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Abstract

Classical directed motion and quantum diffusion for a particle are studied in one-
dimension. In the Classical regime, we examined through stochastic simulations in
the Langevin picture the motion of an over-damped Brownian particle in a periodic,
non-symmetric ratchet potential driven by time-correlated forces. We focused on two
extreme limits, the white noise limit where the correlation time goes to zero, where
we found numerically that white uncorrelated fluctuations cannot induce macroscopic
current. In the other extreme limit when the correlation time is very large, we no-
ticed that the time correlations of the noise can create a non zero current due to the
asymmetry of the potential, the well-known Ratchet effect. In the quantum regime we
studied the motion of a charged particle through the stochastic Liouville equation, us-
ing analytical as well as numerical means, in three different one - dimensional discrete
tight-binding lattices : (i) the single-band, (ii) the two-band and (iii) the tree-band lat-
tice, in the presence/absence of a sinusoidal electric field. Additionally, the coupling of
the charged particle to the environment was taken into account in a phenomenological
way by adding proper terms in the Liouville equation. Quantum diffusion can been
seen in all cases except for the very special case of the linear lattice with an AC drive,
where dynamic localization appears for special values of the electric field’s parameters.
The phenomenon of dynamic localization, for the same parameter regime disappears
for the other types of lattices.
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1
Introduction

1.1 Brownian Motion
The theory of Brownian motion deals with the random motion of small particles sus-
pended in a fluid (a liquid or a gas) resulting from their bombardment by the fast-
moving atoms or molecules in the gas or liquid; this theory provides an idealized ap-
proximate way to treat the dynamics of non equilibrium systems. Brownian motion is
among the simplest of the continuous-time stochastic (or probabilistic) processes, and it
is a limit of both simpler and more complicated stochastic processes. The fundamental
equation describing such motion is called the Langevin equation. This equation con-
tains both frictional forces and random forces, which are related to each other through
the fluctuation-dissipation theorem (FDT).

1.1.1 Langevin Equations

While the motion of a particle performing Brownian motion appears to be quite ran-
dom, it must nevertheless be describable by the same equation of motion as is any
other dynamical systems, e.g. in classical mechanics these are Newton’s or Hamilton’s
equations. Hence, let us consider the classical motion of a particle, for simplicity in one
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1. Introduction

dimension, described by the Newton’s second law of motion :

m
d

dt
u(t) = F (t) (1.1)

where F (t) is the total force describing the interaction of the Brownian particle with
the surrounding medium at time t. If the positions of the molecules in the surrounding
medium were already known as a function of time, then in principle this force is a
known function of time. In this sense it is not a random force at all. Usually, it is not
practical or even desirable to look for an exact expression of F (t). This force is most
frequently represented by a friction force proportional to velocity (Stokes’ force) of the
Brownian particle, i.e. −γu(t), where γ is given by Stokes’ law:

γ = 6πηr (1.2)

where η is the viscosity of the fluid medium and r is the particle’s radius. We also expect
a random force ξ(t) due to random density fluctuations in the fluid, representing the
effect of the collisions with the molecules of the fluid (noise term). Defining τ = m/γ as
the relaxation time of the macroscopic motion of the particle, the equations of motion
of the Brownian particle are:

d

dt
x(t) = u(t)

d

dt
u(t) = −1

τ
u(t) + 1

m
ξ(t) (1.3)

These are the Langevin equations of motion for the Brownian particle.

For Eqs (1.3) to be meaningful we must specify the statistical properties of the
random force ξ(t); we assume that it is correlated at a very small time compared to the
relaxation time of the system. An idealized case is to assume that the random force
has zero correlation time, so ξ(t) is approximated by a δ-correlated process [1]:

〈ξ(t)〉 = 0

〈ξ(t)ξ(t′)〉 = 2Dδ(t− t′) (1.4)

which means that, all the frequencies of its power spectrum have equal weight.

2



1.2 Open Quantum System Dynamics

1.2 Open Quantum System Dynamics
An open quantum system is a quantum system which is found to be in interaction with
an external quantum system, the environment. The theory of open quantum systems
addresses the problems of damping and dephasing in quantum systems by the assertion
that all real systems of interest are “open” systems (surrounded by their environments).
In general, the quantum dynamics of open quantum systems cannot be represented by
a unitary time evolution. In many cases, it is useful to formulate the dynamics of such
quantum systems by an appropriate equation of motion for their density matrix, i.e. a
quantum master equation.

1.2.1 Lindblad Master Equation

The simplest case representing these dynamics is the quantum Markov processes [2], a
first-order linear differential equation for the reduced density matrix, defined by:

ρ̇ = − i
~

[H, ρ]−
∑
k

γk
(
LkρL

†
k −

1
2
(
ρL†kLk + L†kLkρ

) )
(1.5)

which is known as quantum Markovian master equation in Lindblad form. If only the
first term existed, in the right-hand side of Eq. (1.5), is the Liouville-von Neumann
equation which is the usual shrödinger term that generates unitary evolution. The other
terms describe the possible transitions that the system may undergo due to interactions
with the reservoir. The operators Lk are called Lindblad operators, while the γk are
correlation functions of the reservoir.

1.2.2 Stochastic Liouville Equation

Since Kubo’s work [3–5] on a random frequency modulation model for nuclear magnetic
resonance (NMR) published in 1954, and later in 1962 on transport equations, the
stochastic theory has been proven to be useful for studying various topics in physics.

The well-known stochastic model describes perturbation in the Zeeman energy of
a spin by a local random field that originates from dipolar interactions of many other
spins in the environment. Such perturbation that causes random formation can be

3



1. Introduction

regarded as a stochastic process. He used an effective Hamiltonian H(t) for the spin as
a function of stochastic variables Ω(t) which represents the states of the environment:

H(t) = H0(t) +H1(Ω(t)) (1.6)

where H0(t) is th unpertubed Hamiltonian and H1(Ω(t)) is the stochastic perturbation.
Thus, the density matrix elements of a spin system become a function of the spin

state and stochastic variable. The time evolution of the spin state follows the quantum
Liouville equation, whereas the stochastic variables follow a certain law of stochastic
time evolution. This type of approach called a stochastic approach in contrast to
a dynamical approach. The stochastic approach has been used repeatedly to treat
dynamical systems under the influence of their environment, where if the characteristic
time of the main system is much longer than that of the bath, one can regard that
the bath interaction is a Markovian process. Therefore the reduced density matrix
equations of motion has the same form to the stochastic Liouville equation.

1.3 Ratchets
Thermal ratchets, also known as Brownian ratchets are over-damped systems that
transport Brownian particles with nonzero macroscopic velocity along one-dimensional
asymmetric periodic structures due to the effect of non equilibrium fluctuations, al-
though on average no macroscopic force is acting. Ratchet systems have found diverse
applications in many areas, from mechanical devices up to quantum systems and it is
believed that various biological motion can be explained by the function of tiny motor
proteins operating at the molecular scale using the ratchet effect [6, 7].
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2
Classical Motion

2.1 Introduction
When a microtubular associated protein (MAP) executes motion on a microtubule, its

diffusive dynamics has a specified directed motion. This phenomenon, as commonly

called Ratchet Effect has been the focus of attention of many physicists for many years.

Although, in essence the origin of this effect was biological, it was a challenge for

physicists to understand the mechanism of motor protein motion, therefore they began

to study several ratchet models, such as the over-damped particles in a periodic but

nonsymmetric potentials, Figure 2.1, driven by different correlated noises [8]. This

model leads to a Brownian particle, moving in a specific direction determined by the

potential asymmetry and the properties of a noise. In this Chapter, we will consider

an over-damped particle under the influence of two forces, (i) a spatial asymmetrical

periodic force (ratchet force) f(x) resulted from the potential f(x) = − d
dxV (x) and (ii)

a random time-periodic force ξ(t) as a consequence of the coupling of the particle with

the environment. The equation of motion which the particle obeys has the form:

dx(t)
dt

= f(x) + ξ(t) (2.1)

5



2. Classical Motion

where ξ(t) is defined by

dξ(t)
dt

= η(t)− ξ(t)
τ

(2.2)

where η(t) is a δ - correlated Gaussian noise of any non zero correlation time τ . We
present numerical results by solving Eq.(2.1) N times for different realizations and
plotting

〈x〉(t) = 1
N

∑
n

xn (2.3)

and we show the onset of Ratchet Effect for large correlation times; this phenomenon
does not hold for small correlation times as expected, as the rates of escape to the left
or to the right become equal [9, 10].

