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Choose Wisely: An Extensive Evaluation of Model
Selection for Anomaly Detection in Time Series

Abstract
Anomaly detection is a fundamental task for time-series analysis with impor-

tant implications for the downstream performance of many applications. Despite
increasing academic interest and the large number of methods proposed in the
literature, recent benchmark and evaluation studies demonstrated that no overall
best anomaly detection methods exist when applied to very heterogeneous time
series datasets. This lack of a universally superior method poses a significant
challenge for practitioners who need to select the most appropriate technique for
their specific datasets. To overcome this limitation, this thesis proposes a model
selection pipeline that can automatically determine the best anomaly detection
technique based on the characteristics of the time series data. By leveraging time
series classification algorithms for model selection, the goal is to provide a scal-
able and viable solution to solve anomaly detection over highly diverse time series
collected from various domains.

Existing AutoML solutions are not directly applicable to time series anomaly
detection, and no evaluation of time series-based approaches for model selection
currently exists. Accordingly, we compare 16 different classifiers over 1800 time
series, representing a diverse range of datasets. By comparing the performance
of these classifiers, the study provides the first comprehensive evaluation of time
series classification as a model selection approach for anomaly detection. The re-
sults demonstrate that model selection methods outperform individual anomaly
detection methods while maintaining execution times in the same order of magni-
tude. This evaluation serves as a crucial first step in demonstrating the accuracy
and efficiency of time series classification algorithms for anomaly detection, set-
ting a strong baseline that can guide the model selection step in general AutoML
pipelines.

The findings of this evaluation have significant implications for the field of
time series anomaly detection. The demonstrated superiority of model selection
methods over individual anomaly detection techniques highlights the importance
of selecting the most appropriate method based on time series characteristics. By
capitalizing on the strengths of different anomaly detection methods, practitioners
can enhance the overall performance of their anomaly detection systems. More-
over, the evaluation serves as a benchmark for comparing and selecting time series
classification algorithms for model selection purposes in anomaly detection tasks.
This comprehensive study not only provides valuable insights into the effective-
ness of various classifiers, but also establishes a foundation for further research and
development in automated model selection approaches for time series anomaly de-
tection. Ultimately, the proposed model selection method and the experimental
evaluation contribute to advancing the state-of-the-art in time series analysis and
enable more accurate and efficient anomaly detection in diverse application do-
mains.





Επιλέξτε προσεκτικά: Μια Εκτενής Αξιολόγηση

Επιλογής Μοντέλων για την Ανίχνευση

Ανωμαλιών σε Χρονοσειρές

Περίληψη

Η ανίχνευση ανωμαλιών είναι μια θεμελιώδης εργασία για την ανάλυση χρονοσει-

ρών με σημαντικές επιπτώσεις στην επίδοση πολλών εφαρμογών. Παρά το αυξανόμενο

ακαδημαϊκό ενδιαφέρον και τον μεγάλο αριθμό μεθόδων που προτείνονται στη βιβλιο-

γραφία, πρόσφατες μελέτες έδειξαν ότι δεν υπάρχουν καθολικά βέλτιστες μέθοδοι

ανίχνευσης ανωμαλιών όταν εφαρμόζονται σε ετερογενή σύνολα χρονοσειρών. Αυτή

η έλλειψη μιας καθολικά βέλτιστης μεθόδου αποτελεί σημαντική πρόκληση για όσους

πρέπει να επιλέξουν την καταλληλότερη τεχνική για τα δεδομένα τους. Για να ξεπερα-

στεί αυτός ο περιορισμός, η παρούσα διατριβή προτείνει μία μέθοδο επιλογής μοντέλων

που μπορεί να επιλέξει αυτόματα την καλύτερη τεχνική ανίχνευσης ανωμαλιών με βάση

τα χαρακτηριστικά των χρονοσειρών. Αξιοποιώντας αλγορίθμους ταξινόμησης χρονο-

σειρών, ο στόχος είναι μια επεκτάσιμη και εφικτή λύση για την επίλυση της ανίχνευσης

ανωμαλιών σε εξαιρετικά διαφορετικές χρονοσειρές από διάφορους τομείς.

Οι υπάρχουσες λύσεις αυτόματης μηχανικής μάθησης δεν είναι άμεσα εφαρμόσι-

μες στην ανίχνευση ανωμαλιών για χρονοσειρές, και επί του παρόντος δεν υπάρχει

αξιολόγηση προσεγγίσεων επιλογής μοντέλων βασισμένων σε χρονοσειρές. Ως εκ

τούτου, συγκρίνουμε 16 διαφορετικούς ταξινομητές σε 1800 χρονοσειρές, που αντι-

προσωπεύουν διάφορα και ποικίλα σύνολα δεδομένων. Συγκρίνοντας τις επιδόσεις

αυτών των ταξινομητών, αυτή η εργασία παρέχει την πρώτη εκτεταμένη αξιολόγηση

της ταξινόμησης χρονοσειρών ως επιλογή μοντέλων για την ανίχνευση ανωμαλιών. Τα

αποτελέσματα δείχνουν ότι οι μέθοδοι επιλογής μοντέλου υπερτερούν των επιμέρους

μεθόδων ανίχνευσης ανωμαλιών, διατηρώντας παράλληλα χρόνους εκτέλεσης στην

ίδια τάξη μεγέθους. Αυτή η αξιολόγηση χρησιμεύει ως ένα σημαντικό βήμα για να

καταδείξει την αποτελεσματικότητα των αλγορίθμων ταξινόμησης για την ανίχνευση

ανωμαλιών και θέτει ένα ισχυρό σημείο αναφοράς για την καθοδήγηση της επιλογής

μοντέλων στις γενικές διαδικασίες της αυτόματης μηχανικής μάθησης.

Τα ευρήματα αυτής της αξιολόγησης έχουν σημαντικές επιπτώσεις στον τομέα

της ανίχνευσης ανωμαλιών. Η αποδεδειγμένη υπεροχή των μεθόδων επιλογής μο-

ντέλων υπογραμμίζει τη σημασία της επιλογής της καταλληλότερης μεθόδου με βάση

τα χαρακτηριστικά της χρονοσειράς. Με την αξιοποίηση των πλεονεκτημάτων διάφο-

ρων μεθόδων ανίχνευσης ανωμαλιών, μπορεί να βελτιωθεί η συνολική απόδοση των

συστημάτων ανίχνευσης ανωμαλιών. Επιπλέον, η τρέχουσα αξιολόγηση χρησιμεύει

στη σύγκριση αλγορίθμων ταξινόμησης χρονοσειρών για την επιλογή μοντέλων για

ανίχνευση ανωμαλιών. Αυτή η μελέτη όχι μόνο παρέχει πολύτιμες γνώσεις σχετικά

με την αποτελεσματικότητα των διαφόρων ταξινομητών, αλλά θέτει και τα θεμέλια

για περαιτέρω έρευνα σε αυτοματοποιημένες προσεγγίσεις επιλογής μοντέλων για την

ανίχνευση ανωμαλιών. Τελικά, η προτεινόμενη μέθοδος και η πειραματική αξιολόγηση

συμβάλλουν στην πρόοδο της ανάλυσης χρονοσειρών και επιτρέπουν την ακριβέστερη

και αποτελεσματικότερη ανίχνευση ανωμαλιών σε διάφορους τομείς.
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Chapter 1

Introduction

Extensive collections of time-dependent measurements have become a reality in
every scientific domain [10, 72]. The recording of these measurements results
in an ordered sequence of real-valued data points, commonly referred to as time
series. Analyzing time series data is becoming increasingly important in virtu-
ally every scientific and industrial domain, including astronomy [50], biology [11],
economics [65], energy sciences [8], engineering [87], environmental sciences [42],
medicine [77], neuroscience [13], and social sciences [26]. Anomaly detection, in
particular, has received ample academic and industrial attention [71, 38], and
has become a significant problem that finds applications across a wide range of
domains and situations. These applications share the same goal [12, 85, 95]: an-
alyzing time series to identify observations that do not correspond to expected
behavior. In practice, anomalies can correspond to [3]: (i) noise or erroneous data
(e.g., broken sensors); or (ii) actual data of interest (e.g., abnormal behavior of
the observed system). In both cases, detecting such types is crucial for many
applications [7, 46].

1.1 Motivation

In recent years, many techniques have been proposed for time-series anomaly de-
tection. Multiple surveys and benchmarks summarize and analyze the state-of-
the-art proposed methods [14, 74, 80, 73, 54, 92, 59, 53, 57]. Such surveys and
benchmarks provide a holistic view of anomaly detection methods and how they
perform. Unfortunately, these benchmark and evaluation studies demonstrated
that no overall best anomaly detection methods exist when applied to very het-
erogeneous time series (i.e., coming from very different domains). In practice, we
observe that some methods outperform others on specific time series with either
specific characteristics (e.g., stationary or non-stationary time series) or anomalies
(e.g., point-based or sequence-based anomalies).

To overcome the above limitation, ensembling solutions have been proposed [5]
that consist of running all existing anomaly detection methods and averaging all

1



2 CHAPTER 1. INTRODUCTION

anomaly scores. Figure 1.1 shows that this solution (in orange) is outperforming
all individual existing techniques in the TSB-UAD benchmark [74]. Nevertheless,
as shown in Figure 1.1, such solutions require running all methods, resulting in an
excessive cost that is not feasible in practice.

