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Abstract

Semantic Web Ontologies are not static but evolve as the understanding of the domain
(or the domain itself) grows or evolves. This evolution happens independently of the
ontological instance descriptions (for short metadata) which are stored in the various
Metadata Repositories (MRs) or Knowledge Bases (KBs). However, it is a common
practice for a MR/KB to periodically update its ontologies to their latest versions. This
is done by migrating the available metadata to the latest version of the ontology. Usually
such migrations are not difficult because new ontology versions are usually compatible
with the past versions. However such migrations incur gaps regarding the specificity of
migrated metadata. This results in inability to distinguish those metadata that should
be reexamined for possible specialization (as consequence of the migration) from those for
which this is not necessary. For this reason there is a need for principles, techniques, and
tools that can manage the uncertainty incurred by such migrations, specifically techniques
which can identify automatically the descriptions that are candidate for specialization,
compute, rank and recommend possible specializations, and flexible interactive techniques
for updating the metadata repository (and its candidate specializations), after the user
(curator) accepts/rejects such recommendations. This problem is especially important for
curated KBs which have increased quality requirements (e-Science).

This is the first work that elaborates on this problem. It formulates the problem, intro-
duces the notion of eztended KB consisting of the certain plus the possible (due to migra-
tion) specialized knowledge, and proposes principles and rules for updating it, assuming
the RDF/S framework. Subsequently, it provides algorithms and reports experimental
results (over real and synthetic datasets) demonstrating the feasibility of the approach.
In addition, a compact representation of the possibilities is proposed for reducing the stor-

age space requirements. Finally, it presents RIMQA (RDF Instance Migration Quality



Assistant), a tool which has been designed and implemented for supporting the entire
lifecycle. To conclude, the proposed approach can enrich the lifecycle of curated Semantic
Web data with quality management processes appropriate for scenarios where ontologies
evolve frequently and independently from instance descriptions. As a consequence, this
allows adopting iterative and agile ontology modeling approaches, appropriate for open

environments like Linked Open Data (LOD).

Supervisor: Yannis Tzitzikas

Assistant Professor



EZENEn Ovtoroyiwy xow Atayeipion tng Ewwotntoag twv Ovioloyixwy

IMepuypagpwyv

Moatpn Kaumoupdxn
Merantuytoxr Epyaoio

Turua Emotiune Troloyotoy, Havemotiuo Kertng

IMepirndn

Ov ovtohoyieg Tou Lnuactohoyixo) Iotol dev etvon otatinég ahhd e€ehicoovtar Yo SLdpo-
pouc Aoyoug, m.y. Adyw eumhouTiopol g evvolonoinong (conceptualization) tou nediou
eQopUoYTe, 1 Tne €€€MENS Tou medlou epapuoyhc autol xad) cautold. Auth 1 e&éhln Yive-
T ouvdwg aveldoTNTa amd TIC OVIOAOYIXEG TEPLYPAUPES (petadedopéva) mou eivor omo-
Unrevpévec ota Sdpopa Anovetrowa Metadedopévwy (Metadata Repositories) # Bdoeic
I'vooewv (Knowledge Bases). Anotehel duwe xowr| mpoxtixs twy MR/KB 1 TEQLOOWXT
ETUXAUEOTO(NOT], TWV OVTOAOYIWY TOUG %ot auTH 1 avdyxn cuVHlwe avTUETOTI{EToL UE T
UETAVAOTEVUCT] TWV DT EXPRACUEVWY OVTOLOYIXWY TEQLYRUPMY OTIC VEEC EXDOCELS TWV OV-
Tohoytdv. Auth 1 uetdBact cuvidwe dev €yel BUoxOAiES Aol oL VEOTERPEG EXDOCELS OTNY
mAewonela Toug etvar oupPatéc pe Tic tpornyolueves. Iapd Tadta, TéToleg YeTaVIOTENCEL (n
YEVIXOTEQPU EQUTVEIEC UETAOEOOUEVLY BACEL VEOTEPWY ex0OGEWY), ONULOVEYOUV XEVA GYETIXA
ue Ty ewdixotnTo (specificity) twv neprypapdy. Autd odnyel oe aduvouia Sidxplone Twv Tept-
Yoap®y Tou emdEYovTHL avardewenorg xo Tiavhc ewdixeuong, and exelveg Yl TIC omoleg Bev
urmdeyet TéToto avdyxT). T To Adyo autd arartodvTal apyEc, Unyaviouol xar epyaheia mou va
UTOPOVY UTOUATA VoL OLALYELRLGTOUY TNV aBEBoudTNTo TOU TROXUTTEL ARG TETOLEC UETAVAGTED-
OEIC, OUYXEXPWEVA TEYVIXEC TOU VoL EVTOTILOUV QUTOUOTA TIC TEPLYPAPES TOU ETOEYOVTOL
e&ewdixeuon (xatémy peTavdoTeuong), va utohoyilouy/ xatatdeoouy X GUGTAVOLY TIC TiL-
Yavég e€edixeloelg Toug, xows ETIONG xat EVEAIXTES OLUAOYIXES TEYVIXES EVIUEPWOTS TN
Bdone meptypapdy (xat Twv TavedY ZEWIXEUCEMY TOUC) XATOTY omodoyhic/andppldne Twv
OUCTACEWY and ToV emUEANTH) Tou anovetneiou. To mpdPinua autd elvar onuavTIXG Yo TIg
empehnuévee (curated) Bdoew I'vidoewv, ot onoieg éyouy auinuévee anountioec ToloTNnTaS
(1. Ploeic EMOTNUOVIXGDY BEBOUEVRDY).

H nopotoa epyaoia etvar 1 mpwtn mou acyohettar ue autd 10 TpoBAnua. Apytxd SLATUTGOVEL

Tumxd To TEOPBANU, €lodyel TNV évvota Tne dteupuuévne Bdone yvooewy (extended KB)



amotehoVuevn and tn alyoupn Yvoon xot Tic Tavés (AOYw TwV YETOVAGTEVoEWY) EEELDIXED-
OELG TNG, XU TPOTELVEL 0PYEC X0 XAVOVES TTOL TTEETEL VAL OLETOUY TNV EVUEPWON TG, ETLXEVTE-
wvouevol oto mhaiowo RDF/S. Ev cuveyeia, didovtar ot oyetixol ahybpriyot, anodewvietar
TUTUIXG 1) 0pUOTNTE TOUG %O OVUPEQOVTOL TELPUUATIXG AMOTEAECUATA ETL TOAUYUATIXWDY XL
GLVIETIXOY OEDOUEVLY.  LuVdua, xaL UE OTOYO TN UElWON TOU AmOUTOUUEVOU AmOUNXEL-
TIXOU YWEOoU, TpoTElvVETAL Wiot ouumay NS avarapdoTtaor Ty miavey ewixcboewy. Téhog,
TopovatdleTton €va epyaheto mou oyeddoTnxe xou avamTOyUNXE Yo T oThEEN OANG TNG
otaduxaoiog, ovouatt RIMQA (RDF Instance Migration Quality Assistant).

Ev xotoxdeldl, 1 mpotetvouevr tpooéyyior umopel vo eumhoutioet tov x0xho (whg Ty
emueAnuévwy (curated) (peta)dedouévwy Tou Lnuoactoroyixol Iotol ue ddixaotec droyeloton-
¢ TOLOTNTOC, XATIAANAES Yia GEVAPLAL OTOU Ol 0VTOhOYIEC e€ehicoovTal GUY VA XL aveCdpTr-
To amd TG TEPLYPaPES Pdoel autwy. H mpocéyyion auth cuvdua emtpEnel Ty utoVéTnom
EMAVUANTTIXGOY TPOCEYYIOEWY POVIEAOTOINGNE OVIOAOYLOY, OL OTOlEG Elvan XATIAANAES Yo

avory té meptBdihova 6mwe to Ataouvdedepéva Avowxtd Aedouéva (Linked Open Data).

