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Utility-driven performance management over a shared
resource pool

Abstract

Autonomic computing systems aim for self-adaptation and self-management,
typically using a decision-making process to comply with user-defined service goals.
In this thesis, we propose a scheme to effectively provide utility-driven fair sharing
of resources with explicit quality-of-service (QoS) targets. We describe Sprinkler,
a two-level architecture for achieving performance QoS guarantees for latency-
sensitive clients over shared resource pools. Sprinkler utilizes a higher-level con-
troller to achieve fair sharing of aggregate system throughput while a lower-level
scheduler simultaneously achieves explicit per-client latency targets in concurrent
access to a shared pool of resources. The lower-level scheduler isolates each client
from others that may exceed their load specifications (average throughput and/or
maximum burst size) as decided by the upper-level controller. A distinctive feature
of Sprinkler is that controller allocations are advisory, namely a client may decide
to exceed them hoping to leverage excess capacity from reduced demand of other
clients. Such speculative, non-complying clients can benefit from spare capacity,
if it is indeed available, but only hurt themselves if not, as Sprinkler protects
compliant clients from violating their latency targets under overload conditions.
Sprinkler makes clients aware of their latency metrics at any point in time, so that
they can decide if they can afford risking latency violations. We implement a pro-
totype of Sprinkler and demonstrate its effectiveness in fairly regulating per-client
throughput while providing latency guarantees in experiments with synthetically
generated workloads under workload variations.





Διαχείριση απόδοσης με βάση συναρτήσεις

χρησιμότητας πάνω από κοινόχρηστους πόρους

Περίληψη

Τα αυτόνομα υπολογιστικά συστήματα αποσκοπούν στην αυτόματη διαχείριση και

προσαρμογή των λειτουργιών τους, μέσω μιας διαδικασίας λήψης αποφάσεων για την ε-

πίτευξη στόχων επιπέδου υπηρεσίας πελατών. Στην παρούσα διατριβή προτείνεται ένας

μηχανισμός δίκαιης μοιρασιάς πόρων συστήματος, με βάση συναρτήσεις χρησιμότητας,

για την επίτευξη στόχων απόδοσης κατά την ταυτόχρονη προσπέλαση κοινόχρηστων

πόρων. Ο μηχανισμός αυτός, τον οποίο ονομάζουμε Sprinkler, ακολουθεί μια αρ-
χιτεκτονική δύο επιπέδων. Στο υψηλότερο επίπεδο, το Sprinkler χρησιμοποιεί έναν
ελεγκτή για να επιτύχει δίκαιη κατανομή της συνολικής ρυθμοαπόδοσης του συστήμα-

τος μέσω εκχωρήσεων ανά πελάτη, ενώ ένας προγραμματιστής χαμηλότερου επιπέδου

επιτυγχάνει ταυτόχρονα στόχους καθυστέρησης ανά πελάτη. Ο προγραμματιστής χα-

μηλότερου επιπέδου απομονώνει κάθε πελάτη από άλλους που μπορεί να υπερβαίνουν

τις προδιαγραφές φόρτου τους (μέση εκχώρηση ρυθμοαπόδοσης ή μέγιστο μέγεθος

έκρηξης (burst size)) όπως ορίζεται από τον ελεγκτή ανώτερου επιπέδου. ΄Ενα ιδιαίτε-
ρο γνώρισμα του Sprinkler είναι ότι οι εκχωρήσεις είναι συμβουλευτικές, δηλαδή ένας
πελάτης μπορεί να τις υπερβεί ελπίζοντας να αξιοποιήσει πλεονάζουσα χωρητικότη-

τα. Τέτοιες διερευνητικές πολιτικές μπορούν να ωφελήσουν τους πελάτες αν υπάρχει

πλεονάζουσα χωρητικότητα, χωρίς να βλάπτουν άλλους πελάτες καθώς το Sprinkler
προστατεύει εφαρμογές που τηρούν τις εκχωρήσεις τους από την παραβίαση στόχων

καθυστέρησης υπό συνθήκες υπερφόρτωσης. Το Sprinkler περιοδικά ενημερώνει τις
εφαρμογές για τις μετρήσεις χρόνου απόκρισής τους, ώστε να μπορούν να αποφα-

σίσουν εάν έχουν περιθώριο παραβιάσεων με βάση τον στόχο ποιότητας υπηρεσιών

τους. Υλοποιήσαμε ένα πρωτότυπο του Sprinkler και το αξιολογήσαμε σε πειράματα
με συνθετικά παραγόμενο φόρτο εργασίας, υποδεικνύοντας την αποτελεσματικότητά

του στη δίκαιη ρύθμιση της απόδοσης ανά πελάτη, παρέχοντας ταυτόχρονα εγγυήσεις

καθυστέρησης υπό διακυμάνσεις φόρτου εργασίας.
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Chapter 1

Introduction

Shared resource pools, such as consolidated storage arrays, large core-count mul-
tiprocessors, etc., are prevalent in data-center environments due to their simpler
management and statistical multiplexing benefits. Concurrent access to such re-
source pools by multiple applications raises the issue of how to ensure fair sharing
of resources, isolating well-behaving applications from others that may be hoarding
resources, and differentiating between applications under resource shortage. Ap-
plications often express their performance goals either via explicit metrics, such as
a specific level of throughput and/or latency, or via utility functions expressing the
value assigned by the application owner to different performance levels. Another
approach to fair resource allocation has focused to providing shares (weights) of
aggregate system throughput to specific clients.

Several fair sharing mechanisms offering weighted bandwidth allocation have
been proposed over the years [5, 4, 6, 9, 24]. Although such systems often bound
latency as well [25], they cannot be used to independently control the bandwidth
and latency of clients. These algorithms offer one parameter (weight) to adjust
both: lowering latency can only be done by increasing the bandwidth allocation
of a client. As such they cannot meet both constraints independently.

In this thesis we describe Sprinkler, a system that aims to achieve explicit la-
tency targets for applications and fair sharing of the aggregate throughput over
shared resources as allowed by available capacity. Sprinkler achieves this by inter-
leaving a throughput-regulating controller over a state-of-the-art latency-oriented
scheduler [8]. The aim of Sprinkler is to achieve high system utilization and high
throughput allocation for applications as far as resources allow, in a fair manner [2],
while guaranteeing explicit latency targets for each application. Sprinkler addi-
tionally isolates well-behaved applications from others that exceed their average
throughput allocation as set by the upper-level controller.

