

University of Crete

Computer Science Department

Modelling and Dynamic Selection of Adaptation Rules

for Multi-Cloud Applications

Eleni Politaki

Master’s Thesis

Heraklion, April 2019

This work was partially supported by Institute of Computer Science, Foundation of Research and Technology-Hellas.

University of Crete

Computer Science Department

Modelling and Dynamic Selection of Adaptation Rules for Multi-Cloud

Applications

Thesis submitted by Eleni Politaki

in partial fulfillment of the requirements for the Masters’ of Science degree in

Computer Science

Author:

Eleni Politaki, Computer Science Department

Committee approvals:

Dimitris Plexousakis, Thesis Supervisor

Evangelos Markatos, Committee Member

Kostas Magoutis, Committee Member

Departmental approval:

Antonios Argyros

Professor, Director of Graduate Studies

Heraklion, April 2019

Modelling and Dynamic Selection of Adaptation Rules for Multi-

Cloud Applications

Eleni Politaki

Master’s Thesis

Computer Science Department, University of Crete

Abstract

Nowadays, Cloud computing adoption has increased geometrically and many

users prefer this type of technology to deploy and manage their applications. Today,

there is a high number of Cloud providers, offering a great variety of Cloud services to

meet users’ demands. Furthermore, some enterprises prefer to deploy their applications

in multiple Clouds in order to benefit from this plethora of offerings. Thus, one

important challenge for the Multi-Cloud applications related to the dynamicity and

uncertainty that even a single Cloud environment exhibits. As such the increasing

complexity makes difficult the delivery of a suitable service level to the customers by

the providers. Towards this direction, this thesis introduces two new extensions of the

CAMEL modelling language, enabling applications to be adapted across multiple

Clouds and different abstraction levels. In addition, an algorithm is proposed for the

dynamic selection of the most appropriate adaptation rule for each problematic

situation, based on its priority, according to the adaptation history of the application.

In the first part of this thesis, we focus on the proposed extensions of CAMEL,

based on an existing cross-level and Multi-Cloud application adaptation architecture.

Adaptation actions, rules and strategies are central adaptation-related notions that

played a fundamental role in the extensions performed in the CAMEL meta-model.

Adaptation rules match an event or event pattern, representing an occurrence of a

critical situation, with adaptation workflows, which specify the concrete adaptation

actions to be performed for addressing this situation, while adaptation strategies are

necessary both for organizing the set of adaptation rules in the context of the same event

or event pattern that triggers them, and for representing the application’s adaptive

behavior.

In the second part of this thesis, we elaborate on the dynamic selection algorithm

of the most appropriate adaptation rule, within an adaptation strategy, which is based

on its priority value for addressing a certain problematic situation represented by an

event or event pattern. This priority value is calculated on the basis of a specific

mathematical formula. In the adaptation history of each application recorded particular

sensor measurements which are exploited for the computation of the quality attributes

that participate in the priority formula to be calculated and come from previous

executions of the adaptation rules selected.

Thus, the main contributions of this thesis aim to the better management of the

applications that are executed in Multi-Cloud environments by the use of cross-layer

adaptation workflows, and the dynamic selection of the most appropriate adaptation

rule.

Supervisor: Dimitris Plexousakis

Professor

Μοντελοποίηση και Δυναμική Επιλογή Κανόνων Προσαρμογής για

Εφαρμογές Πολλαπλών Υπολογιστικών Νεφών

Ελένη Πολιτάκη

Μεταπτυχιακή Εργασία

Τμήμα Επιστήμης Υπολογιστών, Πανεπιστήμιο Κρήτης

Περίληψη

 Στις μέρες μας η χρήση περιβαλλόντων υπολογιστικού νέφους γίνεται όλο και

συχνότερη. Ο αριθμός των χρηστών που προτιμούν αυτό το είδος της τεχνολογίας για

να εγκαταστήσουν και να διαχειρίζονται το λογισμικό τους αυξάνονται. Σήμερα

υπάρχουν πολλοί πάροχοι υπολογιστικού νέφους που προσφέρουν μια τεράστια

ποικιλία υπηρεσιών. Επιπλέον, κάποιοι χρήστες προτιμούν τη χρήση πολλαπλών

παρόχων υπολογιστικού νέφους έτσι ώστε να εκμεταλλεύονται στο μεγαλύτερο δυνατό

βαθμό τα πλεονεκτήματα που τους προσφέρονται. Για αυτό το λόγο, μια σημαντική

πρόκληση είναι η κατάλληλη αντιμετώπιση της αβεβαιότητας και της δυναμικής φύσης

αυτού του είδους υπολογιστικών περιβαλλόντων. Για αυτόν τον λόγο δημιουργήθηκαν

δύο επεκτάσεις της γλώσσας μοντελοποίησης CAMEL έτσι ώστε να υποστηρίζει την

προσαρμογή των εφαρμογών σε περιβάλλοντα πολλαπλών υπολογιστικών νεφών και

σε διάφορα αφαιρετικά επίπεδα. Επιπρόσθετα, στη συγκεκριμένη εργασία προτείνεται

ένας αλγόριθμος για τη δυναμική επιλογή κατάλληλων κανόνων προσαρμογής,

βασιζόμενοι στο ιστορικό ενεργειών προσαρμογής της εφαρμογής.

 Στο πρώτο μέρος της εργασίας εστιάζουμε στις προτεινόμενες επεκτάσεις

της CAMEL, με βάση μια υπάρχουσα αρχιτεκτονική αντιμετώπισης προβληματικών

καταστάσεων, που εστιάζει σε όλα τα επίπεδα μια εφαρμογής που αναπτύσσεται σε

πολλαπλά υπολογιστικά νέφη. Οι επεκτάσεις ορίζουν προχωρημένους κανόνες

αντιμετώπισης καθώς επίσης και την καταγραφή του ιστορικού εκτέλεσης τους.

Κυρίαρχες έννοιες σε αυτές τις επεκτάσεις είναι οι ενέργειες, οι κανόνες και οι

στρατηγικές προσαρμογής. Οι κανόνες προσαρμογής αντιστοιχίζουν το γεγονός ή τα

γεγονότα που περιγράφουν τις προβληματικές καταστάσεις που χρειάζονται

αντιμετώπιση, με τις ροές εργασίας που περιγράφουν τις ενέργειες προσαρμογής. Οι

στρατηγικές προσαρμογής οργανώνουν τους αντίστοιχους κανόνες με βάση το γεγονός

ή τα γεγονότα που τους ενεργοποιούν, καθώς επίσης αναπαριστούν τη γενικότερη

ικανότητα προσαρμογής της συγκεκριμένης εφαρμογής.

 Στο δεύτερο μέρος της εργασίας ορίζεται η δυναμική επιλογή του

καταλληλότερου κανόνα αντιμετώπισης με βάση την προτεραιότητά του, στα πλαίσια

μια στρατηγικής αντιμετώπισης καταστάσεων. Η προτεραιότητα υπολογίζεται με

συγκεκριμένο μαθηματικό τύπο, ο οποίος χρησιμοποιεί δεδομένα από προηγούμενες

πυροδοτήσεις των κανόνων.

 Επομένως, τα βασικά σημεία συνεισφοράς της συγκεκριμένης εργασίας είναι

δύο: (i) η καλύτερη διαχείριση της ικανότητας προσαρμογής των εφαρμογών που

αναπτύσσονται σε πολλαπλά υπολογιστικά νέφη μέσω κατάλληλων επεκτάσεων που

προτείνονται στη γλώσσα μοντελοποίησης CAMEL και (ii) ένας προτεινόμενος

αλγόριθμος για τη δυναμική επιλογή του κατάλληλου κανόνα προσαρμογής με βάση

την προτεραιότητα του.

Επόπτης Καθηγητής: Δημήτρης Πλεξουσάκης

Καθηγητής

Ευχαριστίες

 Στο σημείο αυτό θα ήθελα να ευχαριστήσω τον επόπτη καθηγητή μου κ.

Δημήτρη Πλεξουσάκη για την καθοδήγηση του κατά την διάρκεια των μεταπτυχιακών

σπουδών μου και την συμβολή του για την ολοκλήρωση της εργασίας αυτής.

 Θα ήθελα επίσης να ευχαριστήσω τους καθηγητές κ. Ευάγγελο Μαρκάτο και κ.

Κωνσταντίνο Μαγκούτη που δέχτηκαν με προθυμία να πάρουν μέρος στην τριμελή

εξεταστική επιτροπή για την αξιολόγηση της εργασίας.

 Πολλές ευχαριστίες θα ήθελα να εκφράσω στον κ. Κυριάκο Κρητικό και στον

κ. Χρυσόστομο Ζεγκίνη για τον χρόνο που μου αφιέρωσαν, την πολύτιμη βοήθεια τους

και την καθοδήγηση τους σε όλη την διάρκεια εκπόνησης της εργασίας.

 Τέλος θα ήθελα να ευχαριστήσω όλους τους κοντινούς μου ανθρώπους που

είναι πάντα δίπλα μου και με υποστηρίζουν. Μεγάλο ευχαριστώ στον φίλο μου,

Παναγιώτη καθώς επίσης και στην μητέρα μου, Ευαγγελία, και στην αδερφή μου,

Ιωάννα Μαρία, για την υποστήριξη και την αγάπη τους. Ιδιαίτερα θα ήθελα να

ευχαριστήσω τον πατέρα μου, Ευάγγελο, που φρόντισε να έχω την δυνατότητα να

ολοκληρώσω τις σπουδές μου.

στους γονείς μου

i

Contents

Contents .. i

List of Tables ... v

List of Figures ... vii

1. Introduction .. 1

1.1 Cloud Computing ... 1

1.1.1 Service and Deployment Models .. 1

1.2 Multi-Cloud Applications Management Challenges .. 3

1.3 Cross-layer adaptation framework in Multi- Cloud ... 4

1.4 Thesis Outline .. 5

2. Traffic Management Use Case .. 7

2.1 Application Specification ... 7

2.2 Workflow Structure.. 8

2.3 Service Requirements .. 9

2.4 Application Components.. 10

2.5 Application Instances ... 12

2.6 Running Example Application ... 13

2.7 SLO requirements .. 16

3. Camel Modelling Language Extensions ... 19

3.1 CAMEL’s deployment meta model ... 20

3.2 CAMEL’s adaptation meta-model ... 21

3.2.1 Adaptation Rule ... 22

3.2.2 Adaptation Strategy ... 22

3.2.3 Adaptation Workflow ... 23

3.2.3.1 Task .. 23

3.2.3.2 Application Task .. 24

3.2.3.3 Adaptation Task ... 24

3.2.3.3.1 Single Adaptation Tasks ... 25

3.2.3.3.2 Composite Adaptation Task .. 33

ii

3.3 CAMEL’s execution meta model .. 34

3.3.1 Adaptation Histories Records ... 35

3.4 Adaptation Scenarios Example .. 36

3.4.1 Adaptation Scenario 1 - Migration .. 36

3.4.2 Adaptation Scenario 2 - Component Replacement 37

3.4.3 Adaptation Scenario 3 - Cross Cutting .. 37

3.4.4 Adaptation Scenario 4 - IaaS & Horizontal Scaling 38

3.4.5 Adaptation Scenario 5 - IaaS & Vertical Scaling 38

3.4.6 Adaptation Scenario 6 - Workflow .. 39

4. Adaptation Rules Priority and Dynamic Selection Algorithm 41

4.1 Mathematical Formula and Adaptation Tasks Correlation 41

4.2 Formula Quality Attributes and Utilities.. 41

4.2.1 Quality Attributes Analysis .. 42

4.2.1.1 Execution Time .. 43

4.2.1.2 Availability ... 43

4.2.1.3 Failure Rate .. 44

4.2.1.4 Successability ... 44

4.2.1.5 Cost... 45

4.2.2 Utility Function per each Quality Attribute .. 46

4.2.3 Adaptation Task Priority Function .. 48

4.3 Dynamic Selection Algorithm ... 48

4.3.1 Adaptation Rule Priority Formula... 49

4.3.2 Selection Algorithm ... 49

4.4 Use Cases with Adaptation Rules Priority ... 51

4.4.1 Adaptation Scenario for the Adaptation Rule selection 52

4.4.2 Numerical examples with priority computations of Adaptation Rules 52

4.4.2.1 Abstract Scenario 1- single adaptation tasks .. 53

4.4.2.2 Abstract Scenario 2- single & composite adaptation tasks 57

5. Related Work .. 63

5.1 Scalability Rule Modeling ... 63

5.2 Adaptation Rule Modeling ... 64

5.3 Priority Computation.. 65

6. Conclusion and Future Work .. 69

6.1 Conclusion ... 69

iii

6.2 Future Work ... 70

Bibliography .. 71

iv

v

List of Tables

Table 2. 1 : Tasks and stakeholders correlations ... 8

Table 2. 2 : Indicative requirements of the services .. 10

Table 2. 3 : SLO violations of Monitoring Service ... 16

Table 2. 4 : SLO violations of Assessment Service... 16

Table 2. 5 : SLO violations of Device Configuration Service 17

Table 4. 1 : Quality Attributes .. 46

Table 4. 2 : Metrics .. 46

Table 4. 3 : Quality attributes monotonic characteristics.. 47

Table 4. 4: Quality Attributes SAT1 .. 55

Table 4. 5 : Quality Attributes SAT2 .. 55

Table 4. 6 : Quality Attributes SAT3 ... 56

Table 4. 7 : Quality Attributes CAT1 .. 59

Table 4. 8 : Quality Attributes SAT4 .. 59

Table 4. 9 : Quality Attributes SAT7 ..60

vi

vii

List of Figures

Figure 1. 1 : Cloud Service Models according NIST .. 2

Figure 1. 2 : SLA structure ... 4

Figure 1. 3 : Extended Cloud Service Models .. 6

Figure 2. 1 : Tasks and Services Correlations .. 9

Figure 2. 2 : Application Components .. 11

Figure 2. 3 : Clouds Infrastructure .. 12

Figure 2. 4 : Class Layer representation .. 13

Figure 2. 5 : Instance Layer Representation .. 13

Figure 2. 6 :Emergence case operations of services .. 14

Figure 2. 7 : Normal cases operations of services .. 15

Figure 2. 8 : General Cases Plan .. 15

Figure 3. 1 : Deployment Model Component Additions .. 21

Figure 3. 2 : Adaptation Rule & Adaptation Strategy .. 23

Figure 3. 3 : Task analysis .. 24

Figure 3. 4 : Single Adaptation Tasks ... 25

Figure 3. 5 : Component Configuration Graphical Representation 26

Figure 3. 6 : IaaS Graphical Representation .. 27

Figure 3. 7 : WfaaS Tasks Representation .. 29

Figure 3. 8 : Cross Cutting Graphical Representation ... 33

Figure 3. 9 : Composite Adaptation Tasks ... 34

Figure 3. 10 : Task Realization Class in execution meta-model 36

Figure 3. 11 : Application Execution Plan .. 369

Figure 4. 1 : Get Quality Attributes Values function .. 50

Figure 4. 2 : Get Quality Attributes Utilities function ... 50

Figure 4. 3 : Get Adaptation Task Priority ... 51

Figure 4. 4 : Get Adaptation Rule Priority ... 51

file:///C:/Users/ΕΛΕΝΗ/Desktop/Final/politaki_Final.docx%23_Toc5549595
file:///C:/Users/ΕΛΕΝΗ/Desktop/Final/politaki_Final.docx%23_Toc5549596
file:///C:/Users/ΕΛΕΝΗ/Desktop/Final/politaki_Final.docx%23_Toc5549597
file:///C:/Users/ΕΛΕΝΗ/Desktop/Final/politaki_Final.docx%23_Toc5549599
file:///C:/Users/ΕΛΕΝΗ/Desktop/Final/politaki_Final.docx%23_Toc5549605
file:///C:/Users/ΕΛΕΝΗ/Desktop/Final/politaki_Final.docx%23_Toc5549606
file:///C:/Users/ΕΛΕΝΗ/Desktop/Final/politaki_Final.docx%23_Toc5544453
file:///C:/Users/ΕΛΕΝΗ/Desktop/Final/politaki_Final.docx%23_Toc5544454
file:///C:/Users/ΕΛΕΝΗ/Desktop/Final/politaki_Final.docx%23_Toc5544455
file:///C:/Users/ΕΛΕΝΗ/Desktop/Final/politaki_Final.docx%23_Toc5544456
file:///C:/Users/ΕΛΕΝΗ/Desktop/Final/politaki_Final.docx%23_Toc5544458
file:///C:/Users/ΕΛΕΝΗ/Desktop/Final/politaki_Final.docx%23_Toc5544461

viii

ix

10

1

Chapter 1

1. Introduction

In this chapter we analyze some basic concepts required in the context of this work.