Enéntne Kadnyntrig: [Ndvvne Tltlxag
Enixoupog Kodnyntic



Evyapiotieg

OloxAne®vovTag T HeTamTuytoxy| hou epyaota, o Hieha va euyopiotiow 6houg 6ooug ue oThpléay xou

HTOY XOVTE YOV OTN) DIAEXELNL TWV UETUTTUYLOXWY CTOUBMY.

Apyud, Yo Hdeha va euyaplothion Yepud Tov enixoupo xadnynth tou twiuatoc Emotiune Trohoyotdy
tou [avemotnuiov KeRtne, epeuvnti oto Epyaothpio IIinpogoptaxy Zuotnudtwy (EIIX) tou Ivetitottou
IDnpogopixfic tou Idpluatoc Teyvoroyioe xar Epeuvae (ITE-IIT) xou endmtn tne petantuytoxic pou ep-
vootag, Ap. T'dvvr TCtlixa, yio Ty e€onpetin) cuvepyaoio mou elyoue ta TeEAeuTolar SUOULOL YPOVLOL Xal
v TV ouctaotx) cLUBoAr Tou ot e€EMEN avthic e epyacioc. H xododhynoy tou xou 1 epniotoolvn
7oL €delle 010 TPOCKWTS Hou Ue BoRincoy onuavTIXd oE OAN) TN BLEEXELX TOU UETATTUYLOXOV TEOYREUHATOS.
Enione, Yo fdeha va euyoaplothon and xopdde v epeuvhtoia oto EIIY tou ITE-III, Ap. Avactacio Ava-
AuTH, yioo TNV dplotn cuvepyaoio Tou elyaue Tov Tekeutalo €var Ypovo, yia Tn cUUPBolr Tne oty YewpenTixt
Yepehiwon avtrc g epyaociag, yio Ty empéreio Twv anodelewvy xan yia Tnv mohltiun Bordeia xou otheEn
mou pou mapelye. Axoun, Yo Hieha va evyopiothon Tov xodnynth tou Thuatog Emotiung Trokoyiotdy
tou Havemotnulov KeXtng xou epeuvnty) oto EIIX tou ITE-III, Ap. Anuvten ITAe&ovadxr, yio tnv npo-
Yupla Tou va elvan otV TEWERT egetaoTin emtponh aUTAS NG YetamTuytoxic epyaotac. Enlong, ogeilo
éva peydho evyaplotd oto EIIN tou ITE-III yio ) yophynorn unoteopiag ota Yedvia TwV UETATTUYLOXWY

HOU CGTOLBMV.

Xwplg Ty unootpEiEn TN ooyEévelds pou de Va elya T Suvatdtnta vo avienegéhdw o 6oeg Buoxohieg
TUPOUCLAGTIHAY XUTA T SLdpXeld TV oToudWY wou. Ogeliw éva TOAD UEYGNO ELYOPIOT® GTY) UNTERA UOU,
Pwtewn, mou elvor mévta dimho pou xou Ye @povtilel ye tov xahitepo TEdTO, oToV TaTépa Hov, 'idpyo, Tou
otnpilel Oheg Tig eMAOYES HOU xai Ue TapoTeOVEL vor ¥€Te udhnlole otoyous, oty adep@n wou, EAévn, tou
ue otneilet, ye cupPBouledel xat HTay avéxadey TEOTUTO YLot TS OTIOUBES WOU Xal T WixeY) wou adept), I'oy®,

7oL e epmotedeTon Xon Ue otnpilet.

Ou fdeha axdun vo euydpLOTACK GAOUC TOUC PIAOUG %O GUUPOLTNTES UOU, TOU HTAV XOVTH HOU GTd
POLTNTIXS YPOVIXL, YLl TS OHOPYES OTIYUES TOV TEpdoope pall oL YLol TG AVEXTIUNTES AVOUVACELS TTOU [OU
Ydploov. ISwitepa, Yo Rieha va euyoplothow 0 cudgolthteld pou xau @in Mapla Wopdxrn, tnv onola
YVOELoo XoOAOTERO XOUTA TN BLAEXELN TOU UETATTUYLOXOV TRoYpdUpaToc, Yo T oTiplh Tne oc xdde SUoxoAn
oty Enlong, da fdela va euyapiothion dha ta péhn tou EIIY tou ITE-IIT v t yvwetuio pali toug xou

Yot To detoto meplBdihoy gpyaaiog tor TeAeuTala 800 ypedVLL.

Télog, Vo fdeha vo euyopiotiow to Bayyéhn I'oyyoldn yio tnv umoyovh tou xou TNV anepldplot

othelEn xan evidppuVoT| Tou GE OAN TN DIAEXELXL TKV GTOLBDY HOU.
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Chapter 1

Introduction

Semantic Web is a group of methods and technologies to allow machines to understand
the meaning - or “semantics” - of information on the World Wide Web. The term was
coined by World Wide Web Consortium (W3C) director Tim Berners-Lee [20]. He defines
the Semantic Web as “a web of data that can be processed directly and indirectly by
machines.” While the term “Semantic Web” is not formally defined, it is mainly used to
describe the model and technologies proposed by the W3C. These technologies include
the Resource Description Framework (RDF), a variety of data interchange formats (e.g.
RDF /XML, N3, Turtle, N-Triples), and notations such as RDF Schema (RDFS) and the
Web Ontology Language (OWL), all of which are intended to provide a formal descrip-
tion of concepts, terms, and relationships within a given knowledge domain. As already
mentioned, the Resource Description Framework (RDF) is a family of World Wide Web
Consortium (W3C) specifications originally designed as a metadata data model. It has
come to be used as a general method for conceptual description or modeling of information

that is implemented in web resources, using a variety of syntax formats.

In computer science and information science, an ontology is a formal representation
of knowledge as a set of concepts within a domain, and the relationships between those
concepts. It is used to reason about the entities within that domain, and may be used
to describe the domain. In theory, an ontology is a “formal, explicit specification of a
shared conceptualization” [10]. An ontology provides a shared vocabulary, which can be

used to model a domain, that is, the type of objects and/or concepts that exist, and their

1



properties and relations. Ontologies have been used in several domains such as, Artifi-
cial Intelligence, Semantic Web, Configuration Systems, Systems Engineering, Software
Engineering, Information Retrieval, Conceptual Modeling, Library Science, Enterprise
Modeling, e-Learning, e-Government, e-Commerce, Biomedical Informatics, Natural Lan-
guage Processing, and Information Architecture as a form of knowledge representation
about the world or some part of it. The creation of domain ontologies is also fundamental

to the definition and use of an enterprise architecture framework.

As we mentioned above, ontologies provide a shared conceptualization of a domain
by defining the concepts in the domain and describing how those concepts are related to
each other. Several reasons for changing an ontology have been identified in the literature
[8]: an ontology may need to change because it offers a richer conceptualization of the
problem domain, the domain of interest has changed, the perspective under which the

domain is viewed has changed, or the user/application needs have changed.

An important observation is that this evolution happens independently of the ontolog-
ical instance descriptions which are stored in the various Metadata Repositories (MRs)
or Knowledge Bases (KBs). With the term ontological instance description, we refer to
RDF/S [2] descriptions that classify an instance o to a class ¢ or relate two instances
0,0 with a property pr. With the term MR or KB, we refer to a stored corpus of on-
tological instance descriptions. They can be stored in files or in RDF/S databases (i.e.
RDF triple-stores [23]). The evolution of ontologies' happens independently of the onto-
logical instance descriptions due to the distributed nature of the Web and the Semantic
Web. For instance, this is the case with ontologies maintained by standardization au-
thorities. However, it is a common practice (mainly for interoperability purposes) for a
KB to periodically update its ontologies to their latest versions by “migrating” the stored
instance descriptions to the latest ontology versions. Such migrations are usually not
difficult, because newer versions are mainly (or constructed to be) compatible with past
ones. Nevertheless, they incur gaps regarding the specificity of the migrated instance
descriptions, i.e. inability to distinguish those that should be reexamined (for possible
specialization as consequence of the migration) from those for which no reexamination is

justified. It follows that quality control is very laborious and error-prone.