A distinctive feature of Sprinkler is that controller allocations are advisory,
namely an application may decide to exceed them hoping to leverage a possi-
ble simultaneous drop in demand by other applications, thus increasing overall
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4 CHAPTER 1. INTRODUCTION

system efficiency. Such a feature is not available with systems that explicitly rate-
control sources to enforce latency targets [7, 16]. The latter are typically not work-
conserving (i.e., an application experiencing higher throughput demand may not
benefit from a simultaneous reduction in throughput use by another application).
In Sprinkler, if no excess capacity is available, such speculative, non-complying ap-
plications can only hurt themselves, as Sprinkler protects compliant applications
from violating their latency targets under overload conditions.

This thesis proposes a scheme to effectively provide utility-driven fair sharing
of resources with explicit quality-of-service (QoS) targets. We implement a proto-
type of Sprinkler and demonstrate its effectiveness in fairly regulating per-client
throughput while providing latency guarantees in experiments with synthetically
generated workloads under workload variations.

The contributions of this thesis are:

• A novel two-level QoS architecture (Sprinkler) for fair sharing of aggregate
throughput among latency-sensitive applications over a shared pool of re-
sources, providing each application with an advisory rate allocation for which
a latency-target is guaranteed, while allowing it to control its request-rate to
explore higher efficiency

• An evaluation of a prototype implementation of Sprinkler with synthetically
generated request streams, exhibiting its key benefits, namely fair through-
put allocation, latency guarantees, isolation under overload, and application-
specific rate control for higher efficiency



Chapter 2

Background

In this section we introduce basic principles of resource allocation and decision-
making mechanisms.

1 Goal-oriented autonomic systems

Autonomic computing, an architecture initiated by IBM, [3, 21, 30] is the capability
of a system to automatically adapt itself to changing environmental conditions in
order to achieve system goals, such as performance goals. This architecture consists
of a number of interacting components where each is responsible for providing
or consuming useful information to achieve self-management. Specifically, a self-
adaptive system is based on the architecture called MAPE, a feedback loop model,
which includes monitoring, analysis, planning and execution functions. It operates
with the guidance of a central Controller that makes adaptive decisions using a
set of policies.

Policies are generally organized in a top-down hierarchy to describe the decision-
making process by specifying a set of rules or/and constraints that decisions must
be based on to achieve the desired outcome. The goal is to control system behavior
by mapping the rules and constraints into specific system configuration. Policies
are divided into two types to describe system goals, high-level and low-level poli-
cies. High-level policies define how the system objective is met by guiding decision-
making. They specify user goals by representing the quality of service (QoS) they
are willing to experience. On the other hand, low-level policies define how the sys-
tem should work by providing information control to meet required specifications
and specific compliance objectives. That is, low-level policies specify how the users
should interact with the system in order to satisfy high-level goals.

To effectively achieve the goals of the system, the feedback loop starts collecting
information of relevant data (performance metrics that can be associated with
specified-goals) that reflect the current state of the system. The Controller then
analyzes the collected data using the specified policies to detect the state the
system is in and if something needs to change. Next, based on policies and the
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6 CHAPTER 2. BACKGROUND

knowledge about what is happening in the environment, the Controller decides
how to adapt the system in order to reach the desirable state by implementing the
decision by configuring the system environment.

2 Utility functions

The utility function is one of the most widely used methods in economic theory
for measuring the happiness or satisfaction that someone gets from using (or con-
suming) a product or service. Specifically, the utility function strategy is used
to determine which level of satisfaction in a group of possible outcomes is most
preferred by associating a single value or score to each.

Prior works [10, 19, 22, 23, 26], have focused on utility-based approaches for
achieving self-optimization in autonomic computing systems. Utility functions are
used as QoS indicators to help decision makers make the best decision in order
to determine the most valuable feasible state of the system. Utility functions can
be defined by the users of the service system to describe the desired specification
levels of system behavior. The idea behind expressing system requirements using
utility functions is to assess the objectives of a system from a business perspective.
Since each performance metric (throughput, latency, etc.) has an effect on system
QoS, a utility function can be associated with a system metric to analyze the
impact it can have on system performance either from an economic point of view
(e.g. revenue and costs) or in terms of level of satisfaction (e.g. specific level of
throughput and/or latency).

Strunk et al. [22], use the utility functions as return on investment (ROI) met-
ric to automatically provisioning a storage system. They present a utility-driven
provisioning tool that evaluates a storage system configuration by associating it
with a utility value to describe the suitability of the configuration according to
the objectives of administrator. Gupta et al. [10], present a dynamic multi-tier
pricing scheme for optimal resource allocation in serverless computing, taking into
account delay-sensitive characteristics. Walsh et al. [26], use utility functions to
develop a two-level architecture for dynamically allocating servers within a data
center with multiple transaction classes in response to changes in average response
time. Tesauro et al. [23], use reinforcement learning for resource allocation among
multiple applications based on optimizing the sum of utility for each application.
Różańska and Horn [19], propose a utility model for application deployment con-
figuration management in cloud computing. To capture application client pref-
erences, they combine a two modelled utility functions into an overall to analyze
both the cost and the user satisfaction.

Basic concept and mathematical notation

Utility functions are expressed as a function of random variables Xi, i = 1, 2, ..N,
representing service characteristics. Random variables take on multiple values
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corresponding to the specified preferences of consumers. The utility function com-
putes the utility of obtaining a preference and the utility gained from a preference
x is denoted with f(Xi = x).

