar, β is the vector
(
β1, β2, β3

)
, and ϑ all parameters (C and β) of each function.

Estimating C and β: QuMan uses the Newton-Raphson method to estimate C and β for

the logistic function using the observed datapoints in the training set. Newton-Raphson

finds the parameters that minimize the mean square error as given by:

e(ϑ) =
M∑

m=1
(Ym − fϑ(Xm))2 (2.2)

where θ = (C,β), fϑ is the individual characteristic function, Mdenotes the total number
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of input points, and fϑ(Xm) is the estimated Performance Index or utilization value for the

same resources.

The profiler identifies the parameters θ that minimize total error:

ϑ̂ = argmin
ϑ

e(ϑ) (2.3)

In our experiments, Newton-Raphson typically converges in less than 3000 iterations and it

takes less than one second to run. Also the space overhead of storing the model parameters

is negligible; For each application the profiler only stores the four model parameters:

[C, θ1, θ2, θ3].

2.3.1 Profile-based Admission Controller

Our admission controller uses the prediction functions that the profiler provides to make

decisions on whether to admit an application to the server and how to size its FRIMICS

slice. In this work, we explore two different policies:

1. A user-oriented policy, based on QoS thresholds. This policy allows users to specify

a minimum threshold for the Performance Index for each application, which the

admission controller will meet. In our initial investigation, and for simplicity, we use

the same threshold for all applications running on a server.

2. A provider-oriented policy driven by a new metric, QoS-Utilization Combined Index

(QUCI). This policy does not require user input as it automatically balances QoS and

utilization.

Both policies treat tasks independently, and optimize for task level performance metrics.

Of course, one could improve this approach and build more sophisticated algorithms

that also consider dependencies among tasks. However this does not change the core

functionality of QuMan, which trades in a controlled manner performance guarantees of

tasks for higher server utilization.
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User-oriented policy: The user-oriented policy allows users to provide a minimum per-

formance threshold that they are willing to tolerate. QuMan is agnostic to the performance

metric because it converts all metrics to the Performance Index. The admission controller

creates a FRIMICS slice for the application with configuration settings for each resource

that meet the requested threshold.

The controller uses the Performance Index prediction function of the profiler to exam-

ine different slice configurations with combinations of the available resources. In case

the controller detects multiple possible hardware configurations that provide the desired

Performance Index, it chooses the one with the least amount of aggregate resources (as

percentages). For instance, if the application can achieve the same performance with an

assignment of either 35% CPU, 30% memory, and 25% SSD cache (35% + 30% + 25% = 90%),

or 45% CPU, 40% memory, and 15% SSD cache (45% + 40% + 15% = 100%), then QuMan

prefers the former. If QuMan finds multiple resource allocations with the same sum, it

randomly selects a configuration that fits server, without further resource prioritization.

Provider-oriented policy: The provider-oriented policy assigns resources to applications

automatically using only their profiling information. There are two fundamental require-

ments that we satisfy: Maximize server utilization while minimizing consolidation related

effects on performance.

To accommodate the former requirement, our policy favors applications with high

utilization levels of their offered resources. If, for example, applications A and B achieve the

same Performance Index with the same slice configuration, but application A underutilizes

its offered resources, the policy reduces the number of resources that are available to A and

assigns them to B.

On the other hand, to meet the second design requirement, the policy also favors

applications with higher Performance Index. If, for example, applications C, D work on the

same slice configuration with similar device utilization, and a new application F demands

a slice that will need to “steal” resources from either C or D, the policy will take resources

from the application with the lowest possible effect on its performance.

As a proxy for the two requirements, the policy uses the two functions that the profiler
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provides: the Performance Index prediction and the CPU utilization prediction. Thus,

the metric that this policy uses to quantify both requirements of the design is the QoS-

utilization combined index (QUCI). We define QUCI for a workload with k applications

as:

QUCI(X1, . . . ,XK) =
∑
k
wPIfϑk

PI (Xk) × wCPUfϑk
CPU(Xk) (2.4)

where fPI and fCPU are the profiler functions that estimate the Performance Index and the

CPU utilization for each application, wPI and wCPU are weights that specify the significance

of the respective values in the metric, K is the total number of running applications, and k

is the kth running application.

The policy maximizes QUCI under the constraints of available resources. It uses the

Lagrange multipliers method to maximize the QUCI reward function, as described below:

(X̂1, . . . , X̂K) = argmax
(X1,...,XK)

QUCI(X1, . . . ,XK),where
K∑
k=1

(Xk) = 1, (2.5)

Xk is a three-dimensional vector that represents slice configuration in terms of CPU, mem-

ory size, and SSD cache size of the server resources offered to applications. The Lagrange

multipliers method is very quick and in our experiments it requires at most 100ms and on

average 40ms.

QUCI increases when both Performance Index of applications and the CPU utilization of

the server increase. For example, if we consider two workloads, one with a single application

running at 1 Performance Index and utilizes 30% of its CPU allocation, and one with three

applications, each of which runs with a Performance Index of 0.8 and utilizes CPU by 20%,

and if we assume for simplicity equal weights of 1 in the QUCI equation, the QUCI of the

first workload is 0.3 while the QUCI of the second workload is: 3× (0.8×0.2) = 0.48. Thus,

the admission controller will favor the second workload.
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2.4 QuMan Implementation

We have implemented QuMan in 10000 lines of C++ and python code. It runs on Linux and

manages any binary that executes on the server. We then integrated QuMan with Sparrow

cluster scheduler [96] to demonstrate its capabilities in a cluster environment.

2.4.1 Integration with Sparrow

Sparrow [96] is an open source resource scheduler that achieves high scheduling throughput

for tasks. In order to schedule a task, Sparrow probes a number of randomly chosen worker

nodes and assigns it to the node with the fastest response time.

We introduce a modified version of Sparrow, QuSparrow, which uses QuMan to achieve

utilization aware scheduling. We changed the front end of Sparrow API to allow tasks

to submit performance constraints that QuMan needs to satisfy, which afterwards get

converted into Performance Index. Figure 2.5 shows the architecture of this integration,

which uses a user-oriented policy for admission control (see Section 2.3.1). For every

scheduling decision, QuSparrow sends task execution requests to a number of randomly

chosen worker nodes that run QuMan; workers whose admission controllers can accept

the task, respond (step 5 of Figure 2.5) with the amount of remaining resources they will

have available after they accept the task, while the rest respond with negative numbers.

QuSparrow collects the responses of all nodes and greedily assigns the task to the node with

the minimum remaining resources (step 6 of Figure 2.5).

If QuMan nodes know the performance profile of a submitted task, they will skip steps

2, 3, and 4 of Figure 2.5 and calculate directly their estimates; Otherwise, they will submit

that task together with the original input to a sandbox node to perform profile runs. For

sandboxed executions, we use a spare node of the cluster. Given that it is the workers

that submit tasks for profile runs, and QuSparrow probes multiple workers, the sandbox

receives multiple requests to profile the same task (step 2 of Figure 2.5). The sandbox

executes profile runs once, in response to the request that arrives first, and it ignores the

rest requests for the same task. In case the sandbox is busy profiling a particular task and

receives requests to profile different tasks, it adds those requests in a queue and serves
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them as soon as it finishes with the former. Finally, in step 4, the QuMan node that receives

the profiling results from the sandbox broadcasts them to the rest nodes of the cluster.

Thus, whenever the same task gets submitted in the future at any node, they will omit steps

2, 3, and 4, as all of them will have synchronized lists of known profiles.

For the purposes of this integration we have made two working assumptions. First,

profile runs occur rarely and do not interfere with the scheduling latency goals of Sparrow.

This is a reasonable assumption, since most tasks tend to appear with recurring patterns [72,

99]. Second, production cluster trace analyses shows that short tasks are dominant in

datacenters, for example statistics from the Google datacenter, where 92% of the jobs have

tasks that execute in less than a minute [100], Mishra et. al. [90] report “tasks with short

duration dominate the task population“, Lu et. al. [16] report that the average task duration

is 192 seconds with maximum task duration of 29585 seconds. Thus, we expect QuMan to

perform well in the majority of realistic datacenter workloads.

Long Tasks: Although QuSparrow is built under the assumption that most tasks are short,

it takes a shortcut when handling long tasks that appear occasionally. The sandbox of

QuMan considers a task as long when the first run (a run with all available resources),

takes longer than 100 seconds to complete [100]. After 100 seconds it measures the CPU,

memory utilization, and SSD utilization and then kills the task. The sandbox returns only

one datapoint to the QuMan worker, which represents the Performance Index of 1 with the

server utilization readings it took at the 100th second. In that case, the profiler of the QuMan

worker assumes that Performance Index drops linearly with offered resources (form 2 of

Figure 2.2) and for that long task it calculates a line that declines with 45 degrees. Although

such a shortcut might introduce error in the accuracy of long task profile estimation, it will

increase the availability of the sandboxes to short tasks. Furthermore the effect of that error

is insignificant, as the long tasks do not have strict service level objectives.

Data Locality Skew: A practical issue of the sandboxed runs is the skew on the profiling

results from data locality. Although the measurements from the first run will contain data

transfer associated overheads, subsequent runs will not have the same overheads as data
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will be already cached. In order to produce consistent profiling results, QuMan sandboxes

flush their caches before initiating each run. Thus, all profiling related datapoints include

data transfer related overheads.

QuSparrow

QuMan
Executor

QuMan
Executor

QuMan
sandbox

1. Task + 
performance index 
constraint

2. Sandboxed 
run requests

3. Result of runs

4. Profile sync

5. Response with 
available 
resources

6. Run task

Figure 2.5: Resource negotiation steps of QuSparrow. 1) QuSparrow queries randomly a number
of QuMan nodes whether they could run a task under a certain performance constraint. 2) If QuMan nodes
do not know the performance profiles of the task, they will request from the sandbox to perform profile runs.
3) The sandbox will notify one of the QuMan workers about the profiling results, and the later will broadcast
those results to all workers in step 4. 5) QuMan nodes will decide whether the task fits in their workload, and if
it does, they will notify the QuSparrow master about how many resources they will have left, after they admit
the task. 6) The QuSparrow master will select the node that expects to be utilized the most, after it admits the
task, to proceed with the execution.

Non-recurring Applications: Although typical datacenter workloads consists mainly of

recurring tasks, they also include a significant portion of non-recurring applications. For

this reason QuMan immediately schedules “unknown” applications with a predefined slice,

which consists of 50% of a server’s resources. This strategy favors application performance

over CPU utilization, because the “unknown” applications get a large slice to execute to

ensures high performance, however they might reserve more resources than necessary

which can lead to decreased CPU utilization.
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2.5 Vanguard Evaluation Methodology

In this section we present the experimental platform and workloads we use in our evalua-

tion. We assume that an external entity, such as a billing system, assigns workloads to I/O

path slices.

2.5.1 Experimental Platform

We perform our evaluation on a server equipped with a dual-socket Tyan S7025 moth-

erboard, two 4-core Intel Xeon 5620 64-bit processors (with hyper-threading enabled)

running at 2.4 GHz, 48GB of DDR-III DRAM and four 32GB enterprise-grade Intel X25-E

SLC NAND-Flash SSDs, each individually connected to one of four LSI MegaRAID SAS 9260-

8i controllers. We also utilize eight 500GB Western Digital WD50001AALS-00L3B2 SATA-II

disks connected to an Areca ARC-1680-IX-12 SAS/SATA storage controller and assembled in

a hardware RAID-0 configuration. The server runs Linux kernel v.2.6.32-279.5.2 (part of the

CentOS distribution, v.6.3). All Native experiments use the xfs filesystem (with 4KB blocks).

The I/O scheduler used in all experiments is the default noop elevator.

2.5.2 Individual and Combined Workloads

In our experiments we measure per-workload performance on a virtualization host with up

to 6 VMs, running different combinations of six workloads: TPC-E, TPC-W, TPC-H, Apache,

BLAST, and FIO. In most of the experiments, these six workloads are treated as having

equal value, i.e. they are assigned to I/O path slices with equal resource allocations. These

experiments capture plausible operating points of the server. Load can build up gradually

over time, or in other cases can vary over a wide range, by having different combinations

of workloads active at successive measurement intervals. In our evaluation, we present

results for all possible combinations of four workloads out of the six listed above. In the

rest of the experiments, we focus on excessive load, i.e. situations where the aggregate

load exceeds server resource capacities. Under such conditions, we distinguish between

workloads as follows: one workload is marked as primary, and the background load consists



30 Chapter 2. Offline Resource Estimation

of combinations of the remaining five workloads. In all experiments, there is a change in

the aggregate load profile every 300 seconds. We describe the workloads of our evaluation

below.

TPC-E [92] is a transactional workload that emulates the operations of a stock broker.

We use 24 threads that issue transactions over a 20GB database. This workload consists

of comparably localized randomly distributed small-sized I/O accesses, 15% of which are

writes. The metric we focus on is the transaction rate. The CPU load in our runs is more

less 50% of our system’s CPUs and a single SSD is sufficient to sustain the throughput

requirements. TPC-E is latency sensitive due to each transactions and therefore is I/O

bounded. TPC-H [92] is a data-warehousing benchmark, generating business analytics

queries to a database of sales data. We execute query Q5 in a loop using a 6.5GB database.

The metric we focus on is the average execution time for twenty consecutive executions

of query Q5. This query requires a lot of CPU processing before issuing the I/Os. TPC-H

uses only one thread, which becomes a bottleneck if the underlying storage can achieve

more or less 250MB/s fairly sequential read operations. TPC-W [92] is a transactional

workload that emulates the operations of an online shop. We use the order taking profile

with 2000 emulated clients. In this profile 50% of the client sessions include shopping-

cart updates. The database size is around 3GB, and the metric we focus on is the average

transaction response time. Due to its large thread count, TPC-W consumes almost all the

CPUs throughout the experiment. Similar to TPC-E , disk latency affects performance

especially when PostgreSQL issues flash operations for its transaction log. We run TPC-E

on MySQL (v.5.0.77) and TPC-H and TPC-W on PostgreSQL (v.9.0.3).

BLAST [22] is an application from the domain of comparative genomics. We use the

blastn program (v.2.2.27) which performs queries on nucleotide databases. Sixteen in-

stances of blastn issue simultaneously queries to separate databases. blastn therefore,

heavily utilizes both the CPU subsystems using many instances and the I/O subsystem

with 16 undisturbed outstanding I/Os. We use 23GB databases in our experiments, and the

metric we focus on is the average execution time over six consecutive executions.

We use Apache [9] and the ab benchmarking tool, to evaluate web-content serving

performance. We invoke ab invocations in batches with a duration of 10 seconds. Each
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batch contains 100 ab instances that run in parallel, where each instance issues 5 concurrent

requests. Our 8GB dataset is comprised of three different file classes: files with size 32KB,

256KB and 1MB. The file on which ab operates is chosen randomly at the start of each

batch, with a probability of 0.5, 0.3 and 0.2 respectively for each of the three file classes.

Although using ab as described above produces significant I/O traffic, the read throughput

of one of our SSDs is sufficient to sustain this load. The Apache server is latency sensitive so

the disk latency and the available CPU resources are vital for its performance. The metric

we report for this workload is the 95th percentile of request latency.

FIO [24] is a microbenchmark that stresses the I/O path by issuing concurrent streams

of I/O requests to either files or block devices. The metric reported for FIO is the aggregate

I/O throughput.

2.5.3 Virtual Machine Configuration

For our Linux-based virtualized environment, we had the option to choose between two

hypervisor technologies: Xen and kvm. We opted for kvm, where the hypervisor is a kernel

module and virtual machines are executing as regular qemu processes. The choice of kvm

over Xen is not limiting the applicability of our approach; the paravirtualized I/O path for

Xen is quite similar, as I/O still goes through an“I/O proxy”. The I/O path goes from a virtual

machine to the hypervisor, and then to an “I/O proxy” thread running within qemu. Qemu

can use up to 64 I/O threads per VM (in addition to the number of virtual cores assigned to

the VM). This is essential for preserving the semantics of the filesystem running inside each

of the virtual machines. We assign 4 virtual cores and 3 GB of memory to each VM. Each VM

configuration involves a 16GB system-disk image file and a workload data-disk image file.

2.5.4 Settings for I/O Path Slices

For the experiments with gradual load build-up, we configure four I/O path slices, each

with the following settings: 6GB of DRAM for filesystem buffers, 32GB of SSD-cache space

and 500GB of hard-disk space. The same settings are used for the experiments where we

evaluate all combinations of four workloads. Our rationale for configuring less I/O slices



32 Chapter 2. Offline Resource Estimation

than workloads (4 slices vs 6 workloads) is that with independently submitted workloads

we anticipate benefits from statistical multiplexing for resource sharing. The downside is

that over-subscription of resources cannot be ruled out; thus, we evaluate Vanguard under

conditions closer to a real-world deployment.

For the gradual build-up and four-workload combinations experiments, we assign the

six workloads to the four available I/O slices by applying the following (empirically derived)

rules: (a) BLAST and FIO, the two more I/O-intensive of the six workloads, are assigned to

dedicated slices, (b) TPC-E and TPC-W, both OLTP workloads, share a slice, and (c) TPC-H

and Apache, both workloads with primarily read I/O activity, also share a slice.

For the excess-load experiments, we configure two I/O path slices, with the following

settings: 12GB of DRAM for filesystem buffers, 64GB of SSD-cache space, and 1000GB of

hard-disk space. For these experiments, one workload is assigned as the primary, and gets

to use the first of the two I/O path slices, without competition. At each 300-second interval,

a different (randomly selected) combination of four workloads out of the five remaining

workloads is activated in the second I/O path slice. For all experiments, the write policy of

the SSD-cache is writeback.

2.6 Vanguard Results

We evaluate the effectiveness of Vanguard in mitigating performance interference between

co-located workloads, by running three types of timeline experiments:

1. Excess load, where we run experiments with a primary workload competing with

background load that changes between time intervals (as explained in Section 5.2).

2. Gradual build-up of system load, where the workload submission sequence is as

follows: TPC-E, BLAST, FIO, TPC-W, TPC-H, Apache.

3. Varied load, where we run all possible 4-workload combinations out of six available

workloads (total of 15).

We define two metrics, computed from our experimental measurements, to better explain

our evaluation results:
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The first metric represents the effectiveness of a system for a given workload mix. We

have established a performance baseline Bi by running each of the workloads i = 1, ...,WT

in a single VM on an unmodified host with the native I/O stack. We use the same baseline

for all system configurations (Native, Vanguard) and in all the timeline experiments.

To quantify deviations from the performance baseline, we define POi,T to be the ob-

served performance score for workload i during time interval T. WT is the number of

workloads active during time interval T. The results from our timeline experiments are

shown as plots over time of a combined performance index defined for time interval T as

follows: PI := 1
WT
∗
∑WT

i
POi,T
Bi

. If a workload suffers from performance degradation, then

the ratio
POi,T
Bi

will be less than 1. The PImetric is essentially the average of the normalized

performance scores of all running applications on a server.

A crucial clarification for the PImetric is that it assumes that for each workload the ob-

served performance score and baseline are higher for better executions. This is indeed the

case in our experiments for the TPC-E, TPC-W and FIO workloads, where the performance

metric as per Table 2.3 is the rate of completed operations. However, for workloads where

the observed performance score and baseline are lower for better executions, specifically

BLAST, TPC-H and Apache in our experiments where the metric is latency per operation, we

need to transform the observed performance score and baseline to a rate, i.e. use latency−1

in the corresponding POi,T fractions.