'In this work, by the term of ontology we refer only to schema information.



1.1 Investigating the Problem

To start with, consider a corpus of instance descriptions and suppose that at certain
points in time we can make the assumption that the available instance descriptions are
the most specific and detailed descriptions that are possible with respect to the employed
ontology. For instance, we can make such an assumption after explicit human (e.g. by
the curator of the KB) inspection and verification [3], or in cases where the descriptions
have been produced automatically by a method that is guaranteed to produce specific
descriptions (e.g. by transforming curated relational data to RDF/S descriptions [28], or
by automatic classification to categories each defined by sufficient and necessary condi-
tions, etc.). We will hereafter refer to this assumption by the name mazimum specificity
assumption (for short MSA). It is not hard to see that if the new version of the ontology
is richer than the past one, then the corpus of the migrated instance descriptions may no
longer satisfy the MSA with respect to the new ontology. This thesis elaborates on this
problem.

The ability to identify the instance descriptions that satisfy the MSA and those that
do not, is useful in order to address questions of the form: (a) for what descriptions can
we make the MSA? (b) what (class or property) instances should probably be reclassi-
fied (to more refined classes or properties), and (c¢) which are the candidate new classes
or properties (refinements) of such instances? The above questions are very useful for
curating a corpus of instance descriptions, i.e. for managing its specificity as the corpus
evolves over time. Without special support, such tasks would be unacceptably expensive
and vulnerable to omissions, for large datasets. Just indicatively, CIDOC CRM? is one
ontology (expressed in RDF/S) which is used by several ongoing EU projects, and it is
curated (i.e. extended) by an authority (community) that is different from the various
communities, curators of repositories, or simple users who keep creating instance descrip-
tions with respect to that ontology. In practice, whenever a new version appears, the
available instance descriptions are migrated to that version, and it is worth noting that
this ontology has been revised at least 5 times the last two years (one recent version is

described at [33]).

2CIDOC CRM (ISO 21127) is a core ontology describing the underlying semantics of data schemata and
structures from all museum disciplines and archives (its RDF representation contains 78 classes and 250 properties
from which 7 are literal-valued) (available from http://www.cidoc-crm.org/).



1.1.1 Motivating Example

We will explain the main idea of our approach using the toy example depicted at Figure
1.1. Consider an e-commerce portal that sells various kinds of products. Suppose a car
cl that has been classified under the class Car, and a person p1 that has been classified
under the class Person, defined in an ontology Ont1, and suppose that both classes have
no subclasses. Assume that for the current set of instance descriptions according to Ont1
the MSA holds (i.e. they are complete with respect to specificity). Thus, c1 is not a
Person and pl is not a Car. Let Ont2 be a new version of that ontology, which among

others, defines the subclasses of the classes Car and Person, shown at Figure 1.1 (right).

Second Version —Ont2
domain

- - Ontology
FirstVersion—Ontl Evolution

domain range — — =]
CD D,

(cap

Instance Descriptions Migration of B
Instance Instance Descriptions
Descriptions

-~

Figure 1.1: Motivating example

All subclasses of Car are possible classes for c1. Adult is not a possible class for c1,
since c1 was not a person according to Ont1. None of the subclasses of Car is a possible
class for p1, since p1 was not a car according to Ont1. Moreover, notice that Ont1 defines
a property owns and suppose that (pl owns c1) is an instance description. Also notice
that Ont2 defines a subproperty sells of owns between Person and Car. This property

will be prompted as a possible specialization of the association between pl and c1.

1.1.2 Supporting the Full Life Cycle

Furthermore, apart from identifying the information that could be further specialized,
we would like to aid making it as specific as possible. Therefore, we should support flexible
and interactive processes for managing the computed possibilities, where the user will be
able to either accept or reject the computed recommendations, and eventually update the
knowledge base reaching to a state where the MSA holds. The ranking of possibilities is

important for designing user-friendly interaction schemes. We propose a process like the
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Figure 1.2: The process of exploiting possibilities

one sketched in Figure 1.2 (described in detail in Chapter 6). Specifically, assume that
the user selects some instances then the system displays ranked all or some of the possible
instance descriptions for the selected instances. The user accepts or rejects these instance
descriptions and the system updates appropriately the KB and its possible part. Note that
the possible part of the KB is stored explicitly and separately. Returning to the example
shown in Subsection 1.1.1, this means that we can rank the possible classes for c1, so that
if the user is prompted to select a possible class for c1, then Diesel and Ecological will
be the first classes to be displayed. If the user rejects the class Ecological, then all its
subclasses will be rejected from the possible classes (and this reduces the effort required

for reaching a state where the MSA holds).

1.1.3 The Difficulties

In real cases the computation of possibilities is more complex than the case of the exam-
ple shown in Subsection 1.1.1, as we can have conflicts among (a) new positive knowledge
inferable from the instance descriptions and the new schema, (b) new “negative” infor-
mation inferable from the past negative instance descriptions and the new schema, and
(¢) the previously computed possible instance descriptions (possible refinements). In fact,
our approach resolves such conflicts by considering that (a) has higher priority than (b),
and (b) has higher priority than (c).

In addition, it should be possible to update correctly the set of possibilities, at scenarios
with several successive instance migrations interwoven with several (positive or negative)

user feedbacks. Finally, another challenge is to reduce the information that has to be kept



to support this scenario. Specifically to avoid having to keep negative information of any

kind, and to devise compact representations for the possibilities.

1.1.4 On MSA, RDF, and Open/Closed World Assumptions

We should clarify that we do not violate the Open World Assumption of RDF/S. It
is the MSA that allows us to infer the negative knowledge of the previous example. Only
if we explicitly make the MSA we can then exploit it (in a Closed World Assumption
manner) in the context of ontology evolution for formalizing the way possibilities are
defined. To clarify that we can also capture the Open World Assumption of RDF, suppose
that we start from an RDF/S KB for which we know nothing regarding its completeness
or specificity. We can capture this case by considering that every instance description,
that can be formed using the ontology and is not certain, is possible. That is, the set
of “negative assertions” is empty (in our example that would mean that Adult can be a
possible class for c1 and Car can be a possible class for p1). Then, we can still use and
exploit our machinery when we migrate our descriptions to subsequent schema versions,
and the steps of the life cycle that we propose can produce the “negative” statements.
If however one knows that one particular RDF /S KB is complete (regarding specificity),
which can be true in the context of curated knowledge bases, then he can “apply” the
MSA. This means that every instance description, that can be formed using the ontology
and is not certain, is negative. Thus, the set of possibilities is empty (in our example that

would mean that Adult is not a possible class for c1 and Car is not a possible class for

pl).