Firstly, Section 1.1 introduces some basic knowledge related to Cloud Computing.

Section 1.2 elaborates on Multi-Cloud application management, while Section 1.3

provides details for a previous proposed adaptation framework, Finally, the Section 1.4

provides an outline of this thesis.

1.1 Cloud Computing

One of the most well known developing trends in recent years is Cloud

computing. Cloud computing is a model for enabling ubiquitous, convenient, on-

demand network access to a shared pool of configurable computing resources

(e.g., networks, servers, storage, applications, and services) that can be rapidly

provisioned and released with minimal management effort or service provider

interaction [1]. The use of Cloud computing implies a set of features and a number

of issues and control worries [2].

Cloud computing chiefly offers lower implementation and maintenance costs by

reducing user need for purchasing and supporting as much hardware. Another

benefit of Cloud computing is flexibility because it implies both the high-

performance of resources and increased reliability and availability of

applications. There are some concerns mainly related to the security of data and

the management of operations and services in order to support a self-service

functionality in the Cloud. Nowadays, although there has been much

technological progress in Cloud computing development, many research issues

remain unsolved [3].

1.1.1 Service and Deployment Models

By following SOA (Service Oriented Architecture) every offering in the

Cloud is characterized as a service. According to NIST (National Institute

of Standards and Technology) [1], Cloud computing has three standard

service and four deployment models (Figure 2.1).

2

The first service model is the Software as a Service (SaaS). This service

model relates to the offering of existing software services like software

applications and databases. SaaS is convenient, easy to access, and

accessible from anywhere. It is scalable and secure for the users. The

second service model is Platform as a Service (PaaS). This service model

offers a highly developed environment, suitable for developers. They pay

for what they need and they can develop their services quickly because they

have the ability to use other pre-installed services. The last service model

is Infrastructure as a Service (IaaS), which relates to the supply of

computing resources, installed in data centers like servers, networking,

storage etc, as a service. It can be useful for the companies who need to

save the costs of buying and maintaining their own hardware. With the

above service models, different Cloud environments could be created. A

Cloud environment is an aggregate of the above service models. Different

Cloud environments can be more fruitful for different cases, based on

specific needs.

As far as NIST is concerned there are also four deployment models. Every

Cloud has some specific characteristics concerning the way in which

services can be utilized. The first one is the public Cloud, which is owned

by the Cloud provider and multiple customers. It is suitable for minimizing

the operational and maintenance costs. The Cloud provider is responsible

for the management and the maintenance of the Cloud. The disadvantage is

that companies are not able to have their own security and management. A

private Cloud is provided only for one company and can be owned by either

the company, a third party vendor or a combination of the two. This

deployment model is suitable for organizations which have their own

infrastructure with highly sensitive information. A community Cloud is

used by a specific community of users and can be owned either by a third

party provider or by the set of organizations which use it. This type of Cloud

Figure 1. 1 : Cloud Service Models according NIST

3

is suitable for organizations with common needs. A Hybrid Cloud consists

of two or more Cloud environments; the most common of which are either

public or private. If there is sensitive data, the most suitable Cloud

deployment model is the private. However, a company could use a private

Cloud in this case and a public Cloud for all the other needs of the company.

This type of Cloud is becoming very popular and the reason is that an

organization can use a Hybrid Cloud in order to have control over the

security of their private Cloud, in conjunction with the benefits of a public

Cloud. Hybrid Clouds are thus the most economical of cloud deployment

models; their only disadvantage being that it is difficult to manage their

resources.

Apart from these four categories of Cloud Deployment Model which follow

the NIST definition, there are other more specific deployment models such

as the cross Cloud and Multi -Cloud. In the former we have a deployment

across different Clouds, so that services from these Clouds can be utilized

within the same application deployment, while in the latter, that is the

Multi-Cloud Deployment Model, the use of services from multiple Clouds

is maintained and can be performed at a single time.

1.2 Multi-Cloud Applications Management Challenges

One of the most significant parts from the customer side is the ability to choose

the most suitable service, independent of the Cloud provider. The advantage that

this choice gives, is the needed flexibility and the right combination of the

different Cloud providers that could be the key towards greater efficiency and

reduced costs. However this is a way for avoiding vendor lock-in issues. With

Multi -Clouds customers can organize the data exported by the Providers and by

processing and analyzing, create Cloud Computing environments containing

manageable Clouds.

Due to the benefits of Multi-Clouds there is a move towards adopting their

use. One of the most interesting challenges for the Multi-Cloud applications

related to the dynamicity and uncertainty that even a Single Cloud environment

exhibits. As such, the increasing complexity makes difficult the delivery of a

suitable service level to the customers by the providers. The efficient recognition

of user needs and an automated prediction can be made as to the optimal provision

of services most suited to these needs.

Many challenges like this could be overcome by the use of adaptation workflows

with actions on the running services. These actions are needed for the proper

organization of all the required tasks to be done and to lead to the optimum result

for the last users. In the case of Single Cloud the management of these actions is

4

simpler than in the case of Multi-Cloud. Nevertheless, the Multi-Cloud

environment is a superset of Single-Cloud environments. Adaptation workflows

in Multi-Clouds have great importance and the reason is that it is difficult to

synchronize the set of adaptation actions of the nested environments. Therefore,

the same adaptation workflows could be implemented in Single-Cloud and Multi-

Clouds but in the last case there is an increasing complexity. The goal of the

adaptation actions is to predict the most appropriate task for the customer taking

into account the historical records of the services used in the past and the current

needs of the users.

So, in order to respond to this challenge, the Cloud deployment model should

collect the metrics of all running applications, and through the analysis of these

metrics should react to cases where adaptations to these applications are

necessary. To facilitate this analysis, the execution histories should be recorded.

SLAs also play an instrumental role in this monitoring and adaptation process.

An SLA sets the expectations between the parties. The SLA has a certain service

life cycle [4] and contains analysis of SLO conditions over the QoS metrics

(Figure 2.2). The monitoring of the QoS play a fundamental role in the adaptation

process [5]. The set of SLOs comprises a certain service level.

1.3 Cross-layer adaptation framework in Multi- Cloud

For the cross-layer adaptation of a service based application within the Multi-

Cloud architecture a cross layer adaptation framework was proposed based on

earlier work. As cross-layer we distinguish between 5 levels: IaaS, PaaS, SaaS,

WfaaS (workflow as a service) and BPaaS (business process as a service) (Figure

1. 3) . The two last levels are an extension of the basic levels that NIST has

already suggested. The WfaaS is represented with workflow tasks and at this layer

the control flow of the corresponding adaptation tasks is organized. The BPaaS is

introduced in the BPaaS Adaptation Framework [6] that has been made in order

to organize the business processes (BPs) related with the provisioning of the

needed adaptation actions on different abstraction levels of the Cloud. This

Figure 1. 2 : SLA structure

5

framework can support the dynamic generation of adaptation workflows as well

as the recording of the adaptation history. The BPaaS is a cross-layer adaptation

framework which can be used in multi - layer Clouds. This framework correlates

with the CAMEL meta-modelling language. In this work, two new extensions of

the chief language are performed in order to specify all the needed operations and

to suggest the most appropriate adaptation plan for each (critical) event. In the

proposed extensions, the adaptation rules are responsible for the mapping

between events and adaptation plans/ workflows. An adaptation plan is an

adaptation workflow comprising the set of adaptation actions [7]. Event or event

patterns [8] trigger an adaptation plan, i.e the execution of its adaptation

workflow. Finally, the adaptation strategies organize the adaptation rules in the

context of the same triggering event or event patterns. Finally, the system by itself

selects the adaptation rule with the highest priority. This made by a dynamic

selection algorithm of adaptation rules which use the records of the adaptation

histories in order to compute the priority.

1.4 Thesis Outline

In the first part of this thesis we present a cross-layer workflow adaptation

approach in a Multi-Cloud application system. To organize the corresponding

adaptation actions we introduce adaptation rules activated by triggering events.

One event can be mapped to multiple adaptation rules, each associated with a

different adaptation workflow. We organized the adaptation rules with the same

triggering event in adaptation strategies. Through a mathematical formula we

give a priority value for each adaptation rule in the context of the triggering event.

Towards the practical context of the thesis, we extended two parts of the ecore

model of the language CAMEL, the metric and the adaptation/scalability; and we

subsequently upgraded a third part - deployment one encompasses an introduction

to the basic components needed in order to introduce the subsequent thesis

components. In the second chapter, a use case is presented whose aim is to

provide an application of this work in order to validate it. In the third chapter the

analysis of the CAMEL extensions are presented. The fourth chapter contains the

analysis of the mathematical formula for the priority of the adaptation rules in the

context of the triggering event. In the fifth chapter we analyse the related work,

and in the final chapter we refer to the conclusions and to future work in order to

provide future work directions.

6

Figure 1. 3 : Extended Cloud Service Models

7

Chapter 2

2. Traffic Management Use Case

In this Chapter we introduce a use case paradigm in order to demonstrate the main thesis

contributions. Firstly, we report the application specifications (Section 2.1) and then

analyze the workflow structure (Section 2.2), the application requirements (Section 2.3)

and its component parts (Section 2.4). Then there is the definition of all instances for

our example (Section 2.5); an exemplary example of the application's operation

(Section 2.6), and finally we have an example with indicative tables with SLO

violations responsible for the triggering of adaptation rules.

2.1 Application Specification

Our example describes a Cloud application related to the management of various

traffic-related events in the city of Heraklion. This application maps to a

workflow which attempts to regulate the traffic under both normal and emergency

situations in the city of Heraklion. This application follows a service-oriented

architecture while it involves three main stakeholders:

Traffic Manager: controls an area in the Heraklion city and adjusts the traffic

according to the evaluation of traffic and environmental conditions.

Rescue Forces: rescue forces, i.e., the traffic police and the fire brigade for the

immediate response to critical situations.

Medical Forces: they are responsible for carrying out manual activities like First-

aid. In fact, they follow a certain plan which is derived by the application.

We assume that the aforementioned stakeholders are represented by services

which are mapped with Application tasks. The Traffic Manager is represented as

a more generic and complex workflow of tasks as its workflow is consisted of

more than one tasks. The services called by Traffic Manager tasks are the

Monitoring, Assessment and Device Configuration Service. In the respected

workflow the Traffic Manager has sequential control flow. The mapping between

the services and the workflow tasks follows (Table 2.1):

8

 Table 2. 1 : Tasks and stakeholders correlations

Each of these services needs to take particular actions during the application

operation. The Traffic Manager workflow is comprised of three main tasks

(Tm,Ta,Td) which are realized by the following three services, respectively:

● Monitoring Service (called from Task Tm)

This service aims at collecting traffic information for the area of Heraklion. The

data collected is forwarded to the Assessment Service.

● Assessment Service (called from Task Ta)

This service first structures and aggregates the data appropriately and then

performs the respective analysis over them in order to finally produce the

appropriate traffic management plan. This plan is forwarded to the Device

Configuration Service.

● Device Configuration Service (called from Task Td)

This service can automatically adjust traffic lights based on the plan as well as

demand the execution of certain activities by corresponding stakeholders that

were mentioned above.

2.2 Workflow Structure

In general, services have input and output parameters while they can also interact

with other services. The result of running a task depends on the service that

implements the respective functionality. The main input parameter of the Traffic

Management Application is the related area where traffic should be regulated. We

have a new instance of the traffic management workflow; and thus of the

respective application for each different area in Heraklion. The main input

parameter of the workflow is passed to the first service that needs to be executed,

i.e., the Monitoring Service. The output of the Monitoring Service is monitoring

data which are forwarded to the Assessment Service. The Assessment Service

receives this data and produces as output the traffic management plan to be

enacted by the Device Configuration Service. The latter obtains this plan and

produces as output the corresponding actions to be performed by the respective

Service Task

Rescue Forces Trf

Medical Forces Tmf

Traffic Manager (Tm , Ta , Td)

9

stakeholders. The following figure (Figure 2.1) depicts the workflow of tasks and

how it is mapped to respective services.

As this application runs, a problem may arise such as the destruction of a sensor.

Then an Adaptation Workflow must act to ensure that the application works

properly.

2.3 Service Requirements

The respective requirements need to be fulfilled by the corresponding services

that realize mapping tasks. The Assessment Service has high requirements on

both computational power and service availability for the following reasons: it is

responsible for filtering data according to the most valuable information, focuses

on analyzing and creating a response plan for a critical situation. The Assessment

service requires a certain storage capacity as it needs to store and maintain a great

set of data. The Monitoring Service also needs high storage capacity to cover the

aggregation of the sensors. Finally, the Monitoring and Device Configuration

Services must be stored in close geographic areas with respect to the sensor

infrastructure as these two services interact with the sensors (e.g information -

gathering sensors) and actuator (e.g sensors to inform drivers). An indicative table

with the requirements of the three services of the Traffic Management workflow

is supplied below (Table 2.2):

Figure 2. 1 : Tasks and Services Correlations

10

 Table 2. 2 : Indicative requirements of the services

 As far as the hosting of the components of the corresponding services is

concerned, we assume that the Monitoring and Device Configuration Services are

deployed on a private/municipal Cloud located at the city of Heraklion. The

Monitoring and Device Configuration Services are hosted on a “medium” public

VM (4GB RAM, 4-core CPU and 40GB disk). The Assessment Service is

deployed on a "high" VM (8GB RAM, 8-core CPU and 80GB disk), through a

PaaS provider, due to its higher computational and storage requirements.