2.2 Basic Method
In this section we introduce the mathematical tools for studying the stochastic motion
of a particle in a periodic but non symmetric potential, coupled with the environment.
The most direct way of implementing this Brownian motion is to recognize that there
is a stochastic component to the force on the particle, which we only know through a
probabilistic description. This process is described by the Langevin equation for the
position x(t).

dx(t)
dt

= f(x) + ξ(t)

dξ(t)
dt

= η(t)− ξ(t)
τ

(2.4)

Here x(t) denotes the position of the Brownian particle, while f(x) = − d
dxV (x) denotes

the spatial asymmetrical and periodic force which acts on the particle, caused by the
potential V (x) which we have submitted (Figure 2.1). The variable ξ represents the
coupling of the particle with the environment and η(t) the noise variable, which is
Gaussian and δ-correlated,i.e

〈η(t)η(t′)〉 = Dδ(t− t′) (2.5)

6



2.3 The Ratchet Effect

where D is the noise intensity. Then the variable ξ(t) is an Ornstein-Uhlenbeck (O-U)
process, which means that ξ(t) is Gaussian and exponentially correlated.

〈ξ(t)ξ(t′)〉 = D

2τ e
−|t−t′||/τ (2.6)

and τ is the correlation time. The potential [10] in the figure is defined as follows:

V (x) = 1
2Q

(
1 + sin(2πx/L− φc) + bsin[2(2πx/L− φc)]

sin(φc) + bsin(2φc)

)
(2.7)

where φc = arcos[(−1 +
√

1 + 32b2)/8b]. This is a potential of height Q, period L and
asymmetry b. We should remark here that for b < 0.5 the potential has one maximum
and one minimum within a period, while for b > 0.5 a second minimum and maximum
appear, but it is still asymmetric. Thus, the most asymmetric form of the potential is
for b = 0.5.

(a)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.2

0.4

0.6

0.8

1.0

x

V
Hx
L

POTENTIAL

(b)

0 1 2 3 4

-4

-2

0

2

x

fH
x
L

FORCE

Figure 2.1: (a) Asymmetric ratchet potential and (b) Asymmetric ratchet force (Langevin
force), for height Q=1, period L=1 and asymmetry parameter b=0.5

We are now in a position to describe the Ratchet Effect by solving Eq.(2.4) numer-
ically, N times for different realizations of the colored noise ξ(t), by computing and
plotting the mean value of position, as a function of position Eq. (2.3).

2.3 The Ratchet Effect
The numerical calculation of the mean value of the position was done for two limits of
correlation time τ . For this reason, the section is separated in two subsections. The
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2. Classical Motion

first subsection, includes numerical calculations for small correlation time (τ → 0),
i.e white noise, whereas in the second one, we present numerical calculations for large
correlation time (τ � 1), i.e colored noise, where the Ratchet Effect appears.

2.3.1 Small Correlation Time τ → 0
We consider the motion of an over-damped particle moving under the influence of a
periodic but non symmetric force, coupled with the environment as described above, in
the limit τ → 0 (white noise limit), where we do not expected to observe a macroscopic
current. Thus, we solve the Langevin equation (Eq. 2.4) numerically N times, for
different realizations of the white noise. More specifically, the numerical calculations
were made for N = 100, 500, 1000 and2000 realizations, while the strength of the noise
D was kept constant, equal to 2. Finally, the potential parameter values are Q = 1,
L = 1 and b = 0.5. The graph that follows below, Figure 2.2, demonstrates the mean
value of position as a function of time, where it is shown that the 〈x〉(t) = 0, as we
expected.

8



2.3 The Ratchet Effect

Figure 2.2: The mean value of position, plotted as a function of time four different
realizations N. The red solid line corresponds toN = 100, the green solid line corresponds to
N = 500, the purple solid line corresponds to N = 1000 and the blue solid line corresponds
to N = 2000. As the realizations increase, the result becomes more accurate and we obtain
〈x〉(t)→ 0. As a consequence, a net current does not appear.

2.3.2 Large Correlation Time τ � 1
Now we assume the same motion of a particle with the main difference that, our calcula-
tions made for very large correlation time, τ � 1 (colored noise). The results presented
below (Figure 2.3), where we plot again the mean value of position as a function of
time. The numerical calculations made as before using the same features.

In this limit, when τ � 1, in a thermodynamic sense, the system is open and a
non-zero net current appears. The effect of white noise is negligible, thus ξ̇(t) ≈ 0, so
approximately the force which acts in the particle is static, i.e. f + ξ, although ξ is
fluctuating but very slowly. When ξ takes the value which cancels the ratchet force,
the Brownian particle moves to the next well (in our case to the left, but this is not
necessary) and so on.

9



2. Classical Motion

Figure 2.3: The mean value of position, plotted as a function of time four different
realizations N. The red solid line corresponds toN = 100, the green solid line corresponds to
N = 500, the purple solid line corresponds to N = 1000 and the blue solid line corresponds
to N = 2000.. As the realizations increase, the result becomes more accurate and the
〈x〉(t) 6= 0. From this graph it is clear that a ratchet current appears.

10



3
Quantum Motion In a Closed

System

3.1 Introduction

In this chapter, we consider the quantum motion of a charged particle moving on a
one-dimensional discrete lattice of N sites under a Tight-Binding Hamiltonian,in the
presence/absence of a time-dependent (sinusoidal) electric field, for three different cases.
In the first section, we study the case of the quantum motion in a discrete one-band
lattice where all on-site energies are the same. We obtain exact solutions for the mean
square displacement (MSD), by solving the Liouville-von Neumann equation (LVN)
of the form:

i
∂

∂t
ρm,n = V (ρm+1,n + ρm−1,n − ρm,n+1 − ρm,n−1) + E0f(t)(m− n)ρm,n (3.1)

for E0 = 0 and E0 6= 0. Eq. (3.1) can also be solved numerically, and the analytical and
numerical results for the MSD can be compared for certain values of the electric field’s
frequency ω. Subsequently, we study numerically the quantum motion in discrete two-
band lattice where two different on-site energies exist. This is performed by adding an
on-site energy, at every second site. Therefore, we construct a lattice with two-bands,
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3. Quantum Motion In a Closed System

where each band has different energy. This, can be expressed by an extra term in the
LVN as follows:

i
∂

∂t
ρm,n = V (ρm+1,n + ρm−1,n − ρm,n+1 − ρm,n−1) + E0f(t)(m− n)ρm,n

+(εm − εn)ρm,n (3.2)

From Eq. (3.2) we derive numerically the MSD as a function of time, with and without
the term of the electric field, for different values of ω. Finally, we ”break the symmetry”,
by separating the lattice in a three-band lattice following the same procedure as in the
previous section. The equation which describes such a quantum motion is the same, as
Eq.(3.2).

3.2 1-D Discrete One-Band Lattice
First, let us consider, the simplest and most trivial case of quantum motion of a charged
particle e, moving on a discrete one-band 1-D lattice of sites l (-∞ < l <∞) in absence
of on-site energy [11].

3.2.1 Absence of Electric Field

In the case of a zero electric field (Figure 3.1) the Tight-Binding Hamiltonian is :

H0 = V
∑
l

|l〉〈l + 1|+ |l + 1〉〈l| (3.3)

where V is the nearest-neighbor intersite interactions (overlap integrals), and |l〉 repre-
sents a Wannier state localized on lattice site l. Expressing the charged particle state

Figure 3.1: Quantum motion of a particle in 1-D discrete one-band lattice of l sites, with
the electic field set to zero.
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3.2 1-D Discrete One-Band Lattice

|Ψ(t)〉 as linear combination of Wannier states:

|Ψ(t)〉 =
∑
i

ci(t)|i〉 and 〈Ψ(t)| =
∑
j

c∗j (t)〈j| (3.4)

and using the Liouville-Von Neumann equation, we get the evolution equation for the

density matrix:

i
∂

∂t
ρ(t) = [H0, ρ(t)] (~ = 1) (3.5)

where by definition:

ρ(t) = |Ψ(t)〉〈Ψ(t)| =
∑
i,j

ci(t)c∗j (t)|i〉〈j| (3.6)

From equations (3.4), (3.5) and (3.6), one obtains :

i
∂

∂t
(
∑
i,j

ci(t)c∗j (t)|i〉〈j|) = V
∑
i,j,l

ci(t)c∗j (t)(|l〉〈l + 1|i〉〈j|+ |l + 1〉〈l|i〉〈j| −

−|i〉〈j|l〉〈l + 1| − |i〉〈j|l + 1〉〈l|)

= V
∑
i,j,l

ci(t)c∗j (t)(|l〉〈j|δl+1,i + |l + 1〉〈j|δl,i −

−|i〉〈l + 1|δj,l − |i〉〈l|δj,l+1 (3.7)