1.2 Real World Ontologies

The proposed instance description quality management can be useful in several sci-
entific domains. Below we present the most prevalent ones along with ontologies which

capture the knowledge of these fields.

e Digital Libraries: Library of Congress Subject Headings (LCSH) comprise a the-

saurus (in the information technology sense) of subject headings, maintained by



the United States Library of Congress, for use in bibliographic records. LC Sub-
ject Headings are an integral part of bibliographic control, which is the function by
which libraries collect, organize and disseminate documents. The Subject Headings
are published in large red volumes (currently five), which are typically displayed in
the reference sections of research libraries. They may also be searched online in the
Library of Congress Classification Web?, a subscription service, or free of charge
(as individual records) at Library of Congress Authorities. The Library of Congress
issues weekly updates? (see in Figures 1.3 and 1.4 two parts of subsequent weekly
updates). The data is published for a fee by the Cataloging Distribution Service.
A change log can be found in “https://addons.omeka.org/trac/log/plugins/Lcsh”.
LCSH Authority Records have MARC/XML or MADS/XML format. However, they
can be translated into RDF documents according to the SKOS® project’s Quick
Guide to Publishing a Thesaurus on the Semantic Web.

e c-Government: 0eGOV® is making and publishing W3C OWL ontologies for e-
Government. The 0eGOV ontologies are OWL models of the Organizational struc-
ture of government, the FEA models and QUDT (Quantities, Units, Dimensions and
Data Types). Ontologies expressed in OWL allow data to be interpreted and aggre-
gated across the web. By having foundation ontologies of eGovernment we enable a
web of government data. The first step is an ontology of Government. Next steps
will be to use 0eGOV to build OWL maps of who is publishing what. The oeGOV
ontology files have RDF/OWL or N3 format.

e e-Commerce: The Universal Standard Products and Services Classification Code
(UN/SPSC)" is a freely available class taxonomy classifying products and services.
Many B2B sites are currently using and extending it to better achieve their particular

purposes. The UN/SPSC ontology files have DAML+OIL or RDF format.

e Enterprise Modeling: Ontologies play a major role in this field by creating and main-

taining an organizational memory that lets the different enterprise areas interoperate

3http:/ /www.loc.gov/cds/classweb/
“http://www.loc.gov/aba/cataloging/subject /weeklylists/
http://www.w3.org/2004/02/skos/
Shttp://www.oegov.org/

"http://www.unspsc.org



Library of Congress Subject Headings Weekly List 50 (December 15, 2010)

Search another Weekly List

2010: List 50 (December 15) [

(C) 150 88 mm Flak gun [May Subd Geog] [sp2010014638]
450 UF 8.8 cm FlakK gun
450 UF Eighty-eight millimeter gun
550 BT Ordnance

(C) 151 Abaiang Atoll (Kiribati) [sp2010014617]
451 UF Abaiang Island (Kiribati)
451 UF Apaia (Kiribati)
451  UF Apaiang (Kiribati}
451 UF Apia (Kiribati)
451 UF Charlotte Island (Kiribati}
451 UF Matthews (Kiribati)
451  UF Six Isles (Kiribati)
5580 BT Islands—Kiribati

(C} 110 Abingworth Hall (England) [sp2010014733]
550 BT Dwellings—England
550 BT Hotels—England

180 Acura ZDX automobile [Mot Subd Geog] [sp2010077671]
450 UF ZDX automobile
5560 BT Acura automobile

(C) 151 Admergill Estate (England) [sp2010014717]
550 BT Manors—England

(A} 150 Altered sculptures [May Subd Geog] [sp2010014670]
550 BT Sculpture

(c

150 Amnestic mild cognitive impairment [May Subd Geog] [sp2010014560]
450 UF aMCl {Amnestic mild cognitive impairment)
450  UF Amnestic MCI (Amnestic mild cognitive impairment)
550 BT Mild cognitive impairment

(C) 110 Anthony J. Cortese Post Office Building (San Jose, Calif) [sp2010014756]

Figure 1.3: An example of LCSH weekly update

in a common language and with unified roles, for example modeling Business Pro-
cess. They can also be the basis for the agents interoperation language in automated
manufacturing processes. The Enterprise Ontologi is an example of this kind of
ontologies. The formal Ontolingua encoding of the Enterprise Ontology is held in
the Library of Ontologies maintained by Stanford University’s Knowledge Systems
Lab (KSL).

e Biomedicine/Bioinformatics: In the medical domain, we can find several taxonomies,
as Medical Subject Headings (MeSH)?, which is a comprehensive controlled vocabu-
lary for the purpose of indexing journal articles and books in the life sciences. It can
also serve as a thesaurus that facilitates searching. Created by the United States
National Library of Medicine (NLM), it is used by the MEDLINE /PubMed article
database and by NLM’s catalog of book holdings. MeSH descriptors and qualifiers,

8http://www.aiai.ed.ac.uk/project/enterprise/ontology.html
“http://www.nlm.nih.gov/mesh/



Library of Congress Subject Headings Weekly List 51 (December 22, 2010)

Search another Weekly List

2010: List 51 (December 22) ||

(C) 150 Acting games [May Subd Geog] [sp2010014866]
450 LUF Drama games
450  UF Theater games
550 BT Acting—Study and teaching
550 BT Games
550 RT Role playing

(C) 180 Akhaliterature [May Subd Geog] [sp2010014223]
550 ET Southeast Asian literature

(C) 150 Folk literature, Akha [May Subd Geog] [sp2010014222]
450 UF Akha folk literature
550 BT Akha literature
(C) 180 Aleutliterature [May Subd Geog] [sp2010014225]
053 PM33.5-PM34
551 BT Russia (Federation)—Literatures
551 BT United States—L iteratures
(C) 150 Alfa Romeo Montreal automobile [Not Subd Geog] [sp2010014761]
450 UF Montreal automobile
550 BT Alfa Romeo automobile
(A} 151 Ameca River (Jalisco, Mexico) [sp2002005450]
451 UF Rio Ameca (Jalisco, Mexico)
451 UF Rio de Ameca (Jalisco, Mexico)
550 BT Rivers—Mexico
(&) 151 Ameca River Valley (Jalisco, Mexico) [sp2009005452]
451  UF Ameca Valley (Jalisco, Mexico)
451  UF Valle de Ameca (Jalisco, Mexico)
550 BT Valleys—Mexico

(C) 150 Ananteris hasshy [May Subd Geog] [sp2010014881]

Figure 1.4: A subsequent weekly update of that shown in Figure 1.3

and Supplementary Concept Records (formerly Supplementary Chemical Records)
are in XML format. Files are updated weekly.

Furthermore, there is a growing number of life science ontologies, e.g., the ontologies
managed in the OBO (Open Biomedical Ontologies) Foundry [30], which provide
a resource where biomedical ontologies are made available in a standard format
that allows systematic updating and versioning on the basis of community feed-
back. Currently, there are nearly 60 ontologies distributed through the OBO web
site!”) spanning domains from anatomy (e.g., Mouse adult anatomy) to ethology
(Loggerhead nesting), and from gene and gene product features (Sequence Ontol-
ogy't and Gene Ontology'?) to phenotypic qualities knowledge (Disease Ontology'?).

The existing ontologies are not static but are frequently evolved to incorporate the

Ohttp://www.obofoundry.org/
"http://www.sequenceontology.org/
2http://www.geneontology.org/
3http://do-wiki.nubic.northwestern.edu/



newest knowledge of a domain or to adapt to changing application requirements.
Just indicatively, there are daily new versions for the popular Gene Ontology. Gene
Ontology files are in OBO or RDF/OWL format, while diffs between revisions can
be found in “http://cvsweb.geneontology.org/cgi-bin/cvsweb.cgi/go/ontology/”.

e Natural Language Processing: Ontologies can help the semantic analysis of text by
representing grammatical structures as related concepts in order to reduce the ex-
istent gap in the interpretation of the semantic ambiguity of the natural language.
Since then, ontologies can be useful in text mining and machine translation. Word-
Net'* is an example of such ontologies. WordNet source files are in Prolog. However,
they can be represented in RDF/OWL! format and a change log can be found in
“http://www.w3.org/TR/wordnet-rdf/#changelog”.

