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Abstract

The nature of dark matter (DM) is still under intense debate. Subgalactic scales are partic-
ularly critical, as different, currently viable DM models make diverse predictions on the
expected abundance and density profile of DM haloes on these scales. In this thesis, we in-
vestigate the ability of subgalactic DM haloes to act as strong lenses on background compact
sources, producing gravitational lensing events on milli-arcsecond scales (milli-lenses), for
different DM models. For each DM scenario, we explore whether a sample of ∼ 5000 distant
sources is sufficient to detect at least one milli-lens.

We developed a semi-analytical model to estimate the milli-lensing optical depth as a
function of the source’s redshift for various DM models. We employed the Press-Schechter
formalism, as well as results from recent N-body simulations to compute the halo mass
function, taking into account the appropriate spherically averaged density profile of haloes
for each DM model. We treated the lensing system as a point-mass lens and invoked the
effective surface mass density threshold to calculate the fraction of a halo that acts as a
gravitational lens. We studied three classes of dark matter models: cold DM, warm DM, and
self-interacting DM.

We find that haloes consisting of warm DM turn out to be optically thin for strong gravi-
tational milli-lensing (zero expected lensing events). Cold DM haloes may produce lensing
events depending on the steepness of the concentration-mass relation. Self-interacting DM
haloes can efficiently act as gravitational milli-lenses only if haloes experience gravothermal
collapse, resulting in highly dense central cores. The redshift distribution of the source
sample is fundamental in estimating the expectation number of detected milli-lenses under a
specified DM scenario.
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Chapter 1

Introduction

One of the most groundbreaking findings during the last century was the discovery of a mass
excess in nearby galaxies that could not be explained by the amount of ordinary (luminous)
matter that was found to exist in those galactic systems. The observation of flat rotation
curves in spiral galaxies (e.g., Bosma, 1981; Corbelli and Salucci, 2000; Rubin et al., 1980),
the discrepancy between observed velocity dispersion measurements and those predicted by
the virial theorem in elliptical galaxies and globular clusters (e.g., Faber and Jackson, 1976;
Zwicky, 1933), and the presence of collapsed structures at high redshift (e.g., Gunn and Gott,
1972) were incontrovertible evidence for the existence of a new extraordinary form of matter
in the Universe, called dark matter (DM), which neither emits nor absorbs radiation. The
DM hypothesis has led to several correct predictions and has explained many observational
discrepancies that had emerged in the past from the comparison of observational data with the
first cosmological scenarios that were dust-radiation-only models. Despite the great success
of the DM model, its nature remains unknown, making it one of the most fundamental
unsolved questions in physics.

1.1 Dark matter

1.1.1 ΛCDM successes & challenges

The most widely accepted scenario for the origin of DM is the so-called cold dark matter
(CDM), a part of the standard ΛCDM cosmological model, that has been remarkably suc-
cessful in explaining the properties of a wide range of large-scale observations, including
the accelerating expansion of the Universe (Perlmutter et al., 1999), the power spectrum of
the cosmic microwave background (CMB) (Page et al., 2003), and the observed abundances
of different types of light nuclei (Cyburt et al., 2016). However, the ΛCDM paradigm still
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presents some discrepancies with observations, mostly at small scales. Such small-scale
challenges include, among others, the "cusp-core" problem, the missing satellites problem,
the too-big-to-fail problem, and the angular momentum catastrophe (for a review, see Bullock
and Boylan-Kolchin 2017; see also Perivolaropoulos and Skara 2022). An appealing solution
to those problems is to modify the intrinsic properties of DM particles.

1.1.2 DM alternatives

During the past few years, numerous DM alternatives and ΛCDM extensions have been
proposed by several authors, with the purpose to address some of the ΛCDM challenges.
One of the most promising DM alternatives is the warm dark matter (WDM) model (e.g.,
Lovell et al., 2012; Viel et al., 2005), where particles have a rest mass on the order of a
few keV, such as sterile neutrinos or thermal relics, that had non-negligible velocities at
early times. Another very popular DM scenario is the self-interacting dark matter (SIDM)
model where particles interact with each other (e.g., Spergel and Steinhardt, 2000) having
non-negligible cross sections, on the order of ∼ 1cm2/g (e.g., Zavala et al., 2013). Other
more exotic DM alternative particle-physics theories include the following: ultra-light axion
dark matter (Schwabe et al., 2016), dark atoms (for a review, see Cline, 2021), and fuzzy dark
matter (e.g., Kulkarni and Ostriker, 2022). Although these latter models are not examined
here, the toolkit we have developed can be straightforwardly adapted to any DM model for
which the redshift-dependent mass function and the density profile of haloes and subhaloes
can be calculated.

The properties of the DM particle affect the formation of DM structures on all scales,
their stability, as well as their evolution in time. In addition, the fundamental attributes of
DM particles modify the primordial power spectrum describing the initial overdensity seeds
of cosmological structures. So, differences in the intrinsic DM particle properties between
different models are expected to lead to measurable deviations in the resulting mass function
of collapsed objects. For instance, models that include light particles (i.e., with very low
mass), such as WDM, feature a sharp cutoff in the differential halo mass function below a
critical mass scale, which is closely related to the rest mass of the DM particle. The mildly
relativistic velocities of WDM particles in the early Universe were high enough to wash out
almost any small-scale density fluctuations (free streaming) emerged in the primordial power
spectrum below a specific length scale, called free-streaming length, thereby leading to the
suppression of structures below sub-galactic scales (e.g., Melott and Schramm, 1985; Viel
et al., 2005).Moreover, the density profile (i.e., internal mass distribution) of DM haloes also
turns out to be noticeably different from model to model. For example, virialized haloes
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made of WDM particles typically have lower central densities with respect to CDM haloes of
the same mass, by virtue of their generally later formation epochs (e.g., Lovell et al., 2012).

The study of DM haloes below subgalactic scales turns out to be particularly crucial for
the exploration of the nature of DM. Nevertheless, it is extremely challenging to detect such
haloes directly, in order to either measure their number density in the Universe or examine
their internal structure, since they might not even form galaxies due to their small size. So,
the only possible way to explore and study them is through gravitational effects.

1.2 Strong gravitational lensing

1.2.1 Theory

One of the most promising methods of detecting subgalactic DM haloes is strong gravitational
lensing, where light that passes near a massive object (the lens) is being deflected, traveling
a longer path than it would in the absence of the gravitational potential of the lens (e.g.,
Weinberg, 1972). As a result, when a compact background source (for instance, a radio loud
quasar) emits radiation with the lens being in between the source and the observer and close
enough to the line of sight, then the path of the light is affected strongly, resulting in the
emergence of multiple images of the background source on sky with different magnifications
(e.g., Vegetti et al., 2012), provided its projected surface density exceeds a threshold. This
effect is commonly known as strong lensing (see for example, Wright and Brainerd, 2000).
In the special case where the source displays intrinsic variability, observable time delays
between the different images (pulses) may occur (Zackrisson and Riehm, 2010).

1.2.2 Previous studies

Gravitational lensing can be used to detect compact objects (COs) that could not be detected
otherwise, such as primordial black holes (PBHs) or dense DM haloes. Press and Gunn
(1973) introduced the idea of assessing the cosmological abundance of COs through their
strong gravitational lensing effect on distant background sources. They demonstrated that the
cosmological mass density of COs can be constrained by deriving the fraction of lensed radio
sources. Later on, Wilkinson et al. (2001) carried out a search for milli-lenses (gravitational-
lensing images with milli-arcsec separations) in Very Long Baseline Interferometry (VLBI)
observations of a sample of 300 compact radio sources, but no lensed systems in the mass
range ∼ 106 M⊙ to ∼ 108 M⊙ were found. Their negative result allowed them to place an
upper limit ΩCO ≲ 0.01 (95% confidence) on the cosmological density of COs in this mass
range, concluding that the contribution of a primordial supermassive BHs population to
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the dark matter content of the Universe is negligible. The currently ongoing Search for
MIlli-LEnses (SMILE) project (Casadio et al., 2021) expands the search for milli-lenses
(i.e, lens systems that produce lensed images of a background compact source with angular
separation on the order of milli-arcseconds) in the lens mass range ∼ 106 M⊙ to ∼ 109 M⊙,
to a large and complete sample of ∼ 5000 radio-loud sources using VLBI data.

1.3 Purpose of this study

Motivated by the potential of the SMILE project, in this work we develop a novel method to
exploit its upcoming results (i.e., the fraction of lensed quasars) with the purpose to derive
constraints on the nature of DM and discriminate between currently viable DM scenarios.
Our approach is based on the concept of the lensing optical depth, representing the probability
for an observed source to be gravitationally lensed by a foreground mass distribution. The
prescription for the implementation of this method can be found in Zackrisson and Riehm
(2007). Recently, several authors have followed similar approaches to place limits on the
abundance of PBHs, using Fast Radio Bursts (FRBs) (e.g., Leung et al., 2022; Zhou et al.,
2022a,b), Gamma-ray Bursts (GRBs) (e.g., Kalantari et al., 2021), afterglows of GRBs
(Gao et al., 2022), and compact radio sources (Zhou et al., 2022c), while others explore the
diffractive lensing of gravitational waves (GWs) emanating from binary black hole mergers
by small DM haloes to probe the nature of DM (see Guo and Lu, 2022).

