University of Crete
Computer Science Department

Modelling and Dynamic Selection of Adaptation Rules
for Multi-Cloud Applications

Eleni Politaki
Master’s Thesis

Heraklion, April 2019

This work was partially supported by Institute of Computer Science, Foundation of Research and Technology-Hellas.

University of Crete

Computer Science Department

Modelling and Dynamic Selection of Adaptation Rules for Multi-Cloud
Applications

Thesis submitted by Eleni Politaki

in partial fulfillment of the requirements for the Masters’ of Science degree in
Computer Science

Author:

Eleni Politaki, Computer Science Department

Committee approvals:

Dimitris Plexousakis, Thesis Supervisor

Evangelos Markatos, Committee Member

Kostas Magoutis, Committee Member

Departmental approval:

Antonios Argyros
Professor, Director of Graduate Studies

Heraklion, April 2019

Modelling and Dynamic Selection of Adaptation Rules for Multi-
Cloud Applications

Eleni Politaki
Master’s Thesis

Computer Science Department, University of Crete

Abstract

Nowadays, Cloud computing adoption has increased geometrically and many
users prefer this type of technology to deploy and manage their applications. Today,
there is a high number of Cloud providers, offering a great variety of Cloud services to
meet users’ demands. Furthermore, some enterprises prefer to deploy their applications
in multiple Clouds in order to benefit from this plethora of offerings. Thus, one
important challenge for the Multi-Cloud applications related to the dynamicity and
uncertainty that even a single Cloud environment exhibits. As such the increasing
complexity makes difficult the delivery of a suitable service level to the customers by
the providers. Towards this direction, this thesis introduces two new extensions of the
CAMEL modelling language, enabling applications to be adapted across multiple
Clouds and different abstraction levels. In addition, an algorithm is proposed for the
dynamic selection of the most appropriate adaptation rule for each problematic
situation, based on its priority, according to the adaptation history of the application.

In the first part of this thesis, we focus on the proposed extensions of CAMEL,
based on an existing cross-level and Multi-Cloud application adaptation architecture.
Adaptation actions, rules and strategies are central adaptation-related notions that
played a fundamental role in the extensions performed in the CAMEL meta-model.
Adaptation rules match an event or event pattern, representing an occurrence of a
critical situation, with adaptation workflows, which specify the concrete adaptation
actions to be performed for addressing this situation, while adaptation strategies are
necessary both for organizing the set of adaptation rules in the context of the same event
or event pattern that triggers them, and for representing the application’s adaptive
behavior.

In the second part of this thesis, we elaborate on the dynamic selection algorithm
of the most appropriate adaptation rule, within an adaptation strategy, which is based
on its priority value for addressing a certain problematic situation represented by an
event or event pattern. This priority value is calculated on the basis of a specific
mathematical formula. In the adaptation history of each application recorded particular
sensor measurements which are exploited for the computation of the quality attributes

that participate in the priority formula to be calculated and come from previous
executions of the adaptation rules selected.

Thus, the main contributions of this thesis aim to the better management of the
applications that are executed in Multi-Cloud environments by the use of cross-layer
adaptation workflows, and the dynamic selection of the most appropriate adaptation
rule.

Supervisor: Dimitris Plexousakis

Professor

Movtehomoinon kot Avvopikn Emioyn Kavovev Ipocappoyng Yo
E@appoyég Ioirhamh®dv Yroroyrotik@v Ne@@v

ELlévn TToAtdiknm
Mertantuyiokn Epyocia

Tunua Emomune Yroioyiotov, [oavemomuio Kprng

Iepidnyn

2115 pépeg pag n ypnomn mePPAAAOVTOV DTOAOYIGTIKOV VEQOLG YiveTon OAO Kot
ovyvotepn. O apBudS TV ¥PNOTOV OV TPOTIHOHV 0LTO TO €160¢ TNG TEYVOLOYING Yin
VO EYKOTOOTHCOVY Kot va dtayepifovtol 10 AOYIGHKO Tovg avéavovtol. Ziuepo
VILAPYOLY TOAAOL TAPOYOL VLIOAOYICTIKOD VEQPOVG OV TPOGPEPOLY U0 TEPAOTLN
oAl vnpecidv. Emumiéov, Kamolwolt ypNnoTteg TPOTIWOVY TN YPNON TOAALOTADY
TAPOY OV VITOALOYIGTIKOV VEPOLS TG MOTE VAL EKUETOAAEDOVTOL GTO LEYAAVTEPO dVVATO
Babuod to mAeovekthpata mov Tovg TposPépovtal. ['a avtd To AdYOo, Hio OTUOVTIKN
TPOKANON efvor 1 KATAAANAN avTLETOTION TG ofefatdTnTog Kot TG SVVALIKNIG GVONG
aVTOV TOV £I00VG VTOAOYICTIKAOV TEPParidvTav. ['a avTdV TOV AdYO dMovpyndnkav
dvo emektacels TG YAwsoag poviedomoinong CAMEL éto1 ®ote va vmootpilel v
TPOGOPLOYY| TOV EPAPLOYDV GE TEPPAALOVTO TOALUTADY VTOAOYIGTIKMOV VEQPOV KOl
o€ O1popa apalpeTikd enineda. EmmnpochHeta, otn cvykekpyuévn epyacio mpoteiveton
évag aAyopluog yur T OLVOUIKY EMAOYT] KOTAAANA®V KAVOVOV TPOGOPLOYNG,
Bac1OEVOL GTO 1IGTOPIKO EVEPYELDMV TPOCUPUOYNG TNG EPOPLOYTNG.

210 TPp®TO UEPOG NG epYociog €0TIALOVIE OTIC TPOTEWVOUEVEG EMEKTAGELS
g CAMEL, pe Bdon pwo vrdpyovca opyitekToVIKY OVIYLETOTIGNS TPOPANLOTIKOV
KOTOGTACEWDV, TOV £0TIALEL 6€ OAa T eMIMESD L0 EPOPUOYNG OV AVATTOGGETUL GE
TOALOTTAG VToAoyloTiKd VEEN. Ot emektdoelg opilovv TPOYWPNUEVOLS KOVOVEG
QVTILETOTIONG KOODG €miong Kol TNV KOTOYPOPt] TOV 1GTOPIKOV EKTEAECNC TOLG.
Kvplapyec €vvoleg o avTéC TIC EMEKTAGELS €lvOl Ol EVEPYEIEC, Ol KOVOVEG KOl Ol
OTPOUTNYIKES TPOCAPUOYNS. Ot KOvOVEG TPOGAPHOYNG avTioTolyilovy 1O Yeyovog 1 Ta
YEYOVOTOL TOL TEPLYPAPOLY TIC TPOPANUOTIKEG KOTOOTAGES TOL Ypeldlovron
OVTILETOTION, UE TIG POEC EPYACING TOV TTEPLYPAPOLV TIC EVEPYELEC TPOGOPLOYNS. Ot
OTPATNYIKES TPOGAPLOYNG OPYAVAVOLV TOVS AVTIGTOLYOVS KAVOVES e BAOT TO YEYOVOS
N 10 YeYOvOTO OV TOVLG EVEPYOTOLOVV, KAOMG emMioNg avamaploTodV TN YEVIKOTEP
KOVOTITO TPOGAPUOYNG TNG CLYKEKPUYLEVIC EPAPLOYNC.

Y10 degbtepo Uépog g epyociog opiletor M OLVOUIKY €TAOYY] TOL
KATOAANAOTEPOL KAVOVA AVTILETMOMIONG e BAon TV TpoTepatdTNTd TOL, 6T TAAIGLO
L0 GTPOTNYIKNG OVIWLETOMIONG Kotaotdoemv. H mpotepardtnta vrmoroyiletanr pe

OLYKEKPIUEVO LaONUOTIKO TOTTO, 0 OTOI0C YPNOUOTOIEL OEOOUEVA OO TPONYOVLEVES
TVPOSOTNGELS TOV KAVOVOV.

Enopévmg, ta Bacikd onueion cuveEIGPOPAS TNG CLYKEKPILEVNG epyaciog eivat
dvo: (1) n kaAvtepn dwyeipton S KAVOTNTOG TPOCAUPHOYNG TOV EPOPUOYDV TOV
avanTOGCOVTOL GE TOAAATAG VTOAOYIOTIKA VEQT HECH KATAAANA®MV EMEKTAGEWDV TOL
npoteivovtal oty yAwoca poviehomoinong CAMEL ko (i) évag mpotetvopevog
aAyOPIOOG Y10 TN SUVOUIKT ETIAOYT TOV KOTAAANAOL KOVOVO TPOGAPUOYNG e Pdom
TNV TPOTEPOLOTNTO, TOV.

Enontne KaOnynmig: Anuntpng [Tieovodxng
Kabnmmg

Evyoprotieg

Y10 onpeio owtd Bo MBeha va gvyaploTHo® TOV €ndTTN KOONYNTH HOL K.
Anpntpn MieEovodkn yio TV KaBodynomn tov KTl TV SEPKELN TMV PETOTTUYLOKMV
OTOVOMV LoV KOl TNV GUUPOAT TOV Y1 TV OAOKANP®GN TNG EPYACING AVTNG.

®a NBela emiong va evyaploTom Toug Kabnyntés K. Evdyysho Mapkdto Kot K.
Kovotavtivo Maykodtn mov d€ymkay pe mpobupio va mipovy HEPOG GTNV TPLUEAN
€EETOOTIKN EMTPOTN Y10 TNV OELOAOYNON TNG EPYACTOC.

[ToAAég evyapiotieg Ba nBera va ekppdom otov k. Kvuprako Kpntikd kot otov
K. XpuodoTopo Zeykivn Yio Tov xpOvo oL LoV aPEPMOaY, TNV TOAVTIUN Bonfeia Tovg
Kot TV koo yNon Toug 6 OAN TNV SEPKELN EKTOVNONG TNG EPYACIAS.

Téhog Ba Bk va gvyaploTo® OAOVLE TOVG KOVTIVOUS LoV avOpdTOVS TOL
elvar mavta dimla pov Ko pe vmootnpilovv. MeydAo gvyaplotd GTov OIA0 LoV,
[Movayidm kabng emiong kKot omv puntépa pov, EvayyeAia, kot oty adeper pov,
loavva Mopia, yio v vroot)pién kot v aydmn tovs. Idwitepa Oa Mfela va
EVYOPLOTNC® TOV TTaTéPA Lov, Evdyyero, mov @poviice va €xm v duvatdtnto va
OAOKANPAOC® TG GTOVOES LLOV.

GTOVG YOVEIG LoV

Contents

CONTBNTS. ... [
LISE OF TADIES. ... Vv
TS o) 1o U] TSR vii
L INErOAUCTION ... 1
1.1 Cloud COMPULINGcviiriiieieiece ettt st sbe et be e e sreste e e nnas 1
1.1.1 Service and Deployment MOdEISccocoveieiiiiiiiiis e 1

1.2 Multi-Cloud Applications Management Challenges..........cccocvvvevevinvineveseeinene. 3
1.3 Cross-layer adaptation framework in Multi- Cloudccccoveveiiiiiicnviice, 4
1.4 THESIS OULIING ... 5

2. Traffic Management USE CaSEccovieririninisieiee e 7
2.1 Application SPeCIfiCatiON...........ccciiiiiiiiice e 7
2.2 WOTKFIOW STTUCTUIE. ..ottt 8
2.3 SErVICe REQUITEIMENTSceciiiiieieiie ettt re st be et b e e 9
2.4 Application COMPONENTS.oiiriiieieieisi sttt 10
2.5 APPlICAtioN INSLANCES......cviiiiiiieiecie ettt bbb 12
2.6 Running Example Application..........cccooveiiiiiiinieeeee s 13
2.7 SLO FEQUITEBMENTS ..eveiiiecticte ettt s re ettt st sbeste e besre e e resneesras 16

3. Camel Modelling Language EXtENSIONSccccovveveeiieiienecie e 19
3.1 CAMEL’s deployment meta modelccooeiiiiiiiiiiiiceee 20
3.2 CAMEL’s adaptation meta-modelcccooiiiiiniiiniiniicscseceas 21
3.2.1 Adaptation RUIE...........cooiiiiiieee s 22
3.2.2 Adaptation STrategyccoeeerieieisisirese e 22
3.2.3 Adaptation WOrKFIOWccooiiiiieiiiiee e 23

T Tt I 1] SRS 23

3.2.3.2 ApPlcation TasKcceeiiieiee e 24

3.2.3.3 Adaptation TaSKcccceeiiiiiieiiii e 24
3.2.3.3.1 Single Adaptation Tasks..........cccccererierinenie e 25
3.2.3.3.2 Composite Adaptation TasKcccceveviiiiniininineneeeeee 33

3.3 CAMEL’s execution meta modelcoovvvvviiiiiiiiiiee 34

3.3.1 Adaptation Histories RECOIdS..........ccvvveieieciiiiie e 35
3.4 Adaptation Scenarios EXamplecccoviiiiiiieieieecese e 36
3.4.1 Adaptation Scenario 1 - Migrationccccccviiiievine e 36
3.4.2 Adaptation Scenario 2 - Component Replacement.............cccccoevevinenn. 37
3.4.3 Adaptation Scenario 3 - Cross CUttiNG.........ccccevverveiiiiniinineseseeeeee 37
3.4.4 Adaptation Scenario 4 - laaS & Horizontal Scaling.............cccccovvvevennene 38
3.4.5 Adaptation Scenario 5 - laaS & Vertical Scalingcc.ccoceveviiiinenn. 38
3.4.6 Adaptation Scenario 6 - WOrkflowcccccoeviiiiiiiiiniie e 39
4. Adaptation Rules Priority and Dynamic Selection Algorithm................. 41
4.1 Mathematical Formula and Adaptation Tasks Correlationc.cccccoeevinnnne 41
4.2 Formula Quality Attributes and ULIlIties..........c.cccvvveviiiiiciccecc e 41
4.2.1 Quality Attributes ANalysis ..o 42
4.2.1.1 EXECULION THME w.viviiiiiiiiieii et 43
4.2.1.2 AVAIIEADITITY ..o 43

4.2. 1.3 FAIUIE RALE ..ot 44
4.2.1.4 SUCCESSADITITYoviiiciiicie e 44
B.2.0.5 €08t ittt b e 45
4.2.2 Utility Function per each Quality Attribute..........c.ccccooeviiiiiiiiiieen, 46
4.2.3 Adaptation Task Priority FUNCHION..........cccooeiiiiiiiiineceee 48
4.3 Dynamic Selection Algorithm ..o 48
4.3.1 Adaptation Rule Priority FOrmula...........ccccooeviiiiiiiiiiecce 49
4.3.2 Selection AlgOrithm ..o 49
4.4 Use Cases with Adaptation RUIES PriOrityccceveviiiniiniininiieneseeee 51
4.4.1 Adaptation Scenario for the Adaptation Rule selection...............c......... 52
4.4.2 Numerical examples with priority computations of Adaptation Rules 52
4.4.2.1 Abstract Scenario 1- single adaptation tasks............c.ccoceverireiiinnnn. 53
4.4.2.2 Abstract Scenario 2- single & composite adaptation tasks 57

5. RElALEA WOTK ... 63
5.1 Scalability Rule MOAeliNgcoeiviiiiiiiiiiree e 63
5.2 Adaptation Rule MOdeling..........cooeiiiioiiie e 64
5.3 Priority COMPULATION.coiriiiiriiieieeesse e 65
6. Conclusion and FUtUre WOrk............cccoiiiiiiiiiieeec e 69
6.1 CONCIUSTON ...t 69

ii

8.2 FULUIE WVOTK ..ottt ettt ettt e e e e e s e ettt e e e e e ree et eeraeeees

Bibliography

iii

v

List of Tables

Table 2.
Table 2.
Table 2.
Table 2.
Table 2.

Table 4.
Table 4.
Table 4.
Table 4.
Table 4.
Table 4.
Table 4.
Table 4.
Table 4.

a h~ w N+

O o 01T A~ W N -

: Tasks and stakeholders correlationsccceeccveeecieeiiieeccieeciee e 8
: Indicative requirements of the SEervicesccccveeuieeeeeeecieecceeeecee e 10
: SLO violations of MoNitoring SEIrviCecceevueeeeueeecieeeeireenreeeseeeesiveeenns 16
: SLO violations of AsseSSmMent SEIVICe.......eeevveerrreerreeerireeeieeerreeeseveeenns 16
: SLO violations of Device Configuration Serviceccceeveeervueeesvueernnneen. 17
2 QUAlity ATTIDULES c..vveeeieeeieee e 46
1 =15 (LS PPRPPRE 46
: Quality attributes monotonic characteristics........cceevveervuveeriueeirireeenineennne 47
1 Quality AtTIDULES SATT .eeveuvieieiieiiieiriteete et seeesae e e sveeeseeees 55
: Quality AHTIDULES SAT2eeiiiiieieiieeeieeceece et sre e sae e 55
1 Quality AtTIDULES SATS ...eeecceieeecieeeceeeeeeeceeeecire e aee e eareesveeesereeessaeeenns 56
1 Quality AHTIDULES CATT .uveiceiieeiieecieeceeeeee e e e e e e e ve e e 59
1 Quality AHTIDULES SAT G ucecveeeeieeeeieeeeete ettt re e ve e e eeeaaee s 59
1 Quality AHTIDULES SAT7 .uuveieiieeeeee ettt e e vr e e sae e e sveeeeaee e 60

vi

List of Figures

Figure 1.
Figure 1.
Figure 1.