All the ontologies listed above, evolve over time as they are being updated and new
ontology versions are produced. Apart from the expectation of compatible instance mi-
grations between ontology versions, i.e. instance migrations without invalidity problems,
there is a need for quality management over the instance descriptions of the new ontol-
ogy versions. The rising question is how (i.e. based on which rules and principles) the
migrated instance descriptions could become as specific as possible according to the new
ontology versions. This work contributes in this direction by producing the suggestions
that make the instance descriptions as specific as possible and by proposing them to the

users (curators) via a specificity lifecycle management process.

1.3 Contribution of this thesis

The contribution of this thesis lies in:
e Formalizing the notion of (possible) specificity.

e Providing principles, rules, and algorithms for computing possibilities after instance
migrations in backwards compatible schema evolution case and non-backwards com-

patible schema evolution case.

“http:/ /wordnet.princeton.edu/
Bhttp://www.w3.org/ TR/wordnet-rdf/
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Describing a flexible specificity-aware curation process.

Presenting a tool named RIMQA for demonstrating the proposed approach.

Proposing a compact representation for storing the produced possibilities.

Providing experimental results over real and synthetic datasets.

We could say that from a more general perspective, this thesis contributes in enriching
the lifecycle of Semantic Web data with quality management, appropriate for scenarios
where ontologies evolve frequently and independently from instance descriptions. As
a consequence, this allows adopting iterative and agile ontology modeling approaches,
appropriate for open environments like Linked Open Data.

Although we confine ourselves to RDF/S, the results of this work can be applied
to any object-oriented conceptual modeling approach that supports classes, inter-class
associations, specialization/generalization hierarchies (among classes and among inter-
class associations) and instantiation. It could be applied also in object-oriented software

engineering, e.g. to aid software upgrade when new versions of software libraries come

up.

1.4 Organization of this thesis

Chapter 1 is the introductory chapter of the thesis.

Chapter 2 gives the required background information and notations.

Chapter 3 formalizes the problem using what is called X-partition and provides the
fundamentals of our approach.

Chapter 4 describes the transition of X-partitions.

Chapter 5 provides an algorithm for computing the set of possible schema triples of
an RDF/S KB, when the current set of schema triples is backwards compatible with the
previous one.

Chapter 6 describes the specificity lifecycle management process.

Chapter 7 defines the notion of composite possibilities and provides an algorithm for

computing and ranking them.

11



Chapter 8 provides an algorithm for computing the set of possible instance triples of
an RDF/S KB, when the current set of schema triples is not backwards compatible with
the previous one.

Chapter 9 describes a prototype system named RIMQA based on the proposed approach,
presents a compact representation for possibilities, and provides experimental results.

Chapter 10 discusses how the sequential migrations between ontology versions can
lead to a different set of possibilities from the one-step migration from the first to the last
ontology version.

Chapter 11 discusses the related work.

Chapter 12 concludes this thesis and identifies issues for further research.

All proofs of Algorithms and Propositions are given in Appendix A. In Appendix B,

we provide the list of symbols used in the thesis.

12



Chapter 2

Background

This chapter introduces notions and notations that shall be used in the sequel. Let
URI be the set of URI references and LIT be the set of plain and typed literals. In our
framework, an RDF/S Knowledge Base (KB) is defined by a set of RDF triples of the
form (subject predicate object), where subject, predicate € URI and object € URI U LIT.

Let 7 be the set of all possible triples that can be constructed from a countably infinite
set of URISs, as well as literals (e.g. strings, integers, float numbers) [11]. Then, an RDF/S
KB (for short KB) can be seen as a finite subset K of 7, i.e. K C 7. Apart from the
explicitly specified triples of a KB K, other triples can be inferred based on the RDF/S
semantics [13]. For this reason, we introduce the notion of closure.

The closure of a KB K, denoted by C(K), is the set of all triples that either are
explicitly asserted or can be inferred from K based on RDFS-entailment of the RDF /S
semantics [13], with the exceptions that (i) we consider in C(K), extended RDF triples
where literals can be subject of triples and (ii) we remove from the RDF and RDFS
axiomatic triples [13], the ones that rdf: i terms, for ¢ € {1,2,...}, appear. The first
exception is due to the fact that later we define the instances of classes using the formula
instx(c) ={o| (otype c) € C(K)} and the instances of classes may contain literals. The
second exception is due to the fact that rdf:¢ terms are infinite and there are not used
in our theory.

Essentially, the following derivation rules are used!:

(1) if (c1 subClassOf ¢3) and (co subClassOf cs) then (¢1 subClassOf c3),

!The full list of derivation rules, that we consider, is found in the proof of Prop. 10 in Appendix A.
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(i) if (pry subPropertyOf prq) and (pro subPropertyOf prs) then (pry subPropertyOf prs),
(iii) if (o type c1) and (¢ subClassOf cs) then (o type c),

(iv) if (o pry o) and (pry subPropertyOf prs) then (o pre o), and

(

v) if (o pr o) then (o type domain(pr)) and (o type range(pr)).

Def. 1 Let K be a KB. We define the tuple I'x = (Cx, Prg, domain, range, <}, <% ),
as follows?:
o (¥ is the set of classes of C(K),
e Pry is the set of properties of C(K),
e domain is a total function domain : Prx — Cg that maps a property in Prg to
its domain,
e range is a total function range : Prg — Ck that maps a property in Prg to its
range,
o <% is the subClassOf relation between Cg, and

e <, is the subPropertyOf relation between Prp. O

Below we introduce notations for the resources of K, the instances of K, and the

instances of a class ¢ € Ck:

Resxg = {o| (o type Resource) € C(K)}
Instxy = Resk \ (Cx U Prg)

instg(c) = {o] (otypec) e C(K)}

Def. 2 (Valid KB)
We consider a KB K to be wvalid if:
(i) the relations <% and <; are acyclic,

(ii) if pr <5, pr’ then domain(pr) <}, domain(pr') and range(pr) <j, range(pr’). O

Convention: In this paper, we consider only valid KBs.
The triples of 7 can be partitioned to schema and instance triples, as shown in Table

2.1 (i.e. the RDF triples that are not schema triples, according to Table 2.1, are instance

*Note that according to RDF/S semantics [13], <}, and <, are reflexive and transitive relations.
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Schema Triples

triple abbreviation
c type Class
c subClassOf ¢’ c<ac

pr type Property
pr subPropertyOf pr' | pr <p. pr’

pr domain c” domain(pr) = ¢

pr range c”’ range(pr) = c”
Instance Triples

o type c

opro

Table 2.1: Schema and Instance Triples

triples). Instance triples can be further partitioned to class instance triples (having the

form (o type c)) and property instance triples (having the form (o pr o)).
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Chapter 3

The Notion of X-partition

This chapter formalizes the problem that we are going to solve and provides the fun-
damentals of the proposed approach.

Given a KB K, below we define the set of cartesian instance triples of K.

Def. 3 (Cartesian Instance Triples)
Given a KB K, the set of cartesian instance triples of K, denoted by B!, is the union
of the class instance triples in Instx x {type} x Ckx and the property instance triples in

Inst X Pri x Insty. O

Given a KB K, we can distinguish its set of schema triples Sk and its set of instance
triples I, i.e. K = Sk U Ix. However, for migration purposes, we need to consider only
instance triples in Bg?, i.e. those in I N Bg. For notational simplicity we shall hereafter
assume that I = Ix N By, and we shall use K = (Sk, Ix). We define C;(K) as the set of
explicit and inferred instance triples, specifically C;(K) = C(K) N Bg. Clearly, it holds:
Ix CCi(K) C Bg.