More explicitly, the matrix elements ρm,n are :

ρm,n(t) ≡ 〈m|ρ(t)|n〉 =
∑
i,j

ci(t)c∗j (t)〈m|i〉〈j|n〉

=
∑
i,j

ci(t)c∗j (t)δm,iδj,n ⇒

⇒ ρm,n(t) = cm(t)c∗n(t) (3.8)

By this definition, we conclude to the Liouville-von Neumann equation :
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3. Quantum Motion In a Closed System

i
∂

∂t
(
∑
i,j

ci(t)c∗j (t)〈m|i〉〈j|n〉) = V
∑
i,j,l

ci(t)c∗j (t)(〈m|l〉〈j|n〉δl+1,i + 〈m|l + 1〉〈j|n〉δl,i −

−〈m|i〉〈l + 1|n〉δj,l − 〈m|i〉〈l|n〉δj,l+1 ⇒

⇒ i
∂

∂t
ρm,n(t) = V

∑
i,j,l

ci(t)c∗j (t)(δm.lδj,nδl+1,i + δm,l+1δj,nδl,i −

−δm,iδl+1,nδj,l − δm,iδl,nδj,l+1)

⇒ i
∂

∂t
ρm,n(t) = V (ρm+1,n(t) + ρm−1,n(t)− ρm,n+1(t)− ρm,n−1(t))(3.9)

With the initial condition:

ρm,n(t = 0) = cm(t = 0)c∗n=0(t = 0) = δm,0δn,0 (3.10)

In order to solve Eq. (3.9), as a first step we perform a discrete Fourier Transform over
the site indices m and n, by multiplying each term by eikme−iqn and summing over all
m and n:

ρk,q(t) =
∑
m,n

ρm,n(t)ei(km−qn) (3.11)

So, the produced momentum-space form of the LVN is:

i
∑
m,n

ρ̇m,n(t)eipme−iqn = V
∑
m,n

(ρm+1,n(t) + ρm−1,n(t)− ρm,n+1(t)− ρm,n−1(t))

= V (e−ip
∑
m,n

ρm+1,n(t)eipme−qneip + eip
∑
m,n

ρm−1,n(t)eipme−qne−ip −

−e−iq
∑
m,n

ρm,n−1(t)eipme−qne−iq − eiq
∑
m,n

ρm,n+1(t)eipme−qneiq)⇒

⇒ i
∂

∂t
ρk,q(t) = V [(eip + e−ip)− eiq + e−iq)]ρk,q(t)

⇒ i
∂

∂t
ρk,q(t) = 2V [cos(k)− cos(q)]ρk,q(t) (3.12)

Solving Eq. 3.12 we get:

ρk,q(t) = ρk,q0 e−2iV [cos(k)−cos(q)]t (3.13)
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3.2 1-D Discrete One-Band Lattice

Making use of the Jacobi−Anger expansion,

e±izcos(φ)t =
∑
n

e±inπ/2einφJn(z) (3.14)

we express Eq. (3.13) in terms of ordinary Bessel functions Jn, and we arrive at the
following form:

ρk,q(t) = ρk,q0
∑
a

eiaπ/2eiaqJa(2V t)
∑
b

e−ibπ/2eibkJb(2V t) (3.15)

and we perform an inverse discrete Fourier Transformation, which yields the following
expression for ρm,n(t) :

ρm,n(t) =
∑
k,q

e−ikmeiqn(
∑
r,R

eikre−iqRρr,R(0))

×
∑
a,b

eiaπ/2eiaqJa(2V t)e−ibπ/2eibkJb(2V t) (3.16)

We notice that:

∑
k

e−ikmeikreibk = δm,b+r∑
q

eiqne−iqReiaq = δn,a−R (3.17)

Therefore, the final form of the solution of the SLE, with the initial condition Eq. (3.10)
is:

ρm,n =
∑
r,R

∑
a,b

ρr,R(0)eiaπ/2e−ibπ/2Ja(2V t)Jb(2V t)δm,b+rδn,a−R

=
∑
r,R

ρr,R(0)ei(n+R)π/2e−i(m−r)π/2Jn+R(2V t)Jm−r(2V t)

=
∑
r,R

δr,0δR,0e
i(n+R)π/2e−i(m−r)π/2Jn+R(2V t)Jm−r(2V t)

= einπ/2e−imπ/2Jn(2V t)Jm(2V t)

= i(n−m)Jn(2V t)Jm(2V t) (3.18)
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3. Quantum Motion In a Closed System

Where we have used the identity:

J−m(z) = (−1)mJm(z) (3.19)

We have all the tools we need to study the quantum motion of a charged particle on
a discrete one-band lattice. For the case of vanishing electric field the exact value of
〈l(t)〉 and 〈l2(t)〉 , is found:

〈l2(t)〉 =
∑
m

m2ρm,m =
∑
m

m2J2
m(2V t) = 2(V t)2 (3.20)

To derive the above results we have used the following identity for the Bessel functions
[12]:

∑
m

m2J2
m(z) = z2 (3.21)

The MSD increases without bounds, since it is proportional to t2. This is a known
result, where an initially localized particle (l = 0), escapes to infinity, as a consequence
of delocalization. We should note here, that the mean displacement for this simple case
equals to zero. We expected this result, as it is a quantum motion in a closed system,
and we need environmental coupling in order to produce a Quantum Ratchet.

3.2.2 Presence of Electric Field

By ”turning on” the electric field [13] (Figure 3.2), an extra term is added to the
Tight-Binding Hamiltonian which becomes:

H0 = V
∑
l

|l〉〈l + 1|+ |l + 1〉〈l|+ E0f(t)
∑
l

l|l〉〈l| (3.22)

where E0 and f(t) is the amplitude and the time-dependence of the electric field re-
spectively.

Again, by expressing the charged particle state |Ψ(t)〉 as linear combination of
Wannier states (Eq. 3.4), we produce the Liouville-von Neumann in presence of time-
dependent electric field :
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3.2 1-D Discrete One-Band Lattice

Figure 3.2: Quantum motion of a particle in 1-D discrete one-band lattice of l sites, under
the presence of time-dependent (AC) electric field.

i
∂

∂t
ρm,n(t) = V (ρm+1,n(t) + ρm−1,n(t)− ρm,n+1(t)− ρm,n−1(t)) +

+E0f(t)(m− n)ρm,n (3.23)

In order to solve the above equation, we will use the transformation:

gm,n(t) = ρm,n(t)eiE0(m−n)η(t) (3.24)

Where η(t) =
∫ t

0 dt
′f(t′). Substituting the above in Eq. (3.23), we derive the time

evolution equation for gm,n:

i
∂

∂t
gm,n(t) = V [(gm+1,n(t)− gm,n−1(t))−iE0η(t)

e + (gm−1,n(t)− gm,n+1(t))eiE0η(t)](3.25)

When we transform Eq. (3.25) into momentum-space, it takes the form:

i
∂

∂t
gk,q(t) = 2V [cos(q − E0η(t))− cos(k − E0η(t))]gk,q (3.26)

Which is now easy to solve:

gk,q(t) = gk,q0 e−2iV
∫ t

0 dt
′[cos(q−E0η(t′))−cos(k−E0η(t′))]gk,q (3.27)
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3. Quantum Motion In a Closed System

Using the definition of Eq. (3.24) in the transformation of Eq. (3.11) by adding, we
obtain

ρp,q(t) =
∑
m,n

ρm,n(t)ei(pm−qn)

=
∑
m,n

gm,ne
−iE0(m−n)η(t)ei(pm−qn)

=
∑
m,n

gm,ne
i([p−E0η(t)]m−[q−E0η(t)]n)

= gp−E0η(t),q−E0η(t) (3.28)

So, the momentum-space form of the SLE is:

ρp,q(t) = ρ
p−E0η(t),q−E0η(t)
0 e−2iV

∫ t
0 dt

′[cos(q−E0η(t)−E0η(t′))−cos(p−E0η(t)−E0η(t′))] (3.29)

Following the same procedure, we use the Jacobi−Anger expansion for e±izcosφ and for
e±izsinφ:

eizsinφ =
∑
n

einφJn(z)

e−izsinφ =
∑
n

(−1)neinφJn(z) (3.30)

We express Eq. (3.29) in terms of ordinary Bessel functions Jn and we get the following
expression for ρk,q(t):

ρk,q(t) = ρ
k−E0η(t),q−E0η(t)
0

∑
a,b,c,d

e−iaπ/2eiaqJa(2VU (t))(−1)bJb(2V V (t))

× eicπ/2eickJc(2VU (t))Jd(2V V (t))eidk (3.31)

