
The implementation of ImmACS - an
Immersive Audio Communication System

Yannis Mastorakis

Thesis submitted in partial fulfillment of the requirements for the

Masters’ of Science degree in Computer Science

University of Crete
School of Sciences and Engineering
Computer Science Department

Voutes Campus, GR-70013 Heraklion, Crete, Greece

Thesis Advisor: Prof. Athanasios Mouchtaris

University of Crete
Computer Science Department

The implementation of ImmACS - an Immersive Audio
Communication System

Thesis submitted by
Yannis Mastorakis

in partial fulfillment of the requirements for the
Masters’ of Science degree in Computer Science

THESIS APPROVAL

Author:
Yannis Mastorakis

Committee approvals:
Athanasios Mouchtaris
Associate Professor, Thesis Supervisor

Panagiotis Tsakalides
Professor, Committee Member

Xenofontas Dimitropoulos
Assistant Professor, Committee Member

Departmental approval:
Antonis Argiros
Professor, Director of Graduate Studies

Heraklion, November 2015

Abstract

In last decade there has been a lot of research on immersive audio capturing and
reproduction. However, a complete communication system that utilizes immersive
audio in real-time does not exist. In this work, we realize ImmACS, a complete
communication system that allows the capturing and reproduction of high-quality
immersive audio in real-time. ImmACS is based in a computationally efficient yet
robust technique, that utilizes a circular microphone array for audio capturing, and
headphones or loudspeakers for audio reproduction. Circular arrays overcome the
inherent ambiguities of linear arrays and provide estimations in the full [0◦, 360◦)
range in the 2D space. The communication model supports multiple, concurrently
active clients, that can simultaneously transmit and receive immersive audio. The
model requires the mediation of a server for the distribution of the streams. The
immersive audio stream consists of one audio channel accompanied by spatial meta-
data, which we explicitly include in every packet as side information. Optional
video streaming is also supported.

We implement Immacssip, the client of ImmACS, by modifying Baresip, an
open-source VoIP client. We realize all the immersive audio functions in Libim-
macs, a library we designed for optimal real-time performance and flexibility. We
incorporate Libimmacs into Baresip and extend its configuration interface accord-
ingly. Furthermore, we modify Baresip so that it is able to receive multiple streams
per call, so as to allow the adjustment of the stream of each peer separately. Lastly,
we utilize multiple threads for the decoding of the streams, so as to increase the
throughput of the system in multi-core systems.

Bareserver is the server of ImmACS and is also based on Baresip. Each client
connects to Bareserver directly, exploiting the fact that Baresip is by default a
VoIP client. However, we have disabled the transmission of the local streams at
Bareserver; it only relays the packets between clients connected to the same SIP
account. The packets are relayed completely untouched, with no transcoding or
down mix taking place, making the server’s presence transparent to the overall
communication. In addition, we utilize several worker threads that perform the
relaying of the packets, so as to take advantage of the multi-core systems.

To facilitate the manipulation of the audio streams at the client, we provide
Immacs Control, a flexible graphical interface. Immacs Control is an autonomous
application that uses network sockets to communicate with the client. It allows
the monitoring and adjustment, in real-time, of the direction and volume of the
audio sources. All signal processing is performed at the client, while the interface
only sends meta-data describing the audio filters.

Finally, to accommodate for system testing, we provide the ability to capture
and reproduce audio from and to files at disk in real-time. In this way, a fully
controlled input and output environment can be set easily, without the need for
external hardware. In the same basis, we provide a special "echo" mode of function,
where the server transmits the packets back to their senders.

Περίληψη

Τη τελευταία δεκαετία έχει γίνει αρκετή έρευνα σχετικά με την καταγραφή και

την αναπαραγωγή εικονικού ήχου. Ωστόσο, δεν υπάρχει ένα πλήρες τηλεπικοινωνια-

κό σύστημα που να υποστηρίζει τη λειτουργία εικονικού ήχου σε πραγματικό χρόνο.

Στην εργασία αυτή, υπολοποιούμε το ImmACS, ένα ολοκληρωμένο τηλεπικοινωνια-
κό σύστημα το οποίο επιτρέπει τη καταγραφή και την αναπαραγωγή εικονικού ήχου

υψηλής ευκρίνειας σε πραγματικό χρόνο. Το σύστημά μας βασίζεται σε μια εύρωστη

τεχνική με χαμηλό υπολογιστικό κόστος, που χρησιμοποιεί μία κυκλική συστοιχία μι-

κροφώνων για την καταγραφή του ήχου, και ακουστικά ή ηχεία για την αναπαραγωγή.

Οι κυκλικές συστοιχίες μικροφώνων δεν έχουν τις εγγενείς ασάφιες των γραμμικών

συστοιχιών και προσφέρουν εκτιμήσεις στο πλήρες κυκλικό εύρος [0
◦
, 360

◦
) στο

δισδιάστατο χώρο. Το μοντέλο επικοινωνίας υποστηρίζει πολλαπλούς, ταυτόχρονα

ενεργούς χρήστες, που μπορούν να στέλνουν και να λαμβάνουν εικονικό ήχο. Για

την διανομή των ροών πληροφορίας χρειάζεται η μεσολάβηση ενός διακομιστή. Η ροή

εικονικού ήχου αποτελείται από ένα κανάλι, συνοδευόμενο από χωρικά δεδομένα, τα

οποία εισάγουμε στο κάθε πακέτο ως επιπρόσθετη πληροφορία. Υποστηρίζεται επίσης

προαιρετικά και η επικοινωνία μέσω βίντεο.

Υλοποιούμε το Immacssip, το λογισμικό του χρήστη, τροποποιώντας το Baresip,
μια εφαρμογή ανοιχτού κώδικα για VoIP κλήσεις. Υλοποιούμε όλες τις λειτουργίες
για τον εικονικό ήχο στη βιβλιοθήκη Libimmacs, την οποία σχεδιάσαμε για ευελι-
ξία και μέγιστη απόδοση σε πραγματικό χρόνο. Ενσωματώνουμε την βιβλιοθήκη στο

Baresip και τροποποιούμε την διεπαφή του ανάλογα. Επιπρόσθετα, αλλάζουμε το
Baresip ώστε να μπορεί να λαμβάνει πολλαπλές ροές δεδομένων ανά κλήση, ώστε
να είναι δυνατή η διαχείρηση της ροής του κάθε χρήστη ξεχωριστά. Τέλος, υλοποιο-

ύμε την αποκωδικοποίηση των ροών παράλληλα, για να αυξήσουμε την απόδοση στα

συστήματα πολλαπλών επεξεργαστών.

Ο Bareserver είναι ο διακομιστής του ImmACS και βασίζεται επίσης στο Baresip.
Ο κάθε χρήστης συνδέεται στο διακομιστή άμεσα, εκμεταλευόμενος την ήδη υπάρχου-

σα υποστήριξη του Baresip για αυτό. Ωστόσο, απενεργοποιήσαμε την αποστολή των
τοπικών ροών στο διακομιστή, και τον τροποποίησαμε ώστε μόνο να μεταβιβάζει τα

πακέτα μεταξύ των χρηστών που είναι συνδεδεμένοι στον ίδιο λογαριασμό. Τα πακέτα

αναμεταδίδονται απείραχτα, χωρίς να υλοποιείται κάποια μετατροπή ή μίξη, καθιστών-

τας τη παρουσία του διακομιστή ανεπαίσθητη στην όλη επικοινωνία. Επιπρόσθετα,

παραλληλοποιούμε την αναμετάδοση των πακέτων για να πετύχουμε μεγαλύτερη α-

πόδοση στα συστήματα πολλαπλών επεξεργαστών.

Διευκολύνουμε την διαχείρηση των ροών ήχου, υλοποιώντας το ImmACS Con-
trol, μια ευέλικτη γραφική διεπαφή. Η διεπαφή είναι μια αυτόνομη εφαρμογή και επι-
κοινωνεί με τη κύρια εφαρμογή μέσω δικτύου. Επιτρέπει την παρακολούθηση και την

προσαρμογή, σε πραγματικό χρόνο, της κατεύθυνσης και της έντασης των ηχητικών

πηγών. ΄Ολη η επεξεργασία σήματος πραγματοποιείται στη εφαρμογή χρήστη, ενώ η

διεπαφή προσφέρει μόνο μετα-δεδομένα που περιγράφουν τα ηχητικά φίλτρα.

Τέλος, για να απλοποιήσουμε τις δοκιμές του συστήματος, επιτρέπουμε την φόρ-

τωση και την αναπαραγωγή ήχου από και προς αρχεία στο δίσκο σε πραγματικό χρόνο.

2

΄Ετσι μπορεί εύκολα να στηθεί ένα πλήρως ελεγχόμενο πειραματικό περιβάλλον, χω-

ρίς να χρειάζεται κάποια εξωτερική συσκευή. Στη ίδια βάση, προσφέρουμε μια ειδική

λειτουργία όπου ο διακομιστής αναμεταδίδει τα πακέτα πίσω στους αποστολείς τους.

Acknowledgements

First of all I would like to thank my supervisor, Professor Athanasios Mouchtaris
for giving me the opportunity to work with him and for his great support.

I would also like to thank the members of my dissertation committee, Professors
Panagiotis Tsakalides and Xenofontas Dimitropoulos for their valuable suggestions,
questions and advises for this work.

I would like to acknowledge the Institute of Computer Science (FORTH-ICS)
for providing financial support and all the necessary equipment during this work.

Moreover I would like to thank my colleagues at the Signal Processing Lab,
Despoina, Nikos, Fillippos and Tasos, for their help and useful advises for this
thesis and for the pleasant working environment.

I would also like to thank my close friends Alexandra and Francesca for their
constant patience, encouragement and support during this important venture of
my life.

Last but not least, I would like to thank my family for showing belief in me
until the end.

To the memory of my beloved grandfather, Yannis
Στη μνήμη του πολυαγαπημένου μου παππού, Γιάννη

Contents

1 Introduction 3
1.1 Motivation . 3
1.2 Contribution . 3
1.3 Organization of this thesis . 5

2 Real-Time Audio Programming Background 7
2.1 The audio interface . 7
2.2 Audio APIs . 8
2.3 Circular buffering . 9
2.4 Audio data format and structure 10
2.5 Audio latency . 11
2.6 Effects of the period size in performance 12
2.7 Challenges of real-time processing 12
2.8 Good and bad practices for real-time coding 13

3 Libimmacs - ImmACS real-time processing library 17
3.1 Features . 17
3.2 Design challenges and practices . 18
3.3 Code overview . 19
3.4 Code analysis . 20

4 Immacssip - the ImmACS client 31
4.1 Goals and challenges . 31
4.2 Incorporating Libimmacs to Baresip 32

4.2.1 Default audio structure . 32
4.2.2 Custom audio structure and implementation details 33

4.3 Multiple streams per call . 36
4.3.1 Default communication model 36
4.3.2 Custom communication model 37
4.3.3 Implementation details . 37

4.4 Immacs Control integration . 39
4.4.1 Immacssip-ImmACS Control communication model 39
4.4.2 Implementation details . 40

I

5 Immacs Control - the graphical user interface of ImmACS 41
5.1 Communication with Immacssip . 41
5.2 The spatial equalizer . 42
5.3 The spatial mapper . 43

6 Bareserver - the ImmACS server 45
6.1 Communication with Immacssip . 45
6.2 Multi-threaded relaying . 46
6.3 Echo server . 46

7 ImmACS from a user’s perspective 47
7.1 Bareserver . 47

7.1.1 Dependencies . 47
7.1.2 Installation and first run . 47
7.1.3 SIP account setup . 48
7.1.4 Configuration . 48
7.1.5 Operation . 49
7.1.6 Uninstall . 49

7.2 Libimmacs . 49
7.2.1 Dependencies . 50
7.2.2 Installation . 50
7.2.3 Usage . 50
7.2.4 Uninstall . 50

7.3 Immacssip . 51
7.3.1 Dependencies . 51
7.3.2 Installation and first run . 51
7.3.3 SIP Account Setup . 52
7.3.4 Configuration . 52
7.3.5 Operation . 55
7.3.6 Operation with video support 55
7.3.7 Uninstall . 56

7.4 Immacs Control . 56
7.4.1 Dependencies And Installation 56
7.4.2 Operation . 56

8 Conclusions and Future Work 65

II

List of Figures

1.1 Overview of the ImmACS system. In this example, three clients
communicate simultaneously through the server. The stream of each
client is depicted using a different arrow, to facilitate the visualiza-
tion of the route of the streams. Notice that the communication is
possible among clients that utilize different input and output equip-
ment. 5

2.1 Audio data flow from hardware to software. 8
2.2 Subdivisions of an audio data structure example that consists of a

buffer of eight periods, with a period of four frames, with a frame of
two samples, with a sample of two bytes. 10

2.3 Sequence of audio samples in interleaved and non-interleaved format,
for an example of four channels and three time-samples per channel.
The colors discriminate the channels while the numbers indicate the
time sequence. 11

3.1 Libimmacs architecture. Warmer colors declare greater significancy
of the objects for the library user. Cardinality has been omitted for
clarity. 20

3.2 Example of combining parts of Libimmacs for the capturing and
reproduction of immersive audio. The diagram emphasizes on the
data flow between the components. Notice that DOA estimation is
performed in parallel with the encoding/decoding process, justifying
the use of buffers for data communication. 24

4.1 Baresip audio transmit pipeline. 33
4.2 Immacssip audio transmit pipeline. The pink components indicate

the modifications to the default transmit pipeline. Notice that the
resampling part does not exist here. 33

4.3 Baresip audio receive pipeline. 34
4.4 Immacssip audio receive pipeline. The pink components indicate

the modifications to the default receive pipeline. Notice that the
resampling part does not exist here. 34

4.5 Baresip architecture. 36

III

1

4.6 Immacssip architecture. The pink components indicate the modifi-
cations to the default architecture. 38

7.1 Immacs Control screenshot. 57
7.2 Screenshot of the Spatial Equalizer. 59
7.3 Spatial Equalizer screenshot in solo mode. 60
7.4 Screenshot of the Spatial Mapper. 61
7.5 Screenshot of the Volume Panel. 62
7.6 Screenshot of the Source Monitor. 63

2

Chapter 1

Introduction

Humans are able to identify the direction of sounds in an acoustic environment.
Spatial audio concerns the artificial reproduction of a sound field where all the
directional information is preserved. Nowadays, spatial audio is utilized by many
applications so as to enhance the overall user’s experience. It is widely used at
the movie, game, music and telecommunication industry. In some applications the
spatial sound is created artificially, while in others there is the need to recreate a real
acoustical environment, where multiple audio sources may simultaneously exist.
For example, a live concert, a football match, a theatrical play, a teleconference
call etc. There have been proposed several techniques for spatial audio capturing
and reproduction [1, 2, 3, 4, 5], that aim at the best possible recreation of the
true acoustical environment, so as to provide a realistic auditory sensation to the
listener.

1.1 Motivation

A lot of research work has been made in spatial audio capturing and reproduc-
tion. However, according to our knowledge, a communication system that utilizes
both capturing and reproduction of spatial audio in real-time does not exist. The
goal of this thesis is to create a complete communication system, that will allow
the capturing, streaming, reproduction and manipulation of the true acoustical
environment of each user, in real-time, for use at a common personal computer.

1.2 Contribution

We implement a system for VoIP calls that allows each user to transmit and receive
spatial audio. From now on we will refer to this system as ImmACS, which stands
for Immersive Audio Communication System. Our system is based on a client-
server communication model where all clients communicate through the server. It
supports the communication of multiple, simultaneously active clients, i.e. tele-
conferencing. In contrast to the conventional VoIP teleconferencing systems, our

3

4 CHAPTER 1. INTRODUCTION

system allows each user to manipulate the spatial properties and the volume of
each peer separately. We achieve this by an all-to-all communication model, where
each client receives the streams of all the other clients. This permits the config-
uration of a different audio setup for each user, according to its own preferences.
Our system also combines high quality audio with low latency streaming, features
that make it ideal for teleconference and suitable for Network Musical Performance
applications, where multiple musicians perform through the network.