Here, we pursue the possibility of subgalactic DM haloes acting as gravitational milli-
lenses. The mass scales that we focus on are of great importance, since they might provide
a unique opportunity to advance our knowledge concerning the properties of DM particles
and rule out some DM scenarios for two fundamental reasons: 1) they coincide with the
mass scale below which significant deviations between mass functions and density profiles
of various DM models start to emerge (see for example, Bose et al., 2016, and our Sect. 3)
which eventually result in different expectation numbers of lensing events; 2) the contribution
of baryonic matter in cosmological sub-galactic DM haloes is almost negligible (in particular
haloes with mass below ∼ 3×108 M⊙ are not expected to form galaxies; see Benitez-Llambay
and Frenk, 2020).

We derive the expected number of milli-lenses in the source sample of the SMILE project
for various DM models by calculating the milli-lensing optical depth as a function of the
source’s redshift. This in turn depends on the halo mass function, as well as on the projected
surface mass density. Both of these physical quantities have noticeable differences between
various scenarios, and hence the milli-lensing optical depth exhibits differences between DM
models.
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The layout of this thesis is as follows. In Sect. 2 we describe our calculation of the
milli-lensing optical depth. In Sect. 3 we discuss the analytic descriptions we use for the
structure of DM haloes for various cosmological DM scenarios, and their corresponding
mass functions. In Sect. 4 we present the results of our calculations, which we discuss in
Sect. 5





Chapter 2

Lensing probabilities

The principal result of any survey for lensing systems in the observable Universe is the
number of confirmed lensed images in a complete sample of sources (e.g., Browne et al.,
2003; Myers et al., 2003). Such a result, immediately reveals the statistical density of
gravitational lens candidates within the cosmological space determined by the cosmological
location of the observatory and the position of the most distant source included in the source
sample. This number, however, cannot directly yield important constraints related to the
abundance of DM haloes in the Universe, i.e. the mass function, and/or the profile of
lens’ mass distribution. To maximize the constraining power of this product, we have to
connect it to theoretical models that predict the expectation value of lensing events taking
into account the differences in the abundance and density profile of DM haloes between
various DM models. In such a way, the observational result can be compared directly with
the theoretically predicted ones, leading to viable inferences regarding the properties or/and
shape of gravitational lens systems composed of DM. So, a rigorous method that connects
theory with observations is required for solid conclusions to be deduced.

The most straightforward way to achieve this is to compute the lensing optical depth for
any given DM scenario. Subsequently, the amount of observed lensed objects detected in a
given sample can be linked to theory and provide stringent constraints on the nature of DM
by investigating what properties of DM particles produce such a lensing optical depth that
leads to an expectation value of lensing events which matches with the observed one.

The lensing optical depth depends strongly on the mass function of gravitational lenses
and on the surface density profile of each halo, which essentially is related to the density
profile. It also depends on the cosmology. In this paper, we fix the cosmological parameters
to be H0 = 100 h km s−1 Mpc−1, h = 0.7, Ωm = 0.3, ΩΛ = 0.7, n = 0.97, δc(0) = 1.674,
and σ8 = 0.8. The overall results, however, are not sensitive to small variations in these
parameters. It is out of our scope to investigate the behavior of lensing optical depth
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for different cosmological models, and hence we adopt the widely accepted concordance
cosmology, where Ωm +ΩΛ = 1.

2.1 Milli-lensing optical depth

In order for our results to be applicable to the SMILE project, we are interested in lenses
that produce multiple images with angular separation on the order of milli-arcseconds (milli-
lenses). Thus, we focus on lenses of masses (106 −109)M⊙, which result in lensed images
of angular separation that lie on the range ∼ (3−100)mas, considering both the lens and
the source to be at cosmological distances. For the calculation of the milli-lensing optical
depth, we adopt the prescription of Zackrisson and Riehm (2007), which makes use of the
point-mass lens model. We treat the lens as a massive object of mass Ml with an angular
Einstein radius

βE =

√
4

GMl

c2
Dls

DolDos
, (2.1)

where Dos, Dls,andDol are the angular-diameter distances from the observer to the source,
from the lens to the source, and from the observer to lens, respectively, with the lens being at
redshift z while the source is located at redshift zs. The angular-diameter distance DAB from
a point A to B is obtained though the Friedman-Robertson-Walker metric

ds2 = (cdt)2 −a2(t)
[
dr2 + r2dΩ

2] ,
and is given by

DAB(tA, tB) = a(tB)
∫ tB

tA

cdt
a(t)

, (2.2)

where a(t) is the scale factor.
DAB can be also written as

DAB(zA,zB) =
c

1+ zB

∫ zB

zA

dz
H(z)

, (2.3)

where H(z) is the Hubble parameter. Using Friedmann cosmological equations that are solu-
tions of Einstein’s field equations for a spatially flat, isotropic, and homogeneous Universe,
we obtain the dependence of the Hubble’s parameter, H(z) on the redshift, z, namely(

H(z)
H0

)2

= Ωm(1+ z)3 +ΩΛ, (2.4)
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with Ωm, ΩΛ referring to the present values of the density parameters for matter and dark
energy, respectively. We note that, the redshift is a function of time and its dependence on
time is described by the following useful formula

c
dt
dz

=− c
H0

1

(1+ z)
√

Ωm(1+ z)3 +ΩΛ

(2.5)

The milli-lensing optical depth for a source at redshift zs is given by

τ(zs) =
∫ zs

0

∣∣∣∣cdt
dz

∣∣∣∣dz
∫ 109M⊙

106M⊙
σ(Ml,z,zs)

dn(Ml,z,zs)

dMl
dMl, (2.6)

where σ(Ml,z,zs) is the lensing (effective) cross section

σ(Ml,z,zs)≡ πβ
2
ED2

ol =
4πGMl

c2
DolDls

Dos
, (2.7)

and dn/dMl is the differential lens mass function

dn(Ml,z,zs)

dMl
=

dM(Ml,z,zs)

dMl

dn(M,z)
dM

. (2.8)

In Eq. (2.8), dn/dM is the differential halo mass function (see §3.2). We caution the
reader of the two different masses entering Eq. (2.8): the lens mass Ml , and the halo mass
M. These two are not in general the same because only the part of the halo in which the
projected surface mass density exceeds the critical strong lensing threshold can act as a
gravitational lens. The critical surface density value for a source at redshift zs undergoing
strong gravitational lensing by a foreground DM halo (lens) at redshift z is

Σcr(z,zs)≡
Ml

σ(Ml,z,zs)
=

c2

4πG
Dos

DolDls
≳ 109 M⊙ kpc−2. (2.9)

In Fig. 2.1, we show a heat map of the critical surface density value (effective threshold) as a
function of the source redshift zs and lens redshift zl . The values of the effective threshold
for strong lensing are extremely sensitive to the relative positions of the lens, source and
observer. When the lens angular-diameter distance from the observer is comparable to the
distance between the lens and the source (i.e., Dol ∼ Dls), then the effective threshold tends to
get lower values with respect to the case where the lens is either pretty close to the observer
(i.e., zl ≳ 0) or the source (i.e., zl ≲ 0), respectively. In the latter case, the effective threshold
value becomes remarkably higher than the minimum one.
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Fig. 2.1 Critical surface density value (effective threshold for strong lensing) as a function of
the source and lens redshifts. The critical surface density function is given in Eq. (2.9).

In order to calculate the halo mass M for given Ml, z,andzs, we demand a solution of the
equation

Σ(M;Ml,z) = Σcr(z,zs), (2.10)

where Σ is the projected halo surface density described extensively in Sect. 3. Solving this
equation numerically, we obtain M(Ml,z,zs). We use the central finite difference approxi-
mation to estimate the derivative dM/dMl , which appears in Eq. (2.8). Given that the halo
surface mass density is obtained after an integration of the density profile, it is clear that
the results will differ significantly from model to model, since each DM scenario predicts a
different density profile.

2.2 Expectation value of lensing events

Once we obtain the milli-lensing optical depth, we evaluate the expectation number of lensing
events in the SMILE source sample using

Nl =
Nsources

∑
i=1

1− exp(−τ(zs,i)) . (2.11)
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For τ ≪ 1, we can approximate Eq. (2.11) by

Nl ≈
Nsources

∑
i=1

τ(zs,i). (2.12)

The source sample, as well as their corresponding redshifts are described next.

2.3 SMILE sample
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Fig. 2.2 Redshift distribution for sources used in this study. Cyan solid line represents the
redshift distribution of sources with known redshift, whereas golden dashed line stands for
the distribution of the randomly selected redshift measurements from the known redshift
sample.