The second metric ESYS quantifies system efficiency for a workload mix, taking into

account both the combined performance index and an indicator of power consumption.

Following the work presented in [52] we assume that the total (system) power consumption

is a linear function of server CPU utilization: TotalSystemPower := Pidle+(Pmax−Pidle)∗UtilCPU,

where Pidle is the (constant) power consumption of the server when idle, Pmax is the server’s

maximum measured power consumption when running workloads, and UtilizationCPU is

the CPU utilization level (ranging from 0 to 1). We define the following indicator for system

power consumption:

SYSPWR(UtilCPU) :=
Pidle
Pmax

+ (1 − Pidle
Pmax

) ∗UtilCPU
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Table 2.3: Absolute performance of Vanguard and Native.

Workload Native Vanguard Metric
TPC-E 18.00 18.50 transactions/sec
TPC-H 22.45 32.20 execution time (sec)
TPC-W 504.21 547.73 transactions/sec
BLAST 35.15 45.52 execution time (sec)

APACHE
30.46 24.02 50% response time (msec)

120.16 72.93 95% response time (msec)
FIO 1.5 1.3 GB/sec

Following [35] we set Pidle
Pmax

= 2
3 , i.e. we assume that Pidle is 67% of the maximum server

power consumption. This assumption is validated from our experience with servers with

substantial memory and storage resources. Finally, we define system efficiency ESYS during

time interval T as follows:

ESYS :=
WT ∗ PI

SYSPWR(UtilizationCPU)

The PImetric allows us to rank execution sequences in terms of performance: higher

is better, pointing to lower degrees to performance interference between workloads. The

ESYS metric allows us to rank execution sequences in terms of efficiency: higher is better,

pointing to more useful units of work being processed per unit of power consumption.

In the following graphs we show execution results normalized to the standalone Native

configuration, i.e. we set the baseline for each workload to the performance observed with

the unmodified Linux system (Native) when there is no performance interference. Along

with performance, we also compare Native and Vanguard in terms of system efficiency.

Table 2.3 summarizes the absolute performance results for each workload, for Native and

Vanguard.

2.6.1 Excess Load (Primary workload vs combinations of background work-

loads)

In this subsection, we summarize results under conditions of excess load, when a single

workload, that is designated as primary, runs concurrently with five background workloads.
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Figure 2.6: Performance of TPC-E with Native and Vanguard, with five VMs as excess load.

In this case, we are interested to identify how affected is the primary workload in presence

of interference. In each interval we use a different combination of the available workloads.

Figures 2.6, 2.7 show the normalized performance of TPC-E, TPC-H, respectively. In the

TPC-E case we observe that the performance of the Native starts to drop already in the

first interval while in TPC-H the performance drops during the fifth interval. This is due

to the fact that the TPC-H database is significantly less (6GB versus 45GB) and the native

system manages to keep it in memory for a longer period of time. Eventually though,

both workloads fail to make substantial progress. Vanguard has the ability to enforce

private resources for workloads and therefore achieves a much better average performance.

Datacenter operators that intentionally keep their servers underutilized can now add more

workloads, increase their efficiency and preserve the satisfaction of their customers.

Another important result of the isolation property is the stability in performance. With

Vanguard the primary workload maintains its performance level regardless of the back-

ground load present in the server. This feature of Vanguard makes it a handy tool for cloud

infrastructure administrators to offer QoS guarantees.

2.6.2 Gradual Build-up of System Load

In this subsection we show how the server operates when we gradually increase the load by

activating more VMs. In each time interval we add one VM. The experiment finishes after
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Figure 2.7: Performance of TPC-H with Native and Vanguard, with five VMs as excess load.

1800 seconds, with 6 VMs running concurrently. In this experiment we focus on the overall

behaviour of the server. We plot the PImetric every five seconds. In the timeline graphs

shown below, PI = 1 corresponds to the maximum observed performance score. The left

part of Figure 4.2 shows the combined performance index as a timeline for the gradual

load build-up scenario, for Native and Vanguard. In the first interval, where only one VM is

active, Vanguard outperforms the Native system; therefore its combined performance index

is above 1. Overall, Vanguard outperforms the Native system for three of the workloads

(TPC-E, TPC-W, Apache), and lags Native for the rest (by no more than 30%).

In the second interval, the I/O resources of the server are still sufficient and the two

running workloads do not interfere with each other, thus the combined performance index

of Native is higher than 50%. However, after the third workload in the sequence becomes

active, Native cannot sustain the aggregate load, whereas with Vanguard the combined

performance index is more or less constant at around 0.5 throughout the timeline of this

experiment. Native cannot limit the performance interference between workloads, as it

allocates resources from severely contented shared pools. Vanguard maintains distinct

resource pools for each of the I/O path slices, resulting in a more predictable execution for

each workload.

The right part of Figure 4.2 display the server efficiency for each execution (Native

and Vanguard). We define an optimal execution with respect to ESYS as follows: Each

added workload consumes only one hyperhread (hence UtilizationCPU = 1
16 ) and yields the
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perfect performance score (PI = 1). Therefore, during each interval the optimal execution

defines an upper bound for every execution. Clearly, this bound rises as we add more

work to the server. We observe that the Native system’s trend is descending while the

trend with Vanguard is ascending: As we add more load to Vanguard it becomes more

efficient, whereas Native is getting less efficient. Hence, with Native adding load translates

to producing much more interference among workloads, leading to a marginal increase

in aggregate performance with a disproportionately high resource consumption. On the

other hand, with Vanguard more load leads to more efficient use of the server’s resources,

as Vanguard limits interference and manages to get better performance with the same

or less CPU utilization. This graph indicates that the datacenter operators are justified

to operate servers at low utilization levels, as they get less efficient with increasing load.

Figure 2.9(a) summarizes per-workload performance for the gradual load build-up scenario.

Native outperforms Vanguard only for the BLAST workload; however, Vanguard maintains

a balanced performance envelope for all workloads, with much lower standard deviation.

Based on the data in Figure 2.9(a), a server operator can reason about plausible operat-

ing points, using the following parameters: (1) the set of baseline scores Bi, i = 1, ...,WT

for the WT workloads observed during the measurement period T, and (2) an effectiveness

level E, i.e. the minimum acceptable fraction of baseline performance.

Setting E= 0 corresponds to the (unrealistic) expectation that all co-located workloads

execute at their stand-alone performance level, without noticeable performance degrada-

tion. More realistically, setting E = 0.25 corresponds to the requirement that workloads

suffer a performance penalty of at most 25% concerning baseline performance. A lower

setting, E = 0.5, corresponds to a less strict constraint on performance degradation, i.e.

describes an operating point that could accommodate more workloads on the same server.

For the particular experiment summarized in Figure 2.9(a), setting E= 0.25 means that

with Vanguard 3 of the 6 co-located workloads operate at acceptable performance levels, as

compared to 1 out of 6 with Native. Setting E= 0.5 means that 5 out of 6 workloads run at

acceptable performance levels with Vanguard, as compared to 2 out of 6 with Native. Seen

differently, these observations from Figure 2.9(a) imply that with Vanguard fewer physical

servers would be needed to run all of the workloads at acceptable performance levels. Thus,
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Figure 2.8: Aggregate performance of Native and Vanguard, for the gradual load buildup
scenario with up to six workloads.

Vanguard improves effectiveness from the point of view of the server operator, allowing

more workloads to be co-located without an uncontrolled collapse of performance.

2.6.3 Varied Load (4-workload combinations)

In this subsection, we complete our evaluation by examining all possible combinations

of 4 out of 6 workloads. We choose 4 workloads, because we know by experience that our

hardware has not enough capacity to accommodate more, due to resource limitations.

These experiments serve as evident proof that Vanguard (provided with the necessary in-

formation) can make the most out of a consolidated server, whereas the native system fails

in most cases. Different combinations of co-located workloads stress resource allocation
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Figure 2.9: Average application score (with error bars) for Native and Vanguard

in varying degrees. Figures 2.10(a), 2.10(c) show the combined performance index, while

figure 2.9(b) displays the average score for each workload. The per-workload scores show

that, for Native 3 of the workloads (TPC-E, FIO, TPC-W) do not produce significant work,

TPC-H performs on average at around 30% of its baseline and the rest (BLAST, Apache)

perform much closer to their respective baselines. In sharp contrast, with Vanguard only

one workload (FIO) suffers from severe performance degradation, whereas the other five

workloads are within 50% or better of their respective baselines. FIO is being explicitly iso-

lated from the rest of the workloads, following the workload-to-slice assignment described

in Section 2.5.4. In Figures 2.10(b) and 2.10(d) we show the ESYS metric for Native and

Vanguard. The average efficiency of Vanguard compared to Native is 2.5x more, which is

indicative of the benefits of partitioning in servers’ efficiency.

Thus, with Vanguard the same hardware resources perform more useful work, exhibiting

that way a vast improvement in energy efficiency and cost.

2.6.4 Alternatives for Achieving Isolation

In the Linux kernel the state-of-the-art mechanism for regulating resource use is currently

cgroups. We should note that although cgroups offer various options, it is non-trivial to

configure for effective reduction of interference across workloads. We compare Vanguard to

cgroups and four alternative hand-tuned configurations aiming for performance isolation:
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Figure 2.10: Aggregate performance of Native and Vanguard, with combinations of 4 out of
6 workloads.

1. Increase the memory budget available for I/O caching in the guest VM, and reduce

the size of the hypervisor I/O cache. This ensures that I/O buffers are allocated to

each workload rather than shared across workloads. The disadvantage compared to

Vanguard is that workloads still compete in the shared I/O path in the hypervisor.

2. Create a separate filesystem for each VM, thus eliminating shared use of filesystem

structures. However, these filesystems still share the single page-cache of the host. The

main disadvantage compared to Vanguard is that each modification of the running

workloads requires repartitioning the devices and creating new filesystems, which is

not practically feasible.

3. Use separate filesystems (as in the previous configuration) and regulate memory use
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via cgroups.

4. I/O caching in the guest VM, with two filesystem instances (combination of the first

two alternatives).

We use an “excess” VM that generates a varying I/O request load concurrently with the

performance-sensitive workload. After experimenting with various workloads as excess

workloads, we opted for a synthetic workload based on fio [24] to allow for controlled

experiments.

We define two different interference levels: low and high. We use 64 fio threads (as many

as the I/O threads in qemu), each sequentially reading a 800-MByte file. We present results

with two settings: a ‘low-intensity‘ configuration with request size of 16KB, resulting in a

relatively steady I/O throughput rate of 100MB/s, and a ‘high-intensity‘ setting with 256KB

requests, that consumes I/O throughput at a rate of 1000MB/s. For both intensity-level

settings, the excess VM is allocated one core.

We provision the “primary” VM with disproportionately more memory than the excess

VM inside the guest; 13GB of memory versus 3GB. We create two filesystem instances each

with a dedicated SSD cache slice, with 3GB allocated for the excess load VM and 62GB

for the production VM. The production VM is allocated four cores. Figure 2.11 compares

Vanguard with these hand-tuned configurations, for the TPC-E workload. TPC-E stresses

the effectiveness of both memory and device subsystem. Isolating memory by caching in

the guest VM, is sufficient for low levels of excess load but the drop in performance under

high excess load is very steep (7% improvement with low excess load, 19x degradation

with high excess load). Isolating devices by creating one filesystem instance for each VM

improves results, even for the high excess load, with degradation in the 38%-52% range.

When we use separate filesystems in combination with cgroups, performance degradation

is 28% compared to native. When we combine caching in the guest VM with two filesystem

instances, we observe 10% improvement for the low setting and 23% degradation for the

high setting. However, these configurations are impractical for the system administrators to

reserve much more memory and a separate filesystem instance for each guest VM. Vanguard

achieves better isolation for the high excess load setting, without this configuration.
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2.7 QuMan Evaluation Methodology

2.7.1 Experimental Platform

We perform the single node evaluation on a server equipped with a quad-socket Tyan

FT48-B8812 motherboard, with three 16-core AMD Opteron 6200 64-bit processors running

at 2.1 GHz and 48GB of DDR-III DRAM. For storage we use four 32 GB (128 GB total) Intel

X25-E SSDs as cache and two 1TB Western Digital Caviar Black as storage. The server runs

Linux kernel v.3.10 (part of the CentOS distribution, v.7). All native experiments use the XFS

filesystem with 4KB blocks. The I/O scheduler we use in all experiments is the default noop

elevator.

For our distributed experiments, we deployed QuSparrow on a cluster of 100 AWS

instances of type m4.xlarge. We also used an extra instance of the same type as a client that

issues tasks and another instance as a sandbox for profiling.

2.7.2 Benchmarks

TPC-E [92] is a transactional workload that emulates the operations of a stock broker. We

use 24 threads that issue transactions over a 49GB database. This workload consists of
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comparably localized randomly distributed small-sized I/O accesses, 10% of which are

writes. The metric we focus on is the transaction rate. The CPU load in our runs is approxi-

mately 50% of our system’s CPUs and a single SSD is sufficient to sustain the throughput

requirements. TPC-E is latency sensitive and I/O bounded due to its transactions.

TPC-H [92] is a data-warehousing benchmark, generating business analytics queries to

a database of sales data. We execute query Q5 in a loop using a 6.5GB database. We use as

performance metric the average execution time for twenty consecutive executions of query

Q5. We use this query, because it is both CPU and IO intensive.

We use Apache [9] and the ab benchmarking tool as our web-content serving application.

We issue ab requests in batches with a duration of 10 seconds. Each batch contains 100 ab

instances that run in parallel, where each instance issues 5 concurrent requests. Our 8GB

dataset is comprised of three different file classes with sizes 32KB, 256KB, and 1MB. The

file on which ab operates is chosen randomly at the start of each batch, with a probability

of 0.5, 0.3, and 0.2, respectively for each of the three file classes. Although using ab as

described above produces significant I/O traffic, the read throughput of one of our SSDs

is sufficient to sustain this load. The Apache server is latency sensitive so the disk latency

and the available CPU resources are vital for its performance. The metric we report for this

workload is the 95th percentile of request latency.

FIO [24] is a microbenchmark that stresses the I/O path by issuing concurrent streams

of I/O requests to either files or block devices. The metric reported for FIO is the aggregate

I/O throughput.

BLAST [22] is an application from the domain of genomics. We use the blastn program

(v.2.2.27) which performs queries on nucleotide databases. In our setup, an instance of

blastn issues concurrently queries to 16 separate databases. When databases are preloaded

into memory, blastn heavily utilizes both the CPU and the I/O subsystem. The total size

of all databases is 23GB. The metric we capture as application performance is cumulative

execution time for all concurrent queries.
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2.7.3 Workload Mix

In our single node evaluation we assume that that the server has a FIFO queue of appli-

cations that is ready to run and an external entity, e.g. a cluster resource allocator, places

applications in this queue. In all scenarios the server admits one application at a time

until it runs out of resources. In case available resources do not suffice to admit new appli-

cations, the queue stalls until one or more applications finish and release resources. For

each application the server launches a docker container on top of a FRIMICS slice with the

appropriate executables and data. In our runs, we select randomly a mix of 19 application

instances from TPC-E, TPC-H, Blast, FIO, and Apache to form the initial queue.

In our AWS cloud deployment, a client creates with varying rates TPC-H task requests

and measures task scheduling time, task completion time and it also monitors the utiliza-

tion across the cluster. We ignore the results of the very first execution for each task because

they involve sandboxed profile runs, which we ignore according to our assumptions in

Section 2.4.1.

2.8 QuMan Evaluation

In this section we present our results for (a) the isolation mechanism of QuMan, (b) its

profiling approach, and (c) the two polices we examine.

2.8.1 FRIMICS Isolation Mechanism

First, we examine the benefits from the extended isolation mechanism of QuMan. We

compare Vanguard versus FRIMICS to quantify the impact of CPU isolation, application

memory isolation, and mitigation of NUMA effects to application performance, in addition

to I/O path isolation. As an interfering workload mix, we run concurrently four applica-

tions, Apache, TPC-H, TPC-E, and Blast on separate slices. Each application receives a

slice whose configuration guarantees a Performance Index of 0.8 in the absence of any

interference. Table 2.4 shows the exact hardware configuration that each application re-

ceives. Figure 2.12(a) presents the Performance Index over time for each application for
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Application CPU(#cores) Mem(GB) SSD(GB)
TPC-H 2 6 8
Apache 16 14 24
TPC-E 12 10 16
BLAST 16 14 24

Table 2.4: Slice configurations for TPC-H, Apache, TPC-E, BLAST while they run concur-
rently and each receives a guaranteed Performance Index of 0.8

both Vanguard and FRIMICS. We see that the latter improves the average Performance

Index by 37.9%, where each application shows an individual improvement between 21.6%

to 63.9%.

According to Figure 2.12(b), it is the better isolation mechanism of FRIMICS that leads

to such a performance improvement. Compared to Vanguard, FRIMICS mitigates even

more application interference because it isolates more resources. Therefore, it further

hedges the degradation of performance for consolidated applications which essentially

leads to better application performance.

2.8.2 Number of Profiling Runs

In this section, we examine the number of samples that are required for accurate predictions

by the profiler of QuMan. For this reason, we exhaustively search all possible combinations

of CPU (48 cores), memory (42 GB), and SSD cache (32 GB) and we measure the Performance

Index of each application as they execute individually in slices of all possible resource

configurations. We collect 70,000 different datapoints for each application and we use half

of them as a training set in the curve fitting function and the rest for testing. Figure 2.13

shows the error rate, which we calculate using Function 2.2, as a function of the number of

points that we consider during curve fitting. For clarity we plot only the first 50 datapoints.

The profiler accuracy improves until the size of the training set reaches 10 samples and

then it converges to within 10% error for all remaining configurations.
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Figure 2.12: Application QoS and server utilization for Vanguard vs. FRIMICS.

2.8.3 Misprediction Penalty

An advantage of QuMan is its resilience to mispredictions, due to the isolation mechanism

that it uses. For the purposes of this experiment, we ignore the profiler recommendations

and we deplete resources from an application on purpose. We choose a very small slice

for the mispredicted application, because it causes more pressure to FRIMICS, but in

practice the impact to a mispredicted application is much lower, because the profiler’s



2.8. QuMan Evaluation 47

# points

0 10 20 30 40 50

E
rr

o
r 

R
a
te

0

0.1

0.2

0.3

0.4

TPC-E

TPC-H

Apache

BLAST

Figure 2.13: Impact on the accuracy of the profiler as we increase the number of training
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mispredictions have a 10% volatility compared to the targeted Performance Index. In our

setup, the correctly predicted applications are TPC-H, Apache, TPC-E, and BLAST, each

allocated a slice adequate to ensure a minimum Performance Index of 0.75. The slice

configuration for each application is the same as in Table 2.4.

After 150 seconds of execution, a new TPC-H instance arrives and, to emulate mispredic-

tion, we assign to it a slice that consists of 2 cores, 4 GB of memory, and 8 GB of SSD cache.

Observe, that this configuration uses 2 GB of memory less than what is required to obtain

a Performance Index of 0.75 for TPC-H. This, mispredicted configuration, is reasonable,

given that the offered resources in combination with the aggregate resources of the running

applications do not exceed the server capabilities (46 cores, 44 GB of memory, and 72 GB of

SSD cache).