Generally, there are several common utility functions used to model how indi-
viduals value alternative preferences, such as linear, exponential, logarithmic. In
this thesis, we use sigmoid functions [19, 26] to describe the desirable properties
of a service system. Specifically, in (Fig. 2.1) we illustrate two types of sigmoid
functions that we use to describe client-specific level of throughput, latency and
SLO-violations.
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(b) Reversed S-shaped sigmoid function

Figure 2.1: Sigmoid functions as utility functions

We use S-shaped sigmoid function (Fig. 2.1 (a)) to express client satisfaction
for a specific level of throughput, implying the higher the value, the higher the
client satisfaction.

f1(Xi/φ1, φ2) = 1− [1 + e
(Xi−φ2)·ln 1−ε

ε
· 1
φ1−φ2 ]−1 (2.1)

We use the Reversed S-shaped sigmoid function (Fig. 2.1 (b)) to describe client
satisfaction for a specific level of latency or SLO-violations rate, indicating a pref-
erence in low values.

f2(Xi/φ1, φ2) = [1 + e
(Xi−φ2)·ln ε

1−ε
· 1
φ1−φ2 ]−1 (2.2)

Sigmoid function is a mathematical function that can takes any real number
as input and maps it to a value between 0 and 1. The sigmoid function has an
S-shaped characteristic whose shape is determined by two parameters, φ1 and φ2.
Shape parameters determine the slope of the function and indicate what range of
preferences maps close to 0 or 1.

In (Fig. 2.1), we observe that a preference value equal to zero maps to zero, a
preference value equal to φ2 maps to 0.5, and a preference value greater than or
equal φ1 maps to 1.
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3 Quality of service

Quality of Service (QoS) is a technique used for managing the service level experi-
enced by a workflow with specified requirements. QoS is a measurement that helps
ensure a specific service level by allocating resources among workloads. Aspects
of the service can include multiple performance metrics, such as response time,
throughput etc., availability, reliability. In this thesis, we focus on performance
metrics, throughput and latency.

The measurement of quality of service is an essential process as depends entirely
on the context and constraints defined by a client. The actual steps required to
improve service quality depend on monitoring and control period. To improve
understanding of client requirements, Controller periodically should take control
actions to manage the service received by each client. Generally, collecting real-
time monitoring data helps a control manager immediately evaluate and react to
current events. Thus, the amount of time of monitoring is an important part of
effective management. Another key part of control management is the analysis
and use of information during implementation. Therefore, an attention should be
paid to statistical methods in the decision-making process.

In this thesis, we use exponentially weighted moving average (EWMA), a
widely used technical analysis to monitor attribute data using the entire history of
data. Specifically, EWMA weights samples to indicate how important recent sam-
ples are. In Equation 2.3 we denote the current time as t, the current observation
as Xi and the weighted factor by α.

EWMAt = α ·Xi + (1− α) · EWMAt−1 (2.3)

In this thesis, we assume that Controller periodically (every 1 second) receives
metric observations by monitor and calculates the average of the metric values
based on the exponentially weighted moving average (EWMA). Until reaching the
end of a control period, controller just records the observations and calculates
the EWMA. To calculate the EWMA we set the weight α equal to 0.125. Upon
reaching the end of a control period, it makes changes based on a specified fairness
criterion. Specifically, at the end of each control period (every 10 seconds), the con-
troller changes the utilities taking into account the utility function of each client,
which is estimated based on EWMA measurements of throughput and latency.

4 Serverless computing

Serverless computing is a cloud computing service which offers on-demand re-
sources. Serverless computing is a popular technology that simplifies the process
of deployment and resource management. It only allocates resources when the
applications are used and charges the clients for the time the applications run.

Serverless computing differs from the traditional concept of cloud computing in
which clients rent and configure a virtual machine environment based on the needs
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of their application [13]. It provides backend services and allows programmers to
write and deploy code in a high-level language without having to worry about
server management. Instead, cloud providers are responsible to manage, main-
tain and provision the infrastructure required to execute code. This architecture
enables developers to focus more on the code by adding features to their applica-
tion and better configuring its functionality. Serverless computing, also referred
to as FaaS (Functions as a Service), uses an event-driven computing execution
model where applications are composed by decoupled functions. Each function
corresponds to a specific task and when an associated event (or HTTP request)
is occurred, it is triggered. Then, a container instance is provided to the invoked
function to be executed by the cloud provider.

Despite all the advantages serverless computing provides, such as on-demand
scalability, no charge for idle resources etc., there are no resource management
algorithms available to provide QoS guarantees. In this thesis, we study QoS
techniques to provide resource isolation and service differentiation requirements.
In this work, we also present a prototype of our QoS approach that could be
adopted in a serverless computing platform to efficiently manage a container pool.
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Chapter 3

Related work

Recent work has surveyed general decision-making mechanisms for storage QoS [15],
including approaches to fair sharing of shared storage systems. Here we discuss
previous research works that have been proposed in this context and that aim for
fair sharing and/or explicit QoS guarantees (latency target, throughput reserva-
tions, etc.).

mClock [9] is an algorithm for I/O resource allocation in a hypervisor that
supports proportional-share fairness subject to minimum reservations and maxi-
mum limits on the I/O allocations. mClock logically interleaves a constraint-based
scheduler and a weight-based scheduler in a fine-grained manner. The mClock
scheduler alternates between phases during which one of these schedulers is ac-
tive to maintain the desired allocation. An important difference of Sprinkler from
mClock is that Sprinkler aims to enforce per-application latency targets by over-
laying its utility-driven throughput-regulating Controller over the pClock arrival-
curve scheduler described next, whereas latency is not an explicit goal in mClock.
Sprinkler does not support throughput limits.

pClock [8] is an arrival-curve based algorithm that achieves latency targets for
individual workloads taking into account throughput and burst specifications. In
pClock, application requirements are represented in terms of the average through-
put, desired latency and maximum burst size. pClock isolates workloads to protect
from applications exceeding their specifications and allows use of spare capacity
without penalizing applications for prior use of such capacity. pClock decouples
latency and throughput requirements but does not support reservations and limits
on application throughput. In this work, we use pClock as a lower-level scheduler,
working in conjunction with a higher-level Controller that provides application
throughput specifications as input to pClock. In this way, pClock acts as an isola-
tion mechanism for Sprinkler, who overlays utility-driven fair throughput sharing
over it.