Therefore, the only scalable and viable solution to solve anomaly detection over
very different time series from various domains is to propose a model selection
method that will select, based on time series characteristics, the best anomaly
detection method to run. This topic has been tackled in several recent research
works related to AutoML (Automated Machine Learning) for the general case of
anomaly detection [99, 97]. Nevertheless, existing AutoML solutions require (i)
a universal objective function among models, which is not applicable to anomaly
detection methods; (ii) a predefined set of features, which is difficult to obtain
for time series due to varying lengths and the lack of standardized featurization
solutions; (iii) running multiple anomaly detection methods several times, which
is prohibitively expensive in practice; or (iv) labeled anomalies, which (in contrast
to classification tasks) are difficult to obtain. Therefore, more work is needed in
order to render AutoML solutions applicable to time-series anomaly detection.

1.2 Proposed Approach

Towards that direction, we cast the model selection problem for anomaly detection
in time series as a time series classification problem. The objective is to train a
time series classification model on time series for which we know in advance which
anomaly detection method is the best. However, the lack of a benchmark with
labeled time series has been a limiting factor for training robust model selection
models (this only changed very recently [74, 80, 55]). Therefore, there exists no
experimental evaluation that measures the effectiveness of classification methods
for the task of model selection for time series anomaly detection. Though, such
an evaluation is very important for determining which time series classification
methods are accurate as model selection methods, and which solutions should be
considered in unsupervised settings (i.e., using model selection approaches on time
series from domains that were not included in the training set). These results would
help the design and effectiveness of general AutoML pipelines for time series.

Thus, in this work, we evaluate the performance of time series classification
methods used as model selection for anomaly detection in time series. To do so, we
propose a pipeline that enables any kind of time series classifier to be used for any
univariate time series with different lengths. We then compare the execution time
and accuracy for feature-based, traditional time series classifiers and deep learning
classification algorithms. We also measure how these models perform when trained
on time series of a given domain (e.g., electrocardiogram [68]) and tested on time
series from a different domain (e.g., robotics sensors measurements [78]).

Overall, we compare 16 different classifiers over 1980 time series and 12 anomaly
detection methods from the recent anomaly detection benchmark TSB-UAD. Thus,



1.2. PROPOSED APPROACH 3

D
et

ec
tio

n 
tim

e 
(s

ec
):

lo
g-

sc
al

e
V

U
S

-P
R

Figure 1.1: Summary of our evaluation on the TSB-UAD benchmark [74] of model
selection methods (best in blue) when compared to 12 anomaly detection methods
and the Averaging Ensemble (in orange).
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we propose the first extensive experimental evaluation of time series classification
as model selection for anomaly detection. Our results demonstrate that model
selection methods outperform every single anomaly detection method while being
in the same order of magnitude regarding execution time. Figure 1.1 shows a sum-
mary of our experimental evaluation, where the best model selection method (in
blue in Figure 1.1) is up to 2.8× more accurate than the best anomaly detection
method in the TSB-UAD benchmark and 1.9× more accurate than the ensem-
bling solution mentioned above. This evaluation is the first step to demonstrate
the accuracy and efficiency of time series classification algorithms for anomaly de-
tection. It represents a strong baseline that can then be used to guide the choice
of approaches for the model selection step in more general AutoML pipelines.

1.3 Contributions

Our contributions can be summarized as follows.

• We cast the model selection problem for time-series anomaly detection meth-
ods into a time-series classification problem. We describe and study the need
to evaluate time series classification methods for model selection (Chapter 3).

• We introduce our novel pipeline for model selection applied to anomaly de-
tection in time series. As this pipeline is generic, we describe how it can be
used with both feature-based classification methods, traditional time series
classification methods, and deep learning-based methods (Chapter 4).

• We describe our experimental framework (on top of the recent anomaly de-
tection benchmark TSB-UAD [74]), and provide details on both anomaly
detection methods and time series classification methods considered in this
work (Chapter 5). We make all our material publicly available online on
GitHub [15].

• We present an extensive experimental evaluation, measuring the anomaly de-
tection accuracy and execution time (both training and inference) of model
selection algorithms (Chapter 5.2). We evaluate the influence of important
parameters and the relationship between classification and anomaly detection
accuracy (Chapters 5.3, 5.4, and 5.5). Moreover, we measure the transfer-
ability of model selection algorithms to new types of time series by testing
multiple combinations of train and test datasets that do not contain the same
kinds of time series (Chapter 5.6).

• We provide an interactive Web App [16] for (a) exploring our results (Chap-
ter 6) and (b) testing our pretrained models with your own data.

Finally, we conclude with the implications of our work and discuss possible future
directions that could help improve both the accuracy and the execution time of
our proposed pipeline (Chapter 7).



1.4. PUBLICATIONS 5

1.4 Publications

This research has been accepted for presentation at the International Conference
on Very Large Data Bases (VLDB), Vancouver - Canada, Aug. 2023.
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Chapter 2

Background and Related Work

We first introduce formal notations useful for the rest of the thesis (Chapter 2.1).
Then, we review in detail previously proposed time-series anomaly detection meth-
ods (Chapter 2.2), and finally we discuss their limitations when applied to large
heterogeneous sets of time series (Chapter 2.3).

2.1 Time-Series and Anomaly Score Notations

Time Series: A time series T ∈ Rn is a sequence of real-valued numbers Ti ∈ R
[T1, T2, ..., Tn], where n = |T | is the length of T , and Ti is the ith point of T . We
are typically interested in local regions of the time series, known as subsequences.
A subsequence Ti,ℓ ∈ Rℓ of a time series T is a continuous subset of the values of T
of length ℓ starting at position i. Formally, Ti,ℓ = [Ti, Ti+1, ..., Ti+ℓ−1]. A dataset
D is a set of time series. Note that the time series contained in D can be of diverse
lengths. We define the size of D as |D|.
Anomaly Score Sequence: For a time series T ∈ Rn, an anomaly detection
method (or detector) D returns an anomaly score sequence ST . For point-based
approaches (i.e., methods that return a score for each point of T ), we have ST ∈
Rn. For subsequence-based approaches (i.e., methods that return a score for each
subsequence of a given length ℓ), we have ST ∈ Rn−ℓ. Overall, for subsequence-
based approaches, we define ST = [ST 1, ST 2, ..., ST n−ℓ] with ST i ∈ [0, 1]. In most
applications, we require the anomaly score to have the same length as the time
series. Therefore, for subsequence-based approaches, we define ST = [ST 1]i∈[0,ℓ/2]+
[ST 1, ST 2, ..., ST n−ℓ] + [ST n−ℓ]i∈[0,ℓ/2] with |ST | = |T |.
Anomaly Detection Accuracy: For a time series T ∈ Rn, an anomaly detec-
tion method (or detector) D that returns an anomaly score sequence D(T ) = ST

and labels L ∈ [0, 1]n that indicated with 0 or 1 if the points in T are normal or
abnormal respectively, we define Acc : Rn, {0, 1}n → [0, 1] as an accuracy function
for which Acc(D(T ), L) indicates how D is accurate (i.e., and produce an anomaly
score close to 1 when the label is equal to 1) when applied on T and accordingly
to L. The closer to one, the better.

7
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2.2 Anomaly Detection Methods for Time Series

Anomaly detection in time series is a crucial task for many relevant applications.
Therefore, several different methods (for diverse types of time series, or appli-
cations) have been proposed in the literature. One type of anomaly detection
method is discord-based methods. These methods focus on the analysis of subse-
quences for the purpose of detecting anomalies in time series, mainly by utilizing
nearest neighbor distances among subsequences [95, 82, 56, 63, 40, 27, 61].

Instead of measuring nearest neighbor distances, proximity-based methods fo-
cus on estimating the density of particular types of subsequences in order to either
extract a normal behavior or isolate anomalies. As a subsequence can be seen as a
multidimensional point (with the number of dimensions corresponding to the sub-
sequence length), general outlier detection methods can be applied for time series
anomaly detection [62, 25, 66]. Among them, Isolation Forest [62] has been shown
to work particularly well for time series anomaly detection task [21]. Moreover, re-
cent proximity-based methods dedicated to identifying abnormal subsequences in
time series have been proposed. For instance, NormA, a proximity-based method
that first clusters data to obtain the normal behavior [17, 19, 18, 23, 22], or Se-
ries2Graph that converts the time series into a graph to facilitate the detection of
anomalies [21], has been shown to achieve strong performance.

Furthermore, forecasting-based methods, such as recurrent neural network-based
[67] or convolutional network-based [69], have been proposed for this task. Such
methods use the past values as input, predict the following one, and use the fore-
casting error as an anomaly score. Such methods are usually trained on time series
without anomalies, or make the assumption that the anomalies are significantly
less frequent than the normal behaviors.

Finally, reconstruction-based methods, such as autoencoder approaches [79],
are trained to reconstruct the time series and use the reconstruction error as an
anomaly score. As both forecasting and reconstruction-based categories detect
anomalies using prediction errors (either forecasting or reconstruction error), we
can group them into prediction-based methods.