The source sample considered in this study is the one of SMILE1: a complete sample built
starting from the complete sample used in the Cosmic Lens All-Sky Survey (CLASS; Browne
et al., 2003; Myers et al., 2003), the most successful search to date for gravitational lens
systems at galactic scales using radio frequencies. The complete sample of 11685 sources

1https://smilescience.info/

https://smilescience.info/
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presented in CLASS is drawn from two other catalogs: the 5 GHz GB6 catalog (Gregory
et al., 1996), and the 1.4 GHz NVSS catalog (Condon et al., 1998). The CLASS catalog
contains sources from declination 0◦ to 75◦, with a minimum flux density of 30 mJy at 5
GHz, flat spectral index (< 0.5) between 1.4 and 5 GHz, and Galactic latitude (|b| ≥ 10◦).
The complete sample of 11685 sources has been initially followed up in CLASS with low
resolution Very Long Array (VLA) observations at 8 GHz. The SMILE started from the
complete sample in CLASS and selected sources with total flux density at 8 GHz ≥ 50 mJy.
The 4968 sources that satisfy such a requirement make a complete sample of flat spectrum
sources at declination [0◦, +75◦].

In order to obtain redshift measurements for sources in the SMILE sample, we used
the Optical Characteristics of Astrometric Radio Sources (OCARS) catalog (Malkin, 2018),
containing redshift measurements of a large number of radio sources observed in different
VLBI astrometry programs. Of the 4968 sources in SMILE, 2781 have an optical counterpart
within 3 arcsec with redshift measurements in OCARS. For the remaining sources we
searched for an optical counterpart within 3 arc seconds, with known redshift, in NED2.
In total, we collected redshifts for ∼ 2/3 of sources in SMILE. For the remaining ∼ 1/3,
we followed a rather conservative approach generating redshift measurements by randomly
selecting values from the known redshift sample. Their distribution is shown in Fig. 2.2.

2The NASA/IPAC Extragalactic Database (NED) is funded by the National Aeronautics and Space Admin-
istration and operated by the California Institute of Technology.



Chapter 3

DM haloes & mass functions

3.1 Halo size & structure

The internal structure of dark matter haloes affects the lensing optical depth, since the
threshold for strong gravitational lensing is associated with the projected surface mass
density, which in turn is related to the shape of the density profile. For a detailed review of
the various mass densities see Zavala and Frenk (2019), while a thorough comparison among
various density profiles can be found in Merritt et al. (2006) work.

An important finding of the past decades is that spherically averaged DM density profiles
in N-body cosmological simulations have a universal form (Navarro et al., 1997). Such
density profiles are described by a simple functional form characterized by only two free
parameters. The first one is the concentration parameter, denoted by c∆, which quantifies
how concentrated the mass is toward the center of the halo. The other one is the characteristic
radius, rs, which determines the distance from the center above which the density profile
becomes steeper, that is to say quantifies roughly the size of the core. These two parameters
are related to each other through

c∆ =
r∆

rs
, (3.1)

where r∆ is the virial radius.
Since the distribution of mass is continuous, the boundary of a halo cannot be defined

precisely. So, another major challenge is to come up with a robust method of determining
the size of a halo uniquely. Thus far, numerous papers that deal with this problem have been
published by several authors (Cole and Lacey, 1996; Cuesta et al., 2008; White, 2001; Zavala
and Frenk, 2019). In general, the radius of a halo can be defined through the overdensity
parameter, ∆(z), which in principle depends on the cosmology (Bryan and Norman, 1998;
Naderi et al., 2015; Seppi et al., 2021; Tinker et al., 2008). In particular, it represents the
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radius where the mean interior density is ∆(z) times the critical density of the Universe
ρcr(z), namely

3
4πr3

∆

∫ r∆

0
ρ (⃗r)d3⃗r = ∆ρcr, (3.2)

where the critical density is given by

ρcr(z) =
3H2(z)

8πG
= ρcr,0

(
H(z)
H0

)2

, (3.3)

with G being the Newtonian gravitational constant, while ρcr,0 accounts for the critical density
of the Universe at redshift z = 0, and H(z) is given in Eq. (2.4).

The halo mass M∆, which is the mass contained within a sphere of radius r∆, is given by

M∆ = ∆
4π

3
r3

∆ρcr, (3.4)

and as a result the halo radius can also be written as

r∆(M∆,z) =
(

3M∆

4π∆ρcr(z)

)1/3

. (3.5)

However, the most commonly used way to determine the halo’s size is to consider that the
overdensity parameter ∆ is fixed and equal to 200, since it turns out to be a rather convenient
way to define the boundary of the halo and simplifies the calculations (e.g., Cole and Lacey,
1996). Taking this fact into account, we fix the overdensity to be ∆ = 200, throughout this
paper, and therefore the halo mass is M200 (hereafter, M), the halo radius is r200, and the
concentration is c200 (hereafter, c).

Other quantities used extensively below are the enclosed mass, Menc, the projected surface
mass density, Σ, and the lens mass, Ml . The enclosed mass is defined as the mass that is
contained within a sphere of radius r, namely

Menc(r) = 4π

∫ r

0
r′2ρ(r′)dr′, (3.6)

where we assume that we deal with spherically symmetric objects. The projected surface
density is derived simply by the integration of the mass density along the line of sight (Dhar
and Williams, 2010; Lapi et al., 2012; Mo et al., 2010; Retana-Montenegro et al., 2012;
Wright and Brainerd, 2000)

Σ(s) =
∫

∞

−∞

ρ (⃗r)dz, (3.7)
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where s =
√

r2 + z2 is the projected radius (orthogonal to the line of sight) relative to the
center. For a spherically symmetric density profile , we find that Eq. (3.7) can be also written
in the following form (e.g., Lapi et al., 2012)

Σ(s) = 2
∫

∞

s

rρ(r)√
r2 − s2

dr, (3.8)

where one may recognize its special form as it is the Abel’s integral equation.
Having defined the projected surface density we can infer the gravitational lens mass Ml ,

by carrying out an integration of the Σ(s) over the disk which has radius s (see for example
Eq. 41 in Retana-Montenegro et al., 2012)

Ml(s) = 2π

∫ s

0
xΣ(x)dx. (3.9)

This quantity is the mass contained within an infinite cylinder of radius s in which the mass
distribution is characterized by the mass density profile ρ (⃗r). Equation (2.10) cannot be
solved independently, but must simultaneously satisfy Eq. (3.9), owing to the fact that one
of the input parameters in Eq. (2.10) is the lens mass. Therefore, the relation between lens
mass and halo mass that is needed in the computation of the lensing optical depth is derived
only after solving this coupled nonlinear system.

3.2 Mass function

The computation of the lensing optical depth depends on the number density of lensing
objects, which in our case are DM haloes. So, we need to obtain a formula that determines
the distribution of virialized DM haloes (in the field) per volume element and per halo mass
at a given redshift z, in order to estimate the lensing optical depth. This problem has been
addressed by several authors in the past, either analytically (Bond et al., 1991; Pavlidou and
Fields, 2005; Press and Schechter, 1974) or numerically (Jenkins et al., 2001; Tinker et al.,
2008). All these works are based on the spherical collapse scenario (e.g., Gunn and Gott,
1972; Naderi et al., 2015). Improvements using ellipsoidal collapse do exist (e.g., Sheth et al.,
2001), but we do not use them in this paper.

3.2.1 CDM mass function

The differential halo mass function of CDM haloes (the number of haloes with mass between
the range M and M+dM per proper volume at a given redshift) reads (Press and Schechter,
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1974, see also Appendix A)

n(M,z)≡ dN
dM

=

√
2
π

ρm(z)
M

δc(z)
σ2

M

∣∣∣∣dσM

dM

∣∣∣∣exp
[
−δ 2

c (z)
2σ2

M

]
, (3.10)

where M refers to the halo mass, z is the redshift, ρm(z) is the mean matter density of the
Universe at redshift z, and δc(z) denotes the overdensity of a structure collapsing at redshift
z linearly extrapolated to the present. Moreover, σM is the rms of the density field smoothed
on scale M. For an extensive description of all these quantities, as well as for exact formulae
that determine these variables, we refer the reader to our Appendix A.

3.2.2 WDM mass function

Although the halo mass function for WDM haloes shows a similar behavior to the CDM one
on galaxy clusters scales, it exhibits a cutoff below the dwarf galaxy scale, owing to the free
streaming of WDM particles in the early Universe. The most commonly applied method to
derive the WDM halo mass function is the development of N-body simulations that evolve
the primordial density field perturbations in time, leading to collapsed DM haloes (e.g., Bose
et al., 2016; Lovell, 2020a,b; Schneider et al., 2012). In this study, we choose to use the
numerical fit offered by Lovell (2020b) to take into account the cutoff in the mass function
of WDM haloes with respect to the CDM one. The halo mass function in the case of WDM
is given by

nWDM(M,z) = nCDM(M,z)

[
1+

(
αMhm

M

)β
]γ

, (3.11)

where Mhm is a characteristic mass scale (the half-mode mass), while α, β , γ are parameters
of the fit that have been found to be 2.3, 0.8,−1, respectively. The half-mode mass is
associated with the free-streaming length which in turn is related to the rest mass of the
WDM particle. In Fig. 3.1, we display the half-mode mass against the WDM particle mass,
using the formula provided in Bose et al. (2016). For lighter WDM particles the half-mode
mass increases remarkably due to the fact that the free-streaming length is higher. Current
observations have ruled out the case where mWDM ≲ 2.5 keV.