To support the functions that concern spatial audio, we utilize the technique
of Alexandridis et al. for immersive audio capturing, encoding and reproduction,
which is suitable for real-time applications and outperforms other similar state-of-
the-art methods [1]. This method utilizes a circular microphone array for capturing
and loudspeakers or headphones for reproduction. Moreover, from its definition,
it allows the separation of simultaneous active audio sources, based on their direc-
tion. This property will prove to be very useful for controlling the reproduction of
each source separately. We implement the functionality of [1] in a shared library,
which we have carefully designed for optimal real-time performance, modularity
and portability. From now on, we will refer to this library as Libimmacs.

We do not implement the client and the server of our system from scratch.
Instead, we base our implementation on Baresip, an minimalistic open-source VoIP
client [6]. Baresip has a very modular architecture that allows for easy maintenance
of the code and multiple extensions. It is portable to both Mac OS X and Linux,
and supports a wide variety of audio and video codecs. To implement the client of
our system, we incorporate the functions of Libimmacs to Baresip. From now on,
we will refer to the ImmACS client as Immacssip.

To realize the server of our system, we modify Baresip accordingly. We con-
sidered faster and easier to convert Baresip from a VoIP client to the VoIP server
of our system, than to modify a real VoIP server. We came to this decision by
exploiting our knowledge on Baresip due to the modifications for the client, and
the simplicity of the server’s requirements that can be easily supported by Baresip.
While this implementation approach is mostly ad-hoc, it proved to be the best
possible for the purposes of this project. We will refer to the ImmACS server also
as Bareserver.

Finally, we provide a flexible graphical interface to facilitate the manipulation
of the audio streams. The interface works as an independent application and can
be executed on the same or a different machine with Immacssip. It features two
interactive graphical effects, to control the spatial audio of each stream. The Spatial
Equalizer, that allows the adjustment of the volume of each source in relation its
direction, and the Spatial Mapper that allows the modification of the direction of
each source separately. We name this graphical user interface as Immacs Control.
Figure 1.1 displays an overview of the ImmACS system, using an example where
three simultaneously active clients communicate through Bareserver.

1.3. ORGANIZATION OF THIS THESIS 5

Figure 1.1: Overview of the ImmACS system. In this example, three clients com-
municate simultaneously through the server. The stream of each client is depicted
using a different arrow, to facilitate the visualization of the route of the streams.
Notice that the communication is possible among clients that utilize different input
and output equipment.

1.3 Organization of this thesis

This thesis is organized as follows. In Chapter 2 we describe the basic theoretical
framework for developing real-time audio applications. In Chapter 3 we analyze
the structure of Libimmacs and explain our design choices. Chapter 4 concerns all
the required modifications that converted Baresip to Immacssip. We provide all
the aspects of the implementation of Immacs Control in Chapter 5. The details for
the conversion of Baresip to Bareserver are given in Chapter 6. In Chapter 7 we
provide all the necessary instructions for the operation of the system from a user’s
perspective. Finally, we conclude in Chapter 8, where we also express our plans
for future work.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Real-Time Audio Programming
Background

In this chapter, we provide the fundamentals of real-time audio programming.
We assume that the reader has some basic theoretical knowledge on digital signal
processing and some experience on generic programming and the use of system
calls. We discuss about some real-time unsafe programming habits and oppose
some basic, more robust practices that can increase real-time performance. This
chapter refers to general purpose operating systems such as Linux, Mac OS X, Mac
iOS, Android, Windows, where the robust performance of real-time applications is
not trivial. The suggested guidelines are quite generic and can be applied to any
of these systems. Overall, the proposed techniques can be applied to any real-time
application, not just audio.

2.1 The audio interface

An audio interface, also known as a sound card, is a device that allows a computer
to receive and send audio data from and to the outside world. Its main function
is to transcode a digital audio signal to analog or other digital forms. An audio
interface that allows the simultaneous input and output of audio data is a full-
duplex device. When both input and output can be performed but not on the
same time, it is a half-duplex device. It is not important for an audio developer to
know how audio interfaces work in detail. However, having a basic idea can really
help to develop better audio applications. The following two examples provide an
intuitive explanation of the input and output operation on a sound card.

Sound waves produced by a source are captured by a microphone and converted
to continuous alternate current. This signal can be first enhanced by an amplifier or
given directly as input to the audio interface. The analog signal is then sampled and
quantized by using anAnalog-to-Digital Converter (ADC). Audio information
is stored in small chunks of data in the hardware buffer of the interface. At regular
time intervals the audio interface provides these data to the computer for further

7

8 CHAPTER 2. REAL-TIME AUDIO PROGRAMMING BACKGROUND

Application

Audio Interface

System Native Audio API
(ALSA, CoreAudio, etc)

Library API (optional)
(JACK, PortAudio, PulseAudio, etc)

software

hardware

Figure 2.1: Audio data flow from hardware to software.

processing.
The reproduction works in a very similar way. The audio interface requests new

audio data from the computer when it considers that it is necessary. The computer
then transfers audio data into the hardware buffer of the sound card. The digital
samples are converted to an analog signal by a Digital-to-Analog Converter
(DAC) and exported by the output of the interface. Then, the analog signal can
be given as input to an amplifier and converted to sound waves using a loudspeaker.

2.2 Audio APIs

The audio interface interrupts the system when audio data is required for input or
output. After the interrupt the operating system takes over. Operating systems
provide an abstraction layer for using the audio interfaces. Hardware-specific de-
tails are usually hidden and a common functionality is provided by a unified audio
Application Programming Interface (API). Each operating system provides
its own API for audio. Linux audio API is provided by the Advanced Linux Sound
Architecture (ALSA) software framework [7, 8]. Core Audio is the audio API for
Mac iOS and OS X [9]. Microsoft Windows provides the Windows Audio Session
API (WASAPI) [10].

System-native audio APIs provide an abstract yet flexible way for developing
audio applications. However, the application will be bounded to the API’s oper-
ating system and different implementations will be required for different operating
systems. Furthermore, those APIs may be too complicated for very simple audio

2.3. CIRCULAR BUFFERING 9

applications or deficient and impractical for more complex ones. For these rea-
sons, plenty of audio libraries exist, each one of them suitable for a different use.
These libraries usually rely on a lower level audio API and provide a higher level
interface. Some of them follow. PortAudio is an open source, cross-platform audio
API [11]. Rt-Audio is a cross-platform C++ class for real-time audio input and
output [12]. JACK Audio Connection Kit (recursively JACK) is a cross-platform
sound server, that provides real-time, low latency audio communication between
applications [13]. Similar to JACK, PulseAudio is a cross-platform audio server
also capable of network streaming of audio [14]. An example of the audio data flow
from hardware to software level can be found in Figure 2.1.

Most of the audio APIs provide DSP interface through a callback function,
e.g. JACK, CoreAudio, PortAudio etc. The callback function is indicated to the
API by the developer and must be compatible with the callback prototype the API
provides. The callback function is called by the API every time audio data needs
to be read (output) or written (input) to the application, similarly to the interrupt
of the audio interface. Several audio APIs provide the option to read and write
audio data at the same callback, simplifying the programming interface even more.
The inverse procedure where the developer explicitly calls an API function so as
to read or write audio data is the blocking method, e.g. ALSA. We refer to it as
blocking because the caller usually blocks its execution by waiting the API to be
ready for reading or writing data.

2.3 Circular buffering

In audio applications there is often the need to store audio data for future use.
That is where audio buffers come in handy. An audio buffer is practically a First
In First Out (FIFO) queue, where one writes, i.e. produces, and another reads, i.e.
consumes the data. The situation where new data cannot be written to a buffer
because there is not enough space left is called a buffer overflow. The opposite
case where data need to be consumed but the buffer does not have enough data,
is called a buffer underflow. A special kind of buffer is very often used for audio
applications, the circular buffer. A circular buffer, also known as a ring buffer, is a
data buffer that its end is connected to its beginning [15]. However, this connection
is only intuitive, as the computer memory cannot be circular in practice.

For the manipulation of the ring buffer, two memory pointers are needed. One
pointer indicates the head, i.e. start, of the buffer and the other the tail, i.e. end,
of the buffer. At a write operation the new data are written where the tail pointer
indicates and the pointer is modified accordingly. Similarly at a read operation the
data are read from where the head pointer indicates and the pointer is appropri-
ately changed. When the head/tail pointer reaches the end/start boundaries of the
storage memory then it wraps around the start/end. In both operations, no trans-
position of any of the data is needed, just the modification of the corresponding
pointer.

10 CHAPTER 2. REAL-TIME AUDIO PROGRAMMING BACKGROUND

1 buffer = 8 periods

1 period = 4 frames

1 frame = 2 samples (left & right)

1 sample = 2 bytes (LSB & MSB)

L R

L M

Figure 2.2: Subdivisions of an audio data structure example that consists of a
buffer of eight periods, with a period of four frames, with a frame of two samples,
with a sample of two bytes.

A ring buffer has a great advantage. Assuming that there are enough data
for read and enough space for write, read and write operations use independent
memory regions. That allows a lock-free asynchronous operation, with the restric-
tion that only one writes and only one reads data. As it will be explained later,
this property can make ring buffers a very useful tool for generic communication
among the audio and other threads.

2.4 Audio data format and structure

Raw digital audio data is represented using the Linear Pulse-Code Modulation
(LPCM) method, often referred simply as PCM. LPCM is an uncompressed format
where the amplitude of an analog signal is sampled at uniform time intervals and
each sample is quantized uniformly to its respective equivalent in a range of discrete
values. The sample rate determines the frequency range of the digital signal while
the number of discrete quantization values, also known as bit-depth, determines
the quantization resolution. Audio interfaces support bit-depths of 8, 16, 20, 24,
32 bits per sample, while sample rates vary from 8000 to 192000 Hz.

A disadvantage of using integers for sample representation is that the values
are dependent of the integer limits. A common practice to overcome this problem
is to convert samples from integer to floating point numbers that range from -1 to
1. Floating point numbers can be single precision (32 bits) or double precision (64
bits).

In generic purpose computers, audio data are processed in groups of samples. A
sample is the smallest audio data structure. On the other hand, the highest is the
buffer of the application. A buffer consists of several fragments or periods, which
are provided to the audio algorithm for processing. A graphical representation of
the different audio structures is presented at Figure 2.2.

The samples of multiple channels can be stored in a period in two ways. When

2.5. AUDIO LATENCY 11

1 1 1 1 2 2 2 2 3 3 3 3

1 2 3 1 2 3 1 2 3 1 2 3

interleaved

non-interleaved

frame

Figure 2.3: Sequence of audio samples in interleaved and non-interleaved format,
for an example of four channels and three time-samples per channel. The colors
discriminate the channels while the numbers indicate the time sequence.

the samples are grouped per time instance, it is called an interleaved mode.
When the samples are grouped per channel, it is called a non-interleaved mode.
Finally, a frame is a group of samples of the same time instance. A visual example
of the two storing modes is provided in Figure 2.3.

Some APIs allow the user to set the size of the buffer and the period, e.g.
ALSA, while others let him choose only the period and the buffer size is set by the
API accordingly, e.g. PortAudio. The period is often identified as the application
buffer, but it is not the same thing. A common choice for the period is half the
buffer size, however both depend on the application.

2.5 Audio latency

The term audio latency refers to the time delay it takes for an audio signal to
travel through a physical or artificial channel. It may be the delay of the sound
from the computer loudspeaker to the users ears, the delay from the moment the
piano player presses the key up to the time the sound reaches his ears or the delay
it takes for a digital audio effect to capture, process, and output the audio signal.

The time delay from the entry of an audio signal to a DSP device or application
up to its exit is called roundtrip latency. In systems created for live audio perfor-
mance, the roundtrip latency must be low enough so as to give the impression that
the signal is processed and derived instantly. Although a zero roundtrip latency is
practically impossible, it is perceptually unperceived below 10 ms [16].

Audio latency also plays a significant role in Network Music Performance (NMP)
systems, where several musicians perform simultaneously through the network. The
latency of concern in these applications is the time delay it takes for a musician’s
instrument to be captured, encoded, sent through the web, decoded, reproduce
and finally reach another musician’s ears in the other side of the network. Through
real experiments, it has been found that this latency has a sweet spot at 11.5 ms
[17]. Greater latency results in gradually decreasing tempo while lower results in
progressive increment.

12 CHAPTER 2. REAL-TIME AUDIO PROGRAMMING BACKGROUND

2.6 Effects of the period size in performance

In general, any hardware or software system that intervenes between the audio
input and output can introduce its own latency to the system. The most significant
part of the latency, however, comes from the size of the period. The period size
determines the minimum latency of the system, which is the time it takes to
collect and deliver all the samples of one period.

From another point of view, the size of the period also determines the maxi-
mum allowed latency of the processing algorithm, which is the time deadline for
processing one audio period. Beyond that time limit, buffer overflows or underflows
may occur. Such buffer inconsistencies will produce audio glitches, which can make
the system unusable.

Reducing the period size would reduce the audio latency but it would increase
the interrupt rate at the CPU. More frequent interrupts will increase the CPU load
in a non-linear way, and can lead to unstable and unpredictable system behavior.
This is because the processing overhead of the interrupt will be induced at every
period. Furthermore, a smaller period size directly imposes a shorter available
time for real-time processing, which may cause buffer underflows. A general con-
clusion is that the period size sets a trade-off between system latency and
robustness.

2.7 Challenges of real-time processing

Sound is a continuous physical phenomenon, thus the capturing and reproduction of
sound in real-time requires a constant flow of data to and from the audio interface.
With no exceptions, audio data must be available whenever they are needed, or else
a buffer overflow or underflow will occur. The result of a buffer overflow/underflow
is that invalid data will be transferred from or to the interface, resulting in audible
noise, clicks, cracks or gaps at the sound, also known as glitches. Glitches are
highly undesirable because of their unpredictable and uncontrollable nature, that
can cause serious damage in other parts of the audio system. Moreover, glitches
can significantly degrade the overall acoustical sensation of the listener. To reduce
the probabilities of glitches to happen, the real-time algorithm should perform
optimally.

Real-time performance does not only concern the ability of a system to meet the
real-time constraints, but also its ability to meet them reliably. In other words,
the performance is not only judged by the worst-time case of execution, but also
from the processing time fluctuations. For example, an algorithm that requires a
constant 70% of the real-time is more preferable than another that requires the
30% but occasionally spikes up to 90%. To realize why, think of what will happen
if the real-time processing is burdened with another 20% additional load caused by
another application. The total system load for the first algorithm will be a high,
yet constant 90%, while the second algorithm will cause a 50% load with occasional

2.8. GOOD AND BAD PRACTICES FOR REAL-TIME CODING 13

overload to 110% that will cause audio glitches. This is a rather realistic scenario,
since on a general purpose system no assumption can be made about the overall
load of the CPU at the time of execution.

In general, it is very difficult to predict and prevent all the possible cases of
real-time failure, i.e. inability of the system to process data in time. The used
algorithms, the audio API, the operating system, the audio drivers, the audio
interface, the computer hardware and the overall CPU load at the time of execution,
can affect the overall processing latency and cause the system to fail. The root of
the problem, however, usually lies in poor real-time performance at user-application
level. Nevertheless, even if the algorithms are optimal for real-time operation, there
will always be unpredictable factors that will push the system to its limits. The
challenge is to make the system as less as vulnerable to every occasion.

2.8 Good and bad practices for real-time coding

There are several programming techniques that are commonly used in generic pro-
gramming and provide simple and elegant solutions to many difficult situations.
However, not all of them are safe for real-time operation. Ross Bencina aptly de-
scribes some of them in his article [18], that we find useful to briefly report here for
the purposes of this project. Some equivalent but real-time compatible techniques
are also provided.