2.3 Limitations of Anomaly Detection Methods

Recent benchmarks and experimental evaluations have been proposed in the lit-
erature [80, 73, 55]. Such benchmarks provide a large collection of time series
from various domains and evaluate multiple methods belonging to the categories
mentioned above. However, these experimental evaluations led to the same con-
clusion: no method exists that outperforms all the others on all time series from
various domains. Figure 2.1, which depicts the accuracy of 12 diverse anomaly
detection methods1 on four time series datasets, illustrates the conclusion above.

1We use 12 methods that have been employed in previous studies [74, 73]. Note that other
methods and variations exist that may lead to improved results.
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In Figure 2.1 (a.2), we observe that NormA is the most accurate model on the
ECG dataset [68] (a time series example is depicted in Figure 2.1 (a.1)). However,
Local Outlier Factor (LOF) [25], and Matrix profile (MP) [95] are significantly
outperforming NormA on the MGAB dataset [86] (see Figure 2.1 (b.2)), whereas
CNN [69] is outperforming NormA, LOF, and MP on the YAHOO dataset [58]
(see Figure 2.1 (d.2)). The following two reasons explain this large difference in
performance among datasets.

2.3.1 Heterogeneity in anomaly types

First, There are three types of time-series anomalies: point, contextual, and collec-
tive anomalies. Point anomalies refer to data points that deviate remarkably from
the rest of the data. Similarly, Contextual anomalies refer to data points within
the expected range of the distribution (in contrast to point anomalies) but deviate
from the expected data distribution, given a specific context (e.g., a window). For
instance, Figure 2.1 (d.1) illustrates a time series from the YAHOO dataset with a
Contextual anomaly. The value of the anomalies is inside the range of normal val-
ues, but is abnormal in the context of the distribution of values of the surrounding
point. For this particular types of anomalies, reconstruction and forcasting-based
methods are particularly accurate (as shown in Figure 2.1 (d.2))

Collective anomalies refer to sequences of points that do not repeat a typi-
cal (previously observed) pattern. The first two categories, namely, point and
contextual anomalies, are referred to as point-based anomalies, whereas collective
anomalies are referred to as subsequence anomalies. For instance, Figure 2.1 (a.1),
(b.1), and (c.1) show three time series with sequence anomalies. However, even
for time series belonging to the same anomaly type categories, we observe that the
most accurate models are all different.

2.3.2 Heterogeneity in time series structures

This diversity in model accuracy can be explained by other factors related to the
time series structures. Indeed, on top of these categories mentioned above, the
combination of them also matters.

First, we need to differentiate time series containing single anomalies from time
series containing multiple anomalies. Last, the multiple time series category has to
be divided into two subcategories, namely time series containing multiple different
and multiple similar anomalies. For instance, methods based on neighbor distance
computation such as LOF are very accurate in detecting single or multiple different
anomalies, but less accurate for multiple similar. To illustrate this point, Figure 2.1
(a.2) depicts the results of 12 anomaly detection methods on the ECG dataset
(that contains multiple similar anomalies), for which LOF accuracy is low. On
the contrary, Figure 2.1 (b.2) depicts the results of the same 12 anomaly detection
methods on the MGAB dataset (that contains multiple different anomalies), for
which LOF accuracy is high.
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Figure 2.1: Accuracy of 12 anomaly detection methods on 4 datasets.

On top of the large variety of time series and anomaly characteristics mentioned
above, time series can have distinct statistical characteristics, resulting in an even
larger variability in the accuracy of anomaly detection methods. The latter can
be the differences between stationary (i.e., with a constant distribution of values
over time) and non-stationary (i.e., with a changing distribution of values over
time) time series, or single normality (i.e., time series containing only one normal
behavior) and multiple normalities (i.e., time series containing multiple normal
behaviors) time series.



Chapter 3

Motivation and Problem

In this section, we describe solutions that can be applied to solve the limitations
mentioned above, and we motivate the benefits of these solutions. We finally
formally define the problem.

3.1 Ensembling Detectors

The first solution is to ensemble the anomaly scores produced by all the detectors.
Multiple ensembling techniques have been proposed in the literature [5] from which
two main methods arise: (i) Averaging : the average of the anomaly scores for each
timestamp, (ii) Maximizing : the maximum anomaly score for each timestamp
(iii) Average of Maximum: the average of the maximum for a randomly selected
subset of detectors. Averaging strategy is proven to be the more robust and low-
risk strategy compared to the other two [5]. Formally, the Averaging strategy is
defined as follows:

Definition 1. Given time series T of length n and a set of detectors B, Averaging
strategy is defined as Avg Ens = [Avg1, Avg2, ..., Avgm] with Avgi (for i ∈ [i,m])
equals to Avgi = (1/|B|)

∑
D∈B D(T )i.

In the rest of the thesis, we call the Averaging strategy Averaging Ensemble
(Avg Ens). As depicted in Figure 1.1 (a), which shows the accuracy of detectors
(in grey) and the Averaging Ensemble (in orange), we observe that such a strategy
already outperforms all existing approaches. Nonetheless, such a method requires
running all detectors to produce one ensembled anomaly score, resulting in a costly
execution time (see Figure 1.1 (b)). In a scenario with very long time series and
an increasing number of detectors to consider, such an approach is not sustainable
and feasible in practice.

11
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3.2 Model Selection

A solution to tackle the limitations mentioned above is to apply model selection
based on the characteristics of the time series. The main idea is to train a model
to automatically select the best detector (anomaly detection method) for a given
time series. In such a case, the user only has to run one model, drastically limiting
the execution time required. This topic has been tackled in several recent papers
related to AutoML (Automatic Machine Learning). Recent approaches, such as
MetaOD [99, 97], explored meta-learning to identify the best outlier detection al-
gorithm on tabular datasets. These research works rely on pre-computed accuracy
performances of models on a subset of datasets to essentially learn a mapping
from the characteristics of a dataset to detectors’ accuracy performance. Meth-
ods have been proposed to select models in an unsupervised way [44], but require
running multiple models in advance, which (like Averaging Ensemble) limit the
applicability due to high cost.

3.3 Classification for Model Selection

In general, for the specific case of time series, most of the work described above
and future AutoML methods will rely on time series classification methods for
the model selection step. In such a case, the method aims to classify time series
into classes corresponding to the available anomaly detection methods. One time
series must be classified into the detector class that maximizes anomaly detection
accuracy. However, no existing guidelines indicate which time series classification
approach can be used as model selection. Thus, there is a need to evaluate and
measure the benefit that time series classification approaches can bring to the
anomaly detection task.

The first step is to evaluate the potential gain in accuracy that model selection
could bring. To do this, recent time series anomaly benchmarks [74, 80] can be
used. We can evaluate the accuracy upper bound that model selection methods
reach on such benchmarks. Thus, we define a hypothetical model called Oracle,
which, for a given time series, always selects the correct anomaly detector to use
(i.e., the most accurate). Formally, Oracle is defined as follows:

Definition 2. Given a dataset D composed of time series T and labels L (with the
length of the time series |T | = n non-constant for all time series in D), and a set
of detectors B = {D1, Di, ..., Dm} with the number of detectors defined as |B| = m,
Oracle(T ) = argmaxD∈B

{
Acc

(
D(T ), L

)}
In the rest of the thesis, we call Oracle, the hypothetical model Oracle(T )

applied to all T in a given benchmark. For example, figure 1.1 shows in white the
accuracy of Oracle applied on the TSB-UAD benchmark [74] and demonstrates
that a perfect model selection method outperforms the best detector in TSB-
UAD and the Averaging Ensemble by a factor of 2.5. This large improvement
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in accuracy and execution time confirms the potential benefits of model selection
applied for time series anomaly detection. Thus, there is a need to evaluate the
performances of existing time series classification methods when used as model
selection algorithms and how close such methods can get to the Oracle.

3.4 Problem Formulation

Therefore, based on the limitations and the motivation listed above, we can for-
malize the problem of model selection as follows:

Problem 1. Given a dataset D composed of time series T (with the length of the
time series |T | = n non-constant for all time series in D) and a set of detectors
B = {D1, D2, ..., Dm} with the number of detectors defined as |B| = m, we want
to build a model selection method M that takes a time series T ∈ D and returns
a detector D ∈ B (formally M : D → B) such that, for a given time series T and
corresponding label L:

M(T ) = Oracle(T ) = argmax
D∈B

{
Acc

(
D(T ), L

)}
Moreover, as the input of the model M is a time series (of variable length) and

the output is a detector D among a finite number of detectors B, the problem can
be seen as a time series classification problem for which the classes are the detectors
in B. Therefore, the only requirement is to have computed all Acc(D(T ), L) for
all T ∈ D and all D ∈ B and use it as a training set.

3.5 Objectives

In summary, the goal of this experimental evaluation is to answer the following
questions:

• Classification as Model selection: How do current time series classifica-
tion methods compare to individual detectors and the Oracle?

• Ensembling or selecting: Is selecting detectors automatically more accu-
rate than ensembling them?

• Features or Raw values: Should we use time series features or the raw
time series values to predict which detector to use?

• Out-Of-Distribution: What happens when the model selection approach
is trained on some datasets and tested on completely new datasets? Are all
the answers from the previous questions valid?