2.4 Application Components

The following figure (Figure 2.2) depicts the overall system, including the Cloud

layers (IaaS, PaaS, SaaS, WfaaS) involving the respective components situated

on these layers and their dependencies. At the WfaaS layer, we can see the set of

the application workflow tasks and at the SaaS layer we have the respective

services. The PaaS layer involves the PaaS services of our example. Finally, at

the IaaS layer we have the required infrastructure for the deployment of the

application. A PaaS provider could have its own infrastructure but could also rely

on the infrastructure of another provider. In our use case we have a PaaS provider

with its own infrastructure. This is more clear at the figure (Figure 2.3).

 Involved Tasks Requirement

Ta High computational power

Ta High availability

Ta, Tm High storage capacity

Tm and Td Closeness with sensor

infrastructure

11

Figure 2. 2 : Application Components

Each infrastructure provides the required software for the deployed services, as

well as a servlet container. A servlet container is a featured service that acts as a

server to service components and can be offered by a PaaS provider. For the

Traffic Management Application, the CB provider offers the servlet container

service as an add-on. Only the CB provider has access to the Assessment service

VM, so the adaptation system cannot manage it. Each VM uses an Apache

Tomcat Application service for hosting the applications. The Drools Rule Engine

is required by the Assessment Service and by the Device Configuration Service.

This Rule Engine is used by the Assessment Service to decide on the level of

tasks that need to be performed in the current situation, while the Device

Configuration Service has to execute the plan given by the Assessment Service.

12

This can be a high-level plan that needs to be concretized by the Drools engine.

Apache Tomcat Application and Drools Engine are nested components in the

services. The ASDB database is used by Assessment Service for storing the

monitored events and extracting aggregated values. Also the database MSDB is

used by the Monitoring Service for the aggregation of the data. All the above are

parts of the running applications.

 Figure 2. 3 : Clouds Infrastructure

2.5 Application Instances

In the Traffic Management use case, we could have multiple instances from the

same type workflow. Thus, we assume that we have two different instances of a

workflow which have different labels on their respective elements (Figure 2.4).

The first concerns the zone_A, which includes the center of Heraklion, and the

second the zone_B, includes its suburbs.

13

Figure 2. 4 : Class Layer representation

For an application we have instances of tasks and workflows. In fact, if we

consider workflow engines, usually we talk about different deployments of the

same workflow. For each deployment, one or more instances of the workflow

can be generated and executed (Figure 2.5).

Figure 2 5 : Instance Layer Representation

Based on the logic of multi instances running in parallel, an example of a running

application will be detailed below.

2.6 Running Example Application

In order to demonstrate the main functionalities of the running example

application, in this section we elaborate more on two different cases (instances);

(i) a normal case and (ii) an emergency case. We will then describe in detail the

flow of operations in these two cases.

14

1st instance - Emergency Case

In the case of an accident, the Monitoring Service immediately informs the

Assessment Service about the accident severity; the latter then assesses this

incident and comes up with the actions to be performed. Then, the Assessment

Service informs the Device Configuration Service about the adaptation plan with

the actions to be performed and their order (Figure 2.6) depicts such an

emergency case.

 Figure 2. 6 :Emergence case operations of services

2nd instance - Normal Case

In a normal case, the Monitoring Service collects the environmental data, such as

temperature, humidity and others; checks calendar data related to some special

days within the year, such as National Holidays, and also measures the traffic on

the roads of the respective area of the corresponding instance taking into

consideration the traffic flow density (i.e., the number of cars passing from a

specific point in a 24-hour base). These functionalities are provided by separate

components of the application. This data is collected by specialized sensors that

have been installed at the managed area. The Monitoring Service passes the data

to the Assessment Service, which, in turn, processes and analyzes this big amount

of data. The outcome of this analysis is a traffic management plan. After that, the

Device Configuration Service is responsible for performing the traffic device

reconfiguration in order to decongest the area’s traffic in the places where traffic

congestion has been identified. We can see at the next figure (Figure 2.7) a part

15

of a normal case execution of two separate operations of the traffic manager

application components.

In the figure (Figure 2.8) we have a representation of the Traffic Manager

Application Workflow. We discern the Monitoring, Assessment and Device

Configuration Services. Each of these services exposes a set of methods which

could map to the tasks of a workflow. So, each service does not correspond to just

a single method. In the respective workflows we have multiple tasks. Two or

more tasks could be realized through a service. Thus in the workflow of the figure

we performs the orchestration of some operations which runs separately and in

parallel for every instance of the application. The operations based on the

referred operations of the current use case.

 Figure 2. 8 : General Cases Plan

Figure 2. 7 : Normal cases operations of services

16

2.7 SLO requirements

As far as it concerns the Traffic Manager Application, we supply below an

indicative SLO table (Table 2.3, Table 2.4, Table 2.5) for each of the utilized

services according to the emergency and normal cases of execution of our use

case which is detailed in Section 2.6. The SLOs are mapped within SLAs to

penalties in case that they are violated. The assessment of SLOs relies on the

evaluation of metric conditions. The SLO violations trigger events which can

cause the execution of adaptation rules for every separate instance of the traffic

management application. In the following example the metrics conditions based

on the execution time and the availability of the application.

Monitoring Service

Execution time

SLO

The service execution time should not exceed 11 seconds

 in the emergency case, and 20 seconds in the normal case.

Availability SLO

The availability of the Monitoring Service should be

greater than 99,99% in emergency case and 99% in

normal case.

 Table 2. 3 : SLO violations of Monitoring Service

Assessment Service

Execution time SLO The assessment of the emergency case should be

completed within 20 seconds and within 10 seconds in

normal cases.

Availability SLO The availability of the Assessment Service should be

greater than 99,99% in critical cases and 99% in normal

cases.

Table 2. 4 : SLO violations of Assessment Service

17

Device Configuration Service

Execution time SLO The handling of the emergency cases should be completed

within 30 minutes, as it requires manual activities and

within 10 seconds in normal cases.

Availability SLO The availability of the Device Configuration service should

be greater than 99,999% in critical cases and 99,9% in

normal cases.

 Table 2. 5 : SLO violations of Device Configuration Service

18

19

Chapter 3

3. Camel Modelling Language Extensions

A family of DSLs called CAMEL[9], Cloud Application Modelling and Execution

Language1, was initially developed in the PaaSage2 project [10] with the main goal of

covering all necessary aspects related to the deployment and adaptive provisioning of

Multi-Cloud applications. This family includes, among others, the Cloud Modelling

Language (CLOUDML) for modelling the deployment topology of an application and

the Scalability Rules Language (SRL) for specifying event patterns, scaling actions and

scalability rules [11]. The Eclipse Modelling Framework (EMF) has been used in order

to integrate all these DSLs into a coherent whole. In particular, an Ecore model (i.e., a

meta-model) has been created to cover the abstract syntax of CAMEL. So, EMF

provides the right tools for the generation of language abstract syntax via the use of

meta-models. EMF also allows the generation of a Java class hierarchy representation

of each meta-model based on its definition. In the context of this work we have extended

the CAMEL Ecore meta-model in order to incorporate new classes and we have also

updated CAMEL’s deployment meta-model in order to incorporate all the changes

which had to be made so that we could assign new classes to the remaining meta-models

and to ensure that the deployment meta-models were compatible with these changes.

We performed two extensions to CAMEL’s sub DSL’s. The first was in the scalability

meta-model, which was renamed adaptation meta-model where we covered the

adaptation aspect which maps to the modelling of adaptation tasks, rules and strategies.

This extension was created for the modelling of advanced adaptation rules which

included various kinds of adaptation tasks at different levels of abstraction. The second

extension was in the execution meta-model where we modelled the adaptation histories.

With the record of the historical information we can check the application’s

performance. Also it could be used to reason over the best deployments of an

application’s or its components [12]. This extension played a basic role in the dynamic

selection algorithm of the most appropriate adaptation rule (Chapter 4). In the

following parts, apart from the deployment meta-model update (Section 3.1), we will

also indicate the extensions to the CAMEL scalability (Section 3.2) and execution meta-

model (Section 3.3). Finally, we follow a number of use cases (Section 3.4) for the

validation of this work.

1 http://camel-dsl.org/
2 https://paasage.ercim.eu/

http://camel-dsl.org/
https://paasage.ercim.eu/

20

3.1 CAMEL’s deployment meta model

An adaptation workflow is comprised of adaptation tasks that are executed in a

certain order. The deployment meta-model covers the topology of an application

in terms of its components. Thus, adaptation tasks map to application

components. The main reason for updating the deployment meta-model was to

cover all possible types of components which could be utilized in the definition

of adaptation tasks. The classes which represent the internal and the external

components were deleted and new subclasses inserted. The internal components

were components owned by the system, and the external components were those

owned by external systems. In the same way, internal and external service

components were also deleted. These deletions were performed because through

this update all such components were covered by the new subclasses of the

Component class which were designed to implement more specific components

over all the service model layers of the Cloud. So, in the Component class

we introduced the subclass of a Microservice, i.e., of the smallest software unit

that can work autonomously as an autonomous application software component

and provide a certain functionality to other software components or applications.

The PaaS can include the environment for a component plus the add-ons which

could take the form of Microservices. Here the role of Microservices is to

represent the add ons offered by the PaaS which are autonomous, pre-installed

software components needed for the execution of the software components hosted

in a PaaS environment. Finally, each PaaS relates to the requirements imposed

over the respective environment in which the corresponding application

component will be hosted. Another subclass of Component class is the VM class.

This concept plays the role of a placeholder indicating the place where a certain

component will be positioned. It represents an IaaS service in which an

application component could be hosted. This placeholder also involves the set of

resource requirements that need to be satisfied by this place / hosting component.

Finally, there is the SaaS class, for the representation of an external component

which provides a certain functionality over the internet. A SaaS component

includes a unique registry ID and an aggregate of tasks which map to an

application workflow. We can see the graphical representation of the Component

and its subclasses below (Figure 3.1).

21

To support the type-instance pattern and thus cater for the coverage of the

models@runtime approach, CAMEL also covers the instance layer. The

definition of respective instances of types (e.g., VMInstance having as type the

VM class/concept) then covers the contents of this instance layer. So for each new

type class defined in deployment meta-model, an instance class was also

modelled.

3.2 CAMEL’s adaptation meta-model

CAMEL's scalability package has been developed to enable the modelling of

scalability rules for the support of the adaptive provisioning of applications in

order to retain a certain level of service. For this purpose, the Scalability Rules

Language (SRL) has been developed. It enables the specification of noteworthy

event patterns, determining the current problematic situation, that can lead to the

triggering of scalability actions for enabling to change the application's

configuration at runtime to address such a problematic situation. Apart from the

scaling actions we need to define advanced adaptation rules and tasks which cover

all the levels of abstraction. For the above reason we performed the first extension

to CAMEL’s scalability meta-model. Through the new extension, the scalability

was renamed adaptation meta-model. In this we introduce the Task class which

has sub-classes the Application Task and the Adaptation Task. The latter is sub

classed into two kinds of adaptation tasks: Single and Composite. Then, for the

Single Adaptation Task we have specialization of adaptation actions at different

levels of abstraction. Also, we have modelled the Adaptation Rule class which

represents the mapping of a trigger event with an Adaptation Task. Lastly, we

Figure 3. 1 : Deployment Model Component Additions

22

introduce Adaptation Strategies which can be considered as sets of Adaptation

Rules which have in common the same event that triggers them. We let the system

exploit the priorities of Adaptation Rules of an Adaptation Strategy in order to

select the best possible one. The Adaptation Strategies needed in order to organize

the adaptation rules in the context of the same triggering event. Bellow we will

detail all the above parts of the extended adaptation meta- model.

3.2.1 Adaptation Rule

An Adaptation Rule maps an event to an adaptation task that needs to be

executed in order to address the critical situation represented by that event.

An Adaptation Rule has a distinct name; an event that triggers it; the

adaptation task that should be enacted upon the event triggering, and a float

variable that defines its priority. At this point, we should mention that this

priority is regulated by the adaptation system based on all the alternative

adaptation rules that can be enacted based on the same event (pattern) and

the history of execution of all these rules. As such, an adaptation rule that

is deemed to be able to better handle the current event (pattern) obtains the

highest priority from those included in the same Adaptation Strategy.

3.2.2 Adaptation Strategy

A set of Adaptation Rules that are triggered by a certain Event or Event

Pattern constitute an Adaptation Strategy. This means that the critical

situation can be alternatively handled by the adaptation rules within the

corresponding adaptation strategy. An Adaptation Strategy has its own

unique id and contains a set of Adaptation Rules. The different Adaptation

Rules with the same triggering event have different priority value at

runtime. The value of priority is calculated by a mathematical formula and

the analysis of this formula follows in Chapter 4. We can see the graphical

representation of the Adaptation Rule and Adaptation Strategy in the

following figure (Figure 3.2).

23

3.2.3 Adaptation Workflow

An Adaptation Workflow controlling all the appropriate executing tasks

which act in a critical situation. Below is the definition of basic classes that

focus in adaptation-related tasks (either single or composite) and take part

in the adaptation meta model package.

3.2.3.1 Task

A Task can be considered as a certain functionality which can be

executed in the context of an application or an adaptation workflow. A

Task has a unique id, in case it needs to be uniquely identified within the

workflow it belongs to and a task name. As we can see in the figure

below (Figure 3.3), a Task can be either an ApplicationTask or an

AdaptationTask.

Figure 3. 2 : Adaptation Rule & Adaptation Strategy

24

3.2.3.2 Application Task

In the case of application tasks we have a set of tasks which are mapped

with software components and construct a workflow of an application.

These software components can take the form of an application or a

service (eg SaaS or Microservice). In order to model an application task,

we describe the key elements that characterize it. For this purpose, an

additional variable in the application task models the specification of the

task (e.g., in terms of a standard language like BPMN).

3.2.3.3 Adaptation Task

An Adaptation Task acts at any level of abstraction. In this case, we have

mapping between tasks with abstraction type of components (tasks,

workflows, software components) that need to be enacted in a critical

situation. There are two types of adaptation tasks. Firstly, the Single and,

secondly, the Composite adaptation task, which actually maps to the

definition of an adaptation workflow. A Single adaptation task describes

an action on a set of one or more software components or on a certain

Figure 3. 3 : Task analysis

25

application task or the whole application workflow. So we have a set of

Single Adaptation Tasks that are shown schematically in the following

figure (Figure 3.4) and these will be analyzed in the following.

Single Adaptation tasks are related to tasks that can be applied to a

certain level covered in the Cloud (WfaaS, SaaS, PaaS, IaaS). The

extensive description of the subclasses of Single Adaptation Task that

have been defined is given below.

3.2.3.3.1 Single Adaptation Tasks

This section contains an extensive description of the different types

of Single Adaptation Tasks that have been modelled in the adaptation

meta-model.