Figure 2.
Figure 2.
Figure 2.
Figure 2.
Figure 2.
Figure 2.
Figure 2.
Figure 2.

Figure 3.
Figure 3.
Figure 3.
Figure 3.
Figure 3.
Figure 3.
Figure 3.
Figure 3.
Figure 3.
Figure 3.
Figure 3.

Figure 4.
Figure 4.
Figure 4.
Figure 4.

1: Cloud Service Models according NISTccoovceeervieiniiieeniieenieeenieeeseeens 2
IR) VN1 0 b (o4 11 0 TS 4
3 : Extended Cloud Service MOdElS.......ccooeurerirrieeiiiiciiiereeeeeeeeeeennrereeeeeeeenns 6
1: Tasks and Services COrrelationscoouevvveveeeeeeiieeinrinreeereeeeenesinrereeeeeeeeens 9
2 : Application COMPONENTSccccuerrviieiriiierriieerrieeesteeesreeesreessaeessaeeessseeens 11
3 1 Clouds INfTaAStIUCLUTE «...uvvevveeeeiiieeiitieeeee ettt eeceeeararereeeeeeessnnnns 12
4 : Class Layer repreSentationccccceeeecveeecieeeeineeeseeessneessseeessseeesseesnnnes 13
5 : Instance Layer Representation.........ccceeieecuveeeieeiieeeseiieeeseceeessseeeeesnne 13
6 :Emergence case operations 0f SEIVICESecevueeeeueeeieeeeceeessneessreeesneens 14
7 : Normal cases operations of SEIVICES.......cccvveeevueeecieeeceeeecieeecreeecreeeenens 15
8 : General Cases Planeeeeeuiiieieeiiieececeeee ettt e e e e e e 15
1: Deployment Model Component Additionsccccceeevveervieenieeencieeenneen. 21
2 : Adaptation Rule & Adaptation Strategycceeveeeveerveerseniieenseeneenneen. 23
31 TasSK ANAlYSiS..ccccuiiieiieiiiieieiieriee ettt 24
4 : Single Adaptation Taskscccceeeviieeiiieeeiieeccieeccee e 25
5 : Component Configuration Graphical Representationcccceuveeneee. 26
6 : TaaS Graphical Representation..........cccceeecuveeeieciieeeeeciieeeeeeeeeeecieeee e 27
7 : WfaaS Tasks Representationccccceeeeueeeeieeeceeeseeeeeceeeeceeeeesaeeeenneens 29
8 : Cross Cutting Graphical Representation..........ccccceevueeveeniieeieensenneennnen. 33
9 : Composite Adaptation TasksS.......cccceervveiriieiriieiniieenieenee e 34
10 : Task Realization Class in execution meta-model..............ccceeveeennneennne. 36
11 : Application Execution Plan..........ccocceevieriiiiiiniiiniineneeeeeceeeee 369
1: Get Quality Attributes Values function.......cc.cccceeeveenvieiniieiniiennieennneen. 50
2 : Get Quality Attributes Utilities functionccecceeevvveeerieenniiennvieennnenn. 50
3 : Get Adaptation Task Priority.......cccecvieeieciiieiiiiiieeecciee e 51
4 : Get Adaptation Rule Priority......cccceevieeeeeiiieiiiciieeccciiee e eceieee e 51

file:///C:/Users/ΕΛΕΝΗ/Desktop/Final/politaki_Final.docx%23_Toc5549595
file:///C:/Users/ΕΛΕΝΗ/Desktop/Final/politaki_Final.docx%23_Toc5549596
file:///C:/Users/ΕΛΕΝΗ/Desktop/Final/politaki_Final.docx%23_Toc5549597
file:///C:/Users/ΕΛΕΝΗ/Desktop/Final/politaki_Final.docx%23_Toc5549599
file:///C:/Users/ΕΛΕΝΗ/Desktop/Final/politaki_Final.docx%23_Toc5549605
file:///C:/Users/ΕΛΕΝΗ/Desktop/Final/politaki_Final.docx%23_Toc5549606
file:///C:/Users/ΕΛΕΝΗ/Desktop/Final/politaki_Final.docx%23_Toc5544453
file:///C:/Users/ΕΛΕΝΗ/Desktop/Final/politaki_Final.docx%23_Toc5544454
file:///C:/Users/ΕΛΕΝΗ/Desktop/Final/politaki_Final.docx%23_Toc5544455
file:///C:/Users/ΕΛΕΝΗ/Desktop/Final/politaki_Final.docx%23_Toc5544456
file:///C:/Users/ΕΛΕΝΗ/Desktop/Final/politaki_Final.docx%23_Toc5544458
file:///C:/Users/ΕΛΕΝΗ/Desktop/Final/politaki_Final.docx%23_Toc5544461

viii

ix

10

Chapter 1

1. Introduction

In this chapter we analyze some basic concepts required in the context of this work.
Firstly, Section 1.1 introduces some basic knowledge related to Cloud Computing.
Section 1.2 elaborates on Multi-Cloud application management, while Section 1.3
provides details for a previous proposed adaptation framework, Finally, the Section 1.4
provides an outline of this thesis.

1.1 Cloud Computing

One of the most well known developing trends in recent years is Cloud
computing. Cloud computing is a model for enabling ubiquitous, convenient, on-
demand network access to a shared pool of configurable computing resources
(e.g., networks, servers, storage, applications, and services) that can be rapidly
provisioned and released with minimal management effort or service provider
interaction [1]. The use of Cloud computing implies a set of features and a number
of issues and control worries [2].

Cloud computing chiefly offers lower implementation and maintenance costs by
reducing user need for purchasing and supporting as much hardware. Another
benefit of Cloud computing is flexibility because it implies both the high-
performance of resources and increased reliability and availability of
applications. There are some concerns mainly related to the security of data and
the management of operations and services in order to support a self-service
functionality in the Cloud. Nowadays, although there has been much
technological progress in Cloud computing development, many research issues
remain unsolved [3].

1.1.1 Service and Deployment Models

By following SOA (Service Oriented Architecture) every offering in the
Cloud is characterized as a service. According to NIST (National Institute
of Standards and Technology) [1], Cloud computing has three standard
service and four deployment models (Figure 2.1).

The first service model is the Software as a Service (SaaS). This service
model relates to the offering of existing software services like software
applications and databases. SaaS is convenient, easy to access, and
accessible from anywhere. It is scalable and secure for the users. The
second service model is Platform as a Service (PaaS). This service model
offers a highly developed environment, suitable for developers. They pay
for what they need and they can develop their services quickly because they
have the ability to use other pre-installed services. The last service model
is Infrastructure as a Service (laaS), which relates to the supply of
computing resources, installed in data centers like servers, networking,
storage etc, as a service. It can be useful for the companies who need to
save the costs of buying and maintaining their own hardware. With the
above service models, different Cloud environments could be created. A
Cloud environment is an aggregate of the above service models. Different
Cloud environments can be more fruitful for different cases, based on
specific needs.

/3 K 2\

laas

Figure 1.1 : Cloud Service Models according NIST

As far as NIST is concerned there are also four deployment models. Every
Cloud has some specific characteristics concerning the way in which
services can be utilized. The first one is the public Cloud, which is owned
by the Cloud provider and multiple customers. It is suitable for minimizing
the operational and maintenance costs. The Cloud provider is responsible
for the management and the maintenance of the Cloud. The disadvantage is
that companies are not able to have their own security and management. A
private Cloud is provided only for one company and can be owned by either
the company, a third party vendor or a combination of the two. This
deployment model is suitable for organizations which have their own
infrastructure with highly sensitive information. A community Cloud is
used by a specific community of users and can be owned either by a third
party provider or by the set of organizations which use it. This type of Cloud

2

is suitable for organizations with common needs. A Hybrid Cloud consists
of two or more Cloud environments; the most common of which are either
public or private. If there is sensitive data, the most suitable Cloud
deployment model is the private. However, a company could use a private
Cloud in this case and a public Cloud for all the other needs of the company.
This type of Cloud is becoming very popular and the reason is that an
organization can use a Hybrid Cloud in order to have control over the
security of their private Cloud, in conjunction with the benefits of a public
Cloud. Hybrid Clouds are thus the most economical of cloud deployment
models; their only disadvantage being that it is difficult to manage their
resources.

Apart from these four categories of Cloud Deployment Model which follow
the NIST definition, there are other more specific deployment models such
as the cross Cloud and Multi -Cloud. In the former we have a deployment
across different Clouds, so that services from these Clouds can be utilized
within the same application deployment, while in the latter, that is the
Multi-Cloud Deployment Model, the use of services from multiple Clouds
is maintained and can be performed at a single time.

1.2 Multi-Cloud Applications Management Challenges

One of the most significant parts from the customer side is the ability to choose
the most suitable service, independent of the Cloud provider. The advantage that
this choice gives, is the needed flexibility and the right combination of the
different Cloud providers that could be the key towards greater efficiency and
reduced costs. However this is a way for avoiding vendor lock-in issues. With
Multi -Clouds customers can organize the data exported by the Providers and by
processing and analyzing, create Cloud Computing environments containing
manageable Clouds.

Due to the benefits of Multi-Clouds there is a move towards adopting their
use. One of the most interesting challenges for the Multi-Cloud applications
related to the dynamicity and uncertainty that even a Single Cloud environment
exhibits. As such, the increasing complexity makes difficult the delivery of a
suitable service level to the customers by the providers. The efficient recognition
of user needs and an automated prediction can be made as to the optimal provision
of services most suited to these needs.

Many challenges like this could be overcome by the use of adaptation workflows
with actions on the running services. These actions are needed for the proper
organization of all the required tasks to be done and to lead to the optimum result
for the last users. In the case of Single Cloud the management of these actions is

simpler than in the case of Multi-Cloud. Nevertheless, the Multi-Cloud
environment is a superset of Single-Cloud environments. Adaptation workflows
in Multi-Clouds have great importance and the reason is that it is difficult to
synchronize the set of adaptation actions of the nested environments. Therefore,
the same adaptation workflows could be implemented in Single-Cloud and Multi-
Clouds but in the last case there is an increasing complexity. The goal of the
adaptation actions is to predict the most appropriate task for the customer taking
into account the historical records of the services used in the past and the current
needs of the users.

So, in order to respond to this challenge, the Cloud deployment model should
collect the metrics of all running applications, and through the analysis of these
metrics should react to cases where adaptations to these applications are
necessary. To facilitate this analysis, the execution histories should be recorded.
SLAs also play an instrumental role in this monitoring and adaptation process.
An SLA sets the expectations between the parties. The SLA has a certain service
life cycle [4] and contains analysis of SLO conditions over the QoS metrics
(Figure 2.2). The monitoring of the QoS play a fundamental role in the adaptation
process [5]. The set of SLOs comprises a certain service level.

SLA
SI.O
QOS

Figure 1. 2 : SLA structure

1.3 Cross-layer adaptation framework in Multi- Cloud

For the cross-layer adaptation of a service based application within the Multi-
Cloud architecture a cross layer adaptation framework was proposed based on
earlier work. As cross-layer we distinguish between 5 levels: 1aaS, PaaS, SaaS,
WfaaS (workflow as a service) and BPaaS (business process as a service) (Figure
1. 3) . The two last levels are an extension of the basic levels that NIST has
already suggested. The WfaaS is represented with workflow tasks and at this layer
the control flow of the corresponding adaptation tasks is organized. The BPaaS is
introduced in the BPaaS Adaptation Framework [6] that has been made in order
to organize the business processes (BPs) related with the provisioning of the
needed adaptation actions on different abstraction levels of the Cloud. This

4

framework can support the dynamic generation of adaptation workflows as well
as the recording of the adaptation history. The BPaaS is a cross-layer adaptation
framework which can be used in multi - layer Clouds. This framework correlates
with the CAMEL meta-modelling language. In this work, two new extensions of
the chief language are performed in order to specify all the needed operations and
to suggest the most appropriate adaptation plan for each (critical) event. In the
proposed extensions, the adaptation rules are responsible for the mapping
between events and adaptation plans/ workflows. An adaptation plan is an
adaptation workflow comprising the set of adaptation actions [7]. Event or event
patterns [8] trigger an adaptation plan, i.e the execution of its adaptation
workflow. Finally, the adaptation strategies organize the adaptation rules in the
context of the same triggering event or event patterns. Finally, the system by itself
selects the adaptation rule with the highest priority. This made by a dynamic
selection algorithm of adaptation rules which use the records of the adaptation
histories in order to compute the priority.

1.4 Thesis Outline

In the first part of this thesis we present a cross-layer workflow adaptation
approach in a Multi-Cloud application system. To organize the corresponding
adaptation actions we introduce adaptation rules activated by triggering events.
One event can be mapped to multiple adaptation rules, each associated with a
different adaptation workflow. We organized the adaptation rules with the same
triggering event in adaptation strategies. Through a mathematical formula we
give a priority value for each adaptation rule in the context of the triggering event.
Towards the practical context of the thesis, we extended two parts of the ecore
model of the language CAMEL, the metric and the adaptation/scalability; and we
subsequently upgraded a third part - deployment one encompasses an introduction
to the basic components needed in order to introduce the subsequent thesis
components. In the second chapter, a use case is presented whose aim is to
provide an application of this work in order to validate it. In the third chapter the
analysis of the CAMEL extensions are presented. The fourth chapter contains the
analysis of the mathematical formula for the priority of the adaptation rules in the
context of the triggering event. In the fifth chapter we analyse the related work,
and in the final chapter we refer to the conclusions and to future work in order to
provide future work directions.

SaasS

2 N2,

PaaS

| o | | —

laasS

Figure 1. 3 : Extended Cloud Service Models

Chapter 2

2. Traffic Management Use Case

In this Chapter we introduce a use case paradigm in order to demonstrate the main thesis
contributions. Firstly, we report the application specifications (Section 2.1) and then
analyze the workflow structure (Section 2.2), the application requirements (Section 2.3)
and its component parts (Section 2.4). Then there is the definition of all instances for
our example (Section 2.5); an exemplary example of the application's operation
(Section 2.6), and finally we have an example with indicative tables with SLO
violations responsible for the triggering of adaptation rules.

2.1 Application Specification

Our example describes a Cloud application related to the management of various
traffic-related events in the city of Heraklion. This application maps to a
workflow which attempts to regulate the traffic under both normal and emergency
situations in the city of Heraklion. This application follows a service-oriented
architecture while it involves three main stakeholders:

Traffic Manager: controls an area in the Heraklion city and adjusts the traffic
according to the evaluation of traffic and environmental conditions.

Rescue Forces: rescue forces, i.e., the traffic police and the fire brigade for the
immediate response to critical situations.

Medical Forces: they are responsible for carrying out manual activities like First-
aid. In fact, they follow a certain plan which is derived by the application.

We assume that the aforementioned stakeholders are represented by services
which are mapped with Application tasks. The Traffic Manager is represented as
a more generic and complex workflow of tasks as its workflow is consisted of
more than one tasks. The services called by Traffic Manager tasks are the
Monitoring, Assessment and Device Configuration Service. In the respected
workflow the Traffic Manager has sequential control flow. The mapping between
the services and the workflow tasks follows (Table 2.1):

Service Task

Rescue Forces Trf

Medical Forces Tmf

Traffic Manager (Tm, Ta, Td)

Table 2. 1: Tasks and stakeholders correlations

Each of these services needs to take particular actions during the application
operation. The Traffic Manager workflow is comprised of three main tasks
(Tm,Ta,Td) which are realized by the following three services, respectively:

e Monitoring Service (called from Task Tm)

This service aims at collecting traffic information for the area of Heraklion. The
data collected is forwarded to the Assessment Service.

e Assessment Service (called from Task Ta)

This service first structures and aggregates the data appropriately and then
performs the respective analysis over them in order to finally produce the
appropriate traffic management plan. This plan is forwarded to the Device
Configuration Service.

e Device Configuration Service (called from Task Td)

This service can automatically adjust traffic lights based on the plan as well as
demand the execution of certain activities by corresponding stakeholders that
were mentioned above.