We now describe our pipeline and experimental evaluation to answer the questions
listed above.
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Chapter 4

Proposed Pipeline

In the current chapter, we present in detail the proposed pipeline. The latter
corresponds to a sequence of preprocessing and postprocessing steps such that
the inputs of the model selection algorithms are equal in length. The proposed
pipeline, illustrated in Figure 4.1, is composed of the following steps: (i) Prepro-
cessing step: Extraction of the subsequences of same lengths (Figure 4.1 (b)),
(ii) Prediction step: Prediction of which detector to use for each subsequence
(Figure 4.1 (c)), and (iii) Selection step: Majority voting among all the different
prediction to select one detector only (Figure 4.1 (d)). In the following section, we
describe the three steps mentioned above in detail.

4.1 Preprocessing Step

Time series classification can be performed with three different strategies: (i)
treating the entire time series as one sample, (ii) dividing the time series into
overlapping subsequences, (iii) dividing the time series into shifting subsequences
(i.e., non-overlapping subsequences). The first strategy is straightforward, as each
time series is treated as a single observation. Nevertheless, not all classifiers can
handle variable-length inputs, and training such models can be computationally
intensive (i.e., batches of time series cannot be treated in parallel). The second
strategy involves dividing the time series into overlapping subsequences (of a given
window length ℓ). Despite possible loss of information, it forces each input of
the methods to be the same length (ℓ), allowing simpler and faster computation
when performed in parallel. In the third strategy, we divide time series into non-
overlapping subsequences (of a given length ℓ), removing redundant information
in overlapping subsequences. The latter might lead to separate anomalies into
multiple windows, but significantly reduces the number of inputs generated by the
second strategy and significantly accelerates the training and inference time. For
these reasons, as illustrated in Figure 4.1 (a) and (b), we chose the third strategy.

Thus, the time series of length |T | are divided into Tl non-overlapping subse-
quences of length ℓ. When the length of the time series is not divided evenly with

15
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Figure 4.1: Proposed pipeline for the anomaly detection method selection

the window length ℓ, the remainder is added with an overlap between the first two
windows. Formally, Tl is defined as follows:

Tl =

{{
Ti∗ℓ,ℓ

∣∣∀i ∈ [
0,
⌈ |T |

ℓ

⌉]}
, if

⌈ |T |
ℓ

⌉
= |T |

ℓ{
T0,ℓ

}⋃{
T|T |−⌈ |T |

ℓ
⌉+i∗ℓ,ℓ

∣∣∀i ∈ [
0,
⌈ |T |

ℓ

⌉]}
, if

⌈ |T |
ℓ

⌉
< |T |

ℓ

We expect the length ℓ to have a great impact on the anomaly detection accuracy.
We thus test multiple length values and measure their influence (on accuracy and
execution time) in Chapter 5.

At this point, we preprocessed the time series into subsequences of equal length.
We now discuss the label (i.e., the best detector to apply) attribution. For that
matter, we use the TSB-UAD benchmark [74] that contains 12 different anomaly
detection methods. We compute the 12 methods for each time series and attribute
the most accurate (based on AUC-PR) detector as the label. Then, the produced
subsequences share the same label as the time series they originate from. This
labeled dataset can be used to train classification methods and divided into the
train, test, and validation sets. It is important to note that although each time
series produces multiple samples (i.e., subsequences), these samples should not
be mixed between train, validation, and test set. Indeed, too strong similarities
between subsequences that belong to the same time series, if contained in both the
train, validation and the test, can lead the classification model to overfit or create
an illusion of accuracy. Therefore, we guarantee that the intersection between
the train, validation, and test set, regarding which time series the corresponding
subsequences originate from, is empty.
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4.2 Time Series Classification Approaches

In this section, we describe the time series classifier approaches that we use as
model selection methods. As many approaches have been proposed in the litera-
ture, we restrict our experimental evaluation to two main categories: (i) feature-
based and (ii) raw-based methods. In addition, the second category can be di-
vided into two sub-categories: (i) convolutional-based and (ii) transformer-based.
It is worth noting that raw-based methods also utilize features for classification,
although the extraction of these features is performed automatically within the
network. Despite this, we classify them as raw-based due to the nature of their
input. Figure 4.2 illustrates a simplified taxonomy of the methods considered, and
we describe them in the following section.

4.2.1 Feature-based classification

The main idea regarding feature-based classification is to use the dataset of time
series (or subsequences of time series) to create a dataset whose samples are de-
scribed by features common to all samples. Using the feature-based dataset, we
then employ traditional machine learning classifiers to classify each time series.
We use the TSFresh [29] (Time Series FeatuRe Extraction on basis of Scalable
Hypothesis tests) to extract each subsequence’s features. The latter is used for
automated time series feature extraction and selection based on the FRESH algo-
rithm [30]. More specifically, it automatically selects relevant features for a specific
task. This is achieved using statistical tests, time series heuristics, and machine
learning algorithms. The TSFresh package provides three options for automated
feature extraction, namely (i) comprehensive, (ii) efficient, and (iii) minimal. The
first two options provide 700 features and the latter provides only 9. For scala-
bility reasons (the dataset transformation can reach millions of subsequences), we
consider the minimal option in this work.

Moreover, the objective is not to evaluate Feature-based classifiers per se, but
rather to evaluate the ability of TSFresh to extract meaningful features for time
series classification (and model selection for anomaly detection, in particular). In
this work, we consider the following classification approaches.

[SVC] A Support Vector Classifier (SVC) [24] is a classifier that maps instances
in space in order to maximize the width of the gap between the classes. New
instances are mapped into the same space and classified according to which side
of the gap they fall.

[Bayes] The naive Bayes classifier [98] uses Bayes’ theorem to predict the class
of a new instance based on prior probabilities and class-conditional probabilities.
The prediction is made by computing the posterior probabilities for each class.

[MLP] A Multi Layer Perceptron (MLP) [48] is a fully connected (connections
between every neuron) neural network.
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[QDA] A Quadratic Discriminant Analysis (QDA) [41] Classifier is a linear dis-
criminant analysis algorithm. The prediction is made by computing the discrimi-
nant functions for each class.

[AdaBoost] AdaBoost [39] is a boosting ensemble machine learning algorithm
for solving classification problems. It creates a sequence of weak classifiers, where
each classifier is trained on a weighted sample of the dataset. The prediction is
made by combining the predictions of all classifiers, weighted by their accuracy.

[Decision Tree] A Decision Tree Classifier [51] is a tree-based method that rep-
resents a sequence of decisions based on the features of the dataset. To classify a
new instance, the algorithm follows the decisions in the tree to reach a leaf node
associated with a class.

[Random Forest] A Random Forest Classifier [49] is an ensemble machine learn-
ing algorithm that combines multiple decision trees, where each tree is built using
a random subset of the features and a random sample of the data. The final class
prediction for a new instance results from the aggregation of the predictions of all
trees.

[kNN] A kNN classifier [37] is a method that classifies instances based on their dis-
tance to other instances in a training set. The algorithm assigns the new instances
to the class with the most number of closest neighbors among the K nearest data
points.

4.2.2 Raw-based classification

Instead of using features to perform classification, the raw values of the time
series can be used. Indeed, whereas features are efficient for homogenizing time
series datasets (e.g., setting a constant number of features for variable length time
series), it might hide important information in the shape of consecutive values.
Thus, many approaches that use raw-values time series have been proposed.

[Rocket] Among the recent raw-values methods, MiniRocket [32] is one of the
state-of-the-art time series classification methods. The latter consists of a feature
extraction step and a classification step. More specifically, MiniRocket works by
transforming input time series using a small, fixed set of convolutional kernels
and using the transformed features to train a logistic regression classifier (using
stochastic gradient descent). We refer to MiniRocket as Rocket.

4.2.3 Convolutional-based classification

Convolutional-based approaches take as input raw-values of time series and have
been shown to be accurate for time series classification [20].

[ConvNet] A Convolutional Neural Network (CNN) [70] is a type of deep learn-
ing neural network widely used in image recognition that is specially designed to
extract patterns through data with a grid-like structure, such as images, or time
series. A CNN uses convolution, where a filter is applied to a sliding window over
the time series. The ConvNet architecture proposed in [91] is composed of three
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stacked Convolutional blocks followed by Global Average Pooling (GAP), and a
Softmax activation function. Each Convolutional block is composed of a convo-
lutional layer (used with a kernel length of 3) followed by a batch normalization
layer, and then a ReLU activation function is applied.

[ResNet] The Residual Network (ResNet) architecture [47] was introduced to
address the gradient vanishing problem encountered in large CNNs [83]. A ResNet
is composed of several blocks connected together with residual connections (i.e.,
identity mapping). For time series classification, a ResNet architecture has been
proposed in [91], and has demonstrated strong classification accuracy [34]. It is the
same architecture as the previously described ConvNet, with additional residual
connections between convolutional blocks.

[InceptionTime] The model consists of a network using residual connections and
convolutional layers with kernels of variable lengths [35]. Such a network uses
three Inception blocks that replace the traditional residual blocks that we can
find in a ResNet architecture. Each Inception block consists of a concatenation of
convolutional layers using different sizes of filters. For each block, the time series
is fed to three different 1D convolutional layers with different kernel sizes (10, 20,
and 40) and one Max-Pooling layer with kernel size 3. The last step consists of
concatenating the previous four layers along the channel dimension and applying
a ReLU activation function to the output, followed by batch normalization. The
convolutional layers have 32 filters and a stride parameter of 1.