A. Component Configuration

 This is an abstract class that represents a component configuration

task (Figure 3.5). This class contains the following subclasses:

a. Component Deployment

This task represents the deployment of one or more components

over a target hosting component. Details about the

configuration of the component(s) for its (their) proper

Figure 3. 4 : Single Adaptation Tasks

26

deployment in that host can be found in its (their) own

specification, where there is a containment association.

b. Component UnDeployment

 This task can be used to both uninstall and delete one or more

components. To support the execution of this task, we need to

know both the components to be uninstalled and the hosting

component in which these components have been deployed.

Again, details about the component(s) undeployment can be

found in its (their) specification.

c. Component Redeployment

This task represents the redeployment of one or more

components over a target hosting component. To support the

execution of this task, we need to know both the components

to be redeployded and the hosting component in which these

components would be deployed.

d. Component Reconfiguration

With this task we can run a specific set of configuration

commands on one or more components. The set of

configuration commands to be invoked are captured in the

configuration type, i.e., a certain enumeration which includes

as members, the commands of the components start, stop and

configure.

Figure 3. 5 : Component Configuration Graphical Representation

B. IaaS Action

Here is the definition of tasks related to adaptation actions that are

invoked on infrastructural elements, such as VMs (Figure 3.6).

More specifically:

a. StartUp

27

This task is dedicated to the start up of a certain VM which is

referenced. It could be useful when a certain VM is found

down and we thus need to start it up.

b. ShutDown

This task is dedicated to the shut down of a certain VM which

is referenced. It could be useful when we need to stop the

operation of a certain VM.

c. Restart

This task focuses on rebooting a certain VM. In fact, this task

can be realized through the sequential execution of the above

two tasks (first shutdown and then startup).

C. Workflow Adaptation Task

 This is an abstract task that is associated with the adaptation task

indicating tasks able to adapt a certain workflow. In this abstract

class we specify the id of the workflow and the type of the

adaptation level. In an Workflow Adaptation Task we have the

specification of the task adaptation level. The difference is that at

the class level which is an enumeration that has three values; the

changes are permanent and cover all instances of the respective

component (e.g., application, workflow) targeted by the adaptation

task, while at the instance level the changes are temporary and

concern a certain instance of that component only. If the

non_permanent at instance level case holds, then the change is

applied only for one iteration in the loop. If it is permanent, then it

will hold for all iterations of that loop (Figure 3.7). This class

contains the following subclasses:

Figure 3. 6 : IaaS Graphical Representation

28

a. Workflow Recomposition

This task is related to how the tasks are organized within the

workflow. With this task we can modify the content and

structure of the workflow within a certain workflow region. It

is useful in the case of the system or a user decide to change the

structure of the elements in the workflow. Any adaptation task

that is being modelled here, is actually executed by a system

automatically. The modelling could be done manually,

automatically or semi-automatically. The decision to adapt is

actually transferred to the modelling, in other words, once you

model a rule you bind the decision (when we should adapt) with

the respective action (what is involved in the adaptation).

Usually, the workflow region is defined between the current

execution point and the last workflow element. We assume this

by default and provide modelling elements in the respective

cases which take the form of adaptation workflow tasks where

the actual impact/replacement region needs to be specified by

the user.

b. Task Modification

 This is an abstract task that is associated with the modification

of application tasks within the workflow referenced.

a. Task Addition

 This task describes how to insert a new element into the

workflow. So refer to ids of possible workflow elements that

precisely specify the position of the task insertion. The

needed information are the workflow id and the position of

the new task between the others in the workflow.

b. Task Deletion

 Similarly, to the case of task addition, we need to specify the

id of the workflow being modified as well as the position in

the workflow on which the respective action/task needs to be

performed. That position witnesses the actual task to be

deleted so there is no need for a direct reference to it. In case

of a non-permanent change, task deletion can be regarded as

task bypassing. As the task will be omitted from execution

only for the current workflow instance affected by the

critical situation

c. Task Replacement

Here is a description of replacing a task with another one

within the same workflow. A task could appear multiple

times within a workflow. However, we consider that each

29

occurrence will map to a workflow task with the same name

but different id. So potentially, we could use the ids in order

to distinguish occurrences from one and the other at the

replacement phase. For the execution of this task we need

the new task of the replacement.

 d. Service Replacement

Service Replacement is a task associated with replacing an

entire service with another one. Here, in this task, we need

to refer to these services as well as the place where the old

service had been deployed. Another important piece of

information is the service uri which fully identifies the new

service. In case of SOAP services, it could also help to obtain

their whole specification (in WSDL).

Figure 3. 7 : WfaaS Tasks Representation

D. CrossCutting
 In this class, we have the case of tasks which are cross-cutting to

all the others. These can be used for reporting events/messages to

certain recipients as well as generating events which could be used

to trigger adaptation workflows. So, these tasks alert the system

with the critical situations that have been identified. They are also

needed for warning and alerting the admin/expert when situations

30

occur that require further investigation. It could be also possible

that such users are always informed about any single piece of

adaptation action / workflow that is executed. In that case, these

users not only get informed about the critical situation but also how

this situation was attempted to be addressed. In the cross cutting

events we have also the Migration and the Scaling because these

are tasks for all the layers of the Cloud model (Figure 3.8). More

specifically:

a. Reporting

This task is responsible for reporting a message to a certain set

of recipients based on a certain protocol. An example for this

reporting task is the report to the administrator of a system for

a particular subject over email.

b. Event Creation

This is a task dedicated to the creation of a new event in order

to alert the system about a critical situation. For example, when

reaching the scalability limits of a certain component, an event

creation alerts the system about it.

 c. Migration

Migration means moving one or more software components

from one hosting component to another one. Such an action

could be offered by a PaaS provider. It could be also part of the

management platform of a certain organization. For this task,

we specify the set of components that will be transferred, the

initial hosting component where these components have been

already deployed, the target hosting component on which these

components will be transferred and a Boolean annotation which

shows if the migration is made for all the instances of the

transferred components or only for a particular one. If the

system decides which should be the most optimal target hosting

component, then such a component should not be specified by

the modeler. In this latter case, the place of deployment depends

on the requirements of the components to be transferred. Each

adaptation task (single or composite) is executed by the

adaptation system. The required installation of the components

in IaaS as well as all the actions needed to make the service

operational are taken care of by the one who offers the

adaptation system / framework which could be considered as a

PaaS provider. We mention below all possible migration cases:

31

● PaaS → PaaS

One PaaS provider could support the migration of a

certain component from one PaaS environment to

another one. The PaaS environment might or might

not be provided by different providers. In the latter

case, we could imagine the possibility that we need

to upgrade the PaaS service within the same PaaS

provider). In the case of different PaaS providers

(original and target) we change the Cloud. While in

the case of same PaaS provider, the Cloud is not

changed.

● PaaS → IaaS

Here we have the migration of a PaaS environment

owned by PaaS to an IaaS environment owned by us.

It requires to exploit an IaaS abstraction tool or the

IaaS interface of the target provider to support the

migration. The adaptation system (or service if we

consider that each action maps to a certain service)

decides about the realization of the migrated service.

● IaaS → IaaS

Migration here has to be done by adapting one or

more software components based on the interfaces

and facilities offered by the corresponding IaaS

providers (origin and target). If we change provider,

we also change the Cloud. If not, then the Cloud

remains unaffected.

● IaaS → PaaS

Here, we have the transfer of the components in an

environment ready for operation, as the use of a PaaS

enables this possibility. However, the undeployment

of components is the responsibility of the action

executor which could exploit the facilities / interfaces

of the origin Cloud provider. First of all, we should

have the insurance that the service in the new

environment is operational and then we perform the

undeployment in the origin Cloud. If the migration

does not succeed, we are still left with the previous

deployment of the application.

32

 d. Scaling

a. HorizontalScaling

This task is relative to increasing or decreasing the

number of instances of a certain component which is

deployed on respective instances of a certain VM. The

arguments of this task is the number of instances and

corresponding components. When you attempt to increase

the number of instances of that component, you have a scale-

out and then the number in the count argument, which is the

proposed number of instances, is positive while in the

opposite case you have a scale-in and then the number in the

count is negative.

b. VerticalScaling

Actually, this action attempts to adjust the capabilities of the

VM on which a certain component is deployed. Upgrading

or downgrading such capabilities results in a scale-up or

scale-down, respectively. When we need additional

resources (of possibly different types), then we can request

the precise increase in the amount of resources of the

respective VM type with a scale up action. On the other

hand, a scale-down leads to decreasing the amount of

resources of the VM type referenced. When implementing

we assume that when the update values over the

VM/container hosting components increase, we have a

scale-up; when decreased instead, we have a scale-down.

33

Figure 3. 8 : Cross Cutting Graphical Representation

3.2.3.3.2 Composite Adaptation Task

A composite Adaptation Task can represent an Adaptation Workflow

and it maps to a hierarchical tree structure where at the leaves are

placed Simple Adaptation Tasks. This structure describes the

performance such as the specific order with which tasks should be

executed. Each composite adaptation includes a set of adaptation

tasks. Such a modelling can eventually lead to the production of

hierarchical tree structures. Figure 3.9 depicts the adaptation meta-

model, the composite adaptation task and its sub-classes. The sub-

classes are analyzed below.

We define types of composite adaptation tasks. Each sub-class of

composite adaptation task maps to a concrete type that corresponds

to a well-known and used workflow (control flow) construct. These

types can be mixed with each other as:

34

A. Sequential Adaptation Task

 This task should be specified when we need to describe a

sequential workflow / execution of adaptation tasks.

B. Parallel Adaptation Task

 This task should be specified when a set of adaptation tasks needs

to be executed in parallel.

C. Switch Adaptation Task

 This task concerns the selection of an adaptation task from two or

more alternative tasks. This selection depends on the respective

value of a certain metric formula parameter (i.e., of a metric or a

certain formula over a metric set). This means that each adaptation

task alternative is mapped to a different value of that metric or

metric formula. Also we have the property Value To in order to

support a kind of mapping between the values of a metric formula

parameter and alternative tasks.

D. Conditional Adaptation Task

This task models a conditional composition of adaptation tasks in

an if-then-else fashion where the occurrence of the respective

event leads to the execution of the first adaptation task referenced

while the non-occurrence of this event leads to the execution of the

second task referenced.

3.3 CAMEL’s execution meta model

Apart from the deployment package update and the extension of the adaptation

package of CAMEL, we have performed an extension also for the execution

package. The initial goal of the execution model, apart from the capturing of the

application history, was also to enable the analysis of this history in order to

support deployment reasoning. Now, this goal is extended in order to cover the

Figure 3. 9 : Composite Adaptation Tasks

35

dynamic calculation of the priority of adaptation tasks and corresponding

adaptation rules. Respectively, we will analyze the modifications at the execution

meta model. The execution meta-model is the part of CAMEL's ecore model

which defines the needed class mapping to the application runtime measurements.

One of the defined classes in the execution meta-model is ExecutionContext

which contains information related to a certain execution of the application. It

covers one task execution session. New sessions are covered by different

execution contexts. In the same package, there is also the Measurement class with

its subclasses which are: Application Measurement, Internal Component

Measurement, Communication Measurement, VM Measurement and PaaS

Measurement. Another important class is the SLO Assessment class which

represents the evaluation of an SLO in the context of a produced measurement.

Lastly there is the RuleTrigger class which encapsulates all the needed

information related to the triggering of an Adaptation Rule. This class has been

updated in order to connect with the Adaptation Rule class. Previously, it pointed

to a scalability rule but now it points to an adaptation rule. In the execution meta-

model, we have introduced new attributes within the TaskRealization class

needed for the computation of the adaptation rules priority. In the following, we

will analyze all these new attributes.

3.3.1 Adaptation Histories Records

The Task Realization Class was introduced in order to keep all the needed

information for the execution history records needed for the computation of

the final priority of an Adaptation Rule. In this class, we have a

characteristic name for the task realization, the corresponding Adaptation

Task, the start time and the end time of the task execution, and two counters

where the first one (upTimes) measures the number of times this task was

available and the second (pingTimes) the number of pings performed in the

context of availability checking during the task execution. This class also

contains two Boolean, one concerning whether the execution of the

adaptation task was error/bug-free (executionFault) and another one

focusing on indicating whether the execution of this task was able to

successfully address (executionSuccess) the respective event that triggered

it. In the Figure 3.10 we can see both the RuleTrigger and the

TaskRealisation which are the classes where the extension of the execution

package focused plus their relations with other classes of the execution

meta-model.

36

Figure 3. 10 :Task Realization Class in execution meta-model

3.4 Adaptation Scenarios Example

In this section, we will use the Traffic Management use case from Chapter 2 in

order to explain how the extended CAMEL can be used to cover the modelling

of specific adaptation scenarios; specifically the adaptation rules suiting them.

So, we assume that some violations in the traffic management system could be

detected. These violations relate to some particular metrics, like availability,

uptime, response time of the called services etc, that could be the reason of an

SLO violation. We will describe a set of adaptation scenarios and we assume that

the reason of adaptation in them is particular SLO violations similar to the

violations according to our use case example which is analyzed in the Chapter 2

(Section 2.7). In the following scenarios we describe the triggering events which

cause the violations without to analyzing the corresponding metric conditions that

cause the violations.

3.4.1 Adaptation Scenario 1 - Migration

There is an under-estimation of the resource requirements of the Monitoring

Service and the private infrastructure does not have enough resources to

cover these requirements. So, there is a need to move to a public Cloud

instead. For this reason, the adaptation task of Migration will be activated

by the corresponding adaptation rule.

More specific:

The triggering event could be: event_A = “Not enough memory is

available” for the VM hosting the Monitoring Service and the

corresponding task could be the single adaptation task:

37

task_A { Migration (Monitor Service, private/municipal Cloud component,

public Cloud component,allInstances = true) }.

The respective adaptation rule could then be:

rule_A = event_A → task_A

3.4.2 Adaptation Scenario 2 - Component Replacement

Some changes in the direction of the roads in the particular area of the city

center leads to the creation of a new version of the software component of

the Monitoring Service. So there is another service that could be used to

replace the old one. In this sense, in the Traffic Management Application,

the software component of the Monitoring Service should be replaced with

the new service which is named Super Monitoring Service.

More specific:

The triggering event could be: event_B = “Permanent deterioration of the

performance” for the Monitoring Service and the corresponding single

adaptation task could be:

task_B {Service Replacement (Monitor Service, Super Monitor Service)}.

The respective adaptation rule could then be:

rule_B = event_B → task_B.

3.4.3 Adaptation Scenario 3 - Cross Cutting

A temporary damage to the traffic lights of the zone_A in the city of

Heraklion makes it necessary to inform the drivers about this damage

through a report-based event via electronic road signs to the drivers.

More specific:

The triggering event could be: event_C = “temporally unavailable traffic

lights” in the zone_A, and the single adaptation task could be:

 task_C {Reporting(“traffic lights damage”, “Device Configuration

Service”,”electronic road signs”)}.

The respective adaptation rule could then be:

 rule_C = event_C → task_C.

38

3.4.4 Adaptation Scenario 4 - IaaS & Horizontal Scaling

Actually, the response time of the Assessment Service surpasses the

respective SLO threshold such that there is an SLO violation related with a

memory allocation failure. An event is triggered by this violation to activate

the corresponding adaptation rule.