Memory locks

Memory locks are widely used to allow two or more threads to safely access a
common part of the memory. Real-time applications usually involve more than
one threads so memory locks could prove to be very useful. However, locks are
not at all safe for real-time execution. In its simple form, a lock can be acquired
from only one thread, allowing the thread to gain access to the shared part of the
memory, while the rest wait for the lock to be released. If the real-time thread
blocks by waiting for another thread to do something, it is practically bounded to
the execution time of the other thread. The latter may not be optimally written
for real-time operation and may also have a lower priority of execution that the
first, so it could take an unpredictable amount of time to finish. The case where
a high-priority thread blocks by waiting a low-priority thread is called priority
inversion. Additionally, in the case where multiple threads compete for the same
lock, it is unknown if and when the real-time thread will get it. Moreover, blocking
for a lock can cause the OS scheduler to interfere to the execution so as to re-
schedule the blocking thread. In generic operating systems, schedulers implement
complex algorithms that are oriented more towards throughput than real-time ac-
curacy, and can behave quite unexpectedly when the system gets stressed.

Alternative to locks are the try-lock operations, where acquiring a taken lock
does not block the interested thread. If the lock is taken, the handling is left up

14 CHAPTER 2. REAL-TIME AUDIO PROGRAMMING BACKGROUND

to the application. However, this adds extra complexity to the real-time code and
there is still no guarantee that the lock will ever be available.

A simple, yet good practice, is to use ring buffers as generic purpose FIFO
queues for thread communication. For one-to-one bidirectional thread communi-
cation, two FIFO queues are necessary. The first is written by thread A and read
by thread B while the second is written by thread B and written by thread A. By
using ring buffers, non-blocking asynchronous communication is feasible between
the two threads. A disadvantage of this method is that buffering may induce delays
in the communication.

Memory management

Dynamic memory allocation/de-allocation is a straight forward procedure
for generic purpose applications, however it requires special care when operating
at real-time. Memory allocation algorithms may require large amounts of time to
allocate a block, or they may themselves block by waiting IO from the operating
system. Moreover, the algorithms can vary between operating systems and differ-
ent versions. If a memory allocation algorithm does not guarantee real-time safety,
it should not be used. A simple alternative solution is to pre-allocate all memory.
Either pre-allocate space for each variable separately or allocate a big block of
memory and use a custom memory allocation algorithm that is safe for real-time
operation. If pre-allocation is not possible, then dynamic allocation should happen
in a separate thread that is not real-time critical.

Another issue worthy of discussion is garbage collection. Garbage collection
is a mechanism that simplifies memory management by automatically de-allocating
memory when it is no longer needed. It can block the execution flow of the program
so it must be used with caution in real-time systems, ensuring that it will not lag
the operation.

Lastly, page faults can cause delays in the processing that can result to
glitches. When the operating system decides that it is necessary, e.g. if the memory
is full, it can move rarely used memory blocks to the disk. Accessing those blocks
can cause large delays, by waiting data to be read from the disk. This can be pre-
vented by ensuring that memory is accessed often or by using special mechanisms
provided by the operating systems, such as mlock()/munlock() for Mac OS X and
Linux and VirtualLock()/VirtualUnlock() for Windows.

Algorithmic complexity

Algorithms predestined to run on real-time systems should perform optimally for
the worst-time case, rather than the average-time case preferred for generic sys-
tems. Moreover, it is highly recommended that there are not any high variations
in the execution delays, which can cause occasional latency spikes. As previously
explained in section 2.7, these spikes may seem harmless when the system load is
low but they can be the source of glitches if the system gets stressed. For this

2.8. GOOD AND BAD PRACTICES FOR REAL-TIME CODING 15

reason, it is more preferable to use a slower algorithm which, nevertheless, requires
a constant time delay, than a fast algorithm which may perform very slow occa-
sionally. If the algorithm complexity is too high to operate in real-time, it is better
to spread the computations across many periods to reduce the CPU load.

Summary

Overall, the basic precaution to avoid glitches is to avoid anything that could
lead to unbounded and unpredictable execution time. This includes operations
such as locking, memory allocation, disk input/output, and every system call in
general that could block the application. Algorithms with poor worst-case time
of execution can be the source of audio glitches too. Besides that, any external
function call should be avoided if it does not, directly or indirectly, observe these
rules.

Instead, wait-free FIFO queues are a simple and safe solution for whenever
data transfer is needed to/from the audio thread, while memory should be pre-
allocated when possible. Algorithms with good worst-case time complexity should
be preferred and computational distribution across many periods is encouraged
to smoothen the CPU load. Special care must be taken to prevent page-faults
to happen for real-time used memory. Specific guidelines and techniques should
be followed when advanced audio APIs are utilized for the development, such as
like CoreAudio, ALSA, Jack etc. In this project, we apply all these techniques to
libimmacs, to ensure that the provided functions will be strictly safe for real-time
use.

16 CHAPTER 2. REAL-TIME AUDIO PROGRAMMING BACKGROUND

Chapter 3

Libimmacs - ImmACS real-time
processing library

Libimmacs is a shared library, that provides all the ImmACS functions for real-time
immersive audio capturing, encoding, decoding, reproduction and more. There
are plenty of reasons that led us to enclose all ImmACS audio operations in a
library. A library implementation allows for code-autonomy, which implies easier
maintenance and re-usability. In this thesis, Libimmacs is used in conjunction with
Baresip, nevertheless it is a completely independent component that can be used
in any future ImmACS-based project. For complete instructions on how to compile
and install Libimmacs refer to section 7.2.

3.1 Features

Libimmacs provides complete functionality for

• Efficient DOA Estimation.

• Spatial encoding and decoding of multichannel audio.

• Compression/decompression and easy manipulation of the spatial audio meta-
data.

• Spatial audio reproduction for headphones and loudspeakers, with flexible
volume control.

• Safe streaming of multichannel audio data to and from the disk.

• Safe asynchronous logging.

Libimmacs also provides a set of tools for

• Easy memory management.

• Audio data conversions.

17

18CHAPTER 3. LIBIMMACS - IMMACS REAL-TIME PROCESSING LIBRARY

• Useful mathematical functions.

3.2 Design challenges and practices

All Libimmacs functions have been developed in the basis of a demanding but nec-
essary design framework. The main goals of the design follow.

Optimal real-time performance

Libimmacs is not designed especially for use with Baresip. The assumption of
re-usability directed us towards a more challenging design, that requires Libim-
macs to be versatile and robust for every kind of application. The primary design
goal is optimal real-time performance, that will make the library suitable even for
demanding real-time applications. For this reason, every operation that is expected
to run in real-time is designed to comply with the practices described in Section
2.8. Furthermore, we chose to use the C programming language, so as to achieve
better performance. In this point, it is worthy to mention that Baresip, in which
we will incorporate Libimmacs in this project, is not designed for optimal real-time
performance.

Flexibility

The second significant challenge of the design is flexibility. Even though Libimmacs
is a realization of a specific system, which is described by Alexandridis et al. at
[1], it has been designed as several autonomous pieces, i.e. objects, that can be
used individually and independently if needed. This complete modular structure
also allows for quite easy extensions to the library. The flexibilities of Libimmacs
will become more apparent in the upcoming sections, as we will analyze the code
structure.

Portability

Another desirable feature is portability. All internal code written and all external
libraries used are portable to the three major operating systems, Linux, Mac OS
X and Windows. The cmake build manager is also used for portability on the
mentioned systems [19]. Despite the fact that the library has been developed and
tested in Linux and Mac OS X, compatibility with Windows is expected to be
supported. However, no actual testing on Windows has been made, but it remains
open for future work.

System testing

A very important issue is system testing. Due to the fact that a fully-controlled

http://www.cmake.org

3.3. CODE OVERVIEW 19

experiment is difficult to be set in a real environment, a simple testing framework
is provided for experimental purposes. Libimmacs provides the ability to read or
write multiple or multichannel audio files in real-time from the hard disk. This fea-
ture allows to import/export the microphone inputs/loudspeaker outputs from/to
files on disk, eliminating the need for external hardware equipment and permitting
a fully-controlled testing environment. Although audio streaming from/to the disk
is provided in the basis of a testing framework, it is a completely independent part
that can be used whenever streaming of audio from the disk is needed.

Easy maintenance

Libimmacs is still in an experimental state that leaves room for many corrections,
modifications or extensions. To facilitate for these cases, a conceptually simple
structure and easily readable code is provided, to help future developers. Code is
written to be self-explanatory and comments are given everywhere needed. Never-
theless, a complete documentation of the library is left for future work.

3.3 Code overview

Libimmacs is written in C but its design is object oriented. C++ should be more
compatible with the design but we chose C to have more control of the execution
and memory management. Objects are defined as structures, whose composition
is conceptually hidden from the user. Objects can be created, destroyed, modified
and accessed only from functions that are public through the interface of the li-
brary. Figure 3.1 depicts the architecture of the main objects of Libimmacs. The
components will be explained in Section 3.4.

Object and function declarations are separated from their definitions. All dec-
larations that are public to the user are located in the "immacs.h" header, while
declarations that are used only internally in the library are placed in the "im-
macs_core.h" header. On the other hand, the function definitions are grouped as
one source file per object. As a general rule, the name of the object is used as the
name of the source file.

External open-source code

Some external open-source code has been used in Libimmacs. This code is placed
at a separate folder to be logically separated from the rest of the project. The
code we use is an efficient implementation of a ring buffer, found in PortAudio
[11], that allows non-blocking, asynchronous read and write of data. We also used
TinyCThread, which is a minimalistic implementation of a thread library API in
C11 [20]. Essentially, it is a wrapper API to provide thread portability over various
systems, such as Windows, Mac OS X and Linux. Lastly, we also used pstdint,
which provides portability of the integer types for the systems we mentioned earlier

http://www.portaudio.com
http://tinycthread.github.io/
http://www.azillionmonkeys.com/qed/pstdint.h

20CHAPTER 3. LIBIMMACS - IMMACS REAL-TIME PROCESSING LIBRARY

Figure 3.1: Libimmacs architecture. Warmer colors declare greater significancy of
the objects for the library user. Cardinality has been omitted for clarity.

[21].

External dependencies

Libimmacs also depends on four external libraries. For fast, efficient and portable
Discrete Fourier Transform computation, we utilize FFTW [22]. To allow read-
ing/writing audio files from/to the hard disk, we use libsndfile, which is written
in C and is portable to many systems [23]. We also use ITPP, a C++ library
of mathematical, signal processing and communication classes and functions [24].
ITPP was an inevitable choice for Libimmacs. It uses advanced algorithms that
perform extremely fast on some required operations, that would take an unaccept-
able amount of time written in a simpler form. ITTP is the only C++ dependency
of Libimmacs, that makes it not a strictly C library. However, it is used only in
a very small part and can be avoided if the same algorithms are provided manu-
ally. This remains open for a future work. For instructions on how to install the
dependencies of Libimmacs refer to section 7.2.1.

3.4 Code analysis

Custom Types

Libimmacs defines three custom types that are public to the user and are used
throughout the library. The "immacs_sample_t" refers to the format of the audio
sample which is practically declared as a float number. The "immacs_frames_n"

http://www.fftw.com
http://www.mega-nerd.com/libsndfile/
http://itpp.sourceforge.net/4.3.1/

3.4. CODE ANALYSIS 21

type is used for counting audio frames and is practically a non-negative integer.
Lastly, the "immacs_complex_t" defines a complex number type and it is an array
of two float elements. The first element represents the real part and the second the
imaginary part. Changing of these types is possible but not is recommended.

DOA Estimator

Libimmacs provides efficient real-time DOA estimation, using the technique of
Pavlidi et al. for circular microphone arrays [25]. This functionality is imple-
mented in the "immacs_doa.c" file, and it is provided by the public interface of
Libimmacs. It allows the arbitrary selection of the microphone number and the
radius of the array, the maximum number of sources and the source thresholds
from the library user. While the sample rate is also defined by the user, the only
allowed values are 44100 and 48000 Hz.

The processing of audio data uses a constant block size of 2048 samples, with
50% overlap [25]. However, DOA estimation is expected to be used with audio
periods of an arbitrary size. For this reason, audio data are first collected in a
memory buffer before processing. When the buffer has enough data, processing
occurs.

Collecting the right number of data across many audio callbacks can lead to
periodic processing bursts of the CPU, decreasing the real-time reliability of the
system. For this reason, DOA estimation is performed in a separate thread to
equally distribute the processing load across many callbacks. A ring buffer is used
to allow non-blocking, asynchronous read and write of the audio data between the
audio thread and the DOA estimation thread.

The audio buffer stores up to 16 audio periods. If there is no space in the
buffer to store new data (buffer overflow), the data are dropped, without blocking
the provider, i.e. the audio thread. This is a rather rare case except if the system’s
processing power is inadequate for DOA estimation. From the side of the data
consumer, i.e. the estimation thread, buffer underflows are very often expected
when the period size of the audio callback is less than the period size of the DOA
estimator, which is 1024 samples. In that case, the estimation thread waits for the
amount of time needed, so as to complete one period. It then re-checks and repeats
the same procedure until the required number of audio frames is available. Buffer
overflow and underflow statistics are also provided for system monitoring.

DOA Buffer

Estimated DOAs must be provided back to other interested objects in real-time.
This is feasible by using DOA Buffers. A DOA Buffer allows the safe asynchronous
retrieval of the DOA estimates from the DOA Estimator. It is necessary because
the estimates are calculated by a separate thread in the DOA Estimator. The code
of the DOA Buffer lies in the "immacs_doa_buffer.c" file and is part of the public
interface of Libimmacs.

22CHAPTER 3. LIBIMMACS - IMMACS REAL-TIME PROCESSING LIBRARY

Practically, a DOA Buffer is a FIFO queue that is registered to a DOA Esti-
mator for update. Multiple DOA Buffers can be registered in the DOA Estimator.
Each time a new estimation is available, it is written in all the registered buffers.
Each DOA Buffer is used by exactly one consumer. The consumers can read the
estimates from the buffers whenever they are needed.

The DOA Buffer internally utilizes a ring buffer to achieve non-blocking, asyn-
chronous read and write operations. It stores estimations up to 64 audio periods,
which is about 1.3 seconds in 48000 sample rate and it is found adequate for the
purposes of this project. If the DOA Estimator is unable to write new data to
the DOA buffer because it is full (overflow case), the data are dropped. The DOA
Buffer also provides statistics about the number of buffer underflows and overflows.

Spatial Encoder

The Spatial Encoder encodes multichannel audio data captured with a circular
microphone array, to monophonic audio data with corresponding spatial meta-
data, i.e. side information. This is achieved by using the beamforming technique
for source separation and downmix described by Alexandridis et al. at [1]. The
interface of the Spatial Encoder is part of the public interface of Libimmacs, while
the code is found in the file "immacs_spatial_encoder.c".

Beamforming requires the DOA estimates for the processing of each period of
audio data. The Spatial Encoder instantiates a DOA Buffer that can be registered
to the DOA Estimator to retrieve the DOAs as described in the previous section.
Notice that the design does not restrict the Spatial Encoder to work only with the
provided DOA Estimator; it can be easily integrated to work with other estimators
as long as they provide the data through the DOA Buffer.

When the DOA buffer is empty (underflow case), the previous DOA estimates
are used, if they exist, or else silence is encoded. Buffer underflows are very likely
to happen when the period of the audio callback is less than the period of DOA
Estimation. This is also the main case for the integration of Libimmacs to Bare-
sip, in which the audio period is smaller than 1024 frames in 48000 sample rate
operation.

The Spatial Encoder works by processing one audio period at a time. It can
work with an arbitrary audio period size, which it is provided by the user at
the object’s initialization and is considered to be constant among all callbacks.
Internally it processes a block size twice the size of the audio period using a 50%
overlap [1]. It also allows the library user to set the desirable number of frequency
coefficients used in the encoding. It is obvious that this number should be at least
twice the size of the audio period.