Figure 2.14 plots the Performance Index for each application during the first 300 seconds

of the execution. We note that although the performance impact on the new application is

severe, the rest, properly predicted workloads, remain relatively insensitive. This is due to

the stronger isolation offered by FRIMICS compared to other approaches.

At this point, we also observe that there are some short time periods in Figure 2.14,

whose duration does not exceed 5% of the total execution time, where the observed PI

drops below QuMans threshold. There are three reasons that explain that behavior: (1)

The application behavior is not constant, whereas the profiler assumes it is. (2) FRIM-
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ICS isolation is not ideal and does not completely eliminate interference with co-located

applications. (3) Profiles are not 100% accurate.
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Figure 2.14: Impact of profiler misprediction on application Performance Index as the
second, mispredicted TPC-H instance is admitted at 150 seconds from the experiment
start.

2.8.4 Policy Evaluation

For the evaluation of the user and provider driven admission policies, we experiment with

the admission of an application queue that contains a random order of 7 TPC-H, 6 BLAST,

4 TPC-E, 1 Apache, and 1 FIO instances. We execute this queue four times; each time we

allocate slices to applications using a different policy: three runs follow the user-oriented

policy with thresholds of 1, 0.75, and 0.5 respectively and one run uses the provider-oriented

policy. We also calculate QUCI for each run, to see how QUCI ranks each experiment. In

the provider-oriented policy, we assume equal values of 1 to the weights of the QUCI metric

(Equation 2.4).

Table 2.5 summarizes for each policy the average Performance Index across all applica-

tions and the average CPU utilization. The results show that the user-oriented policy stays

above the threshold and penalizes CPU utilization accordingly: the higher the threshold

required by the user, the lower the achieved CPU utilization. The provider-oriented policy

automatically picks a higher utilization data point, and achieves similar, overall Perfor-

mance Index for about 16% higher CPU utilization (79% vs. 68%). Table 2.5 also shows
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Policy PI Util(%) QUCI
User-oriented(1) 1 17 0.16

User-oriented(0.75) 0.79 52 0.36
User-oriented(0.5) 0.59 68 0.38
Provider-oriented 0.57 79 0.45

Table 2.5: Performance Index (PI) and CPU utilization for the user-oriented and provider-
oriented policies. The user-oriented policy is configured with thresholds of 1, 0.75, and 0.5.

that QUCI is higher (as expected) in the provider-oriented policy. More interestingly, QUCI

increases as the user-specified threshold is reduced in the user–oriented policy, which

drives CPU utilization up significantly.

2.9 QuMan Single Server Evaluation

To measure the behavior of QuMan in realistic scenarios, we submit to a server jobs from a

queue, under the constraint that Performance Index does not drop below 0.8. QuMan keeps

creating new slices for the incoming jobs, until 1 or more resources saturate.

Figure 2.15 shows the execution history of the same workload we use in Section 2.8.1

and different slice configurations. Each execution uses fix-sized slices, ranging from a small

number of ”fat” to a larger number of ”thin” slices. Possible slice configurations consist of

either 2 or 8 slices. Each slice uses an equal portion of each resource available in the server,

e.g. 8 slices get 12.5% of the available CPU, memory size, and SSD cache size. Combining

profiling information with the isolation mechanism allows QuMan to achieve 50% average

CPU utilization with 0.84 application Performance Index. In addition to the CPU utilization

we show the SSD utilization to observe other components of the system as well. The fact

that SSD utilization increases as well is a consequence of the increased CPU utilization and

the system doing more work.

Apart from comparisons with baselines of 2 and 8 slices, we show how QuMan compares

to an optimal case and an uncoordinated case (where we run all applications simultane-

ously with no control). For the optimal case, we emulate a system that implements a perfect

profiler, on zero interference and policy of QuMan with user-oriented policy with threshold

0.8. We use the training set to choose the most appropriate resources for each application
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Figure 2.15: Comparison of PI (left), CPU utilization (middle), and SSD Utilization(right)
using profile-derived slices vs. fixed-size slices. The profile-derived slices follow the user-
oriented policy with threshold 0.8.

of the workload and we run them in isolation (standalone), one by one. We consider that

applications execute in parallel until we exhaust the resources of the server. For example

suppose that we have 28 cores, and our applications are BLAST, TPC-E, Apache, BLAST,

and TPC-H, that need 16, 12, 16, 16, and 2 cores correspondingly. BLAST and TPC-E fit in

the server (they need 28 cores), therefore they execute together and the rest wait. BLAST

will finish first because it takes 35 seconds while TPC-E takes 150 seconds, which means

that at the 35th BLAST frees 16 cores and Apache will start running because it fits, etc.

QuMan operating with User-0.8 mode achieves average CPU Utilization 50% and average

Performance Index 0.84. QuMan with provider mode achieves average CPU Utilization

80% and average Performance Index 0.6. Optimal configuration that emulates the best

User-0.8 achieves average CPU Utilization 70% and average Performance Index 0.89. What

we observe is that QuMan achieves comparable performance to the optimal with a small

drop in CPU Utilization. On the other hand, if we are willing to trade performance for CPU



2.10. QuMan Multi-node Evaluation 51

utilization (provider-oriented policy), we significantly improve utilization.
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Figure 2.16: Comparison of PI (left), CPU utilization (middle), and SSD Utilization(right)
using optimal user 0.8 vs. QuMan with user-0.8 mode vs. QuMan with provider mode vs.
uncoordinated baseline.

2.10 QuMan Multi-node Evaluation

In this section we compare QuSparrow versus Sparrow and Mesos on a cluster of 5 Intel

servers with 32 cores and 256GB of memory. A client generates a high load for this cluster by

submitting 10 jobs/sec for 100 seconds, and the minimum Performance Index is set to 0.8.

Figure 2.17 shows on the left the average Performance Index and on the right the average

CPU utilization of active jobs. As we observe from Figure 2.17(b), all 3 systems operate at

high load and they all achieve the same levels of cluster utilization (approximately 65%).

QuSparrow manages to maintain an average Performance Index of 0.90, while Sparrow and

Mesos achieve a Performance Index of 0.65 and 0.60 respectively; in other words, QuSparrow
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increases the average Performance Index by 42% and 50% when compared to Sparrow and

Mesos respectively.
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Figure 2.17: Performance Index (left) and average CPU utilization (right) of 5 servers running
tasks through QuSparrow, Sparrow, and Mesos.

2.10.1 Cloud Deployment

In our large cluster deployment, a client submits jobs at a rate of 2 jobs per second for

300 seconds and all worker nodes run with a QuMan configuration that set the admission

controller policy to user-oriented with a minimum Performance Index of 0.8.

In this experiment, to achieve uniform load across all servers, we show a case with a

heavy load to keep all servers highly utilized at a steady state. The cluster achieves a steady

workload state after 100 seconds, where both systems have similar CPU utilization.

Figure 2.18(a) shows the average Performance Index of QuSparrow in comparison to the

Performance Index of Sparrow as they run on a 100-node cluster. As the load of the cluster

increases, QuSparrow maintains the average Performance Index consistently above 0.8

while workload interference affects the average Performance Index of tasks under Sparrow

as it drops down to 0.4.

To measure the impact on server utilization of QuSparrow, Figure 2.18(b) shows the

average server utilization across the cluster, where in the case of QuSparrow it drops by 40%

compared to Sparrow. QuMan achieves better Performance Index because it manages to

“pack” applications better.
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Figure 2.18: Performance Index (left) and average CPU utilization (right) of 100 AWS in-
stances running tasks through QuSparrow and Sparrow.

2.11 Summary

Server utilization in modern data centers has emerged as an important challenge due to

both cost, power and technology limitations. In this chapter we propose a new approach

that increases server utilization in a cluster, while it keeps under control the degradation of

application performance. We present a system that consists of 1) an isolation mechanism

in the Linux kernel, 2) a user-space profiler, and 3) an admission controller, on which we

implemented two admission policies. We evaluated with real workloads, and our results

show the effectiveness of QuMan: The user-oriented policy allows explicit control over

minimum QoS and results in CPU utilization of 52% and 68% for QoS targets of 75%, 50%,

respectively. The provider-oriented policy achieves a QoS-utilization balance of 57%–79%.

Finally, the profiler overhead is small after collecting the samples in the training set, samples

are collected asynchronously once per applications, and mispredictions affect only one

application.
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Chapter 3

Reactive Resource Adaptation

3.1 Trace-driven Workload Generation and Execution

In this section, we first provide insight into a typical trace; then, we categorize the events it

represents and explain how to convert these events into parameters for our model.

3.1.1 Trace Specification

We summarize the notions used in a trace as follows:

• A task is an indivisible unit of work that executes on single processing unit. Task

duration may vary significantly across tasks, from milliseconds to hours.

• A job is a set of tasks. For instance, in a web server, each user request is a job and

consists of many tasks. Different Spark jobs in a Spark application appear in the trace

as individual jobs.

• An application is a set of jobs that execute in batch mode, i.e. we are interested in the

completion time of the full application and not individual jobs or tasks.

• A service is a set of user-facing jobs, i.e. we are interested in the completion time

of individual jobs, as well as the job rate. Typically, services are assumed to run

continuously.

• A workload is a set of applications and services.

55
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Based on the information available in the traces we examine, Google 2011 [101], Al-

ibaba [82], and Google 2019 [119], we summarize the main events captured by traces as

follows:

• Job events represent changes in the state of a job, e.g. when a job is submitted or

begins execution.

• Task events represent changes in the state of a task, similar to jobs. Task events may

also contain constraints, e.g. when a task should (not) run on a specific server or task

affinity with data.

• Machine events represent changes in the hardware or the software of the infrastructure,

e.g. when a server is added, a kernel is updated, or a server fails. Machine, events,

may also contain machine attributes, e.g. the amount of DRAM available in a server.

• Resource events represent the resources reserved or used by jobs and tasks within

the interval, e.g. average CPU utilization over 10s. We exclude from this category

events that refer to cumulative machine use, and instead, we include these in machine

events.

Job, task, machine, and resource reservation events are point events, whereas resource

usage events are periodic and refer to intervals. The above categorization, which is the

default in traces, mixes inherent workload events with events that depend on the infras-

tructure and the scheduler. Workload events depend originate exclusively from users,

while others depend on the executing environment. In the context of this chapter, such

categorization does not help in modeling the generation and execution of trace-driven

synthesized workloads. Apart from that, there is information in the trace that does not add

value to a workload generator, e.g., the user’s username that submitted a job. Therefore,

propose a different categorization for the trace that is more suitable for our goal:

• Workload events, about inherent workload characteristics. They include the submis-

sion times of jobs and tasks.

• Execution events, with information about the induced execution in a specific environ-

ment. They include the schedule time and the finish time of a job/task.



3.2. Tracy Model 57

3.1.2 Workload and Execution Events

Next, we show how to select the workload and execution events of a workload. We describe

our event selection procedure specifically for the Google ’11 trace. We follow a similar

procedure for all traces we study and collectively show our findings in Table 3.1

Table 3.1: Selected events of Google ’11, Alibaba, and Google ’19 traces. The terminology
among traces differs slightly, however, it is straightforward to map it to the one we use
below.

Category Type Information

Workload Job submitted [time, job-id, sched class]

Execution

Job scheduled, finished [time, job-id, priority]

Job usage
[start, end, job-id, task-id,

resource usage, system metrics]
Task submitted,

[time, job-id, task-id, resources]
scheduled, finished

Unlike the rest events, job submit events are affected neither by the underlying infras-

tructure nor by the job/task scheduler. They originate from user requests and are static

to recorded workloads. Therefore, we consider the job submit as workload events, while

the rest as execution events. We choose only the events in the common path of a work-

load execution from the rest events, i.e. job “schedule, finish“ and task “submit, schedule,

finish” events. Additionally, we select information about the event time, and the type of

the jobs, either batch or UF, for the submit events. For the schedule and finish events, we

select information about the event time, the resource usage, and the system metrics they

cause. We omit the events that concern failures or kill events because they are specific to

the recorded workload execution. Hence, they do not contribute to the generalization of

workload execution.

3.2 Tracy Model

In our work, we model a workload as a set of running tasks with certain parameters. To

simplify the modeling procedure and without losing generality, we consider that a workload

is a mix of independent, batch, and user-facing jobs, originating either from applications

or services. We also assume that all tasks in each job are identical, therefore, tasks have
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the same duration and execute the same code. Typically jobs today, repetitively perform

similar tasks. For instance, a Spark job contains tasks that perform the same computation

on different partitions of a Resilient Distributed Dataset (RDD) [134]. Different jobs consist

of different tasks. Therefore, our model consists of the following entities:

• A workload W is a list of jobs along with their arrival time [Job, JAT].

• A job J is a tuple [J, JN, JD,B/UF, (Task,TAT)], where J is the job type, JN is the number

of job tasks, JD is the duration of the job, B/UF indicates if a job is batch or UF, and

[Task,TAT] is a list of task instances along with their arrival time.

• A task T is a tuple [T,TD,TR], where T is the task type, TD is the duration of the task,

and TR are the resource allocation requests.

Table 3.2 summarizes the parameters we use in our model and their correspondence

to trace events. JAT[UF] and JAT[B] parameters correspond to the timestamp of a submit

job event of UF and batch jobs. JN[UF] and JN[B] parameters correspond to the number

of finish events of tasks belonging to the same UF and batch job. TAT[UF] and TAT[B]

parameters are the timestamps of a submit UF and batch task event. Finally, TD[UF], TD[B],

JD[UF], and JD[B] are calculated as the difference in the timestamp of schedule and finish

events for UF and batch tasks and jobs respectively.

Table 3.2: Parameter definition and PDF estimation for Google 11, Alibaba, and Google 19
traces.

Parameters Description Trace event Google ’11 Alibaba Google ’19

W
o

rk
lo

ad

JAT[UF] UF job arrival time
Timestamp of
submit job event

Chi2(0.31,−1.5e−10 ,
1.26e15)

Norm(1.25e12 ,
7.18e11)

B(0.94, 1.09,
−8.14e−11 ,2.51e12)

JAT[B] Batch job arrival time R(1.98, 1.25e12 , 1.25e12) R(713, 79.8,2.42e4) B(0.39,4565,
−7.36e−11 , 1.71e5)

JN[UF] UF job number
of tasks Task finish event

of the same job

T(0.16,−1.45e5 ,6.63e7) Exp(−2.51e12 ,2e12) Norm(−5e11 , 7.64e11)

JN[B]
Batch job number
of tasks T(0.25, 1.0, 1.53e−20) KDE(Norm, 1.97) KDE(Norm,2.03)

E
xe

cu
ti

o
n

TAT[UF] UF task arrival time Timestamp of
submit task event

T(0.48,0.006,0.006) B(212,2.56e4 ,
−4.75e15 ,5.84e17) Norm(6.75e13 ,6.78e14)

TAT[B] Batch task arrival time KDE(Norm,2.46) KDE(B, 1.56) KDE(Norm, 1.78)

TD[UF] UF task duration
Difference in the
timestamp of KDE(Norm, 1.91) KDE(B,2.03) KDE(Norm, 1.98)

TD[B] Batch task duration
schedule and
finish task events KDE(Norm,2.1) KDE(B,2.1) KDE(Norm,2.09)

JD[UF] UF job duration
Difference in the
timestamp of

B(0.28,4.01e3 ,
−2.33e−27 ,3.73e3)

Chi2(0.24,
−1.13e−25 ,21.2) Norm(1.28, 11)

JD[B] Batch job duration
schedule and
finish job events T(0.18,−1.91e5 ,6.8e6) B(8506, 16.6,

−2.19e17 ,2.19e17) Norm(−1.91e13 ,5.11e14)



3.2. Tracy Model 59

Next, we use the traces to extract appropriate values for each model parameter. We

model each parameter as an independent random variable. For each trace, we extract the

histograms of the events that correspond to our model parameters. Then, we identify the

PDFs that best fit the histogram in whole or piece-wise and we use these PDFs as the value

distributions of our model parameters. Table 3.2 summarizes the PDF that corresponds to

each model parameter for each trace.

Depending on the event histogram, we follow two different methods. If the histogram

matches a common probability distribution, such as Normal, R, Chi-squared, T, Beta, Log-

normal, Gamma, F, Exponential, Cauchy, Laplace, log-gamma, Chi, we apply Parametric

Density Estimation (PDE) [122, 50] to calculate its specific parameters, such as mean value

and variance. To figure out which PDF to use, we perform multiple PDE tests with different

PDF types and select the best fitting PDF that exhibits the minimum distance (least squares)

with the given data-set.

If the minimum distance is above 0.5, we consider that the histogram does not match

a single probability distribution, and we resort to a Non-parametric Density Estimation

(NDE) [69] technique, Kernel Density Estimation (KDE). KDE [60] models random variables

as the concatenation of multiple instances of a single PDF kernel. KDE divides the his-

togram into fixed-size intervals (bandwidth), with each interval represented by the same

kernel and different kernel parameters. KDE first identifies the kernel and bandwidth by

examining the histogram [61] and then identifies the kernel parameters in a second step

similar to PDE for each interval.

For the Google 2011 trace, we find that JAT[UF] follows a Chi-squared distribution

with parameters (0.31,−1.5e−10, 1.26e15). JAT[UF] follows a R distribution with param-

eters (1.98, 1.25e12, 1.25e12). JN[UF], JN[B],TAT[UF], and JD[B] follow a T-distribution

with parameters (0.16,−1.45e5,6.63e7), (0.25, 1.0, 1.53e−20), (0.48,0.006,0.006), and

(0.18,−1.91e5,6.8e6). JD[UF] follows a beta distribution with parameters (0.18,−1.91e5,6.8e6).

Finally, for TAT[B],TD[UF], and TD[B], we apply KDE because they do not map well to any

of PDF types we use for PDE. We find that these parameters match a Gaussian kernel, with

respective bandwidths 2.46, 1.91, and 2.1. This section describes how we generate work-

loads that can execute on existing systems by addressing two main challenges: (a) Scaling
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the generated workload to different infrastructure sizes. (b) Selecting the application types

to be used for generating the workload tasks. We present a methodology for validating that

the micro-architectural characteristics of synthetic workload executions are close to the

ones described in the trace. Thus, we ensure that the application mix we select for the

execution of workloads is qualitatively close to the execution captured in the trace.

3.2.1 Workload scaling

We intend to run the generated workloads on different setups and infrastructure sizes.

Therefore, there is a need to scale the workloads to match the intended infrastructure.

The model parameters and their value distributions as extracted from available traces

typically refer to large scale infrastructures, with task and job durations that exceed hours

or even days, which is not practical or possible to follow on research prototypes and specific

research problems. Running the workload on a different infrastructure requires scaling the

workload to adjust the number of jobs, job durations, job arrival times, or data-set sizes.

To achieve this, we scale workload parameters proportionally, as follows. We introduce

the following scaling factors:

• The total number of jobs in a workload, WN. With WN, we control the number of jobs

per server and per time unit.

• A parameter for the scaling of job arrival times, WSAT. With WSAT, we control how

loaded the servers will be during execution.

• A parameter for the scaling of the duration of batch and UF jobs, JSD. JSD parameter

changes the dynamics of the batch and UF jobs in a workload. This parameter is useful

to investigate how the infrastructure and the system software copes with changes in

the behavior of the workload. For instance, when throughput is more important than

latency, i.e. when the duration of batch jobs is significantly higher than UF jobs and

vice versa.
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3.2.2 Application Selection

In this step, we select the application types that will be used for executing the trace-based

workload. We base the selection of applications on several trace events and the charac-

teristics they represent: 1) maximum and average CPU, 2) memory, disk, and network

utilization, 3) cycles per instruction and 4) memory accesses per instruction.