More specific:

The triggering event could be: event_D = “memory allocation failure” for

the Assessment Service. The single adaptation task could be:

task_D {Horizontal Scaling (Hosting Components, Number Of Instances,

Assessment Service)}.

And the adaptation rule could be:

rule_D = event_D → single adaptation task_D.

3.4.5 Adaptation Scenario 5 - IaaS & Vertical Scaling

When the Monitoring Service is running, the system monitoring shows that

the main memory (in the respective VM) is no longer sufficient. The

increased system resources needed for the VM hosting the Monitoring

Service requires a memory growth. For this reason, the system monitoring

would create a memory allocation warning event. As such, the solution to

this problem would be the activation of a corresponding adaptation rule for

vertical scaling.

 More specific:

The triggering event could be: event_E = “memory allocation failure” for

the Monitor Service. The adaptation single adaptation task could be:

task_E {Vertical Scaling (Monitor Service VM, memory Update, core

Update, storage Update, io Update, network update, Scale up)}.

And the adaptation rule could be:

rule E = event_E → task_E.

39

3.4.6 Adaptation Scenario 6 - Workflow

Apart from single adaptation tasks, the system can also perform composite

adaptation tasks. So, we assume that we have an application workflow

related to the instance_A of Traffic Management Application instances

(Chapter 2 section 2.3).

Due to an accident occurring in zone_A, the Medical Forces should be

summoned so that they reach the point of accident and transport the injured

to the hospital. However, the Rescue Forces should also reach the point to

clear the area of objects produced by the collision. In this scenario, we have

the parallel activation of the above application tasks which are produced by

the Assessment Service and compose the plan with the actions to be

performed by Device Configuration Service. So, we have an application

workflow with the participation of two stakeholders, the Medical Forces

and the Rescue Forces. These stakeholders are activated by the

corresponding application tasks (Chapter 2.1) These tasks run in parallel in

the application workflow. We can see an indicated figure (Figure 3.11)

below.

 Figure 3.11 Application Execution Plan

The execution of the above tasks that should be performed under normal

conditions are not carried out as an event pattern is triggering and an

adaptation rule takes action to address a critical situation that is caused.

The event pattern includes two events that are:

 event_F = “run time violation” for the Assessment Service.

 event_G = “input mismatch” for the Device Configuration Service.

Thus the event pattern is: Event Pattern_ I {event_F , event_G }

The adaptation tasks that react to this event pattern are:

 single adaptation Task_F → Restart (Assessment Service).

40

 single adaptation Task_G → Reconfigure (Device Configuration

Service).

 composite adaptation Task_H → (single adaptation Task_F,

single adaptation Task_G).

The final composite adaptation task contains the adaptation tasks for the

mapping events of the Event Pattern_I. So, the adaptation rule for the

final complex adaptation task could be:

 Adaptation rule K = {Event Pattern_I→ composite adaptation Task_H}

41

Chapter 4

 4. Adaptation Rules Priority and Dynamic Selection Algorithm

The content of this chapter related with the analysis of the mathematical formula for

the computation of the priority and the selection of the most appropriate adaptation rule.

Firstly we analyze the mathematical formula of the computation of the priority and we

make the correlation between the priority of the adaptation tasks and the adaptation

rules (Section 4.1). Then we analyze all the quality attributes and the types of the

computation of their utilities (Section 4.2). Sequentially we have the introduction of the

dynamic selection algorithm of the most appropriate adaptation rule (Section 4.3) and

two cases these algorithms being used (Section 4.4).

4.1 Mathematical Formula and Adaptation Tasks Correlation

For the selection of the most appropriate adaptation rule in order to increase

performance we introduce a mathematical formula for the computation of

adaptation rule priority. An adaptation rule is comprised of one adaptation task.

This can be single or composite. In the latter case, it can include other adaptation

tasks which can be single or composite (Chapter 3). Therefore, the computation

of an adaptation rule priority depends on the computation of the adaptation task

priority.

 An execution context is exported by the CAMEL’s execution meta model

(Chapter 3) for every adaptation task whether this is a single adaptation task or a

composite. Thus, in the following, we will first detail all the quality attributes of

the mathematical formula for the calculation of the adaptation task priority, then

we will present this formula and explain the procedure for applying it over the

rules of an adaptation strategy. Finally, we will present the selection formula

for the most appropriate adaptation rule in the context of a triggering event as a

dynamic adaptation rule selection algorithm. The most appropriate adaptation

rule in this algorithm is that with the highest priority.

4.2 Formula Quality Attributes and Utilities

The suggested mathematical formula computes the overall utility of an adaptation

rule according to the sum of certain metrics (Figure 4.2) related to the quality of

the corresponding adaptation tasks. We have particular quality attributes which

42

are measured by respective metrics, and we define utility functions for them in

order to calculate the utility of an adaptation task per quality attribute. The value

result after the use of the utility function is a number point 0 to 1. The

normalization of the numerical value of quality attributes is the reason for the use

of the corresponding utility function. For the triggering events and event patterns,

the adaptation Task Realization class of the execution meta-model records a set

of execution data (Section 3.4). The mathematical formula is implemented on

three levels of computation. On the first level we use this data as input in order to

compute the value of each quality attribute. On the second level we use each

exported value of the previous step as input and we implement a utility function

in order to compute the utility of every quality attribute for each adaptation task.

On the third level of computation we implement a method function and we use

the set of the utilities of the quality attributes computed at the previous level, and

the weight that users define for each of the quality attributes as input in order to

compute the last utility value of the corresponding adaptation task which is equal

to its priority. On the third level of computations the monotonicity of each quality

attribute affects the result. The ultimate goal of the formula is the computation of

the priority of the corresponding adaptation tasks, and by extension, of each

adaptation rule.

 As such, we can estimate the quality of an adaptation task through the analysis

of the following quality attributes: execution time, availability, failure rate, cost

of execution and success rate. We come up with the computation of the utilities

of the quality attributes by the values of the corresponding metrics. The whole

approach of the three levels of computation and the selection of the most

appropriate adaptation rule with the use of the proposed mathematical formula

are both implemented as an adaptation rules selection algorithm. The analysis of

the corresponding mathematical formula quality attributes and the overall priority

computation follow in the next subsections.

4.2.1 Quality Attributes Analysis

In this subsection, we will provide details of the first level of computation.

In particular, we will explain the semantics of each attribute and then clarify

how it is computed from the information expressed via CAMEL in the

execution model of the application. For the needs of the next level of

computation, we will analyze the corresponding quality attributes (Figure

4.1) and their overall values.

43

4.2.1.1 Execution Time

The execution time metric of an adaptation task is modelled in the

execution meta-model as execution start time and execution end time in

the Task Realization class. The more an adaptation task takes to execute,

the less suitable it might be for adaptation. The adaptation task requiring

the least execution time is the most appropriate if we assume that the

cost of its execution depends on the execution time. For the execution

time quality attribute value, we compute the mean execution time of

adaptation task i, by dividing the sum of the raw execution times of the

adaptation task by the number N which is the number of times it has been

executed. By raw execution, we mean the subtraction of the

executionStartTime from the executionEndTime for every index j of

executions. More formally:

In the following analysis the value of the Execution quality attribute is

of equal value to the Mean Execution time which is computed by the

above formula and whose unit of measurement is time. Also, in the

remaining quality attributes computation formulas, all references to i, j,

and N share the same semantics as the above. More specifically:

 i = the adaptation task

 j = the index of executions

 N= the number of execution times for i

4.2.1.2 Availability

Another quality attribute is availability. In the execution meta-model,

two counters in the Task Realization class are implemented, one for the

upTimes and the other for the pingTimes needed for the computations of

the availability quality attribute value. Ιn this case, we compute the

availability of adaptation task i by dividing the number of times the

adaptation task was available by the number of times it was pinged. More

formally:

The task is pinged only while being executed such that the respective

upTimes are independent of the execution times and are defined during

execution. In the following analysis the value of the Availability quality

44

arises from the above mathematical formula of computation, which is

represented as a percentage.

4.2.1.3 Failure Rate

The result of the execution of an adaptation task can vary. Sometimes,

after the task execution, the respective result might not be the expected

one. This could occur when, for example, the task execution stops with

an error and an exception is thrown. This situation would then signify

that the corresponding adaptation rule has failed. If such failures often

occur for a certain task, such knowledge should be utilized to prevent

executing this task in the near future in the context of a respective

adaptation rule. Thus, for the computation of task Failure Rate, we need

to compute the failure rate by dividing the sum of the faulty executions

by the total number of execution times for this task. In the execution

meta model we have the execution fault counter implemented in the

Task Realization class for the computations of the Failure Rate quality

attribute. The following formula denotes the computation of task Failure

Rate:

In the following analysis the value of the Failure Rate quality attribute

arises from the above mathematical formula and it too is represented as

a percentage.

4.2.1.4 Successability

When the execution of the task finishes, another important aspect to

consider is the Successability of the executed task. In other words, we

need to know if the task execution was successful, that is, if it indeed

responded to the cause which called for it. If the respective event that

caused the triggering of the corresponding adaptation rule was

successfully handled, this means that the adaptation task execution was

successful. The result of this quality attribute is not the opposite of the

result of the Failure Rate because here we focus on the success of the

action and not on the success of the execution of the corresponding task.

The execution of a task can be completed but the reason for the

triggering of this task might not be satisfied. This attribute helps to avoid

45

vulnerable loops of tasks. These tasks can result from the value of the

rest of the quality attributes. For the computation of task Successability,

we need the number of times the task had successfully achieved its goal

of addressing the current event; and the total number of times this task

was executed. In the CAMEL’s execution meta-model we have a

SuccessfulExecution counter implemented in the Task Realization class

for the purposes of computing the Successability quality attribute. For

the computation of the Successability value we need to divide the sum

of successful execution times by the execution times of the adaptation

task. More formally:

In the following analysis, the value of the Successability quality attribute

arises from the above mathematical formula, and is represented as a

percentage.

4.2.1.5 Cost

Another requisite quality attribute is the cost of the requisite VM

resources required for an adaptation task execution. The cost depends

on the VM offering that is utilized for the hosting of the adaptation task.

Given that the major Cloud providers have resource bases in US, the

most common cost measuring unit is the US Dollar. The Dollar is thus

used for the computation of cost in our analysis. We assume that the

pricing policies are dictated by the provider and could refer to the use of

VM per hour. Consequently, the chief concern in making our

computations is the cost of the VM that hosts the adaptation task. In

order to simplify the computation of the cost quality attribute, we

assume that each task maps to a unique VM. Subsequently, what is

required is the average execution time which is computed in the

Execution quality attribute. If the Mean execution time is calculated in

a different time unit than a second, we would need a unit conversion to

be inserted in the formula. In the execution meta model we have the Cost

counter implemented in the Task Realization class. The average cost of

the adaptation task is computed by multiplying the cost of the hosting

VM of the adaptation task by the Mean Execution Time which is equal

to the value of the Execution Time quality attribute. More formally:

46

In the following analysis the value of the Cost quality attribute arises

from the above mathematical formula, and the unit of measurement is

dollars per time.

 Table 4. 1 : Quality Attributes Table 4. 2 : Metrics

4.2.2Utility Function per each Quality Attribute

On the second level of computation we have the implementation of a

certain form of a generic utility function. All the above quality attributes

could be positively or negatively monotonic (Figure 4.3). For a

positively monotonic metric, as the value of the metric increases the

respective utility also increases (e.g). In the case of a negatively

monotonic metric, the opposite is observed(e.g). For each of the

quality attributes, there is a minimum () and a maximum

value () in the context of the (same) triggering event across

Metrics

ExcecutionStartTime

ExcecutionEndTime

UpTimes

PingTimes

ExecutionTimes

ExecutionFault

SuccessfulExecution

vmCost

Quality

Attributes

Execution

Availability

FailureRate

Successability

Cost

47

all adaptation tasks that can address this event. For each quality attribute,

we use the generic utility function in order to compute its utility value.

The value annotation in the following mathematical formula is equal to

the value of each quality attribute which has been computed in the first

step of computation. The utility function for each quality attribute takes

a certain form which depends on its monotonicity. This leads to the

following generic forms of (linear) utility functions (1,2):

Positive Monotonic

 (1)

Negative Monotonic

 (2)

Quality attributes Monotonic

Execution Negative

Availability Positive

FailureRate Negative

Successability Positive

Cost Negative

 Table 4. 3 : Quality attributes monotonic characteristics

48

4.2.3 Adaptation Task Priority Function

In the final level of computation, we analyze a method for final priority

value of the corresponding adaptation rule. As we have already

mentioned, the computation of an adaptation rule priority depends on

that of the adaptation task priority. As far as the historical records of the

adaptation tasks in the execution model are concerned, we handle the

case of single and composite adaptation tasks in almost the same way.

The only difference is that the cost of the composite task cannot be

directly ascertained, and we need to compute it from its respective sub-

tasks. This difference is taken into account in the computations

performed in order to ascertain the cost quality attribute value in the first

level of computation. We can thus make the following assertion:

 Where i is the index of both the adaptation rule and its mapping

adaptation task.

In order to denote the relative importance of each metric for the end-

user, we rely on the Analytical Hierarchy Process (AHP) [13]. The result

of this process is an assignment of weights to all of these quality

attributes, indicating their relative importance, and whose sum should be

equal to one. We also follow the Single Additive Weighting (SAW)

technique [14] which maps to the utility for each attribute, which is equal

to the weighted sum of the application of the global value derived for

each quality attribute on its utility function. More formally:

Where i is the adaptation task, q is the quality attribute, Q is the set of

the quality attributes, w is the weight of each metric and uf is the utility

function of the quality attribute value of the adaptation task.

4.3 Dynamic Selection Algorithm

All the computation levels are implemented in a dynamic selection adaptation

rule algorithm. In the following subsections we will analyze dynamic selection

algorithm by analyzing the adaptation rule priority formula, which is the core of

the algorithm.

49

4.3.1 Adaptation Rule Priority Formula

If all three levels of computation are concluded, we can choose the

adaptation rule with the highest priority. Hence, if we try to implement the

whole process as an algorithm, the last step is to introduce the formula for

the selection of the most appropriate adaptation rule.

The priority for an adaptation rule is analogous to the priority of the

corresponding adaptation task in the context of the same triggering event

(Section 4.2.3). An adaptation strategy contains the set of the adaptation

rules which have been triggered in the past for the same triggering event or

event pattern (Chapter 3). The role of the following computation formulas

is to select the rule with the highest possible priority from the set of

adaptation rules which exist in the adaptation strategy of a triggering

event.

More formally :

Where s is the selected adaptation rule and r is the number of adaptation

rules in the corresponding adaptation strategy.

4.3.2 Selection Algorithm

In this subsection we introduce the proposed dynamic selection algorithm

for the selection of the adaptation rule with the higher priority value. This

algorithm use the implemented mathematical formula of adaptation rule

priority and its goal is the selection of the most proper adaptation rule in the

context of a triggering event. In order to define the dynamic selection

algorithm we should first analyze the separate parts of the mathematical

formula functions. Thus, we will analyze each of the mathematical formula

levels of computation with a psedo-code algorithm in order to make an

introduction at the definition of the dynamic selection algorithm.