4.2.4 Transformer-based classification

The second category, initially introduced for natural language processing and com-
puter vision tasks [88, 33], is Transformer-based approaches. Such methods can
easily be adapted for time series classification tasks, and in this work we propose
SiT (Signal Transformer), an extension of a recent computer vision transformer
approach [33]. SiT first starts by projecting the input to the latent space with an
embedding step. After the embedding step, the input is mapped to a D dimen-
sional space (we use D = 256 in the rest of the thesis) that serves as input to
an encoder. For SiT, we use an encoder originally proposed for computer vision
tasks [88] that consists of multiple blocks. Each block has an alternating multi-
headed self-attention block and a feed-forward layer, both preceded by a normal-
ization step and a residual connection. We now describe the different embedding
steps in detail in the following paragraphs. In the experimental evaluation, we
consider the SiT architecture with the four embeddings as four different methods.

[SiT-conv] This embedding uses a single convolutional layer to map the time
series into the latent space. The convolutional layer has a kernel and stride of the
same length (we use a length of 16 throughout the rest of the thesis), essentially
taking non-overlapping steps over the time series. Finally, the convolutional layer
has D filters to match the input dimension of the SiT encoder.
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Figure 4.2: Taxonomy of time series classification approaches used as model selec-
tion methods. We use the same color code for each class in all figures in the thesis.

[SiT-linear] The linear embedding [33] splits the input time-series into non-
overlapping subsequences of length lsit (we use lsit = 16 in the rest of the the-
sis). Then, each patch is linearly projected into D dimensions to match the input
dimension of the SiT encoder.

[SiT-stem] The stem embedding [93] consists of 3 convolutional layers with a
kernel length of 3, a stride length of 2, and a number of filters equal to 3, 5,
and 7, respectively. These three convolutional layers are then followed by a last
convolutional layer with D dimensions and a kernel and stride length equal to
1. This embedding was initially proposed to overcome unstable behavior while
training because of its early visual processing step.

[SiT-stem-ReLU] Similarly to the previous embedding, the stem-ReLU embed-
ding [90] consists of 4 convolutional layers with kernel lengths of 7, 3, 3, 8, stride
lengths of 2, 1, 1, 8, and padding of 3, 1, 1, 0. The number of filters for each con-
volutional layer is 3, except the last one that has D filters to match the dimension
SiT encoder.

4.3 Selecting the Detector

We train the time series classification methods mentioned in the previous section
to predict the best detector for each subsequence (as shown in Figure 4.1 (c)).
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However, there is no guarantee that the classification model selects the same de-
tector for all subsequences. Therefore, we choose the best detector for one time
series by doing a majority voting step between the predictions for every subse-
quence, such that the most voted detector is selected as the detector of the time
series. Formally, given a classification model Mcl applied on a given time series T
subsequences Tℓ, we define Mcl(Tℓ) the set of model selected for each subsequence
in Tℓ. Therefore, we define the majority voting function as follows:

fMV (T,Mcl) = argmax
D∈Mcl(Tℓ)

∑
Ti,ℓ∈Tℓ

1[Mcl(Ti,ℓ)=D]

Majority voting serves the pipeline with two significant factors, (i) it does not
depend on the design of the detector and makes the pipeline easily usable for
multiple different types of anomaly detection methods, and (ii) majority voting
averages the predictions and reduces the impact of misclassified subsequences. To
conclude, in our pipeline, the model selection method introduced in Problem 1 is
the output of fMV (T,Mcl).
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Chapter 5

Experimental Evaluation

We now describe in detail our experimental analysis. For additional information,
we make all our material publicly available online [15] and provide an interactive
WebApp [16] for navigating and exploring the experimental results.

5.1 Experimental Setup and Settings

Technical setup: We implemented the deep learning-based model selection
methods in Python 3.5 using the PyTorch library [75]. For the feature-based
approach, we used the TSFresh [29] and scikit-learn [76] libraries. We then used
sktime [64] for the rocket algorithm implementation. For the anomaly detection
methods, we used the implementation provided in the TSB-UAD benchmark [74].
The evaluation was conducted on a server with Intel Core i7-8750H CPU 2.20GHz
x 12, with 31.3GB RAM, and Quadro P1000/PCle/SSE2 GPU with 4.2GB RAM,
and on Jean Zay cluster with Nvidia Tesla V100 SXM2 GPU with 32 GB RAM.

Datasets: For our evaluation purposes, we use the public datasets identified in
the TSB-UAD benchmark [74]. The latter corresponds to 16 datasets (described
in Table 5.1) proposed in the literature containing 1900 time series with labeled
anomalies. Specifically, each point in every time series is labeled as normal or
abnormal.

Anomaly Detection Methods: For the experimental evaluation, we select 12
different anomaly detection methods, summarized in Table 5.1. Out of these, 8
are fully unsupervised (i.e., they require no prior information on the anomalies
to be detected): IForest, IForest1, LOF, MP, NormA, PCA, HBOS, and POLY.
The remaining 4 methods are semi-supervised (i.e., they require some information
related to normal behaviors), namely, OCSVM, AE, LSTM-AD, and CNN. For
all these anomaly detection baselines, we set the parameter as described in the
TSB-UAD benchmark [74].

Method Selection baselines: We then consider the method selection baseline
described in Chapter 4 and summarized in Table 5.1. We first consider feature-
based methods, that extract features using TSFresh [29] library to select the correct
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anomaly detection method. We then consider rocket, state-of-the-art time series
classifier. We also include two types of deep learning classifiers; (i) Convolutional-
based neural networks and (ii) Transformer-based neural networks. Table 5.1 sum-
marizes the different model selection methods (i.e., classifiers). In total, we con-
sider 16 methods, trained with window lengths ℓ equal to 16, 32, 64, 128, 256, 512,
768, and 1024. In total, we trained 128 models. In the following section, we refer
to a model M trained using a window length ℓ as M -ℓ.

Parameter settings: We use the same 70/30 split of the benchmark for all
the classification models. Therefore, we can compare models trained on the same
training set and evaluated on the same set of time series. Then, for the feature-
based methods, we set the hyperparameters of the models based on the default
parameters of scikit-learn. Moreover, for rocket, we use 10000 kernels to extract
the features and the logistic regression with stochastic gradient descent (computed
in batches) for the classification step. Finally, for Convolutional and Transformer-
based methods, we use a learning rate of 10−5, with a batch size of 256 and an early
stopping strategy with a maximum of 50 epochs without improvement. Moreover,
we use the weighted cross-entropy loss and set the maximum number of epochs to
10,000 (with a training time limit of 20 hours).

Evaluation measures: We finally use four evaluation measures. For model se-
lection accuracy, we use the classification accuracy (i.e., the number of anomaly de-
tectors correctly selected divided by the total number of time series). For anomaly
detection accuracy, we use both AUC-PR [31] and VUS-PR [73] (with a buffer
length equal to 10 points). For execution time, we measure the training time (i.e.,
the time required to train a model selection algorithm), the selection time (i.e.,
the time a model selection approach needs to predict which detector to use), and
the detection time (i.e., the time required to predict which detector to use, and to
execute it).

5.2 Overall Evaluation

We first conduct an extensive evaluation of accuracy (classification and anomaly
detection) and execution time for all model selection methods over the entire
benchmark. Thus, we split the benchmark into one training and testing set. The
first contains 1404 time series and the second 496. Both sets contain time series
from all datasets. Therefore, the models have examples of all available domains.
In Chapter 5.6, we evaluate the performance of model selection when applied to
unseen (i.e., not used in the training set) datasets.

5.2.1 Accuracy Evaluation

We first analyze the accuracy of all model selection methods (using all window
lengths) and compare them to the Oracle, the Averaging Ensemble method, and
anomaly detection methods in the TSB-UAD benchmark.
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Figure 5.1: VUS-PR and Detection time (seconds) for all model selection ap-
proaches (showing only the window length that maximizes VUS-PR for each
model) over a test set of 497 series from TSB-UAD. The most accurate meth-
ods are at the top (a); the fastest methods are at the bottom (b)
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Figure 5.1 (a) depicts the overall VUS-PR over the entire TSB-UAD benchmark
(i.e., each box-plot corresponds to 497 accuracy values for the 497 time series
into the test set). The Convolutional-based approaches are in dark blue, the
Transformer-based approaches are in yellow, the Feature-based approaches are in
light blue, Rocket models are in violet, and the anomaly detection methods of the
TSB-UAD benchmark are in light grey. The oracle is the top box plot (in white),
and the Averaging Ensemble is the orange box plot. The box-plot are sorted based
on the median value. In total, we compare 142 models on 497 time series, and
the complete results can be found in Figure 5.8. In Figure 5.1, we depict only the
models with the window length that leads to the best VUS-PR.

First, we observe that almost all model selection methods outperform the ex-
isting anomaly detection methods. We also see that most model selection meth-
ods outperform the Averaging Ensemble approach. Thus, we can conclude that
model selection using time series classifiers significantly improves the state-of-the-
art methods.

More interestingly, we observe a partition in the ranking of the methods. First,
Convolutional and Transformer-based approaches produce equivalent accuracy val-
ues and represent the top-48 methods (see Figure 5.8). However, whereas all the
Convolutional-based methods are in the top-48, a few of the Transformer-based
approaches are further away in the ranking. Moreover, the first non-deep learning
method is rocket-128 (ranked 49th), followed closely by knn models. We also ob-
serve that the rocket approaches are very spread across the ranking (rocket-128
is ranked 50th, and rocket-16 is ranked 124th). This implies that the choice of
window length strongly impacts accuracy. Overall, we note that the best selec-
tion model is two times more accurate than the best anomaly detection method
in TSB-UAD.