Here, we are interested in exploring the case where the WDM is made of collision-less
particles (thermal relics) of mass mWDM = 3.3 keV. In this scenario, the theoretical value
for the half-mode mass is Mhm ≃ 2× 108 M⊙ (e.g., Bose et al., 2016). This value for the
half-mode mass coincides with the one for the well-motivated sterile-neutrino model in
which particles are assumed to have a rest mass equal to 7 keV and lepton asymmetry number
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Fig. 3.1 Half-mode mass as a function of the WDM particle rest mass. Red zone shows
the current constrained region of the parameter space. Blue star indicates the rest mass
considered in this study. The formula that relates the half-mode mass to the rest mass is
offered by Bose et al. (2016).

L6 = 8.66 (see Bose et al., 2016). Sterile neutrinos are part of the neutrino Minimal Standard
Model (νMSM; Boyarsky et al., 2009), which is a simple extension to the Standard Model
of particle physics. It has been introduced to explain the unidentified 3.53 keV X-ray line
observed recently in galaxies (see for example, Boyarsky et al., 2014) by considering this
line to be the decay signal of those 7 keV sterile neutrinos.

Given that the cutoff in the halo mass function of these two WDM models is determined by
the same half-mode mass and that the internal structure of haloes is identical, the inferences
of this work concerning the 3.3 keV thermal relic WDM particle will also be valid for the
7 keV sterile neutrinos model. In Fig. 3.2, we display the differential halo mass function
for the CDM model and for the WDM one investigated here as a function of the halo mass
for various redshifts. Solid lines correspond to the proper density of haloes of mass M at
different epochs (redshifts) divided by the present critical density of the Universe, whereas
dashed lines represent the same quantities, but for WDM. A major difference between the
CDM mass function and the mass function of WDM is that the latter one exhibits a cutoff at
the dwarf-galaxy scales (∼ 109 M⊙). This distinctive feature of the halo mass function in the
WDM scenario has a considerable implication to the ability of DM haloes to act efficiently
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as gravitational milli-lenses on background sources, because the mass function is directly
involved in the calculation of the milli-lensing optical depth (Eq. 2.6).
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Fig. 3.2 Comparison of the CDM differential halo mass function with the one of the WDM
model for various redshifts. Solid lines refer to CDM, while dashed lines correspond to
WDM. The vertical axis corresponds to the halo mass while the y-axis shows the proper
density of haloes of mass M normalized to the present value of the critical density of the
Universe. Different colors correspond to different epochs (redshifts).

3.3 CDM halo density profile

To our knowledge, there are a couple of established spherically averaged mass density profiles
that can successfully describe the distribution of CDM within a halo (see also Lazar et al.
2023). The first one is the so called Einasto profile, while the second one is the well-known
Navarro-Frenk-White (NFW) profile. The major difference of the NFW profile from the
Einasto one is that it predicts a cuspy halo’s center, since the mass density declines to infinity
as we approach the center of the halo, while in the Einasto profile the mass density is almost
constant and finite near center. In this study, we employ the NFW profile for the description
of the mass distribution within CDM haloes, as it is feasible to obtain analytical formulae for
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the surface mass density and lens mass, as well. Though, for completeness we present both
of them.

3.3.1 Einasto profile

The Einasto profile was firstly proposed by Einasto (1965) (see also, Cardone et al., 2005;
Dhar and Williams, 2010; Merritt et al., 2006; Navarro et al., 2004; Retana-Montenegro et al.,
2012) and has the following exponential form

ρE(r,c,r−2,a) = ρ−2 exp
[
−2a−1 ((r/r−2)

a −1)
]
, (3.12)

where c is the concentration parameter, r−2 denotes the characteristic radius at which the
logarithmic slope is equal to -2, and ρ−2 is the corresponding density. Such profile is
characterized by a core in the innermost regions of the halo. Another form of this profile
follows (see for example, Eq. 9 in Retana-Montenegro et al., 2012)

ρE(r,ρo,r−2,a) =
200
3

ρcrc3
(

2
a

)3/a a
γ(3/a,(2/a)ca)

· exp [−(r/ℓ)a] , (3.13)

where the variable ℓ is equal to r−2(a/2)a, In addition, γ(s,x) is an integral function known
as the lower incomplete Gamma function, and is defined as

γ(s,x) =
∫ x

0
dt ts−1e−t . (3.14)

Using Eq. (3.6) along with Eqs. (3.13), (3.14), we derive an expression for the enclosed
mass Menc(r) within a sphere of radius r which turns out to be

Menc(r) = M
γ [3/a,(2/a)(r/r−2)

a]

γ [3/a,(2/a)ca]
, (3.15)

while neither the lens’ mass nor the surface mass density can be obtained analytically or
even be written down in terms of elementary functions as Cardone et al. (2005) pointed
out. Nevertheless, Dhar and Williams (2010) provide an impressively accurate numerical
formula that fits the surface density pretty well, and hence can be implemented in studies
with purposes similar to the ones in this work. The numerical fit for the surface mass density
that is offered by Dhar & Williams (2010) is given below

ΣE(s)=
ΣE(0)

Γ(n+1)

{
nΓ

[
n,b(ζ2X)1/n

]
+

bn

2
X1−1/2n

γ(1/2,X1/n)e−bX1/n
−δbnXe−b(

√
1+ε2X)1/n

}
(3.16)
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where

ΣE(0) = 2r−2ρo
Γ(n+1)

bn (3.17)

ρo = ρ−2e2/a (3.18)

b/2n = 1 (3.19)

X = s/r−2 (3.20)

δ = (ζ2 −ζ1)
[
1− e−X µ

]
(3.21)

ε = (ζ1 +ζ2)/2 (3.22)

ζ1 = 1 (3.23)

ζ2 = 1.1513+
0.05657

n
− 0.00903

n2 +O(n−3) (3.24)

µ =
1.5096

n
+

0.82505
n2 − 0.66299

n3 +O(n−4) (3.25)

It should be noted that, the Einasto model consists of 3 free-parameters, which are
the scale radius, r−2, the concentration, c, and the a(≡ 1/n) parameter which controls the
steepness of the density profile. However, Wang et al. (2020) concluded that this free
parameter, a, should be equal to 0.16 in order for the density profile to be consistent with the
data. In fact, they demonstrated that by keeping this parameter fixed at this value, they were
able to fit the data (from N-body simulations) with high accuracy. Hence, Einasto profile
turns out to be a two parameter density profile.

3.3.2 NFW profile

In this study, we employ the Navarro-Frenk-White (NFW) profile for the description of the
mass distribution within CDM haloes (Navarro et al., 1995, 1996, 1997)

ρ(r,rs,c,z) = ρcr(z)
φc

(r/rs)(1+ r/rs)
2 , (3.26)

where rs is the characteristic radius, while φc is calculated by

φc =
200

3
c3

ln(1+ c)− c/(1+ c)
, (3.27)

with c being the concentration parameter, which is not mass independent, but correlates
strongly with the halo mass, as well as with the redshift, following a simple scaling law (see
for example, Bullock et al., 2001; Dutton and Macciò, 2014; Klypin et al., 2016; Neto et al.,
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2007; Prada et al., 2012; Ragagnin et al., 2019, 2021; Shan et al., 2017). The NFW profile
predicts a cuspy halo’s center, since the mass density goes as ∼ r−1 near the center of the
halo.

Using Eq. (3.26) along with Eq. (3.6), we obtain the enclosed mass

Menc (M,z,r200(M,z)) =
M

ln(1+ c)− c/(1+ c)
F(r,c,r200), (3.28)

where
F(r,c,r200) = ln(1+ cr/r200)−

cr/r200

1+ cr/r200
. (3.29)

From Eqs. (3.7) and (3.26), we obtain the surface density

Σ(s,M,z,r200(M,z)) = 2
φcρcr(z)r200c−1

c2(s/r200)2 −1
S (s,c,r200(M,z)), (3.30)

where we have defined for convenience

S (s,c,r200(M,z)) =


1− cos−1(r200/cs)√

c2(s/r200)2 −1
if s > rs

1− cosh−1(r200/cs)√
1− c2(s/r200)2

if s < rs

. (3.31)

From Eq. (3.9), the lens mass then is

Mlens (s,M,z,r200(M,z)) =
M

ln(1+ c)− c/(1+ c)
H (s,c,r200), (3.32)

where

H (s,c,r200) = ln(cs/2r200)

+



2√
(cs/r200)2 −1

arctan

√
cs/r200 −1
cs/r200 +1

if cs > r200

1 if cs = r200

2√
1− (cs/r200)2

arctanh

√
1− cs/r200

cs/r200 +1
if cs < r200

. (3.33)