First, we process each trace individually to generate histograms for these parameters.

Then we perform dimensionality reduction, using Principal Component Analysis (PCA) [74].

This step is essential for application selection because of the large number of parameters,

which complicates application type estimation. After dimensionality reduction, we perform

PDF estimation, similar to our model parameters (Section 3.2). Table 3.3 shows the resulting

parameters with their corresponding PDF type and parameters for each trace.

Note that the procedure to define the trace application pool requires access to various

application types. For the purposes of this work, we select the batch applications from the

Rodinia benchmark suite [34] and the TPC family [92]. Also, we select services among the

following cloud services: NGINX [94], Redis [13], CouchDB [3], and Memcached [11]. How-

ever, it is not in the scope of this work to provide representative UF or batch applications.

We assume that users provide suitable application pools depending on their use cases. In

addition, we do not further differentiate the importance of some application types over

others. Therefore, during workload execution, we uniformly select an application out of

the application pool our methodology creates.

Table 3.3: Application selection features extracted for WTs.

Parameters Description Google ’11 Alibaba Google ’19

ACU Avg. CPU util. T(0.79,2.03e−11,2.7e−11) T(0.97, 1.03e−11,3.7e−11) T(0.29,3.03, 1.33e−9,6.60e−11)
MU Avg. Mem. util. Norm(0.01,0.05) B(0.51,674,−6.26e−30,2.15) B(0.053,−3.54e−32, 1.23)
MM Max Mem. util. Gamma(0.053,−3.54e−32, 1.23) Exp(0.0,4.44) N/A
NIN Net in N/A Exp(0.026,0.23) Exp(0.516,0.83)
NOUT Net out N/A B(0.18, 11.3,−1.20e−25, 1.38) B(0.5,203,−3.53e−33,5.39)
IO IO B(0.60, 172,−6.73e−33, 1.56) N/A B(0.31,490,−9.85e−33,0.89)
PG Page cache use Exp(0.016,0.03) N/A N/A
PG Page cache use N/A N/A Gamma(0.6,−1.07e−31,0.07)
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3.2.3 Similarity validation

Finally, to validate the similarity of the generated execution-based workloads to the cor-

responding trace characteristics, we capture system metrics from the actual execution of

the generated workload and compare them to the trace events for each model parame-

ter. To compare the two data-sets, trace vs. measured, we use the Pearson correlation

coefficient [26].

rxy =
∑n

i=1(xi − x)(yi − y)√∑n
i=1(xi − x)2

√∑n
i=1(yi − y)2

, (3.1)

where n is the total number of samples for both data-sets, xi is the i-th sample of the first

data-set and x its corresponding mean value, yi is the i-th sample of the second data-set

and y its corresponding mean value. The range of values that rxy can take is [−1, 1].

For this computation, the two data-sets need to have the same size. Therefore, we

randomly divide the data-set of the trace to N subsets with a size equal to the synthetic

workload data-set, and calculate the Pearson correlation coefficient for all subsets, with

N the quotient of the size of the trace data-set to the size of the synthetic data-set. Then,

we calculate the mean value of the resulting rxy coefficients. If rxy is close to 1 (or -1), then

the two data-sets are highly correlated (positively or negatively). If rxy is close to 0, the two

data-sets are not linearly correlated.

3.3 Tracy Implementation

In this section, we discuss the implementation of Tracy, which is implemented as a Python

script that produces execution-based workloads. The user can generate a workload based

on one of the trace profiles we study and built-in Tracy. A profile mainly contains the

type of PDFs and their parameters for the random variables of Table 3.2. Each profile is

stored in a separate directory which becomes a parameter to Tracy, e.g. ./wlGenerator.py

–profile=”Google 2011”. We expect that Tracy will be augmented over time with additional

profiles from new traces, based on our methodology of Section 3.2. After specifying a profile,

the user can use the scaling parameters to change the specific setup load. There are three
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scaling parameters: 1) the number of jobs, 2) factor for job arrival time, and 3) factor for the

job duration of batch and UF jobs. The number of jobs defines how many jobs the generator

will create, e.g. ./wlGenerator.py -n=80, will create 80 jobs. The factor for job arrival time is

a number that is multiplied by the arrival time of a job, e.g. ./wlGenerator.py –wSat=2, will

double the arrival times of jobs. Finally, the factor for the duration of the jobs is a number

that changes the number of tasks to change the duration of jobs, e.g. ./wlGenerator.py

–jSD=2, will double the number of tasks of each job.

Therefore, Tracy allows users to execute diverse workloads of the same load factor and

run a single workload at different load factors (scales). The emphasis in the former is that

every time the generator will select different tasks and other parameters (based on the

specific profile PDFs). In the latter case, a user can fix all other parameters (if helpful)

and change the induced load. In both cases, the generated loads will run on the given

infrastructure using the sample applications provided along with Tracy.

Tracy consists of two main modules: the workload generator and the workload executor.

The workload generator receives as input the workload profile, encoded in custom data

type wlProfile. Further inputs are J, which is the number of desired jobs in the workload.

The workload generator (Pseudocode 1) produces a job sequence as output. This output

contains a sequence of job instances, specifying the characteristics for each instance. The

workload generator is used offline to produce a job trace before a test run is performed.

Although we provide Tracy with a specific set of applications to use for job and task

generation, this set is not hard-coded in the tool and can be changed by a user. In order

to do so, a user has to To change the application and task pool a user needs to provide a

directory containing the applications and inputs and a table that specifies tasks durations

when executing. To calculate a job duration JD, we create by N = JD/TD tasks. The output of

the workload generator is two files. The first is a sequence of jobs where each line describes

a single job as follows. J = [JAT, JT,T]. The second file, describes the arrival time of tasks

within jobs. Each line is list of timestamps defining the arrival of a task. Next, the workload

executor parses the generated job sequence and the task arrival sequence to generate and

execute the tasks for each job. The tasks within a job execute the same code on the same

data.
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ALGORITHM 1
Workload generation pseudocode.

1: procedure WLGENERATOR(wlProfile WP, int J, int F)
2: int jc,N := 0 ▷job counter, number of tasks, respectively
3: time ts, ttotal, JD,AD := 0 ▷job timestamp, total time, job duration, ap-

plication duration, respectively
4: Boolean S ▷scheduling class, may either be B, indicating batch job, or UF, indicating

user-facing job
5: appType T ▷Application name, out of pool of codes available to the tool
6: jobTypeSeq W ▷A sequence of jobs, the workload to output
7: while jc < J do
8: rand := random number between 0 and 100
9: if rand < PB then

10: < T, JN, ts > := generateJob(B, WP, ttotal)
11: else
12: < T, JN, ts > := generateJob(UF, WP, ttotal)
13: end if
14: ttotal := ts
15: W.append(< jc,T, JN,F, ts >)
16: end while
17: return W
18: end procedure

Executing workload

19: function EXECUTEWORKLOAD(Boolean S, wlProfile WP, time ttotal)
20: if S = batch then
21: JD = WP.JD[B](WP.λB)
22: else
23: JD = WP.JD[UF](WP.λUF)
24: end if
25: Select an app A of type T and its configuration out of pool of available apps, determine its

duration AD.
26: JN = JD/TD
27: ts = ttotal +WP.JAT(WP.λAT)
28: return < J, JN, ts >
29: end function

3.4 Tracy Experimental Evaluation

In this section, we first evaluate our methodology for PDE, KDE, and application selection.

Afterwards, we use Tracy to reproduce synthetic workloads based on Google and Alibaba

traces. In our experiments, we use a server with three 16-core AMD Opteron 6200 64-bit

processors (48 cores in total), running at 2.1 GHz, and 48GB of DDR-III DRAM. For storage,

we use a Samsung EVO 850 128 GB SSD.
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Figure 3.1: Histogram and estimated PDFs using PDE for Google 2011 trace.

3.4.1 Evaluating PDE

This section evaluates the accuracy of the PDFs computed by Tracy concerning the his-

tograms of the corresponding parameters extracted from traces. Figure 3.1 compares the

histograms of the Google ’11 trace parameters with the corresponding PDFs of Tracy. We

observe that only the JD[UF] parameter is not very close to the histogram. To measure

the similarity between PDFs and histograms, we compute their mean square distance. In

Table 3.4, we show the percentage of differences between histograms and PDFs. Tracy
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achieves the best distance for parameter JAT[B], for which the PDF and the histogram

are 94% similar. The worst case is JD[UF], for which the PDF is only 55% similar to the

histogram, and on average, the PDFs are 75% similar to their histograms. Therefore, the

characteristics of synthetic workloads of Tracy are very close to the ones described in the

originating trace.

Table 3.4: Similarity of the workload parameters of PDFs and histograms for the Google 11
trace.

Parameters Similarity(%)

JAT[B] 94%
JN[B] 88%
JD[B] 72%
TAT[B] 61%
JAT[UF] 91%
JN[UF] 78%
JD[UF] 55%
TAT[UF] 59%

3.4.2 Dimensionality reduction for application pools

This section shows the results of the dimensionality reduction process of Tracy for each

trace. Tracy reduces a large number of event types in each trace to a smaller number that

can be used for application selection using PCA.

Table 3.5 summarizes the importance of each event type as characterized by PCA. Event

coefficients in bold indicate the most critical event types for each trace. We show with bold

font the events of the traces that we select for application selection. The parameters average

CPU and average memory usage are significant for all traces. Apart from that, max memory

usage is critical for Google ’11 and Alibaba traces while net in and net out for Alibaba and

Google ’19 trace. Finally, page cache usage and max IO usage are significant for Google

’11 trace, while max CPU usage for Google ’19. As we observe from the table, at most 6

parameters are sufficient to represent at least 75% of the micro-architectural characteristics

of all traces. Cloud applications are diverse and can vary in all of these characteristics

significantly. By minimizing the parameter space, we need to search for applications, we
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focus only on the trace’s critical micro-architectural parameters, which helps in choosing

applications more accurately.

Table 3.5: Applying PCA on execution parameters: Importance of each parameter selected
for workload execution.

Parameter Google ’11 (%) Alibaba (%) Google ’19 (%)

avg cpu 0.24158018 0.17634914 0.13583023
c mem usage 0.16157733 0.11970246 0.09803796
page cache use 0.10012959 0.07177281 N/A
max mem 0.16375543 0.12004907 0.05430897
avg disk IO 0.07831652 0.05321478 0.09875985
avg disks space 0.09512442 0.0782626 0.03503575
max cpu 0.02407823 0.0176719 0.24008818
max IO 0.11280081 0.07523013 0.04921422
net in N/A 0.12378019 0.10734959
net out N/A 0.14704391 0.10299059
cpi 0.00490664 0.00361279 0.0026702
mai 0.01773085 0.01331022 0.00974135
cpu distr N/A N/A 0.01434824
cpu tail distr N/A N/A 0.05162486

3.4.3 Emulating the Google and the Alibaba trace

This section generates and executes synthetic workloads of Tracy, based on Google and

Alibaba. We then validate how representative the execution of these workloads is by com-

paring the system metrics of the synthetic workload execution to the ones in the trace.

Figure 3.2 shows the results of two experiments, where we execute a workload based on

the Google trace and a workload based on the Alibaba trace. By applying our validation

methodology in both traces, we get a similarity coefficient among all usage parameters

above 0.46 and, on average, 0.69. In Table 3.6, we show the correlation coefficients for all

parameters for both workloads.

Additionally, comparing the two synthetic workloads, we observe that the Alibaba

workload is more bursty than the Google trace, which is why it results in a worse tail latency

for the user-facing tasks. In addition, we notice that the workload of the Alibaba trace has

100% load in the first 120 seconds and afterwards it cools down, while on the Google trace
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Table 3.6: Validating the micro-architectural parameters of workload executions using
Pearson correlation coefficient.

Parameter Google ’11 (r) Alibaba (r)

avg cpu 0.79115854 0.69563203
c mem usage 0.49827534 0.74002081
page cache use 0.62338523 0.87735769
max mem 0.88640728 0.64538835
avg disk IO 0.61440553 0.84108017
avg disks space 0.46303910 0.83694352
max cpu 0.83810822 0.82183377
max IO 0.48976773 0.83368662
net in 0.65470367 0.65492767
net out 0.61298042 0.56783947
cpi 0.70622917 0.75724888
mai 0.53135785 0.63638167
cpu distr 0.77015809 0.73942622
cpu tail distr 0.73790012 0.82886921

the load is more balanced over time.
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Figure 3.2: Two Workloads inspired by the Google and the Alibaba trace. They emulate the
events of the average server of each datacenter trace. On the left we see the tail latency of
the tasks, while on the right we plot the observed CPU utilization.

Google According to the Google trace analysis [100], the average server in the datacenter

is 50% utilized, the batch to user-facing job duration ratio is 0.5, and it contains 38% batch

jobs. We create a workload using Tracy that follows the statistics of the Google trace for a
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single server and select 35s for the average batch job duration. To scale down the workload,

we estimate the scaling factors of Tracy, i.e. number of jobs, job arrival time, duration

ratio of batch versus UF jobs, by calculating the corresponding values of Google servers in

average. The workload that Tracy produces causes 52% CPU utilization and average job

arrival time 10s.

The trace released by Google has been studied extensively in several publications e.g. [79,

100, 80, 47, 17, 101, 38, 91]). The trace has over 670,000 jobs and 25 million tasks executed

over 12,500 hosts during 1-month time period [48]. Around 40% of submissions recorded

are less than 10 milliseconds after the previous submission even though the median arrival

period is 900 ms. The tail of the arrival times distribution is power-law-like, though the

maximum job arrival period is only 11 minutes. Jobs shorter than two hours account

represent more than 95% of the jobs, and half of the jobs run for less than 3 minutes. The

majority of jobs runs for less than 15 minutes [80].

Alibaba Correspondingly, in Alibaba trace, the average server is 40% utilized, the batch

to user-facing job duration ratio is 0.05, and it contains 53% batch jobs. Similarly, we

create a workload with Tracy, selecting 4 seconds for the average batch job duration. The

workload results in 45% CPU utilization and average job arrival time 680 ms. In both cases,

the workload generated by Tracy is very close to the average statistics of servers as per the

original traces.

The Alibaba trace is analyzed in [82]. It contains 11089 user-facing jobs and 12951

batch jobs, which run over a time period of 12 hours. This places the batch job versus the

user-facing job ratio at 53.9% to 46.1%.

User-facing jobs in the Alibaba trace are long-running service jobs, in this particular

case spanning the entire duration of the trace. On the contrary, batch jobs in the trace are

predominantly short-running, with about 90% of batch jobs running in less than 0.19 of

an hour, while a total of 98.1% of batch jobs runs in less than an hour. Overall, out of the

total of jobs in the trace, 47.2% are long jobs, whether batch or user-facing.
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3.4.4 Investigating how scaling affects the tail latency

Our goal in this experiment is to show that with Tracy, we can easily explore how the

workload is affected when we change one of its scaling factors while keeping the other the

same. In this experiment, we produce a workload that emulates the workload of a Google

server according the Google trace on average. We examine how scaling the job arrival time

affects the tail latency of jobs by running the workload 3 times with a different value scaling

factor of JAT.
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Figure 3.3: The trade-off between CPU utilization and tail latency. The left figure shows the
impact on the tail latency of user-facing applications as we increase the load in the system
(25%, 50%, and 100%) load. The right figure shows the corresponding CPU utilization
achieved.

In Figure 3.3, we plot two graphs that summarize the three runs described above. On

the left graph, we show the tail latency of all the user-facing tasks starting from 70th to

the 100th percentile, while on the right graph, we see the corresponding CPU utilization

of the system. In the first experiment (green line), we target a load of 25% on average in

the system. In the second (orange line), we target 50% load, and in the third (blue line),

we target 100%. The average utilization of the system is 31%, 46%, and 95% respectively,

which indicates that we can successfully control the utilization of the system with Tracy, by

just changing the JAT scaling factor. In addition, we observe that the total execution time of

the experiment changes almost in reverse proportion to the load of the system. For 25%
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load in the system the experiment finishes in 700 seconds, for 50% load in 400 seconds,

and 200 seconds for 100% load.

We observe that tail latency is not affected for the runs with 25% and 50% load. However,

for the case with 100% load, tail latency suffers a 2x deterioration as we approach the

100-percentile of the tasks. We conclude that it is not straightforward how to increase the

utilization of the system while still achieving low tail latency for the user-facing tasks.

3.5 Performance-driven Resource Management for Dynamic Work-

loads

At a high level, a resource management system today has a straight-forward goal: Given

a fixed set of resources (e.g. a datacenter), assign the minimum amount of resources to

each application that results in acceptable performance and execute as many applications

as possible. At the same time, resource managers need to deal with diverse applications,

varying application load, and changing behavior during execution. Modern resource

managers involve complex and interacting mechanisms. To categorize different approaches

used by state-of-the-art systems, we consider the following dimensions:

Resource estimation refers to performing automatic estimations of application resource

requirements.

Online refers to adjusting application resources during execution. Offline systems are more

accurate than online ones they cannot cope with dynamic applications.

Self-adaptive refers to adapting the parameters that affect resource management based on

application feedback.

Resource types refers to the types of resources, such as CPU, memory, the system can

handle. Increasing resource scope comes at a significant increase in the configuration

space for resource estimation.

Application sizing and placement refers to how resources for each application are divided

into containers and how containers are placed on servers. Typically, this is done using

some load-oriented metric and less often considers more sophisticated targets such as

interference with other co-located applications or monetary cost.
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Figure 3.4: Overview of Skynet design

Skynet follows a design that estimates resources based on user-defined PLOs, employs

online and self-adaptive allocation for multiple resources, and adjusts container sizes by

choosing the servers with the maximum load.

3.6 Skynet Design

3.6.1 Overview

Figure 4.3 shows the high-level view of the design of Skynet. Skynet accepts user requests

about the deployment of new applications, accompanied by the target PLO. For example, a

webserver with a PLO of 1000 requests/s. Skynet allocates a predefined container for each

new application. During execution, Skynet uses its two main components, the Resource

Estimator (RE) and the Resource Assigner (RA), to periodically adjust application resources

and meet the target PLO, as follows:
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1. Skynet periodically monitors performance metrics of applications, and in case of a

PLO violation, it triggers the RE.

2. The RE adjusts the parameters of the application PIDs based on the PLO.

3. Then, the RE estimates new resource requirements for the application, based on the

target PLO.

4. When the resource estimation is available, the RA, which adjusts application contain-

ers to match the new resource estimation.

Skynet solves two optimization problems: (1) Which are the minimum aggregate re-

sources required to achieve a performance target (PLO) for a specific application

minimize
i

Ri, i = 1, . . . ,m

subject to P(Ri) ≥ PLO.

(2) Given the aggregate resources required by an application and the current state of the

infrastructure, how do we minimize the number of servers required to host the application.

minimize
s

∑
N(s), N(s) =

 1 if s is selected

0 otherwise

subject to
∑

AR(s) ≥ Ri,∑
N(s) ≤ S

where N(s) denotes if server s is selected, AR(s) are the available resources of server s, and

S is the total number of servers.