Then, we also note that all the model selection methods are significantly less
accurate than the Oracle. For example, in Figure 5.1 (a), there is a gap of 0.2
VUS-PR between the Oracle and the best model selection method. Such a gap
is significant and indicates a large margin of improvement for future work. We
also note that all model selection approaches produce accuracy values between 0
and 1 (as shown by each box-plot in Figure 5.1 (a)). This is caused by the large
heterogeneity of individual detectors’ performances (for some datasets and time
series, none of the detectors are accurate). This means that no model selection
method is guaranteed to perform above a given accuracy value. Making model
selection more stable and robust is essential for several use cases.

5.2.2 Model selected distribution

We then inspect in detail the prediction and the detector chosen by the model
selection approaches. In this section, we consider only resnet-1024, convnet-128,
sit-stem-512, rocket-128, and knn-1024. These approaches are the best models
(using either AUC-PR or VUS-PR) based on the analysis conducted in Chapter 5.2
(you may find additional information on AUC-PR evaluation in our website [16]).
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Figure 5.2: Distribution of the selected models for five models (the best for each
category) compared to the distribution of the labels (in black). Difference of
distributions between time series containing (b) sequence and point anomalies,
and (c) unique or multiple anomalies.
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Figure 5.2 (a) depicts the distribution of the chosen detectors by the 5 model
selection approaches mentioned above for the entire TSB-UAD benchmark. The
black bar corresponds to the true labels (i.e., the best detectors). We observe from
Figure 5.2 (a) that rocket-128 and knn-1024 are significantly overestimating the
detector NormA (as well as LOF for rocket-128 and HBOS for knn-1024), whereas
resnet-1024, convnet-128, and sit-stem-512 are matching the correct distribution
of detectors (we observe a slight underestimation of LOF, IFOREST1 and an
overestimation for POLY).

Moreover, we measure the prediction distribution differences for time series
containing sequence anomalies (Figure 5.2 (b.1)) and point anomalies (Figure 5.2
(b.2)), and for time series containing only one anomaly (Figure 5.2 (c.1)) and
multiple anomalies (Figure 5.2 (c.1)). We first observe that predictions of model
selection methods are significantly different for time series with sequence and point
anomalies. More specifically, resnet-1024, convnet-128, and sit-stem-512 are cor-
rectly selecting the method CNN, whereas rocket-128 and knn-1024 are over se-
lecting LOF and NormA for time series containing point anomalies. However, for
sequence anomaly, as it represents most of the TSB-UAD benchmark, the predic-
tion distribution is similar to the one over the entire benchmark. Moreover, the
correct predictions of resnet-1024, convnet-128, and sit-stem-512 for time series
containing point anomalies are interesting, as this information is not provided in
the training step. Therefore, these models found discriminant features in the time
series that indicate whether it might contain a point or a sequence anomaly.

We, finally, measure the differences between the prediction distribution of
model selection methods between time series containing unique and multiple anoma-
lies. The true labels (black bars in Figure 5.2 (c.1) and (c.2)) indicate that, for
unique anomalies, the best detectors are LOF, NormA, and HBOS and for mul-
tiple anomalies, the best detector is NormA. We observe that all model selection
approaches select LOF, NormA, and HBOS correctly for time series containing a
unique anomaly. The latter indicates that model selection methods can extract
discriminant features that indicate if one time series is more likely to have multiple
anomalies.

5.2.3 Execution Time Evaluation

We now discuss the execution time of model selection methods. In this section, we
focus only on the detection time (i.e., the number of seconds required by a method
to predict the detector to use and to run it). Figure 5.1 (b) depicts the detection
time (in log scale) for each method and detector in the TSB-UAD benchmark
(complete results in Figure 5.8 (b)). We first observe that the Averaging Ensem-
ble required to run all detectors is significantly slower than the rest. Then, all
model selection methods are of the same order of magnitude as the detectors. We
also observe that all the deep learning methods are slower than the feature-based
approaches. This is surprising because the detection time mainly depends on the
chosen detector. Overall, we conclude that method selection is the only viable
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Figure 5.3: Execution time vs. length of model selection methods.

solution that outperforms the existing anomaly detection methods and can be
executed in the same order of magnitude of time.

Finally, we depict in Figure 5.3 the scalability of model selection methods
versus individual detectors and the Averaging Ensemble approach when the time
series length increases. We observe that, on average, the execution time of model
selection approaches increases similarly to the execution time of individual detec-
tors when the time series length increases. We also observe that the Averaging
Ensemble approach execution time is significantly impacted by the time series
length. The latter shows the scalability issue of the Averaging Ensemble approach
for very large time series.

5.3 Influence of the Window Length

In this section, we analyze the influence of the window length on classification
accuracy (Figure 5.4 (a.1)), anomaly detection accuracy (Figure 5.4 (a.2) and
(a.3)) and execution time (Figure 5.4 (b)). We perform the analysis per group of
methods (i.e., average performances for Convolutional, Transformer, rocket, and
Feature-based methods).

We first observe in Figure 5.4 (a) that Convolutional-based and Transformer-
based methods outperform the best anomaly detection methods (green dash-dotted
line in Figure 5.4 (a.2) and (a.3)), the Averaging Ensemble approach (orange dot-
ted line in Figure 5.4 (a.2) and (a.3)), Rocket and Feature-based methods, whatever
the length used with regard to the classification accuracy, VUS-PR, and AUC-PR.
We also observe that Transformer-based approaches are less accurate for shorter
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AUC-PR) and (b) execution time ((b.1) training time, (b.2) selection time and
(b.3) detection time) versus window length ℓ.
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Figure 5.5: Correlation between accuracy and time series characteristics vs. the
window length used to train the model selection methods.

lengths (less than 100 points), whereas, the accuracy of Convolutional-based ap-
proaches is stable regardless of the window length. Overall, Transformer and
Convolutional-based approaches converge to the same anomaly detection accuracy
(both for VUS-PR and AUC-PR) when the window length increases.

Furthermore, we observe that both rocket and Feature-based approaches are
significantly faster to be trained than Convolutional and Transformer-based ap-
proaches (Figure 5.4 (b.1)). We make the same observation for selection time
((Figure 5.4 (b.2))). For the detection time, we observe that rocket execution time
is very unstable when compared to the other approaches. The latter means that
the choice of length strongly impacts the model selection performed by rocket,
leading to very diverse selection and execution times.

In the general case, we can make the following two statements: (i) Large win-
dow length leads to faster selection time for the model selection process and better
accuracy for Convolutional and Transformer-based approaches. (ii) Feature-based
approaches are significantly faster but less accurate than Convolutional-based and
Transformer based approaches, whatever the length used.

5.4 Influence of Datasets and Anomaly Types

In this section, we evaluate the influence of datasets and anomaly characteristics
on model selection accuracy. We perform the analysis per group of methods (i.e.,
average performances for Convolutional, Transformer, Rocket, and Feature-based
methods).

For this experiment, we evaluate the dataset and anomaly characteristics (i.e.,
the number of time series, the average length of the time series, the average number
of anomalies and the average anomaly length). Figure 5.5 depicts these charac-
teristics (x-axis) versus the average increase of accuracy (VUS-PR of the model
selection method subtracted by VUS-PR of the best anomaly detection method
for each dataset) for each model selection method using a given window length.
For instance, if a point (one model selection method on one dataset) is positive
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(above the black dotted line), thus the corresponding model is more accurate on
the corresponding dataset than the best anomaly detection method selected on
this same dataset. We generally observe low correlations between dataset and
anomaly characteristics (i.e., −0.6 < r < 0.6). With such correlation values, we
cannot conclude any factual statement on the impact of these characteristics and
the model selection methods’ performances. However, we can make the following
observations.

First, Figure 5.5 (a) shows that the number of time series is impacting more
substantially Convolutional and Transformer-based approaches with large window
lengths. For the average time series length, only Feature-based approaches are
positively impacted. On the contrary, Convolutional and Transformer-based ap-
proaches are less accurate when the average time series length is increasing. These
observations imply that Convolutional and Transformer-based are more affected
by the number of examples in the dataset rather than the length of each instance.
In contrast, Feature-based approaches benefit from both more and large instances.

Then, Figure 5.5 (b) shows that Feature-based approach accuracy is increasing
with the anomaly characteristics, whereas these characteristics either do not or
negatively impact Convolutional and Transformer-based methods. More specifi-
cally, we observe that Feature-based approaches (regardless of the window length)
are more accurate with time series containing large anomalies, and Convolutional-
based approaches are less accurate (irrespective of the window length) when the
number of anomalies increases.

We note that Rocket’s correlation with the dataset and the anomaly charac-
teristics is unstable. The latter is explained by the fact that the model prediction
of Rocket is very sensitive to the window length (as described in Chapter 5.3).
Thus, it is impossible to make a conclusion on Rocket’s performances, datasets,
and anomalies.