PARDA [7] enforces proportional-share fairness among distributed hosts ac-
cessing a storage array, without assuming support from the array itself. PARDA
uses latency measurements to detect overload, and adjusts issue-queue lengths to

11
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provide fairness, similar to aspects of flow control in FAST TCP [28] with local
I/O scheduling at each host using SFQ(D) [12]. PARDA can provide differential
quality of service for unmodified virtual machines while maintaining high efficiency.
Sprinkler is similar to PARDA in that its controller applies a flow control scheme to
adjust demand to capacity. Sprinkler differs from PARDA in that it enforces per-
flow latency targets (rather than an aggregate average) via its lower-level pClock
scheduler. In addition, Sprinkler’s rate control is advisory to give speculative ap-
plications the ability to pursue higher throughput at the risk of violating their
latency targets without hurting other (compliant) applications.

PSLO [16] defines a framework to support 99.9th percentile latency and through-
put service-level objectives (SLOs) under consolidated VM environment by pre-
cisely coordinating the level of IO concurrency and arrival rate for each VM issue
queue in a single consolidated platform (e.g., a Xen hypervisor). PSLO features
a control loop to regulate issue rates so as to utilize available IO capacity while
achieving stringent latency targets. PSLO leverages detailed knowledge of la-
tency history for each flow (VM) to determine whether higher rates are possible
in that flow. Sprinkler follows the same principle, except that it exposes it as an
application-specific policy, rather than applying it across all issue queues as in the
case of PSLO. In that sense, Sprinkler assumes a gray-box (providing certain infor-
mation to facilitate application-level control [1]), rather than a black box model,
for the underlying resource management platform.

Pisces [20] achieves per-tenant weighted fair sharing of system resources across
the entire shared service, even when partitions belonging to different tenants are co-
located and when demand for different partitions is skewed or time-varying. Pisces
decomposes the fair sharing problem into four complementary mechanisms— par-
tition placement, weight allocation, replica selection, and weighted fair queuing—
operating on different time-scales to provide system-wide max-min fairness. The
Pisces storage prototype achieves fair sharing, strong performance isolation, and
robustness to skew and shifts in tenant demand.

IOFlow [24] is an architecture that uses a logically centralized control plane to
enable high-level flow policies for differentiated shared access to storage resources.
IOFlow adds a queuing abstraction at data-plane stages and exposes this to the
controller. The controller can then translate policies into queuing rules at individ-
ual stages. It can also choose among multiple stages for policy enforcement.

Façade [18] is a virtual store controller that interposes between hosts and stor-
age devices in the network, and throttles individual I/O requests from multiple
clients so that devices do not saturate. Façade satisfies performance objectives
while making efficient use of the storage resources-even in the presence of failures
and bursty workloads with stringent performance requirements. Sprinkler has
similar goals to Façade but differs in its approach in that it layers its throughput
controller over a latency-oriented QoS scheduler, whereas Façade intermixes its ad-
hoc throughput controller with an earliest-deadline first (EDF) scheduling policy.
Sprinkler improves over Façade by incorporating a better approach to latency-
aware scheduling (pClock [8], whose key features are described earlier), and a
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cleaner separation between the throughput control and latency-aware scheduling
layers. In contrast to Façade, Sprinkler facilitates throughput control for individ-
ual flows, allowing better handling of service differentiation and fairness issues.

Triage [14] proposes an online feedback loop with an adaptive controller that
throttles storage access requests to ensure that the available system throughput
is shared among workloads according to their throughput goals and their relative
importance for isolation and differentiation. While Triage generally results to
reasonable average latency, it does not explicitly target per-application latency
targets, one of the goals in Sprinkler.

LaSS [27] uses a fair-share allocation approach to guarantee a minimum of
allocated resources to each function in the presence of overload in a serverless
function-as-a-service (FaaS) execution environment. It utilizes resource reclama-
tion methods based on container deflation and termination to reassign resources
from over-provisioned functions to under-provisioned ones.

Weighted fair sharing schemes include WFQ [5] and YFQ [4] among others.
SFQ [6] is a weighted fair sharing algorithm that is computationally efficient and
achieves fairness regardless of variation in server capacity. Such schemes have been
used to implement proportional-share fairness, typically with fixed share propor-
tions or weights (e.g., 1:2:4). In a more general context, fairness refers to resource
allocation where the utilities (a quantitative level of client goals and satisfaction)
achieved by different clients conform to criteria such as utilitarian, max-min or
proportional fairness [2]. In this work we use a simple fairness scheme but plan to
experiment with other notions of utility-based fairness (max-min, proportional) in
future work.
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Chapter 4

Experience with weighted fair
sharing algorithms

In this section, we explore weighted fair sharing algorithms related to QoS-based
resource allocation that provide fairness proportional to the weights. The concept
of weighted fair sharing algorithms is to achieve desired quality of service goals
providing high throughput and low latency. Such scheduling algorithms, associate
two tags a start tag and a finish tag with each request and schedule requests in the
increasing order of the start tags or finish tags of the requests using virtual clocks.
These algorithms provide an abstraction of having its own dedicated server with
a guaranteed minimum level of performance.

We implement YFQ [4] which is a time-sharing algorithm that uses client-
specified weights as resource reservations to provide QoS. It assigns start tag and
finish tags with each reservation and schedule requests in the increasing order of the
finish tags of the reservations. Specifically, we consider a public pool and assume
that each workload is associated with a weight representing the amount of resources
can be consumed. We use weights as control knobs to achieve performance targets
(throughput and latency) by changing weight settings. In case of a saturated
system, we aim to provide an optimal solution based on fairness rules (constraints)
to satisfy the performance targets.

Evaluation

The following experiments are conducted using the max-min fair allocation [2], a
fair sharing technique that allocates resources first to the client with the smallest
demand (expected load), and subject to that the second smallest, and so on. In
these experiments we assume latency targets to study the behavior of the system in
terms of stability under different weight settings and input load. If latency exceeds
the desired latency bound (0.5 sec), then clients become dissatisfied, which means
zero utility value. Below, we present the results obtained with two and three
clients.

15
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Case 1: Feasible system close to capacity - Unequal load

In this example, we define unequal load and different weights between clients under
capacity. We set a weight of 0.4 for the high-light client and 0.6 to the low-heavy.
Looking at Table 4.1 we predict a feasible system with 96% of server utilization,
and we expect bounded latency for both clients.