The variable size of the audio period requires that the weights of the beamformer
are dynamically calculated at the object’s initialization. Due to the fact that weight
calculation implies complex and heavy operations such as matrix inversions, we use
the ITPP library to achieve optimal speed [24].

The process interface of the Spatial Encoder takes multiple audio periods of

http://itpp.sourceforge.net/4.3.1/

3.4. CODE ANALYSIS 23

the same time instance as input, which correspond to the multiple microphones
of the array. It produces a single-channel audio output, which is the down mixed
signal derived from the beamforming source separation, and the spatial meta-data
according to the current sources.

The spatial information structure is not part of the Spatial Encoder, but it is
an independent object provided by the user. This allows for more flexibility on the
manipulation of the spatial information. No compression of the spatial information
is made, just the initialization of the structure.

Finally, it is worthy to mention that in contrast to the DOA Estimator, all pro-
cess is executed in sync, meaning that the process function will block the calling
thread, i.e. the audio thread.

Spatial Audio Renderer

The Spatial Audio Renderer is the base class of all audio renderer objects. A
spatial renderer defines how the frequency components of one monophonic audio
period will be rendered, to a specific output setup, to produce immersive audio
according to their corresponding spatial meta-data. It works only in conjunction
with the Spatial Decoder, nevertheless it is a completely independent component.
We will refer in detail to the Spatial Decoder in the next section. The separation
of the rendering part from the decoding process allows the easy expansion of the
system to support multiple renderers. The two renderers provided by Libimmacs
are the HRTF Renderer and the VBAP Renderer, for headphone and loudspeaker
reproduction respectively.

The Spatial Audio Renderer is a virtual object, meaning that it cannot be used
directly on its own, but only through a child class. It provides the common func-
tion and data interface for all renderers. Of course, C does not support classes
neither inheritance, but the functionality for this case can be easily implemented.
The Spatial Audio Renderer is a structure, holding the renderer common variables
and a pointer to the rendering function. A child object must hold and initialize
an instance of the parent class in its structure, according to its needs. The Spatial
Decoder calls the rendering function indirectly through the function pointer and
uses the variables of the parent structure, without knowing anything about the
actual renderer. The rendering function has a standard interface which is declared
at the public immacs interface.

Spatial Decoder

The Spatial Decoder converts a spatial-encoded monophonic audio input to an
immersive audio output, using its corresponding spatial meta-data, as described
by Alexandridis et al. at [1]. It works in conjunction with a Spatial Audio Ren-
derer object, as described in the previous section. The manipulation of the volume
of each source, according to its DOA, is also supported. The code of the Spatial
Decoder lies in the file "immacs_spatial_decoder.c", while its declared as a part of

24CHAPTER 3. LIBIMMACS - IMMACS REAL-TIME PROCESSING LIBRARY

Figure 3.2: Example of combining parts of Libimmacs for the capturing and re-
production of immersive audio. The diagram emphasizes on the data flow between
the components. Notice that DOA estimation is performed in parallel with the
encoding/decoding process, justifying the use of buffers for data communication.

the public Libimmacs interface. Figure 3.2 depicts a simple example of utilizing the
three major components of Libimmacs (DOA Estimator, Spatial Encoder, Spatial
Decoder) to capture and reproduce immersive audio.

The Spatial Decoder works in a very similar way to the Spatial Encoder. It
processes one audio period at a time, whose size is constant and is set by the user
at the object’s creation. The synthesis uses a block size twice the audio period
with 50% overlap [1]. The audio period is transformed in the frequency domain
and then the volume processing takes place. After that, the data are given to the
spatial renderer for processing. The spatial renderer returns the immersive audio
also in the frequency domain, which is further processed to provide the signal in
time. Respectively to the Spatial Encoder, the spatial information is provided in
its de-comporessed form. Moreover, the process function blocks the execution of
the calling thread until finished.

VBAP Renderer

The VBAP renderer is a child object of the Spatial Audio Renderer that performs
rendering of audio for loudspeakers, using the Vector Based Amplitude Panning
(VBAP) method [5]. It is part of the public Libimmacs interface and its code lies

3.4. CODE ANALYSIS 25

in the file "immacs_vbap_renderer.c". It works for an arbitrary number of loud-
speakers, provided by the user. Even though VBAP also supports an arbitrary
geometry for the loudspeakers, it is assumed that they are placed uniformly at [0◦,
360◦), at equal distances from the listener. This geometry model, although sim-
plified, meets the requirements of this project and simplifies the code. The VBAP
coefficients are calculated dynamically at initialization, and stored in memory for
instant access.

HRTF Renderer

The HRTF Renderer is a child object of Spatial Audio Renderer that performs
rendering of audio for headphones using Head Related Transfer Functions (HRTF).
It is part of the public Libimmacs interface and its code lies in the file "im-
macs_hrtf_renderer.c". It uses an instance of the HRTF Holder object to retrieve
the filters in real-time. The HRTF Holder will be explained later in this chapter.
This renderer uses an ad-hoc lower limit of 128 frequency coefficients, which implies
straight from the fact that the HRTF filters used consist of 128 time samples.

Spatial Information

The Spatial Information object holds the spatial meta-data of a single audio period,
produced by the Spatial Encoder and consumed by the Spatial Decoder. Its inde-
pendent form allows the user to easily modify its data or completely create one from
scratch. Furthermore, it provides functions for the compression and decompression
of the spatial information according to the technique described by Alexandridis et
al. at [1], which can be useful for network transmission or file storing. The code of
this object is located at the "immacs_spatial_info.c" file and its interface is public
to the library user.

The Spatial Information stores data that concern the frequency domain. The
number of the frequency coefficients is given in its creation and is considered con-
stant in every operation. The DOAs are stored only once in an array and an index
for each frequency component is used that indicates the corresponding DOA. In
this way, the modification of the DOA of a source requires the change of only
one number. This also simplifies the compression and decompression algorithms,
reducing the computational cost.

To allow for more convenience and flexibility, we define some arbitrary but
sufficient conventions for the data, that should be taken into consideration by
every spatial renderer. These conventions are

• Valid DOAs can be real numbers, greater-equal to 0◦and smaller than 360◦.

• Negative DOAs indicate "special" directions to the spatial renderer

– -1 indicates that the corresponding frequency component should be
played from every output.

26CHAPTER 3. LIBIMMACS - IMMACS REAL-TIME PROCESSING LIBRARY

– -2 indicates that there is no spatial information for this component and
handling is left up to the respective renderer.

We choose to use negative DOA values as special indications, because in this way
they can be seamlessly compressed all together with the valid DOAs by the com-
pression algorithm. As a future work, we intend to add support for a special
diffuseness indication of a frequency component, that will be supported by the two
provided renderers.

Sound File Stream

The Sound File Stream object provides real-time streaming of audio from/to the
hard disk. It has two modes of operation, read and write. At read mode, audio is
read from files at disk and converted to an audio stream, while inversely at write
mode an audio stream is converted and written to a file at the disk. File opera-
tions support concurrent read/write of a single multi-channel, or multiple single-
channel, audio files. The format of the input/output stream can be interleaved
or non-interleaved. The stream format is independent of the file format, with all
the necessary conversions made automatically and concealed from the user, allow-
ing for simple use and maximum flexibility. The source code of this object can be
found in the file "immacs_sndfile_stream.c" and it is part of the public Libimmacs
interface.

The Sound File Stream utilizes the libsndfile library to read and write audio
files from/to the disk [23]. However, accessing the hard disk directly from the audio
thread is a very dangerous practice for real-time, since large and unpredictable
latencies can occur. These latencies may be induced by waiting the mechanical
parts of the hard disk to move, or the driver and the operating system to collect
the data. For this, we use an asynchronous mechanism where a separate thread is
utilized to perform all write and read operations to and from the disk, where all
data transfer is carried out through ring buffers. The intermediate audio buffers
compensate for the latency variations due to the disk IO, allowing the non-blocking
transfer of data between the audio thread and the disk thread.

The Sound File Stream can be set to either read or write mode at the time
of its creation. The path to the files for reading/writing is given also as input,
following a specific template. More details about the file name template can be
found in the section 7.3.4. At both modes of operation, the disk transaction thread
transfers data in blocks of 4096 frames, with a special handing case of the End Of
File (EOF) for the read mode. The ring buffer size used is 131072 frames, which
is about 2.7 seconds when using 48000 Hz sample rate. Statistics of the buffer
overflows and underflows are also provided. Now we will extend to some specific
details for each mode of operation.

At read mode, the whole buffer is filled at the time of the object’s initialization,
or the whole file is loaded if its size is less than the buffer size. This guarantees
that audio data will be immediately available from the very first request for data.

http://www.mega-nerd.com/libsndfile/

3.4. CODE ANALYSIS 27

If there is no space available for the disk thread to write new data (buffer overflow),
the thread waits for 4096 samples time by blocking, and then retries. If there is
no data available for the calling thread to read from the buffer (buffer underflow),
an analogous indication is returned without blocking and handling is left up to the
user.

Write mode supports a synchronization operation, which blocks until the
write thread has finished writing all the buffer data to the disk. This function can
be used to guarantee that all data will be successfully written to the files before the
object’s destruction. If there are no data to write to the disk (buffer underflow),
the thread blocks for 4096 samples time and then tries again. The case where the
buffer is full, preventing the calling thread to write to the buffer (overflow), is left
for handling to the user.

Logging

Almost every application requires a logging system for recording or displaying mes-
sages relative to information or debugging. When it comes to audio applications,
special care must be given due to the fact that logging may occur from inside the
audio thread. Libimmacs provides a general purpose logging infrastructure, that
is guaranteed to be real-time safe for use with an audio application. The log’s
source code lies in the file "immacs_log.c" and it is part of the public Libimmacs
interface.

The log system consists of the log manager, which is practically a separate
thread that processes the log messages, and the log objects, which are practically
ring buffers of the messages to be printed. A log object is automatically registered
to the log manager at the time of its creation. Messages can be provided to the
log object for non-blocking processing, but only from one execution thread. The
log manager polls all the registered logs every 200 milliseconds and processes all
the pending messages. By default, the messages are printed on the screen, but the
library user can define his own process function.

Log messages can be characterized by four labels: debug, info, warning and
error. Each message can consist of at most 512 characters, and each log object can
hold up to 64 messages. These sizes do not constitute a practical limitation for
this project.

HRTF Holder

Spatial audio reproduction with headphones is feasible at Libimmacs with the use
of Head Related Transfer Functions (HRTF). The HRTF Holder object, located
in the "hrtf_holder.c" file, provides an abstraction level for loading, storing and
retrieving HRTF data from the hard disk. Its interface is not public to the user, it
is only used indirectly through the HRTF Renderer object.

At the time of its creation, the HRTF Holder reads all HRTF data from a
single disk-file, whose format will be reported later in this section. Due to the fact

28CHAPTER 3. LIBIMMACS - IMMACS REAL-TIME PROCESSING LIBRARY

that the HRTF will be only used in the frequency domain, the discrete Fourier
transform of all HRTF is calculated at the object’s initialization and only the
frequency components are finally stored. This optimizes the performance, because
the frequency coefficients of the HRTF will be instantly available for use whenever
needed.

The user can provide an arbitrary angle to retrieve the HRTF of, and the HRTF
Holder provides the HRTF whose angle more closely matches the desirable angle.
No search is required; it uses a simple indexing operation that comes up with O(1)
complexity.

The HRTF data files, which are used for the holder’s initialization, are provided
by default by the library. We use the MIT "compact" HRTF measurements which
consist of 128 time-samples [26]. After a successful installation of Libimmacs the
HRTF data files are expected to be inside the folder named "hrtf " where Libimmacs
header is installed, e.g. "/usr/local/include/immacs/hrtf". This path may change
among different systems. The name of the file varies, according to the sample
rate. The name consists of the "hrtf_" prefix, followed by the sample rate and the
".dat" extension, e.g. "hrtf_44100.dat". The desired sample rate is provided at
the holder’s initialization. Two sample rates are currently supported, 44100 and
48000 Hz.

Extension or modification of the current HRTF database is not excluded. For
this reason the data format is essential to be provided. Some assumptions are
considered to simplify the data parsing

• All HRTF are for zero-th elevation.

• HRTF start from zero-th azimuth and are uniformly spread at [0◦, 360◦).

• All HRTF have the same size.

• HRTF are placed into the file by an increasing angle.

The data are placed in the file using the following sequence

1. the number of hrtfs (32-bit integer)

2. the number of each filter samples (32-bit integer)

3. 1st HRTF left channel all samples in series (32-bit floats)

4. 1st HRTF right channel all samples in series (32-bit floats)

5.
...

6. N-th HRTF left channel all samples in series (32-bit floats)

7. N-th HRTF right channel all samples in series (32-bit floats)

3.4. CODE ANALYSIS 29

HRTF Data Generator

The HRTF Data Generator is a matlab script that helps to convert the HRTF
from raw data in the form readable by the HRTF Holder. Furthermore, it allows
resampling of the filters to the desirable sample rates. By default, the raw HRTF
data are stored in the file "mit_compact_hrtf_elev0.mat" in an 72× 128× 2 ma-
trix. This file can be found in the source of Libimmacs.

Frequency Volume Processor

The Frequency Volume Processor allows the manipulation of the volume of each
frequency component of an audio period. It is used only indirectly through the
Spatial Decoder. Its code lies in the "immacs_freq_volume_processor.c" file and
it is part of the core interface of Libimmacs. The volume modification is provided
by the user in the magnitude scale (decibel). It also supports the calculation of
the period energy before and after the volume change.

Memory Interface

Libimmacs provides an abstraction level for memory operations that concern the
allocation and de-allocation of raw memory and multi-dimensional matrices. This
code lies in the file "immacs_mem.c" and the declarations are found in the public
Libimmacs interface. The main features are

• Dynamic allocation of raw memory with optional destructor sup-
port. Provides the same functionality as the malloc function but a user-
defined destructor can be called at the time of de-allocation.

• Dynamic allocation of 1-D, 2-D and 3-D memory arrays of objects
of user-defined size. Very useful tool for easy and condensed allocation of
the multiple matrices real-time audio processing requires.

• All above allocations initialized with zeros.

• Unified memory de-allocation interface. All memory allocations men-
tioned above (raw memory, N-D, zero-initialized) can be de-allocated using
the same function, hiding information about the underlying structure of mem-
ory.

Complex Numbers

The processing of audio in the frequency domain requires complex number op-
erations. To facilitate for these operations, Libimmacs provides functions that
implement common complex number functions, such as addition, multiplication,
division etc. These functions are all inline for speed and they are provided through
the "immacs_complex.h" header. Despite the fact that the "immacs_complex_t"

30CHAPTER 3. LIBIMMACS - IMMACS REAL-TIME PROCESSING LIBRARY

type is public, this header is used only internally in Libimmacs and is not accessible
by the user.

Audio Conversion Tools

Libimmacs features some useful functions to convert between common sample
types and audio formats. These audio conversion tools are given in the "im-
macs_convert_tools.c" file and are part of the public Libimmacs interface. The
provided functions allow conversion between single/multiple Libimmacs samples
(float) and Pulse Width Modulation samples (16-bit integers) and conversion be-
tween interleaved and non-interleaved audio streams.

Various Tools

Some generic, commonly used functions by the Libimmacs objects have been
grouped together in the file "immacs_var_tools.c". These functions allow window-
initialization such as blackman, hann and hamming, sorting algorithms, "linspace"
initialization and angular distance estimation. These functions are declared through
the public interface of Libimmacs.

Double Linked List

Operations regarding the manipulation of double linked lists can be found in "im-
macs_list.h" file. This list implementation is part of the core functions and is used
only internally from other Libimmacs objects. Functionalities include initialization
of the list, append of new objects, searching, unlinking, and finally flushing, that
automatically uses immacs memory manager to de-allocate nodes.