2.2 Workflow Structure

In general, services have input and output parameters while they can also interact
with other services. The result of running a task depends on the service that
implements the respective functionality. The main input parameter of the Traffic
Management Application is the related area where traffic should be regulated. We
have a new instance of the traffic management workflow; and thus of the
respective application for each different area in Heraklion. The main input
parameter of the workflow is passed to the first service that needs to be executed,
i.e., the Monitoring Service. The output of the Monitoring Service is monitoring
data which are forwarded to the Assessment Service. The Assessment Service
receives this data and produces as output the traffic management plan to be
enacted by the Device Configuration Service. The latter obtains this plan and
produces as output the corresponding actions to be performed by the respective

8

stakeholders. The following figure (Figure 2.1) depicts the workflow of tasks and
how it is mapped to respective services.

City Area Acti !ns

o m > Ta > Td ——>

Start End

City Area Forward Data Get Forwarded Data Execution Plan Get Execution Plan Actions
A4 Y A4
o] ol
Monitor Device
on

>
Service i Service 1 Cor

Figure 2. 1 : Tasks and Services Correlations

As this application runs, a problem may arise such as the destruction of a sensor.
Then an Adaptation Workflow must act to ensure that the application works

properly.

2.3 Service Requirements

The respective requirements need to be fulfilled by the corresponding services
that realize mapping tasks. The Assessment Service has high requirements on
both computational power and service availability for the following reasons: it is
responsible for filtering data according to the most valuable information, focuses
on analyzing and creating a response plan for a critical situation. The Assessment
service requires a certain storage capacity as it needs to store and maintain a great
set of data. The Monitoring Service also needs high storage capacity to cover the
aggregation of the sensors. Finally, the Monitoring and Device Configuration
Services must be stored in close geographic areas with respect to the sensor
infrastructure as these two services interact with the sensors (e.g information -
gathering sensors) and actuator (e.g sensors to inform drivers). An indicative table
with the requirements of the three services of the Traffic Management workflow
is supplied below (Table 2.2):

Involved Tasks Requirement
Ta High computational power
Ta High availability
Ta, Tm High storage capacity
Tmand Td Closeness with sensor
infrastructure

Table 2. 2 : Indicative requirements of the services

As far as the hosting of the components of the corresponding services is
concerned, we assume that the Monitoring and Device Configuration Services are
deployed on a private/municipal Cloud located at the city of Heraklion. The
Monitoring and Device Configuration Services are hosted on a “medium” public
VM (4GB RAM, 4-core CPU and 40GB disk). The Assessment Service is
deployed on a "high" VM (8GB RAM, 8-core CPU and 80GB disk), through a
PaaS provider, due to its higher computational and storage requirements.

2.4 Application Components

The following figure (Figure 2.2) depicts the overall system, including the Cloud
layers (laaS, PaaS, SaaS, WfaaS) involving the respective components situated
on these layers and their dependencies. At the WfaaS layer, we can see the set of
the application workflow tasks and at the SaaS layer we have the respective
services. The PaaS layer involves the PaaS services of our example. Finally, at
the laaS layer we have the required infrastructure for the deployment of the
application. A PaaS provider could have its own infrastructure but could also rely
on the infrastructure of another provider. In our use case we have a PaaS provider
with its own infrastructure. This is more clear at the figure (Figure 2.3).

10

City Area Action
: Assess Device Config
— » MontorTask ——p S5 — L% 4

WrfaaS

Start End
te]
Monitor . Device Config
. — — -
Service Asscastevics Service
SLA H
w
3]
a3 =
=] Bt
MSDB ASDB

@00
4—

CB
PaasS

PaaS

)

Paa$ Cloud SLA
PaasS VM

laaS

VM 1 VM 2

o

private / municipal Cloud SLA
Figure 2. 2 : Application Components

Each infrastructure provides the required software for the deployed services, as
well as a servlet container. A servlet container is a featured service that acts as a
server to service components and can be offered by a PaaS provider. For the
Traffic Management Application, the CB provider offers the servlet container
service as an add-on. Only the CB provider has access to the Assessment service
VM, so the adaptation system cannot manage it. Each VM uses an Apache
Tomcat Application service for hosting the applications. The Drools Rule Engine
is required by the Assessment Service and by the Device Configuration Service.
This Rule Engine is used by the Assessment Service to decide on the level of
tasks that need to be performed in the current situation, while the Device
Configuration Service has to execute the plan given by the Assessment Service.

11

This can be a high-level plan that needs to be concretized by the Drools engine.
Apache Tomcat Application and Drools Engine are nested components in the
services. The ASDB database is used by Assessment Service for storing the
monitored events and extracting aggregated values. Also the database MSDB is
used by the Monitoring Service for the aggregation of the data. All the above are
parts of the running applications.

private / municipal
cloud

cB cloud

[\

laas ! \

VM1| VM 2 |

Figure 2. 3 : Clouds Infrastructure

2.5 Application Instances

In the Traffic Management use case, we could have multiple instances from the
same type workflow. Thus, we assume that we have two different instances of a
workflow which have different labels on their respective elements (Figure 2.4).
The first concerns the zone_ A, which includes the center of Heraklion, and the
second the zone_B, includes its suburbs.

12

Class Layer

— Monitor ——p Assessment —————p Device Config 4>.

Start End

Figure 2. 4 : Class Layer representation

For an application we have instances of tasks and workflows. In fact, if we
consider workflow engines, usually we talk about different deployments of the
same workflow. For each deployment, one or more instances of the workflow
can be generated and executed (Figure 2.5).

- HeraklionA

— Monitor ———» Assessment ——p Device Config 4>.

Start End

Instance Layer

I Monitor ————» Assessment ————p Device Config 4>.

Start End

Instance Layer - HeraklionB

Figure 2 5 : Instance Layer Representation

Based on the logic of multi instances running in parallel, an example of a running
application will be detailed below.

2.6 Running Example Application

In order to demonstrate the main functionalities of the running example
application, in this section we elaborate more on two different cases (instances);
(i) a normal case and (ii) an emergency case. We will then describe in detail the
flow of operations in these two cases.

13

1st instance - Emergency Case

In the case of an accident, the Monitoring Service immediately informs the
Assessment Service about the accident severity; the latter then assesses this
incident and comes up with the actions to be performed. Then, the Assessment
Service informs the Device Configuration Service about the adaptation plan with
the actions to be performed and their order (Figure 2.6) depicts such an
emergency case.

Accident Case
Check for
@ accidgent » x i

City Area

Monitar Service

Yes

Y

Assess
Insident

Assessment Service

Y

Perfarm ‘
Action Plan

Actions

Device Configuration Senvice

Figure 2. 6 :Emergence case operations of services

2nd instance - Normal Case

In a normal case, the Monitoring Service collects the environmental data, such as
temperature, humidity and others; checks calendar data related to some special
days within the year, such as National Holidays, and also measures the traffic on
the roads of the respective area of the corresponding instance taking into
consideration the traffic flow density (i.e., the number of cars passing from a
specific point in a 24-hour base). These functionalities are provided by separate
components of the application. This data is collected by specialized sensors that
have been installed at the managed area. The Monitoring Service passes the data
to the Assessment Service, which, in turn, processes and analyzes this big amount
of data. The outcome of this analysis is a traffic management plan. After that, the
Device Configuration Service is responsible for performing the traffic device
reconfiguration in order to decongest the area’s traffic in the places where traffic
congestion has been identified. We can see at the next figure (Figure 2.7) a part

14

of a normal case execution of two separate operations of the traffic manager
application components.

Emaromental Case Measurement Case
Enviromental B Measure
B Operations > x M Traffic » x

Clty Area City Area

Woniter Service
Monitor Service

Yes

Y

Average Daily
Traffic
Computations

Environmetal
Computations.

LN
Assessment Sarvice
Assessment Service

v

Perform
Action Plan

Actions

Perform
Aclion Plan

Actions

Devica Configuration Servica
Device Configuration Service

Figure 2. 7 : Normal cases operations of services

In the figure (Figure 2.8) we have a representation of the Traffic Manager
Application Workflow. We discern the Monitoring, Assessment and Device
Configuration Services. Each of these services exposes a set of methods which
could map to the tasks of a workflow. So, each service does not correspond to just
a single method. In the respective workflows we have multiple tasks. Two or
more tasks could be realized through a service. Thus in the workflow of the figure
we performs the orchestration of some operations which runs separately and in
parallel for every instance of the application. The operations based on the
referred operations of the current use case.

Iraffic Manager Application Workflow

Monitor Service Assessment Service Device Configuration Service

Figure 2. 8 : General Cases Plan

15

2.7 SLO requirements

As far as it concerns the Traffic Manager Application, we supply below an
indicative SLO table (Table 2.3, Table 2.4, Table 2.5) for each of the utilized
services according to the emergency and normal cases of execution of our use
case which is detailed in Section 2.6. The SLOs are mapped within SLAS to
penalties in case that they are violated. The assessment of SLOs relies on the
evaluation of metric conditions. The SLO violations trigger events which can
cause the execution of adaptation rules for every separate instance of the traffic
management application. In the following example the metrics conditions based
on the execution time and the availability of the application.

Monitoring Service

Execution time | The service execution time should not exceed 11 seconds
SLO in the emergency case, and 20 seconds in the normal case.

Availability SLO | The availability of the Monitoring Service should be
greater than 99,99% in emergency case and 99% in
normal case.

Table 2. 3 : SLO violations of Monitoring Service

Assessment Service

Execution time SLO | The assessment of the emergency case should be
completed within 20 seconds and within 10 seconds in
normal cases.

Availability SLO The availability of the Assessment Service should be
greater than 99,99% in critical cases and 99% in normal
cases.

Table 2. 4 : SLO violations of Assessment Service

16

Device Configuration Service

Execution time SLO

The handling of the emergency cases should be completed
within 30 minutes, as it requires manual activities and
within 10 seconds in normal cases.

Availability SLO

The availability of the Device Configuration service should
be greater than 99,999% in critical cases and 99,9% in
normal cases.

Table 2. 5 : SLO violations of Device Configuration Service

17

18

Chapter 3

3. Camel Modelling Language Extensions

A family of DSLs called CAMEL[9], Cloud Application Modelling and Execution
Language’, was initially developed in the PaaSage? project [10] with the main goal of
covering all necessary aspects related to the deployment and adaptive provisioning of
Multi-Cloud applications. This family includes, among others, the Cloud Modelling
Language (CLOUDML) for modelling the deployment topology of an application and
the Scalability Rules Language (SRL) for specifying event patterns, scaling actions and
scalability rules [11]. The Eclipse Modelling Framework (EMF) has been used in order
to integrate all these DSLs into a coherent whole. In particular, an Ecore model (i.e., a
meta-model) has been created to cover the abstract syntax of CAMEL. So, EMF
provides the right tools for the generation of language abstract syntax via the use of
meta-models. EMF also allows the generation of a Java class hierarchy representation
of each meta-model based on its definition. In the context of this work we have extended
the CAMEL Ecore meta-model in order to incorporate new classes and we have also
updated CAMEL’s deployment meta-model in order to incorporate all the changes
which had to be made so that we could assign new classes to the remaining meta-models
and to ensure that the deployment meta-models were compatible with these changes.
We performed two extensions to CAMEL’s sub DSL’s. The first was in the scalability
meta-model, which was renamed adaptation meta-model where we covered the
adaptation aspect which maps to the modelling of adaptation tasks, rules and strategies.
This extension was created for the modelling of advanced adaptation rules which
included various kinds of adaptation tasks at different levels of abstraction. The second
extension was in the execution meta-model where we modelled the adaptation histories.
With the record of the historical information we can check the application’s
performance. Also it could be used to reason over the best deployments of an
application’s or its components [12]. This extension played a basic role in the dynamic
selection algorithm of the most appropriate adaptation rule (Chapter 4). In the
following parts, apart from the deployment meta-model update (Section 3.1), we will
also indicate the extensions to the CAMEL scalability (Section 3.2) and execution meta-
model (Section 3.3). Finally, we follow a number of use cases (Section 3.4) for the
validation of this work.

1 http://camel-dsl.org/
2 https://paasage.ercim.eu/

19

http://camel-dsl.org/
https://paasage.ercim.eu/

3.1 CAMEL’s deployment meta model

An adaptation workflow is comprised of adaptation tasks that are executed in a
certain order. The deployment meta-model covers the topology of an application
in terms of its components. Thus, adaptation tasks map to application
components. The main reason for updating the deployment meta-model was to
cover all possible types of components which could be utilized in the definition
of adaptation tasks. The classes which represent the internal and the external
components were deleted and new subclasses inserted. The internal components
were components owned by the system, and the external components were those
owned by external systems. In the same way, internal and external service
components were also deleted. These deletions were performed because through
this update all such components were covered by the new subclasses of the
Component class which were designed to implement more specific components
over all the service model layers of the Cloud. So, in the Component class
we introduced the subclass of a Microservice, i.e., of the smallest software unit
that can work autonomously as an autonomous application software component
and provide a certain functionality to other software components or applications.
The PaaS can include the environment for a component plus the add-ons which
could take the form of Microservices. Here the role of Microservices is to
represent the add ons offered by the PaaS which are autonomous, pre-installed
software components needed for the execution of the software components hosted
in a PaaS environment. Finally, each PaaS relates to the requirements imposed
over the respective environment in which the corresponding application
component will be hosted. Another subclass of Component class is the VM class.
This concept plays the role of a placeholder indicating the place where a certain
component will be positioned. It represents an laaS service in which an
application component could be hosted. This placeholder also involves the set of
resource requirements that need to be satisfied by this place / hosting component.
Finally, there is the SaaS class, for the representation of an external component
which provides a certain functionality over the internet. A SaaS component
includes a unique registry ID and an aggregate of tasks which map to an
application workflow. We can see the graphical representation of the Component
and its subclasses below (Figure 3.1).

20

‘ '_f | Component ‘

&% providedHosts : ProvidedHost

&2 providedCommunications : ProvidedCommunication
&= configurations : Configuration

AN
o

[SRV | | H Saas |

l = vmRequirementSet : VMRequirementSet

= registrylD : EString
&% workflowTaskIDs : EString

= MicroService

[0..*] PaaSmicroServices

[0..*] SaaSmicroServices

| = PaaS

= paasRequirementSet : PaaSRequirementSet

Figure 3. 1 : Deployment Model Component Additions

To support the type-instance pattern and thus cater for the coverage of the
models@runtime approach, CAMEL also covers the instance layer. The
definition of respective instances of types (e.g., VMInstance having as type the
VM class/concept) then covers the contents of this instance layer. So for each new
type class defined in deployment meta-model, an instance class was also
modelled.

3.2 CAMEL’s adaptation meta-model

CAMEL's scalability package has been developed to enable the modelling of
scalability rules for the support of the adaptive provisioning of applications in
order to retain a certain level of service. For this purpose, the Scalability Rules
Language (SRL) has been developed. It enables the specification of noteworthy
event patterns, determining the current problematic situation, that can lead to the
triggering of scalability actions for enabling to change the application's
configuration at runtime to address such a problematic situation. Apart from the
scaling actions we need to define advanced adaptation rules and tasks which cover
all the levels of abstraction. For the above reason we performed the first extension
to CAMEL’s scalability meta-model. Through the new extension, the scalability
was renamed adaptation meta-model. In this we introduce the Task class which
has sub-classes the Application Task and the Adaptation Task. The latter is sub
classed into two kinds of adaptation tasks: Single and Composite. Then, for the
Single Adaptation Task we have specialization of adaptation actions at different
levels of abstraction. Also, we have modelled the Adaptation Rule class which
represents the mapping of a trigger event with an Adaptation Task. Lastly, we

21

introduce Adaptation Strategies which can be considered as sets of Adaptation
Rules which have in common the same event that triggers them. We let the system
exploit the priorities of Adaptation Rules of an Adaptation Strategy in order to
select the best possible one. The Adaptation Strategies needed in order to organize
the adaptation rules in the context of the same triggering event. Bellow we will
detail all the above parts of the extended adaptation meta- model.

3.2.1 Adaptation Rule

An Adaptation Rule maps an event to an adaptation task that needs to be
executed in order to address the critical situation represented by that event.
An Adaptation Rule has a distinct name; an event that triggers it; the
adaptation task that should be enacted upon the event triggering, and a float
variable that defines its priority. At this point, we should mention that this
priority is regulated by the adaptation system based on all the alternative
adaptation rules that can be enacted based on the same event (pattern) and
the history of execution of all these rules. As such, an adaptation rule that
is deemed to be able to better handle the current event (pattern) obtains the
highest priority from those included in the same Adaptation Strategy.