Def. 4 (Valid Property Instance)
We shall call a property instance triple (o pr o') € By walid to add, for short valid, if it

satisfies the constraint:

(0 € instx(domain(pr))) A (0 € instk(range(pr))) (3.1)

! The symbol B in Bi stands for Base.
2Note that the rest instance triples, e.g. property instances that connect classes, are not interesting for
migration purposes, and we ignore them.
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Note that if we add to K a property instance triple (o pr o') that does not satisfy
expression (3.1) of Def. 4, then at least one new class instance triple would be added
to C;(K), due to derivation rule (v) of RDF/S semantics (see Chapter 2). Furthermore,
we should note that several Semantic Web Repositories for well justified reasons do not
support derivation rule (v), and consequently do not accept the addition of property
instance triples that do not satisfy expression (3.1). To simplify notation, hereafter we
shall use wvalid(o,pr,o’, K) to denote expression (3.1). We shall also use Invalid(K) to

refer to the invalid property instance triples of By, i.e.
Invalid(K) = {(o pr o') € Bg | —walid(o, pr, o', K)}

Let us also introduce some auxiliary notations. We will define the SubTriples of an

instance triple as follows:

SubTriples((o type ¢)) = {(otype d) | < ¢}

SubTriples((o pr o)) = {(opr' o) | pr <, pr}
If A is a set of instance triples, we define:

SubTriples(A) = U SubTriples(t)
teA

Given two triples ¢ and ¢, we shall write: ¢t <" iff ¢t € SubT'riples(t).

Now, we introduce the notion of X-partition which is fundamental for our work. The
main idea is to partition the set of cartesian instance triples Bg into three pairwise disjoint
subsets: true, false, and possible instance triples:

e the first comprises /i and the inferred instance triples (i.e. C;(K)),

e the second comprises instance triples which are not true (denoted by My ), and

e the last comprises instance triples (denoted by Pk) that are possible due to schema

evolution.

This is what we will call X-partition.

Def. 5 (X-partition)
An X-partition of Bk is a three-fold partition of By, denoted by (C;(K), Mk, Pk), that

satisfies the following:
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(i) C;(K) =C(K)N Bg.
(i) My is a lower set wrt <3, i.e. SubTriples(My) = M.
(iii) If an element of By is not valid then it belongs to M, i.e. Invalid(K) C Mg. O

Note that C;(K) is an upper set wrt <% as consequence the derivation rules (i) and (ii)
of RDF/S semantics (see Chapter 2) and the fact that C(K) is closed with respect to the
closure operator C. Note that (ii) of Def. 5 is reasonable because (a) if (o type ¢1) € Mk
and ¢y <!, ¢; then it should hold (o type ¢3) € Mk and (b) if (0o pry o) € Mg and
pra <5, pr1 then it should be (o pry o') € Mg. Additionally, note that from (ii) and the
fact that an X-partition is a partition, it follows that it does not exist m € My and p € Pk
such that p < m. Further, from (ii) (and the fact that an X-partition is a partition), it
follows that the triples in Pg fall into the following two categories:

1. class instance triples in (Instx x {type} x Ck),
2. walid to add property instance triples, i.e. property instance tripls whose addition in
K would not add any inferred class instance triple to C;(K).

Two useful lemmas follow.

Lemma 1 (Px UC;(K) is an Upper Set wrt <)

1. If (o type ¢3) € Pk and ¢ <} ¢ then (o type ¢1) € (P UCi(K)).
2. If (o pry o) € Pi and pry <5 pry then (o pry o) € (Px UCi(K)). a

Lemma 2 (Pk is interval-based wrt <)

L. If ¢; <% eo < cs and (o type 1), (o type c3) € Pk then (o type ¢2) € P.
2. If pry <5 pro <3, prs and (o pry o), (0o pr3 o) € Pk then (o pry o) € Py, O

Lemma 2 says that if ¢ and ¢’ belong to Pk then all ¢, in the interval [¢,t'] (assuming the

< partial order) belong to Pk, too. This lemma can be exploited for specifying compact

3A lower set (else called downward closed set) is a subset Y of a given partially ordered set (X, <) such that,
for all elements x and y, if x <y and y is an element of Y, then x is also in Y.
4 Upper set is the dual notion of lower set.
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(interval-based) representations of Pk (see Section 9.2).

Let us now discuss how the notion of X-partition can be used in our scenarios.

[MSA case]. Consider a KB K that satisfies the Mazimum Specificity Assumption (MSA),
i.e. all instances have been described with the most specific classes or properties of the
schema that hold in the application domain. We could capture this knowledge by an
X-partition in which Px = ). Since an X-partition is a partition, and Px = 0, it follows
that all elements of By that are not in C;(K), should be considered as false (i.e. a form
of closed world assumption), and thus it should be Mg = Bk \ C;(K). It is not hard to
see that the resulting partition is an X-partition. Obviously (ii) and (iii) of Def. 5 are
satisfied, and the X-partition of By is:

(Ci(K), Mg, Pg) = (Ci(K), Bk \ Ci(K),0)

Indeed, it holds that SubTriples(Bk \ C;(K)) = Bk \ Ci;(K). This is because if t €
Bg \ C;(K) and t' < t then t' € Bg \ C;(K), due to derivation rules (iii) and (iv) of
RDF/S semantics (see Chapter 2). Additionally, note that C;(K) N Invalid(K) = ), due
to derivation rule (v) of RDF/S semantics. Thus, Invalid(K) C Bk \ C;(K).

[Open World case]. Now consider the other extreme case, i.e. the case where the MSA
does not hold for any instance. For example consider that we start from a KB for which
we know nothing regarding its completeness or specificity, and we want to consider that
every valid instance triple that can be formed using the ontology and is not certain, it is
possible. We can capture this knowledge by an X-partition whose My contains only the
invalid instance triples of By, i.e. My = Invalid(K). Since an X-partition is a partition
of B, it follows that Px = Bg \ (C;(K)UMg) = Bk \ (Ci(K)UInvalid(K)). This means
that Pk contains all valid instance triples of Bx that do not belong to C;(K). It is not
hard to see that the resulting partition is an X-partition. Again (ii) and (iii) of Def. 5

are satisfied® and the X-partition of B is:

(Ci(K), Mg, Px) = (Ci(K), Invalid(K), Bg \ (C;(K) U Invalid(K)))

SStatement (ii) is satisfied because if it holds that —walid(o,pr,o’, K) and pr’ <pr pr then certainly it holds
that —walid(o,pr’,0’, K), due to (ii) of Def. 2. Thus, SubTriples(Invalid(K)) = Invalid(K). Statement (iii) is
obvious.
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[Mized case/. Tt is not hard to see that we can easily capture various application specific
assumptions, e.g. for the case where we know that MSA holds only for a part of the KB.
Specifically, assume that the MSA holds only for the class instance triples of a subset
O of the instances of K, i.e. O C Instx. Then, Mx = Invalid(K) U {(o type c) €
Bk \ Ci(K) | o € O}. Analogously, we can express explicitly our assumptions regarding
the specificity of property instance triples. In particular, if the MSA holds only for the
property instance triples whose subject belongs to a subset O of the instances of K then
My = Invalid(K) U {(o pr o) € Bg \ C;(K) | o € O}. If the MSA holds only for the
property instance triples whose object belongs to a subset O of the instances of K then
Mg = Invalid(K) U {(o" pr o) € Bx \ Ci(K) | o € O}. If the MSA holds only for
the property instance triples whose both subject and object belong to a subset O of the
instances of K then My = Invalid(K) U {(o pr o) € Bk \ C;(K) | 0,0 € O}. Finally,
in the case that more than one of the previous conditions hold then My is the union of
their corresponding “negative statements”. Note that in all cases SubTriples(Mg) = Mg

and Invalid(K) C Mkg.
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Chapter 4

Transition of X-partitions

In this chapter, we describe the transition of X-partitions.
Below, we define the notion of backwards compatibility between two sets of schema

triples.