Chapter 4

Immacssip - the ImmACS client

Immacssip is the outcome of incorporating the features of ImmACS into Baresip.
This is feasible by using Libimmacs, which has been thoroughly studied in chapter
3. In this chapter, we describe the design choices and the technical aspects of
the implementation of Immacssip. We provide a basic framework for someone
to understand and even modify Immacssip in code level if it is needed. All the
modifications that converted Baresip to Immacssip can be found in the code by
searching for the "immacs mod" keyword throughout the project.

4.1 Goals and challenges

Libimmacs has a very modular structure that facilitates its incorporation into Bare-
sip. However, this must be performed in such way so that the user can take ad-
vantage of all the features of Libimmacs. In addition, the desired ability to receive
and fully control the audio streams of all the peers raises the complexity of the
system even more. The implementation of these properties becomes even more
challenging as we restrict only to changes in Baresip, leaving libre and librem un-
touched for convenience regarding portability. To sum up, the main goals of the
implementation of Immacssip are

• Incorporate Libimmacs functions into Baresip.

• Receive multiple audio and video streams per call.

• Manipulate audio streams through Immacs Control.

The first two tasks require modifications in almost independent parts of Baresip,
so each operation can be applied without any conflict on the other. We continue
with the analysis of these three tasks in the next sections.

31

32 CHAPTER 4. IMMACSSIP - THE IMMACS CLIENT

4.2 Incorporating Libimmacs to Baresip

4.2.1 Default audio structure

The integration of Libimmacs to Baresip requires in-depth changes to the audio
transmit and receive pipeline. We find it useful to give a short description of these
pipelines here, to provide the basis for the following section.

Transmit

The flow of the transmit pipeline starts at the audio source, which is the module
that provides the data from the audio interface. For this function, Baresip inte-
grates with various audio APIs, such as ALSA, CoreAudio and PortAudio. The
data are then stored in the audio buffer, waiting to be read when needed. Data
are consumed from the audio buffer in packets of constant size, which is defined by
the packet time (ptime) parameter. When an audio packet is read from the buffer,
an optional resampling process takes place and audio filters are applied, if any.
The encoding of audio is performed afterwards and lastly, the encoded audio is
packetized and sent using the Real-time Transport Protocol (RTP). A visual view
of the default transmit pipeline is given in Figure 4.1.

Receive

The receive pipeline is the inverse equivalent to the transmit pipeline. Audio data
is received encoded in the RTP protocol. RTP and audio decoding takes place,
and then the audio filters are applied. Optional resampling is performed next and
the data are stored in the audio buffer. Finally, the data are provided to the audio
interface for reproduction through the audio player module. The default receive
pipeline is displayed in Figure 4.3.

Asynchronous buffering

The audio buffer used in both transmit and receive pipelines allows the asyn-
chronous read and write of data. This is necessary so as to permit the interchange
of data between the audio thread and Baresip’s main thread.

Concerning the transmission part, the audio thread writes data on the buffer
and the main Baresip thread polls it at packet-time intervals using the internal
timer mechanism of Baresip. This is the default option, where the process from
resampling through sending blocks the main thread. Baresip also provides the
option for asynchronous transmission of audio, where a separate thread is used for
encoding and sending the audio data, relieving the main thread from this task.

Regarding the receive part, the main thread listens by continuously polling in a
loop for incoming packets. All the processing of the received packets is performed
in the main thread, blocking all other operations.

4.2. INCORPORATING LIBIMMACS TO BARESIP 33

Figure 4.1: Baresip audio transmit pipeline.

Figure 4.2: Immacssip audio transmit pipeline. The pink components indicate the
modifications to the default transmit pipeline. Notice that the resampling part
does not exist here.

4.2.2 Custom audio structure and implementation details

Considering the audio structure reported above, incorporating Libimmacs requires
the following modifications in the structure of Baresip:

1. Embody the spatial encoding of Libimmacs before the default Baresip audio
encoding.

2. Embody the spatial decoding of Libimmacs after the default Baresip audio
decoding.

3. Encode and transmit the spatial meta-data within every audio packet.

4. Allow capturing and reproduction through files at disk.

5. Extend the default Baresip configuration to support the libimmacs-related
options.

Encoding and decoding

For the encoding part, we combine the DOA Estimator and Spatial Encoder ob-
jects of Libimmacs. To support decoding, we combine the HRTF Renderer, VBAP
Renderer and Spatial Decoder components. For the handling of the spatial meta-
data we use the Spatial Information object. For the special case where audio data
need to be read or written to disk files, we utilize the Sound File Stream object.
The reported objects exist only for the duration of each call.

34 CHAPTER 4. IMMACSSIP - THE IMMACS CLIENT

Figure 4.3: Baresip audio receive pipeline.

Figure 4.4: Immacssip audio receive pipeline. The pink components indicate the
modifications to the default receive pipeline. Notice that the resampling part does
not exist here.

Through the configuration interface of Baresip we provide the ability to set
various parameters regarding the objects’ initialization, such as the number of
microphones of the array, the radius, the number of the loudspeakers, the name
of the sound file etc. We have used the default options of Baresip as an example
so as to add the required for ImmACS. A detailed description of the ImmACS
configuration parameters can be found in section 7.3.4.

The encoding and decoding components of Libimmacs are placed in-between
the audio buffer and the audio filters in the respective pipelines. We have disabled
the optional resampling function as it requires special care and has no significant
importance for this project. The only allowed sample rates for ImmACS are 44100
and 48000 Hz, as defined from the limitations of Libimmacs. Concerning the en-
coding process, audio data are read either from the audio buffer or from audio files
at disk. Concerning the decoding process, audio data can be also exported to disk
if recording to files is enabled. The audio stream of each peer is recorded in a
separate disk file.

Encoding of the spatial information

The ImmACS encoded audio is always accompanied with spatial information, which
stores the all the necessary instructions for its decoding [1]. It is crucial that every
ImmACS-encoded audio packet contains also its corresponding spatial information.

To realize this task we took advantage of the optional extension header that
the RTP protocol provides. This feature allows to add custom data to the header

4.2. INCORPORATING LIBIMMACS TO BARESIP 35

that will be transferred untouched through the web. There is no limit on the size
of the data and an application-specific ID is used so that different kinds of data
can be discriminated. In the default implementation of Baresip this extension is
not used, so there are not any conflicts with our implementation. In fact, Baresip
is designed to ignore the extension header of the received packets, if it exists.

In the transmit pipeline, the spatial information is provided in its uncompressed
form by the Spatial Encoder. The parts of audio filtering and encoding are skipped
as they concern only audio. At RTP level, the spatial information is compressed
using the corresponding function provided by Libimmacs, which implements the
compression described in [1]. Data are then written to the extension header, before
the audio encoded data. We arbitrarily use the number 456 as the application’s
ID. The transmit pipeline of Immacssip is displayed in Figure 4.2.

In the receive pipeline, the spatial information of the received packet is sepa-
rated from the audio data in the RTP level. It is decompressed and given as input
to the Spatial Decoder, among with the decoded audio data. The receive pipeline
of Immacssip is displayed in Figure 4.4.

Real-time safe buffering

The default audio buffer of Baresip is designed as a linked list where audio data
are stored as list nodes. This implementation is unsafe for real-time operation for
two reasons. Firstly, the memory for the nodes is allocated instantly at the time
of their creation, which implies regular system calls for memory. Secondly, the
asynchronous operation utilizes memory locks, which are also a bad practice for
real-time coding. For the above reasons, we replaced the audio buffer with a ring
buffer, which performs optimally in real-time. For convenience, we have written a
wrapper class so as to provide the same interface with the default buffer, but the
implementation internally uses the ring buffer found in the source of PortAudio [11].

Discussion: audio stream flexibility

From its definition, the ImmACS audio stream allows for great flexibility regarding
reproduction. Specifically, an ImmACS encoded audio stream can still be repro-
duced as simple, monophonic audio. This permits the communication between a
client that transmits immersive audio and a client that receives only simple audio.
In that case, the latter can ignore the spatial information and reproduce the signal
monophonically.

Inversely, the explicit reproduction of a monophonic stream immersively is also
supported. This can be achieved by creating custom spatial information and assign
it to the monophonic audio. Of course, the reproduction of multiple separate
sources from one side will not be possible, but even the reproduction as only one
source can be very useful, by assigning all the frequency components to the desirable
direction. This is for the case where only one person uses a client and transmits
simple monophonic audio. The other clients will be able to reproduce his stream

36 CHAPTER 4. IMMACSSIP - THE IMMACS CLIENT

Figure 4.5: Baresip architecture.

immersively from the desired direction.
Generalizing the above cases, the spatial information is an independent com-

ponent that can be easily manipulated. Even in the case where ImmACS audio
is supported by both the transmitter and the receiver, the latter can change the
directions of the sources according to its preference. This idea is the basis for
the implementation of the spatial filters of Immacssip, controlled by the graphical
interface.

4.3 Multiple streams per call

4.3.1 Default communication model

Baresip is designed to support only one transmit and one receive audio stream
per call. The same applies also for video. Even when a client communicates
with multiple others in teleconferencing mode, he sends one audio stream and
also receives one audio stream. This is possible because the conference server
performs transcoding and down mix of all the streams to one. Practically, Baresip
is designed to communicate only with one peer per call, regardless if this peer
is the conference server or another VoIP client. Figure 4.5 displays the default
architecture of Baresip, as provided by its official documentation. Although the
theoretical number of streams is given as an arbitrary M number, in practice is two
streams for audio and two for video.

To allow Baresip to receive multiple streams per call, the whole communication
model with the server must be changed. The server should be modified to send all
the streams to each client without performing any transcoding or down mix. The

4.3. MULTIPLE STREAMS PER CALL 37

clients, on the other hand, must be able to receive and reproduce multiple streams.
Next, we continue with describing our custom client-server communication model
and we deepen into the implementation details.

4.3.2 Custom communication model

Considering that both Immacssip and Bareserver are based on Baresip, which is a
VoIP client, their connection is established as peer-to-peer. Each SIP account in
the server represents a different conference room. The client dials to the server’s
account, i.e. room that wants to join. The server automatically answers the in-
coming call. When the connection is established, the client starts to transmit its
audio and video streams to the server.

On the other hand, the server starts the relaying of the audio and video packets.
Before relaying, it marks each packet with a unique ID, which corresponds to the
client that sent it. Alongside, it continuously transmits a list to all the clients as
side information, containing the IDs and various information about the peers.

A client will receive the packets of all the peers. Initially, the client is unaware
of how many and which peers exist in the room. Each client holds its own internal
list of the participants and updates it every time it receives the new list from the
server. When a packet is received, if its owner exists in the internal list then the
packet is fed to the corresponding receive stream for decoding and reproduction. If
the owner does not exist in the list, the packet is simply dropped. The identification
of the packet’s owner is performed using the packet ID.

Finally, if the client has not received the list of the participants from the server
for 60 continuous seconds, then the server is considered inactive and the call is ter-
minated. Respectively, if the server has not received any audio or video packet from
a client for 60 continuous seconds, it considers the client inactive and terminates
the call.

4.3.3 Implementation details

The architecture of Immacssip is depicted in Figure 4.6. We proceed here with
further analysis of our design choices.

Peers

To allow Baresip to receive multiple audio and video streams per call, we introduce
the notion of peers per call. From the point of view of an arbitrary client, a
peer represents another room participant, whose packets are received through the
relay server. We implement the notion of a peer as a new structure, i.e. class. A
call instance may contain zero or more peer instances. The peers are created and
destroyed dynamically at the course of a call, according to the peer list received as
side information by the ImmACS server.

38 CHAPTER 4. IMMACSSIP - THE IMMACS CLIENT

Figure 4.6: Immacssip architecture. The pink components indicate the modifica-
tions to the default architecture.

Separation of the transmit and receive streams

In the default implementation of Baresip, the audio/video transmit and receive
streams are created and destroyed together, at the time that a call starts and ends
respectively. This is not the case however for Immacssip, where each receive stream
corresponds to a different peer that can be created and destroyed at any time in
the course of a call. For this to be possible, we separate the creation and the de-
struction functions of the transmit and receive streams in the code.

Multi-threaded decoding

The decoding and reproduction of multiple streams per call implies an unbounded
computational cost, that is directly affected by the number of the conference par-
ticipants. Furthermore, Baresip processes the received packets in the main thread,
blocking all other operations. This can cause a major processing bottleneck when
multiple packets must be processed simultaneously. To increase the throughput of
the system and take advantage of the multi-core systems widely used today, we
implement multi-threaded decoding of the packets.

We use a thread for each receive stream, which corresponds to two threads per
peer; one thread for the audio stream and one for the video stream. For clarity
and easier maintenance, we have transferred the code regarding the decoding in
a separate file. A thread is starting and stopping when its corresponding receive

4.4. IMMACS CONTROL INTEGRATION 39

stream is created and destroyed respectively. After a packet’s owner has been iden-
tified, the packet is given to the corresponding receive thread for further processing
and reproduction, unblocking the main thread. The packets are provided to each
thread using a FIFO queue, implemented using a linked list.

4.4 Immacs Control integration

The integration of ImmACS Control to Immacssip consists of two main parts.
Firstly, the communication model must be defined so as to allow the interchange
of data between the two applications. Secondly, the audio effects must be imple-
mented in the audio pipeline of Immacssip. Notice that no signal processing takes
place in the graphical interface; it only provides meta-data that describe the spa-
tial filters to the audio thread. However, as the spatial audio filters conceptually
belong to the graphical interface, we choose to describe only the communication
model here. We provide the signal processing details in the chapter 5 of Immacs
Control.

4.4.1 Immacssip-ImmACS Control communication model

While Immacssip is implemented in C, we chose to implement ImmACS Control in
Java, so as to take advantage of the easy and flexible API that Java provides. This
choice requires the specification of the communication model between Immacssip
and ImmACS Control, as both are independent applications. To allow the inter-
process communication of ImmACS Control and Immacssip, we utilize datagram
network sockets. Data are transferred as messages through the network. For the
purposes of this project, ImmACS Control is expected to operate in the same sys-
tem with Immacssip. However, network sockets also permit operation on different
systems. The communication model involves the exchange of data with the audio
thread, so it must comply with the restrictions of real-time processing.

Output to ImmACS Control

Immacssip transmits to the GUI data for each peer separately. These data are
transmitted as constant-size messages and have a unified format for all the peers.
The transmission is performed ten times per second for each peer, so as to keep
the data constantly updated. ImmACS Control holds its own internal list of peers.
The ID of the corresponding peer is included in each message, to help ImmACS
Control associate the messages to their owners. If the owner of a message does
not exist in the internal list, it is registered as a new one. When a peer leaves the
room, a flag is included to a "dummy" message to notify the GUI accordingly. The
special case where the ID of the message is zero is used to indicate that the data
belong to the local client. This case is used for visualizing the transmitted audio
stream. The main body of the message contains static information like the peer’s
alias name and URI and dynamic information such as the current directions of the

40 CHAPTER 4. IMMACSSIP - THE IMMACS CLIENT

sources. There is no need to transmit the static data in every packet, however we
prefer it so as to simplify the communication model.

Input from ImmACS Control

Similarly to the output messages, Immacssip receives data separately for each peer
from the GUI. The input messages have a constant size and a unified format for
all peers, however the constant update of data is not necessary. New data are
transferred only when there is an interaction with the user, e.g. the manipulation
of the volume or the direction of a peer. Each message contains the ID of its corre-
sponding peer, to help Immacssip assign the data to its owner. An input message
contains all the settings for a peer, regardless which setting has been changed by
the user e.g. the mute/solo flags, the volume modification, the spatial effects etc.
In a more defined model only the altered settings would be transmitted in each
message, however this raises the complexity and has no significant value for this
implementation.

4.4.2 Implementation details

Each peer object is associated with a GUI object. A GUI object contains two
FIFO queues; one queue to provide data from the GUI to the audio receive thread
(input queue) and one to provide data from the receive thread to the GUI (output
queue). These queues are based on ring buffers, because asynchronous real-time
operation is required. The queues work only as the storage of the data; we also
introduce another object, the GUI manager, which is responsible for sending and
receiving these data to and from the GUI. The GUI Manager runs independently
of the receive threads in the main thread of Baresip.