Where

U (t) =
∫ t

0
dt′Cos[E0(η(t) + η(t′)] (3.32)

V (t) =
∫ t

0
dt′Sin[E0(η(t) + η(t′)] (3.33)
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3.2 1-D Discrete One-Band Lattice

Performing an inverse discrete Fourier Transformation, we get:

ρm,n(t) =
∑
k,q

e−ikmeiqn(
∑
r,R

eikre−ikE0η(t)re−iqReiqE0η(t)Rρr,R(0))
∑
a,b,c,d

e−iaπ/2eiaqJa(2VU (t))

× (−1)bJb(2V V (t))eicπ/2eickJc(2VU (t))Jd(2V V (t))eidk (3.34)

Again we notice that:

∑
k

e−ikmeikreickeidk = δm,r+c+d∑
q

eiqne−iqReiaqeibq = δn,R−a−b (3.35)

⇒ ρm,n(t) =
∑
r,R

∑
a,b,c,d

e−ikE0η(t)reiqE0η(t)Rρr,R(0)e−iaπ/2Ja(2VU (t))J−b(2V V (t))

× eicπ/2Jc(2VU (t))Jd(2V V (t))δm,r+c+dδn,R−a−b

=
∑
r,R

∑
a,c

e−ikE0η(t)reiqE0η(t)Rρr,R(0)e−iaπ/2Ja(2VU (t))Jn+a−R(2V V (t))

× eicπ/2Jc(2VU (t))Jm−r−c(2V V (t)) (3.36)

Using Graf’s addition theorem [14] for Bessel functions:

Jν(w)[Cos(νχ), Sin(νχ)] =
∑
k

Jν+k(u)Jk(v)[Cos(kα), Sin(kα)] (3.37)

where,

w =
√
u2 + v2 − 2uvCosα

u− vCosα = wCosχ

vSinα = wSinχ (3.38)
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3. Quantum Motion In a Closed System

⇒ ρm,n(t) =
∑
r,R

e−ikE0η(t)reiqE0η(t)Rρr,R(0)
∑
a

Ja(2VU (t))Jn+a−R(2V V (t))[Cos(απ2 )− iSin(απ2 )]

×
∑
c

Jc(2VU (t))Jm−r−c(2V V (t))[Cos(cπ2 ) + iSin(cπ2 )]

=
∑
r,R

e−ikE0η(t)reiqE0η(t)Rρr,R(0)Jn−R(W )[Cos[(n−R)Sin−1( V

W
)]

−iSin[(n−R)Sin−1( V

W
]

× (−1)r−mJr−m(W )1
2 i[Sin[(r −m)Sin−1(− V

W
)]− Sin[(r −m)Sin−1( V

W
)]

=
∑
r,R

e−ikE0η(t)reiqE0η(t)Rρr,R(0)Jn−R(W )(−1)r−mJr−m(W )(U + iV

W
)R−n(U + iV

W
)m−r

=
∑
r,R

e−ikE0η(t)reiqE0η(t)Rρr,R(0)Jn−R(W )Jm−r(W )(λ)R−n(λ)m−r

=
∑
r,R

e−ikE0η(t)reiqE0η(t)Rδr,0δR,0Jn−R(W )Jm−r(W )(λ)R−n(λ)m−r

⇒ ρm,n(t) = λm−nJm(W )Jn(W ) (3.39)

The quantities W and λ, are given by

W =
√

U (t)2 + V (t)2

λ =
√

U (t) + iV (t)
U (t)− iV (t) (3.40)

We can further simplify Eq.(3.39) by noticing that U (t)2 + V (t)2 is exactly equal to

u(t)2 + v(t)2, where

u(t) =
∫ t

0
dt′Cos[E0η(t′)]

v(t) =
∫ t

0
dt′Sin[E0η(t′)] (3.41)

Now, we can compute the corresponding mean and mean square displacement:
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3.2 1-D Discrete One-Band Lattice

〈l(t)〉 =
∑
m

mρm,m =
∑
m

mJ2
m(z) = 0 (3.42)

〈l2(t)〉 =
∑
m

m2ρm,m =
∑
m

m2J2
m(2V [u(t)2 + v(t)2]1/2)

= (2V )2[u(t)2 + v(t)2] (3.43)

For the special and very interesting case, of the sinusoidal field, i.e. f(t) = Cos(ωt),
the quantities u and v are

u(t) = 1
ω

∫ ωt

0
dt′Cos[(E0/ω)sin(t′)] (3.44)

v(t) = 1
ω

∫ ωt

0
dt′Sin[(E0/ω)sin(t′)] (3.45)

We should notice here that the functions u(t) and v(t), whenever the upper limit ωt
equals to 2πn (where n is an integer), are equal to u(t) = J0(E0/ω)tand v(t) = 0.
So, these two functions for the special value ωt = 2πn are both bounded oscillatory
functions of time. We will concentrate our interest for these special values. Therefore,
the resulting forms for mean and mean squared displacement are:

〈l(t)〉 = 0 (3.46)

〈l2(t)〉 = 2V 2t2J2
0 (E0/ω) (3.47)

We note here the well known phenomenon of dynamic localization that appears when
the ratio E0/ω equals a root of J0. In this case, the mean square displacement re-
mains bounded, thus the moving particle remains localized under the action of a time-
dependent electric field. This is illustrated in Figure 3.3 where we have plotted MSD
as a function of time for the choice E0/ω equals the first root of J0

21



3. Quantum Motion In a Closed System

MEAN SQUARE DISPLACEMENT
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Figure 3.3: The mean square displacement, plotted as a function of time for different
values of the ratio E0/ω for an AC field, whereas the ratio E0/V is constant and equals 5.
(a) E0/ω = 0, (b) E0/ω = 1, (c) E0/ω = 3 and (d) E0/ω = 2.405, which is the first root
of J0(E0/ω = 2.405) and shows the well known phenomenon of dynamic localization. The
blue solid line corresponds to analytical solution, whereas the black dashed line corresponds
to our numerical simulations.

3.3 1-D Discrete Two-Band Lattice
Let us continue with the case of quantum motion of a charged particle e, moving on

a 1-D discrete two-band lattice [15–17], of sites l (-∞ < l < ∞), where the two bands

of sites have an energy difference 2ε. We assume that, in the first band, all sites have

constant on-site energy −ε, while the second one, has sites with on-site energy equals

to ε.
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3.3 1-D Discrete Two-Band Lattice

3.3.1 Absence of Electric Field

In this case, with the electric field set to zero, (Figure 3.4) the Tight−Binding Hamil-
tonian becomes:

H0 = V
∑
l

|l〉〈l + 1|+ |l + 1〉〈l|+ ε
∑
l

(−1)l|l〉〈l| (3.48)

Where the extra term ε
∑
l

(−1)l|l〉〈l| denotes each site’s (constant) on-site energy.

Figure 3.4: Quantum motion of a particle in 1-D discrete two-band lattice of l sites, in
the absence of electric field. The two bands, have an energy difference 2ε.

As in the previous section the LVN, has the following form:

i
∂

∂t
ρm,n = V (ρm+1,n + ρm−1,n − ρm,n+1 − ρm,n−1) + ε[(−1)m − (−1)n]ρm,n (3.49)

Unfortunately, Eq. (3.49) has no analytical solution for this case. Therefore, we will
study the quantum motion in 1-D discrete two-band lattice numerically. We will provide
numerical results of the solution of Eq.(3.49) where we used a lattice, of 150 sites (75
sites per band), that is a fair approximation of the infinite lattice. Moreover, we set the
nearest-neighbor intersite interactions V to 0.1 and on-sites’ energy ε to 0.1. In Figure
3.5 we can see, again that an initially localized particle (at site l = 0), delocalized
through time, and escapes to infinity, since the MSD ∝ t2. The difference with the
MSD in 1-D discrete one-band lattice is the factor, which multiplies the term t2. From
best fit to our data we find that this factor has the value 0.0035 in contrast with the
previous section, where that factor had the value 0.02. As we can see, the energy
difference between the sites decreases the diffusion.
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MEAN SQUARE DISPLACEMENT
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Figure 3.5: The numerical simulation of mean square displacement, plotted as a function
of time for the 1-D discrete two-band lattice. The blue solid line corresponds to our
numerical results and the black dashed line corresponds to best fit of our data.