Def. 6 (Backwards Compatibility)
Let S and S’ be two sets of schema triples. S’ is backwards compatible with S, denoted
by S C 5, iff C(S) CC(Y"). a

The following Proposition is used in several of our proofs.

Prop. 1 When a KB K = (Sk, I) evolves to anew KB K’ = (Sk+, I/), where Ix = Ik,
it holds that Instx = Insty:. O

Example 1 Figure 4.1 illustrates two KBs K and K’, each consisting of schema triples
(Sk and Sk/) and instance triples (Ix and Ix/). Note that Sx C Sks. Just indica-
tively in this example we have: (domain(drives) = Person) € Sk, (Car <}, Vehicle) €
Sk, while (Car <}, Vehicle) ¢ Sk. In addition, in this example we have Ix = I
and Instx = Instg: (the instances are shown at the bottom of each KB). For exam-
ple, (Bob drives BMW_1), (Fiat_1 type Car) € Ix = Ig/, while Instx = Instx =
{Fiat_1, BMW_1, Bob, Alice, Computer Science Department, FORTH}. a

Consider that we want to migrate the instance triples of a KB K = (Sk, Ik), to a
schema Sy J Sk, reaching to a KB K’ = (S, I). It is not hard to see that it holds
Bygr O Bg. Since Sk is backwards compatible with Sy, every b that belongs to By
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Figure 4.1: An instance migration scenario
Classes and class instances are depicted by ovals. Properties are depicted by rectangles and the letters “d” and
are used to denote the domain and the range of a property. Fat arrows denote subClassOf/subPropertyOf
relationships, while dashed arrows denote instanceOf relationships.

)
T

certainly belongs to Bgs. The superset relationship between Bx and Bgs can be strict
(i.e. Bgr D Bg) because Sk can contain new elements (classes or properties) that could
be used for generating instance triples to be added to Bg:.

PI‘Op. 2 If SK E SK’ then BK/ 2 BK O

We can check if a set of schema triples S’ is backwards compatible with another set of

schema triples S by computing the Delta function A4(S — S’), defined as follows [39]:

{Add(t) | t € '\ C(S)} U
(Del(t) | t € S\ C(S')}

Ad(S — S/)

Note that Add(t) and Del(t) are not functions on ¢ but strings, where ¢ is replaced by
the appropriate schema triple.
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Prop. 3 Let S and S’ be two sets of schema triples. It holds that: S T S"iff Ay(S — ')

contains only add operations. O

Suppose that we know the X-partition of K, i.e. (C;(K), Mk, Px). Our objective is

to define the new X-partition, i.e. we want to define the transition:
(CZ(K)7 MK7 PK) ~ (CZ(K/)7 MK’7 PK’)

By migrating I to Sk+, we can get C(K’), and consequently C;(K"). The rising question
is how My and Py are defined. Figure 4.2 illustrates the problem that we are going to

solve.

S( c S( c S< _ MSA holds for K
(S 10 K=(Sc 1. ko=t 19 B | [ Jew | ]p@}
- :
A(S>S) ,",
e Y\
By C(K) J‘ My N Pe ?} "\
\ )
INCES IV
I ¥~
By Gi(K") }‘ My } Pe 2

J

Figure 4.2: X-partition transitions after successive migrations

As we mentioned in Chapter 1, we can have conflicts among (a) new positive knowl-
edge inferable from the instance triples and the new schema, (b) new “negative” infor-
mation inferable from the past negative instance triples and the new schema, and (c)
the previously computed possibilities (possible refinements). We resolve such conflicts by
considering that (a) has higher priority than (b), and (b) has higher priority than (c).

The priorities can be expressed by two postulates.

Def. 7 (X-partition Evolution Postulates)
A transition (C;(K), Mk, Px) ~ (Ci(K'), Mg+, Pr) is consistent if the following postu-
lates are satisfied:
(IT1) C;(K") does not depend on M or Pk.
Priority of the positive knowledge inferrable from the instance triples and the new

schema.
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(IT12) Mg N Py = 0.

Past negative information cannot become possible.

Postulate 111 gives priority to the new positive knowledge over past negative or possi-
ble knowledge. It is consistent with (and reminiscent of) the principle “Recent knowledge

prevails the old one” (also, called “Principle of Success” [1] and “Primacy of New Infor-

mation” [6]).

Postulate T12 says that past negative information cannot become possible. It follows

that past negative information is preserved as long as it does not contradict with the new

positive knowledge, as stated by the following proposition.

Prop. 4 (Inertia Rule for Negatives)

In the context of a transition (C;(K), Mg, Pk)

) € M

~ (Ci(K"), Mg, Pgr), it follows that:

First Version — K

Second Version — K’

Sk
Amphibian

Animal

Instances of K (Inst )

Instances of K’ (Inst )

Figure 4.3: Motivating example for Postulate 112

Below, we present an example that justifies Postulate I12.

Example 2 Consider Figure 4.3.

(Frog type Amphibian)}. Assuming that the MSA holds for KB K, it follows that My =

It holds that Iy = I = {(Whale type Mammal),
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{(Whale type Amphibian), (Frog type Mammal)}. In Sk, two new classes are added
Animal and Lay Eggs, as well as the relationships Mammal <. Animal,Amphibian <,
Animal, and Lay Eggs <, Animal. Obviously, we want Mg = Mg and Pgr = {(Whale type
Lay Eggs), (Frog type Lay Eggs)}. Note that it holds Mk N Py = 0. O

Notational conventions: Assume that there exist two KBs K and K’. Unless
otherwise indicated, with ¢ we will denote a class in both Cx and Cg, while with ¢ we
will denote a class in Cks (that possibly belongs also to Ck). Analogously, with pr we
will denote a property in both Pryg and Prg., while with pr’ we will denote a property in
Pry (that possibly belongs also to Prg). In addition, with <} and g;m we will refer to

the relations of the new schema Sks. Further, we consider that the <}, and < relations,

used in defining SubTriples(A), refer to the relations of the new schema Sk-.

Prop. 5 (Derivation of Negatives at a Transition)
Consider an X-partition (C;(K), Mk, Px) based on a schema Sk and suppose we want to
define the X-partition after migrating Ik to a backwards compatible schema Sg,. We can

derive Mg+ using the following rules:
(R1) If (o type ¢) € Mg, ¢ <!, ¢, and (o type c¢) ¢ C;(K') then (o type ¢') € M.
(R2) If (opr o) € Mg, pr' <5 pr, and (o pr o) ¢ C;(K'), then (o pr' o') € M.

(R3) If (o pr' o') € Bir and —walid(o, pr’, o', K') then (o pr' o') € M. O

It is not hard to see that any element of Mg that will be derived by the above rules
respects the following validity constraints of X-partition (Def. 5): Mg and C;(K’) are
disjoint, M- is a lower set, and Mg contains all invalid property instance triples of By .

Essentially, the above rules produce the following set of instance triples:
My = Invalid(K") U SubTriples(Mg \ Ci(K'"))

Example 3 Consider, for instance, Figure 4.1. Assume that K satisfies the MSA. In
K, Fiat_1 is not a Person, i.e. (Fiat_1 type Person) € Myg. In K’, we have that
(Fiat_1 type Person) ¢ C;(K’). Thus, we have that (Fiat_1 type Person) € My (from
Rule R1). In K, Bob is not a Car, i.e. (Bobtype Car) € Mg. In K’  a new class is
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Algorithm 1 Mg Update(K, Mk, Sk)
Input: A KB K, Mk, and a set of schema triples Sg+ s.t. Sxg C Sk
Output: My

(1) K'=(Sk,Ix);

(2) Mg ={}

/* Part A: Class Instances */
/* Rule R1 */

(3)  For all ((otype c) € Mk and (o type ¢) ¢ C;(K')) do
(4) For all (¢’ € Ck+ and ¢ <¥, ¢) do
(5) My = Mg U{(o type ') };

/* Part B: Property Instances */
/* Rule R2 */
(6) For all ((opr o) € Mgk and (o pr o) ¢ C;(K')) do
(7) For all (pr' € Prgs and pr’ <5 _pr) do
(8) My = Mg U {(opr’ o) };
/* Rule R3 */
(9)  Forall ((opro)st. o€ Instg: NURI, o € Instg:, pr € Prg, and
—walid(o,pr,o’, K)) do
(10) Mg = Mg U{(opr' o')};
(11) Return Mg;

inserted that specializes the class Car, called Van. We have that (Bob type Car) ¢ C;(K").
So, (Bob type Van) € My (from Rule R1).