For data transmission, the GUI Manager uses the internal timer mechanism to
transmit data ten times per second. It iterates all the peers and sends the data
found in their output queues. It only sends the last node of the queue, ignoring
the rest, so as to provide the most recent data to the GUI.

A similar procedure is followed when data is received from the GUI. The GUI
manager appends these data at the input queue of the corresponding peer. The
audio thread uses only the last item of the queue at each time, ignoring the rest.

The queues in fact compensate for the possible delays due to the asynchronous
exchange of data between the audio receive threads and the GUI manager. Im-
macssip transmits data to Immacs Control using the port 7484 by default, but this
can change if the user wishes to. For receiving the data from the GUI, it uses the
very next port of what he sends, i.e. 7485. The association of the GUI object and
GUI manager to the overall architecture can be seen in figure 4.6.

Chapter 5

Immacs Control - the graphical
user interface of ImmACS

In this chapter we explain our design choices for the implementation of the Immacs
Control graphical interface. Immacs Control is written in Java, to facilitate the
creation of the graphical environment. The general aspects of the communication
model of Immacs Control with Immacssip are reported in Section 4.4.1. Here we
explain that model from the point of view of the graphical interface. Moreover,
we provide the details for the implementation of the two spatial filters, the Spatial
Equalizer and the Spatial Mapper.

5.1 Communication with Immacssip

Immacs Control utilizes two threads for the communication. The main (default)
application thread, that is used for sending and receiving the data from Immacssip,
and the graphics thread that is used to update the graphics. The main thread polls
for incoming or outgoing messages in a continuous loop. In the communication loop,
the outgoing messages are handled first and then the incoming messages.

Outgoing messages are sent only when the user interacts with the interface, i.e.
changes the volume of a peer. The interactions take place in the graphics thread
and the data for the peers change accordingly. To notify the main thread, we use a
"dirty" bit that is enabled in every interaction. The main thread iterates the data
of all the peers and checks their dirty bit in each loop. If the "dirty" bit is enabled,
it sends the new data to Immacssip and disables it again. To avoid overloading
Immacssip with packets, transmission takes place every 200 milliseconds. If a
message has been received, it is immediately invoked for handling at the graphics
thread. If there is no received message the application waits by blocking for 50
milliseconds. We use memory locks to ensure the safe exchange of data between
the graphics and the main thread.

41

42CHAPTER 5. IMMACS CONTROL - THE GRAPHICAL USER INTERFACE OF IMMACS

5.2 The spatial equalizer

Through the Spatial Equalizer, the user manipulates the volume in relation to
the direction of the sources, using a graphical curve as a visualized feedback for
the changes. We provide the details of its operation, from a user’s perspective, in
Section 7.4.2. We recommend the reader to read that section first, as a basis for
the next analysis.

Theoretical framework

Given a separated source signal S in the direction x, from an ImmACS audio
stream, we want to attenuate its volume according to the curve of the equalizer.
The user can add several nodes to alter this curve. Each node Ni has three at-
tributes, xi, yi, ri that represent its position on the x-axis (degrees), its position on
the y-axis (decibel), and its range (degrees), respectively. The volume attenuation,
in decibels, of the direction x due to the node Ni is given as

Vi(x) =
yiG(A(x, xi), 0,

ri
2)

G(0, 0, ri2)
(5.1)

where G(ξ, µ, σ) represents the normal distribution with mean µ and standard
deviation σ sampled at ξ, and A(x, xi) is the angular distance of x from xi, given
as

A(α, β) = 180− ||α− β| − 180| (5.2)

Then, the overall volume attenuation at x is given as

V (x) =
K∑
i=1

Vi(x) (5.3)

whereK is the number of the total nodes of the equalizer. If no nodes exist (K = 0),
then C(x) is set to 0. We choose the values for the nodes to operate cumulatively,
because after practical tests we found that it facilitates the manipulation of the
graphical curve. Even though adding decibel values is not valid in general, in this
case it is. This is because these values do not represent real measurements, but are
given arbitrarily from the user. Finally, the attenuated signal is given as

S′ = S
√
10V (x)/10 (5.4)

In practice, many ad-hoc changes where introduced to the above framework so as
to also support the "solo" function. The general idea, however, is aptly depicted
above.

Implementation

5.3. THE SPATIAL MAPPER 43

The implementation of the Spatial Equalizer utilizes two classes, the EQ class
and the GEQ class. The EQ class holds all the data for the equalizer and provides
the functionality of 5.3. The GEQ class instantiates the EQ class internally and
handles all the interaction with the user. The user adds graphical nodes to the
GEQ and the GEQ converts their x and y coordinates from pixels to degrees and
magnitude respectively. The magnitude is converted from pixels using a logarith-
mic formula, to provide a fine accuracy for small changes and rough accuracy for
large changes in the volume.

5.3 The spatial mapper

The Spatial Mapper allows the user to independently change the direction of the
sources of an ImmACS audio stream. The basic details of its operation are pro-
vided in Section 7.4.2.

Theoretical framework

Given a separated source signal S in the direction x, from an ImmACS audio
stream, we want to change its direction according to the spatial mappings pro-
vided by the user. The user can insert nodes that represent these mappings. Each
node Ni has three attributes, xi, yi, ri that represent its position on the x-axis,
y-axis and its range, respectively, all in degrees. The new direction x′ of S, due to
the node Ni is given as

x′ =

{
yi, if A(x, xi) < ri

2

x, else
(5.5)

where A(x, xi) is the angular distance of x from xi as defined in 5.2. In the case
where x′ = yi applies for more than one node in the above equation, then the value
of the node that was created first in time is used.

Implementation

The Spatial Mapper implementation is very similar to that of the Spatial Equalizer.
It utilizes two classes, named SpatialMapper and GSpatialMapper that concern the
core and the graphical interface of the effect respectively. The user adds graphi-
cal nodes that are converted from pixels to degrees, and the core of the effect is
updated accordingly. Notice that in this case both axes represent degrees, so both
work in a wrap-around fashion.

44CHAPTER 5. IMMACS CONTROL - THE GRAPHICAL USER INTERFACE OF IMMACS

Chapter 6

Bareserver - the ImmACS server

In this chapter, we describe the implementation of Bareserver, the server of the
ImmACS system. The Bareserver is a necessary part of the communication, but
its contribution is quite minimal. As all the clients receive all the streams, there
is no need for transcoding and down mix at the server. It only performs plain
relaying of the packets to the clients. Based on the simplicity of the server and our
experience on Baresip from the implementation of the client, we considered that
modifying Baresip as a server was the best and fastest solution for this project.
All the modifications that converted Baresip to Bareserver are marked with the
"bareserver mod" comment in the code.

6.1 Communication with Immacssip

Session initiation

The Bareserver handles each connection with an Immacssip client is handled as
a different call. The default implementation supports this for peer-to-peer calls,
however it bounds the number of calls to four per user account. For Bareserver,
this practically means that only four participants per conference room are allowed.
We change this number arbitrarily to twenty, which is a sufficient number for the
purposes of the project.

When the server establishes a new connection with a client, it assigns it with
a unique ID that is preserved for the duration of the call. The ID is implemented
as an integer, starting from one and increased by one for every new client. For
the implementation we use a global ID counter that is used for every call, that is
initiated when Bareserver starts.

Packet relay

The Bareserver receives the packets from all the clients. Their RTP header is
extracted first, using the framework of libre. The remaining packet data are then

45

46 CHAPTER 6. BARESERVER - THE IMMACS SERVER

provided to the stream level, among with the RTP data, for further decoding. In
that point, we add the ID of the packet’s owner to the original RTP header, and
re-encode it into the packet, without changing any other data. The ID is added
to the first CSRC slot of the RTP header. The packet is then sent to every client
connected to the same SIP account. While the encoding of the RTP header is by
default performed in the RTP level, we implement it in the stream level. This is to
avoid any changes to the code of libre due to the encoding of the ID. We instead
copy the required code from libre where is needed and use it from Baresip.

Peer side information

The Bareserver transmits the IDs and other useful information about the clients
as side information, to facilitate packet discrimination. The side information is
transmitted two times per second to each client, through the application specific
Real-time Transmit Control Protocol (RTCP). The transmission is performed in
the main thread of Bareserver and we use the internal timer mechanism of Baresip
to transmit it periodically. The side information contains the ID, the display name
(alias) and the URI of each client. We create the "peersinf" object to handle the
side information.

6.2 Multi-threaded relaying

By default the relaying of the packets is performed in the main thread of Bareserver,
blocking it from receiving other packets or establishing new calls. To increase the
throughput of the system and relieve the main thread from the task of relaying, we
provide optional multi-threaded relaying. We use an arbitrary number of worker
threads, that can be set by the user through the configuration of Bareserver. Each
worker thread holds a FIFO queue of the packets to relay. The main thread appends
the received packets to these queues after adding the appropriate ID.

6.3 Echo server

The Bareserver supports a special function where it relays the received packets
only back to their senders, without performing any sharing to the others. This
function is not useful for the common user; we implemented it to facilitate the
testing of the system. The user can set the server in "echo" mode by enabling the
corresponding parameter in the configuration file of Bareserver. In that mode, the
side information is also affected. Notice that each client is not aware of its own
ID, because the ID is set at the server. For this reason, each client receives side
information that contains only itself, so as to be able to reproduce its own packets.

Chapter 7

ImmACS from a user’s
perspective

In this chapter we describe ImmACS from a user’s perspective. We provide all the
necessary instructions needed in order for someone to build, install, configure and
finally operate ImmACS. An overview of the system is provided at the introduction,
which is recommended for the user to read before proceeding with this chapter.

ImmACS is an experimental project that utilizes the original Baresip code
with many ad-hoc modifications. While the most expected cases of function have
already been tested and working, the system stability is not yet guarranteed for
any possible configuration. For this reason, it is recommended to carefully follow
to the guidelines below.

7.1 Bareserver

7.1.1 Dependencies

As a modification of Baresip, Bareserver requires libre and librem libraries to op-
erate. It has been successfully tested and working using libre-0.4.13 and librem-
0.4.6 versions. The source code for these libraries and installation instructions can
be found at www.creytiv.com. No changes in those libraries are needed in order
for Bareserver to operate.

7.1.2 Installation and first run

After the installation of libre and librem libraries, Bareserver can be built on both
OS X and Linux operating systems by typing the following commands in a ter-
minal

$ cd bareserver
$ make
$ sudo make install

47

http://www.creytiv.com

48 CHAPTER 7. IMMACS FROM A USER’S PERSPECTIVE

Run Bareserver by typing bareserver from anywhere in a terminal. At the first
run, the configuration files "accounts" and "config" will be created inside the ".bare-
server" directory, which lies the user’s home directory. Close Bareserver by pressing
"q", so as to modify the configuration files.

7.1.3 SIP account setup

The "accounts" file holds the list with the Bareserver SIP accounts and their config-
uration. Different SIP accounts represent different conference rooms. Some useful
examples and configuration instructions are provided in the default "accounts"
file. The user can follow these examples to create conference rooms according to
his needs. Two SIP accounts are provided by default, "room_A" and "room_B".

Each SIP account consists of four parameters. The room name, e.g. room_A,
is arbitrarily set by the user and is what an ImmACS client will dial in order to
connect to that conference room. The other three parameters describe the basic
communication protocol, which consists of the audio and video codecs and the
packet time (ptime). It is obligatory for a client to support the exact same
communication parameters in order to connect to a conference room.
Otherwise, the call is rejected. These three parameters are optional; if no com-
munication parameters are provided by the user, the defaults are opus/48000/1,
ptime=20 and MP4V-ES for audio codecs, packet time and video codecs respec-
tively.

Packet time controls the packet size, which indirectly sets a trade-off between
audio latency and quality. Lower values reduce the audio latency but increase the
risk of audio buffer underflows occuring, which can cause degradation at the audio
quality. Larger values provide robustness as it concerns underflows but cause larger
end-to-end audio delays.

7.1.4 Configuration

The "config" file allows the user to configure basic parameters of the Bareserver
operation. The basic structure of the default Baresip "config" file has been pre-
served but a lot of unnecessary options have been removed. Most of the remaining
options are considered to be used as in the default Baresip configuration. Here we
will focus only at those that have a significant meaning for Bareserver.

The sip_listen option must be enabled (not commented) for the Bareserver
to be able to accept calls. The default listen port for Bareserver is set to 4040 in
contrast to the SIP default which is 5060. This is to avoid any possible conflict
with other SIP clients in the same machine.

The echo_server option has been created especially for Bareserver and does
not exist in the default Baresip configuration. When enabled, the Bareserver sends
the packets back to their senders. The same communication protocol for the con-
ference rooms applies here, but the clients connected in any room, receive back
only their own packets and nothing else. This option is useful for experimental

7.2. LIBIMMACS 49

purposes such as client transmit and receive testing and latency measurements. It
is disabled by default.

Another new parameter added at Bareserver is the "relay_threads_cnt".
This parameter controls the number of worker threads that will do the relay of the
received packets to all the clients. This is to increase the system throughput when
Bareserver is used in multi-core systems. When set to zero, no worker threads are
used; the system transmits a packet immediately when it is received, blocking the
system. For a positive thread count, the packets are fed to the worker threads
for transmission, keeping the system unblocked so as to be able to receive other
packets. This parameter is set to zero by default.

7.1.5 Operation

After the "accounts" and "config" files have been set, the system is ready to run.
Type "bareserver" at a terminal to run Bareserver. At the initialization, the
account information and some info of the configuration file will be printed. Pressing
the "h" button will print the help menu.

All the information of the connected clients is printed and constantly updated
for the current toggled room. The client information is printed in the following
format:
Call: (client id) <client alias> [elapsed time] audio=autx/aurx video=vitx/virx
(bit/s)
where autx/aurx vitx/virx is the audio transmit/receive, video transmit/receive
bitrate to/from that client respectively. For example
Call: (1) <Steve_Smith> [0:10:48] audio=100345/50885 video=1220994/617994
(bit/s)
When no packet has been received from a client for 60 continuous seconds, Bare-
server considers the client inactive and closes the connection, releasing any re-
sources and informing the rest of the connected clients appropriately.

7.1.6 Uninstall

Bareserver can be uninstalled by typing

$ cd bareserver
$ sudo make uninstall

Note that the ".bareserver" directory and its contents are not removed using the
above commands and must be manually removed if the user wishes to. This allows
the bareserver configuration files to remain untouched in case of a future re-install.

7.2 Libimmacs

Libimmacs is a necessary dependence of Immacssip. In this section we describe
how to setup Libimmacs before installing Immacssip.

50 CHAPTER 7. IMMACS FROM A USER’S PERSPECTIVE

7.2.1 Dependencies

Libimmacs depends on cmake and three external libraries, fftw, itpp and lib-
sndfile. At Ubuntu Linux these packages can be downloaded and installed using
the default package manager. In a terminal, type

$ sudo apt -get install cmake libfftw3 -dev libitpp -dev
libsndfile1 -dev

At OS X these libraries can be easily installed using the homebrew package
manager. Homebrew does not exist by default in OS X. To install it follow the
instructions at brew.sh. After homebrew is installed, Libimmacs dependencies
can be downloaded and installed on OS X by typing

$ brew install cmake fftw itpp libsndfile

7.2.2 Installation

After all the required dependencies have been installed, Libimmacs can be installed
on both OS X and Linux systems by typing

$ cd Libimmacs/build
$ cmake ..
$ make
$ sudo make install

7.2.3 Usage

After Libimmacs is installed, it can be used as a shared library to any C/C++
coding project, so to provide the ImmACS functionalities. The header files can be
included in a C/C++ file as

#include <immacs/immacs.h>

while the library can be linked at compile time as -limmacs.
Although Libimmacs interface is very clear and intuitive to use, a full on-code

documentation is required to assist future developers. For the scope of this project
however, this is omitted but it is planned as a future work. In any case, it is strongly
recommended for someone to read chapter 3 before using Libimmacs, in which we
describe the design of the library. This chapter can prove to be even more useful
than the on-code documentation, because there Libimmacs is explained thoroughly.