3.3.2 Presence of Electric Field

Continuing with the same procedure, we will add a time-dependent electric field (Figure
3.6). As a result, the Tight-Binding Hamiltonian is

H0 = V
∑
l

|l〉〈l + 1|+ |l + 1〉〈l|+ ε
∑
l

(−1)l|l〉〈l|+

+E0f(t)
∑
l

l|l〉〈l| (3.50)

The LVN for this case, now becomes :

i
∂

∂t
ρm,n = V (ρm+1,n + ρm−1,n − ρm,n+1 − ρm,n−1) + ε[(−1)m − (−1)n]ρm,n +

+E0f(t)(m− n)ρm,n (3.51)
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3.3 1-D Discrete Two-Band Lattice

Figure 3.6: Quantum motion of a particle in 1-D discrete two-band lattice of l sites, in
the presence of time-dependent (AC) electric field.

As in the previous subsection, there is no analytical solution for this LVN equation.
Therefore, we will study the quantum motion in 1-D discrete two-band lattice in pres-
ence of electric field numerically. The two-band lattice, consisted the same number
of sites, i.e 150. Furthermore, the nearest-neighbor intersite interactions V and the
on-sites’ energy ε have the same values as before. We evaluate the MSD as a function
of time, for different values of the ratio E0/ω for the case of a sinusoidal electric field
(f(t) = cos(ωt)), as the ratio E0/V was kept constant equal to 5. From the graph that
follows below, one can discern that the phenomenon of dynamic localization, that was
present in the discrete one-band lattice for the special case E0/ω equals to a root of
J0, now disappears. The initially localized particle diffuses through time and the MSD
remains unbounded.
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MEAN SQUARE DISPLACEMENT
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Figure 3.7: The numerical simulation of mean square displacement, plotted as a function
of time for the 1-D discrete two-band lattice in presence of a sinusoidal electric field, for
different values of the ratio E0/ω. The ratio E0/V is constant and equals 5. (a) E0/ω = 1,
(b) E0/ω = 3, (c) E0/ω = 2.405. We notice here, the disappearance of the dynamic
localization phenomenon, for the value E0/ω = 2.405.

3.4 1-D Discrete Three-Band Lattice
The final case of our interest for the quantum motion of a charged particle e, is on a 1-D

discrete three-band lattice, of sites l (-∞ < l <∞). Now, our lattice consisted by three

bands of sites, each doublet of them has a minimum energy difference 2ε and maximum

of 4ε. We assume that, in the first band, all sites have constant on-site energy −ε,

while the second one, has sites with on-site energy equals to ε and the third one has

sites with on-site energy equals to 3ε.
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3.4.1 Absence of Electric Field

In the absence of the electric field (Figure 3.8), we will use another way to introduce
the Tight−Binding Hamiltonian for this case:

H0 = V
∑
l

|l〉〈l + 1|+ |l + 1〉〈l|+
∑
l

εl|l〉〈l| (3.52)

Where now the term
∑
l
εl|l〉〈l| denotes each site’s constant on-site energy, for the three

bands (l, l + 1, L+ 2)

Figure 3.8: Quantum motion of a particle in 1-D discrete three-band lattice of l sites, in
the absence of electric field. The three bands, have a minimum energy difference 2ε and a
maximum 4ε. The index l denotes the first band, l + 1 the second an l + 2 the third one.

The following equation represents the LVN equation for a quantum motion of a
charged particle in a discrete three-band lattice :

i
∂

∂t
ρm,n = V (ρm+1,n + ρm−1,n − ρm,n+1 − ρm,n−1) + [εm − εn]ρm,n (3.53)

There is no analytical solution for this case too, therefore, we will continue by examining
this quantum motion numerically. We used a lattice, consisted of 150 sites (50 sites
per band). Moreover, we set the nearest-neighbor intersite interactions V to 0.1 and
on-sites’ energy ε to 0.1. The next Figure (4.4) of MSD as a function of time, show us
the expected result of the delocalization of the initially localized particle. From best
fit to our data we can see that the diffusion in three-band lattice decreases in contrast
with the previous lattices, since the factor which multiplies the term t2 is 0.0014.
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3. Quantum Motion In a Closed System
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Figure 3.9: The numerical simulation of mean square displacement, plotted as a function
of time for the 1-D discrete three-band lattice. The blue solid line corresponds to our
numerical results and the black dashed line corresponds to best fit of our data.

3.4.2 Presence of Electric Field

Adding a time-dependent electric field (Figure 3.10), the new Tight-Binding Hamilto-
nian is

H0 = V
∑
l

|l〉〈l + 1|+ |l + 1〉〈l|+
∑
l

εl|l〉〈l|+

+E0f(t)
∑
l

l|l〉〈l| (3.54)

The LVN equation under the presence of an AC electric field becomes :

i
∂

∂t
ρm,n = V (ρm+1,n + ρm−1,n − ρm,n+1 − ρm,n−1) + [εm − εn]ρm,n +

+E0f(t)(m− n)ρm,n (3.55)
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3.4 1-D Discrete Three-Band Lattice

Figure 3.10: Quantum motion of a particle in 1-D discrete three-band lattice of l sites,
in the presence of time-dependent (AC) electric field.

The numerical solution of the LVN equation (Eq.3.55), for the quantum motion in
1-D discrete three-band lattice in the presence of electric field, follows by providing
the MSD as a function of time (Figure 4.5), for different values of the ratio E0/ω, as
we have done in previous sections . Again we choose the case of a sinusoidal electric
field (f(t) = cos(ωt)) and the ratio E0/V was kept constant equal to 5. The three-
band lattice, is consisted of the same number of sites and the nearest-neighbor intersite
interactions V and the on-sites’ energy ε have the same values as before. The discrete
three-band lattice, appears to have the same behavior, i.e. the initially localized particle
diffuses through time, and the MSD remains unbounded for each value of the ratio E0/ω.
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Figure 3.11: The numerical simulation of mean square displacement, plotted as a function
of time for the 1-D discrete three-band lattice in presence of a sinusoidal electric field, for
different values of the ratio E0/ω. The ratio E0/V is constant and equals 5. (a) E0/ω = 1,
(b) E0/ω = 3, (c) E0/ω = 2.405. The phenomenon of dynamic localization does not appear
for these parameter values.

30



4
Quantum Motion In an Open

System

4.1 Introduction

The theory and the analysis of the one dimensional motion of a charged particle, on

three separate lattices in the presence/absence of a time-dependent electric field (si-

nusoidal), was developed in Chapter 3. Now, we will consider the quantum motion of

a charged particle in an open system. We introduce the effect of dynamical disorder,

through a set of hermitian Lindblad operators [18]:

Ll =
√
α

2 |l〉〈l| (4.1)

that project on to the lattice sites’ orbitals as explained in Chapter 1. The Lindblad

operators satisfy the coupling of the charged particle with the environment (e.g. the

thermal phonons). In the following sections, we study this quantum motion, using the

same sequence as in Chapter 3. First, we examine the simplest case of the quantum

motion in a discrete one-band lattice , and we obtain exact solutions for the mean square

displacement (MSD), by solving the stochastic Liouville equation (SLE), which now
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4. Quantum Motion In an Open System

has the form:

i
∂

∂t
ρm,n = V (ρm+1,n + ρm−1,n − ρm,n+1 − ρm,n−1) + E0f(t)(m− n)ρm,n

−iα(1− δm,n)ρm,n (4.2)

for various values of E0 (including the trivial case, when E0 = 0). Again, since we have
an analytical form of the MSD, we will compare it with our numerical results. In the
next section, we present our numerical simulations for the MSD as a function of time,
for the quantum motion in a two-band lattice, where as usual, each band has different
energy. This is expressed by the following SLE:

i
∂

∂t
ρm,n = V (ρm+1,n + ρm−1,n − ρm,n+1 − ρm,n−1) + E0f(t)(m− n)ρm,n

+ε[(−1)m − (−1)n]ρm,n − iα(1− δm,n)ρm,n (4.3)

In the last section, we consider a discrete three-band lattice. The equation, which
describes such a quantum motion is :

i
∂

∂t
ρm,n = V (ρm+1,n + ρm−1,n − ρm,n+1 − ρm,n−1) + E0f(t)(m− n)ρm,n

+[εm − εn]ρm,n − iα(1− δm,n)ρm,n (4.4)

4.2 1-D Discrete One-Band Lattice
We begin with the quantum motion of a charged particle e, moving on dynamically
disorder 1-D discrete one-band lattice of sites l (-∞ < l <∞), in the absence of on-site
energy. Here, the disorder involved is introduced through a set of Lindblad operators
that project onto the lattice sites, which represent the environmental coupling with the
charged particle.

4.2.1 Absence of Electric Field

In the case of a zero electric field, the Tight-Binding Hamiltonian has the well known
form :

H0 = V
∑
l

|l〉〈l + 1|+ |l + 1〉〈l| (4.5)

32



4.2 1-D Discrete One-Band Lattice

where V is the nearest-neighbor intersite interactions (overlap integrals), and the sum
is over the N lattice sites , where |l〉 represents a Wannier state localized on lattice site
l.