3.2.2 Adaptation Strategy

A set of Adaptation Rules that are triggered by a certain Event or Event
Pattern constitute an Adaptation Strategy. This means that the critical
situation can be alternatively handled by the adaptation rules within the
corresponding adaptation strategy. An Adaptation Strategy has its own
unique id and contains a set of Adaptation Rules. The different Adaptation
Rules with the same triggering event have different priority value at
runtime. The value of priority is calculated by a mathematical formula and
the analysis of this formula follows in Chapter 4. We can see the graphical
representation of the Adaptation Rule and Adaptation Strategy in the
following figure (Figure 3.2).

22

: [1.1] task =
& AdaptationRule H AdaptationTask

' name : EString

5 priority : EFloat = 0.0
& event: Event

52 entity : Entity
| 52 scaleRequirements : ScaleRequirement |

[1..*] adaptationRules

£ AdaptationStrategy

O adaptationStrategylD : EString

Figure 3. 2 : Adaptation Rule & Adaptation Strategy

3.2.3 Adaptation Workflow

An Adaptation Workflow controlling all the appropriate executing tasks
which act in a critical situation. Below is the definition of basic classes that
focus in adaptation-related tasks (either single or composite) and take part
in the adaptation meta model package.

3.2.3.1 Task

A Task can be considered as a certain functionality which can be
executed in the context of an application or an adaptation workflow. A
Task has a unique id, in case it needs to be uniquely identified within the
workflow it belongs to and a task name. As we can see in the figure
below (Figure 3.3), a Task can be either an ApplicationTask or an
AdaptationTask.

23

[] Task]

5 id : EString
5’ name : EString

7
| =1 ApplicationTask | ‘ ELI AdaptationTask
| 5’ definition : EString I ‘
AN [1..*] tasks
'?Lj SingleAdaptationTask | | =] CompositeAdaptationTask |

Figure 3. 3 : Task analysis

& getSimpleTasks() : ApplicationTask
@ containsTask(task AdaptationTask) : EBoolean

3.2.3.2 Application Task

In the case of application tasks we have a set of tasks which are mapped
with software components and construct a workflow of an application.
These software components can take the form of an application or a
service (eg SaaS or Microservice). In order to model an application task,
we describe the key elements that characterize it. For this purpose, an
additional variable in the application task models the specification of the
task (e.g., in terms of a standard language like BPMN).

3.2.3.3 Adaptation Task

An Adaptation Task acts at any level of abstraction. In this case, we have
mapping between tasks with abstraction type of components (tasks,
workflows, software components) that need to be enacted in a critical
situation. There are two types of adaptation tasks. Firstly, the Single and,
secondly, the Composite adaptation task, which actually maps to the
definition of an adaptation workflow. A Single adaptation task describes
an action on a set of one or more software components or on a certain

24

application task or the whole application workflow. So we have a set of
Single Adaptation Tasks that are shown schematically in the following
figure (Figure 3.4) and these will be analyzed in the following.

Single Adaptation tasks are related to tasks that can be applied to a
certain level covered in the Cloud (WfaaS, SaaS, PaaS, laaS). The
extensive description of the subclasses of Single Adaptation Task that
have been defined is given below.

(e (A) (& =)
(J (J T event: Dvent

2] 1.4 tasks

[1.1] task

SingleAdaptationTask ‘ | [CompositeAdaptationTask | | [SwitchAdaprationTask |

[L2

£ laashctionType | ‘

&, quisimplaTusks(; AgplicationTusk T formulaParameter : MelricFornulaParameter
@ containsTaskitask AdaptationTask) : EBoclean

= STARTUP |
= RESIARI ‘
= SHUTDOWN |

‘ M.1vm % laasAction] ComponentConfiguration “ ConfgureType

‘ T type : laasActionType — STARTUR = Configure

==

= Stop

entSet ; VMRequirementSet

2 o |
’ 3 CrossCutting [ComponentReDeployment [] CompanentReconfiguration]

l < CanfigureType : ConfigureType = Configure J

[ComponentUnDeployment

te - EDouble = 0.0

Figure 3. 4 : Single Adaptation Tasks

3.2.3.3.1 Single Adaptation Tasks

This section contains an extensive description of the different types
of Single Adaptation Tasks that have been modelled in the adaptation
meta-model.

A. Component Configuration
This is an abstract class that represents a component configuration

task (Figure 3.5). This class contains the following subclasses:

a. Component Deployment
This task represents the deployment of one or more components

over a target hosting component. Details about the
configuration of the component(s) for its (their) proper

25

deployment in that host can be found in its (their) own
specification, where there is a containment association.

b. Component UnDeployment
This task can be used to both uninstall and delete one or more

components. To support the execution of this task, we need to
know both the components to be uninstalled and the hosting
component in which these components have been deployed.
Again, details about the component(s) undeployment can be
found in its (their) specification.

C. Component Redeployment
This task represents the redeployment of one or more

components over a target hosting component. To support the
execution of this task, we need to know both the components
to be redeployded and the hosting component in which these
components would be deployed.

d. Component Reconfiguration
With this task we can run a specific set of configuration

commands on one or morecomponents. The set of
configuration commands to be invoked are captured in the
configuration type, i.e., a certain enumeration which includes
as members, the commands of the components start, stop and
configure.

| < ConfigureType

= Start

| - Configure
= Stop

P
] ComponentConfiguration
2 components : Component

| = ComponentDeployment

‘ ‘ -} ComponentReDeployment] | =1 ComponentUnDeployment | | {1 ComponentReconfiguration

T deployTo : Component

" redeployTo : Component ’

%* undeployFrom : Component ’ ‘ % ConfigureType : ConfigureType = Configure

Figure 3. 5 : Component Configuration Graphical Representation

B.

laaS Action

Here is the definition of tasks related to adaptation actions that are
invoked on infrastructural elements, such as VMs (Figure 3.6).
More specifically:

a. StartUp

26

This task is dedicated to the start up of a certain VM which is
referenced. It could be useful when a certain VM is found
down and we thus need to start it up.

b. ShutDown
This task is dedicated to the shut down of a certain VM which

is referenced. It could be useful when we need to stop the
operation of a certain VM.

C. Restart
This task focuses on rebooting a certain VM. In fact, this task

can be realized through the sequential execution of the above
two tasks (first shutdown and then startup).

-

] laasAction £ JaasActionType
5 type : laasActionType = STARTUP = STARTUP
= RESTART
= SHUTDOWN
[1..1] vm
= VM
&= providedCommunications : ProvidedCommunication

62 providedHosts : ProvidedHost

i configurations : Configuration

= vmRequirementSet : VMRequirementSet

. J

Figure 3. 6 : IaaS Graphical Representation

C. Workflow Adaptation Task

This is an abstract task that is associated with the adaptation task
indicating tasks able to adapt a certain workflow. In this abstract
class we specify the id of the workflow and the type of the
adaptation level. In an Workflow Adaptation Task we have the
specification of the task adaptation level. The difference is that at
the class level which is an enumeration that has three values; the
changes are permanent and cover all instances of the respective
component (e.g., application, workflow) targeted by the adaptation
task, while at the instance level the changes are temporary and
concern a certain instance of that component only. If the
non_permanent at instance level case holds, then the change is
applied only for one iteration in the loop. If it is permanent, then it
will hold for all iterations of that loop (Figure 3.7). This class
contains the following subclasses:

27

a. Workflow Recomposition

This task is related to how the tasks are organized within the
workflow. With this task we can modify the content and
structure of the workflow within a certain workflow region. It
is useful in the case of the system or a user decide to change the
structure of the elements in the workflow. Any adaptation task
that is being modelled here, is actually executed by a system
automatically. The modelling could be done manually,
automatically or semi-automatically. The decision to adapt is
actually transferred to the modelling, in other words, once you
model a rule you bind the decision (when we should adapt) with
the respective action (what is involved in the adaptation).
Usually, the workflow region is defined between the current
execution point and the last workflow element. We assume this
by default and provide modelling elements in the respective
cases which take the form of adaptation workflow tasks where
the actual impact/replacement region needs to be specified by
the user.

b. Task Modification
This is an abstract task that is associated with the modification
of application tasks within the workflow referenced.

a. Task Addition
This task describes how to insert a new element into the

workflow. So refer to ids of possible workflow elements that
precisely specify the position of the task insertion. The
needed information are the workflow id and the position of
the new task between the others in the workflow.

b. Task Deletion
Similarly, to the case of task addition, we need to specify the

id of the workflow being modified as well as the position in
the workflow on which the respective action/task needs to be
performed. That position witnesses the actual task to be
deleted so there is no need for a direct reference to it. In case
of a non-permanent change, task deletion can be regarded as
task bypassing. As the task will be omitted from execution
only for the current workflow instance affected by the
critical situation

c. Task Replacement
Here is a description of replacing a task with another one

within the same workflow. A task could appear multiple
times within a workflow. However, we consider that each

28

occurrence will map to a workflow task with the same name
but different id. So potentially, we could use the ids in order
to distinguish occurrences from one and the other at the
replacement phase. For the execution of this task we need
the new task of the replacement.

d. Service Replacement

Service Replacement is a task associated with replacing an
entire service with another one. Here, in this task, we need
to refer to these services as well as the place where the old
service had been deployed. Another important piece of
information is the service uri which fully identifies the new
service. In case of SOAP services, it could also help to obtain
their whole specification (in WSDL).

< AdaptationLevel

‘ = WorkflowAdaptationTask ’

' workflowld : EString
' level : AdaptationLevel = Class

P

| | |

[n_ TaskModification | = WorkflowRecomposition

= Class

= InstancePermanent

= InstanceNotPermanent

I

T enclosingElement : EString T startElement : EString
5 position : EInt = 0 5’ endElement : EString
5 subWorkflowSpecification : EString

| = TaskAddition | [{=| TaskDeletion | | {= TaskReplacement] [= ServiceReplacement
5* task : AdaptationTask J { ’

5* newTask : AdaptationTask 5 serviceURI : EString
5* previousService : Component
5* newsService : Component

5* deployed : Component

Figure 3.7 : WfaaS Tasks Representation

D. CrossCutting
In this class, we have the case of tasks which are cross-cutting to

all the others. These can be used for reporting events/messages to
certain recipients as well as generating events which could be used
to trigger adaptation workflows. So, these tasks alert the system
with the critical situations that have been identified. They are also
needed for warning and alerting the admin/expert when situations

29

occur that require further investigation. It could be also possible
that such users are always informed about any single piece of
adaptation action / workflow that is executed. In that case, these
users not only get informed about the critical situation but also how
this situation was attempted to be addressed. In the cross cutting
events we have also the Migration and the Scaling because these
are tasks for all the layers of the Cloud model (Figure 3.8). More
specifically:

a. Reporting
This task is responsible for reporting a message to a certain set

of recipients based on a certain protocol. An example for this
reporting task is the report to the administrator of a system for
a particular subject over email.

b. Event Creation
This is a task dedicated to the creation of a new event in order

to alert the system about a critical situation. For example, when
reaching the scalability limits of a certain component, an event
creation alerts the system about it.

c. Migration

Migration means moving one or more software components
from one hosting component to another one. Such an action
could be offered by a PaaS provider. It could be also part of the
management platform of a certain organization. For this task,
we specify the set of components that will be transferred, the
initial hosting component where these components have been
already deployed, the target hosting component on which these
components will be transferred and a Boolean annotation which
shows if the migration is made for all the instances of the
transferred components or only for a particular one. If the
system decides which should be the most optimal target hosting
component, then such a component should not be specified by
the modeler. In this latter case, the place of deployment depends
on the requirements of the components to be transferred. Each
adaptation task (single or composite) is executed by the
adaptation system. The required installation of the components
in laaS as well as all the actions needed to make the service
operational are taken care of by the one who offers the
adaptation system / framework which could be considered as a
PaaS provider. We mention below all possible migration cases:

30

PaaS — PaaS
One PaaS provider could support the migration of a

certain component from one PaaS environment to
another one. The PaaS environment might or might
not be provided by different providers. In the latter
case, we could imagine the possibility that we need
to upgrade the PaaS service within the same PaaS
provider). In the case of different PaaS providers
(original and target) we change the Cloud. While in
the case of same PaaS provider, the Cloud is not
changed.

PaaS — IaaS
Here we have the migration of a PaaS environment

owned by PaaS to an laaS environment owned by us.
It requires to exploit an laaS abstraction tool or the
laaS interface of the target provider to support the
migration. The adaptation system (or service if we
consider that each action maps to a certain service)
decides about the realization of the migrated service.

laaS — IaaS
Migration here has to be done by adapting one or

more software components based on the interfaces
and facilities offered by the corresponding laaS
providers (origin and target). If we change provider,
we also change the Cloud. If not, then the Cloud
remains unaffected.

[aaS — PaaS
Here, we have the transfer of the components in an

environment ready for operation, as the use of a PaaS
enables this possibility. However, the undeployment
of components is the responsibility of the action
executor which could exploit the facilities / interfaces
of the origin Cloud provider. First of all, we should
have the insurance that the service in the new
environment is operational and then we perform the
undeployment in the origin Cloud. If the migration
does not succeed, we are still left with the previous
deployment of the application.

31

d. Scaling

a. HorizontalScaling
This task is relative to increasing or decreasing the

number of instances of a certain component which is
deployed on respective instances of a certain VM. The
arguments of this task is the number of instances and
corresponding components. When you attempt to increase
the number of instances of that component, you have a scale-
out and then the number in the count argument, which is the
proposed number of instances, is positive while in the
opposite case you have a scale-in and then the number in the
count is negative.

b. VerticalScaling

Actually, this action attempts to adjust the capabilities of the
VM on which a certain component is deployed. Upgrading
or downgrading such capabilities results in a scale-up or
scale-down, respectively. When we need additional
resources (of possibly different types), then we can request
the precise increase in the amount of resources of the
respective VM type with a scale up action. On the other
hand, a scale-down leads to decreasing the amount of
resources of the VM type referenced. When implementing
we assume that when the update values over the
VM/container hosting components increase, we have a
scale-up; when decreased instead, we have a scale-down.

32

= Reporting 1 [| EventCreation | [= Migration
T message : EString 5* event: Event T allinstances : EBoolean = false
% recipients : EString &% components : Component
T protocol : EString 5* from : Component

5* to: Component

o= Scaling

E VerticalScaling

= memoryUpdate : EInt = HorizontalScaling
= CPUUpdate : EDouble = 0.0

= coreUpdate : EInt

= storageUpdate : EInt

=1 ioUpdate : EInt

= networkUpdate : EInt

@ compatibleRequirements(regs ScaleRequirement) : EBoolean

= count: EInt
@ compatibleRequirements(reqs ScaleRequirement) : EBoolean
& components : Component

Figure 3. 8 : Cross Cutting Graphical Representation

3.2.3.3.2 Composite Adaptation Task

A composite Adaptation Task can represent an Adaptation Workflow
and it maps to a hierarchical tree structure where at the leaves are
placed Simple Adaptation Tasks. This structure describes the
performance such as the specific order with which tasks should be
executed. Each composite adaptation includes a set of adaptation
tasks. Such a modelling can eventually lead to the production of
hierarchical tree structures. Figure 3.9 depicts the adaptation meta-
model, the composite adaptation task and its sub-classes. The sub-
classes are analyzed below.

We define types of composite adaptation tasks. Each sub-class of
composite adaptation task maps to a concrete type that corresponds
to a well-known and used workflow (control flow) construct. These
types can be mixed with each other as:

33

A. Sequential Adaptation Task
This task should be specified when we need to describe a

sequential workflow / execution of adaptation tasks.

B. Parallel Adaptation Task
This task should be specified when a set of adaptation tasks needs

to be executed in parallel.

C. Switch Adaptation Task
This task concerns the selection of an adaptation task from two or

more alternative tasks. This selection depends on the respective
value of a certain metric formula parameter (i.e., of a metric or a
certain formula over a metric set). This means that each adaptation
task alternative is mapped to a different value of that metric or
metric formula. Also we have the property Value To in order to
support a kind of mapping between the values of a metric formula
parameter and alternative tasks.