7.2.4 Uninstall

Libimmacs can be completely removed from a system by typing

$ cd Libimmacs/build
$ cmake ..
$ sudo make uninstall

http:/brew.sh

7.3. IMMACSSIP 51

7.3 Immacssip

7.3.1 Dependencies

Similarly to the Bareserver, Immacssip is also a modification of Baresip, thus it
requires libre and librem libraries to operate. Installation instructions for these
libraries can be found in section 7.1.1.

In addition, Immacssip depends on Libimmacs library to operate. Libimmacs
can be installed as described in section 7.2.

Immacssip can operate using any audio codec that supports one-channel audio
streaming of 44100 or 48000 Hz sample rate. However, the default recommended
for ImmACS is the Opus audio codec, which provides very good audio quality
and supports very low latencies and bitrates. For video operation the MP4V-ES
video codec is recommended, that has been tested and works well for the purposes
of ImmACS. These codecs must be manually installed before building Immacssip.
On OS X systems, they can be easily installed using the Homebrew package
manager. Homebrew can be installed using the instructions at brew.sh. After
Homebrew is installed, type

$ brew install opus ffmpeg

On Ubuntu Linux these codecs can be installed by using the default package
manager. Some extra packages are also required for the default operation of video
source and display. To install all the audio and video codecs type

$ sudo apt -get install libopus -dev libavcodec -dev

To install the packages for video source/display type

$ sudo apt -get install libv4l -dev libxext -dev

7.3.2 Installation and first run

After all the dependencies for Immacssip have been set up, it can be installed by
typing

$ cd immacssip
$ make
$ sudo make install

As in Bareserver, Immacssip uses configuration files that are generated at the first
time the program runs. After installation, type immacssip in a terminal to run
Immacssip. A notification that the configuration files have been created should be
displayed when the program starts. A warning message that no SIP account
exists will be also printed due to the fact that there are no active SIP
accounts yet. Press "q" to quit. The files "accounts" and "config" will be created
inside the folder ".immacssip" in the user’s home directory.

http:/brew.sh

52 CHAPTER 7. IMMACS FROM A USER’S PERSPECTIVE

7.3.3 SIP Account Setup

The default "accounts" file contains a not active (commented) SIP account exam-
ple, to work as a basis for the user to configure his own SIP account. The user must
replace the default IP and port with those of the Bareserver. Simple instructions
are provided inside the "accounts" file.

Similarly to the Bareserver, each SIP account in Immacssip consists of the four
basic communication parameters, plus the display name of the account, which is
how the account will be displayed to the other clients; its alias. The same rules
for the communication parameters apply here; the client must support the
communication protocol of the room it wants to connect to, otherwise
the call is rejected. All four communication parameters are optional. The
defaults are opus/48000/1, ptime=20 and MP4V-ES for audio codecs, packet
time and video codecs respectively.

At initialization, Immacssip will try to locate the corresponding modules of
all the codec parameters at every account. If a module does not exist, an error
message will be printed. The Bareserver on the other hand, does not search for
these modules. The codec parameters at the Bareserver’s accounts work only as a
description of the communication protocol that the clients must support.

7.3.4 Configuration

The default "config" file of Immacssip is based on the default "config" file of Bare-
sip, but some unnecessary options have been removed and a lot of ImmACS-related
options have been added. The added options allow the user to configure various
parameters regarding ImmACS input and output.

ImmACS Input

The input parameters concern immersive audio capturing. The option
immacs_input_enabled allows the user to enable or disable the ImmACS input
operation. When disabled, the default method of Baresip for audio input is used.
The transmited audio stream will not contain any spatial information. ImmACS
input is disabled by default.

When the ImmACS input is enabled, a real or simulated (from files on disk)
circular microphone array is used for audio input. The user can set the number of
microphones of the array, the array radius (in meters) and the maximum number of
sources, using the parameters immacs_input_mic_N, immacs_input_radius
and immacs_input_source_N respectively.

The actual number of sources varies at execution time and is affected by the
source thresholds. The source thresholds control the sensitivity of the system
on detecting possible sources. Lower thresholds will increase the sensitivity of
the system but it will also make it prone to spurious sources or environmental
noise. On the other hand, a system with higher thresholds will tend to detect

7.3. IMMACSSIP 53

more prominent sources. The threshold of each source can be set using the im-
macs_source_$SN_threshold template. The $SN field is replaced by the
source number which is a positive integer starting from zero. For example, im-
macs_source_0_threshold 0.22 sets the threshold of the first source at 0.22. A
threshold can take any positive real value from zero to one. A threshold entry for
each and every source must be declared, or else an error will occur.

The ImmACS input system allows the user to simulate a microphone array
setup by using audio files from the hard disk. This feature is very useful for
experimental and testing purposes. The immacs_input_from_file parameter
is used to enable or disable this function. When disabled, all audio data are read
normally using the audio interface. When enabled, which is the default option,
Immacssip reads all audio data from files in the hard disk.

The immacs_input_file_path parameter indicates the path from where all
audio files will be read. Currently only wav files are supported. The path should
contain the absolute or relative (to where Immacssip is executed) path to the
audio file including the file name, but without the ".wav" extension, e.g. "/home-
/user/steve/input_example_". The immacs_input_single_file parameter in-
dicates whether all the audio data are contained in one, multi-channel audio file
(enabled), or in multiple single-channel audio files (disabled). When enabled (the
default option), the ".wav" extension is automatically appended to the provided
file name and then the file is read. When disabled, the audio data is expected to
be on multiple files that share the same base name but have different endings. The
ending is a positive integer starting from zero that indicates the audio channel, e.g.
"input_example_0.wav" for the first channel, "input_example_1.wav" for the sec-
ond etc. The name suffix and the ".wav" extension will be automatically appended
to the base name before reading. The system will try to read from as many files as
the microphone number. In multiple file mode, all files must have the same sample
rate and the same number of samples, or else an error will occur. Finally, when
the immacs_input_file_repeat option is enabled, the audio file is repeatedly
re-read from the beginning as soon as reading reaches its end, entering a non-stop
reading loop.

Another feature of Immacssip is input mapping. Input mapping is a simple
mechanism that allows the user to specify which microphone of the array cor-
responds to which audio interface/file channel. The mic_$MN_to_channel
parameter template is used for that option, where the $MN variable indicates the
number of the microphone. For example, mic_4_to_channel 2 indicates that the
fourth microphone of the array is provided by the second channel of the inter-
face/file. The input mapping is optional; if no input mapping for a microphone is
provided, the microphone is supposed to be provided by the same channel number
of the interface/file, e.g. the third microphone will be provided by the third channel.
No input mappings are enabled by default.

Immacs Output

54 CHAPTER 7. IMMACS FROM A USER’S PERSPECTIVE

The output parameters concern immersive audio reproduction. The option im-
macs_output_enabled allows the user to enable or disable this function. When
disabled, the default Baresip audio output method is used, using any available sys-
tem output. ImmACS output is disabled by default.

The parameter immacs_output_use_loudspeakers controls whether the
sound will be reproduced from loudspeakers (enabled) or headphones (disabled).
Reproduction from headphones is the default option. When loudspeaker repro-
duction is enabled, the immacs_output_loudspeaker_N parameter sets the
number of loudspeakers for reproduction. The loudspeakers are considered to be
uniformly placed cyclically in equal distances from the listener.

ImmACS output supports simultaneous real-time reproduction from the head-
phones/loudspeakers and recording of the audio streams to the disk. To enable
audio recording, use the immacs_output_to_file option, which is disabled by
default. Each received audio stream, i.e. peer, is recorded in a separate file at disk.
The parameter immacs_output_file_path defines the file base name for the
output, e.g. "/home/user/steve/immacs_out". When recording, the alias of each
client is appended to the base name, e.g. "/home/user/steve/immacs_out_john".
The immacs_output_single_file parameter controls whether the audio stream
will be recorded in one multi-channel file (enabled) or several one-channel files (dis-
abled). When enabled, the ".wav" extension is appended to the file name before
recording, e.g. "/home/user/steve/immacs_out_john.wav". When disabled, the
channel number is also appended to the each file, e.g. "/home/user/steve/im-
macs_out_john0.wav", "home/user/steve/immacs_out_john1.wav etc."

Similarly to the input mapping, ImmACS also supports output mapping. The
output mapping is a simple mechanism to assign an ImmACS output to an audio
interface/file channel. The template out_$ONU_to_channel is used, where
$ONU is replaced by the output number. For example, out_1_to_channel 5
sends the second ImmACS output to the fifth channel of the audio interface/file.
Output mapping is optional; if a mapping for an output is not set, the output is
by default mapped to the same output, e.g. first output to first channel, second
output to second channel etc.

Immacs Advanced Options

ImmACS allows some more advanced options to be configured. However, any
modification of these options is only suggested for users very familiar to the Im-
mACS theoretical background. The srate parameter defines the sample rate of
audio input and output. In this Immacssip version only 44100 and 48000 Hz
is supported. The 48000 Hz sample rate is the default value. The fft_size pa-
rameter sets the number of the frequency coefficients used for ImmACS encoding
and decoding. This parameter does not affect DOA estimation, as it uses a static
number coefficients. Setting this parameter to zero (default) forces the system to
automatically re-set it to twice the size of the audio period. When setting a custom
value, it must not be less than twice the size of the audio period. The last option

7.3. IMMACSSIP 55

gui_comm_port sets the communication port for the ImmACS GUI, which by
default is set to 7484. Special care must be taken for the fact that although only
one port is set by the user, the port after that is also used, which in the default
case is 7485.

Jitter Buffer

The jitter buffer option jitter_buffer_delay is provided by the default Bare-
sip configuration but it is worthy to mention its influence on Immacssip. The jitter
buffer compensates for the cases that packets are received in a different order than
that they where sent. This option controls the jitter buffer minimum and maximum
values, in packets. The minimum value of this buffer is a direct overhead to the
overall system latency. It defines how much "packet-time" later a packet will be
reproduced after it is received. Reducing the minimum size decreases the latency
but increases the risk of audio glitches as the system becomes more vulnerable to
sequence inconsistencies. The jitter buffer can be completely disabled by setting
the minimum buffer size to zero. Its default values are five packets for the minimum
and ten packets for the maximum.

7.3.5 Operation

To run Immacssip, type

$ immacssip

Immacssip initialization is very similar to Baresip. The same information messages
are expected to be displayed. Pressing "h" will show the help menu. Dial to a
conference room by pressing "d" and the room name, e.g. room_A. Information
about the call bitrate will be printed for the current toggled account. The format
will be similar to that of the Bareserver.

[elapsed time] audio=autx/aurx video=vitx/virx (bit/s) efps(tx)=txfps

where autx/aurx vitx/virx is the audio transmit/receive, video transmit/receive
bitrate to/from the Bareserver respectively, and txfps is the transmit video frames
per second when video is enabled. For example,

[0:15:13] audio=50767/104350 video=273082/641034 (bit/s) efps(tx)=12

7.3.6 Operation with video support

Immacssip also supports video streams. To start Immacssip with video support,
type

$ immacssip -v

56 CHAPTER 7. IMMACS FROM A USER’S PERSPECTIVE

In video mode, the client is able to send and receive video streams. The video
streams of the peers are displayed all simultaneously, using one window per peer.
Self-view is disabled by default, but it can be enabled by uncommenting the self-
view module in the "config" file. Clients that operate in video mode can co-exist
in the same room with clients that have video mode disabled, however the latter
will not be able to receive or send any video stream.

In the case where a client operates in video mode but the system does not have
a local camera, the client will be able to see the others but will not send any video
information. Video support is still in experimental state and can cause the system
to lag when running on low bandwidth connections. Video support should stay
disabled for greater system stability.

7.3.7 Uninstall

Immacssip can be uninstalled by typing

$ cd immacssip
$ sudo make uninstall

To completely remove all the files of Immacssip, the ".immacssip" directory and
its contents must be removed manually by the user. However, removing those is
not recommended if a future re-install is expected. Note that when uninstalling
Immacssip, all its dependencies still remain on the system.

7.4 Immacs Control

Immacs Control is a graphical user interface for Immacssip that allows the user to
manipulate the transmitted and received audio streams.

7.4.1 Dependencies And Installation

Immacs Control is written in Java, so it requires the Java run-time environment. It
has been tested and working using the java version 1.8, which can be downloaded
from https://java.com/en/download/.

Java Control executable consists of only one file and installation is as simple
as manually copying the file at the desired location in the computer. This can be
done by typing

$ cd immacs_control
$ cp bin/immacsctl.jar dest_path

where "dest_path" is the desired destination path for installation.

7.4.2 Operation

Immacs Control can be executed by typing

https://java.com/en/download/

7.4. IMMACS CONTROL 57

Figure 7.1: Immacs Control screenshot.

$ java -jar install_path/immacsctl.jar

where "install_path" is the path where Immacs Control has been installed. By
default Immacs Control uses the port 7484 to communicate with Immacssip. How-
ever, a different port can be set as a command line argument. For example,

$ java -jar install_path/immacsctl.jar 14500

will start Immacs Control listening at port 14500.
As already mentioned, GUI communication utilizes two concecutive ports, with

the first choosen by the user. An Immacs Control instance is expected to operate
in conjunction with only one Immacssip instance. If multiple Immacssip or Immacs
Control instances operate simultaneously on the same system, the user must ensure
that they use different GUI ports. Otherwise, the system will have unexpected
behaviour and may crash.

When an existing Immacs Control instance quits, its settings remain on Immac-
ssip. When a new Immacs Control instance starts, the effects are automatically
reset to the default values.

58 CHAPTER 7. IMMACS FROM A USER’S PERSPECTIVE

Immacs Control consists of six parts which are shown at the screenshot in
Figure 7.1.

1. Selection Info Panel

2. Peer List

3. Spatial Equalizer

4. Spatial Mapper

5. Volume Panels

6. Source Monitor

The user selects a connected peer from the Peer List. He can manipulate the se-
lected peer’s audio stream by using the Spatial Equalizer, the Spatial Mapper
and the Volume Panel. Each peer has its own settings. The DOAs of all peers
can be displayed simultaneously at the Source Monitor. Each of the six parts is
more thoroughly explained below.

Selection Info Panel

This panel displays detailed information about the selected peer in the Peer List.
It displays the ID, the display name (alias) and the URI of the peer.

Peer List

The list of the remote peers. For each peer, its ID is printed in parentheses followed
by its alias or URI, depending on which is available. The end-user can select only
one entry at a time.

A special case has been added to allow the user to manipulate the volume of
its own audio stream. The first entry of the Peer List is always the user’s local
account. The ID of the local account is always set to zero, while a remote peer
cannot have a zero ID. By selecting the first entry the user can manipulate its own
volume or choose to display its own spatial information.

Spatial Equalizer

The Spatial Equalizer is a tool that helps the user control the volume per angle
of an ImmACS audio stream. It affects only the volume of the sources in space and
not their position. It is very similar to a frequency equalizer with the difference
that the x-axis indicates the angle and not the frequency. An example of use can
be seen in Figure 7.2.

The Spatial Equalizer has no effect on the received stream by default. The
user can add nodes, that he may use to alter the response curve of the equalizer.

7.4. IMMACS CONTROL 59

Figure 7.2: Screenshot of the Spatial Equalizer.

Each node has a position in the x-y space. The "x" coordinate indicates the angle
(degrees), while the "y" indicates the magnitude (decibel). A spatial equalizer
node also has a range (degrees) on the response curve. The system allows the user
to insert up to 16 nodes to achieve the desired angular response curve.

An existing node can be set in solo mode by double left-clicking. When at
least one node is set solo, the floor of the response curve drops to about -115 db, to
practically mute all the other nodes. Multiple solo nodes may exist. An example
of the Spatial Equalizer in solo mode is given in Figure 7.3.