3.4 WDM halo density profile

Warm dark matter is made of particles that had non-negligible thermal velocities at early
times. This major difference is expected to have an impact on the concentration of mass
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near the center, but not in the shape of the distribution of mass within a halo. Indeed, the
density profile in WDM models can be well described by a NFW profile (see e.g., Bose et al.,
2016; Lovell et al., 2014). However, DM haloes consisting of WDM are typically formed at
smaller redshifts with respect to the formation of CDM haloes. This difference affects the
concentration of the halo, which generally reflects the density of the Universe at the epoch
of halo formation (for a detailed discussion see, Bose et al., 2016; Schneider et al., 2012;
Zavala and Frenk, 2019). Therefore, we assume that the mass distribution in WDM haloes is
consistent with the NFW profile, but more fuzzy, that is to say less concentrated around the
center. In order to calculate the concentration parameter for WDM haloes as a function of
the mass and the redshift we use the findings of Bose et al. (2016). They offer the following
simple functional form for the concentration parameter

cWDM

cCDM
=

(
1+ γ1

Mhm

M

)−γ2

(1+ z)β (z), (3.34)

where γ1 = 60, γ2 = 0.17, and β (z) = 0.026z− 0.04. Mhm is the half-mode mass and in
this work is set to be Mhm = 2×108 M⊙ corresponding either to the model of thermal relics
WDM particles of rest mass mWDM = 3.3 keV or to the 7 keV sterile neutrinos model (an
extension to the Standard model). Due to their smaller concentrations, WDM haloes will be
less likely to exceed the lensing surface-density threshold, resulting in a lower milli-lensing
optical depth.

3.5 SIDM halo density profile

3.5.1 SIDM core-like halo center

The SIDM model was originally introduced by Spergel and Steinhardt (2000) to explain
observations of central densities in galaxies within the Local Group. Since then, numerous
authors have argued that the self-interaction of particles leads to a core-like profile rather
than a cusp-like profile. Such a feature could alleviate the "cusp-core" problem arising for
CDM, and hence is considered a well motivated DM alternative.

There are two kinds of SIDM theories. In the first case the scattering rate per particle,
Γ(r), is velocity independent, which implies that the ratio of the effective cross section, σ , to
the dark matter particle’s mass, m, is constant (e.g., Elbert et al., 2015; Rocha et al., 2013). In
the second scenario, the scattering rate is velocity dependent and falls rapidly as the velocity
increases (e.g., Zavala et al., 2013). For a recent discussion on SIDM models, as well as on
the observational constraints on the self-scattering cross section, see Tulin and Yu (2018).
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In this work, we assume that the scattering rate per particle is velocity independent and
has the following form

Γ(r) ∝ ρ(r)(σ/m)vrms(r), (3.35)

where ρ(r) is the DM mass density at radius r, while vrms is the rms speed of dark matter
particles. We consider a typical value for the ratio σ/m ∼ 1 cm2/g, since SIDM models
with smaller values, on the order of 0.1 cm2/g, are very similar to the CDM models even
on scales smaller than dwarf galaxies and cannot produce detectable deviations from CDM
predictions (Zavala et al., 2013). On the other hand, higher values of the cross section per
mass, ∼ 10 cm2/g, have already been ruled out by cluster observations (see e.g., Dawson
et al., 2012).

For the structure of SIDM haloes, we again assume spherical symmetry, but now we use
a core-like profile. In fact, the mass density is well approximated by the Burkert profile (see
Burkert, 1995), which also has two free parameters and is given by the following formula

ρB(r,rb,ρb) =
ρb

(1+ r/rb)(1+(r/rb)2)
, (3.36)

where rb is the scale (core) radius, while ρb is the central density. As in the NFW profile, the
free parameters of the Burkert profile scale with the halo mass. In the special case where
σ/m ∼ 1 cm2/g, Rocha et al. (2013) have provided a couple of simple scaling laws that
connect both the rb and ρb with the halo mass, using data from N-body simulations. These
relations (Eq. 17 and Eq. 20 in Rocha et al., 2013) are given below

rb

1kpc
= 2.21

(
Mvir

1010 M⊙

)0.43

, (3.37)

ρb

M⊙/pc3 = 0.029
(

Mvir

1010 M⊙

)−0.19

. (3.38)

Since these relations have been derived using the virial mass, Mvir, instead of M200

which we have employed throughout this work, we have to rescale the density profile to be
consistent with Eq. (3.2). Equation (3.36) can be recast as

ρB(r,M) = A (M)
ρb

(1+ r/rb)(1+(r/rb)2)
, (3.39)

where

A (M) =
Mr−3

b
2πρb

[
ln
(

1+
r200

rb

)
+

1
2

ln
(

1+
r2

200

r2
b

)
− tan−1

(
r200

rb

)]−1

, (3.40)
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and now we can use the halo mass M ≡ M200 instead of the virial mass in Eqs. (3.37), (3.38).
The term A (M) has been derived by requiring the mean density inside a sphere of radius
r200 to be 200ρcr (see Eq. 3.2).

Using Eqs. (3.6) and (3.39), we obtain for the enclosed mass

Menc(r) = A (M)πρbr3
b

[
ln
(

1+
r2

r2
b

)
+2ln

(
1+

r
rb

)
−2tan−1

(
r
rb

)]
. (3.41)

The surface density cannot in general be derived analytically and therefore we have to
perform the integration numerically. In the special case where s = 0, that is for the column
density through the line of sight, the integration that returns the surface density ΣB(0) yields
the closed-form expression

ΣB(s = 0,M) = A (M)
π

2
ρbrb, (3.42)

where the index B indicates that this surface density arises from the Burkert profile. The
surface mass density is maximized when s = 0, since ρ(r) is a monotonically decreasing
function of r, and as a result for a SIDM halo of given mass, the maximum value of the
surface density is determined by Eq. (3.42). This feature is of great importance in strong
gravitational lensing where the surface density must exceed a critical threshold in order to
significantly bend a light ray.

In order to have a qualitative picture of the differences between the three mass density
profiles mentioned above, in Fig. 3.3, we apply them to a DM halo of mass M = 108 M⊙ at
redshift z = 0. For SIDM particles the density profile near the center is flat, while for CDM
particles the profile near the center goes as r−1, since we have used the NFW profile. For
WDM particles the profile is NFW-like but with larger characteristic radius than in the CDM
reflecting the fact that the concentration in the WDM scenario is smaller than the one in
CDM.

3.5.2 SIDM core collapse

Even though most of SIDM models are in favor of a less dense core-like halo center, the
strong self-interaction developed between particles in the innermost region of the halo might
have important implications in the dynamical evolution of the halo. In one scenario, strong
self-interactions between particles induce a negative heat capacity, eventually leading to the
formation of a dense central core in the inner part of the halo (see e.g., Yang and Yu, 2021,
2022). Yang and Yu (2021) demonstrated that such a scenario can be successful in explaining
the observational excess of small-scale gravitational lenses in galaxy clusters reported in
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Fig. 3.3 Comparison of mass density profiles for a given halo of mass M = 108 M⊙ at redshift
z = 0 for various dark matter scenarios. The concentration for the CDM case is given by
Eq. (4.1). Black solid line represents the CDM density profile, while the red-dashed line
corresponds to the WDM one (with Mhm = 2×108 M⊙). The yellow dot-dashed line stands
for the SIDM model.

Meneghetti et al. (2020). They exploited the fact that at late stages of the gravothermal
evolution of a halo composed of SIDM, the core might undergo gravothermal collapse,
resulting in a highly dense halo center, thereby increasing its lensing effect on background
sources compared to CDM haloes.

In the most extreme case, the collapsed core can further contract, eventually leading to
the formation of a supermassive black hole (SMBH) at the halo center. This scenario was
firstly proposed and studied extensively by Feng et al. (2021) (see also Feng et al., 2022)
as a possible mechanism to explain the existence and origin of SMBHs at high redshifts
(z∼ 6−7). Essentially, SIDM offers a natural mechanism for triggering dynamical instability,
a necessary condition to form a black hole. This scenario can be tested and well-constrained
through milli-lensing, since the central SMBH can effectively act as a strong gravitational
lens and produce multiple images of a compact background source.

Given that studies dealing with the core collapse scenario do not provide an exact formula
for the final mass distribution of DM inside the collapsed halo, we shall restrict ourselves in
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investigating here only the latter, most extreme, scenario of core collapse where the formation
of a SMBH takes place from the gravothermal collapse of the core. The exploration of this
model yields an upper limit on the expectation value of lensing events in the SMILE source
sample in the case of the SIDM scenario.



Chapter 4

Results

4.1 CDM

4.1.1 CDM: model A

We start by investigating the CDM scenario using a concentration-mass relation derived from
N-body simulations. We employ the relation given in Ragagnin et al. (2019) to determine the
dependence of the concentration parameter c on the redshift z, as well as on the halo mass M:

c(M,z) = 6.02
(

M
1013 M⊙

)−0.12( 1.47
1+ z

)0.16

. (4.1)

In Fig. 4.2 we plot with a blue solid line the milli-lensing optical depth obtained for this
c(M,z). The value of the milli-lensing optical depth is well below ∼ 10−4 implying that even
a sample of ten thousands distant (z ∼ 5) compact sources is highly unlikely to produce at
least one lensing event. Indeed, performing the summation in Eq. (2.12) over all sources
involved in the SMILE sample, we end up with the value

〈
Nexp

〉
≃ 1.5×10−3, which makes

detection of a milli-lens improbable.