The evolution equation for the reduced density matrix for the particle, given by the
Liouville-Von Neumann equation is

i
∂

∂t
ρ(t) = [H0, ρ(t)]−

∑
l

[Ll, [Ll, ρ]] (~ = 1) (4.6)

Where, the first order at the RHS gives the unitary evolution, while the second term
gives the non-unitary (incoherent) evolution causing the initially pure density matrix
(t = 0) to become mixed (t > 0). In terms of its matrix elements ρm,n, one obtains the
form of the SLE [19]:

i
∂

∂t
ρm,n = V (ρm+1,n + ρm−1,n − ρm,n+1 − ρm,n−1)−

−iα(1− δm,n)ρm,n (4.7)

In attempting to solve Eq. (4.7) for ρm,n(t), we use the analogous method as in Chapter
3. We perform a discrete Fourier Transform over the site labels m and n (Eq. 3.13),
by multiplying each term by eikme−iqn and summing over all m and n. The produced
momentum-space form of the SLE :

i
∂

∂t
ρk,q = 2V [cos(k)− cos(q)]ρk,q − iαρk,q

+iα
∑
m

ρm,me
i(k−q)m (4.8)

Using the integrating factor method, we arrive at:

ρk,q(t) = ρk,q0 e2iV [cos(k)−cos(q)]te−αt + α

∫ t

0
dt′
∑
m

e−i(k−q)mρm,m(t′)

× e2iV [cos(k)−cos(q)](t−t′)e−α(t−t′) (4.9)

Setting k = k′ and q = k′ − k in Eq. (4.9) and summing over all k′, we obtain the
evolution of a new quantity P k(t), defined by:
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4. Quantum Motion In an Open System

P k(t) =
∑
k′

ρk
′,k′−k(t) =

∑
k′

(
∑
m,n

ρm,ne
ik′me−ik

′neikn)

=
∑
m,n

ρm,ne
ikn(

∑
k′

eik
′me−ik

′n) =
∑
m,n

ρm,ne
iknδm,n

=
∑
m

ρm,me
ikm (4.10)

By substituting this transformation in Eq. (4.9), one obtains :

P k(t) =
∑
k′

ρk
′,k′−k

0 e2iv[cos(k′)−cos(k′−k)]te−at

+α
∫ t

0
dt′e−α(t−t′)∑

k′

(
∑
m

eikmρm,m(t′))e2iv[cos(k′)−cos(k′−k)](t−t′)

=
∑
k′

ρk
′,k′−k

0 e2iv[cos(k′)−cos(k′−k)]te−at + α

∫ t

0
dt′e−α(t−t′)P k(t′)

×
∑
k′

e2iv[cos(k′)−cos(k′−k)](t−t′) (4.11)

By the definition of P k,Eq. (4.10), one can easily extract exactly the mean square

displacement, as follows:

〈l2〉(t) = − ∂2

∂k2P
k

∣∣∣∣∣
k=0

(4.12)

Used in conjunction with Eq. (4.11), gives :

〈l2〉(t) = e−αt
∑
k′

− ∂2

∂k2 ρ
k′,k′−k
0 e2iv[cos(k′)−cos(k′−k)]t

∣∣∣∣∣
k=0

+α
∫ t

0
dt′e−α(t−t′) − ∂2

∂k2P
k(t′)

∣∣∣∣∣
k=0

∑
k′

e2iv[cos(k′)−cos(k′−k)](t−t′)

+ α

∫ t

0
dt′e−α(t−t′)P k(t′)

∑
k′

− ∂2

∂k2 e
2iv[cos(k′)−cos(k′−k)](t−t′)

∣∣∣∣∣
k=0

(4.13)

Simplifying Eq. ( 4.13), we introduce two new quantities :
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4.2 1-D Discrete One-Band Lattice

θ′′k(t) =
∑
k′

− ∂2

∂k2 ρ
k′,k′−k
0 e2iv[cos(k′)−cos(k′−k)]t

∣∣∣∣∣
k=0

(4.14)

ψ′′k(t, t′) = − ∂2

∂k2

∑
k′

e2iv[cos(k′)−cos(k′−k)](t−t′)
∣∣∣∣∣
k=0

= − ∂2

∂k2

∑
k′

∑
m

eim
π
2 eimk

′
Jm(2V (t− t′))

×
∑
n

e−in
π
2 eink

′
e−inkJn(2V (t− t′))

∣∣∣∣∣
k=0

= − ∂2

∂k2

∑
m

eimπeimkJ−m(2V (t− t′))Jm(2V (t− t′))
∣∣∣∣∣
k=0

= − ∂2

∂k2 e
imkJ2

m(2V (t− t′))
∣∣∣∣∣
k=0

= − ∂2

∂k2J0(4V (t− t′))sin(k2 )
∣∣∣∣∣
k=0

= [4V (t− t′)]2

8 = 2V 2(t− t′)2 (4.15)

Where in the last equation for ψ′′k(t, t′), we have used some identities for the Bessel
functions (Eq.(3.30)). Differentiating Eq. ( 4.13) with respect to time, gives :

d

dt
〈l2〉(t) = −αe−αtθ′′k(t) + e−αt

d

dt
θ′′k(t) + α(〈l2〉(t)

−α
∫ t

0
dt′e−α(t−t′)〈l2〉(t′)) + α(ψ′′k(t, t)− α

∫ t

0
dt′e−α(t−t′)ψ′′k(t, t′)

+
∫ t

0
dt′e−α(t−t′) d

dt
ψ′′k(t, t′))

⇒ d

dt
〈l2〉(t) = e−αt

d

dt
θ′′k(t) + α

∫ t

0
dt′e−α(t−t′) d

dt
ψ′′k(t, t′) (4.16)

Substituting Eq. (4.15) in Eq.(4.16) we get:

d

dt
〈l2〉(t) = e−αt

d

dt
θ′′k(t) + α

∫ t

0
dt′e−α(t−t′)4V 2(t− t′)

= e−αt
d

dt
θ′′k(t)4V 2e−αt(−αt+ eαt − 1)

α

= e−αt
d

dt
[θ′′k(t)− ψ′′k(t, 0)] + 4V 2

α
− 4V 2

α
e−αt (4.17)
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4. Quantum Motion In an Open System

If the initial density matrix is site diagonal, θ′′k(t) = ψ′′k(t, 0) and Eq. (4.17) becomes,
for long time :

〈l2〉(t)− 〈l2〉(0) = 4V 2

α
t (4.18)

As one can see the MSD increases linear with time (∝ t). That means, the initially
localized particle (l = 0) coupled with the environment, finally diffuses through the
lattice and escapes to infinity.

4.2.2 Presence of Electric Field

We continue with the Tight-Binding Hamiltonian for the charged particle, on the dis-
crete one-band lattice, in the presence of arbitrary (for now) Electric Field, which has
the form :

H0 = V
∑
l

|l〉〈l + 1|+ |l + 1〉〈l|+ E0f(t)
∑
l

l|l〉〈l| (4.19)

where E0 and f(t), is the amplitude and the time-dependence of the electric field re-
spectively. Using again the Liouville-Von Neumann equation (Eq. 4.6) in terms of its
matrix elements ρm,n, we get the following form of the SLE [19]:

i
∂

∂t
ρm,n(t) = V (ρm+1,n(t) + ρm−1,n(t)− ρm,n+1(t)− ρm,n−1(t)) +

+E0f(t)(m− n)ρm,n − iα(1− δm,n)ρm,n (4.20)

Performing, as usual, a discrete Fourier Transform over the site labels m and n (Eq.
3.13), we produce the momentum-space form of the SLE, which now becomes :

ρk,q(t) = i(t)E0f(t)( ∂
∂k

+ ∂

∂q
)ρk,q + 2V [cos(k)− cos(q)]ρk,q − iαρk,q

+iα
∑
m

ρm,me
i(k−q)m (4.21)

In order to solve the above equation, we will make a step back and according to trans-
formation eq. (3.24), we transform Eq. (4.20) in a time evolution equation for gm,n,
and we perform a discrete Fourier Transform in the new one. Finally, we conclude :
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4.2 1-D Discrete One-Band Lattice

i
∂

∂t
gk,q(t) = 2V [cos(q − E0η(t))− cos(k − E0η(t))]gk,q

−iαgk,q + iα
∑
m

gm,me
i(k−q)m (4.22)

Where η(t) =
∫ t

0 dt
′f(t′). Now it is easy to solve, according to integrating factor

method, and make an inverse transformation of Eq. (3.24), aiming the final solution of

Eq. (4.21),i.e.