The bypass button disables the effect without changing the effects settings. It
can be intuitively perceived as a simple "off" button.

To help the user adjust the equalizer better, the angular spectrogram of the
audio stream is displayed in the background. The angular spectrogram displays
the signal’s energy per angle. It is visible in the background with a light gray
color in Figure 7.2.

The y-axis (magnitude) provides a range from about -115 to 12 db. Notice
that the scale of the y-axis is not linear. More space is given from -12 to 12 db to
provide a higher resolution for small changes in the amplitude. Below -12 db the
scale converges very fast to -115 db, so as to provide a mute-like functionality. The
x-axis uses a linear scale and works in a wrap-around fashion, due to the fact the
x-axis expresses angle.

The Spatial Equalizer is meaningful to be used only with audio streams that
carry several sources in space, in other words with peers that utilize a microphone
array and support the ImmACS Input function. It will be disabled for peers that
do not transmit immersive audio. It is also disabled for the local host.

The Spatial Equalizer can be easily manipulated by using the mouse. More
specifically

60 CHAPTER 7. IMMACS FROM A USER’S PERSPECTIVE

Figure 7.3: Spatial Equalizer screenshot in solo mode.

• Left click adds a new node to the point where the cursor is.

• Moving the mouse over an existing node will display the node information at
the top left corner of the panel.

• Right click removes the node where the cursor is.

• Double left click enables/disables solo mode at the node where the cursor is.

• Existing nodes can be dragged anywhere using the mouse.

• Moving the mouse wheel up/down will change the range of the node where
the cursor is.

Spatial Mapper

The Spatial Mapper is a tool that allows the user to alter the position of the
sources of an immersive audio stream. The Spatial Mapper does not affect the
volume. A more detailed example can be seen in Figure 7.4.

The Spatial Mapper initially has no influence on the audio stream. The user
can add nodes that are used to change the position of the sources. A node is
characterized by its position in space (the x-y coordinates) and its range, all
measured in degrees. When a source lies into the range of a node on the x-axis, it
is automatically changed (mapped) to corresponding angle to the position of the
node on the y-axis. Both x and y axis work in a wrap-around way. Up to 16 nodes
can be added.

When two or more nodes share the same part on the x-axis, it is unclear for
the system which node to use for mapping. Overlapping is allowed in the x-axis,
but in that case the node that was created first in time is used for mapping. The
ranges are displayed with random, moderately transparent colors, to provide a
better optical descrimination.

7.4. IMMACS CONTROL 61

Figure 7.4: Screenshot of the Spatial Mapper.

Similarly to the Spatial Equalizer, the angular spectrogram of the audio stream
is displayed in the background with an light gray color. A bypass button also
exists, that works as a simple "on/off" switch for the effect.

The Spatial Mapper can be used with both immersive and normal audio streams.
For streams that do not contain spatial information, the source is automatically
placed at 180◦, allowing the user to change the position using the Spatial Mapper if
he wishes to. However, the Spatial Mapper can not be used with the local stream.

The Spatial Mapper can be easily handled by the mouse. Specifically

• Left click adds a new node to the point where the cursor is.

• Moving the mouse over an existing node will display the node information at
the top left corner of the panel.

• Right click removes the node where the cursor is.

• Existing nodes can be dragged anywhere using the mouse.

• Moving the mouse wheel up/down will change the range of the node where
the cursor is.

Volume Panel

The Volume Panel allows the user to monitor and control the overall volume of
an audio stream. A simple example of use is given in Figure 7.5. The Volume
Panel can be used with any kind of audio stream, either received or local.

62 CHAPTER 7. IMMACS FROM A USER’S PERSPECTIVE

Figure 7.5: Screenshot of the Volume Panel.

The fader controls the overall stream volume. It can be easily manipulated by
using the mouse, either by dragging or by moving the mouse wheel when the mouse
lies over the fader. The overall volume is displayed by the volume indicator. It is
worthy to mention that the scale of the volume, in decibel, is not linear. It is the
same with the scale of the Spatial Equalizer; high analysis is provided from -12 to
12 db and more raw analysis is provided from -115 to -12 db.

The "M" (Mute) button silences the audio stream, while the "S" (Solo) button
will force the system to reproduce only that stream. Multiple muted or solo streams
are allowed. Mute has a greater priority than solo, meaning that when both buttons
are enabled for a stream the mute button will prevail. When at least one channel is
at solo mode, an indication is displayed in the top left corner of the Source Monitor.
Both buttons are disabled by default.

The "D" (Display) button enables/disables the monitoring function for an au-
dio stream. When enabled, the stream will be displayed at the Source Monitor.
By default, it is enabled for the received audio streams and disabled for the local
audio stream.

Source Monitor

The Source Monitor provides visual feedback to the user, regarding the position of
the received and local audio sources. The reference point is set at the center, with
0◦lying in the front, the 90◦directly to the right etc. A source can be selected to
be displayed using the "D" (Display) button of the Volume Panel. Each source is
displayed as a circle whose radius is proportional to the source power. The ID of
the peer is also displayed at the bottom right corner of each source. Each peer is

7.4. IMMACS CONTROL 63

Figure 7.6: Screenshot of the Source Monitor.

displayed using a random, moderatelly transparent color, to help the user discrim-
inate the sources more easily.

Discussion: effects pipeline

The three above effects (Spatial Mapper, Volume Panel, Source Monitor) allow
the user to alter the spatial and volume characteristics of the audio streams. Their
order in audio processing is the same with their visual precedence from left to the
right; Spatial Equalizer -> Spatial Mapper -> Volume Panel. The Spatial Equal-
izer and the Volume Panel affect only the volume and the Spatial Mapper affects
only the direction of the carried sources.

For the ease of use, the angular spectrograms in Spatial Equalizer and Spatial
Mapper are displayed before any of the three effects apply. This means that the
displaying of the volume will not be affected in the Spatial Equalizer or the Volume
Panel and the displaying of the angle will not be affected in the Spatial Mapper.
On the other hand, the volume bar on the Volume Panel is displayed after all three
effects have been applied, but it is not affected by the mute button.

The sources displayed at the Source Monitor are only affected by the Spatial
Mapper. This means that any change of the source position will be also displayed
on the Source Monitor. Changes of the volume in Spatial Equalizer and Volume
Panel will not affect the Source Monitor.

64 CHAPTER 7. IMMACS FROM A USER’S PERSPECTIVE

Chapter 8

Conclusions and Future Work

In this thesis, we designed and implemented a communication system that supports
immersive audio capturing and reproduction. Our system supports the communi-
cation of multiple users through a conference server. We used a flexible and robust
technique for spatial audio reproduction, capturing and encoding that is suitable
for real-time applications [1]. We realized the functions of that technique in Li-
bimmacs, a library we designed for optimal real-time performance and flexibility.
We then incorporated Libimmacs to Baresip, an existing open-source VoIP client,
so as to create Immacssip, the client of our system. We also created a custom
conference server, the Bareserver, which is based on Baresip and performs a
transparent relay of the packets that involves no transcoding or down mix. Each
client receives the streams of all the clients, so that it is able to manipulate each
stream separately. To facilitate the control of the streams, we created Immacs
Control, a graphical user interface in Java, that allows for maximum flexibility
on the manipulation of the spatial audio. Our system is most suitable for telecon-
ference applications but it could also be used for music performances through the
network. To our knowledge, this is the first implemented system that allows for
real-time bidirectional immersive audio communication.

Considering the use of Libimmacs in future projects, the major challenge of
the design was to compensate between abstraction and flexibility, within the strict
framework of real-time audio programming. We had to consider that many useful
programming techniques, that are commonly used in general purpose applications,
are not safe for real-time. For this reason we used alternative methods that are
reliable for real-time, but these increased the complexity of the design and made
the implementation of the system harder. Eventually, we managed to meet our
initial goals by creating a simple-to-use yet powerful library for real-time spatial
audio capturing, encoding and reproduction.

For the implementation of Immacssip we came across two big challenges. The
first was to incorporate Libimmacs into Baresip and transmit/receive the spatial
meta-data along with the audio data, and the second was to modify Baresip so
that it receives multiple streams per call. The main challenge, however, was to

65

66 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

study, analyze and understand the code of Baresip sufficiently from scratch, so
as to design and implement the required changes to achieve our goals. The same
difficulty applies also for Bareserver, where we converted Baresip from a VoIP
client to a VoIP server suitable for our system. Finally, the challenge with Immacs
Control was to create a flexible, yet intuitive to use graphical interface, so as to
exploit all the possibilities of Libimmacs.

As a future work, we intent to add echo cancellation functionality to the system,
so as to prevent the leakage of the loudspeaker output to the microphones. Overall,
this thesis provided us with significant experience on understanding, designing and
implementing real-time audio applications and professional applications in general.

Bibliography

[1] A. Alexandridis, A. Griffin, and A. Mouchtaris, “Capturing and reproducing
spatial audio based on a circular microphone array,” Journal of Electrical and
Computer Engineering, vol. 2013, p. 16, 2013.

[2] V. Pulkki, “Spatial Sound Reproduction with Directional Audio Coding,”
J. Audio Eng. Soc, vol. 55, no. 6, pp. 503–516, 2007. [Online]. Available:
http://www.aes.org/e-lib/browse.cfm?elib=14170

[3] M. Cobos, J. Lopez, and S. Spors, “A sparsity-based approach to 3d binaural
sound synthesis using time-frequency array processing,” EURASIP Journal
on Advances in Signal Processing, vol. 2010, no. 1, p. 415840, 2010. [Online].
Available: http://asp.eurasipjournals.com/content/2010/1/415840

[4] K. Kowalczyk, O. Thiergart, M. Taseska, G. Del Galdo, V. Pulkki, and E. Ha-
bets, “Parametric spatial sound processing: A flexible and efficient solution
to sound scene acquisition, modification, and reproduction,” Signal Processing
Magazine, IEEE, vol. 32, no. 2, pp. 31–42, March 2015.

[5] V. Pulkki, “Virtual Sound Source Positioning Using Vector Base Amplitude
Panning,” p. 466, 1997.

[6] “BareSIP,” http://www.creytiv.com/baresip.html, accessed: 2015-09-08.

[7] J. Tranter, “Introduction to sound programming with alsa,” Linux J.,
vol. 2004, no. 126, pp. 4–, Oct. 2004. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1017973.1017977

[8] D. Phillips, “A user’s guide to alsa,” Linux J., vol. 2005, no. 136, pp. 3–,
Aug. 2005. [Online]. Available: http://dl.acm.org/citation.cfm?id=1080072.
1080075

[9] C. Adamson and K. Avila, Learning Core Audio: A Hands-On Guide to Audio
Programming for Mac and iOS, 1st ed. Addison-Wesley Professional, 2012.

[10] “Windows Audio Session API,” https://msdn.microsoft.com/en-us/library/
windows/desktop/dd371455(v=vs.85).aspx, accessed: 2015-06-18.

67

http://www.aes.org/e-lib/browse.cfm?elib=14170
http://asp.eurasipjournals.com/content/2010/1/415840
http://www.creytiv.com/baresip.html
http://dl.acm.org/citation.cfm?id=1017973.1017977
http://dl.acm.org/citation.cfm?id=1017973.1017977
http://dl.acm.org/citation.cfm?id=1080072.1080075
http://dl.acm.org/citation.cfm?id=1080072.1080075
https://msdn.microsoft.com/en-us/library/windows/desktop/dd371455(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd371455(v=vs.85).aspx

68 BIBLIOGRAPHY

[11] R. Bencina and P. Burk, “Portaudio–an open source cross platform audio
api,” Proceedings of the International Computer Music Conference, Havana,
pp. 263–266, 2001.

[12] G. P. Scavone, “Rtaudio: A cross-platform c++ class for realtime audio in-
put/output,” in in Proceedings of the 2002 International Computer Music
(ICMC’02, 2002, pp. 196–199.

[13] “JACK Audio Connection Kit,” http://jackaudio.org/, accessed: 2015-06-14.

[14] “PulseAudio,” http://www.freedesktop.org/wiki/Software/PulseAudio/, ac-
cessed: 2015-06-14.

[15] S. W. Smith, The Scientist and Engineer’s Guide to Digital Signal Processing.
San Diego, CA, USA: California Technical Publishing, 1997.

[16] R. Boulanger, Ed., The Csound Book: Perspectives in Software Synthesis,
Sound Design, Signal Processing, and Programming. Cambridge, MA, USA:
MIT Press, 2000.

[17] C. Chafe, M. Gurevich, G. Leslie, and S. Tyan, “Effect of time delay on ensem-
ble accuracy,” in In Proceedings of the International Symposium on Musical
Acoustics, 2004.

[18] “Real-Time Audio Programming 101: Time waits
for nothing,” http://www.rossbencina.com/code/
real-time-audio-programming-101-time-waits-for-nothing, accessed: 2015-06-
24.

[19] “CMake,” http://www.cmake.org/, accessed: 2015-09-10.

[20] “TinyCThread,” https://tinycthread.github.io/, accessed: 2015-09-10.

[21] “pstdint.h,” http://www.azillionmonkeys.com/qed/pstdint.h, accessed: 2015-
09-10.

[22] “FFTW,” http://www.fftw.org/, accessed: 2015-09-10.

[23] “Libsndfile,” http://www.mega-nerd.com/libsndfile/, accessed: 2015-09-10.

[24] “ITPP,” http://itpp.sourceforge.net/4.3.1/, accessed: 2015-09-10.

[25] D. Pavlidi, A. Griffin, M. Puigt, and A. Mouchtaris, “Real-time multiple sound
source localization and counting using a circular microphone array,” Audio,
Speech, and Language Processing, IEEE Transactions on, vol. 21, no. 10, pp.
2193–2206, Oct 2013.

[26] B. Gardner and K. Martin, “Hrtf measurements of a kemar dummy-head mi-
crophone,” MIT Media Lab Perceptual Computing, Tech. Rep., 1994.

http://jackaudio.org/
http://www.freedesktop.org/wiki/Software/PulseAudio/
http://www.rossbencina.com/code/real-time-audio-programming-101-time-waits-for-nothing
http://www.rossbencina.com/code/real-time-audio-programming-101-time-waits-for-nothing
http://www.cmake.org/
https://tinycthread.github.io/
http://www.azillionmonkeys.com/qed/pstdint.h
http://www.fftw.org/
http://www.mega-nerd.com/libsndfile/
http://itpp.sourceforge.net/4.3.1/

	Introduction
	Motivation
	Contribution
	Organization of this thesis

	Real-Time Audio Programming Background
	The audio interface
	Audio APIs
	Circular buffering
	Audio data format and structure
	Audio latency
	Effects of the period size in performance
	Challenges of real-time processing
	Good and bad practices for real-time coding

	Libimmacs - ImmACS real-time processing library
	Features
	Design challenges and practices
	Code overview
	Code analysis

	Immacssip - the ImmACS client
	Goals and challenges
	Incorporating Libimmacs to Baresip
	Default audio structure
	Custom audio structure and implementation details

	Multiple streams per call
	Default communication model
	Custom communication model
	Implementation details

	Immacs Control integration
	Immacssip-ImmACS Control communication model
	Implementation details

	Immacs Control - the graphical user interface of ImmACS
	Communication with Immacssip
	The spatial equalizer
	The spatial mapper

	Bareserver - the ImmACS server
	Communication with Immacssip
	Multi-threaded relaying
	Echo server

	ImmACS from a user's perspective
	Bareserver
	Dependencies
	Installation and first run
	SIP account setup
	Configuration
	Operation
	Uninstall

	Libimmacs
	Dependencies
	Installation
	Usage
	Uninstall

	Immacssip
	Dependencies
	Installation and first run
	SIP Account Setup
	Configuration
	Operation
	Operation with video support
	Uninstall

	Immacs Control
	Dependencies And Installation
	Operation

	Conclusions and Future Work