3.6.2 Removing users from the loop

Cloud operators typically defer resource allocation to users, which results in a large per-

centage of idle resources. Instead, Skynet takes over allocation decisions, starting from

user-provided PLOs. Given that applications use different metrics, there is a need to sup-

port support multiple PLO types. Control loop mechanisms and models, on the other

hand, are more efficient when they target a single goal. For this reason, most related work
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assumes that all users are interested in the same performance metric, e.g., throughput [114],

tail latency [75], or minimizing interference [44]. To bridge different PLO types, Skynet

optimizes either towards a higher value, e.g., throughput, or a lower value, e.g., latency. To

capture both cases, we transform the observed performance of applications as ratios, either

PLO/ op or op/PLO, depending on the PLO type. In addition, the target value for each PLO

is typically within some feasibility range for each infrastructure. In our work, we assume

that providers specify a feasible PLO range for each application (cf. Section 5.2) available to

Skynet.

3.6.3 Supporting dynamic workloads

To manage dynamic workloads, Skynet needs to quickly adjust resources for each applica-

tion, as its behavior and input change during execution. At the same time, Skynet needs

to minimize idle resources to host as many applications as possible. This is particularly

difficult because:

• Elaborate techniques are not practical because they do not respond quickly to work-

load changes.

• Applications input changes in unpredictable manners.

• Applications go through different phases, where different resources affect perfor-

mance.

To adjust resources quickly for diverse applications, Skynet uses a PID controller [103]

as its main component. PID is generic and lightweight: It can adapt (estimate) functions of

different forms and can therefore be suitable for diverse workloads. by tuning its param-

eters appropriately. In addition, the estimations of PID require a simple calculation (see

Equation 3.2), thus, a single CPU core can handle thousands of PID instances.

PID implements a single-input single-output (SISO) feedback control loop. It peri-

odically calculates the difference between the target and the actual values and applies a

correction to a knob with a new value n(t), as follows:

n(t) = Kpe(t) +Ki

∫ t

0
e(t)dt +Kd

de(t)
dt (3.2)
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Time(s)

Figure 3.5: Example of a PID execution [8]. The PID controller always achieves the target
(setpoint) that we set. Depending on how well we tune its parameters, there are three
cases for the PID: (1) it overshoots the setpoint and afterwards oscillates around it, (2) it
undershoots and requires multiple steps to reach the setpoint, (3) it is ideal and reaches the
point quickly.

where t is the time, n(t) is the new value of the knob, e(t) = r(t)−y(t) is the difference be-

tween the target r(t) and observed y(t) values, and Kp,Ki,Kd, are the proportional, integral,

and derivative parameters of PID.

Figure 3.5 shows a typical example of a PID execution as a time-series. PID controllers

always reach their targets, independent of the use-case and its parameters. However, the

steps that PID requires to converge might decrease dramatically, depending on how well its

parameters match the use-case. More specifically, there are three cases with PID: (1) Over-

shoot the target and afterwards oscillate around it if PID parameters are aggressively tuned;

(2) Undershoot, resulting in taking many parameter adjustment steps with a conservative

parameter tuning to reach the target; and (3) Ideal, with proper tuning of PID parameters.

Therefore, an important challenge is how to calculate the PID parameters.

A variety of auto-tuning techniques are available for the PID parameters, including

genetic algorithms [77, 51] and machine learning [30, 31]. We choose the augmented

Ziegler–Nichols (ZN) tuned (AZNPID) method, an improved and online variation [45] of

the lightweight auto-tuning algorithm proposed by Ziegler and Nichols [144]. AZNPID
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Figure 3.6: Block diagram of AZNPID. It consists of two control loops, the AZN tuner and
the PID, that each is affected by the difference of performance with the PLO.

includes an additional control loop for the auto-tuning of the PID parameters Kp,Ki,Kd,

which depends on the normalized difference of the observed performance to the target

(error) and its derivative. Therefore, PID parameters adapt to the current error and the

changes in the error. AZNPID calculates the new knob value nm(t) as follows:

eN(t) =
e(t)
|r(t)|

(3.3)

a(t) = eN(t)
deN(t)
dt (3.4)

Km
p (t) = Kp(1 + |a(t)|) (3.5)

Km
i (t) = Ki(1 + a(t)) (3.6)

Km
d (t) = Kd(1 + 12|a(t)|) (3.7)

nm(t) = Km
p e(t) +Km

i

∫ t

0
e(t)dt +Km

d
de(t)
dt (3.8)

where eN(t) is the normalized error, a(t) is the updating factor of the modified parameters

Km
p (t),Km

i (t),Km
d (t), and nm(t) is the modified knob. Figure 3.6 shows the block diagram of

the modified PID.

Note that Skynet optimizes the resource usage of applications. It does not optimize
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the execution of applications per se. Therefore, Skynet does not address the performance

bottlenecks that applications might include.

3.6.4 Supporting diverse applications

Cloud applications can exhibit vastly different resource requirements. To cope with such

applications, Skynet manages CPU, memory, I/O bandwidth, and network bandwidth. To

achieve this, Skynet addresses the single-output limitation of PID. A single output is only

sufficient for applications depending on a single resource, e.g. CPU. Skynet extends PID to

output multiple values, one for each resource type. However, increasing the dimensions of

the control loop the search space of allocations exponentially, making PID less accurate,

slower, and less stable. On top of that, storage and network traffic are more challenging to

handle because they are affected by request patterns. For this reason, most related work

focuses either on CPU or memory only [85, 58, 114, 124, 44] or I/O and network [71, 111,

62, 89].

To reduce the dimensionality of the problem, Skynet treats each resource individually.

For each application, it instantiates four different PID controllers that each manages the

CPU, memory size, I/O bandwidth, and network bandwidth correspondingly. With this

approach, we divide the problem into multiple smaller and simpler ones. Skynet simulta-

neously calculates the new estimations for each resource and applies them sequentially

in a greedy manner. It sorts the resource estimations in descending order, depending on

their expected impact on the performance of the application. We do this by comparing the

parameters of each PID of the application. Skynet stops applying all the suggested resource

modifications in case the application achieves the PLO middle way.

Furthermore, the dedication of resource types to an individual PID indirectly improves

the stability of the estimations. Multi-dimensional resource estimations are sensitive to

request patterns because of the I/O and the network. However, Skynet limits the sensitivity

of estimations specifically to I/O and network. Additionally, to improve the robustness and

speed of estimations, it considers acceptable resource allocations if they exhibit perfor-

mance above the PLO and up to 20% more. That way, Skynet favors performance over idle



78 Chapter 3. Reactive Resource Adaptation

resources.

3.6.5 Placement of applications

After determining the amount of resources an application will use, Skynet decides on the

size and placement of the respective container. Similar to prior work, Skynet deals with this

as a variation of the bin packing problem [86]. Skynet considers containers as the items to

pack, nodes as bins, and resources as volumes. Container sizing and placement are more

complicated than bin packing because volumes are multi-dimensional and items do not

necessarily fit in the bins.

A typical policy for sizing and placing containers is to maximize the container sizes and

spread the load evenly across servers [96, 57, 43, 44, 42, 41]. This is a Least-Load (LL) policy,

as it places container instances to the least loaded servers. The goal of such a policy is

twofold: avoid co-location interference, and improve application performance. Neither of

these goals is directly relevant for Skynet because: (1) it uses Linux containers (LXC) [7] on

many resource types to mitigate interference, and (2) it performs tight resource estimation

based on PLOs. Skynet tries to “pack” load instead of “spreading” it evenly. For this purpose,

Skynet uses a Maximum-Load (ML) policy, that similar to LL, maximizes the container size,

however, chooses the maximum loaded servers to host the containers of an application.

The LL policy results in relatively equal resource assignment among servers. Therefore,

it typically keeps all the servers of the infrastructure moderately utilized. On the other

hand, the ML policy results in an unbalanced resource assignment, where some servers

are highly utilized and others remain idle. Both policies reduce network traffic within an

application by minimizing the number of spawned containers. However, ML additionally

offers the following: (1) reduces fragmentation of resources across servers; hence can

admit more applications with high resource demands and (2) allows more room for energy

management, e.g. by switching to low-power mode for idle servers.

Skynet implements ML using a best-fit heuristic algorithm to place containers as follows:

First, Skynet decides the number and size of the containers of an application, based on the

estimated resources at each adaptation step. For practical purposes, Skynet decides to use



3.6. Skynet Design 79

the same size for each resource within an application and tries to minimize the need for

moving containers.

Placing new applications: When a new application arrives, Skynet scans the servers of the

infrastructure to fit all available resources in a single server. In case no server has adequate

resources according to the application requirements, we iteratively perform the following

steps:

• Increase the number of containers by one.

• Divide the resources equally among the containers.

• Find the highest load servers that can accommodate the containers.

• If we do not find enough servers, repeat the steps.

After Skynet determines the servers, the size, and the number of containers, it places

the application in the servers for execution.

Resizing applications: Each time there is a request to change the resources of an applica-

tion, there are three possibilities: (1) fewer resources, (2) more resources that are available

on the servers already assigned to the application, (3) more resources that are available in

different nodes. In the first case, Skynet determines if there are excess containers that can

be removed. Then, it sorts the servers in ascending order based on their load and removes

the excess containers. In the second case, Skynet increases the resources of applications

equally among containers to match the new request. Skynet handles the third case as a new

application placement.

Note that if we keep servers close to 100% utilized, small allocation changes result in

migrations. For this reason, Skynet allows a slack of unallocated resources (10% of total) on

each server and uses this only to increase the allocation of running applications, but not

for migrations.

3.6.6 Implementation on Kubernetes

We implement Skynet in approximately one thousand LOC in Golang as a Kubernetes cus-

tom scheduler. Skynet employs an extension of the apiserver (as a pod) to support custom
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ALGORITHM 2
Assign resources to applications in nodes.
1: procedure APPLICATIONTONODES(allocs,nodes)
2: candidateNodes = {}
3: For each alloc in allocs do
4: For each node in nodes do //Find the nodes
5: if f its in node(alloc,node) then
6: candidateNodes.append(node)
7: end if
8: end for
9: if notEmpty(candidateNodes) then

10: bestFit(alloc, candidateNodes)
11: subtractResources(node, alloc)
12: else
13: return False
14: end if
15: end for
16: end procedure

metrics in applications and the Prometheus monitoring system [2]: a database pod to store

the metrics and a driver pod that collects metrics. Skynet requires applications to include a

REST server that exposes all performance metrics of interest to an endpoint (e.g., /metrics)

to Prometheus. For our evaluation, we change the container of each application to include

a REST server in Node.js, with approximately 50 LOC on average. It is straightforward to de-

ploy Skynet for managing dynamic workloads. Skynet can either function as an alternative

to the default Kubernetes scheduler or in parallel, managing a subset of the workload. The

codebase of Skynet is publicly available on GitHub [15].

Figure 3.7 illustrates the steps, executed once every second, to capture application

metrics: (1) Prometheus collects and stores the metrics of all running pods. (2) In parallel,

the metric server gets the container metrics, and stores it locally. (3) Finally, Skynet requests

the pod metrics from the metric server.

3.7 Skynet Evaluation Methodology

We use a local cluster for exploration purposes, and AWS for selected larger-scale experi-

ments.

Private cluster: We use 5 identical servers, each with two 8-core/16-thread Intel Xeon CPU

E5-2630 v3 processors (running at 2.10GHz), for 32 hyperthreads in total and 256GB of
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Figure 3.7: We implement Skynet as an external pod scheduler, monitoring metrics using
Prometheus and a custom metric server. The custom metric server inserts metrics into the
metrics database of Prometheus.

memory. All servers have a Samsung 860 Evo SSD installed as their primary storage (and

docker container use the same storage device). The interconnect of the servers is a 40Gb/s

Ethernet switch.

AWS cloud: We use 50 c5.metal machines that constitute a Kubernetes cluster with a single

master, and 10 c5.metal machines that generate the workload. These are custom 2nd

generation Intel Xeon Scalable Processors (Cascade Lake) with: (1) a sustained all-core

turbo frequency of 3.6GHz, (2) 96 cores, (3) 192GB of memory, (4) capability of at least 100,

(5) 19,000Mbps of I/O, (6) and up to 25Gb/s network bandwidth.

Native: We use the Kubernetes scheduler unmodified and with no size restrictions in the

scheduled pods as our baseline. In the case of Native, the applications run uncontrolled,

leading to significant performance variability and PLO violations during execution.

We use six popular applications in our evaluation.

Redis [13]: A key-value memory database. It supports multiple data structures such as

strings, hash tables, lists, and sets. This application is CPU and I/O intensive.

Memcached [11]: A distributed memory object caching system, intended to speed up
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dynamic web applications by alleviating database query load. This application is memory

intensive.

Spark [135]: A general-purpose data processing framework. Spark applications are very

diverse and any resource could be important for their performance. We use TPC-H on

Spark that is I/O and network heavy.

CouchDB [3]: A distributed document database optimized for handling heavy workloads

typical of large fast-growing web and mobile apps. In our evaluation, CouchDB is CPU and

I/O intensive.

Elasticsearch [10]: A distributed, RESTful search and analytics engine. This application is

CPU and memory intensive.

Nginx [12]: A web server, load balancer and HTTP cache. This application is CPU intensive.

Skynet requires information about the available ranges PLOs of applications to ensure

that estimations always converge. We run controlled experiments for each application to

determine the feasible PLO ranges on both the AWS and the local cluster. Table 3.7 shows

these ranges.

Table 3.7: Feasible value ranges for the PLOs of applications, on our private cluster and
AWS.

App Metric
PLO ranges

Private cluster AWS
Nginx Latency (ms) 4 -∞ 2 -∞

Memcached Ops/s 0 - 200,000 0 - 110,000
TPC-H Spark Exec Time (s) 50 -∞ 35 -∞
Elastic Search Queries/s 0 - 100,000 0 - 550,000

Redis Ops/s 0 - 15,000 0 - 110,000
CouchDB Queries/s 0 - 300,000 0 - 2,000,000

We develop a workload generator that produces workloads using as parameters the total

number of applications and their feasible PLO ranges. We emulate dynamic workloads as

follows: (1) select an application type randomly, (2) select a random PLO, (3) repeat steps 1

and 2 until we create the requested number of applications. All random numbers follow a

uniform distribution.

In Figure 3.8, if the application performs better than the PLO, the relative performance
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Figure 3.8: Improvement of Skynet compared to Native on a private cluster, using (a) a
workload that can meet PLOs at high load (about 80% CPU utilization) (left), (b) a workload
that can meet PLOs at medium load (about 40% CPU utilization) (middle), and (c) a cluster
consisting of 60 bare-metal servers at AWS using a workload that produces high load similar
to (a) (right).

equals to 1. In all other cases, we compute the relative performance as described in Sec-

tion 3.6.2. For each experiment, we generate a random workload, run it 10 times, and report

the average of the results. We consider that the workload generates high/medium load when

the deployed applications drive infrastructure utilization to 80%/40%, correspondingly.

Applications are either pending or running, depending on whether there are sufficient

resources in the cluster. For each running application, we run a corresponding client appli-

cation (either YCSB [14] using one of the default workloads, or Apache benchmark ab [1]),
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with bursty behavior and for a fixed number of total requests. Each client application

performs requests in all running applications of the same type. The requests of all YCSB ap-

plications follow a Zipfian distribution, while the ab processes constantly issue a uniformly

random number of concurrent requests in batches. When all client applications finish their

execution, the corresponding running applications terminate; then Skynet deploys some of

the pending applications in their place. This procedure continues until there are no more

pending applications.

Finally, we emulate an oracle allocator that allocates resources for applications with

almost 100% accuracy. We use a brute-force offline profiling approach, by gathering 48 ×

64 × 50 × 100 = 15,360,000 datapoints for each application (48 for the CPU, 64 for

the memory, 50 for the I/O, and 100 for the network). The difference of the observed

performance and the PLOs is negligible (less than 2% in all cases). Periodically, every 180s,

we change the target for each application and compare Skynet to the oracle.

3.8 Skynet Experimental Evaluation

3.8.1 Meeting PLOs under High Utilization

The goal of this experiment is to show that Skynet reduces PLO violations at high load.

We compare Skynet with Native (unmodified Kubernetes). Figure 3.8(a) shows the results

averaged over 10 runs. Both Native and Skynet highly utilize the cluster with comparable

CPU utilization; however, Native violates PLOs 7.4×more often than Skynet. Skynet reduces

PLO violations from 32.6% to 4.4% for the entire duration of the experiment. The PLO

violations of Native are 330s out of 1010s (32.6%), whereas with Skynet the violations are 40s

out of 910s (4.4%). In addition, with Skynet, applications exhibit variance in performance,

because Skynet adapts their resources according to the workload. On the contrary, Native

divides resources equally among running applications, which results in high variations to

application performance based on the aggregate workload.
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Figure 3.9: Speed of Skynet adaptation to changes in the workload. We spawn 80 application
instances that serve bursty requests. Every 180s, the number of concurrent requests changes
randomly. Despite the dynamic load, Skynet minimizes PLO violations for all applications.
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Figure 3.10: Per-application performance relative to their requested PLO over time. We
spawn 80 application instances that serve bursty requests. Every 180s, the number of
concurrent requests changes randomly. Skynet manages to sustain the performance above
the PLO for 93.7% of the time.

3.8.2 Minimizing Workload Resources

In this experiment, we show that Skynet minimizes the resources allocated to workloads

on lowly utilized infrastructure. We compare Skynet to Native for a workload that induces
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medium load. We show the corresponding average results in Figure 3.8(b). We observe that

Skynet uses 50% fewer resources to execute such workloads without hurting performance,

compared to Native. Skynet manages to pack all applications in two and a half nodes

and leave room for additional workload. In contrast, Native uniformly distributes the

applications on all 5 nodes of the cluster and uses all available resources. Therefore, with

Native, the utilization of the infrastructure is more than 90%. Kubernetes does not limit

the applications’ resources by default; hence, they consume as many resources as possible,

performing significantly above their PLOs. Despite utilizing many more resources with

Native, we still notice PLO violations for 4.2% (40s out of 950s) of the time, due to the

dynamics of the workload mix. Skynet increases PLO violations to 6.7% of the time (60s

out of 900s), however at significantly lower resource usage. Finally, using Skynet, we still

over-provision, on average, 13% of the resources to applications. Skynet mitigates the

over-provisioning in comparison to what is currently typical in the cloud, where users
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Figure 3.11: Resource adaptation by Skynet for Nginx, Spark TPC-H, Redis, and CouchDB.
We indicate the resource consumption in the server as a percentage of its total resources.
Each application runs in isolation with a single instance.

over-provision applications by 100% [102, 83, 40].

3.8.3 Skynet on Public Cloud

We now examine how Skynet can estimate and allocate resources in production-level

environments using AWS. Figure 3.8(c) shows what happens for a relatively heavy workload

that can meet PLOs at about 80% CPU utilization. Regarding CPU utilization, we see that

Native results drive it to 85% on average, whereas Skynet at 75%. Although Native exhibits

10% higher CPU utilization compared to Skynet, it still violates PLOs more than one-third

of the experiment duration, 290s out of 800s (36.25%). In comparison, Skynet improves

violations by more than 5x and results in PLO violations for only 6.6% of the time (60s out
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Figure 3.12: Resource adaptation by Skynet for Elastic Search and Memcached. We indicate
the resource consumption in the server as a percentage of its total resources. Each applica-
tion runs in isolation with a single container.