ρk,q(t) = ρ
k−E0η(t),q−E0η(t)
0 e2iV

∫ t
0 dt

′[cos(k−E0η(t)−E0η(t′))−cos(q−E0η(t)−E0η(t′))]e−αt

+α
∫ t

0
dt′
∑
m

e−i(k−q)mρm,m(t′)e2iV
∫ t
t′ dt

′′[cos(k−E0η(t)−E0η(t′′))−cos(q−E0η(t)−E0η(t′′))]

× e−α(t−t′) (4.23)

Setting again k = k′ and q = k′ − k in the above equation, we obtain the equation of

evolution of the quantity P k(t), for this case, which is:

P k(t) =
∑
k′

ρ
k′−E0η(t),k′−k−E0η(t)
0 e2iV

∫ t
0 dt

′[cos(k′−E0η(t)−E0η(t′))−cos(k′−k−E0η(t)−E0η(t′))]e−αt

+α
∫ t

0
dt′P k(t′)

∑
k′

e2iV
∫ t
t′ dt

′′[cos(k−E0η(t)−E0η(t′′))−cos(q−E0η(t)−E0η(t′′))]

× e−α(t−t′) (4.24)

The definition of mean square displacement, Eq. (4.12), and a derivation with respect

to time, gives :

d

dt
〈l2〉(t) = e−αt

d

dt
θ′′k(t) + α

∫ t

0
dt′e−α(t−t′) d

dt
ψ′′k(t, t′) (4.25)

Where now θ′′k(t) and ψ′′k(t, t′), have the following form:
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4. Quantum Motion In an Open System

θ′′k(t) =
∑
k′

− ∂2

∂k2 ρ
k′−E0η(t),k′−k−E0η(t)
0 (4.26)

× e2iv
∫ t

0 dt
′[cos(k′−E0η(t)−E0η(t′))−cos(k′−k−E0η(t)−E0η(t′))]

∣∣∣∣
k=0

ψ′′k(t, t′) = − ∂2

∂k2 e
2iv
∫ t
t′ dt

′′[cos(k′−E0η(t)−E0η(t′′))−cos(k′−k−E0η(t)−E0η(t′′))]
∣∣∣∣∣
k=0

= − ∂2

∂k2

∑
m

eikmJ2
m(2[u2(t, t′) + v2(t, t′)]1/2)

∣∣∣∣∣
k=0

= − ∂2

∂k2J0(4[u2(t, t′) + v2(t, t′)]1/2sin(k2 )
∣∣∣∣∣
k=0

= 2V 2[u2(t, t′) + v2(t, t′)] (4.27)

For the last equation, we use the identities for Bessel functions, the Graf’s Theorem,
as also the trigonometric property U 2(t, t′) + V 2(t, t′) = u2(t, t′) + v2(t, t′), described
in the previous Chapter. The quantities u(t, t′) and v(t, t′), were defined as

u(t, t′) =
∫ t

t′
dt′′Cos[E0η(t′′)]

v(t, t′) =
∫ t

t′
dt′′Sin[E0η(t′′)] (4.28)

The substitution of Eq. (4.27) and the trigonometric properties of Eq. (4.28), allow us
to reduce Eq. (4.25) for long time :

d

dt
〈l2〉(t) = e−αt

d

dt
[θ′′k(t)− ψ′′k(t, 0)] + α4V 2

∫ t

0
dt′e−α(t−t′)

× cos[E0(η(t)− η(t′))] (4.29)

If the initial density matrix is site diagonal, θ′′k(t) = ψ′′k(t, 0), Eq. (4.29) simplifies more,
and has the final form:

d

dt
〈l2〉(t) = 4V 2

∫ t

0
dt′e−α(t−t′)cos[E0(η(t)− η(t′))] (4.30)

For a sinusoidal electric field, f(t) = cos(ωt) and η(t) = sin(ωt)/ω:

〈l2〉(t)− 〈l2〉(0) = 4V 2
∫ t

0
dt′
∫ t′

0
dt′′e−α(t′−t′′)cos[(E0/ω)(sin(ωt′)− sin(ωt′′))] (4.31)
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4.2 1-D Discrete One-Band Lattice

This equation cannot be solved analytically. Therefore, we will continue by plotting
the MSD as a function of time for different values of the ratios α/ω and α/E0, using
the numerical results of the solution of Eq.(4.31). We used a lattice, of 150 sites and
we set the nearest-neighbor intersite interactions V to 0.1. In Figure 4.1 we can see,
again that the main behavior of MSD is proportional to time. The initially localized
particle diffuses through time, and escapes to infinity.

MEAN SQUARE DISPLACEMENT

(a)

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

time

Yx
2
]

(b)

0 20 40 60 80 100

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

time

Yx
2
]

(c)

0 20 40 60 80 100

0

5

10

15

time

Yx
2
]

(d)

0 20 40 60 80 100

0

10

20

30

40

time

Yx
2
]

Figure 4.1: The mean square displacement, plotted as a function of time. (a) α/ω = 15
and α/E0 = 0.1, (b) α/ω = 15 and α/E0 = 0.2, (c) α/ω = 0.15 and α/E0 = 0.1, and (d)
α/ω = 0.15 and α/E0 = 0.2.The main behavior of MSD is proportional to time.

39



4. Quantum Motion In an Open System

4.3 1-D Discrete Two-Band Lattice
We consider now the quantum motion of a charged particle e, moving on a 1-D discrete
two-band lattice, of sites l (-∞ < l < ∞), where we keep the same energy difference
2ε, between the two bands of sites. Assuming that in the first band, all sites have a
constant on-site energy −ε, while in the second one, all sites have a constant on-site
energy too, equals to ε.

4.3.1 Absence of Electric Field

In this case when the electric field is not present the Tight−Binding Hamiltonian, for
an open system becomes:

H0 = V
∑
l

|l〉〈l + 1|+ |l + 1〉〈l|+ ε
∑
l

(−1)l|l〉〈l| (4.32)

Where the extra term ε
∑
l

(−1)l|l〉〈l| denotes each site’s (constant) on-site energy. From

Eq. (4.6),we get the new form of the SLE.i.e

i
∂

∂t
ρm,n = V (ρm+1,n + ρm−1,n − ρm,n+1 − ρm,n−1) + ε[(−1)m − (−1)n]ρm,n

−iαρk,q + iα
∑
m

ρm,me
i(k−q)m (4.33)

This specific SLE, is a more difficult equation from the previous. For this reason, we
will study the quantum motion numerically. More precisely, we will provide numerical
solution of Eq.(4.33) and use these results to calculate the MSD as a function of time.
In Figure 4.2, we show the outcomes of numerical calculations, where we used a lattice,
consisted of 150 sites (75 sites per band). Furthermore, we set the nearest-neighbor
intersite interactions V to 0.1 and the on-sites’ energy ε to 0.1 and the strength of the
environmental coupling α equal to 0.7.
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4.3 1-D Discrete Two-Band Lattice
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Figure 4.2: The numerical simulation of mean square displacement, plotted as a function
of time for the 1-D discrete two-band lattice in the presence of the coupling of the charged
particle with the environment(α = 0.5). We note here, that the MSD ∝ t. The blue solid
line corresponds to our numerical results and the black dashed line corresponds to best fit
of our data.

As we can see, there is no localization and the initially localized particle (at site
l=0), delocalized through time , and escapes to infinity, since the MSD is proportional
to t. The difference with the MSD in 1-D discrete one-band lattice is the factor, which
multiplies the term t. From best fit to our data we find that this factor has the value
0.05 in contrast with the previous section, where that factor had the value 0.08. As we
can see, the energy difference between the sites decreases the diffusion.

4.3.2 Presence of Electric Field

Let us consider now, a more complicated case, when the time-dependent electric field
is present. As a result, the new Tight-Binding Hamiltonian, has an extra term for the
electric field :

41



4. Quantum Motion In an Open System

H0 = V
∑
l

|l〉〈l + 1|+ |l + 1〉〈l|+ ε
∑
l

(−1)l|l〉〈l|+

+E0f(t)
∑
l

l|l〉〈l| (4.34)

The SLE for this case, now becomes :

i
∂

∂t
ρm,n = V (ρm+1,n + ρm−1,n − ρm,n+1 − ρm,n−1) + ε[(−1)m − (−1)n]ρm,n +

+E0f(t)(m− n)ρm,n − iαρk,q + iα
∑
m

ρm,me
i(k−q)m (4.35)

There is no analytical solution for this SLE. Therefore, we will follow the same procedure
by plotting the MSD as a function of time, using our numerical results of the solution of
Eq.(4.35). The two-band lattice, is consisted of the same number of sites, furthermore,
the nearest-neighbor intersite interactions V , the on-sites’ energy ε and the strength of
the environmental coupling have the same values as before. In the following Figure,
(figure 4.3), we have plotted the MSD for different values of the ratios α/ω and α/E0,
for the case of a sinusoidal electric field (f(t) = cos(ωt)), as the ratio E0/V was kept
constant equal to 5.
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4.4 1-D Discrete Three-Band Lattice
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Figure 4.3: The mean square displacement, plotted as a function of time. (a) α/ω = 15
and α/E0 = 0.1, (b) α/ω = 15 and α/E0 = 0.2, (c) α/ω = 0.15 and α/E0 = 0.1, and (d)
α/ω = 0.15 and α/E0 = 0.2.