D. Conditional Adaptation Task
This task models a conditional composition of adaptation tasks in

an if-then-else fashion where the occurrence of the respective
event leads to the execution of the first adaptation task referenced
while the non-occurrence of this event leads to the execution of the
second task referenced.

| | CompositeAdaptationTask |

9* getSimpleTasks() : ApplicationTask

@ containsTask(task AdaptationTask) : EBoolean
{3 tasks : AdaptationTask

| 5 SequentialAdaptationTask | | = ParallelAdaptationTask | { = ConditionalAdaptationTask | | i SwitchAdaptationTask |

‘ ’ ‘ ’ \ 5* event: Event ’

Figure 3. 9 : Composite Adaptation Tasks

5 formulaParameter : MetricFormulaParameter
% valueToTask : ValueToTask

3.3 CAMEL’s execution meta model

Apart from the deployment package update and the extension of the adaptation
package of CAMEL, we have performed an extension also for the execution
package. The initial goal of the execution model, apart from the capturing of the
application history, was also to enable the analysis of this history in order to
support deployment reasoning. Now, this goal is extended in order to cover the

34

dynamic calculation of the priority of adaptation tasks and corresponding
adaptation rules. Respectively, we will analyze the modifications at the execution
meta model. The execution meta-model is the part of CAMEL's ecore model
which defines the needed class mapping to the application runtime measurements.
One of the defined classes in the execution meta-model is ExecutionContext
which contains information related to a certain execution of the application. It
covers one task execution session. New sessions are covered by different
execution contexts. In the same package, there is also the Measurement class with
its subclasses which are: Application Measurement, Internal Component
Measurement, Communication Measurement, VM Measurement and PaaS
Measurement. Another important class is the SLO Assessment class which
represents the evaluation of an SLO in the context of a produced measurement.
Lastly there is the RuleTrigger class which encapsulates all the needed
information related to the triggering of an Adaptation Rule. This class has been
updated in order to connect with the Adaptation Rule class. Previously, it pointed
to a scalability rule but now it points to an adaptation rule. In the execution meta-
model, we have introduced new attributes within the TaskRealization class
needed for the computation of the adaptation rules priority. In the following, we
will analyze all these new attributes.

3.3.1 Adaptation Histories Records

The Task Realization Class was introduced in order to keep all the needed
information for the execution history records needed for the computation of
the final priority of an Adaptation Rule. In this class, we have a
characteristic name for the task realization, the corresponding Adaptation
Task, the start time and the end time of the task execution, and two counters
where the first one (upTimes) measures the number of times this task was
available and the second (pingTimes) the number of pings performed in the
context of availability checking during the task execution. This class also
contains two Boolean, one concerning whether the execution of the
adaptation task was error/bug-free (executionFault) and another one
focusing on indicating whether the execution of this task was able to
successfully address (executionSuccess) the respective event that triggered
it. In the Figure 3.10 we can see both the RuleTrigger and the
TaskRealisation which are the classes where the extension of the execution
package focused plus their relations with other classes of the execution
meta-model.

35

H ExecutionModel E RuleTrigger % AdaptationTask

..*] ruleTriggers

<’ name : EString

[@—————————————> ! trigerringTime : EDate

5* adaptationRule : AdaptationRule
{5 eventlnstances : Eventnstance

&% eventinstances : Eventinstance
&5 measurements : Measurement
&3 sloAssessessments : SLOAssessment

[0..*] executionContexts [1..1] executionContext

[1..1] task

i ExecutionContext {= TaskRealisation

T name : EString ' name: EString

= startTime : EDate = startTime : EDate

= endTime : EDate [1..*] taskRealisation | = endTime: EDate

= totalCost : EDouble = 0.0 =1 upTimes : Elnt

5* application : Application = pingTimes : Eint

= costUnit : MonetaryUnit = executionTimes : Elnt

5* deploymentModel : DeploymentModel = executionFault : EBoolean = false

* requirementGroup : RequirementGroup © executionSuccess : EBoolean = false
= vmCost : EDouble = 0.0

Figure 3. 10 :Task Realization Class in execution meta-model

3.4 Adaptation Scenarios Example

In this section, we will use the Traffic Management use case from Chapter 2 in
order to explain how the extended CAMEL can be used to cover the modelling
of specific adaptation scenarios; specifically the adaptation rules suiting them.
So, we assume that some violations in the traffic management system could be
detected. These violations relate to some particular metrics, like availability,
uptime, response time of the called services etc, that could be the reason of an
SLO violation. We will describe a set of adaptation scenarios and we assume that
the reason of adaptation in them is particular SLO violations similar to the
violations according to our use case example which is analyzed in the Chapter 2
(Section 2.7). In the following scenarios we describe the triggering events which
cause the violations without to analyzing the corresponding metric conditions that
cause the violations.

3.4.1 Adaptation Scenario 1 - Migration

There is an under-estimation of the resource requirements of the Monitoring
Service and the private infrastructure does not have enough resources to
cover these requirements. So, there is a need to move to a public Cloud
instead. For this reason, the adaptation task of Migration will be activated
by the corresponding adaptation rule.

More specific:

The triggering event could be: event A = “Not enough memory is
available” for the VM hosting the Monitoring Service and the
corresponding task could be the single adaptation task:

36

task_A { Migration (Monitor Service, private/municipal Cloud component,
public Cloud component,allinstances = true) }.

The respective adaptation rule could then be:

rule A =event A — task A

3.4.2 Adaptation Scenario 2 - Component Replacement

Some changes in the direction of the roads in the particular area of the city
center leads to the creation of a new version of the software component of
the Monitoring Service. So there is another service that could be used to
replace the old one. In this sense, in the Traffic Management Application,
the software component of the Monitoring Service should be replaced with
the new service which is named Super Monitoring Service.

More specific:

The triggering event could be: event B = “Permanent deterioration of the
performance” for the Monitoring Service and the corresponding single
adaptation task could be:

task_B {Service Replacement (Monitor Service, Super Monitor Service)}.
The respective adaptation rule could then be:

rule B =event B — task B.

3.4.3 Adaptation Scenario 3 - Cross Cutting

A temporary damage to the traffic lights of the zone A in the city of
Heraklion makes it necessary to inform the drivers about this damage
through a report-based event via electronic road signs to the drivers.

More specific:

The triggering event could be: event C = “temporally unavailable traffic
lights” in the zone_A, and the single adaptation task could be:

task C {Reporting(“traffic lights damage”, “Device Configuration
Service”,”electronic road signs”)}.

The respective adaptation rule could then be:

rule C =event C — task C.

37

3.4.4 Adaptation Scenario 4 - laaS & Horizontal Scaling

Actually, the response time of the Assessment Service surpasses the
respective SLO threshold such that there is an SLO violation related with a
memory allocation failure. An event is triggered by this violation to activate
the corresponding adaptation rule.

More specific:

The triggering event could be: event D = “memory allocation failure” for
the Assessment Service. The single adaptation task could be:

task_D {Horizontal Scaling (Hosting Components, Number Of Instances,
Assessment Service)}.

And the adaptation rule could be:

rule_D = event_D — single adaptation task_D.

3.4.5 Adaptation Scenario 5 - laaS & Vertical Scaling

When the Monitoring Service is running, the system monitoring shows that
the main memory (in the respective VM) is no longer sufficient. The
increased system resources needed for the VM hosting the Monitoring
Service requires a memory growth. For this reason, the system monitoring
would create a memory allocation warning event. As such, the solution to
this problem would be the activation of a corresponding adaptation rule for
vertical scaling.

More specific:

The triggering event could be: event E = “memory allocation failure” for
the Monitor Service. The adaptation single adaptation task could be:

task_E {Vertical Scaling (Monitor Service VM, memory Update, core
Update, storage Update, io Update, network update, Scale up)}.

And the adaptation rule could be:

rule E = event_ E — task_E.

38

3.4.6 Adaptation Scenario 6 - Workflow

Apart from single adaptation tasks, the system can also perform composite
adaptation tasks. So, we assume that we have an application workflow
related to the instance_ A of Traffic Management Application instances
(Chapter 2 section 2.3).

Due to an accident occurring in zone_A, the Medical Forces should be
summoned so that they reach the point of accident and transport the injured
to the hospital. However, the Rescue Forces should also reach the point to
clear the area of objects produced by the collision. In this scenario, we have
the parallel activation of the above application tasks which are produced by
the Assessment Service and compose the plan with the actions to be
performed by Device Configuration Service. So, we have an application
workflow with the participation of two stakeholders, the Medical Forces
and the Rescue Forces. These stakeholders are activated by the
corresponding application tasks (Chapter 2.1) These tasks run in parallel in
the application workflow. We can see an indicated figure (Figure 3.11)
below.

(—’ Medical Forces

Pargllel Pargllel
Rescue Forces

Figure 3.11 Application Execution Plan

The execution of the above tasks that should be performed under normal
conditions are not carried out as an event pattern is triggering and an
adaptation rule takes action to address a critical situation that is caused.

The event pattern includes two events that are:

e event F = “run time violation” for the Assessment Service.
e event G = “input mismatch” for the Device Configuration Service.

Thus the event pattern is: Event Pattern_ | {event_F, event G }
The adaptation tasks that react to this event pattern are:

o single adaptation Task F — Restart (Assessment Service).

39

o single adaptation Task G — Reconfigure (Device Configuration
Service).

e composite adaptation Task H — (single adaptation Task F,
single adaptation Task_G).

The final composite adaptation task contains the adaptation tasks for the
mapping events of the Event Pattern_I. So, the adaptation rule for the
final complex adaptation task could be:

Adaptation rule K = {Event Pattern I— composite adaptation Task H}

40

Chapter 4

4.Adaptation Rules Priority and Dynamic Selection Algorithm

The content of this chapter related with the analysis of the mathematical formula for
the computation of the priority and the selection of the most appropriate adaptation rule.
Firstly we analyze the mathematical formula of the computation of the priority and we
make the correlation between the priority of the adaptation tasks and the adaptation
rules (Section 4.1). Then we analyze all the quality attributes and the types of the
computation of their utilities (Section 4.2). Sequentially we have the introduction of the
dynamic selection algorithm of the most appropriate adaptation rule (Section 4.3) and
two cases these algorithms being used (Section 4.4).

4.1 Mathematical Formula and Adaptation Tasks Correlation

For the selection of the most appropriate adaptation rule in order to increase
performance we introduce a mathematical formula for the computation of
adaptation rule priority. An adaptation rule is comprised of one adaptation task.
This can be single or composite. In the latter case, it can include other adaptation
tasks which can be single or composite (Chapter 3). Therefore, the computation
of an adaptation rule priority depends on the computation of the adaptation task
priority.

An execution context is exported by the CAMEL’s execution meta model
(Chapter 3) for every adaptation task whether this is a single adaptation task or a
composite. Thus, in the following, we will first detail all the quality attributes of
the mathematical formula for the calculation of the adaptation task priority, then
we will present this formula and explain the procedure for applying it over the
rules of an adaptation strategy. Finally, we will present the selection formula
for the most appropriate adaptation rule in the context of a triggering event as a
dynamic adaptation rule selection algorithm. The most appropriate adaptation
rule in this algorithm is that with the highest priority.

4.2 Formula Quality Attributes and Utilities

The suggested mathematical formula computes the overall utility of an adaptation
rule according to the sum of certain metrics (Figure 4.2) related to the quality of
the corresponding adaptation tasks. We have particular quality attributes which

41

are measured by respective metrics, and we define utility functions for them in
order to calculate the utility of an adaptation task per quality attribute. The value
result after the use of the utility function is a number point 0 to 1. The
normalization of the numerical value of quality attributes is the reason for the use
of the corresponding utility function. For the triggering events and event patterns,
the adaptation Task Realization class of the execution meta-model records a set
of execution data (Section 3.4). The mathematical formula is implemented on
three levels of computation. On the first level we use this data as input in order to
compute the value of each quality attribute. On the second level we use each
exported value of the previous step as input and we implement a utility function
in order to compute the utility of every quality attribute for each adaptation task.
On the third level of computation we implement a method function and we use
the set of the utilities of the quality attributes computed at the previous level, and
the weight that users define for each of the quality attributes as input in order to
compute the last utility value of the corresponding adaptation task which is equal
to its priority. On the third level of computations the monotonicity of each quality
attribute affects the result. The ultimate goal of the formula is the computation of
the priority of the corresponding adaptation tasks, and by extension, of each
adaptation rule.

As such, we can estimate the quality of an adaptation task through the analysis
of the following quality attributes: execution time, availability, failure rate, cost
of execution and success rate. We come up with the computation of the utilities
of the quality attributes by the values of the corresponding metrics. The whole
approach of the three levels of computation and the selection of the most
appropriate adaptation rule with the use of the proposed mathematical formula
are both implemented as an adaptation rules selection algorithm. The analysis of
the corresponding mathematical formula quality attributes and the overall priority
computation follow in the next subsections.

4.2.1 Quality Attributes Analysis

In this subsection, we will provide details of the first level of computation.
In particular, we will explain the semantics of each attribute and then clarify
how it is computed from the information expressed via CAMEL in the
execution model of the application. For the needs of the next level of
computation, we will analyze the corresponding quality attributes (Figure
4.1) and their overall values.

42

4.2.1.1 Execution Time

The execution time metric of an adaptation task is modelled in the
execution meta-model as execution start time and execution end time in
the Task Realization class. The more an adaptation task takes to execute,
the less suitable it might be for adaptation. The adaptation task requiring
the least execution time is the most appropriate if we assume that the
cost of its execution depends on the execution time. For the execution
time quality attribute value, we compute the mean execution time of
adaptation task i, by dividing the sum of the raw execution times of the
adaptation task by the number N which is the number of times it has been
executed. By raw execution, we mean the subtraction of the
executionStartTime from the executionEndTime for every index j of
executions. More formally:

N
2. (executionEndTime,;~ executionStartTime,
j=1

MeanExecution Time; = N

In the following analysis the value of the Execution quality attribute is
of equal value to the Mean Execution time which is computed by the
above formula and whose unit of measurement is time. Also, in the
remaining quality attributes computation formulas, all references to i, j,
and N share the same semantics as the above. More specifically:

e i =the adaptation task
e j=the index of executions
e N=the number of execution times for i

4.2.1.2 Availability

Another quality attribute is availability. In the execution meta-model,
two counters in the Task Realization class are implemented, one for the
upTimes and the other for the pingTimes needed for the computations of
the availability quality attribute value. In this case, we compute the
availability of adaptation task i by dividing the number of times the
adaptation task was available by the number of times it was pinged. More
formally:

N

_ . B J
Availability; j§1 pingTimESiJ

upTimes,

The task is pinged only while being executed such that the respective
upTimes are independent of the execution times and are defined during
execution. In the following analysis the value of the Availability quality

43

arises from the above mathematical formula of computation, which is
represented as a percentage.

4.2.1.3 Failure Rate

The result of the execution of an adaptation task can vary. Sometimes,
after the task execution, the respective result might not be the expected
one. This could occur when, for example, the task execution stops with
an error and an exception is thrown. This situation would then signify
that the corresponding adaptation rule has failed. If such failures often
occur for a certain task, such knowledge should be utilized to prevent
executing this task in the near future in the context of a respective
adaptation rule. Thus, for the computation of task Failure Rate, we need
to compute the failure rate by dividing the sum of the faulty executions
by the total number of execution times for this task. In the execution
meta model we have the execution fault counter implemented in the
Task Realization class for the computations of the Failure Rate quality
attribute. The following formula denotes the computation of task Failure
Rate:

N

Z executionFault i
j=1

FailureRate =
N

In the following analysis the value of the Failure Rate quality attribute
arises from the above mathematical formula and it too is represented as
a percentage.

4.2.1.4 Successability

When the execution of the task finishes, another important aspect to
consider is the Successability of the executed task. In other words, we
need to know if the task execution was successful, that is, if it indeed
responded to the cause which called for it. If the respective event that
caused the triggering of the corresponding adaptation rule was
successfully handled, this means that the adaptation task execution was
successful. The result of this quality attribute is not the opposite of the
result of the Failure Rate because here we focus on the success of the
action and not on the success of the execution of the corresponding task.
The execution of a task can be completed but the reason for the
triggering of this task might not be satisfied. This attribute helps to avoid

44

vulnerable loops of tasks. These tasks can result from the value of the
rest of the quality attributes. For the computation of task Successability,
we need the number of times the task had successfully achieved its goal
of addressing the current event; and the total number of times this task
was executed. In the CAMEL’s execution meta-model we have a
SuccessfulExecution counter implemented in the Task Realization class
for the purposes of computing the Successability quality attribute. For
the computation of the Successability value we need to divide the sum
of successful execution times by the execution times of the adaptation
task. More formally:

N

2. SuccessfulExecution, ;
i=1

Successability; = N

In the following analysis, the value of the Successability quality attribute
arises from the above mathematical formula, and is represented as a
percentage.