Table 3.8: Evaluation of PID. In the left: percentage of time Skynet misses the PLOs of appli-
cations. In the right: percentage of overprovisioned resources to applications compared to
oracle.

App Error Below PLO CPU, MEM, I/O, NET
Nginx 12% 6.9% 5%, 9%, 30%, 16%

Memcached 10.5% 7.8% 8%, 15%, 20%, 9%
TPC-H Spark 9.5% 3.5% 12%, 9%, 20%, 13%
Elastic Search 13.7% 7.6% 20%, 8%, 23%, 12%

Redis 15% 4.4% 25%, 3%, 14%, 10%
CouchDB 10.5% 7.6% 2%, 7%, 15%, 8%

of 910s). Applications on Native are unrestricted and thus, they are allowed to utilize as

many resources as available. Therefore, when consolidating, Native increases utilization by

over-achieving PLOs.
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3.8.4 Speed of Adaptation

Next, we discuss how resilient Skynet is to changes in the workload on a highly loaded

infrastructure. We use a workload that changes periodically every 180s (vertical lines in the

figure), while maintaining a fixed PLO target. Figure 3.9 displays a time series of the average

performance of each deployed application. The dashed line denotes the PLO target and

is the achieved relative performance of each application. We observe that, in most cases,

Skynet requires around 10s to adjust resource allocations and keeps satisfying all PLOs.

There are some exceptions, for example, in the time interval 540-900, where a significant

amount of containers of the running applications need to migrate, which causes additional

overhead. Overall, Skynet manages to preserve PLOs for 86.3% of the time, despite the

bursty nature of incoming requests.

We examine in more detail what happens to each application in Figure 3.10 as we vary

the workload. We observe that, in most cases, Skynet reacts to changes quickly and adjusts

the resources of each application efficiently (applications perform close to their PLOs). In

other cases, such as in CouchDB, around 500s, it does not adjust as well. In the left part

of Table 3.8, we summarize the average absolute difference of the PLO and the observed

performance for each application. In addition, we show the percentage of time where

applications performed below the PLO.

Finally, we evaluate the overhead of PID to estimate new resource allocations and also

determine the upper bound of the total time Skynet requires to adapt to changes. The

total time for the estimation of new resource allocations is less than 250ms. However, the

bottleneck for a single step is that we collect new values for the performance metrics every

second. Furthermore, Skynet requires 2 to 5 steps (new allocation estimates) on average

before it converges after a workload change. Therefore, the system can handle workloads

that change no more frequently than every few seconds, as it takes on average 3s and 5s in

the worst case to adapt.

Note that Skynet slightly overprovisions applications to minimize PLO violations (it is

visible in both Figures 3.9 and 3.10). In the next section, we evaluate the percentage of the

resources that Skynet overprovisions compared to an oracle allocator.
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3.8.5 Efficient allocation of resources

We now examine how much Skynet overprovisions resources compared to an oracle alloca-

tor, as described in Section 5.2. Figures 3.11 and 3.12 show the results for each application.

The top row of Figures 3.11 and 3.12 the difference in the application performance achieved

under Skynet versus oracle. The bottom row of the figures shows the corresponding dif-

ferences in resource allocation as a percentage between Skynet and oracle. The average

absolute difference in the performance of applications with their corresponding PLOs is

11.9%, while the applications perform below their PLOs for 6.3% of the experiment time on

average. We observe that compared to oracle, Skynet overprovisions by 12% for CPU, 8.5%

for memory, 20% for I/O, and 11% for the network. Table 3.8 summarizes in the last column

the average difference (resource overprovisioning) of Skynet from the oracle.
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Figure 3.13: Performance variability and degradation when Skynet handles only Memory
and CPU. The applications are deployed on single server, together with background load
that consumes a random percentage of the resources and changes every 20s.
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3.8.6 Multi-resource provisioning

We investigate the effects on the performance of applications when Skynet only manages

CPU and memory using a workload that produces high load. Figure 3.13 shows how

performance is affected when we do not manage I/O and network for Nginx, Elastic Search,

and CouchDB. Although we allocate sufficient CPU and memory for each application in

each case, applications violate PLOs most of the time. The actual performance of each

application varies depending on how many I/O and network resources are available. With

high consumption of I/O or network bandwidth, then application performance degrades

significantly and, even worse, becomes unpredictable.

3.9 Summary

This chapter presents Skynet, an adaptive resource allocation and assignment controller

for dynamic workloads. Skynet removes the user from the resource estimation loop by

only requiring a performance-level objective for each application and by building on-the-

fly a model of the performance achievable with given amounts of resources. Building

this model online allows Skynet to adapt to varying input loads and different application

phases for each application. We implement Skynet as an extension to Kubernetes, mak-

ing it easy to deploy in existing environments and present an evaluation using dynamic

workload mixes. We find that on a cluster operating at high utilization (approximately

80%), Skynet reduces PLO violations by up to 5× compared to Kubernetes. Moreover, it

saves up to 2× the server resources to run dynamic workloads when the cluster operates at

moderate utilization (approximately 40%). Our evaluation shows that Skynet is effective for

resource management in the data center for dynamic workloads without requiring prior

per-workload parameterization.
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Chapter 4

Application to Serverless Resource Al-

location

4.1 Motivation

Typically, the sequence of steps to execute serverless functions is the following: (1) the

user triggers a function invocation. (2) Next, the serverless framework receives the request,

spawns new function instances if necessary, and assigns the request to a running instance

to execute the serverless function. (3) Afterwards, the serverless function starts executing,

and at the end, it notifies the serverless framework that the computation is complete. (4)

Finally, the framework responds to the initial request of the users (Figure 4.1).

The main operation of serverless frameworks is to perform autoscaling to match the

incoming load towards function instances. Serverless frameworks monitor system metrics

such as the concurrent requests served by a function instance or total requests per second.

Therefore, the operations to support the autoscaling mechanism do not add significant

overhead. In the case of a sudden burst of requests, the framework spawns multiple new

function instances to cope with the additional load. However, the new instances require

hundreds of milliseconds to be active, which causes a substantial increase in the execution

latency. This work minimizes the need to spawn new instances with vertical elasticity and

resource estimation.

Quantifying overheads: While the system scales out, the function instances due to an

93
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1. Invoke function 2. Select instance 

3. Finished execution4. Response

Figure 4.1: The life cycle of a serverless function request, starting from the function invoca-
tion caused by users and ending with the response from the serverless framework.

Table 4.1: Overheads of inactive function execution.

Firecracker vHive
Autoscaler 400us 400us
Instance Creation 250000us 60000us
Load Balancer 200us 200us
Runtime 2000us 2000us
Total 252600us 62600us

increase in the load, the overall overhead of the framework to spawn a new function

instance is roughly two hundred milliseconds. Considering that 90% of serverless functions

execute in less than a second [116], at least 20% of the time to run functions is wasted

on the serverless framework. Table 4.1 summarizes the time spent on the framework’s

critical components when running an inactive ”no processing” function (cold start). As

we can see, for functions that require seconds to execute, the overhead of the serverless

framework is negligible. However, for functions that run for tens of milliseconds or less,

the dominant factor for the latency is instance creation. Therefore, we cannot tolerate the

overhead to spawn new instances for relatively short running functions. Additionally, we

observe that the overhead of system-level actions excluding scale-out amounts to less than

one millisecond. Therefore, it is negligible for most functions that execute for more than a

few milliseconds.

Benefits of vertical elasticity: To reduce the overhead in the function execution caused

by horizontal elasticity, we can use vertical elasticity. Figure 4.2 shows the benefits of

using vertical elasticity in the typical case to adjust the resources to increase the incoming

load compared to horizontal elasticity. We compare two modes of vhive [121] that rely on

horizontal elasticity and one for the native Linux container [7] resize mechanism for vertical

elasticity. We observe that with horizontal elasticity, the resizing of instances requires at
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Figure 4.2: Overhead of horizontal elasticity with snapshots compared to the overhead of
vertical elasticity.

least 60ms to complete, whereas vertical scaling is less than 50us.

4.2 Design

This section describes the components of LatEst (see Figure 4.3) and the technical chal-

lenges we need to address. It consists of two main parts: (1) Resource Autoscaler (RA), a

mechanism to scale-up resources, and (2) the Resource Estimator (RE), computing esti-

mates of the required resources of serverless functions according to the incoming load. The

RE monitors the incoming requests for functions and calculates the required resources to

minimize the resulting latency. Next, the RE instructs RA to scale up and/or scale out the

corresponding function. In the case of vertical scaling, the RA uses the cgroups [98] Linux

kernel feature to increase the resource limits of containers within the VM. In the case of

horizontal scaling, the RA uses the Knative autoscaler mechanism to spawn new instances

with sufficient resources.

The RA maintains in memory the available resources of each server and the number

of allocated resources per running function. During changes in the incoming load of

serverless functions, the RE calculates the resources necessary for that specific function.

The RE forwards the estimations to the RA, and the RA vertically scales the resources to the

running instances. The RE serializes concurrent requests to scale resources. If there are

not enough resources in the servers hosting the function, the RA spawns a new function
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Kubernetes Cluster

1. Function invocations

2. Get function tail latency

3. Resource 
prediction

4. Scale function resources

Resource 
Estimator (RE)

Resource 
Autoscaler (RA)

Knative + LatEst

vpa

Figure 4.3: Flow diagram of LatEst. It consists of two main components: Resource Autoscaler
(RA) and Resource Estimator (RE).

instance and places it in the least loaded server.

4.2.1 Resource elasticity

The RA improves the Knative Pod Autoscaler (KPA) that adjusts the resources according

to the incoming load. KPA monitors the incoming resources in time windows of constant

duration and scales out the resources of serverless functions (horizontal elasticity) based

on current requests per second or request concurrency per instance. If the number of

incoming requests measured in a time window exceeds a user-defined threshold of total

requests/concurrency, KPA spawns a proportional number of new instances. Similarly, if

the number of incoming requests is less than the threshold, KPA terminates a proportional

number of running instances. The RA makes two optimizations to KPA. First, it does

not rely on user input to trigger the autoscaling mechanism. Instead, the RE triggers the

scaling mechanism based on its estimations. Second, it scales up the resources of serverless
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ALGORITHM 3
Resource Autoscaler algorithm.

1: procedure AUTOSCALING(string f uncName, Resources estRes, Resources[] availRes,
Node[] nodes)

2: int i
3: int totalAvailCPU := 0 ▷the aggregate avail CPU
4: int totalAvailMem := 0 ▷the aggregate avail mem
5: for i = 0; i < len(availRes); i + + do
6: totalAvailCPU+ = availRes[i][“CPU”]
7: totalAvailMem+ = availRes[i][“Mem”]
8: end for
9: cpuPerNode = (totalAvailCPU− estRes[“CPU”])/ len(nodes)

10: memPerNode = (totalAvailMem − estRes[“Mem”])/ len(nodes)
11: if cpuPerNode < 0||memPerNode < 0 then ▷Horizontal elasticity
12: for i = 0; i < len(availRes); i + + do
13: allocateAllRemainingResources(nodes[i])
14: end for
15: node := spawnNewFunctionInstance()
16: allocateResources(−cpuPerNode ∗ len(nodes),−memPerNode ∗ len(nodes),node)
17: else ▷Vertical elasticity
18: for i = 0; i < len(availRes); i + + do
19: allocateResources(availRes[i][“CPU”] − cpuPerNode, availRes[i][“Mem”] −

memPerNode,nodes[i])
20: end for
21: end if
22: end procedure

ALGORITHM 4
Resource Estimator algorithm.

1: procedure ESTIMATERESOURCES(string f uncName, int load)
2: targetLatency := getTargetLatency(f uncName)
3: latency := getCurrentLatency(f uncName)
4: resources := PID(targetLatency, latency, load)
5: return resources
6: end procedure

functions (vertical elasticity) when possible and minimizes the serverless framework’s

overheads. The Algorithm 3 is the implementation of the RA of LatEst.

Horizontal vs vertical elasticity: The accounting of resources with horizontal elasticity is

pretty simple. The function instance has a static resource configuration; hence, the number

of active instances is sufficient to calculate the total provisioned resources. However, with
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LatEst, function instances have dynamic resource configuration due to vertical elasticity.

Therefore, with potentially millions of running function instances, it can be a significant

overhead to calculate the amount of provisioned resources. To avoid this overhead, we

maintain two lists: one for the currently allocated resources per running function and

another for the allocated resources per server. Thus, we have flexibility in managing the

resources of running function instances.

Additionally, typically container and VM resource configurations are identical for server-

less frameworks. Therefore, to vertically scale the resources of a function instance, we need

to change the resources of the corresponding container and VM simultaneously. Linux

cgroups allow the user to change the resources of a running container instance; however,

this is not the case for the firecracker hypervisor, i.e., the resources of a running VM cannot

change. Therefore, to achieve vertical elasticity with LatEst, we assign all the available

cores to VM instances with all cores but one disabled. Consequently, we use the CPU

online/offline kernel feature for each function and predefined resources for their corre-

sponding containers (128 millicores and 256MB of memory). By disabling most cores in

newly spawned VMs, we avoid burdening the CPU scheduler of the host.

4.2.2 Resource estimation

The RE estimates the least resources that minimize the function tail latency. The number

of required resources depends on the current incoming load. LatEst uses a feedback loop

control, the PID controller, for resource estimations. The PID controller is a single-input

single-output controller (SISO) that is lightweight and can accurately estimate the required

resources that achieve a specific performance target. It periodically calculates the difference

between a targeted value and the actual value of a system it controls and applies a correction

to a knob of that system. In our case, the PID controller monitors the tail latency of the

serverless function, compares it to a target tail latency, and suggests changes in the allocated

resources of the function accordingly. Therefore, a prerequisite for PID is the target latency

that is unknown before the actual execution. Initially, the PID remains inactive until we

identify the targeted tail latency of the serverless function. Algorithm 4 illustrates how the
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RE works.

Finding the tail latency target: The RE must find the minimum feasible tail latency for

each function. To achieve that, the RE profiles online the function’s execution time as

follows: Initially, it starts with a container of 128 millicores and 256MB of memory. Then, it

gradually increments the container resources by doubling, tripling, and so forth until we

reach a point of diminishing returns. At this point, the RE has defined the tail latency target

and proceeds to activate the PID controller to estimate the required resources periodically.

This procedure must be repeated for all possible incoming loads since the incoming load

can change the possible tail latency. Therefore, we cannot omit this initialization step by

the PID controller, as the RE will be continuously observing different mappings of incoming

loads and feasible tail latency targets.

4.3 Evaluation

4.3.1 Methodology

Platform: We evaluate LatEst on a server with a 24x thread Intel Xeon CPU E5-2620 v2

processor and 128GB of memory running at 2.40GHz and a cluster of 4x such servers. The

system disk of each server is a Samsung SSD 950 Pro 128GB PCIe, and its operating system

is Ubuntu 18.04.

Serverless functions: We use a no-processing serverless function that prints a message in

our experiments.

Request generation: We generate requests for serverless function invocations with a con-

stant rate for periods of 100 seconds. However, the actual rate among different periods

might differ.

Tail latency: We consider tail latency the max latency of the 99th percentile (p99) of the

incoming requests. In the figures, we show the tail latency as a time-series, and hence, we

calculate it in windows of 1 second.
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4.3.2 Maintaining latency with vertical elasticity

In this experiment, we show how spawning new function instances can increase the ex-

ecution latency, whereas increasing the resources of active instances does not affect the

latency. We perform 3 experiments as time-series, where we measure the tail latency, the

number of active function instances (VMs), and the utilization on a single server of our

infrastructure. The first has a static incoming load. In the second, the load incrementally

increases by 200 requests every 100 seconds and then decreases (incremental). The load

oscillates between 200 requests per second and 1200 requests per second (bursty) in the

third. We compare LatEst, which uses vertical elasticity (orange and black lines), against

vHive, which uses horizontal elasticity (blue and yellow lines).

For the static workload, we observe that LatEst and vHive behave similarly in terms of

utilization and latency, but vHive has 2 active function instances, whereas LatEst has only

1. We experiment with the static workload to validate that LatEst does not add additional

overhead to the function execution, which is the case. We also observe that when vHive

scales-out resources in 2 instances, it does not add additional overhead and is equivalent

to scaling-up resources in the same instance. That happens because a single instance is

sufficient to sustain the incoming load. Therefore, the time required for the second instance

to be active does not affect the latency.

For the incremental workload, we observe that each time the load increases (every 200

seconds), there is an increase up to 8x in the tail latency for vHive when the number of

running instances changes. More specifically, in the second 100, the requests change from

200 reqs/s to 400 reqs/s, but the tail latency remains the same because the number of active

instances remains the same. However, in the second 200, the number of requests increase

from 400 reqs/s to 600 reqs/s, which triggers a scale-out and spawns 2 additional instances,

which results in 40ms tail latency that is 8x more compared to the previous period. After

20 seconds, the tail latency goes back to 5ms. Another observation about the behavior of

vHive is that in the period between 300 and 400 seconds, where the system spawns a single

instance, the tail latency is 10ms, which is only 2x compared to the beginning of that period.

On the other hand, the tail latency is not affected by LatEst.
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Finally, we observe that the increase in the tail latency of function execution is more

profound with vHive, up to 20x, during a scale-out for the bursty workload. The reason for

that is that the autoscaler spawns up to 6 new instances compared to the 3 instances in the

case of the incremental workload. Similarly, like in the case of the incremental workload,

the tail latency of the function execution is not affected by LatEst. Therefore, we summarize

that LatEst does not add overhead to the execution. If vertical scaling is feasible in an active

function, it can speed up the execution up to 20x compared to horizontal scaling.

4.3.3 Improving latency by predicting the required resources

This experiment evaluates how predictions about the required resources to execute a func-

tion improve the resulting tail latency. We compare vHive against LatEst without predictions

and LatEst with predictions using a bursty workload oscillating between 200 req/s and

14400 reqs/s. We measure the number of instances, the allocated resources, and the result-

ing tail latency as a time-series on the 4-node cluster of our infrastructure. We observe that

vHive spawns up to 120 function instances during the burst, which accounts for reserving

all the available cores of the 4 nodes and results in 1000ms tail latency. LatEst, without

predictions, utilizes the same number of cores on only 4 function instances. Therefore, the

resulting tail latency is 90ms which is more than 10x better than vHive. However, vHive

and LatEst without predictions allocate 96 cores (4 × 24), while only 40 are required. LatEst

with predictions, allocate only 42 cores, which is very close to the required ones. Hence, it

spawns only 2 function instances on 2 out of the 4 nodes and achieves 40ms latency. This

latency is still 8x worse than warm function execution, which is 5ms, but it is 25x times

better than vHive, which is state-of-the-art.

4.3.4 LatEst against the related work

In this section, we summarize the benefits of running serverless functions on top of LatEst

compared to the related work. Table 4.2 shows the latency of functions, with Firecracker,

vHive, and LatEst. The table shows 3 columns: (1) the overhead of the frameworks, (2) the

latency of a cold start, which includes the time to spawn a new function instance, and (3)
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Figure 4.4: Comparing the horizontal elasticity of Native against the vertical elasticity of
LatEst. The left figure concerns a static workload, and incoming requests are constant at
800 reqs/s. The central figure concerns an incremental workload, and incoming requests
increase by 200 every 100 seconds and go from 200 reqs/s to 800 reqs/s. The right figure
concerns a bursty workload, and incoming requests oscillate from 200 reqs/s to 1200 reqs/s.