 In the first level of computation we have the calculation of the quality

attributes values. For this reason the function in Figure 4.1 is

introduced :

INPUT : Task Realization Object,Quality_Attributes

OUTPUT : Quality Attributes values for a task realization input

function: get Quality Attributes Values {

 for every quality_attribute in Quality_Attributes{

50

 QA_values[quality_attribute] = quality_attribute.calculateValue(Task Realization Object);

 }

 return QA_values;

}

 Figure 4. 1 : Get Quality Attributes Values function

With this function, we calculate the value for each of the five Quality

Attributes of a specific task. The complexity of the algorithm equals to O

(n) as the iteration equals to the number of quality Attributes that is constant

and the functions of the mathematical formula where called in the iteration

are linear.

 In the second level of computation we have the utility function

calculation. So the function in Figure 4.2 is introduced:

INPUT : QA_values ,Quality_Attributes, Tasks, curr_Task

OUTPUT : Uf_values for each quality attribute for the current task

function: get Quality Attributes Utilities{

 for every task in Tasks{

 for every quality_attribute in Quality_Attributes{

 max_Value[quality_attribute] = get.Max(task.QA_values[quality_attribute]]);

min_Value[quality_attribute] = get.Min(task.QA_values[quality_attribute]]);

}

}

for every quality_attribute in Quality_Attributes{

 curr_task.utility = calculate.Utility(task.QA_values[quality_attribute],

 max_Value[quality_attribute],min_Value[quality_attribute]);

 Uf_values[quality_attribute] = curr_utility;

}

 return Uf_values;

}

 Figure 4. 2 : Get Quality Attributes Utilities function

With this function, we calculate the utilities for each of the 5 Quality

Attributes of a specific task. For this calculation we need first to compute

the minimum and the maximum values for each of the Quality Attributes of

the tasks which have the same adaptation strategy with the corresponding

task. Thus, the complexity of this function is Ο().

 At the third level of computation we first calculate the priority of an

adaptation task and then the priority of the corresponding adaptation

rule. So the corresponding function follows in the Figure 4.3.

INPUT : Adaptation Rule, Weights, Quality_Attributes, Adaptation Strategy

OUTPUT : Adaptation Task Priority

function:getAdaptation Task Priority{

 Quality_AttributesValues = get Quality Attributes Values (Adaptation Rule.Adaptation Task);

 Quality_AttributesUtilities = get Quality Attributes Utilities(Quality_AttributesValues,

51

 Quality_Attributes,Adaptation Strategy.Tasks, Adaptation Rule.Adaptation Task);

 sum =0 ;

 for every quality_attribute in Quality_Attributes{

 sum = sum+Quality_AttributesUtilities[quality_attribute] * Weight(quality_attribute);

 }

 return sum;
}

 Figure 4. 3 : Get Adaptation Task Priority function

With this function, we calculate the priority of an adaptation task. The

complexity of this function is analogous with the complexity of the internal

functions that are called. Thus, the complexity is equal with Ο(). Finally,

we have the dynamic selection rule algorithm (Figure 4.4) which use the

above functions in order to achieve its goal.

INPUT : event (or event pattern),Weights,Quality_Attributes
OUTPUT : most Appropriate Adaptation Rule

function: Adaptation Rule Selection{

 strategy= getAdaptation Strategy(event);

 rules = getAdaptation Rules(strategy);

 Selected_Rule=””;

 max_priority = 0;

 for every rule in rules{

 rule_priority = get Adaptation Task Priority(rule.task,Weights,Quality_Attributes,strategy);

 if (rule_priority>=max_priority){

 max_priority= rule_priority;

 Selected_Rule= rule;

 }

 }

 return Selected_Rule;

}

 Figure 4. 4 : Get Adaptation Rule Priority function

With this function, we find the most appropriate adaptation rule. In this

function we call all the previous functions. Nevertheless, an adaptation rule

is composed by a set of adaptation tasks. Thus, there is another loop and the

complexity is equal to Ο(). In general, complexity also depends on how

records are stored and how we retrieve the data from the records. At this

point, there is certainly room for improvement and research.

4.4 Use Cases with Adaptation Rules Priority

At the following subsections we have an adaptation scenario with an adaptation

rule selection and then two adaptation numerical examples with the set of

computations that have been analyzed in this Chapter.

52

4.4.1 Adaptation Scenario for the Adaptation Rule selection

The dynamic selection adaptation rule algorithm can be applied to all cases

where a triggering event is exported, and the most appropriate adaptation

rule should react. There are many scenarios that can be defined on the basis

of the use case that we have analyzed in Chapter 2. An indicative example

is broken down in the scenario which follows.

We assume that the Monitoring Service has availability problems. To

address this issue, event_A is triggered and through the adaptation strategy

of the corresponding event, two previously mapped different adaptation

rules respond. The first is AdaptationRule_A, which is required to

overcome transience by restarting the Monitoring Service. The second is

AdaptationRule_B, which can be employed to overcome permanent errors

by re-deploying the component on the same VM.

More specifically:

 event_A = down (Monitoring Service)

 Adaptation Rule_A = event_A → Restart (MonitorService)

 Adaptation Rule_B = event_A → Reconfiguration (MonitorService)

 At this point, the proposed dynamic adaptation rule selection algorithm is

executed, and after having been applied to all the levels of computations of

the proposed mathematical formula, arrives at the selection of the

adaptation rule demonstrating the highest priority. If we assume that the

priority of Adaptation Rule_A is 0.57 and that the priority of Adaptation

Rule_B is 0.43, then, the first Adaptation Rule is selected in order to address

event_A. More detailed examples of the proposed mathematical formula of

the adaptation rule priority value, on all the levels of the computations,

follow in the next subsection, as well as the selection of the most

appropriate adaptation rule.

4.4.2 Numerical examples with priority computations of

Adaptation Rules

In the following examples we focus on priority computations. We don't use

just a single specific scenario to apply our calculations, but we define

abstract adaptation rules, events and adaptation tasks, all of which can be

formed in different scenarios and use cases like the one presented in the

previous subsection. In the following computations we assume that the VM

53

cost is 0.01 $ / hour or 0.000027 $ for each single adaptation task, meaning

that the mapped services with the corresponding single adaptation tasks are

hosted on different instances of the same VM offering.

4.4.2.1 Abstract Scenario 1- single adaptation tasks

Here we assume that we have an event named event_A, and three single

adaptation tasks mapped to this event which are SAT1, SAT2 and

SAT3. Thus, the corresponding adaptation rules mapping to this

triggering event are:

Adaptation Rule_1 = event_A → SAT1

Adaptation Rule_2 = event_A → SAT2

Adaptation Rule_3 = event_A → SAT3

1st level of computations

On the first level of computation we compute the quality attribute

values (Section 4.2.1) for each adaptation task separately for each

adaptation rule. Thus, it is necessary to compute the metrics received

from the recorded histories. It is assumed that the respective histories

of the adaptation tasks are as follows:

Adaptation Task SAT1 (Table 4.4)

 This task has been used for the same event three times (Execution

Times = 3).

 By the subtraction of the recorded StartExecutionTime by the

recorded EndExecutionTime time the indicative execution time

records of the task are:

First execution time: 4 sec.

 Second execution time: 5 sec.

 Third execution time: 6 sec.

 The task was pinged three times during its execution (ping times =

3); in two of them the task was up (up Times = 2).

 In one of the three execution times this single adaptation task

resulted in an error. So, the number of faults is equal to one.

(Execution Faults = 1).

 The adaptation task was able to address the event successfully in 2

of the three execution times. (SuccessfulExecution = 2).

 Needed VM Resources : 1 VM.

54

Adaptation Task SAT2 (Table 4.5)

 This task has been used twice for the same triggering event

(Execution Times = 2).

 By the subtraction of the recorded StartExecutionTime by the

recorded EndExecutionTime time the indicative execution time

records of the task are:

 First execution time: 2 sec.

 Second execution time: 1 sec.

 The task was pinged three times during its execution (ping times =

3); and all of them where up. (up Times = 3).

 In all the execution times this single adaptation task has no errors

in its result. So, the number of faults is equal to zero. (Execution

Faults = 0).

 The adaptation task was able to address the event successfully all

the execution times. (SuccessfulExecution = 2)

 Needed VM Resources : 1 VM.

Adaptation Task SAT3 (Table 4.6)

 This task has been used twice for the same triggering event

(Execution Times = 2).

 By the subtraction of the recorded StartExecutionTime by the

recorded EndExecutionTime time the indicative execution time

records of the task are:

 First execution time: 10 sec.

 Second execution time: 15 sec.

 The task was pinged three times during its execution (ping times =

3); and in two of them it was down (upTimes = 1).

 In all the execution times this single adaptation task had 1 error in

its results. So, the number of faults is equal to one. (Execution

Faults = 1).

 The adaptation task was able to address the event successfully 1 of

the 2 execution times (SuccessfulExecution = 1).

 Needed VM Resources : 1 VM.

Quality attributes value computation

 Adaptation Task SAT1

ATTRIBUTE VALUE

Execution 15 / 3 = 5 sec

Availability 2 / 3 = 0.66

55

Failure Rate 1 / 3 = 0.33

Successability 2 / 3 = 0.66

Cost 1 VM * 0.000027 $ * 5sec = 0.000135 $

 Table 4. 4 : Quality Attributes SAT1

 Adaptation Task SAT2

ATTRIBUTE VALUE

Execution 3 / 2 = 1.5 sec

Availability 3 / 3 = 1

Failure Rate 0/ 2 = 0

Successability 2 / 2 = 1

Cost 1 VM * 0.000027 $ * 1,5 sec =

0.0000405 $

 Table 4. 5 : Quality Attributes SAT2

 Adaptation Task SAT3

 ATTRIBUTE VALUE

Execution 25 / 2 = 12.5 sec

Availability 1 / 3 = 0.33

Failure Rate 1/ 2 = 0.5

Successability 1/ 2 = 0.5

56

2nd level of computation

The second level of computation concerns the utility function

calculation for each of the quality attributes. Based on the first level of

computation, we have the following max and min values for every

quality attribute in the context of the same event.

ATTRIBUTE max value min value

Execution 12.5 sec 1.5 sec

Availability 1 0.33

Failure Rate 0.5 0

Successability 1 0.5

Cost 0.0003375 $ 0.0000405 $

Subsequently we apply the utility function (Section 4.2.2) so as to

compute the utility value for each of the quality attributes. An

analytical table of the results of the computations follows.

 ATTRIBUTE SAT1

utility

SAT2

utility

SAT3

utility

Execution

(negative monotonic)

0,68 1 0

Availability

(positively monotonic)

0,49 1 0

Cost 1 VM * 0.000027 $ * 12,5 sec =

0.0003375 $

Table 4. 6 : Quality Attributes SAT3

57

Failure Rate

(negatively monotonic)

0.34 1 0

Successability

 (positively monotonic)

0,32 1 0

Cost

(negatively monotonic)

0.68 1 0

3rd level of computation

Weights can be defined by the end users in order to give priority to the

quality attributes. If a user decides that the availability quality attribute

has a higher priority, the corresponding weight would be higher than

the others. In our use case we assume that the end user decides that all

the quality attributes have the same weight. The number of quality

attributes is 5 so the weight of each one is ⅕ = 0.2. At this point we

apply the mathematical method of the adaptation task priority (Section

4.2.3) for each of the adaptation tasks.

Priority (SAT1) = 1/5*(0.68+0,2+1+0,32+0.68) = 0,5

Priority (SAT2) = 1/5*(1+1+1+1+1) = 1

Priority (SAT3) = 1/5*(0+0+0+0+0) = 0

Selection Algorithm

Hence, the priority of each SATi equals that of its mapped adaptation

rule i. Thus, Adaptation Rule_1 priority is equal to 0.576, Adaptation

Rule_2 priority is equal to 0.8, and Adaptation Rule_3 priority is equal

to 0. Therefore, Adaptation Rule_2 is better than Adaptation Rule_1

which is better than Adaptation Rule_3. So the best choice for

triggering event_A is Adaptation Rule 2.

4.4.2.2 Abstract Scenario 2- single & composite adaptation tasks

We assume that we have three adaptation rules being triggered by the

same event event_B. The first one maps to a composite adaptation task

which is the CAT1 and contains two single adaptation tasks which

are the single adaptation tasks, SAT5 and SAT6. The control flow of

the composite adaptation task is sequential. The second adaptation rule

maps to a single adaptation task which is the SAT4, and the third to a

58

single adaptation task which is the SAT7.Thus, the corresponding

adaptation rules mapping to this triggering event are:

Adaptation Rule_4 = event_B → CAT1(SAT5, SAT6)

Adaptation Rule_5 = event_B → SAT4

Adaptation Rule_6 = event_B → SAT7

1st level of computation

As we have already mentioned in the previous example it is necessary

to compute the quality attributes of the metrics received from the

recorded histories. It is assumed that the respective histories of the

adaptation tasks are as follows:

Adaptation Task CAT1 (Table 4.7)

 This task has been used for the same event twice (Execution

Times = 2).

 By the subtraction of the recorded StartExecutionTime by the

recorded EndExecutionTime time the indicative execution times

records of the task are:

First execution time: 10 sec.

Second execution time: 15 sec.

 The task was pinged three times during its execution (ping times

= 3); in two of them the task was up (up Times = 2).

 At the first execution SAT5 produces an error as result. So, the

number of faults is one (Execution Faults = 1).

 The adaptation task was able to address the event successfully in

all the triggering times (SuccessfulExecution = 2).

 Needed VM Resources : 2 VM

Adaptation Task SAT4 (Table 4.8)

 This task has been used twice by the same triggering event

(Execution Times = 2).

 By the subtraction of the recorded StartExecutionTime by the

recorded EndExecutionTime time the indicative execution times

records of the task are:

First execution time: 7 sec.

Second execution time: 9 sec.

 The task was pinged three times during its execution (ping times

= 3); in two of them the task was up (up Times = 2).

 At the executions produced only one time an error as result. So,

the number of faults is one (Execution Faults = 1).

 The adaptation task was able to address the event successfully in

all the triggering times. (SuccessfulExecution = 2)

 Needed resources 1 VM.

59

Adaptation Task SAT7 (Table 4.9)

 This task has been used three times by the same triggering event.

 By the subtraction of the recorded StartExecutionTime by the

recorded EndExecutionTime time the indicative execution times

records of the task are:

First execution time: 10 sec.

Second execution time: 20 sec.

Third execution time: 30 sec.

 The task was pinged two times during its execution (ping times

= 2); in one of them the task was up (up Times = 1).

 At the last execution produced an error as result. So, the number

of faults is 1.

 The number of faults is one (Execution Faults = 1).

 The adaptation task was able to address the event successfully

only one time (SuccessfulExecution = 1).

 Needed resources 1 VM.