4.2.1.5 Cost

Another requisite quality attribute is the cost of the requisite VM
resources required for an adaptation task execution. The cost depends
on the VM offering that is utilized for the hosting of the adaptation task.
Given that the major Cloud providers have resource bases in US, the
most common cost measuring unit is the US Dollar. The Dollar is thus
used for the computation of cost in our analysis. We assume that the
pricing policies are dictated by the provider and could refer to the use of
VM per hour. Consequently, the chief concern in making our
computations is the cost of the VM that hosts the adaptation task. In
order to simplify the computation of the cost quality attribute, we
assume that each task maps to a unique VM. Subsequently, what is
required is the average execution time which is computed in the
Execution quality attribute. If the Mean execution time is calculated in
a different time unit than a second, we would need a unit conversion to
be inserted in the formula. In the execution meta model we have the Cost
counter implemented in the Task Realization class. The average cost of
the adaptation task is computed by multiplying the cost of the hosting
VM of the adaptation task by the Mean Execution Time which is equal
to the value of the Execution Time quality attribute. More formally:

45

Cost; = VM cost; - MeanExecutionTime,

In the following analysis the value of the Cost quality attribute arises
from the above mathematical formula, and the unit of measurement is
dollars per time.

Quality Metrics
Attributes
Execution ExcecutionStartTime

ExcecutionEndTime

Availability
UpTimes

FailureRate PingTimes

ExecutionTimes

Successability ExecutionFault

SuccessfulExecution

Cost

vmCost

Table 4. 1 : Quality Attributes Table 4. 2 : Metrics

4.2.2Utility Function per each Quality Attribute

On the second level of computation we have the implementation of a
certain form of a generic utility function. All the above quality attributes
could be positively or negatively monotonic (Figure 4.3). For a
positively monotonic metric, as the value of the metric increases the
respective utility also increases (e.g ex). In the case of a negatively
monotonic metric, the opposite is observed(e.g «x). For each of the
quality attributes, there is a minimum (min(value)) and a maximum
value (max(value)) in the context of the (same) triggering event across

46

all adaptation tasks that can address this event. For each quality attribute,
we use the generic utility function in order to compute its utility value.
The value annotation in the following mathematical formula is equal to
the value of each quality attribute which has been computed in the first
step of computation. The utility function for each quality attribute takes
a certain form which depends on its monotonicity. This leads to the
following generic forms of (linear) utility functions (1,2):

Positive Monotonic

value — min(value) 1)

uf(value) = :
max(value) — min(value)

Negative Monotonic

max(value) — value (2)

uf(value) = :
max(value) — min(value)

Quality attributes | Monotonic
Execution Negative
Availability Positive
FailureRate Negative
Successability Positive
Cost Negative

Table 4. 3 : Quality attributes monotonic characteristics

47

4.2.3 Adaptation Task Priority Function

In the final level of computation, we analyze a method for final priority
value of the corresponding adaptation rule. As we have already
mentioned, the computation of an adaptation rule priority depends on
that of the adaptation task priority. As far as the historical records of the
adaptation tasks in the execution model are concerned, we handle the
case of single and composite adaptation tasks in almost the same way.
The only difference is that the cost of the composite task cannot be
directly ascertained, and we need to compute it from its respective sub-
tasks. This difference is taken into account in the computations
performed in order to ascertain the cost quality attribute value in the first
level of computation. We can thus make the following assertion:

AdaptationRulePriority; = AdaptationTaskPriority;

Where i is the index of both the adaptation rule and its mapping
adaptation task.

In order to denote the relative importance of each metric for the end-
user, we rely on the Analytical Hierarchy Process (AHP) [13]. The result
of this process is an assignment of weights to all of these quality
attributes, indicating their relative importance, and whose sum should be
equal to one. We also follow the Single Additive Weighting (SAW)
technique [14] which maps to the utility for each attribute, which is equal
to the weighted sum of the application of the global value derived for
each quality attribute on its utility function. More formally:

Q
AdaptationTaskPriority; = 2. w, -uf, (value;)
g=1

Where i is the adaptation task, q is the quality attribute, Q is the set of
the quality attributes, w is the weight of each metric and uf is the utility
function of the quality attribute value of the adaptation task.

4.3 Dynamic Selection Algorithm

All the computation levels are implemented in a dynamic selection adaptation
rule algorithm. In the following subsections we will analyze dynamic selection
algorithm by analyzing the adaptation rule priority formula, which is the core of
the algorithm.

48

4.3.1 Adaptation Rule Priority Formula

If all three levels of computation are concluded, we can choose the
adaptation rule with the highest priority. Hence, if we try to implement the
whole process as an algorithm, the last step is to introduce the formula for
the selection of the most appropriate adaptation rule.

The priority for an adaptation rule is analogous to the priority of the
corresponding adaptation task in the context of the same triggering event
(Section 4.2.3). An adaptation strategy contains the set of the adaptation
rules which have been triggered in the past for the same triggering event or
event pattern (Chapter 3). The role of the following computation formulas
is to select the rule with the highest possible priority from the set of
adaptation rules which exist in the adaptation strategy of a triggering
event.

More formally :

AdaptationRule = max(AdaptationRulePriority r)

Where s is the selected adaptation rule and r is the number of adaptation
rules in the corresponding adaptation strategy.

4.3.2 Selection Algorithm

In this subsection we introduce the proposed dynamic selection algorithm
for the selection of the adaptation rule with the higher priority value. This
algorithm use the implemented mathematical formula of adaptation rule
priority and its goal is the selection of the most proper adaptation rule in the
context of a triggering event. In order to define the dynamic selection
algorithm we should first analyze the separate parts of the mathematical
formula functions. Thus, we will analyze each of the mathematical formula
levels of computation with a psedo-code algorithm in order to make an
introduction at the definition of the dynamic selection algorithm.

e Inthe first level of computation we have the calculation of the quality
attributes values. For this reason the function in Figure 4.1 is
introduced :

INPUT : Task Realization Object,Quality_Attributes
OUTPUT : Quality Attributes values for a task realization input

function: get Quality Attributes Values {
for every quality_attribute in Quality_Attributes{

49

QA values[quality_attribute] = quality_attribute.calculateVValue(Task Realization Object);
}

return QA _values;

}

Figure 4. 1 : Get Quality Attributes Values function

With this function, we calculate the value for each of the five Quality
Attributes of a specific task. The complexity of the algorithm equals to O
(n) as the iteration equals to the number of quality Attributes that is constant
and the functions of the mathematical formula where called in the iteration
are linear.

e In the second level of computation we have the utility function
calculation. So the function in Figure 4.2 is introduced:

INPUT : QA values ,Quality_Attributes, Tasks, curr_Task
OUTPUT : Uf_values for each quality attribute for the current task

function: get Quality Attributes Utilities{
for every task in Tasks{
for every quality_attribute in Quality_Attributes{
max_Value[quality_attribute] = get.Max(task.QA_values[quality_attribute]]);
min_Value[quality_attribute] = get.Min(task.QA_values[quality_attribute]]);
}

}
for every quality_attribute in Quality Attributes{
curr_task.utility = calculate.Utility(task.QA_values[quality_attribute],
max_Value[quality_attribute],min_Value[quality_attribute]);
Uf_values[quality_attribute] = curr_utility;
}

return Uf_values;

}

Figure 4. 2 : Get Quality Attributes Utilities function

With this function, we calculate the utilities for each of the 5 Quality
Attributes of a specific task. For this calculation we need first to compute
the minimum and the maximum values for each of the Quality Attributes of
the tasks which have the same adaptation strategy with the corresponding
task. Thus, the complexity of this function is O(n ?).

e At the third level of computation we first calculate the priority of an
adaptation task and then the priority of the corresponding adaptation
rule. So the corresponding function follows in the Figure 4.3.

INPUT : Adaptation Rule, Weights, Quality_Attributes, Adaptation Strategy
OUTPUT : Adaptation Task Priority

function:getAdaptation Task Priority{
Quality_AttributesValues = get Quality Attributes Values (Adaptation Rule.Adaptation Task);
Quality_AttributesUtilities = get Quality Attributes Utilities(Quality_AttributesVValues,

50

Quality_Attributes,Adaptation Strategy.Tasks, Adaptation Rule.Adaptation Task);
sum =0 ;
for every quality_attribute in Quality_Attributes{
sum = sum+Quality_AttributesUtilities[quality_attribute] * Weight(quality_attribute);
}

return sum,

Figure 4. 3 : Get Adaptation Task Priority function

With this function, we calculate the priority of an adaptation task. The
complexity of this function is analogous with the complexity of the internal
functions that are called. Thus, the complexity is equal with O(n?2). Finally,
we have the dynamic selection rule algorithm (Figure 4.4) which use the
above functions in order to achieve its goal.

INPUT : event (or event pattern),Weights,Quality_ Attributes
OUTPUT : most Appropriate Adaptation Rule

function: Adaptation Rule Selection{
strategy= getAdaptation Strategy(event);
rules = getAdaptation Rules(strategy);
Selected_Rule="";
max_priority = 0;
for every rule in rules{
rule_priority = get Adaptation Task Priority(rule.task,Weights,Quality_Attributes,strategy);
if (rule_priority>=max_priority){
max_priority= rule_priority;
Selected_Rule=rule;
}
}

return Selected_Rule;

}

Figure 4. 4 : Get Adaptation Rule Priority function

With this function, we find the most appropriate adaptation rule. In this
function we call all the previous functions. Nevertheless, an adaptation rule
is composed by a set of adaptation tasks. Thus, there is another loop and the
complexity is equal to O(n3). In general, complexity also depends on how
records are stored and how we retrieve the data from the records. At this
point, there is certainly room for improvement and research.

4.4 Use Cases with Adaptation Rules Priority

At the following subsections we have an adaptation scenario with an adaptation
rule selection and then two adaptation numerical examples with the set of
computations that have been analyzed in this Chapter.

51

4.4.1 Adaptation Scenario for the Adaptation Rule selection

The dynamic selection adaptation rule algorithm can be applied to all cases
where a triggering event is exported, and the most appropriate adaptation
rule should react. There are many scenarios that can be defined on the basis
of the use case that we have analyzed in Chapter 2. An indicative example
is broken down in the scenario which follows.

We assume that the Monitoring Service has availability problems. To
address this issue, event_A is triggered and through the adaptation strategy
of the corresponding event, two previously mapped different adaptation
rules respond. The first is AdaptationRule_A, which is required to
overcome transience by restarting the Monitoring Service. The second is
AdaptationRule_B, which can be employed to overcome permanent errors
by re-deploying the component on the same VM.

More specifically:

e event_A = down (Monitoring Service)
o Adaptation Rule_A =event A — Restart (MonitorService)
e Adaptation Rule_B = event A — Reconfiguration (MonitorService)

At this point, the proposed dynamic adaptation rule selection algorithm is
executed, and after having been applied to all the levels of computations of
the proposed mathematical formula, arrives at the selection of the
adaptation rule demonstrating the highest priority. If we assume that the
priority of Adaptation Rule_A is 0.57 and that the priority of Adaptation
Rule_Bis0.43, then, the first Adaptation Rule is selected in order to address
event_A. More detailed examples of the proposed mathematical formula of
the adaptation rule priority value, on all the levels of the computations,
follow in the next subsection, as well as the selection of the most
appropriate adaptation rule.

4.4.2 Numerical examples with priority computations of
Adaptation Rules

In the following examples we focus on priority computations. We don't use
just a single specific scenario to apply our calculations, but we define
abstract adaptation rules, events and adaptation tasks, all of which can be
formed in different scenarios and use cases like the one presented in the
previous subsection. In the following computations we assume that the VM

52

cost is 0.01 $/ hour or 0.000027 $ for each single adaptation task, meaning
that the mapped services with the corresponding single adaptation tasks are
hosted on different instances of the same VM offering.

4.4.2.1 Abstract Scenario 1- single adaptation tasks

Here we assume that we have an event named event_A, and three single
adaptation tasks mapped to this event which are SAT1, SAT2 and
SAT3. Thus, the corresponding adaptation rules mapping to this
triggering event are:

Adaptation Rule 1 =event A — SAT1
Adaptation Rule 2 =event A — SAT2
Adaptation Rule 3 =event A — SAT3

1st level of computations

On the first level of computation we compute the quality attribute
values (Section 4.2.1) for each adaptation task separately for each
adaptation rule. Thus, it is necessary to compute the metrics received
from the recorded histories. It is assumed that the respective histories
of the adaptation tasks are as follows:

Adaptation Task SAT1 (Table 4.4)

e This task has been used for the same event three times (Execution
Times = 3).

e By the subtraction of the recorded StartExecutionTime by the
recorded EndExecutionTime time the indicative execution time
records of the task are:

First execution time: 4 sec.
Second execution time: 5 sec.
Third execution time: 6 sec.

o The task was pinged three times during its execution (ping times =
3); in two of them the task was up (up Times = 2).

e In one of the three execution times this single adaptation task
resulted in an error. So, the number of faults is equal to one.
(Execution Faults = 1).

o The adaptation task was able to address the event successfully in 2
of the three execution times. (SuccessfulExecution = 2).

e Needed VM Resources : 1 VM.

53

Adaptation Task SAT2 (Table 4.5)

This task has been used twice for the same triggering event
(Execution Times = 2).

By the subtraction of the recorded StartExecutionTime by the
recorded EndExecutionTime time the indicative execution time
records of the task are:

First execution time: 2 sec.

Second execution time: 1 sec.

The task was pinged three times during its execution (ping times =
3); and all of them where up. (up Times = 3).

In all the execution times this single adaptation task has no errors
in its result. So, the number of faults is equal to zero. (Execution
Faults = 0).

The adaptation task was able to address the event successfully all
the execution times. (SuccessfulExecution = 2)

Needed VM Resources : 1 VM.

Adaptation Task SAT3 (Table 4.6)

This task has been used twice for the same triggering event
(Execution Times = 2).
By the subtraction of the recorded StartExecutionTime by the
recorded EndExecutionTime time the indicative execution time
records of the task are:

First execution time: 10 sec.

Second execution time: 15 sec.
The task was pinged three times during its execution (ping times =
3); and in two of them it was down (upTimes = 1).
In all the execution times this single adaptation task had 1 error in
its results. So, the number of faults is equal to one. (Execution
Faults = 1).
The adaptation task was able to address the event successfully 1 of
the 2 execution times (SuccessfulExecution = 1).
Needed VM Resources : 1 VM.

Quality attributes value computation

Adaptation Task SAT1

ATTRIBUTE VALUE
Execution 15/3 =5sec
Availability 2/3=0.66

54

Failure Rate 1/3=0.33

Successability 2/3=0.66

Cost 1 VM *0.000027 $ * 5sec = 0.000135 $

Table 4. 4 : Quality Attributes SAT1

« Adaptation Task SAT2
ATTRIBUTE VALUE
Execution 3/2=15sec
Availability 3/3=1
Failure Rate 0/2=0
Successability 2/12=1
Cost 1 VM *0.000027 $ * 1,5 sec =
0.0000405 $
Table 4. 5 : Quality Attributes SAT2
o Adaptation Task SAT3
ATTRIBUTE VALUE
Execution 25/2=125sec
Availability 1/3=0.33
Failure Rate 1/2=05
Successability 1/2=05

55

Cost 1 VM *0.000027 $ * 12,5 sec =
0.0003375 %

Table 4. 6 : Quality Attributes SAT3

2nd level of computation

The second level of computation concerns the utility function
calculation for each of the quality attributes. Based on the first level of
computation, we have the following max and min values for every
quality attribute in the context of the same event.

ATTRIBUTE | max value | min value
Execution 12.5 sec 1.5 sec
Availability 1 0.33
Failure Rate 0.5 0
Successability 1 0.5
Cost 0.0003375 $ | 0.0000405 $

Subsequently we apply the utility function (Section 4.2.2) so as to
compute the utility value for each of the quality attributes. An
analytical table of the results of the computations follows.

ATTRIBUTE | SAT1 | SAT2 | SAT3
utility | utility | utility

Execution 0,68 1 0
(negative monotonic)

Availability 0,49 1 0
(positively monotonic)

56

Failure Rate 0.34 1 0
(negatively monotonic)

Successability 0,32 1 0
(positively monotonic)

Cost 0.68 1 0
(negatively monotonic)

3rd level of computation

Weights can be defined by the end users in order to give priority to the
quality attributes. If a user decides that the availability quality attribute
has a higher priority, the corresponding weight would be higher than
the others. In our use case we assume that the end user decides that all
the quality attributes have the same weight. The number of quality
attributes is 5 so the weight of each one is ¥ = 0.2. At this point we
apply the mathematical method of the adaptation task priority (Section
4.2.3) for each of the adaptation tasks.