Table 4.2: Serverless function latency on different serverless frameworks. VE means vertical
elasticity and HE horizontal elasticity.

Overhead Cold start Warm start
Firecracker 650us 250ms 2.5ms
vHive 850us 60ms 2.7ms
LatEst 550us 2.4ms (VE) / 60ms (HE) 2.4ms

the latency of a warm start. First, we observe that the overheads of the frameworks are

similar. Second, for warm starts, all frameworks achieve the same latency. Third, there is a

significant difference in cold start function latency. In case vertical elasticity is possible,
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Figure 4.5: The resulting number of instances of vHive against LatEst without and with
resource predictions, when vertical elasticity is not possible.

LatEst improves the latency of cold starts by 2 orders of magnitude compared to Firecracker

and an order of magnitude compared to vHive. In the case of horizontal elasticity, LatEst is

achieving the same latency as vHive.

4.4 Summary

This chapter proposes using vertical next-to-horizontal elasticity for serverless functions.

We limit the spawning of new function instances only to cases where the server resources

are depleted. The resulting tail latency of the serverless framework is a few milliseconds.

Additionally, we estimate the resources required to maintain functions’ execution latency

depending on the incoming load. That way, LatEst adapts to workload changes quickly

and in fewer steps compared to using predefined resource configurations for scaling. This

approach minimizes the need for horizontal elasticity, which further reduces the tail latency.

Our results show that LatEst bursts do not significantly affect the tail latency of function

execution. Compared to the state-of-the-art, LatEst can reduce the tail latency by up to

25x.
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Chapter 5

Cost-aware Cloud Deployment

5.1 Cost-aware Deployment for Dynamic Cloud Services

The factors we in this work to optimize the cost of deployments in the cloud are:

• VM type for each instance.

• VM resource configuration for each instance.

• Cloud provider.

• Number of VM instances.

Figure 5.2 illustrates the high-level design of our DyRAC. The system monitors the appli-

cation to identify changes in the workload and it re-configures the service if that action

reduces the cost. More specifically, the RA decides the number of instances of the ser-

vice, assigns several resources to each instance, selects a provider to host the service, and

spawns one VM with the appropriate size for each application instance. The details of the

re-configuration procedure are described in Sections 5.1.1, 5.1.2, and 5.1.3.

Services: A Service is a distributed and interactive application consisting of multiple in-

stances that cooperate to maintain a user-defined performance level. For our purposes,

DyRAC expects as input the total number of resources per VM type, across all providers,

that satisfy the service performance requirements depending on the current workload.

Dynamic Workloads: Papers in the literature commonly assume, for simplicity, that the

workload is either periodic or static [107, 73]. However, the actual challenge is handling
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DyRAC:
Resource 

Assigner (RA)

VM 1 VM N

...

Service

App 
instance 1

App 
instance N

Monitor the 
service

Adapt 
deployments to 
the workload

Figure 5.1: Overview of DyRAC. A Service consists of multiple application instances. DyRAC
places each application instance to a single VM. DyRAC monitors the application to adapt
the service deployment in response to workload changes, deciding the number of VMs to
spawn and how to distribute resources among VMs to minimize deployment cost.

bursty and stochastic workloads [32], which is the most common case for services in the

cloud. Therefore, DyRAC makes no assumptions about the workload.

Cost model: We model the problem of minimizing the cost at a given time, as a variation

of the multidimensional knapsack problem (MDKP) [76]. Given a set of item types with

a weight and a value, we select a number for each type (possibly zero) so that the total

weight remains above the demand of the knapsack and the total value is minimized. In

our context, application instances are the items. The weights are the resources assigned

to each instance. The value is the cost of the VM hosting the instance. Finally, the total

number of the requested resources for a service is the weight demand of the knapsack. We

configure the service deployment such that: the total assigned resources are at least what

was requested and using the VM sizes that minimize the total cost. Resource assignment

includes two additional challenges: (1) the weight demand of knapsack changes when

we change the number of allocated resources and (2) there is a potential for waste when

we remove items before their charging period ends. We formulate a variation of MDKP is
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formulated as follows:

min C =
N∑
n=1

cnxn

subject to
N∑
n=1

rmnxm ≥ lm,m = 1, . . . ,M

0 ≤ xn,n = 1, . . . ,N,

(5.1)

where N is the number of VM types, M is the number of the different resource types, i.e.

CPU and memory, xn is the number of VM instances per VM type, cn is the cost of each VM,

rmn is the number of resources per resource type per VM type, and lm is the weight demand.

MDKP is NP-hard, hence, we propose four policies described in Section 5.2, that implement

simplified greedy approaches [19].

5.1.1 Resource Assignment

RA is a critical and often neglected component when managing the resources of applica-

tions. Most related work explores how to place tasks/jobs on the underlying hardware,

intending to avoid interference or increase server utilization [64, 84, 39]. Although these

are significant issues to address, they partially contribute to minimizing the cost of de-

ploying services in the cloud. We also need to include other fundamental criteria for cost

optimization: (1) how to choose the type of VM that hosts a service and (2) how to divide

the resources among VM instances.

We explore the impact of different service configurations on the cost of executing a

workload. DyRAC takes into account that providers charge VMs for quantized periods, e.g.

one hour. Therefore, when there is a request for reducing resources in a service, DyRAC

does not shrink VMs until the minimum charging period expires. In the case of a request

for increased resources and depending on the RA policy (see Section 5.2), DyRAC decides

to resize the running application instances or spawn additional ones. RA determines the

configuration that minimizes cost each time there is a demand for additional resources
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using the following equation:

c(t) = c(t − 1) +min(cost(cd), cost(ar)), (5.2)

where c(t) is the cost at time t, cost(cd) is the cost to change the configuration, i.e. change

VM types or provider, and cost(ar) is the cost to add resources to the service, i.e. spawn

additional VMs of the same type.

When DyRAC chooses to re-configure a service, it essentially spawns new VMs and,

at the same time, keeps the old VMs inactive until their charging interval completes. For

example, suppose that a VM has been running for 20 minutes, the VM charging period is

one hour, and DyRAC chooses to resize it to support an increase in the resource demand of

a workload. We add both the old and the new VM for the next 40 minutes in the service’s

total cost. Therefore, cost(cd) is the cost of the new VMs that result from the service re-

configuration plus the old inactive VMs until their charging period is over. To calculate

cost(ar), we compute how many additional VMs DyRAC spawns.

5.1.2 Provider Selection

Apart from choosing the most cost-efficient deployment, RA also considers changing cloud

providers at runtime. This approach has been considered unrealistic due to the slow data

migration and the complexity of the software stack. For this reason, most related work about

provider selection considers only capacity planning for batch jobs before their execution

and not for interactive services [138, 137, 127]. However, with the current pace that storage

and network technologies are advancing (e.g. 100Gb/s network throughput, 3GB/s I/O

throughput in a single NVMe device) as well as the current trends of modern hypervisors,

migrating massive amount of data becomes feasible. It is interesting to explore the possible

benefits of migrating a service among multiple providers at runtime. We develop this feature

in DyRAC to the deployment cost of services while also considering providers. DyRAC first

calculates the best service configuration for each provider individually and afterwards

calculates the cost to change providers, as shown in Equation 5.2, by spawning all currently

running active VMs.
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DyRAC:
Resource Assigner (RA) – Provider Selection

RA – Provider1

…

Provider Selection

Deployment request
(Application + resources)

Cloud  Providers

Provider 1 Provider N…

RA – ProviderN

Set1 of VM configurations SetN of VM configurations

Figure 5.2: DyRAC performs its decisions in two steps. In the first step multiple instances of
the RA select the most cost-efficient list of VM instances and their configuration for each
provider. In the second step, DyRAC selects the best list of VM instances among providers.

5.1.3 Reconfiguring Services

DyRAC periodically checks, every thirty seconds, whether there is a more cost-efficient

service deployment among providers depending on the current service requirements.

DyRAC maintains multiple independent RA threads, one for each available cloud provider.

Each RA thread periodically calculates the VM configurations with the most benefit in each

provider for all deployed services, according to DyRAC’s current policy. Afterwards, the RA

threads store the selected service deployment as a list of VMs along with their resource

configuration. Next, DyRAC selects the provider’s VM list with the least cost and finally

decides whether or not to perform a service re-configuration according to Equation 5.2.

In case DyRAC estimates that a selected VM configuration will reduce the total cost,

it triggers the procedure of service re-configurations. First, DyRAC spawns the necessary

additional VMs according to the selected configurations and waits until they all become
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ready. Afterwards, DyRAC starts service instances in each of the new VMs and transfers

the service’s current state along with the necessary data for the already running instances.

Finally, VMs that are not included in the new deployment remain active until their charging

period is over. By not terminating the previous VM instances immediately, we better handle

workloads with rapid increase in their resource requirements. During re-configurations the

services will have extra resources to handle load transients if necessary.

5.2 Methodology

Our evaluation uses a trace-driven simulation that employs two tools written in Python,

the Tracer, and the Simulator. The Tracer generates traces with resource estimations for a

service, matching the output of a dynamic workload that requires changing its resources

over-time. The Simulator reads such traces to calculate the most cost-efficient deployment

according to a policy. Dynamic workloads: The Tracer can generate a variety of workloads

based on four parameters:

• The resource requirements of the workload: increasing and then decreasing, with

oscillations, random.

• The timing of resource changes: periodic, aperiodic.

• The increment of each resource: static, random.

• The total duration of the workload, in seconds.

With the parameters described above, the Tracer can cover a vast variety of datacenter

traces [102, 83, 40]. For example, we can create periodic, bursty, or random workloads.

Furthermore, we can produce incrementally varying workloads that allow the evaluation of

specific RA features in a controlled manner.

For our evaluation, we generate three workload types:

• Gradual: It gradually increases the resource demand of the workload statically and

periodically.
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Table 5.1: Summary of the available policies implemented in DyRAC.

Policy VM Types VM Count Use-case
Single VM Single active One Baseline
Adaptive Multiple One Provider B
Fixed Single Many Provider A and C
Type-adaptive Single active Many DyRAC

• Oscillating : It periodically changes the resource demands of the workload by a ran-

dom quantity.

• Random: It aperiodically changes the resource demand of the workload by a random

quantity.

Configuration Policies: The Simulator is extensible with custom configuration policies. We

implement three baseline policies and one for DyRAC (see Table 5.1):

• Single VM. It always maintains one VM with enough resources per service. This policy

emulates what a novice cloud user would do.

• Adaptive. It maintains multiple VMs per service. Each time RE increases the service’s

resources, it creates a new VM with the additional resources. This is an example of

how an advanced cloud user could manage resources on Provider B, which offers VMs

with custom resource configurations.

• Fixed. It maintains multiple VMs of one type per service. Each time the RE requests

for more resources, it calculates the additional VMs to spawn. This matches Provider

A and C, as they offer VMs with fixed resource configurations. We choose a VM type

with 1CPU and 1GB memory, resulting in fewer unused resources than larger VMs.

• Type-adaptive. It is a combination of the Fixed and Adaptive policies, using multiple

VMs of the same type. However, the type can change at runtime if such a decision

reduces deployment cost.

When RE indicates to decrease the resources of a service, the RA changes the configuration

of services only after the charging period of their VMs is over.
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Figure 5.3: Comparing DyRAC against 3 baseline policies. The cost reductions with DyRAC
are up to 33% on average.
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Figure 5.4: Exploring the potential benefits of an optimal (oracle-style) policy, using the
Single policy against the best policy of DyRAC at each time, for all 3 providers. The cost
reductions with DyRAC are up to 70% on average.

0 500 1000 1500 2000 2500 3000 3500
0.00

0.05

0.10

0.15

Co
st

($
)

Gradual

0 500 1000 1500 2000 2500 3000 3500

Time(s)

0.00

0.02

0.04

0.06

0.08
Oscillating

Provider A
Provider B

Provider C
DyRAC

0 500 1000 1500 2000 2500 3000 3500
0.00

0.05

0.10

Random

Figure 5.5: Comparing DyRAC against provider A, provider B, and provider C. The cost
reductions with DyRAC are up to 25% on average.

5.3 Exploration of Service Deployment Alternatives

5.3.1 Comparison of DyRAC to Baseline Policies

We compare the resulting cost of deploying the same cloud services using DyRAC against

the three baseline policies (Single, Adaptive, and Fixed) in Figure 5.3. In most cases, DyRAC

results in the lowest deployment cost. DyRAC manages to keep unused resources to a

minimum compared to other policies by choosing the VM types that best suit the workload.

DyRAC reduces costs from 25% to 33% on average. The next best is the Fixed policy. This
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Figure 5.6: Comparing DyRAC using 3 typical VM types from provider B, which are present
in the other providers as well. The cost reductions with DyRAC are up to 8% on average.

happens since provider B is more expensive than providers A and C, and we have selected

a small-sized VM type. However, the limitation of Fixed is that if the service requires a lot

of resources, it will cause network bandwidth issues as this policy will then spawn many

VMs; this scenario is to be evaluated in future work. Finally, the Adaptive policy benefits

from using all the allocated resources. However, it assumes that the VMs of a service are

load-balanced, which may not be applicable in all cases.

Additionally, we explore the potential cost benefits of an optimal (oracle-style) RA.

We compare this with the baseline Single VM policy with all providers and workloads.

We define Optimal as the best choice among policies and providers for each timestamp

of the experiment. Therefore, Optimal includes the optimizations in all three critical

dimensions, i.e. choosing the configuration, VM type, and provider that minimizes cost.

Optimal serves only as an upper bound of the feasible reduction of the deployment cost. We

cannot realistically implement this policy, as it assumes that we know the entire timeline

of workload changes beforehand. However, considering this comparison with DyRAC,

together with the prior comparison against the three baseline policies, we establish a useful

envelope of performance and dynamic behavior for the evaluation of DyRAC under real-

world workload conditions. Figure 5.4 shows that DyRAC decreases the cost from 50%

to 70% on average. In other words, we conclude that DyRAC is capable of serving the

same dynamic workload at roughly half the cost as compared to other cost optimization

approaches that are typical today.
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5.3.2 Impact of changing the cloud provider

We now compare the cost difference of each provider using the same policy. This com-

parison provides insight into how relevant the “correct” choice of provider is for a service

deployment. As a high-level conclusion, we observe that if the workload is bursty with

random changes in its resource requirements, provider selection is significant to cost re-

duction. DyRAC manages to decrease costs up to 25% on average. Providers A and C have

a similar model for charging; however, there are fewer options available in provider C. As

shown in Figure 5.5, provider A is usually cheaper than provider C because, with provider

A, we have more flexibility in choosing the resources of VMs. Therefore, we have more

leeway to select a VM configuration closer to actual user requirements. provider B is more

expensive than providers A and C. However, provider B allows us to choose an arbitrary

amount of resources for each VM. Therefore, with provider B, we do not waste resources

in the configuration of a service. It depends on the workload’s resource requirements if

an application hosted by provider B eventually achieves a cost reduction compared to

other providers. If the workload requires only a few resources, then it is likely that we will

waste resources with provider A and C (due to the fixed nature of the VM configurations

available). On the other hand, if a workload requires many resources, we are more likely to

find a VM configuration with few unused resources with providers A and C, and hence the

deployment will be cheaper.

5.3.3 Configuring VM instances

Next, we compare the benefit of DyRAC drawn from choosing the most cost-efficient VM

type to gain insight into the importance of this selection dimension. VM type selection adds

a small benefit to reducing cost and is not as important as selecting the provider. Figure 5.6

shows the corresponding results. DyRAC, with all VM types available, decreases the cost

up to 8% on average. This is because we include only three types of VMs available on all

of the providers considered in this evaluation, and moreover, we consider VM type and

provider selection independently. In future work, we plan to consider VM type and provider

selection in a combined manner, which could further reduce costs.
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Finally, we explore the difference in cost depending on how we divide service resources

to VM instances. Figure 5.3 includes the Single, Fixed, and Adaptive policies that each

sizes VMs differently. Single creates mostly large VMs. Fixed creates many small VMs,

while Adaptive creates either large or small VMs based on workload demands. There is no

guaranteed best policy for sizing, thus justifying an adaptive approach.

5.4 Summary

This chapter shows the potential cost benefits for cloud users by optimizing service deploy-

ment in the cloud. We approach the cost optimization of cloud services as a combination

of resource assignment and provider selection. We argue that resource assignment is a

significant aspect of the cost, despite being often neglected for simplicity. Therefore, we

present and evaluate an approach (DyRAC) that adapts VM resources and their assignment

during service execution. DyRAC adjusts the type, amount of assigned resources, and the

provider according to the service workload changes. Our experiments illustrate that three

concerns are important for reducing costs: (1) provider selection, (2) VM type selection,

and (3) VM sizing. While an Optimal (oracle-style) policy can reduce the cost by up to 70%,

DyRAC achieves a reduction of deployment costs from 25% to 33% on average.
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Chapter 6

Related Work

We classify related work into the following categories: (a) offline resource estimation, (b)

reactive resource adaptation, (c) minimizing latency in serverless frameworks, (d) efficient

deployment in the cloud, and (e) workload traces and trace generators.

In the first category, the user predicts the resource requirements of an application before

it is executed. The challenge they face is to choose accurate models of application behavior

and resource usage. Additionally, it is challenging to estimate the resource requirements, as

the execution environment changes which can lead to mispredicting the actual behavior of

the application during execution.

In the second category, the user reactively adapts the assigned resource of an application

while it is executing. Like offline estimation, it is challenging to choose accurate models

of application behavior and resource usage. Unlike offline estimation, the behavior of the

application is expected to change over time, so it is challenging to adapt the resources

quickly when such changes happen.

The third category is similar to the second, with the difference that the user proactively

adapts the assigned resource of an application while it is executing.

In the fourth category, the user selects the most appropriate cloud resources to use for

an application and configuring them to optimize performance and minimize costs.

In the fifth category, the user faces two main challenges: 1) How to choose the parame-

ters of the workload mix and 2) How to scale workloads to the available infrastructure in a

reasonable manner. Although cloud benchmark suites help users by offering representative
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cloud application, the user must still resolve challenging issues, such as how to determine a

mix, how many instances of an application to spawn, how to generate a reasonable dataset

for each application, how to deploy applications in the available infrastructure.

6.1 Offline resource estimation

Ernest [124] and CherryPick [21] are examples of this approach. Ernest finds the VM config-

uration with the least resources that achieve good performance. CherryPick implements a

similar approach to Ernest but is customized for SQL queries. PARIS [130] has similar goals

to Ernest; it finds the VM configuration that minimizes the deployment cost while preserv-

ing application performance. It improves over Ernest by minimizing the number of online

samples required for identifying the VM configuration. The limitation of these approaches

is that they cannot choose an arbitrary amount of resources for the running applications

but rather allocate resources at the level of VMs, with static resource configurations. In

contrast, this dissertation can choose the resources that match achieve the desired perfor-

mance, resulting in fewer allocated resources. In principle, we can deploy many VMs with

meager resources for each application to avoid the problem of having unused resources

due to quantization. However, this results in more network traffic among VMs and more

pressure on the hypervisor. In comparison, this dissertation is more straightforward to the

user, spawns containers with many resources when possible, and puts less pressure on the

infrastructure.