Client Weight Arrival rate Service demand Latency target Expected utilization
Color Label wi ri (req/sec) Di (msec) li (msec) ri ·Di (%)

Orange High-light 0.4 20 20 500 40
Green Low-heavy 0.6 7 80 500 56

Table 4.1: Workload specifications, expected utilization in units of processing time
per wall-clock time

In Fig. 4.1, we depict the results of this experiment, which is validated as pre-
dicted. Each client consumes resources according to their demands (the measured
utilization agrees with the expected, as shown in Fig. 4.1c).
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Figure 4.1: Feasible system close to capacity - Unequal load

Case 2: Feasible system close to capacity - Equal load

The following example differs from the previous one (exp. 4) in terms of load,
however stills under capacity. We define equal load while keeping the same weight
settings.

Client Weight Arrival rate Service demand Latency target Expected utilization
Color Label wi ri (req/sec) Di (msec) li (msec) ri ·Di (%)

Orange High-light 0.4 24 20 500 48
Green Low-heavy 0.6 6 80 500 48

Table 4.2: Workload specifications, expected utilization in units of processing time
per wall-clock time

As it can be observed in Fig. 4.2, system is feasible (clients are satisfied, both
achieve stable latency). In Fig. 4.2c we observe that the resource demand of the
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low-heavy client is less than the amount of resources could be consumed based
on the weights provided, as a result the high-light client benefits from the excess
capacity. This occurs as the result of needs of clients rather of control.
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Figure 4.2: Feasible system close to capacity - Equal load

Case 3: Infeasible system at capacity - Unequal load

In this example, we study a system with unequal load with the same weight set-
tings, but above capacity. The expected server utilization is 104%, and we predict
an infeasible system as demand exceeds capacity.

Client Weight Arrival rate Service demand Latency target Expected utilization
Color Label wi ri (req/sec) Di (msec) li (msec) ri ·Di (%)

Orange High-light 0.4 24 20 500 48
Green Low-heavy 0.6 7 80 500 56

Table 4.3: Workload specifications, expected utilization in units of processing time
per wall-clock time
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Figure 4.3: Infeasible system at capacity - Unequal load

In Fig. 4.3 depicts what we predicted, the system is infeasible and only pro-
vides bounded latency to the low-heavy client, which is the client with the higher
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demand. We observe an inefficient allocation of resources as the system is unable
to successfully provide a guaranteed level to the weaker client (high-light). This
implies that fairness is needed in order to protect the client with the lower demand.

Case 4: Infeasible system at capacity - Equal load

In the following experiment, we are going to protect the weak client and ensure a
fair share of resources based on max-min principles [2]. We use the same workload
specification with the previous example (exp. 4) except weight settings. To suc-
cessfully protect the weak client, we set a weight of 0.5 for each client (Table 4.4).

Client Weight Arrival rate Service demand Latency target Expected utilization
Color Label wi ri (req/sec) Di (msec) li (msec) ri ·Di (%)

Orange High-light 0.5 24 20 500 48
Green Low-heavy 0.5 7 80 500 56

Table 4.4: Workload specifications, expected utilization in units of processing time
per wall-clock time
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Figure 4.4: Infeasible system at capacity - Equal load

In Fig. 4.4, we observe that the system successfully provides stable latency to
the low-heavy client (weak client), as we predicted.

Case 5: Infeasible system at capacity - Favor two low demand
workloads

In this example, we run an experiment with three clients in a system above capac-
ity to study fairness among multiple clients. We define unequal load and different
weights between clients above capacity. The expected server utilization is 123%,
and we predict an infeasible system as demand exceeds capacity. We choose to
protect the two clients with the low expected load, high-light and low-light shown
in Table 4.5.
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Client Weight Arrival rate Service demand Latency target Expected utilization
Color Label wi ri (req/sec) Di (msec) li (msec) ri ·Di (%)

Orange High-light 0.25 12 20 500 24
Green Low-heavy 0.4 8 80 500 64
Red Low-light 0.35 7 50 500 35

Table 4.5: Workload specifications, expected utilization in units of processing time
per wall-clock time
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Figure 4.5: Favor two low demand workloads

Discussion

Experimental results indicate that in a system operating below capacity, clients
can achieve a stable latency without control and fairness. In such a case, weight
settings are not key control parameters in resource allocation (i.e., there is ample
capacity to stabilize the latencies of all clients). On the other hand, control and
fairness is needed to a system that operates above capacity in order to protect weak
clients whose latency may diverge. However, achieving explicit latency guarantees
is a challenging task and further study is needed to decouple latency targets from
throughput allocations alone. This is the subject of the next chapter.
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Chapter 5

Fair throughput allocation with
latency guarantees

In this section, we present Sprinkler, a two-level architecture for achieving per-
formance QoS guarantees for latency- sensitive clients over shared resource pools.
Sprinkler aims to enforce per-application latency targets by overlaying its utility-
driven throughput-regulating Controller over the pClock arrival-curve scheduler
described earlier at Chapter 4.

1 Design

A high-level depiction of the Sprinkler two-level QoS architecture appears in
Fig. 5.1. In Sprinkler, applications specify their latency targets (e.g., <150ms)
and their appreciation for throughput (or equivalently, their willingness to pay for
it) at their latency target through their utility function. Sprinkler achieves fair
sharing of resources by providing the same level of satisfaction to all applications
while allocating as high throughput as possible. We aim to experiment with other
notions of utility-based fairness in future work, such as utilitarian criterion [2]
which aims to maximize social welfare. Allocations under this principle are thought
of as a fair-sharing point of the total available capacity.