5.5 Detection vs Classification Accuracy

In this section, we analyze the relationship between the model selection methods’
classification accuracy and the resulting anomaly detection accuracy. In this exper-
iment, we consider VUS-PR as anomaly detection measures. For this experiment,
we extend the definition of Oracle (introduced in Chapter 3) as follows:

Definition 3. For a given dataset D, we define Oraclek,j as a hypothetical model
selection method that has a classification accuracy of k ∈ [0, 1] and selects the jth

best detector (among m detectors) in cases of misclassification. Thus, Oracle1,1
always selects the best detector, and Oracle0,m always selects the worst detector.
Finally, we define Oraclek,R as the model selection method that has a classification
accuracy of k ∈ [0, 1] and randomly selects a detector in misclassification cases.

Figure 5.6 depicts the latter comparison for all datasets (Figure 5.6 (a)), and
for two specific datasets (Figure 5.6 (b)). We first observe a strong correlation
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Figure 5.6: Classification accuracy versus anomaly detection accuracy (VUS-PR)
for (a) all datasets and (b) two specific datasets.
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(b) Example of Out-of-Distribution tests(a) Avg VUS-PR for all dataset

Figure 5.7: Out-of-distribution experiment, when model selection algorithms are
trained on all but one dataset. (a) results for each dataset (when not included in
the training set) and (b) average results.

between classification accuracy and anomaly detection accuracy for each specific
dataset and, on average, for all datasets. However, methods belonging to different
families (e.g., Feature-based or Transformer-based) are not performing the same.
For instance, Figure 5.6 (a) shows that Feature-based approaches are not accurate
for the YAHOO dataset, but are the best models for the KDD21 dataset. Over-
all, we observe that Convolutional-based and Transformer-based are both more
accurate in classification and anomaly detection (Figure 5.6 (b)).

We also depict in Figure 5.6 (a) the lines corresponding to Oraclek,2, Oraclek,3,
Oraclek,4, Oraclek,R, and Oraclek,m. For a given classification accuracy, k, Oraclek,2,
and Oraclek,m correspond to the upper and lower bounds. The latter means that
model selection approaches with a given classification accuracy will be within the
previously mentioned upper and lower bounds for VUS-PR (i.e., in the grey zone
in Figure 5.6 (a)). Therefore, for the TSB-UAD benchmark, any model selection
method that has a classification accuracy above 0.53 (intersection between the
two dashed red lines) is better than the current best anomaly detection method
in TSB-UAD (i.e., the best AD in Figure 5.6 (b)). In our experiments, this is the
case only for a few Convolutional- and Transformer-based methods.

Moreover, we compare the positions of the model selection methods with regard
to Oraclek,2, Oraclek,3, and Oraclek,R. We observe in Figure 5.6 (b) that almost
all methods are above Oraclek,R. The latter means that when the wrong detector is
selected, the model selection methods do not select detectors randomly. Moreover,
we observe that most models follow the Oraclek,4 line. The latter indicates that
the models averagely select the third-best in case of misclassification. Finally, the
observations discussed above demonstrate three important statements: (i) clas-
sification accuracy can be used as a proxy for anomaly detection accuracy, and
without computing the anomaly detection accuracy, we can provide an anomaly
detection accuracy lower and upper bounds; (ii) the gap between the best model
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selection and the top right corner of the grey zone shows that there is a significant
margin for improvement for future work; (iii) the vertical gap between the models
and the upper bound (Oraclek,2) shows that there is an important margin of im-
provement in the prediction rank: a model with the same classification accuracy
can gain up to 0.1 VUS-PR if it better selects models.

5.6 Out-of-Distribution Experiments

At this point, we tested the performances of the model selection methods when
trained on a subset of the benchmark with examples from all 16 datasets available.
In some cases, though, we may want to analyze time series that are not similar to
any of those in the benchmark. Therefore, in this section, we measure the ability
of the model selection methods to be used in an unsupervised manner (i.e., used
for datasets that are not similar to the one used in the training set). We run
the following experiment. We train the model selection methods on 15 datasets
(70% percent of the time series for training and the other 30% for validation),
and we test on the remaining one. We try all 16 possible test partitions, and (for
brevity) report 4 of these tests in Figure 5.7(a). We only show the results for the
best-performing model selection methods listed in Chapter 5.2.2.

Figure 5.7 (a) depicts the normalized VUS-PR (noted V US-PR) for all 16
tests: VUS-PR of 1 corresponds to the VUS-PR of the Oracle on each test, while
0 corresponds to the worst anomaly detection methods on each test. This figure
shows that, in the unsupervised case, the Averaging Ensemble is outperforming
all model selection methods, as well as the best anomaly detection method based
on the accuracy performance measured on the train set (dotted green line in Fig-
ure 5.7 (a)). The latter means that, for unknown datasets, it is safer to run all
existing anomaly detection methods and average their scores. Knowing that such
ensembling methods are not scalable (as shown in Figure 5.1), Figure 5.7 (a) shows
that ConvNet or ResNet is still a better choice than choosing the best anomaly de-
tection method selected on train data (i.e., known data). However, kNN, Rocket,
and SiT-stem are only slightly more accurate than the best anomaly detection
method.

Figure 5.7 (b) depicts the average accuracy for 8 out of the 16 test (i.e., dataset
not included in the training set and used for the test). We observe very different
results. First, for Electrocardiograms (SVDB), none of the model selection meth-
ods and the Averaging Ensemble outperforms the best anomaly detection method
(selected on the training set). But, most model selection methods or Averaging
Ensemble outperform the best anomaly detection method for sensor data of dif-
ferent kinds (GHL and Occupancy) on the train. The latter can be explained by
the fact that ECGs contain less heterogeneous behaviors (i.e., repetitive normal
behavior and similar anomalies) than measurements from sensors data, and it is
more likely to have in the benchmark one method that would perform very well on
all time series. This is confirmed by the performance of the best anomaly detection
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method being usually very close to the oracle for SVDB.
These observations lead to the following remarks: (i) there is a significant

margin of improvement when using the existing time series classifiers as model
selection methods in the unsupervised case; (ii) when a new dataset arrives, it is
safer in the general case to use an ensembling method such as the simple average
of all anomaly scores; and (iii) for heterogeneous datasets (without known and
repetitive normal or abnormal patterns), classifiers as model selection (mainly
convolutional-based classifiers) can be used even though similar time series are not
in the training set.
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Figure 5.8: VUS-PR and Detection time (seconds) for all model selection ap-
proaches (complete version) over a test set of 497 series from TSB-UAD. The
most accurate methods are at the top (a); the fastest methods are at the bottom
(b)
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Datasets Description

Dodgers [52] unusual traffic after a Dodgers game (1 time series)

ECG [68] standard electrocardiogram dataset (52 time series)

IOPS [1] performance indicators of a machine (58 time series)

KDD21 [55] composite dataset released in a recent SIGKDD 2021 (250 time series)

MGAB [86] Mackey-Glass time series with non-trivial anomalies (10 time series)

NAB [6] Web-related real-world and artificial time series (58 time series)

SensorScope [94] environmental data (23 time series)

YAHOO [58] real and synthetic time series based on Yahoo production systems (367 time series)

Daphnet [9] acceleration sensors on Parkinson’s disease patients (45 time series)

GHL [36] Gasoil Heating Loop telemetry (126 time series)

Genesis [89] portable pick-and-place demonstrator (6 time series)

MITDB [68] ambulatory ECG recordings (32 time series)

OPPORTUNITY [78] motion sensors for human activity recognition (465 time series)

Occupancy [28] temperature, humidity, light, and CO2 of a room (10 time series)

SMD [84] Server Machine telemetry (281 time series)

SVDB [45] ECG recordings (115 time series)

Anomaly Detection Description

IForest [62]
constructs binary trees based on random space splitting. The nodes (i.e.,

subsequences) with shorter path lengths to the root are likely to be anomalies.

IForest1 [62] same as IForest, but each point (individually) are used as input.

LOF [25] computes the ratio of the neighboring density to the local density.

MP [96] detects as anomaly the subsequence with significant nearest neighbor distance.

NormA [19]
identifies the normal patterns based on clustering and

calculates each point’s effective distance to the normal patterns.

PCA [4]
projects data to a lower-dimensional hyperplane, and data points

with a significant distance from this plane can be identified as outliers.

AE [79]
projects data to the lower-dimensional latent space and reconstructs the

data, and outliers are expected to have more evident reconstruction deviation.

LSTM-AD [67]
uses an LSTM network that from the current subsequence tries to predict

the following value. The error prediction is then used to identify anomalies.

POLY [60]
fits a polynomial model that tries to predict the values of the data series from the

previous subsequences. The outliers are detected by measuring the prediction error.

CNN [69]
builds a correlation between current and previous subsequences, and the

outliers are detected by the deviation between the prediction and the actual value.

OCSVM [81]
is a support vector method that fits the normal

training dataset and finds the normal data’s boundary.

HBOS [43]
constructs a histogram for the data and the inverse of the

height of the bin is used as the outlier score of the data point.

Model Selection Description

Feature-based classifier

SVC [24]
maps training examples to points in space to
maximize the gap between the two categories.

Bayes [98]
uses Bayes’ theorem to predict the class of a new

data point using the posterior probabilities for each class

MLP [48] consists of multiple layers of interconnected neurons

QDA [41] is a discriminant analysis algorithm for classification problems

AdaBoost [39] is a meta-algorithm using boosting technique with weak classifiers

Decision Tree [51]
is a tree-based approach that splits data

points into separate leaves based on features

Random Forest [49]
is an ensemble Decision Trees fed with random samples

(with replacement) of the training set and random set of features.

kNN [37] assigns the most common class among its k nearest neighbors.