Quality attributes value computation

 Adaptation task CAT1

ATTRIBUTE VALUE

Execution 25 / 2 = 12.5 sec

Availability 2 / 3 = 0.66

Failure Rate 1 / 2 = 0.5

Successability 2 / 2 = 1

Cost 2 VM * 0.000027 $ * 12.5 sec = 0.000675$

 Table 4. 7 : Quality Attributes CAT1

 Adaptation task SAT4

 ATTRIBUTE VALUE

Execution 18 / 2 = 8 sec

60

Availability 2 / 3 = 0.66

Failure Rate 1 / 2 = 0.5

Successability 2 / 2 = 1

Cost 1 VM * 0.000027 $ * 8 sec = 0.000216 $

 Table 4. 8 Quality Attributes SAT4

 Adaptation task SAT7

 ATTRIBUTE VALUE

Execution 60 / 3 = 20 sec

Availability 1 / 2 = 0.5

Failure Rate 1 / 3 = 0.33

Successability 1 / 3 = 0.33

Cost 1 VM * 0.000027 $ * 20 sec = 0.00054 $

 Table 4. 9 : Quality Attributes SAT7

2nd level of computation

The second level of computation concerns the utility function

calculation (Section 4.2.2) for each of the quality attributes. Based on

the first level of computation, we have the following max and min

values for every quality attribute in the context of the same event.

61

 ATTRIBUTE max utility min utility

Execution 20 sec 8 sec

Availability 0.66 0.5

Failure Rate 0.5 0.33

Successability 1 0.33

Cost 0.000675 $ 0.000216 $

Subsequently we apply the utility function (Section 4.2.3) so as to

compute the utility value for each of the quality attributes. An

analytical table of the results of the computations follows.

ATTRIBUTE

CAT1

utility

SAT4

utility

SAT7

utility

Execution

(negative monotonic)

0,63 1 0

Availability

(positive monotonic)

1 1 0

Failure Rate

(negative monotonic)

0 0 1

Successability

(positive monotonic)

1 1 0

Cost

(negative monotonic)

0 1 0,29

3rd level of computation

We assume that the end user decides that all the quality attributes have

the same weight. The number of quality attributes is 5 so the weight of

each one is ⅕ = 0.2. At this point we apply the mathematical method

of the adaptation task priority(section) for each of the adaptation tasks.

62

Priority(CAT1) = ⅕ *(0,63+ 1 + 0 + 1 + 0) = 0,526

Priority(SAT4) = ⅕ *(1+1+0+1+1) = 0,8

Priority(SAT7) = ⅕ *(0+0+1+0+0,29) = 0.258

Selection Algorithm

Like the previous example the Adaptation Rule_4 priority is equal with

0.526 the Adaptation Rule_5 priority is equal with 0.8 and the priority

of Adaptation Rule_6 is equal with 0.258. Thus, the Adaptation Rule_5

is selected as it has the higher priority.

63

Chapter 5

5. Related Work

In this chapter we will analyze the related work in scalability rule modelling (Chapter

5.1); adaptation rule modelling (Chapter 5.2) and dynamic adaptation of services or

applications in order to maintain a certain service/quality level across different

abstraction levels (Chapter 5.3). There will be no analysis over approaches which

record Cloud application execution histories as such approaches do not yet exist.

5.1 Scalability Rule Modeling

The proposed adaptation meta-model involves the original scalability part of

CAMEL’s SRL sub DSL [11]. However, there is a set of approaches that aim to

introduce scaling adaptation models with scalability adaptation rules. Most other

languages correlate only one single scalability metric with one single scaling

action. Some of such languages have been developed in European projects like

[15] and [16].

 In [15] is presented a formal Service Definition Language to support service

deployment and Automated Service Lifecycle management for service

provisioning and dynamic scalability.

 In [16] we have the introduction of a toolkit targeting the Cloud service and

infrastructure providers. The innovations behind the toolkit are aimed at

optimizing the whole service life cycle, including service construction,

deployment, and operation, on a basis of aspects such as trust, risk, eco-

efficiency and cost.

Other languages have been developed for use in commercial products (eg AWS,

amazon web services). We will then mention some of these:

 A Cloud elasticity language has been proposed in [17] in order to express

simple scalability rules. This language includes elements like the scope, the

metric condition and sliding window, the scalability limit as well as scaling

action details (e.g., scale type). Complex metrics, event patterns and

composite scalability rules cannot be expressed by this language.

 The SYBL scalability rule language is a novel language for controlling

elasticity in Cloud applications and have been proposed in [18]. CAMEL is

more expressive than this language in terms of specifying more complex

64

conditions and complete metric definitions. In CAMEL, the adapted objects

have a full reference while SYBL only references the object to be adapted

via an identifier.

 Amazon’s CloudFormation 3 is exploited for modelling horizontal scalability

policies. The conditions in this language are only related to resource metrics

while the scaling actions are only correlated with a pre-configured VM

image, that must be manually mapped to the appropriate application

component. This makes the situation more difficult for the customers due to

the provider lock-in.

Thus, one major characteristic of CAMEL is that it is more expressive than most

scalability rule languages because it can define more features for the modeling

process. CAMEL's instrument is the ability to fully identify an object and give it

a multitude of properties useful for the modeling process. For example, some of

CAMEL's offers are the advanced event with the specification of events patterns.

This is why CAMEL is not as simple as other modeling languages.

Nevertheless, according to the above, one of the main criteria that makes CAMEL

better in modeling of scaling rules is the complexity that modeling objects can

have. With the new expansion that has been made in the context of this work,

scalability actions are replaced with adaptation tasks. In essence, the adaptation

tasks are a superset of scaling actions. At the next section, we mention some

adaptation approaches that deal with the modelling of adaptation rules which go

beyond the scope of scaling.

5.2 Adaptation Rule Modeling

Most Cloud adaptation modelling approaches are limited to the resource level

where resource-related adaptation actions result from computing the difference

between the current state and future state of an application model. Previous

approaches made toward Cloud application adaptation modelling were virtually

non-existent; most focusing only in part on model adaptation rules; the remaining

lack the capability to specify adaptation actions on all possible levels and do not

enable the modelling of either adaptation workflows or more advanced (or

composite) adaptation actions that take the form of adaptation workflows. Based

on this analysis, our proposition is ahead of the current state-of-the-art.

Nevertheless, there are some related adaptation modeling approaches which we

mention in the following.

 In [19] a cross-layer monitoring and adaptation approach of multilayer

systems was proposed. In this approach, a language was specified in order to

3 http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html

65

give to the system experts the ability to specify the system layers and their

elements. For each system layer, there is a runtime model depicting the

current system state. Overall we can see the whole system state as each

runtime model covers part of this state as it includes the state of some of the

system elements and not all. If a violation occurs, a manual or semi-automatic

adaptation takes place and can affect all the model layers.

 In [20] model-based approach for adapting Cloud application topologies was

proposed. Such an approach does not directly model adaptation rules.

Instead, there are two Open Cloud Computing Interface models, the first

implementing the current state topology of the Cloud application and the

second the desired state. The adaptation steps are determined after this

comparison takes place. This case does not directly model adaptation rules.

 In [21] there is an introduction of a conceptual model for adaptation inside a

Cloud environment. This model covers two different types of adaptation. The

first one relates to Cloud application specific adaptations and the second to

Cloud resource-specific adaptations. The main difference with our approach

is that it does not account the dependencies in a cross Cloud environment.

 The adaptation workflow is based on the direct and indirect relations among

the Cloud entities. In [22] and [23] an evolution of the models@runtime

pattern is presented. In the context of that work adaptation plans are specified

as well as a runtime environment to enact them. The adaptation plan

specification relies on a novel DSL which enables designing adaptation plans

as workflows. In contrast to our meta-model, this DSL is not rich enough to

cover the necessary actions in all possible layers while it does not capture all

basic (adaptation) workflow control constructs as in our work.

Our modelling has the potential to be more expressive and could be more

complete in terms of the scenarios that it can cover. Also it is the only one that

supports dynamicity, auto; semi-auto and manual adaptation and used through

cross layer and Multi-Cloud environments.

5.3 Priority Computation

At this section we compare approaches which follow the concept of the adaptation

of a service or application in order to maintain a certain service/quality level. Thus

the actions that should be performed rely on conditions on metrics. These

conditions are the cause of the triggering of the execution of an adaptation action.

In the context of this work the adaptation rules have a particular structure and the

actions that they perform are correlated with tasks which are mapped by services.

So the task scheduling process in Cloud computing environments is associated

with the computation process in order to find the adaptation rule with the higher

priority. In the following we will mention some approaches correlated with the

context of this work.

66

 In [24] is presented the ECMAF, a monitoring and adaptation framework that

follows a rule based approach. There are adaptation strategies consisting of

event patterns that are mapped to adaptation workflows that can be executed

in order to address a problematic situation. Here is used a logic based mining

approach [8] to mine adaptation rules with the use of service execution

history. This is a cross-layer adaptation approach introduced in [25] which

do not cover all the Cloud- based levels.

 In [26] is an approach for the Web Service adaptation and evolution. In this

work there is a formulation of some service parameters and their relationship

with adaptation behavior of a service based system. Thus, a Fuzzy Inference

System (FIS) is adopted for capturing overall QoS and selecting adaptation

strategies using fuzzy rules. The overall QoS is computed by the QoS

parameters and the efficient selection of the adaptation strategies inferred by

overall QoS, importance of QoS and cost of service substitution. This

approach has differences with our work. We compute the overall priority

value for each adaptation rule and not directly for tasks. Also there are

differences in computation formulas.

● In [27] there is an approach for selecting the best possible Cloud service

composition that relies on user requirements. The selection of the best

possible Cloud service composition affects the provisioning phase, as the

more distant from optimality is the selected solution, the more adaptation

actions will be enacted. Through this approach we have the optimal

composition of different types of Cloud services by simultaneously

satisfying various types of user requirements. These types, not concurrently

supported by any Cloud application design tool, include quality, deployment,

security, placement and cost requirements. The AHP [13] is used in order for

the users to participate in the final result by giving the weight to each of the

requirements. The main difference with our work is that we compute the

priority of adaptation rules and not directly the priority of services or services

compositions. Also there are differences at the formulas and the metrics that

take part in.

● In the context of the work in [28] we have a Cloud-based architecture for the

lifecycle management of the whole Cloud service lifecycle. This architecture

also takes into consideration energy-efficiency matters. Special focus is put

on intra-layer self-adaptation through the scheduling of adaptation actions

over different Cloud layers. Thus, this is achieved through SaaS, PaaS and

IaaS intra-layer self-adaptation in isolation. The overall architecture is

capable of adapting to meet the energy goals of applications on a per layer

basis. In [29] we have the use of an adaptive energy-aware algorithm for

maximizing energy efficiency and minimizing the SLA violations rate in

Cloud data centers. Actually this algorithm is responsible for calculating the

combination of VMs that will lead to a consolidated solution. In our work we

specify the quality attributes in order to cover a great variety of metrics for

67

the adaptation rules priority cross the different abstraction levels. This

approach focuses mainly on IaaS and PaaS levels of abstraction.

Because there are no approaches with adaptation rules priority computations,

we focus on several approaches related with the efficient dynamic task

scheduling. As we have mentioned before an adaptation rule is mapped with

a service or application by the adaptation task. The similarity with our

approach relies on the proposed dynamic selection algorithm of the

adaptation rule with the highest priority. All the mathematical formulas

which take place in the proposed algorithm can be compared to other works

that describe formulas to calculate the best selection of an application, a

service or a task

● In [30] we have an introduction to a priority-based queuing model designed

to evaluate the services leased by the Cloud service provider. In the queue,

general service time and response time for arriving requests and pending

requests are stored. The services are considered to be SaaS, PaaS or IaaS and

the computations in the Queuing model use a Markovian arrival rate. The

proposed analytical model schedules the Cloud services in order to result in

maximum profit.

● In [31] is introduced an approach related with the mapping of the Cloud

resources with the corresponding tasks in order to process the customer

requests. The priority of task execution is a critical issue in the task

scheduling process and is computed according to the most important

parameters that can meet user requirements. An important aspect is the

dynamic computation of the priority value which is adopted in this approach.

A Dynamic Priority-Queue (DPQ) approach based on a hybrid multi-criteria

decision making (MCDM) and Differential Evolution (DE) is presented.

Also a hybrid meta-heuristic algorithm based on Particle Swarm

Optimization (PSO) and Simulated Annealing (SA) is introduced. As in the

previous approach here we have some similarities in the computation

formulas of the most proper task for execution with the dynamic selection of

the adaptation rule with the higher priority.

● In [32] an efficient and dynamically scheduling algorithm is proposed. This

algorithm combines a set of features in order to provide an efficient allocation

of tasks. Therefore, analyzing the impact of the different pricing models on

scheduling algorithm will lead to choosing the right pricing model that will

not affect the cost. This paper proposes developing a scheduling algorithm

that combines these features to provide an efficient mapping of tasks and

improve Quality of Service (QoS).

● In [33] we have a Markov decision process model designed to minimize the

task scheduling time and optimize load balancing as a scheduling goal. So,

68

actually we have a Cloud workflow scheduling algorithm which incorporates

a Markov decision process model and attempts to minimize task scheduling

time and optimize the load balancing through the use of reinforcement

learning techniques. The set of scheduling schemes is a Pareto optimal

solution set, which can select the optimal scheduling scheme according to the

user’s preference. The most suitable of the schemes is chosen according to

the users’ preferences.

● In [34] we have the introduction of a new dynamic auto-scaling method that

automatically adjusts thresholds depending on the execution environment

status observed by advanced multi-level monitoring systems. In this way,

multi-level monitoring information that includes both infrastructure and

application-specific metrics helps the service providers accomplish

satisfactory adaptation mechanisms for the various runtime conditions. The

more the dynamicity is enhanced, the greater is the support of the adaptation

improvements on both application performance and resource utilization

aspects.

There are differences in the techniques that are used for the task scheduling which

are identified in computation process of the tasks with the higher priority both in

the computational formulas structure and the corresponding quality metrics.

According to our approach the adaptation rules are responsible for the triggering

of the corresponding adaptation tasks. Thus, by the measurements related to the

adaptation task execution we compute the priority of the adaptation rules.

Adaptation histories play a fundamental role in the adaptation rules priority.

Although our approach is considered as state of the art as far as it concerns the

historical records of tasks executions, we can say that some task scheduling

approaches have structure similarities (eg ECMAF). Another important aspect in

our work is that the users can decide on the weights of each of the quality

attributes needed for the priority computation. In such cases like ours, approaches

like AHP can be valuable.

69

Chapter 6

6. Conclusion and Future Work

6.1 Conclusion

In the context of this work, we have created two extensions of the CAMEL

language mapping to two of its meta-models, the adaptation and the execution. In

the extension for CAMEL’s adaptation meta-model we introduce adaptation

tasks, adaptation rules and strategies. Adaptation rules match an event or event

pattern, representing an occurrence of a critical situation, with adaptation

workflows, which specify the concrete adaptation actions to be performed for

addressing this situation, while adaptation strategies are necessary both for

organizing the set of adaptation rules in the context of the same event or event

pattern that triggers them, and for representing the application’s adaptive

behavior. The extension for CAMEL’s execution meta-model was introduced in

order to capture and record the adaptation history of Multi-Cloud applications.