Sprinkler features a Controller that is aware of applications (maintains session
state for them) and communicates with them via a two-way API. Applications
make their characteristics (utility, latency target, maximum burst size) known to
the Controller, and expect that the Controller will notify them of an arrival-rate al-
location, once per control period, within which it conservatively believes that they
can achieve their latency targets in the next control period. The Sprinkler Con-
troller periodically adjusts the arrival-rate allocations based on the observed sys-
tem status to effectively manage resource utilization. Specifically, it uses utilization
measurements (U , current system load) and a threshold parameter, denoted by U .
When U < U while all applications fully utilize their Controller-specified rates, the
Controller decides to increase the advisory allocations for all applications in a fair

21
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Figure 5.1: Sprinkler Architecture

(utility-wise) manner (a description follows below). To do so, Controller increases
the utilities by a percentage of 20%. When U > U , service-level objective (SLO)
violations will likely occur, and so the Controller decreases the utilities to a fair
share point of 0.5 in order to meet application requirements. If Controller still ob-
serves violations, decreases the utilities by a percentage of 10% to reduce advisory
allocations. The assumption that utilization measurements for the resource pool
are available allows the Sprinkler Controller to aim for controlling an aggregate
metric (U) rather than several individual metrics (per-application latency targets)
aiming to stay close to a feasible and efficient level (our prototype aims for about
80% utilized resource pools) using a standard PID controller [11]. This assumption
is reasonable since most systems (such as compute or storage arrays) export, or
can be extended to export, an aggregate utilization metric through their manage-
ment interfaces. Systems assuming no support at all from the resource pool [18, 7]
typically resort to controlling the issue-queue to the pool, an alternative for which
however it is harder to set a reasonable goal (i.e., what aggregate latency to aim
for). The Controller is typically conservative in its rate allocations for appli-
cations (i.e., based on conservative estimates using experimental data or simple
performance models) and does not continuously adjust them to application-load
variations. As such, applications that limit themselves to Controller allocations
may miss opportunities for leveraging temporally available spare capacity and the
overall efficiency of the system may be reduced.

An important distinctive feature of Sprinkler to address this problem, is that
applications do not promise to limit themselves to the Controller-reported alloca-
tion but may individually decide to exceed them if they determine that they are
ahead of their latency goals (in whatever percentile they decide to evaluate them,
another important feature of Sprinkler). Applications can thus take the risk of
sending at a higher rate than guaranteed at the risk of having SLO violations.
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Based on the latency statistics they receive from Sprinkler, they are able to decide
when to comply to the allocations suggested by the Controller, or not. When ap-
plications notice SLO violations, they decide to return to the advisory allocations.
For as long as non-compliant applications do not learn of SLO violations, this is
an indication that they succeed to benefit from the available spare capacity and
continue to do so.

For performance isolation, Sprinkler utilizes a lower-level scheduler that takes
as input per-flow load specifications (request rate1, maximum burst size, latency
target) and schedules requests in the resource pool in a way that will achieve
latency targets as soon as the overall load is feasible. Since such schedulers already
exist [8], Sprinkler leverages prior work in this space. Sprinkler makes applications
aware of their individual latency metrics at any point in time (e.g., “recorded 103

latency-target violations out of 106 requests issued so far”), so that applications can
decide if they are doing well enough (i.e., achieving <100ms in the 99.9-percentile
of requests while it is sufficient to do so only in the 90%-percentile) to afford risking
latency violations by exceeding their throughput allocations. If applications are
barely making their latency targets they will opt for abiding by the controller’s
allocation for them. Applications that exceed their Controller-determined rates
will be able to achieve higher throughput at their latency targets only if spare
(excess) capacity is available in the resource pool at that time. Otherwise, such
non-compliant applications will miss their latency targets. However, compliant
applications will be protected (isolated). If many or all compliant applications
exhibit latency violations, this is an indication that rate allocations exceed capacity
and thus the Controller (triggered by the U > U condition at the same time) will
reduce them to a new fair-sharing point taking into account their utilities.

In this work, we refer to fairness in resource allocation as the assignment of
utilities (quantitative level of client goals and satisfaction) of different clients. We
implement a proportional fairness scheme in order to maintain a balance among
competing flows, assigning each application equal weight to determine same level
of satisfaction. In particular, we fluctuate the utility values by the same proportion
to provide a fair throughput allocation. Additionally, in case of system overload,
we drive all applications to a fair point of utility to guarantee a fair share of
throughput on equal terms.

In this work, we assume that each client’s utility has three parts: the throughput-
specific part which is an S-shaped sigmoid function (described earlier at Chapter 2),
indicating the desire for a higher throughput allocation. The slo-violations-specific
part, a reversed S-shaped sigmoid function (described earlier at Chapter 2), that
implies a desire for facing as few violations as possible. The latency-specific part is
a step function, namely it is zero for latency above a certain threshold ltarget, and
constant below that level (i.e., any latency below ltarget is equally desirable). We
assume that the total utility is the sum of the three parts [19]. Experimentation
with different types of utility functions is a subject of future work.

1These are Controller-determined allocations, not actual application rates
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Figure 5.2: Sprinkler system implementation

2 Implementation

Our implementation, whose outline is shown in Fig. 5.2, follows staged event-driven
architecture (SEDA) principles [29] and consists of a number of separate modules.
Each module/stage is served by a separate thread, and the entire system is run as
a single process. This minimizes the latency incurred in information sharing and
module communication. The four stages of the Sprinkler execution pipeline are:

The Request API server (Fig. 5.2, lower left), responsible for receiving and
pre-processing applications requests (in the case of our prototype, requests to
execute specific functions). In case a response is needed to acknowledge receipt so
that an application can proceed with sending new requests, the server responds
with an acknowledgment as soon as a request is enqueued in the incoming buffer.
The request will be processed by the execution module and eventually the actual
response will be returned to the application (bottom arrow).

In the second stage of the pipeline, a consumer thread dequeues a request
from the incoming buffer and demultiplexes to separate flows, termed Application
Queues, with one such queue per application session. This way, a lower-level
scheduler can apply fine-grained flow-specific policies. Each Application Queue
maintains certain metadata in addition to buffered requests.

In the third stage in the execution pipeline, we implemented the pClock [8]
scheduler to enforce isolation across latency-sensitive applications. To support
pClock, Sprinkler maintains application profiles (controller-set request rate, max-
imum burst size, latency target) as shared state, and continuously maintain the
minimum and maximum queue start tags, which are used to determine the start
tag for incoming requests. pClock schedules requests to meet the latency targets
requested by each application.