4.1.2 CDM: model B

As a limiting case of the possible effect of the concentration-mass relation on our results, we
also test a power-law extrapolation to lower masses of the empirical (fitted from observations
rather than simulations) c-M relation shown in Fig. 13 of Prada et al. (2012)

logc(M,z) = 4.23−0.25log(M/M⊙)−0.16log
(

1+ z
1.47

)
. (4.2)
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Regarding the dependence on redshift, we consider that it is identical to Eq. (4.1), but we
stress that most studies suggest a weak dependence of the concentration on redshift, so even
if we slightly modify the last term in Eq. (4.2) associated with the redshift dependence, the
overall results do not change noticeably. In practice, the concentration parameter is set by
the halo mass. We note that Eq. (4.2) predicts higher values of the concentration parameter
with respect to the ones inferred from N-body simulations. Although this c−M relation has
been derived from galaxy cluster observations and might overestimate the c parameter of
haloes on subgalactic scales, recently Şengül and Dvorkin (2022) investigated the strong lens
system JVAS B1938+666, concluding that subgalactic DM haloes can be highly concentrated
(c ≈ 60), in line with Eq. (4.2).

Using this relation in Eq. (2.6), we obtain the green dash-dotted line in Fig. 4.2, showing
the milli-lensing optical depth as a function of the source redshift. Subsequently, using Eq.
(2.12) to compute the expectation value of lensing events in the source sample of SMILE, we
obtain

〈
Nexp

〉
≃ 1.2. This value deviates remarkably from the one corresponding to model A

(see Sect. 4.1.1), demonstrating that the concentration-mass relation plays a crucial role in
the process of strong gravitational milli-lensing and can thus be strongly constrained with
milli-lensing observations. This value also places an upper limit on the expectation number
of detected milli-lenses in the SMILE’s source sample, in the case where the properties of
DM particles are in line with the framework of the CDM model.

A comparison between the two concentration-mass relations related to the CDM scenario
for redshift z = 0 can be found in Fig. 4.1. The concentration-mass relation given by Eq.
(4.1) (Model A) is displayed with a blue solid line, while the green dash-dotted line stands
for the c(M) considered in model B (i.e., Eq. 4.2).

4.2 SIDM

In the SIDM model, there are two possibilities, which lead to quite different internal structure
of haloes. The first corresponds to haloes described by a core-like density profile, while the
latter refers to haloes of collapsed cores.

4.2.1 SIDM core-like halo center

The standard scenario is the one where the inner part of haloes is characterized by a core-like
profile yielding the projected surface mass density of Eq. (3.42). Since the surface mass
density is maximized at the center of the halo (as long as the density profile is a decreasing
function of r), if the central region does not exceed the critical threshold for strong lensing,
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Fig. 4.1 Concentration-mass relation at z = 0 for different dark matter scenarios. Blue solid
line represents the CDM (A) scenario in which the concentration-mass relation is given by Eq.
(4.1). Green dash-dotted line stands for the (B) CDM model in which the concentration-mass
relation is Eq. (4.2). Red dashed line refers to WDM model (D) where c(M,z) is calculated
by Eq. (3.34).

then the halo will not act as a strong lens. Using Eq. (3.42) and Eq. (2.9), we conclude
that the halo mass of a SIDM halo must be ≳ 1014 M⊙, for the surface mass density at the
center to exceed the strong lensing threshold. However, this mass scale corresponds to galaxy
clusters and therefore no trustful inferences can be done without including the effect of strong
lensing due to the presence of baryons. The main finding is that SIDM-only subgalactic
haloes cannot produce milli-lensing images since they are not dense enough to satisfy the
strong lensing criterion.

4.2.2 SIDM core collapse: model C

The second scenario related to SIDM haloes is based on the gravothermal core collapse
process that might take place in the inner parts of SIDM haloes (see Sect. 3.5.2). Assuming
that the halo in the beginning was described by a NFW profile with the concentration-mass
relation to given by Eq. (4.1), we can calculate the mass enclosed inside a projected disk
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Fig. 4.2 Lensing optical depth as a function of the source redshift for different dark matter
scenarios: CDM (A) model (blue solid line); CDM (B) model (green dot-dashed line); SIDM
core-collapse (C) model (black dotted line); and WDM (D) model (red dashed line).

with radius equal to the scale radius rs. Then, we consider the most extreme case where the
entire core collapses into a very small but extremely dense core that eventually results in the
formation of a compact object. This collapsed core is the part of the halo that can produce
strong gravitational lensing of light emitted by background sources.

In Fig. 4.2, we show with the black dotted line the milli-lensing optical depth in the case
of SIDM core collapse. Having obtained the optical depth, we carry out the sum shown in
Eq. (2.12) over the redshifts of the SMILE project sources and find the value

〈
Nexp

〉
≃ 13.

4.3 WDM: model D

In order to derive the milli-lensing optical depth for the scenario of WDM, where particles
are supposed to have a rest mass mWDM = 3.3keV (thermal relic) or be sterile neutrinos
with a rest mass equal to 7keV, we take into account that the halo mass function is different
from that in CDM, and so we adopt the fit offered by Lovell (2020b) (Eq. 3.11) to model
the cosmological abundance of WDM haloes in the field. Regarding the density profile
we again employ the NFW one, but with the concentration parameter to be given by Eq.



4.3 WDM: model D 31

(3.34). This concentration-mass relation is however a fit that relates the concentration of
WDM haloes with the one corresponding to CDM haloes, so we simply consider that the
concentration-mass relation of CDM haloes is the one shown in Eq. (4.1) and in such a way
we obtain a formula for the concentration of WDM haloes as a function of the halo mass and
redshift. In Fig. 4.1, we display the concentration-mass relation which corresponds to WDM
haloes at z = 0 with a red dashed line.

Performing the integration of Eq. (2.6), we find the milli-lensing optical depth in the
case of WDM, shown in Fig. 4.2 with the red dashed line. Combining this result with
Eq. (2.12), we compute the expectation number of detected WDM milli-lenses, obtaining〈
Nexp

〉
≃ 1.1×10−3. It is therefore extremely unlikely to detect any milli-lenses with SMILE

if DM is in the form of WDM.





Chapter 5

Discussion & conclusions

In this work we have explored the ability of subgalactic DM haloes to act as milli-lenses on
background sources resulting in multiple images of the same source with angular separation
on the order of milli-arcseconds, considering different DM models. We have developed a
semi-analytical method to estimate the expectation value of detected milli-lenses in several
DM scenarios, computing the lensing optical depth. We have modeled the number density
and internal structure of haloes using either (semi)analytical calculations or fits to N-body
simulation results, depending on the DM model. We have restricted ourselves in applying
the point-mass lens approximation to infer the lens mass, imposing the effective surface
threshold criterion for strong lensing to connect the lens mass to the halo mass. Finally, we
used the milli-lensing optical depth in each scenario to calculate the expectation number of
detected milli-lenses in the source sample of the SMILE project.

We found that the probability of strong milli-lensing by DM haloes strongly depends on
the model, being regulated by the properties of DM particles which dictate the inner structure
of haloes, as well as their number density. We have shown that even within the CDM model,
the lensing optical depth is quite sensitive to variations in the concentration-mass relation,
in agreement with Amorisco et al. (2022), leading to very different expectation values of
detected milli-lenses in the SMILE source sample. Milli-lensing observations might therefore
enable us to constrain the concentration-mass relation down to subgalactic mass scales.

In addition, we have demonstrated that DM scenarios which are in favor of core-like
density profiles, such as the SIDM one investigated here, are unlikely to produce milli-
lenses because they predict haloes with low-density centers. However, our method allows
to also probe scenarios like core collapse which enhance considerably the probability of
milli-lensing.

Finally, we have shown that haloes consisting of WDM lead to an extremely small
milli-lensing optical depth due to their combination of low concentration and mass-function
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Fig. 5.1 Expectation number of detected milli-lenses in the SMILE project. Colored points
refer to different DM models: (A) CDM (blue); (B) CDM (green); (C) SIDM core-collapse
(black); and (D) WDM (red). The error-bars have been derived assuming Poisson-like error
in the calculation of the expectation values.

cutoff. Even if a steeper concentration-mass relation (such as Eq. 4.2) is used, the cutoff in
the number density below subgalactic scales still prevent the milli-lensing optical depth from
increasing significantly. Therefore, the detection of milli-lenses would provide definitive
evidence against the WDM model and more generally models that exhibit a cutoff in their
halo mass function affecting the 106 −109 M⊙ mass scales.