As one can see, the main behavior for all the different values of the two ratios α/ω
and α/E0 is the same. An initially localized particle, diffuses (∝ t) and as a result
escapes to infinity.

4.4 1-D Discrete Three-Band Lattice
Now will present the final case for the quantum motion of a charged particle e, on a
1-D discrete three-band lattice, of sites l (-∞ < l < ∞). Our lattice consisted by three
bands of sites, each doublet of them, has a minimum energy difference ε and maximum
of 2ε. We assume that, in the first band, all sites have constant on-site energy −ε, while
the second one, has sites with on-site energy equals to 0 and the third one has sites
with on-site energy equals to ε.
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4. Quantum Motion In an Open System

4.4.1 Absence of Electric Field

In the absence of the electric field, we will use again another way to introduce the
Tight−Binding Hamiltonian, i.e:

H0 = V
∑
l

|l〉〈l + 1|+ |l + 1〉〈l|+
∑
l

εl|l〉〈l| (4.36)

Where now the term
∑
l
εl|l〉〈l| denotes each site’s constant on-site energy, for the three

bands (l, l+ 1, l+ 2) The SLE for a quantum motion of a charged particle in a discrete
three-band lattice, has the following form :

i
∂

∂t
ρm,n = V (ρm+1,n + ρm−1,n − ρm,n+1 − ρm,n−1) + [εm − εn]ρm,n

−iαρk,q + iα
∑
m

ρm,me
i(k−q)m (4.37)

Our numerical results for this specific quantum motion are presented below, by plotting
the MSD as a function of time, where the MSD is calculated using the numerical solution
of Eq. (4.37). We set the nearest-neighbor intersite interactions V to 0.1, the on-sites’
energy ε to 0.1 and the strength of the environmental coupling α equal to 0.5. The
next Figure (4.4) of MSD as a function of time, show us that nothing was changed and
for the discrete three band lattice. The initially localized particle diffuses proportional
to time, and gets delocalized. From best fit to our data we can see that the diffusion in
three-band lattice increases in contrast with the previous lattice, since the factor which
multiplies the term t is 0.06.
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4.4 1-D Discrete Three-Band Lattice
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Figure 4.4: The numerical simulation of mean square displacement, plotted as a function
of time for the 1-D discrete three-band lattice in the presence of the coupling of the charged
particle with the environment. The blue solid line corresponds to our numerical results
and the black dashed line corresponds to best fit of our data.

4.4.2 Presence of Electric Field

In the presence of a time-dependent electric field, the time-dependent Tight-Binding

Hamiltonian :

H0 = V
∑
l

|l〉〈l + 1|+ |l + 1〉〈l|+
∑
l

εl|l〉〈l|+

+E0f(t)
∑
l

l|l〉〈l| (4.38)

The SLE under the presence of a time-dependent electric field becomes :
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4. Quantum Motion In an Open System

i
∂

∂t
ρm,n = V (ρm+1,n + ρm−1,n − ρm,n+1 − ρm,n−1) + [εm − εn]ρm,n +

+E0f(t)(m− n)ρm,n − iαρk,q + iα
∑
m

ρm,me
i(k−q)m (4.39)

It follows the figure 4.5, with the MSD as a function of time, α/ω and α/E0, as in
previous sections, for the case of a sinusoidal electric field (f(t) = cos(ωt)), as the
ratio E0/V was kept constant equal to 5. The three-band lattice, is consisted of the
same number of sites and the nearest-neighbor intersite interactions V and the on-sites’
energy ε. The main behavior of MSD in the presence of the electric field for all graphs
remain the same, ∝ t. The initially localized particle diffuses and escapes to infinity.
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Figure 4.5: The mean square displacement, plotted as a function of time. (a) α/ω = 15
and α/E0 = 0.1, (b) α/ω = 15 and α/E0 = 0.2, (c) α/ω = 0.15 and α/E0 = 0.1, and (d)
α/ω = 0.15 and α/E0 = 0.2.
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5
Discussion

The first aim of this work, is to study the classical motion of a Brownian particle in an
asymmetric but periodic potential under the influence of an exponentially correlated
stochastic time-dependent force, which represented the coupling of the Brownian par-
ticle to the environment. This was done by solving the Langevin equations (Eq. (2.4))
and calculating numerically the mean value of position (Eq. (2.3)) of the Brownian
particle for small and large correlation times (compared to the relaxation time of the
system). In the first case we concluded to 〈x(t)〉 → 0. That was an expected result,
since the rates of escape to the left or to the right become equal. As i.e. the correlation
time became larger then the mean value of position, is non zero, 〈x(t)〉 6= 0. In this
limit, we can get from the second equation of Eq. (2.4) ξ̇(t) ≈ 0, in this sense the force
which acted in the particle approximately static, i.e. f + ξ, although ξ fluctuated but
very slowly. When ξ took the appropriate value by canceling the force depended to the
potential, the Brownian particle “jumps” to the next well (in our case to the left, but
it is not necessary) and so on, as a result we observed the Brownian ratchet effect.

We have also examined the quantum motion of a charged particle for three dif-
ferent one-dimensional discrete lattices, (i) one-dimensional discrete one-band lattice,
(ii) one-dimensional discrete two-band lattice and (iii) one-dimensional discrete three-
band lattice, in the absence/presence of a sinusoidal electric field (for different values
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5. Discussion

of electric field’s frequency (ω) with and without the coupling of the charged particle
with the environment. More specifically, we wrote explicitly the Liouville equations for
each case, which we solved numerically and for some cases we reproduced the analytical
solutions. We used these solutions and we calculated the mean squared displacements,
〈x2(t)〉, while the mean displacements, 〈x(t)〉, for all cases was found to be equal to
zero.

In the first case, in the absence of electric field (Eq. (3.9)) the MSD was proportional
to t2, so the particle diffused and escaped to infinity. When we turned on the charged
particle coupling with the environment (Eq. (4.7)), once again the initially localized
particle diffused, as the MSD was proportional to t. In the presence of the electric field
(Eq. (3.23)), when the value ωt = 2πn the MSD was proportional to J2

0 (E0/ω)t2. As
a result for any arbitrary value of the ratio E0/ω the MSD increased without bound,
while when the ratio took the specific value of the first root of the Bessel function
of the first kind, i.e. E0/ω = 2.405, where the charged particle remained localized,
since the MSD remained bounded. By the interaction of the charged particle with the
environment (Eq. (4.20)) the MSD was proportional to t for different values of the
ratios α/E0 and α/ω. When we increased the amplitude of the electric field the rate of
diffusion decreased.

For the other two cases, similar diffusion features appeared with a slight difference
,i.e. the diffusion rate decreased as we moved from a discrete one-band lattice to
a discrete two-band lattice and then to discrete three-band lattice. When there is
no electric field(Eqs (3.49 and (3.53)) the MSD continued to be proportional to t2,
so the particle diffused. When we added the the charged particle coupling with the
environment (Eqs (4.33) and (4.37), the initially localized particle diffused (with smaller
diffusion rate), as the MSD was again proportional to t. When the electric field was
non zero (Eqs (3.49) and (4.39), the MSD increased unbounded (∝ t2), for different
values of the ratio E0/ω, as a consequence the delocalization of the particle. When the
environment came into play, (Eq. (4.35)) the MSD was found to be proportional to
t for different values of the ratios α/E0 and α/ω. Once again, when we increased the
amplitude of the electric field the diffusion rate decreased.

Although we treated an open quantum system,no signature of quantum ratchet
effect was observed. This is because the particular choice of the projection Lindblad
operators was such that the environmental coupling with the system was strong enough
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to be set to zero very fast, in all the off-diagonal elements of the density matrix. A
more suitable choice [20] could be to couple the system with a system of harmonic
oscillators, where the environmental terms will remain finite and a possible quantum
ratchet current could appear.

49



5. Discussion
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