The fourth stage in the Sprinkler pipeline is request execution over a resource
pool. Our prototype execution engine is an instance of the function-as-a-service
(FaaS) execution model where each request triggers a function call with its argu-
ments over an available core within the pool.
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The four main stages of the Sprinkler execution pipeline are augmented by
several management modules. The Monitor module is in charge of maintaining an
overview of the state of the entire system at all times. Every request transition
(such as arrival, enqueuing, execution start, etc.) is timestamped and transmit-
ted to the monitor for bookeeping and to support reporting and analysis. Data
from the monitor is gathered as metrics and stored in log files at the end of a
run to allow post-processing. The key metrics are the arrival rate, response time,
throughput and utilization. For all metrics, we use a smoothing average method
(EWMA) to reduce noise (Chapter 3). The maximum burst size of each appli-
cation is also independently measured for validation of the initial user-provided
estimate. The Controller is in charge of partitioning available pool throughput
between application sessions. Every second, the monitor notifies the controller of
the current status (such as arrival rate and utilization), and the controller uses
this information, as well as the maximum burst size and the utility functions, to
determine whether to increase or decrease the arrival-rate allocations of applica-
tions during each control period. At each control period, it changes the settings
of the application queues (e.g., adjusting the initial user-provided maximum burst
size estimate, if needed) and exports the new information (allocated rates, total
number of requests and total number of violations so far) to applications through
the QoS management API. The current control period is 10 seconds, however in
some experiments we set 60 seconds for easier visualization of results.

The Shared State Manager is responsible for storing application settings and
important metrics on a per-application basis. The application settings are used
upon queue initialization, and metrics (number of executed requests and SLO
violations) are requested from apps through the QoS management API to learn
about their progress. These two measures enable them to compute their latency
percentiles and determine whether they can afford to increase their demands be-
yond what the controller recommended or maintain the recommended rates.
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Chapter 6

Evaluation

We evaluate Sprinkler through a series of experiments that highlight the guaran-
tees it provides to applications that are concurrently accessing a shared resource
pool. Our main experimental testbed consists of four servers, each equipped with
an Intel Xeon Bronze 3106 8-core 1.70GHz CPU, 16GB DDR4 2666MHz DIMMs,
256GB Intel D3-S4610 SSD and 2TB Ultrastar 7K2 HDD, running Ubuntu Linux
16.04.6 LTS, interconnected via a 10Gb/s Dell N4032 switch.

The following experiments are conducted using only throughput-utility func-
tions in the decision-making process, and all applications feature the following
sigmoid functions.
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Figure 6.1: Utility functions

1 Performance isolation and use of excess capacity

In the first experiment, we demonstrate how Sprinkler isolates an application that
honors its specification from an application that does not under saturation, while it
also allows the latter to use spare capacity when left unused by other applications.

The experiment evolves over 4 consecutive phases of 60 seconds each (Fig. 6.2
(a)-(c)). The allocations for each application set by the Sprinkler controller (also

27
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Client Max burst size Initial arrival rate Service demand Latency target Expected utilization
Color Label bi (reqs) ri (req/sec) Di (msec) li (msec) ri ·Di (%)

Orange App1 4 20 20 100 40
Green App2 5 20 20 100 40

Table 6.1: Workload specifications, expected utilization in units of processing time
per wall-clock time (Exp. 1)

referred to as its specifications, used as input to pClock) dictate that each appli-
cation sends at an average of 20 req/sec. The latency target of each application
is 100ms. The complete workload specifications in this experiment are outlined
in Table 6.1. Some of these parameters are set at our workload generator (Lo-
cust [17]) while others, such as the maximum burst size, are measured within the
prototype. All reported metrics are measured and collected by the Sprinkler mon-
itoring system.
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Client Max burst size Initial arrival rate Service demand Latency target Expected utilization
Color Label bi (reqs) ri (req/sec) Di (msec) li (msec) ri ·Di (%)

Orange App1 6 10 20 100 20
Green App2 6 20 20 100 40
Purple App3 6 10 20 100 20

Table 6.2: Workload specifications, expected utilization in units of processing time
per wall-clock time (Exp. 2, 3, & 4)

2 Fair throughput regulation

In the second experiment, we show how the Sprinkler controller is fairly regulating
aggregate throughput between applications through modification of their alloca-
tions (and thus their specifications used as input to pClock) when the aggregate
load or system capacity changes.
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Figure 6.3: Fair throughput regulation

The experiment runs for three minutes to depict the policies that the controller
applies to control allocations.

In the first 20sec, application 1 sends at an average of 10 req/sec and application
2 sends at an average of 20req/sec. The Sprinkler Controller every 10 seconds and
up to 50 seconds, increases the utilities by percentage of 20% (Fig. 6.3d). In



30 CHAPTER 6. EVALUATION

the 50-th sec, Controller detects the aggregate utilization approaches to 80% and
decreases application utilities to a fair sharing point of 0.5, reducing the utilization
to about 70% (Fig. 6.4c). The remainder of this experiment depicts a repeated
behavior that reflects controller adaptation to system capacity.

3 Adaptation to workload variations

In the third experiment, we demonstrate how the Sprinkler controller adapts to
changes in the environment.

The next experiment runs for three minutes (Fig. 6.4 (a)-(d)) and exhibits
Sprinkler’s capability to adjust application request rates for efficiency and to
achieve latency guarantees. The complete workload specifications are outlined
in Table 6.2.
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Figure 6.4: Adaptation to workload variations

In the first 10sec, applications 1 and 2 send at an average of their initial ar-
rival rate (10req/sec for application 1 and 20req/sec for application 2). The Sprin-
kler Controller increases allocations for applications 1 and 2 based on their utilities
up to 50 seconds, as spare capacity is available to harness as seen in aggregate pool
utilization (Fig. 6.4c). In the 50-th sec, the aggregate utilization exceeds 80% and
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Controller decreases application utilities to a fair sharing point of 0.5 (Fig. 6.4d).
In the 60-th sec, a third application (App3) enters and ramps up to sending at an
average rate of 10 req/sec, while applications 1 and 2 keep their previously set advi-
sory rates (observing 10 req/sec for application 1 and 20req/sec for application 2).
As the aggregate utilization exceeds 80%, all applications driven to a fair point of
0.5 (Fig. 6.4d). At the 90-th sec the aggregate utilization is below to 80% and Con-
troller increases application utilities, indicating an increase in advisory allocations.
In the next minutes (90-120sec), Sprinkler adjusts allocations for all applications
based on condition through monitoring system utilization and all applications re-
spond by proportionally reducing rates to Sprinkler’s advice (Fig. 6.4a). In 120-th
sec, application 2 becomes temporarily idle (no requests issued, but not departing
the system), releasing resources that can be used by the other two applications.
Applications 1 and 3 are probing for additional throughput by speculatively in-
creasing rates to about 24 req/sec, benefiting from the spare capacity until 160
seconds (Fig. 6.4a). In the 160-th sec, Controller returns applications to a fair
sharing point of 0.5 (Fig. 6.4d) as the system utilization exceeds 80%.