Time series classifier

Rocket [32]
transforms input time series using a small set of convolutional

kernels, and uses the transformed features to train a linear classifier

Convolutional-based neural networks

ConvNet [91]
uses convolutional layers to automatically and

adaptively learn spatial hierarchies of features from input data.

ResNet [91] is a ConvNet with residual connections between convolutional block

Inception Time [35] is a combination of ResNets with kernels of multiple sizes

Transformer-based neural networks

SIT-conv [33] is a transformer architecture with a convolutional layer as input

SIT-linear [33]
is a transformer architecture for which the time series are divided into

non-overlapping patches and linearly projected into the embedding space

SIT-stem [93]
is a transformer architecture with convolutional
layers with increasing dimensionality as input

SIT-stem-ReLU [90] is similar to SIT-stem but with Scaled ReLU.

Table 5.1: Summary of datasets, methods, and measures.



Chapter 6

Adecimo

Building upon the findings presented in the preceding chapters of this thesis, we
introduce ADecimo1, a system that aims to (i) easily visualize and assess the
performances of times series classification methods used as model selection for
times series anomaly detection, and (ii) allow the user to use pre-trained model
selection method on their own data.

6.1 System Overview

ADecimo is based on the TSB-UAD benchmark [74] and employs time series from
various domains and applications. In this section, we describe ADecimo, a system
that helps analysts understand the datasets, methods, and results of model selec-
tion approaches for time series anomaly detection. The GUI is a stand-alone web
application developed using Python 3.6 and the Streamlit framework [2].

Figure 6.1 illustrates the inputs and features of ADecimo. The system is based
on a preloaded set of datasets (16 in our demo), anomaly detection methods (12 in
our demo), and accuracy evaluation measures (4 in our demo). The GUI permits
interactions with these inputs. First, the user can visualize and interact with the
overall experimental evaluation results (by filtering datasets or selecting only a
subset of the methods). The user can also visualize the time series, the positions
of the anomalies, and the model selection results. Finally, the user can upload
their own time series and run our pre-trained model selection approaches.

The GUI is composed of three main frames, shown in Figure 6.2. The Overall
Accuracy frame contains aggregate results (Figure 6.2 (A)), the Interactive
Exploration can be used to navigate the detailed evaluation results (Figure 6.2
(C)), and the Overall Execution Time frame lists the running time results
(Figure 6.2 (B)). In addition, a Description frame contains a brief overview of the
system’s objectives, and a Datasets and Methods frame lists information on the
datasets and the methods considered in our evaluation.

1Available online: https://adecimots.streamlit.app/
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Figure 6.1: Summary of our system inputs and features

We now describe in more detail the three main frames of the GUI and the
corresponding available actions.

6.1.1 Overall Accuracy Frame

The first frame depicts the overall accuracy evaluation and summarizes our results
in a table (one accuracy value per time series and methods) and a boxplot (as
shown in Figure 6.2 (A)). Using the sidebar on the left, the user can select which
accuracy measure to use (i.e., VUS-PR or AUC-PR). Then, the user can filter
based on datasets, families of methods (i.e., feature-based, convolutional-based,
transformer-based, and rocket), and window length. The table and the boxplot
are updated based on the user’s choices.

6.1.2 Overall Execution Time Frame

The second frame depicts the overall execution time evaluation. This frame is
divided into three tabs: (i) the first for training time, (ii) the second for selection
time, and (iii) the third for detection time. In each tab, the results are summarized
in a table (one execution time value per time series and methods) and a boxplot
(as shown in Figure 6.2 (B)). The user can choose to visualize the results in a linear
or logarithmic scale. Moreover, as in the first frame, the user can filter based on
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(A) Overall Evaluation: Execution Time Frame

(B) Overall Evaluation: Accuracy Frame

(C) Interactive Evaluation

Figure 6.2: The three main ADecimo frames
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datasets, families of methods, and window length.

6.1.3 Interactive Exploration Frame

Finally, in the accuracy frame, the user can click on a tab that opens the interactive
Exploration frame (as shown in Figure 6.2 (C)). In this frame, the user can visualize
the chosen detector and the corresponding anomaly score for each time series and
model selection method. The anomaly scores of the detectors that have not been
selected are also shown, but with a strong transparency ratio. The user can also
select (in the time series selection drop-down) the ”Upload your own time series”
option. The latter will run the selected model selection methods and selected
detectors on the time series uploaded by the user.

6.2 Demonstration Scenarios

This demo has three goals: (i) showcase the importance of a web application
to explore large experimental results and extract meaningful insight on how much
performance a user can gain using model selection on a specific use case; (ii) enable
the user to interactively visualize the model selection choices for specific individual
time series, models, and window length parameters; and (iii) challenge the user to
test pre-trained model selection models on new (or their own) time series.

6.2.1 Finding the best model selection method

This scenario starts in frames 1 and 2 (Figure 6.2 (A) and (B)). Then, using the
sidebar, we will ask the user to select datasets related to their application (e.g.,
medicine, environmental, or engineering). Then, the user can visit the Datasets
frame to get more information on each dataset. Finally, the GUI will depict the
most accurate (Figure 6.2 (A)) and most scalable (Figure 6.2 (B)) model selection
methods (compared to existing anomaly detection methods) interactively. Thus,
the user can discover if model selection methods outperform existing anomaly de-
tection methods for a specific application, and if yes, which type of model selection
approaches should be used.

6.2.2 Understanding and assessing model selection choice

In this scenario, we will ask the user to open the Interactive Exploration Frame
(Figure 6.2 (C)). In this frame, the user can select a specific dataset based on his
application of interest and a model selection. The user will then be able to select
each time series in the chosen datasets and visualize both the time series and the
anomaly scores of the selected anomaly detection methods based on the chosen
model selection approach. For instance, in Figure 6.2 (C), the user selected one
time series in YAHOO and InceptionTime methods with a window length of 256.
In this specific example, the user can see that the detector selected is CNN. As the
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GUI is also plotting the anomaly scores of all the remaining detectors, the user
can assess if the choice made by the chosen model selection approach is correct.
We will also explain the behavior of the model selection methods based on the
methods’ types and the window length impact.

6.2.3 Testing on your own data

In the last scenario, we will ask the user to click on the ”upload your own” option in
the time series selection drop-down. The user can add their own time series. Our
system will run the selected model selection approach and the chosen detector. The
user will then evaluate the pertinence and accuracy of model selection approaches
on the new data.
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Chapter 7

Conclusions

Time series anomaly detection is a challenging problem that has significant im-
plications across various scientific, societal, and industrial domains. Despite the
plethora of solutions proposed in the literature, no single method consistently out-
performs others when evaluated on large and heterogeneous benchmarks. Through
our extensive experimental evaluation, we have addressed the objectives outlined
in Chapter 3.5. The following conclusions can be drawn from our findings:

1. Classification as Model selection: We have observed that time series
classification methods serve as effective tools for selecting anomaly detec-
tion models. Transformer and Convolutional-based model selection methods
have shown superior performance compared to individual detectors. Never-
theless, there remains a substantial gap between the best method and the
Oracle, suggesting opportunities for future research and improvement in this
direction.

2. Ensembling or selecting: Our evaluation has demonstrated that model
selection approaches outperform ensembling methods in terms of accuracy.
Moreover, model selection methods exhibit faster execution times, making
them more efficient for real-world applications.

3. Features or Raw values: The evaluation results indicate that raw-based
methods exhibit higher average accuracy compared to feature-based ap-
proaches. This suggests that leveraging the raw values of time series data
can lead on average to better results.

4. Out-Of-Distribution: Our findings uphold the previous observations for
(1) and (3) in the context of out-of-distribution time series. However, in-
terestingly, for (2), we have observed that ensembling performs better than
model selection when applied to time series that significantly differ from those
in the training benchmark. This highlights the importance of considering the
diversity of time series data during the selection process.
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7.1 Future Work

The research conducted in this study opens up several avenues for future work in
the field of model selection frameworks for anomaly detection in time series. Based
on our observations and the implications of our findings, we outline the following
potential directions:

1. Improving Rank Prediction: Enhancing the rank prediction accuracy
could lead to substantial improvements in anomaly detection performance.
Future work could focus on developing more advanced ranking models that
accurately identify the best-performing anomaly detection techniques based
on time series characteristics.

2. Optimizing Accuracy and Execution Time Trade-off : Model selection
can be trained to strike a balance between accuracy and execution time,
allowing for efficient inference of the selected anomaly detection method.
Exploring techniques to optimize this trade-off could significantly enhance
the overall efficiency of the model selection process.

3. Unsupervised Settings: The noticeable gap between the Oracle perfor-
mance and model selection methods in unsupervised settings indicates the
need for further exploration. Future research could delve into unsuper-
vised anomaly detection techniques, leveraging advancements in unsuper-
vised learning and self-supervised approaches to improve model selection
accuracy in scenarios where labeled anomalies are not available.

By focusing on these areas, researchers can further advance the field of model
selection for anomaly detection, building upon the foundation laid by this study.
These future research directions hold the potential to improve the accuracy, effi-
ciency, and applicability of time series classification as a model selection approach,
ultimately enhancing anomaly detection methodologies across diverse domains and
real-world applications.
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