Paragon [43] identifies applications compatible with colocation. It performs small-scale

interference tests between each application and controlled levels of background applica-

tions for each resource. Then, it uses complicated multi-variable statistical classifiers to

predict the expected interference among applications at the time of colocation. Quasar [44]

uses similar techniques to predict the impact of interference, but also the impact of scale

up and scale out. However, mispredictions are costly on all these systems because they

affect all running applications. This, in combination with the complexity of the statistical

predictions, leads those systems to be conservatively selective over what applications to

colocate and they favor pairs of applications with almost mutually exclusive resource re-



6.2. Reactive resource adaptation 119

quirements. On the other hand this dissertation has a higher degree of freedom over the

type of applications that colocates because of its isolation mechanism. Thus, in this disser-

tation (1) statistical modeling is simpler as it uses fewer variables and (2) mispredictions do

not affect running applications.

Morpheus [72] operates on production environments that mostly execute similar tasks

at the same time every day. This recurring pattern enables it to prepare offline resource

allocations that are optimized for the jobs it expects. this dissertation also assumes that

the majority (around 70%) of tasks are recurring and stores the profiling information of

each task to avoid unnecessary profiling runs. For the rest 30% of the workload, it operates

reactively and performs online profiling of the non-recurrent tasks.

Carbyne [59] uses job metadata and it “steals” resources that YARN allocates to jobs

to reschedule them elsewhere. Carbyne relies on fair scheduling to offer isolation guar-

antees, but it does not avoid completely the unpredictable consequences of collocation

interference.

Deepdive [95] uses hardware counters to monitor continuously a server for interference

among colocated Virtual Machines (VMs). When it detects high interference that can

seriously degrade the performance of running applications, it migrates a VM to reduce

interference in the server using predictive placement. However, VM migration itself can

entail significant overhead. For example, the scripts that launch Amazon EC2 VMs to

demonstrate the Apache Spark software stack on small collections of data take between 20

and 40 minutes to run [6]. Instead, the isolation mechanism of this dissertation mitigates

the impact of mispredictions and hence does not need VM migrations.

6.2 Reactive resource adaptation

dCat [129] and Ubik [75] are dynamic systems that manage the CPU LLC use of co-located

workloads. These systems focus on managing the LLC cache only, limiting their applicability

to memory-intensive applications. dCat collects the system metrics concerning the LLC to

reserve a proper amount of LLC cache space for applications. Ubik dynamically partitions

the LLC to improve the tail latency of latency-critical workloads. Both systems estimate the
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required resources of applications with high accuracy, using relatively fast and elaborate

techniques. This is possible because they manage only the LLC. Similar to dCat and Ubik,

ResQ [120] manages the amount of LLC space required to avoid the “noisy” neighbor

problem for software Network Functions (NF). In contrast, this dissertation implements a

faster and simpler technique to manage multiple types of resources.

MemGuard [133] provides memory access isolation to applications, such that the aver-

age memory access latency or request is not larger than on a dedicated memory system.

MemGuard does not use the predictor to identify the appropriate resources for applications

as this dissertation, instead it requires an external user-level daemon to configure it.

ARIA [125] and Jockey [53] implement a profiler-based resource allocation technique

for MapReduce environments. Each job comes with a completion deadline which is its

SLO. Their profiler extracts job profiles that estimate the expected execution time given

the number of resources allocated for the job. ARIA implements a job scheduler to meet

as many SLO as possible by reordering the execution of jobs, whereas Jockey monitors the

progress of each job and dynamically releases resources from jobs that have not pressure in

meeting their SLO and reallocates them to jobs that might miss their SLO. this dissertation

implements a similar mechanism for profiling, with the difference that it can model any

performance metric. Additionally, ARIA and Jockey are evaluated only for MapReduce and

we do not know how they perform on other frameworks.

Haoyu Zhang et. al. [136] also propose profile-based scheduling for live-streaming video

queries. They base their scheduling on the quality and lag goals of videos. They highlight

the main challenge in video streaming which is how to choose the right values for multiple

knobs to achieve the requested video quality. They implement two profiling phases one

that is offline and one that is online. The profiler in the offline phase identifies a handful of

knob configurations that satisfy the resource quality of queries. The scheduler in the online

phase allocates resources only among these configurations. this dissertation faces a similar

challenge because multiple allocations can lead to the same performance. Haoyu Zhang et.

al. finds a good allocation and subsequently search for mathematically equivalent ones,

whereas this dissertation uses a heuristic to find equivalent allocations.

Autopilot [104] is the scheduler in Borg [126] that automatically allocates CPU and
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memory for containers to avoid execution errors due to insufficient resources. this disser-

tation manages more resources in comparison and its goal is to guarantee performance.

PRESS [58] and CloudScale [114] are online predictive systems that estimate the CPU

resources of VM applications needed to achieve PLOs. Q-Clouds [93] addresses the per-

formance interference of consolidated VMs by dynamically adjusting CPU and memory

allocation. In comparison, this dissertation manages more resources and applies to both

containers and VMs.

Bubble-Up [85] uses profiling via “bubble” to predict precisely performance degradation

across workloads. Bubble-Flux [132] enhances this approach to online interference and

QoS management and uses a dynamic bubble technique to probe servers for resource

pressure, before taking colocation decisions. Bubble-Up and Bubble-Flux target latency-

sensitive workloads that have a specific QoS target. this dissertation uses a more general

the notion of QoS defined relative to standalone execution. Bubble-Up and Bubble-flux

relies on detecting (offline or online) and avoiding interference via probes and appropriate

colocation decisions, whereas this dissertation avoids interference by creating dedicated,

properly-sized slices for each container, as estimated with the application profiling.

Many papers adopt a resource isolation approach to prevent or mitigate the adverse

effects of interference. Heracles [81] and PARTIES [36] provide isolated hardware resources

to workloads and monitor application performance at runtime. They isolate hardware con-

cerning cores, memory, network, and L1 CPU cache. Additionally, they treat performance-

critical workloads with high priority and offer them enough resources to meet their dead-

lines, while it allocates remaining server resources to batch workloads. They assume certain

workload characteristics, typical for Google workloads, and shine at workloads that consist

of both latency-critical and batch applications.

In contrast, this dissertation ensures a user-defined performance level for all running

applications, rather than just the latency-critical ones. Additionally, while prior works

such as Vanguard [111] partition the I/O path of data-intensive applications to provide

predictable performance, they require the user to provide static information about the

resource requirements of applications. In contrast, this dissertation estimates resources

dynamically using a control loop. By doing so, this this dissertation provides more flexibility
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and adaptability in managing resources for optimal performance.

6.3 Minimizing latency in serverless frameworks

Firecracker [18] is a hypervisor optimized for serverless functions that induce minimal

memory overhead and can boot application code within a few hundred milliseconds. To

achieve that, it implements a snapshot mechanism for spawning new MicroVM instances.

vhive [121] further reduces the latency of new instances by exploiting the recurrence in the

memory working set of serverless functions to reduce cold-start latency. gVisor [5] is an

alternative approach to Firecracker for serverless functions. Instead of running containers

on top of a virtual machine, it sandboxes containers to provide isolation. gVisor provides an

additional layer that acts as a guest OS kernel and intercepts system calls for isolation and

security. Thus gVisor achieves the spawning of new serverless functions within hundreds

of milliseconds. However, this approach reduces application compatibility and causes

high system call overhead. Catalyzer [49] improves upon gVisor to further reduce the

start-up time of function instances to a few milliseconds in the best case. To achieve

that, it introduces a new OS primitive, sandboxed fork, that reuses the state of already

running sandboxes to spawn new function instances by restoring well-formed checkpoints.

However, Catalyzer induces significant memory overhead to maintain the checkpoints for

each function type in memory. A similar approach to Catalyzer is described in [115]. The

key idea is the use of checkpoint/restore (CRIU) technique to replace the standard fork-exec

procedure to spawn new function instances. Although the CRIU technique can significantly

reduce the cold start of function instances, it still requires several tens of milliseconds.

Barista [27] is a system that manages the resources of pre-trained deep-learning pre-

diction services. It assumes that the incoming load is variable and that latency constraints

accompany services. To achieve these latency constraints, Barista: (1) forecasts the in-

coming requests based on historical data, (2) estimates offline the required resources by

profiling the execution time on different resource configurations, and (3) chooses the

cheapest VM configuration that achieves the required latency for provisioning. In case

the forecasting overestimates the load, Barista assigns the unused resources to other low-
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priority jobs. Similar to Barista, this dissertation predicts the resources required to achieve

latency constraints; however, this dissertation predicts the resources online based on the

actual incoming load. Furthermore, Barista collocates batch jobs to utilize idle cores in case

of over-provisioning due to mispredictions, whereas this dissertation vertically scales the

resources. Archipelago [116] is a serverless platform that expects a DAG of functions that

are associated with a latency deadline. Archipelago partitions a given cluster into several

smaller worker pools and assigns DAGs to each pool using a load-balancing approach.

Additionally, Archipelago predicts the number of function invocations towards a worker

pool, assuming a Poisson distribution. Like Archipelago, Fifer [63] is an adaptive resource

management framework that manages function chains to reduce the number of contain-

ers spawned. Moreover, Fifer uses workload forecasting to spawn containers proactively.

Compared to Archipelago and Fifer, this dissertation does not require information about

function chains or DAGs to mitigate the cold-start latency. Additionally, similarly to Barista,

Archipelago and Fifer might suffer from mispredictions in workload forecasting, which is

not the case for this dissertation. An approach with a similar goal as Archipelago and Fifer

is described in [68]. The authors propose a new primitive for serverless functions called

freshen. It allows developers to perform actions within running functions for future use

(e.g., spawn a new function instance to avoid the cold start of its invocations). However,

the limitation is that it relies on the user for proactive actions. A further limitation is that

users must change the executable within the serverless function to invoke this new prim-

itive. Batch [20] is a framework for ML inference serving on serverless platforms. Batch

minimizes the tail latency of inference requests by batching them into a single function

invocation. To achieve that, it employs a profiler that predicts the characteristics of the

workload. Compared to Batch, this dissertation does not require offline profiling and is not

limited to ML-serving functions.

6.4 Efficient deployment in the cloud

Stratus [39] maintains a queue of running jobs/tasks and places tasks to increase infrastruc-

ture utilization as much as possible while at the same time achieving performance goals. It
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packs tasks of a job together and places them in VMs to execute as many tasks as possible.

Once the tasks are scheduled, they run to completion. Instead, this dissertation manages

interactive cloud services, a significantly more complex and dynamic resource assignment

problem.

Mao and Humphrey in [84] propose a system that decides at runtime how to minimize

the resources of a running application, hence attempting to reduce cost as well. It explores

how to schedule incoming requests to cloud services and auto-scale the resources of

services to support the varying load with the minimum resources possible. This approach

is dynamic and can adapt to workload changes; however, it is less cost-efficient compared

to this dissertation since it targets to minimize the allocated resources and not directly the

cost per se.

HotSpot [112] automatically decides when to migrate to new spot instances if their

price changes favorably. However, this type of approach needs also to handle the risk of

revocation and the overhead of migration, which currently makes it impractical.

Xinqian et. al. [139] explore the low energy efficiency of physical hosts for cloud

providers. Their paper presents a VM placement approach that improves a cloud data

center’s energy efficiency, thus increasing the profit margins for cloud providers. Unlike

this dissertation, this approach is directed to providers and not to users. In addition, this

approach intervenes in the VM placement policy of a provider without considering the

performance interference of collocated VMs. This can lead to significant performance

degradation for applications.

6.5 Workload traces and trace generators

BigDataBench [54] is a benchmark suite that provides benchmarks focused on online ser-

vice, offline analytics, graph analytics, AI, data warehouse, NoSQL, and streaming. Contrary

to our work, which focuses on using kernels as computation units, BigDataBench analy-

ses data motifs, which are commonly occurring data characteristics, and correlates them

with a set of micro-benchmarks to form computational building blocks. Subsequently,

common sequences of data motifs are identified and used to compose more complex
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workload building blocks, based on these data motif sequences and the previously con-

structed micro-benchmarks. Finally, the resulting workload building blocks contrast with

user characteristics and real-life data center application characteristics to come up with

a workload based on a real-life software stack. BigDataBench aims to provide variety and

scalability in terms of benchmark generation, and it provides a dynamically created collec-

tion of computation units. Our work intends to add the extra step of generating a synthetic

workload based on the kernels, which are, in our case, the units of computation.

In DCMIX [128], the authors collect a set of characteristic computation units, both con-

cerning offline analytics and online services, to come up with a collection of benchmarks.

Although DCMIX is a benchmark suite, their work partially parallels our own in that they

provide the functionality to execute a workload, as specified in a workload configuration

file, which comprises characteristics such as the number of requests, server threads, job

threads, and others. Our work also provides the capability to create arbitrarily synthetic

workloads and goes one step further: we profile real-life data center traces to offer the user

a collection of parameter values based on realistic scenarios.

HiBench [67] is a benchmark suite for Hadoop. It consists of a collection of programs

that can be executed over the Hadoop framework, aiming to evaluate deployment options.

Several synthetic workload generators serve to provide benchmarks that target specific

operation aspects of a data center. Such a generator is BigBench [37, 55]. BigBench is a work

that, similarly to ours, deals with the extraction of characteristics of realistic workloads and

their use to generate synthetic workloads. However, BigBench focuses on a particular use

case, a system handling the transactions of a big retailer, both physical and online. As such,

the result is rather restricted to workloads that consist of database queries, contrary to our

work, which aims at producing synthetic workloads for a more generic application domain.

Some more generic efforts to produce synthetic workloads with realistic characteristics

appear elsewhere in the literature. Due to the wide-spread use of this particular computing

paradigm, two prominent synthetic workload generation examples, [23] and [4], deal with

the synthesis of MapReduce workloads.

GridMix [23] is a benchmarking tool by Apache Hadoop, which creates synthetic work-

loads suitable for testing Hadoop clusters. To do so, it relies on MapReduce job traces
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extracted from some production clusters. Rumen, a tool in the Hadoop suite, generates

such traces from the job history files of the cluster. These traces are used as input to GridMix,

which in turn outputs a synthetic workload. The load can be scaled up or down by adjusting

the intervals between job submissions. Several inherent and run-time characteristics of the

jobs, such as memory usage, input data size, or job type, can be modeled.

Similarly, SWIM [4] generates synthetic workloads based on the traces released by

Facebook in 2009 and 2010. SWIM aims to produce workloads of shorter duration than the

original traces while still maintaining their essential characteristics. As in our case, SWIM

workloads are suitable for execution on real-life cluster setups. Contrary to this dissertation,

this workload consists exclusively of MapReduce-related tasks. We aim to enable having a

broader range of job types in synthetic workloads.

GloudSim [46] is a simulation toolkit that aims at reproducing the behavior of a real

cloud system, either on a desktop or on a cluster that uses virtual machines. This toolkit

includes a trace analyzer that characterizes traces and a sample job generator that generates

synthetic workloads. Contrary to our work, which provides a framework for describing

workloads using any public trace, GloudSim aims at closely reproducing the characteristics

specific to the Google trace. Given that the sample job generator follows the job arrival

times of the Google trace, it is not clear how to scale up or down a synthetic workload.

Furthermore, it is not clear how to vary parameters such as the load to the system under

test or the type of applications. Overall, workload generation with GloudSim is meant for

simulation rather than the actual execution.

In [66], CloudMix, a benchmarking tool that synthesizes cloud workloads with realistic

characteristics, is presented. Similar to our use of a repository of kernels, CloudMix relies

on a repository of reducible workload blocks (RWBs). RWBs represent different mixes of

assembly-level computations. The collection of RWBs is used to create synthetic workloads

that can be executed on real clusters. They are designed to mimic micro-architectural

usage characteristics of tasks found in the Google cluster trace. Workload scaling down

is possible by reducing job and trace durations. Unlike our work, [66] is more concerned

with reproducing the run-time behavior (in terms of computational characteristics and

memory accesses) observed in the Google trace. We are rather concerned with realistically
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synthesizing various sequences of the influx of jobs, independently of the substrate they

will be executed on.
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Chapter 7

Conclusions and Future Work

7.1 Future Work

This dissertation provides solutions to increasing the utilization of data center infrastructure

which is surprisingly low in the average case. Next, we describe some directions for future

work.

Offline profiling limitations: Our current profiling technique is generic and can accu-

rately profile most cloud applications. However, it does not capture well applications with

peculiar performance behaviour. For example, consider video encoding can have bitrates

of 1080P, 720P, and 480P. The function that correlates performance to offered resources is

essentially a step function. The performance has three values low, mid, and best quality,

while the offered resource affects the performance only when it crosses certain thresholds.

Logistic regression will not generate accurate performance profiles for such cases. There-

fore, an interesting direction for future work would be to explore other machine-learning

techniques that can handle special cases for applications. We would first identify such

applications and then choose the most appropriate technique to profile their performance.

Managing hardware heterogeneity: In our evaluation, we use machines of the same

generation with similar hardware. However, typically, data centers include three different

server generations [43] and a variety of different peripherals. We do not consider this

orthogonal dimension in this dissertation. Other works consider heterogeneity [44] as

129
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part of their performance modeling or in their online estimations. Although making a

thorough investigation of the possibilities concerning the hardware combinations, it would

be interesting to first explore how the accuracy of the performance profiles is affected on

different hardware. Similarly, we can also compare how the accuracy is affected when we

use different CPU vendors such as ARM, AMD, or Intel. Future work should address this

issue to drive the system closer to the real world.

Support of multiple metrics in the reactive approach: In our reactive approach, we

allow users to define a single performance target for each application. For instance, we

cannot choose to manage the resources of a web server with a throughput of one thousand

transactions per second and tail latency under ten milliseconds. Currently, we can choose to

either choose to target tail latency or throughput, but, in some cases, a single performance

goal is not sufficient for users. It is a very interesting direction for future work to explore the

challenges to support multiple performance metrics for a single at the same time.

7.2 Conclusions

Cloud computing has revolutionized how businesses operate by removing the need for

infrastructure management and offering seamless scalability of resources. However, the

ever-increasing demand for cloud resources puts pressure on providers to continuously

increase the offered resources. This pressure is driving providers to explore alternatives

to meet the demand, such as increasing the utilization of the existing infrastructure. The

proposed intelligent resource management solution offers a practical solution for providers

to optimize resource utilization and address the challenges posed by the increasing demand

for cloud resources.

The dissertation proposes techniques to use data center resources more efficiently

focusing, on two main directions. First, it proposes a performance profiling approach

based on logistic regression that utilizes multiple application runs to generate accurate

performance models. The performance models are then used to correlate the resources

offered to the application with the expected performance, enabling more efficient resource
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allocation and assignment. Although offline profiling is highly accurate, it cannot efficiently

handle dynamic workloads, leading to the proposal of a reactive approach as the second

direction. The reactive approach generates performance models for applications on-the-fly,

allowing for dynamic workload adaptation, albeit with less accuracy. We base our reactive

approach on a feedback loop control, specifically the Proportional Integral Derivative

controller (PID).

Additionally, we show how to apply our techniques to serverless computing and cloud

deployments. First, we develop a controller based on the reactive approach that adapts

resources of serverless functions to ensure low tail latency for execution. Second, we show

how to minimize the cost of deploying cloud services. We define a function that correlates

the cost of deployment to the assigned resources and the provider selected. This function

adapts the resources of cloud services and providers according to the workload.

Overall, we can manage the resources for various workloads and efficiently use cloud

resources for different hardware and applications. Our results show that with machine

learning, we can achieve high resource utilization and good quality of service for the

applications.
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