4 Application-specific rate-control policy

Next we focus on dynamic and application-specific policy for rate control to explore
additional throughput based on an assessment of the latency achieved so far vs.
their targets.

In this set of experiments we demonstrate application-specific rate control pol-
icy, according to which non-compliant applications may occasionally probe for
additional throughput if justified by a risk assessment of their latency targets
(SLOs). We show how such policies can at times benefit applications when spare
capacity is available, and how they can affect and be affected by latency targets
over time.

The first experiment (C1) runs for two minutes (Fig. 6.5) during which two
applications share a resource pool with a latency target (median or 50-percentile)
of 100ms. In the first 20sec, both applications send at their initial rate alloca-
tions. Until 50 seconds, the Controller detects spare capacity available (as the
total resource-pool utilization is reported less than 80%) and informs applications
for their new advisory allocations, increasing their utilities by a percentage of
20% at each time decision (Fig. 6.5d). In the 50-th sec, Controller detects that
aggregate utilization is above 80% (Fig. 6.5c) and decreases application utilities
to a fair sharing point of 0.5 (Fig. 6.5d). In the 70-th sec, application 2 evalu-
ates its latency profile, determining that nearly 100% of requests are below 100ms
so far, so a significant number of violations can be afforded and still satisfy the
latency-target at the median. It thus decides to exceed the (advisory) allocation
by sending at an average of 35 req/sec. As seen in Figs. 6.5a and 6.5c, there
is a throughput increase for the application, but it also pushes total utilization
to about 85% yielding latency-target violations for the non-compliant application
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Figure 6.5: Application-specific rate control (C1): Fail attempt

(Fig. 6.5b). However, the compliant application (Application 1) is protected (iso-
lated) and does not register latency-target violations during this phase. In the
remainder of this experiment (80-120sec), application 2 assesses that the latency-
target violations risk hurting its overall SLO and thus decides to comply with the
Controller-determined rate allocation, sending at an average of 20 req/sec. This
restores its desired latency profile.

We setup another experiment (C2, Fig. 6.6) that differs from the previous one in
phase of 60-70sec where one of the applications becomes non-compliant. Just as in
the previous experiment, in the 60-th second application 2 decides to increase the
arrival rate to 30 req/sec while application 1 complies to the Controller-defined
allocation (10 req/sec). Application 2 notes that it benefits from the available
spare capacity as it does not observe SLO violations (Fig. 6.6b). However, in the
70-th sec decides to comply to the advisory allocation (20req/sec) decreasing the
aggregate utilization (Fig. 6.6c).
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Figure 6.6: Application-specific rate control (C2): Successful attempt
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Chapter 7

Conclusions

In this thesis, we study and experimentally test utility-driven fair sharing mech-
anisms to effectively provide QoS goals in autonomic computing systems. Al-
though many weighted fair queuing algorithms [5, 4, 6] have been proposed to
provide throughput and low latency guarantees, the latency and throughput re-
quirements cannot be independently controlled. Experimental results (Chapter
4) show that latency can be controlled by adjusting the weights, and low latency
can only be achieved by increasing throughput. Instead, the QoS framework we
propose (Chapter 5) achieves throughput-latency decoupling while providing fair
throughput regulation and latency guarantees.

Sprinkler follows a two-layer architecture in which the throughput-oriented
high-level layer determines and publishes conservative, fair-share request-rate al-
locations based on simple performance models and aiming for efficient use of the
resource pool. The lower-level latency-oriented scheduler [8] achieves application-
specific latency targets, assuming that input specifications are feasible, isolat-
ing well-behaved applications from those that exceed their specifications when
the aggregate load exceeds capacity. Our evaluation of the Sprinkler prototype
demonstrates that it effectively and fairly allocates aggregate resource-pool capac-
ity in concurrent applications, maintaining their latency goals. Sprinkler allows
application-specific control (based on advisory allocations and feedback on the la-
tency achieved so far in a run). It combines isolation of compliant applications
from those exceeding their allocations, and speculation by applications exceeding
their SLO to increase efficiency, while maintaining aggregate use of the resource
pool below capacity.
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Chapter 8

Future work

In this thesis, we experimented with uniform clients with equal service demand and
latency targets for initial testing of our prototype. Further experimental evaluation
with different specifications (including bursty workloads) should be conducted to
throroughly validate Sprinkler. Beyond gaining experience with different types of
clients, in the future we plan to experiment with different utility functions and
fairness schemes. We would also like to focus more on the theoretical analysis and
study the impact of different configuration values on the system, such as utility
variation percentages, desired system utilization level (threshold) and utility fair
point, to speed up the rate of system convergence.

Furthermore, we would like to further develop controller and application-specific
client policies. Specifically, we plan to consider cases where speculative applica-
tions exceed their advisory allocations in order to take advantage of spare resources,
temporarily driving the resource pool above capacity. In such cases, the controller
should not be applying a fairness action (reducing advisory allocations) since the
speculative applications will eventually throttle themselves back to the fair alloca-
tion point based on their observed SLO violations. The controller should instead
apply fairness actions only when it observes that the advisory throughput allo-
cations are infeasible for the overall system, and the utilities to consider at that
point should be based on the advisory allocations for each client.

Finally, we would like to consider a possible extension of Sprinkler to oper-
ate in a distributed environment in which global information and synchronization
challenges will have to be addressed.
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