Priority (SAT1) = 1/5*(0.68+0,2+1+0,32+0.68) = 0,5
Priority (SAT2) = 1/5*(1+1+1+1+1) = 1
Priority (SAT3) = 1/5*(0+0+0+0+0) = 0

Selection Algorithm

Hence, the priority of each SATI equals that of its mapped adaptation
rule i. Thus, Adaptation Rule_1 priority is equal to 0.576, Adaptation
Rule_2 priority is equal to 0.8, and Adaptation Rule_3 priority is equal
to 0. Therefore, Adaptation Rule_2 is better than Adaptation Rule_1
which is better than Adaptation Rule_3. So the best choice for
triggering event_A is Adaptation Rule 2.

4.4.2.2 Abstract Scenario 2- single & composite adaptation tasks

We assume that we have three adaptation rules being triggered by the
same event event_B. The first one maps to a composite adaptation task
which is the CAT1 and contains two single adaptation tasks which
are the single adaptation tasks, SAT5 and SAT6. The control flow of
the composite adaptation task is sequential. The second adaptation rule
maps to a single adaptation task which is the SAT4, and the third to a

57

single adaptation task which is the SAT7.Thus, the corresponding
adaptation rules mapping to this triggering event are:

Adaptation Rule_4 = event B — CATI(SATS, SAT6)
Adaptation Rule 5 =event B — SAT4
Adaptation Rule_6 = event B — SAT7

1st level of computation

As we have already mentioned in the previous example it is necessary
to compute the quality attributes of the metrics received from the
recorded histories. It is assumed that the respective histories of the
adaptation tasks are as follows:

Adaptation Task CAT1 (Table 4.7)

This task has been used for the same event twice (Execution
Times = 2).

By the subtraction of the recorded StartExecutionTime by the
recorded EndExecutionTime time the indicative execution times
records of the task are:

First execution time: 10 sec.

Second execution time: 15 sec.

The task was pinged three times during its execution (ping times
= 3); in two of them the task was up (up Times = 2).

At the first execution SAT5 produces an error as result. So, the
number of faults is one (Execution Faults = 1).

The adaptation task was able to address the event successfully in
all the triggering times (SuccessfulExecution = 2).

Needed VM Resources : 2 VM

Adaptation Task SAT4 (Table 4.8)

This task has been used twice by the same triggering event
(Execution Times = 2).

By the subtraction of the recorded StartExecutionTime by the
recorded EndExecutionTime time the indicative execution times
records of the task are:

First execution time: 7 sec.
Second execution time: 9 sec.
The task was pinged three times during its execution (ping times
= 3); in two of them the task was up (up Times =2).
At the executions produced only one time an error as result. So,
the number of faults is one (Execution Faults = 1).
The adaptation task was able to address the event successfully in
all the triggering times. (SuccessfulExecution = 2)

Needed resources 1 VM.

58

Adaptation Task SAT7 (Table 4.9)

. This task has been used three times by the same triggering event.

. By the subtraction of the recorded StartExecutionTime by the
recorded EndExecutionTime time the indicative execution times
records of the task are:
First execution time: 10 sec.
Second execution time: 20 sec.
Third execution time: 30 sec.

. The task was pinged two times during its execution (ping times
= 2); in one of them the task was up (up Times = 1).

. At the last execution produced an error as result. So, the number
of faults is 1.

. The number of faults is one (Execution Faults = 1).

. The adaptation task was able to address the event successfully
only one time (SuccessfulExecution = 1).

. Needed resources 1 VM.

Quality attributes value computation

. Adaptation task CAT1

ATTRIBUTE VALUE
Execution 25/2=125sec
Availability 2/3=0.66
Failure Rate 1/2=05
Successability 2/2=1
Cost 2 VM *0.000027 $ * 12.5 sec = 0.000675%

Table 4. 7 : Quality Attributes CAT1

. Adaptation task SAT4
ATTRIBUTE VALUE

Execution 18/2 =8 sec

59

Availability 2/3=0.66

Failure Rate 1/2=05
Successability 2/12=1
Cost 1 VM *0.000027 $ * 8 sec =0.000216 $

Table 4. 8 Quality Attributes SAT4

o Adaptation task SAT7

ATTRIBUTE VALUE
Execution 60 /3 =20 sec
Availability 1/2=05
Failure Rate 1/3=0.33
Successability 1/3=0.33
Cost 1 VM *0.000027 $ * 20 sec = 0.00054 $

Table 4. 9 : Quality Attributes SAT7

2nd level of computation

The second level of computation concerns the utility function
calculation (Section 4.2.2) for each of the quality attributes. Based on
the first level of computation, we have the following max and min
values for every quality attribute in the context of the same event.

60

ATTRIBUTE | max utility | min utility
Execution 20 sec 8 sec
Auvailability 0.66 0.5
Failure Rate 0.5 0.33
Successability 1 0.33
Cost 0.000675 $ | 0.000216 $

Subsequently we apply the utility function (Section 4.2.3) so as to
compute the utility value for each of the quality attributes. An
analytical table of the results of the computations follows.

CATL | SAT4 | SAT7
ATTRIBUTE | utility | utility | utility

Execution 0,63 1 0
(negative monotonic)

Availability 1 1 0
(positive monotonic)

Failure Rate 0 0 1
(negative monotonic)

Successability 1 1 0
(positive monotonic)

Cost 0 1 0,29
(negative monotonic)

3rd level of computation

We assume that the end user decides that all the quality attributes have
the same weight. The number of quality attributes is 5 so the weight of
each one is ¥ = 0.2. At this point we apply the mathematical method
of the adaptation task priority(section) for each of the adaptation tasks.

61

Priority(CAT1) = ¥ *(0,63+ 1 + 0 + 1 + 0) = 0,526
Priority(SAT4) = ¥s *(1+1+0+1+1) = 0,8
Priority(SAT7) = ¥ *(0+0+1+0+0,29) = 0.258

Selection Algorithm

Like the previous example the Adaptation Rule_4 priority is equal with
0.526 the Adaptation Rule_5 priority is equal with 0.8 and the priority
of Adaptation Rule_6 is equal with 0.258. Thus, the Adaptation Rule_5
is selected as it has the higher priority.

62

Chapter 5

5. Related Work

In this chapter we will analyze the related work in scalability rule modelling (Chapter
5.1); adaptation rule modelling (Chapter 5.2) and dynamic adaptation of services or
applications in order to maintain a certain service/quality level across different
abstraction levels (Chapter 5.3). There will be no analysis over approaches which
record Cloud application execution histories as such approaches do not yet exist.

5.1 Scalability Rule Modeling

The proposed adaptation meta-model involves the original scalability part of
CAMEL’s SRL sub DSL [11]. However, there is a set of approaches that aim to
introduce scaling adaptation models with scalability adaptation rules. Most other
languages correlate only one single scalability metric with one single scaling
action. Some of such languages have been developed in European projects like
[15] and [16].

In [15] is presented a formal Service Definition Language to support service
deployment and Automated Service Lifecycle management for service
provisioning and dynamic scalability.

In [16] we have the introduction of a toolkit targeting the Cloud service and
infrastructure providers. The innovations behind the toolkit are aimed at
optimizing the whole service life cycle, including service construction,
deployment, and operation, on a basis of aspects such as trust, risk, eco-
efficiency and cost.

Other languages have been developed for use in commercial products (eg AWS,
amazon web services). We will then mention some of these:

A Cloud elasticity language has been proposed in [17] in order to express
simple scalability rules. This language includes elements like the scope, the
metric condition and sliding window, the scalability limit as well as scaling
action details (e.g., scale type). Complex metrics, event patterns and
composite scalability rules cannot be expressed by this language.

The SYBL scalability rule language is a novel language for controlling
elasticity in Cloud applications and have been proposed in [18]. CAMEL is
more expressive than this language in terms of specifying more complex

63

conditions and complete metric definitions. In CAMEL, the adapted objects
have a full reference while SYBL only references the object to be adapted
via an identifier.

« Amazon’s CloudFormation 3 is exploited for modelling horizontal scalability
policies. The conditions in this language are only related to resource metrics
while the scaling actions are only correlated with a pre-configured VM
image, that must be manually mapped to the appropriate application
component. This makes the situation more difficult for the customers due to
the provider lock-in.

Thus, one major characteristic of CAMEL is that it is more expressive than most
scalability rule languages because it can define more features for the modeling
process. CAMEL's instrument is the ability to fully identify an object and give it
a multitude of properties useful for the modeling process. For example, some of
CAMEL's offers are the advanced event with the specification of events patterns.
This is why CAMEL is not as simple as other modeling languages.

Nevertheless, according to the above, one of the main criteria that makes CAMEL
better in modeling of scaling rules is the complexity that modeling objects can
have. With the new expansion that has been made in the context of this work,
scalability actions are replaced with adaptation tasks. In essence, the adaptation
tasks are a superset of scaling actions. At the next section, we mention some
adaptation approaches that deal with the modelling of adaptation rules which go
beyond the scope of scaling.

5.2 Adaptation Rule Modeling

Most Cloud adaptation modelling approaches are limited to the resource level
where resource-related adaptation actions result from computing the difference
between the current state and future state of an application model. Previous
approaches made toward Cloud application adaptation modelling were virtually
non-existent; most focusing only in part on model adaptation rules; the remaining
lack the capability to specify adaptation actions on all possible levels and do not
enable the modelling of either adaptation workflows or more advanced (or
composite) adaptation actions that take the form of adaptation workflows. Based
on this analysis, our proposition is ahead of the current state-of-the-art.
Nevertheless, there are some related adaptation modeling approaches which we
mention in the following.

e In [19] a cross-layer monitoring and adaptation approach of multilayer
systems was proposed. In this approach, a language was specified in order to

3 http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html

64

give to the system experts the ability to specify the system layers and their
elements. For each system layer, there is a runtime model depicting the
current system state. Overall we can see the whole system state as each
runtime model covers part of this state as it includes the state of some of the
system elements and not all. If a violation occurs, a manual or semi-automatic
adaptation takes place and can affect all the model layers.

e In[20] model-based approach for adapting Cloud application topologies was
proposed. Such an approach does not directly model adaptation rules.
Instead, there are two Open Cloud Computing Interface models, the first
implementing the current state topology of the Cloud application and the
second the desired state. The adaptation steps are determined after this
comparison takes place. This case does not directly model adaptation rules.

e In[21] there is an introduction of a conceptual model for adaptation inside a
Cloud environment. This model covers two different types of adaptation. The
first one relates to Cloud application specific adaptations and the second to
Cloud resource-specific adaptations. The main difference with our approach
is that it does not account the dependencies in a cross Cloud environment.

o The adaptation workflow is based on the direct and indirect relations among
the Cloud entities. In [22] and [23] an evolution of the models@runtime
pattern is presented. In the context of that work adaptation plans are specified
as well as a runtime environment to enact them. The adaptation plan
specification relies on a novel DSL which enables designing adaptation plans
as workflows. In contrast to our meta-model, this DSL is not rich enough to
cover the necessary actions in all possible layers while it does not capture all
basic (adaptation) workflow control constructs as in our work.

Our modelling has the potential to be more expressive and could be more
complete in terms of the scenarios that it can cover. Also it is the only one that
supports dynamicity, auto; semi-auto and manual adaptation and used through
cross layer and Multi-Cloud environments.

5.3 Priority Computation

At this section we compare approaches which follow the concept of the adaptation
of a service or application in order to maintain a certain service/quality level. Thus
the actions that should be performed rely on conditions on metrics. These
conditions are the cause of the triggering of the execution of an adaptation action.
In the context of this work the adaptation rules have a particular structure and the
actions that they perform are correlated with tasks which are mapped by services.
So the task scheduling process in Cloud computing environments is associated
with the computation process in order to find the adaptation rule with the higher
priority. In the following we will mention some approaches correlated with the
context of this work.

65

In [24] is presented the ECMAF, a monitoring and adaptation framework that
follows a rule based approach. There are adaptation strategies consisting of
event patterns that are mapped to adaptation workflows that can be executed
in order to address a problematic situation. Here is used a logic based mining
approach [8] to mine adaptation rules with the use of service execution
history. This is a cross-layer adaptation approach introduced in [25] which
do not cover all the Cloud- based levels.

In [26] is an approach for the Web Service adaptation and evolution. In this
work there is a formulation of some service parameters and their relationship
with adaptation behavior of a service based system. Thus, a Fuzzy Inference
System (FIS) is adopted for capturing overall QoS and selecting adaptation
strategies using fuzzy rules. The overall QoS is computed by the QoS
parameters and the efficient selection of the adaptation strategies inferred by
overall QoS, importance of QoS and cost of service substitution. This
approach has differences with our work. We compute the overall priority
value for each adaptation rule and not directly for tasks. Also there are
differences in computation formulas.

In [27] there is an approach for selecting the best possible Cloud service
composition that relies on user requirements. The selection of the best
possible Cloud service composition affects the provisioning phase, as the
more distant from optimality is the selected solution, the more adaptation
actions will be enacted. Through this approach we have the optimal
composition of different types of Cloud services by simultaneously
satisfying various types of user requirements. These types, not concurrently
supported by any Cloud application design tool, include quality, deployment,
security, placement and cost requirements. The AHP [13] is used in order for
the users to participate in the final result by giving the weight to each of the
requirements. The main difference with our work is that we compute the
priority of adaptation rules and not directly the priority of services or services
compositions. Also there are differences at the formulas and the metrics that
take part in.

In the context of the work in [28] we have a Cloud-based architecture for the
lifecycle management of the whole Cloud service lifecycle. This architecture
also takes into consideration energy-efficiency matters. Special focus is put
on intra-layer self-adaptation through the scheduling of adaptation actions
over different Cloud layers. Thus, this is achieved through SaaS, PaaS and
laaS intra-layer self-adaptation in isolation. The overall architecture is
capable of adapting to meet the energy goals of applications on a per layer
basis. In [29] we have the use of an adaptive energy-aware algorithm for
maximizing energy efficiency and minimizing the SLA violations rate in
Cloud data centers. Actually this algorithm is responsible for calculating the
combination of VMs that will lead to a consolidated solution. In our work we
specify the quality attributes in order to cover a great variety of metrics for

66

the adaptation rules priority cross the different abstraction levels. This
approach focuses mainly on laaS and PaaS levels of abstraction.

Because there are no approaches with adaptation rules priority computations,
we focus on several approaches related with the efficient dynamic task
scheduling. As we have mentioned before an adaptation rule is mapped with
a service or application by the adaptation task. The similarity with our
approach relies on the proposed dynamic selection algorithm of the
adaptation rule with the highest priority. All the mathematical formulas
which take place in the proposed algorithm can be compared to other works
that describe formulas to calculate the best selection of an application, a
service or a task

In [30] we have an introduction to a priority-based queuing model designed
to evaluate the services leased by the Cloud service provider. In the queue,
general service time and response time for arriving requests and pending
requests are stored. The services are considered to be SaaS, PaaS or laaS and
the computations in the Queuing model use a Markovian arrival rate. The
proposed analytical model schedules the Cloud services in order to result in
maximum profit.

In [31] is introduced an approach related with the mapping of the Cloud
resources with the corresponding tasks in order to process the customer
requests. The priority of task execution is a critical issue in the task
scheduling process and is computed according to the most important
parameters that can meet user requirements. An important aspect is the
dynamic computation of the priority value which is adopted in this approach.
A Dynamic Priority-Queue (DPQ) approach based on a hybrid multi-criteria
decision making (MCDM) and Differential Evolution (DE) is presented.
Also a hybrid meta-heuristic algorithm based on Particle Swarm
Optimization (PSO) and Simulated Annealing (SA) is introduced. As in the
previous approach here we have some similarities in the computation
formulas of the most proper task for execution with the dynamic selection of
the adaptation rule with the higher priority.

In [32] an efficient and dynamically scheduling algorithm is proposed. This
algorithm combines a set of features in order to provide an efficient allocation
of tasks. Therefore, analyzing the impact of the different pricing models on
scheduling algorithm will lead to choosing the right pricing model that will
not affect the cost. This paper proposes developing a scheduling algorithm
that combines these features to provide an efficient mapping of tasks and
improve Quality of Service (QoS).

In [33] we have a Markov decision process model designed to minimize the
task scheduling time and optimize load balancing as a scheduling goal. So,

67

actually we have a Cloud workflow scheduling algorithm which incorporates
a Markov decision process model and attempts to minimize task scheduling
time and optimize the load balancing through the use of reinforcement
learning techniques. The set of scheduling schemes is a Pareto optimal
solution set, which can select the optimal scheduling scheme according to the
user’s preference. The most suitable of the schemes is chosen according to
the users’ preferences.

e In [34] we have the introduction of a new dynamic auto-scaling method that
automatically adjusts thresholds depending on the execution environment
status observed by advanced multi-level monitoring systems. In this way,
multi-level monitoring information that includes both infrastructure and
application-specific metrics helps the service providers accomplish
satisfactory adaptation mechanisms for the various runtime conditions. The
more the dynamicity is enhanced, the greater is the support of the adaptation
improvements on both application performance and resource utilization
aspects.