An adaptation history of each application recorded particular sensor

measurements which are exploited for the computation of the quality attributes

that participate in the priority formula to be calculated and come from previous

executions of the adaptation rules selected. Thus, the captured information was

used in order to derive important knowledge useful for the future use of adaptation

actions. This provided for the selection of the most appropriate adaptation rule

according to the current problematic situation expressed in the form of an event

(pattern). Thus, this selection relies on the computation of the adaptation rule

priority through the use of a mathematical formula. Finally, we introduce a

dynamic selection algorithm needed for the selection of the adaptation rule with

the higher priority.

The goal of this thesis is to optimize the adaptation of the applications across

multiple Clouds and different abstraction levels. All the introduced elements of

the CAMEL's extensions help in order to achieve this goal. The workflows are

specified in language-agnostic manner. Language-agnostic specification is a real

benefit if it can be assorted with the transformation logic into the language of the

workflow engine to be exploited for the enactment of the workflows specified.

Apart from advanced adaptation rules, we have the coverage of multiple levels,

the grouping of adaptation rules and the language- & implementation-agnostic

specification of workflows that concerns the fact that we do not restrict the

70

adaptation tasks to their realizations leaving it free for the adaptation system to

choose the best possible realization at runtime.

As a result of the above analysis we conclude that with the new extensions of the

CAMEL modeling language we optimize the management of the applications in

Multi-Cloud environments. The language became more expressive and supports

both of the cross layer adaptation to all the levels of the Cloud (IaaS, PaaS, SaaS,

WaaS), and the dynamic selection of the adaptation rule with the highest priority.

6.2 Future Work

The main drawback of the current work is that it is not validated under normal

conditions. Also there is a room for improvement of the modelling of the

participated classes and the optimization of the dynamic selection algorithm for

adaptation rules. This will supply directions which attempt to resolve these

drawbacks:

 The proposed extensions could be validated by different use cases. The use

cases which have been analyzed are generic in order to demonstrate the usage

of the content of this work. The adaptation rule strategies and histories could

be analyzed by more complex use cases under normal conditions and for a

set of connections between Cloud Providers and Clients. This approach can

describe workflows of adaptation actions that correspond to real SLO

violations.

● The main worry of the dynamic selection algorithm is if it works properly as

expected and if it takes the right decisions. The adaptation rule priority

selection formula could thus be validated with real-time running services,

and evaluated through resultant performance and suitability of the chosen

adaptation rule.

● In addition, a more specialized approach to the performance metrics and the

mathematical formula used for the computation of priorities could be

made. More measurements must be carried out so that the result can be more

accurate. This would result in the optimization of the proposed algorithm of

the dynamic selection of adaptation rules.

● A great margin of improvement exists in the class of Component itself, so

that more specialized component items can be created e.g the Container

component. This will increase the expressivity of the language so that it can

represent a wide variety of features.

71

Bibliography

[1] Mell, P. & Grance, T. (2011). The NIST definition of cloud computing.

[2] Puthanl, D., Sahooy, B.P.S., Mishraz, S. & Swainz, S. (2015) Cloud Computing

 Features, Issues and Challenges:A Big Picture. In IEEE International

 Conference on Computational Intelligence and Networks, pp. 7-18. Doi:

 10.1109/CINE.2015.31

 [3] Zhang, Q., Cheng, L. & Boutaba, R. (2010). Cloud computing: state-of-the-art and

 research challenges. In University of Waterloo, Waterloo, Canada, pp. 7-18.

 Doi: 10.1007/s13174-010-0007-6

 [4] Zeginis, C. & Plexousakis, D. (2010). Monitoring the QoS of Web Services using

 SLAs. In Institute of Computer Science, Heraklion, Crete, Greece.

 [5] Zeginis, C. (2009). Monitoring the QoS of Web services using SLAs – Computing

 metrics for composed services. Master Thesis, Greece, Heraklion, March 2009.

[6] Kritikos, K., Zeginis, C., Griesinger, F., Seybold, D. & Domaschka, J. (2017). A

 Cross-Layer BPaaS Adaptation Framework. In FiCloud, Prague, Czech

 Republic. In IEEE Computer Society, pp. 241–248. Doi:

 10.1109/FiCloud.2017.12

[7] Zeginis, C., Kritikos, K., Garefalakis, P., Konsolaki, K., Magoutis, K. &

 Plexousakis, D. (2013). Towards Cross-Layer Monitoring of Multi-Cloud

 Service-Based Applications. In: Lau KK., Lamersdorf W., Pimentel E. (eds)

 Service-Oriented and Cloud Computing. ESOCC 2013. Lecture Notes in

 Computer Science, vol 8135. Springer, Berlin, Heidelberg. Doi: 10.1007/978-

 3-642-40651-5_1610.

[8] Zeginis C., Kritikos K. & Plexousakis D. (2014). Event Pattern Discovery for

 Cross-Layer Adaptation of Multi-cloud Applications. In: Villari M.,

 Zimmermann W., Lau KK. (eds) Service-Oriented and Cloud Computing.

 ESOCC 2014. Lecture Notes in Computer Science, vol 8745. Springer, Berlin,

 Heidelberg.

[9] Rossini, A. (2015). Cloud Application Modelling and Execution Language

http://faculty.winthrop.edu/domanm/csci411/Handouts/NIST.pdf
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7051632
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7051632

72

 (CAMEL) and the PaaSage Workflow. Conference: ESOCC 2015: 4th

European Conference on Service-Oriented and Cloud Computing, At

Taormina, Italy, Volume: CCIS, volume 567, pp. 437-439.

[10] Bsila, A., Ferry, N., Horn, G., Kirkham T., Malawski, M., Parlavantzas, N., Pérez,

 C., Rouzaud-Cornabas, J., Rossini, A., Romero, D., Rossini, A., Solberg, A. &

 Song, H. (2014). PaaSage: Model Based Cloud Platform Upperware.

[11] Kritikos, K., Domaschka, J. & Rossini, A. (2014). SRL: A Scalability Rule

Language for Multi-cloud Environments. In Conference: IEEE 6th

International Conference on Cloud Computing Technology and Science. Doi:

10.1109/CloudCom.2014.170

[12] Kritikos, K., Magoutis, K., & Plexousakis, D. (2016). Towards Knowledge-Based

Assisted IaaS Selection. In IEEE International Conference on Cloud

Computing Technology and Science (CloudCom). Doi:

10.1109/CloudCom.2016.0073

[13] Saaty, T. (1980). Analytic Hierarchy Process. McGraw-Hill, New York.

[14] Hwang, C. & Yoon, K. (1981). Multiple Criteria Decision Making. Lect. Notes

Econ. Math., 1981.

[15] Gal´an, F., Vaquero, L. M., Clayman, S., Toffetti, G., & Henriksson, D. (2009).

Deliverable D4.1, D4.2 and D4.3 – Scientific Report. Reservoir project

deliverable.

[16] Rumpl, A., Rasheed, H., Waeldrich, O., & Ziegler, W. (2010). Service Manifest:

Scientific Report. Optimis project deliverable.

[17] Moore, L. R., Bean, K., & Ellahi, T. (2013). A Coordinated Reactive and Predictive

Approach to Cloud. Elasticity. In CLOUD COMPUTING. IARIA..

 [18] Copil, G., Moldovan, D., Truong, H. L., & Dustdar, S. (2013). SYBL: An

Extensible Language for Controlling Elasticity in Cloud Applications. In

CCGrid, pp. 112–119. IEEE Computer Society. Doi:

10.1109/CCGrid.2013.42

[19] Song, H., Raj, A., Hajebi, S., Clarke, A., & Clarke,S. (2013). Model-based cross-

layer monitoring and adaptation of multilayer systems. Science China

Information Sciences, volume 56(8), pp. 1–15.

https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7031670
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7031670
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7031670

73

[20] Erbel, J. M., Korte, F., & Grabowski, J. (2018). Comparison and Runtime

Adaptation of Cloud Application Topologies based on OCCI. In CLOSER.

[21] Marquezan, C. C., Wessling, F., Metzger, A., Pohl, K.,Woods, C., & Wallbom, K.

(2014). Towards exploiting the full adaptation potential of cloud applications.

In PESOS, Proceedings of the 6th International Workshop on Principles of

Engineering Service-Oriented and Cloud Systems, pp. 48-57. Doi:

10.1145/2593793.2593799

[22] Lushpenko, M., Ferry, N., Song, H., Chauvel, F., & Solberg, A. (2015). Using

adaptation plans to control the behavior of models@runtime. CEUR

Workshop Proceedings, volume 1474, pp. 11–20.

[23] Blair, G., Bencomo, N., & France, R. B. (2009). Models@run.time. IEEE

Computer Society Press Los Alamitos, CA, USA, volume 42(10), pp 22–27.

Doi: 10.1109/MC.2009.326

[24] Zeginis, C., Konsolaki, K., Kritikos, K. & Plexousakis, D. (2011). ECMAF:

an event-based cross-layer service monitoring and adaptation framework. In

ICSOC Workshops, ser. Lecture Notes in Computer Science, vol. 7221,

Paphos, Cyprus: Springer, pp. 147–161. Doi: 10.1007/978-3-642-31875-7_15

[25] Zeginis, C. (2014). Cross - layer monitoring and adaptation of multi - cloud service

- based applications. Dissertation, Greece, Heraklion, October 2014.

[26] Pernici, B. & Siadat, H. (2011). Selection of Service Adaptation Strategies Based

on Fuzzy Logic. In IEEE World Congress on Services, Washington, DC, USA.

Doi: 10.1109/SERVICES.2011.33.

[27] Kritikos, K. & Plexousakis, D. (2015). Multi-cloud Application Design through

Cloud Service Composition. In Conference: IEEE 8th International

Conference on Cloud Computing, 2015. Doi: 10.1109/CLOUD.2015.96

[28] Djemame, K, Kavanagh, R , Armstrong, D et al. (6 more authors). (2017). Energy

Efficiency Support through Intra-Layer Cloud Stack Adaptation. In: Lecture

Notes in Computer Science. 13th International Conference on Economics of

Grids, Clouds, Systems and Services (GECON 2016), 20-22 Sep 2016,

Athens, Greece. Springer Verlag , pp. 129–143. Doi: 10.1007/978-3-319-

61920-0_10

[29] Djemame, K., Bosch, R., Kavanagh, R., Alvarez, P., Ejarque, J., Guitart, J. & Blasi,

L. (2017). Paas- IaaS Inter Layer Adaptation in Energy aware Cloud

Environment. In: IEEE Transactions on Sustainable Computing, Vol: 2, pp.

127-139. Doi: 10.1109/TSUSC.2017.2719159

https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6011825
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8113842
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7194474
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7194474
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7194474

74

[30] Jaiganesh, M., Ramadoss, B., Vincent, Antony, Kumar, A. & Mercy, S. (2015).

Performance Evaluation of Cloud Services with Profit Optimization.

Department of Information Technology, PSNA College of Engg. and Tech,

Dindigul, Tamilnadu, India. Doi: 10.1016/j.procs.2015.06.003

[31] Ben, Alla, H., Ben, Alla, S. & Ezzati, A. (2017). A Priority Based Task Scheduling

in Cloud Computing Using a Hybrid MCDM Model. In: Sabir E., García

Armada A., Ghogho M., Debbah M. (eds) Ubiquitous Networking. UNet 2017.

Lecture Notes in Computer Science, vol 10542. Springer, Cham. Doi:

10.1007/978-3-319-68179-5_21

[32] Almezeini, N. & Harez, A. An Enhanced Workflow Scheduling Algorithm in

Cloud Computing. In CLOSER 2016 - 6th International Conference on Cloud

Computing and Services Science, King Saud University, Riyadh, Saudi

Arabia.

[33] Jiahao W., Zhiping P., Delong C., Qirui L., Jieguang H. (2018). A Multi-object

Optimization Cloud Workflow Scheduling Algorithm Based on

Reinforcement Learning. In: Huang DS., Jo KH., Zhang XL. (eds) Intelligent

Computing Theories and Application. ICIC 2018. Lecture Notes in Computer

Science, vol 10955. Springer, Cham. Doi: 10.1007/978-3-319-95933-7_64

[34] Taherizadeh, S. & Stankovski, V. (2018). Dynamic Multi-level Auto-scaling

Rules for Containerized Applications. The Computer Journal, Volume 62,

Issue 2, pp. 174–197. Doi: 10.1093/comjnl/bxy043

	Contents
	List of Tables
	List of Figures
	1. Introduction
	1.1 Cloud Computing
	1.1.1 Service and Deployment Models

	1.2 Multi-Cloud Applications Management Challenges
	1.3 Cross-layer adaptation framework in Multi- Cloud
	1.4 Thesis Outline

	2. Traffic Management Use Case
	2.1 Application Specification
	2.2 Workflow Structure
	2.3 Service Requirements
	2.4 Application Components
	2.5 Application Instances
	2.6 Running Example Application
	2.7 SLO requirements

	3. Camel Modelling Language Extensions
	3.1 CAMEL’s deployment meta model
	3.2 CAMEL’s adaptation meta-model
	3.2.1 Adaptation Rule
	3.2.2 Adaptation Strategy
	3.2.3 Adaptation Workflow
	3.2.3.1 Task
	3.2.3.2 Application Task
	3.2.3.3 Adaptation Task
	3.2.3.3.1 Single Adaptation Tasks
	3.2.3.3.2 Composite Adaptation Task

	3.3 CAMEL’s execution meta model
	3.3.1 Adaptation Histories Records

	3.4 Adaptation Scenarios Example
	3.4.1 Adaptation Scenario 1 - Migration
	3.4.2 Adaptation Scenario 2 - Component Replacement
	3.4.3 Adaptation Scenario 3 - Cross Cutting
	3.4.4 Adaptation Scenario 4 - IaaS & Horizontal Scaling
	3.4.5 Adaptation Scenario 5 - IaaS & Vertical Scaling
	3.4.6 Adaptation Scenario 6 - Workflow

	4. Adaptation Rules Priority and Dynamic Selection Algorithm
	4.1 Mathematical Formula and Adaptation Tasks Correlation
	4.2 Formula Quality Attributes and Utilities
	4.2.1 Quality Attributes Analysis
	4.2.1.1 Execution Time
	4.2.1.2 Availability
	4.2.1.3 Failure Rate
	4.2.1.4 Successability
	4.2.1.5 Cost

	4.2.2Utility Function per each Quality Attribute
	4.2.3 Adaptation Task Priority Function

	4.3 Dynamic Selection Algorithm
	4.3.1 Adaptation Rule Priority Formula
	4.3.2 Selection Algorithm

	4.4 Use Cases with Adaptation Rules Priority
	4.4.1 Adaptation Scenario for the Adaptation Rule selection
	4.4.2 Numerical examples with priority computations of Adaptation Rules
	4.4.2.1 Abstract Scenario 1- single adaptation tasks
	4.4.2.2 Abstract Scenario 2- single & composite adaptation tasks

	5. Related Work
	5.1 Scalability Rule Modeling
	5.2 Adaptation Rule Modeling
	5.3 Priority Computation

	6. Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work

	Bibliography