In Fig. 5.1, we summarize our results, plotting the expectation value of detected milli-
lenses for all models investigated in this study. The blue point corresponds to the CDM
model A (Sect. 4.1.1), while the green point refers to the CDM model B (Sect. 4.1.2). The
black point corresponds to the core collapse SIDM scenario C (Sect. 4.2.2) and the red
point to the WDM model D (Sect. 4.3). Even among the limited number of DM models
studied here, milli-lensing observations of source samples comparable to that of SMILE hold
significant discriminating power.
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5.1 Potential sources of uncertainty

5.1.1 Contribution of baryons

Even though subgalactic haloes are expected to be almost empty of baryons, one source of
uncertainty in our work might be the fact that we ignore the overall effect of baryons in the
internal structure of haloes, which in principle can alter the ability of those haloes to act as
milli-lenses. Although such systems are DM dominated, the baryons might play a crucial
role in the strong lensing and therefore it is left for a future investigation, since the purpose
of this paper is mostly to highlight the point that milli-lensing observations can be used to
constrain the nature of dark matter and further discriminate between currently viable models.

5.1.2 Contribution of super-massive black holes

Another possible source of uncertainty arises from the fact that some DM haloes might host
a SMBH at their center, which would contribute significantly in the strong lensing signal
from those haloes, thereby modifying our results. However, neither the fraction of haloes that
host such objects at their centers nor the accurate relation between SMBH and halo mass are
known. In addition, there is still much discussion on explaining the existence of unexpectedly
large SMBHs in luminous quasars observed at high redshifts, which might challenge current
theoretical models.

In general milli-lensing experiments, and in particular the upcoming results of the SMILE
project (see Sect. 2.3), could be exploited to test theoretical models of SMBH formation
in the early Universe through their imprints on milli-lensing signals, and thus milli-lensing
surveys might have strong discriminatory power in this context. Nevertheless, this issue
requires very careful and detailed treatment in modeling the connection of DM haloes to
SMBHs that are embedded inside them, and therefore will be addressed in a future paper.
Hence we do not take this possibility into account and ignore the effect of SMBHs in this
study.

5.1.3 Sensitivity to the redshift distribution

Here, we made a rather conservative choice and assumed a certain redshift distribution for
the ∼ 1/3 of sources for which no redshift measurements were currently available. Given the
lack of knowledge about the distances of these sources, we adapted a rather plausible redshift
distribution, which was chosen to be similar to the one of the sources with known redshift.
This conservative choice partially affects the results, although not our qualitative conclusions.
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For instance, if we considered that a considerable fraction of sources with missing redshift
measurements are among the weakest and most distant sources, then the expectation number
of detected milli-lenses would increase. In this case, the constraints computed in this study
would be lower limits.
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Fig. 5.2 Redshift distribution of the total number of sources in the SMILE sample. In light
grey the redshift distribution of sources with known redshift (Euclid future measurements are
not considered). In colors, four different hypothetic redshift distributions for sources with
unknown redshift: a redshift distribution similar to that of sources with known redshift (blue),
a uniform distribution between z = 0 and z = 3 (orange), a uniform distribution between z = 3
and zmax in our sample (green), and a Gaussian distribution around z = 4 (pink), justified by
recent finding on radio-loud sources (Sbarrato et al., 2022).

To quantify the effect of the redshift distribution in our findings, we re-computed the
expectation value of detected milli-lenses in SMILE, for the four representative DM models
discussed in Ch. 4, considering four different redshift distributions for sources with currently
unknown redshift. In Fig. 5.2, we display the redshift distribution of the sources with known
redshift (light grey color) along with four hypothetical redshift distributions for the SMILE
sources of currently missing redshift. Blue line corresponds to a redshift distribution similar
to the one of sources with known redshift, orange line refers to a uniform distribution between
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zs = 0 and zs = 3, green line stands for a uniform distribution between zs = 3 and zmax (in
the SMILE sample), and pink line is a Gaussian distribution around zs = 4, motivated by the
recent findings on radio-loud sources (Sbarrato et al., 2022).
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Fig. 5.3 Expectation values of detected milli-lenses within SMILE for all different redshift
distributions shown in Fig. 5.2 and for four different DM scenarios considered in this study
(see Ch. 4).

In Fig. 5.3, we plot the computed expectation value of detected milli-lenses for the
aforementioned different redshift distributions of the sources of missing redshift (see Fig.
5.2). Two DM models (B and C) predict the detection of milli-lens systems within the SMILE
project, while the other two scenarios (A and D) predict numbers that are below the detection
threshold. This means that, irrespective of the redshift distribution, both in the case in which
no milli-lens system is found and in the case in which we find some, we will be able to discard
some of the current DM models. Nevertheless, the redshift distribution yields a measurable
variation in the expectation values, as clearly shown in Fig. 5.3. In model (B) the expectation
number spans from ∼ 1 to ∼ 5, for different redshift distributions, and for model (C) from
∼ 11 to ∼ 27. Hence, better estimates of the expectation values of detected milli-lenses can
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be only obtained by increasing the number of sources with measured redshifts in the future.
Obtaining redshift measurements for the SMILE sources of currently missing redshift would
therefore be a critical step for the SMILE project.

It should be noted, however, that the qualitative findings in this work are insensitive in
variations of the redshift distribution corresponding to the fraction of sources with unknown
distances. As a matter of fact, even if we considered that all sources of unknown redshift
(∼ 1600) had a redshift at about 5, then as can be inferred from Fig. 4.2, the lensing optical
depth for the models (A) & (D), which predict zero milli-lenses, would still be well-below
∼ 10−4, therefore could not yield measurable deviations in the expectation values, which
would again vanish for these two models.

5.2 Summary

In this study, we have concluded that: 1) the source sample included in the SMILE project is
sufficiently large to enable inferences about the nature of DM; 2) WDM haloes are highly
unlikely to produce even a single strong milli-lensing event in the source sample of SMILE;
3) SIDM haloes can only act as strong milli-lenses in the case where self-interactions trigger
the core collapse mechanism, leading to highly dense cores; 4) the ability of CDM subgalactic
haloes to act as milli-lenses strongly depends on the mass-concentration relation; and 5)
gaining information towards the cosmological distances of the SMILE sources of currently
missing redshift is a critical step towards obtaining more robust estimates of the expectation
value of detected milli-lenses. Finally, we have shown that if CDM is indeed the relevant
model for describing the properties of DM particles, then milli-lensing observations will
enable us to further constrain the relationship between concentration and halo mass down to
subgalactic mass scales.

In short, we have demonstrated that milli-lensing surveys allow us to probe the properties
of DM particles and infer constrains on their nature. Hopefully, the completion of the SMILE
project (see Sect. 2.3) in combination with this thesis, as well as follow up theoretical works
on the calculation of the milli-lensing optical depth, including the effects of baryons, will
give us the unique opportunity to explore the nature of dark matter and do considerable
progress towards its identification.
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Appendix A

Press-Schechter mass function

In this appendix, we offer a short prescription for calculating the halo mass function. For
more details on the subject, see Mo et al. (2010).

A.1 Preliminaries

Suppose that matter was initially uniformly distributed in space (Universe) with a mean
matter density ρm. Due to quantum mechanical effects, small local fluctuations appeared in
the mass density ρ (⃗x). It is convenient to define the density field δ (⃗x), which quantifies the
fractional deviation of the mass-density at x⃗ from the mean matter density. The density field
is given by

δ (⃗x) =
ρ (⃗x)−ρm

ρm
, (A.1)

and as we will see below, this density field can be well described by the initial power spectrum
Pinit(k).

Obviously, these fluctuations evolved in time, since matter experiences gravity the
Universe is not static but expands. As a result, the density field is time dependent and varies
through time. According to the linear theory we can write down the following equation

δ (⃗x, t) = D(t)δ0(⃗x), (A.2)

where D(t) is the linear growth normalized to D(to) = 1 and δ0(⃗x) denotes the density
field linearly extrapolated to t = to. We remark that, the D(t) is strongly dependent on the
cosmology. The mean density field is given by

⟨δ ⟩= 1
V

∫
V

δ (⃗x)d3⃗x, (A.3)
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while the variance in the density field is calculated by

σ
2 = ⟨δ (⃗x)δ (⃗x)⟩= 1

V

∫
V

δ
2(⃗x)d3⃗x, (A.4)

and the correlation function is defined as

ξ (⃗r) = ⟨δ (⃗x)δ (⃗x+ r⃗)⟩

=
1

(2π)6

〈∫
δ (⃗k)ei⃗k·(⃗x+⃗r)d3⃗k

∫
δ (⃗k′)ei⃗k′ ·⃗xd3⃗k′

〉
. (A.5)

Now, if we write the δ (⃗k) in the following form

δ (⃗k) = |δk|eiφk , (A.6)

then it yields

ξ (⃗r) =
1
V

∫ d3⃗k
(2π)3 |δk|2 ei⃗k·⃗r

=
1

(2π)3

∫
P(k)ei⃗k·⃗rd3⃗k, (A.7)

where P(k) is the matter power spectrum and is given by

P(k) =
1
V
|δk|2 . (A.8)

Obviously, if we set r⃗ = 0 in the correlation function we end up with the variance σ2,
which usually is written in the following form

σ
2 =

∫ k=∞

k=0
∆

2(k)
dk
k
, (A.9)

where

∆
2(k) =

k3P(k)
2π2 ,

is the unit-less power spectrum.