There are differences in the techniques that are used for the task scheduling which
are identified in computation process of the tasks with the higher priority both in
the computational formulas structure and the corresponding quality metrics.
According to our approach the adaptation rules are responsible for the triggering
of the corresponding adaptation tasks. Thus, by the measurements related to the
adaptation task execution we compute the priority of the adaptation rules.
Adaptation histories play a fundamental role in the adaptation rules priority.
Although our approach is considered as state of the art as far as it concerns the
historical records of tasks executions, we can say that some task scheduling
approaches have structure similarities (eg ECMAF). Another important aspect in
our work is that the users can decide on the weights of each of the quality
attributes needed for the priority computation. In such cases like ours, approaches
like AHP can be valuable.

68

Chapter 6

6. Conclusion and Future Work

6.1 Conclusion

In the context of this work, we have created two extensions of the CAMEL
language mapping to two of its meta-models, the adaptation and the execution. In
the extension for CAMEL’s adaptation meta-model we introduce adaptation
tasks, adaptation rules and strategies. Adaptation rules match an event or event
pattern, representing an occurrence of a critical situation, with adaptation
workflows, which specify the concrete adaptation actions to be performed for
addressing this situation, while adaptation strategies are necessary both for
organizing the set of adaptation rules in the context of the same event or event
pattern that triggers them, and for representing the application’s adaptive
behavior. The extension for CAMEL’s execution meta-model was introduced in
order to capture and record the adaptation history of Multi-Cloud applications.
An adaptation history of each application recorded particular sensor
measurements which are exploited for the computation of the quality attributes
that participate in the priority formula to be calculated and come from previous
executions of the adaptation rules selected. Thus, the captured information was
used in order to derive important knowledge useful for the future use of adaptation
actions. This provided for the selection of the most appropriate adaptation rule
according to the current problematic situation expressed in the form of an event
(pattern). Thus, this selection relies on the computation of the adaptation rule
priority through the use of a mathematical formula. Finally, we introduce a
dynamic selection algorithm needed for the selection of the adaptation rule with
the higher priority.

The goal of this thesis is to optimize the adaptation of the applications across
multiple Clouds and different abstraction levels. All the introduced elements of
the CAMEL's extensions help in order to achieve this goal. The workflows are
specified in language-agnostic manner. Language-agnostic specification is a real
benefit if it can be assorted with the transformation logic into the language of the
workflow engine to be exploited for the enactment of the workflows specified.
Apart from advanced adaptation rules, we have the coverage of multiple levels,
the grouping of adaptation rules and the language- & implementation-agnostic
specification of workflows that concerns the fact that we do not restrict the

69

adaptation tasks to their realizations leaving it free for the adaptation system to
choose the best possible realization at runtime.

As a result of the above analysis we conclude that with the new extensions of the
CAMEL modeling language we optimize the management of the applications in
Multi-Cloud environments. The language became more expressive and supports
both of the cross layer adaptation to all the levels of the Cloud (laaS, PaaS, SaaS,
Waa$), and the dynamic selection of the adaptation rule with the highest priority.

6.2 Future Work

The main drawback of the current work is that it is not validated under normal
conditions. Also there is a room for improvement of the modelling of the
participated classes and the optimization of the dynamic selection algorithm for
adaptation rules. This will supply directions which attempt to resolve these
drawbacks:

The proposed extensions could be validated by different use cases. The use
cases which have been analyzed are generic in order to demonstrate the usage
of the content of this work. The adaptation rule strategies and histories could
be analyzed by more complex use cases under normal conditions and for a
set of connections between Cloud Providers and Clients. This approach can
describe workflows of adaptation actions that correspond to real SLO
violations.

e The main worry of the dynamic selection algorithm is if it works properly as
expected and if it takes the right decisions. The adaptation rule priority
selection formula could thus be validated with real-time running services,
and evaluated through resultant performance and suitability of the chosen
adaptation rule.

e In addition, a more specialized approach to the performance metrics and the
mathematical formula used for the computation of priorities could be
made. More measurements must be carried out so that the result can be more
accurate. This would result in the optimization of the proposed algorithm of
the dynamic selection of adaptation rules.

e A great margin of improvement exists in the class of Component itself, so
that more specialized component items can be created e.g the Container
component. This will increase the expressivity of the language so that it can
represent a wide variety of features.

70

Bibliography

[1] Mell, P. & Grance, T. (2011). The NIST definition of cloud computing.

[2] Puthanl, D., Sahooy, B.P.S., Mishraz, S. & Swainz, S. (2015) Cloud Computing
Features, Issues and Challenges:A Big Picture. In IEEE International
Conference on Computational Intelligence and Networks, pp. 7-18. Doi:
10.1109/CINE.2015.31

[3] Zhang, Q., Cheng, L. & Boutaba, R. (2010). Cloud computing: state-of-the-art and
research challenges. In University of Waterloo, Waterloo, Canada, pp. 7-18.
Doi: 10.1007/s13174-010-0007-6

[4] Zeginis, C. & Plexousakis, D. (2010). Monitoring the QoS of Web Services using
SLAs. In Institute of Computer Science, Heraklion, Crete, Greece.

[5] Zeginis, C. (2009). Monitoring the QoS of Web services using SLAs — Computing
metrics for composed services. Master Thesis, Greece, Heraklion, March 2009.

[6] Kritikos, K., Zeginis, C., Griesinger, F., Seybold, D. & Domaschka, J. (2017). A
Cross-Layer BPaaS Adaptation Framework. In FiCloud, Prague, Czech
Republic. In IEEE Computer Society, pp. 241-248. Doi:
10.1109/FiCloud.2017.12

[7] Zeginis, C., Kritikos, K., Garefalakis, P., Konsolaki, K., Magoutis, K. &
Plexousakis, D. (2013). Towards Cross-Layer Monitoring of Multi-Cloud
Service-Based Applications. In: Lau KK., Lamersdorf W., Pimentel E. (eds)
Service-Oriented and Cloud Computing. ESOCC 2013. Lecture Notes in
Computer Science, vol 8135. Springer, Berlin, Heidelberg. Doi: 10.1007/978-
3-642-40651-5_1610.

[8] Zeginis C., Kritikos K. & Plexousakis D. (2014). Event Pattern Discovery for
Cross-Layer Adaptation of Multi-cloud Applications. In: Villari M.,
Zimmermann W., Lau KK. (eds) Service-Oriented and Cloud Computing.
ESOCC 2014. Lecture Notes in Computer Science, vol 8745. Springer, Berlin,
Heidelberg.

[9] Rossini, A. (2015). Cloud Application Modelling and Execution Language

71

http://faculty.winthrop.edu/domanm/csci411/Handouts/NIST.pdf
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7051632
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7051632

(CAMEL) and the PaaSage Workflow. Conference: ESOCC 2015: 4th
European Conference on Service-Oriented and Cloud Computing, At
Taormina, Italy, Volume: CCIS, volume 567, pp. 437-439.

[10] Bsila, A., Ferry, N., Horn, G., Kirkham T., Malawski, M., Parlavantzas, N., Pérez,
C., Rouzaud-Cornabas, J., Rossini, A., Romero, D., Rossini, A., Solberg, A. &
Song, H. (2014). PaaSage: Model Based Cloud Platform Upperware.

[11] Kritikos, K., Domaschka, J. & Rossini, A. (2014). SRL: A Scalability Rule
Language for Multi-cloud Environments. In Conference: IEEE 6th
International Conference on Cloud Computing Technology and Science. Doi:
10.1109/CloudCom.2014.170

[12] Kritikos, K., Magoutis, K., & Plexousakis, D. (2016). Towards Knowledge-Based
Assisted laaS Selection. In IEEE International Conference on Cloud
Computing Technology and Science (CloudCom). Doi:
10.1109/CloudCom.2016.0073

[13] Saaty, T. (1980). Analytic Hierarchy Process. McGraw-Hill, New York.

[14] Hwang, C. & Yoon, K. (1981). Multiple Criteria Decision Making. Lect. Notes
Econ. Math., 1981.

[15] Gal’an, F., Vaquero, L. M., Clayman, S., Toffetti, G., & Henriksson, D. (2009).
Deliverable D4.1, D4.2 and D4.3 — Scientific Report. Reservoir project
deliverable.

[16] Rumpl, A., Rasheed, H., Waeldrich, O., & Ziegler, W. (2010). Service Manifest:
Scientific Report. Optimis project deliverable.

[17] Moore, L. R., Bean, K., & Ellahi, T. (2013). A Coordinated Reactive and Predictive
Approach to Cloud. Elasticity. In CLOUD COMPUTING. IARIA..

[18] Copil, G., Moldovan, D., Truong, H. L., & Dustdar, S. (2013). SYBL: An
Extensible Language for Controlling Elasticity in Cloud Applications. In
CCGrid, pp. 112-119. IEEE Computer Society. Doi:
10.1109/CCGrid.2013.42

[19] Song, H., Raj, A., Hajebi, S., Clarke, A., & Clarke,S. (2013). Model-based cross-

layer monitoring and adaptation of multilayer systems. Science China
Information Sciences, volume 56(8), pp. 1-15.

72

https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7031670
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7031670
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7031670

[20] Erbel, J. M., Korte, F., & Grabowski, J. (2018). Comparison and Runtime
Adaptation of Cloud Application Topologies based on OCCI. In CLOSER.

[21] Marquezan, C. C., Wessling, F., Metzger, A., Pohl, K.,Woods, C., & Wallbom, K.
(2014). Towards exploiting the full adaptation potential of cloud applications.
In PESOS, Proceedings of the 6th International Workshop on Principles of
Engineering Service-Oriented and Cloud Systems, pp. 48-57. Doi:
10.1145/2593793.2593799

[22] Lushpenko, M., Ferry, N., Song, H., Chauvel, F., & Solberg, A. (2015). Using
adaptation plans to control the behavior of models@runtime. CEUR
Workshop Proceedings, volume 1474, pp. 11-20.

[23] Blair, G., Bencomo, N., & France, R. B. (2009). Models@run.time. IEEE
Computer Society Press Los Alamitos, CA, USA, volume 42(10), pp 22-27.
Doi: 10.1109/MC.2009.326

[24] Zeginis, C., Konsolaki, K., Kritikos, K. & Plexousakis, D. (2011). ECMAF:
an event-based cross-layer service monitoring and adaptation framework. In
ICSOC Workshops, ser. Lecture Notes in Computer Science, vol. 7221,
Paphos, Cyprus: Springer, pp. 147-161. Doi: 10.1007/978-3-642-31875-7_15

[25] Zeginis, C. (2014). Cross - layer monitoring and adaptation of multi - cloud service
- based applications. Dissertation, Greece, Heraklion, October 2014.

[26] Pernici, B. & Siadat, H. (2011). Selection of Service Adaptation Strategies Based
on Fuzzy Logic. In IEEE World Congress on Services, Washington, DC, USA.
Doi: 10.1109/SERVICES.2011.33.

[27] Kritikos, K. & Plexousakis, D. (2015). Multi-cloud Application Design through
Cloud Service Composition. In Conference: IEEE 8th International
Conference on Cloud Computing, 2015. Doi: 10.1109/CLOUD.2015.96

[28] Djemame, K, Kavanagh, R , Armstrong, D et al. (6 more authors). (2017). Energy
Efficiency Support through Intra-Layer Cloud Stack Adaptation. In: Lecture
Notes in Computer Science. 13th International Conference on Economics of
Grids, Clouds, Systems and Services (GECON 2016), 20-22 Sep 2016,
Athens, Greece. Springer Verlag , pp. 129-143. Doi: 10.1007/978-3-319-
61920-0_10

[29] Djemame, K., Bosch, R., Kavanagh, R., Alvarez, P., Ejarque, J., Guitart, J. & Blasi,
L. (2017). Paas- laaS Inter Layer Adaptation in Energy aware Cloud
Environment. In: IEEE Transactions on Sustainable Computing, Vol: 2, pp.
127-139. Doi: 10.1109/TSUSC.2017.2719159

73

https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6011825
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8113842
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7194474
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7194474
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7194474

[30] Jaiganesh, M., Ramadoss, B., Vincent, Antony, Kumar, A. & Mercy, S. (2015).
Performance Evaluation of Cloud Services with Profit Optimization.
Department of Information Technology, PSNA College of Engg. and Tech,
Dindigul, Tamilnadu, India. Doi: 10.1016/j.procs.2015.06.003

[31] Ben, Alla, H., Ben, Alla, S. & Ezzati, A. (2017). A Priority Based Task Scheduling
in Cloud Computing Using a Hybrid MCDM Model. In: Sabir E., Garcia
Armada A., Ghogho M., Debbah M. (eds) Ubiquitous Networking. UNet 2017.
Lecture Notes in Computer Science, vol 10542. Springer, Cham. Doi:
10.1007/978-3-319-68179-5 21

[32] Almezeini, N. & Harez, A. An Enhanced Workflow Scheduling Algorithm in
Cloud Computing. In CLOSER 2016 - 6th International Conference on Cloud
Computing and Services Science, King Saud University, Riyadh, Saudi
Arabia.

[33] Jiahao W., Zhiping P., Delong C., Qirui L., Jieguang H. (2018). A Multi-object
Optimization Cloud Workflow Scheduling Algorithm Based on
Reinforcement Learning. In: Huang DS., Jo KH., Zhang XL. (eds) Intelligent
Computing Theories and Application. ICIC 2018. Lecture Notes in Computer
Science, vol 10955. Springer, Cham. Doi: 10.1007/978-3-319-95933-7_64

[34] Taherizadeh, S. & Stankovski, V. (2018). Dynamic Multi-level Auto-scaling

Rules for Containerized Applications. The Computer Journal, Volume 62,
Issue 2, pp. 174-197. Doi: 10.1093/comjnl/bxy043

74

	Contents
	List of Tables
	List of Figures
	1. Introduction
	1.1 Cloud Computing
	1.1.1 Service and Deployment Models

	1.2 Multi-Cloud Applications Management Challenges
	1.3 Cross-layer adaptation framework in Multi- Cloud
	1.4 Thesis Outline

	2. Traffic Management Use Case
	2.1 Application Specification
	2.2 Workflow Structure
	2.3 Service Requirements
	2.4 Application Components
	2.5 Application Instances
	2.6 Running Example Application
	2.7 SLO requirements

	3. Camel Modelling Language Extensions
	3.1 CAMEL’s deployment meta model
	3.2 CAMEL’s adaptation meta-model
	3.2.1 Adaptation Rule
	3.2.2 Adaptation Strategy
	3.2.3 Adaptation Workflow
	3.2.3.1 Task
	3.2.3.2 Application Task
	3.2.3.3 Adaptation Task
	3.2.3.3.1 Single Adaptation Tasks
	3.2.3.3.2 Composite Adaptation Task

	3.3 CAMEL’s execution meta model
	3.3.1 Adaptation Histories Records

	3.4 Adaptation Scenarios Example
	3.4.1 Adaptation Scenario 1 - Migration
	3.4.2 Adaptation Scenario 2 - Component Replacement
	3.4.3 Adaptation Scenario 3 - Cross Cutting
	3.4.4 Adaptation Scenario 4 - IaaS & Horizontal Scaling
	3.4.5 Adaptation Scenario 5 - IaaS & Vertical Scaling
	3.4.6 Adaptation Scenario 6 - Workflow

	4. Adaptation Rules Priority and Dynamic Selection Algorithm
	4.1 Mathematical Formula and Adaptation Tasks Correlation
	4.2 Formula Quality Attributes and Utilities
	4.2.1 Quality Attributes Analysis
	4.2.1.1 Execution Time
	4.2.1.2 Availability
	4.2.1.3 Failure Rate
	4.2.1.4 Successability
	4.2.1.5 Cost

	4.2.2Utility Function per each Quality Attribute
	4.2.3 Adaptation Task Priority Function

	4.3 Dynamic Selection Algorithm
	4.3.1 Adaptation Rule Priority Formula
	4.3.2 Selection Algorithm

	4.4 Use Cases with Adaptation Rules Priority
	4.4.1 Adaptation Scenario for the Adaptation Rule selection
	4.4.2 Numerical examples with priority computations of Adaptation Rules
	4.4.2.1 Abstract Scenario 1- single adaptation tasks
	4.4.2.2 Abstract Scenario 2- single & composite adaptation tasks

	5. Related Work
	5.1 Scalability Rule Modeling
	5.2 Adaptation Rule Modeling
	5.3 Priority Computation

	6. Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work

	Bibliography