Smoothing

In order to proceed to the derivation of the Press-Schechter mass function, it is convenient to
introduce a useful technique, called smoothing method, which has been extensively discussed
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and adopted in the related literature extensively. According to this technique, we have to
smooth out the density field and therefore the variance by using a window function W (⃗x;R)
(called "filter") that is normalized such that∫

V
W (⃗x;R)d3⃗x = 1, (A.10)

where R is the characteristic (scale) radius of the "filter" and dictates the smoothing. The
smoothed density field is given by

δ (⃗x;R) =
∫
V

δ (⃗x′)W (⃗x− x⃗′;R)d3⃗x′. (A.11)

Note that, instead of using the a characteristic length scale, we can equivalently define a
characteristic mass M that is related to the radius R through

M = γ f ρmR3, (A.12)

where the γ f parameter depends on the shape of the "filter" and is calculated by the following
expression (Mo et al., 2010)

γ
−1
f = R3W (0;R). (A.13)

The Fourier transform of the smoothed density field is

δ (⃗k;R) =
∫

δ (⃗x;R)e−i⃗k·⃗xd3⃗x

=
∫

d3⃗x′ δ (⃗x′)e−i⃗k·⃗x′
∫

d3⃗xW (⃗x− x⃗′;R)e−i⃗k·(⃗x−⃗x′)

= δ (k)W (⃗k;R), (A.14)

where we employed Eq. (A.11). W (⃗k,R) is the "filter" function in the Fourier space (k-space)

W (⃗k;R) =
∫

W (⃗x;R)e−i⃗k·⃗xd3⃗x. (A.15)

The variance of the smoothed density field is given by

σ
2 =

〈
δ

2(⃗x;R)
〉
=

1
2π2

∫
∞

0
P(k)W 2(kR)k2dk, (A.16)

where we considered that W (⃗k,R) depends only on the variable |⃗k|R (e.g., Eq. A.29; see also
Mo et al. 2010).
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A.2 Press Schechter formalism

Assume the density field δ (⃗x) to be a Gaussian random field, then so is the δ (⃗x;R). Thus, we
can write the following general formula that describes a Gaussian distribution of the density
field

P(δM)dδM =
1√

2πσ2
M

exp
(
− δ 2

M

2σ2
M

)
dδM, (A.17)

where δM = δ (⃗x;R) and σM = σ(M) = σ(R).
Supposing the model describing the formation of the haloes is the spherical collapse

model, then regions with δM > δc(t) will collapse to form dark matter haloes. The δc(t)
quantity is called critical overdensity, which turns out to be equal to δc(0)/D(t) (see, Eq.
C30 in Pavlidou and Fields, 2005) and is the minimum overdensity required for a region to
collapse into forming a halo.

Press-Schechter postulate (Press and Schechter, 1974): The probability that δM > δc(t)
is equal to the mass fraction that at time t is contained in haloes with mass greater than M.
Mathematically, it is translated to

F(> M, t) = P>δc =
∫

∞

δc

P(δM)dδM

=⇒ F(> M, t) =
1
2

erfc
[

δc(t)
2σM

]
, (A.18)

but, in the limit M → 0, the variance becomes limM→0 σM → ∞, which yields F(> 0, t) =
erfc(0) = 1/2. Nevertheless, the mass fraction F(> M, t) must tend to 1 as M → 0, so a
fudge factor equals 2 must be inserted manually in Eq. (A.18), in order to give us a correct
result. Therefore, we deduce

F(> M, t) = 2P>δc . (A.19)

A.3 Deriving the differential halo mass function

The differential halo mass function, which represents the number density of collapsed haloes
with mass in the range [M,M+dM], is defined as

n(M, t) =
dN
dM

=
1
M

dN
d lnM

. (A.20)
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Using the Press-Schechter (PS) postulate and Eq. (A.19), we can obtain a formula for
dN/dM as follows. Subtracting the F(M + dM) fraction from the F(> M), we get the
fraction of mass that is locked up in haloes with masses in the range [M,M + dM]. So, if
we multiply it with the mean matter density and divide by M, we end up with the following
expression that corresponds to the differential halo mass function:

dN
dM

=
ρm

M
∂

∂M
F(> M, t). (A.21)

Substituting Eqs. (A.18), (A.19) into Eq. (A.21), we finally obtain

n(M) = 2
ρm

M
∂

∂M
P>δc

= 4
ρm√
2πM

∂

∂M

∫
∞

δc/2σM

due−u2

=−
√

2/π
ρm

M
δc

σ2
M

dσM

dM
exp(−δ

2
c /2σ

2
M)

=
√

2/π
ρm

M
δc

σ2
M

∣∣∣∣dσM

dM

∣∣∣∣exp(−δ
2
c /2σ

2
M). (A.22)

A.4 Halo mass function

Using the Press-Schechter formalism, we found the differential halo mass function to be
(Press and Schechter, 1974)

n(M,z)≡ dN
dM

=

√
2
π

ρm(z)
M

δc(z)
σ2

M

∣∣∣∣dσM

dM

∣∣∣∣exp
[
−δ 2

c (z)
2σ2

M

]
, (A.23)

where ρm(z) = Ωm(1+ z)3, δc(z) is the overdensity of a structure collapsing at redshift z
linearly extrapolated to the present epoch, and σM accounts for the linear rms fluctuation
(variance) of the density field on scale M. Under the spherical collapse assumption and
concordance cosmology, the critical overdensity is given by (e.g., Eq. C30 in Pavlidou and
Fields, 2005)

δc(z) =
1

D(z)
δc(0), (A.24)

where D(z) is the normalized linear growth factor, that is D(z = 0) = 1, calculated by

D(z) = G
[
(2ω)1/3/(1+ z)

]/
G
[
(2ω)1/3

]
, (A.25)
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while ω = ΩΛ/Ωm and

G(u) =
(2+u3)1/2

u3/2

∫ u

0

y3/2

(2+ y3)3/2 dy. (A.26)

The variance σM, normalized to be equal to σ8 when R = 8h−1 Mpc, is given by (see Eq.
10 in Pavlidou and Fields, 2005)

σ
2
M = σ

2
8

∫
∞

0 dk P(k)W 2(kR(M))k2∫
∞

0 dk P(k)W 2(k8h−1 Mpc)k2 , (A.27)

where the σ8 parameter is a direct observable quantity, while W (kR) refers to the window
function (filter) and R is the characteristic radius of the filter related to the mass M through

R(M) =

(
M

γ f ρm

)1/3

, (A.28)

where γ f is a parameter depending on the shape of the filter. Here, we employ a sharp in
k-space filter given by

W (⃗k;R) =

{
1 if |⃗k| ≤ R−1

0 if |⃗k|> R−1 . (A.29)

Given this choice, γ f becomes equal to 6π2 (Mo et al., 2010).
In Eq. (A.27), P(k) stands for the linear matter power spectrum. Invoking linear theory,

we can write the matter power spectrum to be

P(k) ∝ T 2(k)Pinit(k), (A.30)

where Pinit is the initial power spectrum proportional to kn with n = 0.97, while T (k) cor-
responds to the transfer function. Bond and Efstathiou (1984) offer the following simple
numerical formula for the transfer function T (k), which is consistent with the ΛCDM model
(see also Jenkins et al., 2001)

T (k) =
1[

1+
[
aq+(bq)3/2 +(cq)2

]ν
]1/ν

, (A.31)

where q= k/Γ, Γ=Ωm,0h, ν = 1.13, a= 6.4 h−1 Mpc, b= 3 h−1 Mpc, and c= 1.7 h−1 Mpc.


	Table of contents
	List of figures
	1 Introduction
	1.1 Dark matter
	1.1.1 CDM successes & challenges
	1.1.2 DM alternatives

	1.2 Strong gravitational lensing
	1.2.1 Theory
	1.2.2 Previous studies

	1.3 Purpose of this study

	2 Lensing probabilities
	2.1 Milli-lensing optical depth
	2.2 Expectation value of lensing events
	2.3 SMILE sample

	3 DM haloes & mass functions
	3.1 Halo size & structure
	3.2 Mass function
	3.2.1 CDM mass function
	3.2.2 WDM mass function

	3.3 CDM halo density profile
	3.3.1 Einasto profile
	3.3.2 NFW profile

	3.4 WDM halo density profile
	3.5 SIDM halo density profile
	3.5.1 SIDM core-like halo center
	3.5.2 SIDM core collapse


	4 Results
	4.1 CDM
	4.1.1 CDM: model A
	4.1.2 CDM: model B

	4.2 SIDM
	4.2.1 SIDM core-like halo center
	4.2.2 SIDM core collapse: model C

	4.3 WDM: model D

	5 Discussion & conclusions
	5.1 Potential sources of uncertainty
	5.1.1 Contribution of baryons
	5.1.2 Contribution of super-massive black holes
	5.1.3 Sensitivity to the redshift distribution

	5.2 Summary

	References
	Appendix A Press-Schechter mass function
	A.1 Preliminaries
	A.2 Press Schechter formalism
	A.3 Deriving the differential halo mass function
	A.4 Halo mass function