In K, Alice does not drive a BMW_1, i.e. (Alice drives BMW.1) € Mg. In K’ we
have that (Alice drives BMW_1) ¢ C;(K’). Thus, we have that (Alice drives BMW_1)
€ Mg (from Rule R2). In K, Alice does not work at FORTH, i.e. (Alice works at
FORTH) € Mk. In K’ a new property is inserted that specializes the property works at,
called paid from. Alice belongs to the instances of the domain of property paid from
and FORTH belongs to the instances of the range of property paid from. We have that
(Alice works at FORTH) ¢ C;(K”). So, (Alice paid from FORTH) € My, (from Rule R2).

Additionally, note that (Fiat_1 paid from FORTH) € My (due to Rule R3). This is be-
cause (Fiat_1 type Person) ¢ C;(K’), and thus it holds —walid(Fiat_1, paid from, FORTH,
K'). O

It follows that from Mg, K, and Sk, we can produce Mg by Algorithm 1, which is
based on Prop. 5.
Now, for getting the X-partition of Bg/, we define Pg: as the set of those instance

triples in Bgs which are neither in C;(K’) nor in Mg.
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Def. 8 (Deriving P/ through By, C;(K') and My/) If we know C;(K’) and My,
then we can derive Py as follows: Px» = Bgr \ (Mg U Ci(K')). O

Prop. 6 (Transition Correctness)

The derivation of My by the rules of Prop. 5 and of Py by Def. 8, yields a three-fold
partition that is an X-partition (according to Def. 5) and respects postulates I11 and I12
of Def. 7. O

Note that due to Prop. 5, Mk should contain at least the instance triples in Invalid(K’)
USubT'riples(Mg\C;(K')). This is actually the My of the X-partition produced by Prop.
6. Therefore, we can say that Prop. 6 produces the X-partition that satisfies postulates

I11 and 12 and has the minimum set of negatives.

Regarding the size (number of triples) required for keeping Px and M-, it is not hard
to see that | Py |, |[My/| < |Brr \Ci(K")|. Since |By/| < |Instg:|*|Crr| + |Instg:|?* | Pri|
and |Ix/| < |C;(K")|. It follows that in general it holds: 0 < |Pg/|,|Mg/| < |Instg:| *
|Cxer| + |Insty:|? * |Pri| — [Ix|.
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Chapter 5

On Managing X-partitions without
M-sets

This chapter provides an algorithm for computing the set of possible instance triples
of a KB, when the current set of schema triples is backwards compatible with the previous
one. Suppose that we want to migrate the instance triples of a K = (Sk, I ), to a schema
Sk such that S C Sk. The question is how we could compute Pg:.

One approach is to apply the method described in the previous chapter. However, the
shortcoming of that approach is that it requires a lot of storage space, since it requires
the computation of the whole X-partition and to keep Mg stored. Therefore, below we
will investigate whether we can achieve our goal without having to compute M.

Actually, we prefer an approach requiring only Px. The motivation is that it is rea-
sonable to assume that | Py | < | M|, meaning that the Px-based approach for computing
Py requires less space than the Mg-based approach (described in the previous chapter).
After all, the sought state of a curated KB is a state that satisfies the MSA, and such a
state requires keeping only K (since Pk is empty at that case). Instead, the alternative
approach would require keeping a non-empty (and possibly very large) My even if the
MSA holds. In general, the more we approach the MSA, the less storage is required for
the Pg-based approach, while the opposite holds for the My-based approach. Also note
that the lifecycle management process that we propose in Chapter 6 aims at reducing
possibilities and approaching a state satisfying MSA.

Thus, we introduce what we call extended KB.
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Def. 9 (Extended KB)
An eztended KB, for short eKB, is a pair €& = (K, Px), where K is a KB and P is a set
of possible instance triples s.t. Px NC(K) = 0. O

Below, we will try to compute Py just from K, Pk, and Sg. The envisioned process
will be correct if it gives the same result (Pg/) as Def. 8.
In general, Pgs can be produced by adding and deleting triples to/from P, i.e. we

can write

Pyr = (Pk \ Pr_pet) U Px_Add

where P p. are the elements of Px that should be deleted from it and Px 444 are the
elements that should be added to Pg. Due to priority of new knowledge, we certainly
know that

P pa 2 Pk NCi(K')

First Version — K Second Version — K’

Instances of K (Insty) Instances of K’ (Insty)

Figure 5.1: Second Instance Migration Scenario

Example 4 Consider Figure 5.1. It holds that Sx C Sk+. Note that, in K, it holds that
Py = {(Toyota Auris type Vehicle)} while, in K’, it holds that (Toyota Auris type Vehicle)
€ C;i(K'). According to Def. 9, it holds that Pr:NC(K") = 0. So, Pk _pe = {(Toyota Auris
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type Vehicle)}. Intuitively, Px_aqq = {(Toyota Auris type Basic Edition), (Toyota Auris

type Special Edition)}. O

In fact,
Px pe = (P NC;(K") U (P N My)

This is because, the only triples that can be deleted from Px belong to C;(K’) or Mk:.
Regarding Pg_a44, it should contain instance triples that involve the new classes and
properties. The following two Propositions indicate the instance triples to be added to

PK,Add-

Prop. 7 For a new class ¢ € Ck: \ O, it holds that: (o type ) € Py iff

(i) o € Instxg N URI,

(ii) for all ¢ € Ck s.t. ¢ <} ¢, it holds that (o type ¢) € (C;(K') U Pk), and

(i) (o type ') ¢ C;(K"). O

Prop. 8 For a new property pr’ € Prg: \ Prg, it holds that: (o pr’ o') € Py iff:

(i) o € URI and valid(o, pr’, o', K'),

(ii) for all pr € Prg s.t. pr’ <5 pr, it holds that (o pr o) € (C;(K') U Pk ), and

(iii) (o pr' o) ¢ C;(K'). O

5.1 Algorithmic Perspective

Below we present Algorithm 2, which takes as input a KB K, its set of possible instance
triples Pk, and a new set of schema triples Sk (s.t. Sk T Sks). It produces the set of
possible instance triples Py for the new KB K’, where K' = (S, I).

Algorithm 2 is applied to compute the set of possible instance triples of the new KB
K' = (Sk+, I) based on the original KB K, the original set of possible instance triples
Py, and the new set of schema triples Sk, which is backwards compatible with Sk.

Part A (lines 5-6) follows from Prop. 7 and concerns new classes ¢ € NC. If a new
class ¢ has superclasses ¢ (which are existing classes in K'), we have to check if Pg or
C;(K') includes triples of the form (o type c) for each superclass ¢, where o € Inst N URI.
Only if this is true and (o type ) does not belong to C;(K’), we can safely add triples of

the form (o type ') to Pk _aqq- In the case that a new class ¢ has no superclasses that are
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Algorithm 2 Produce_Possibilities(K, Px, Sk+)

Input: a KB K, its set of possible instance triples Pk, and a set of schema triples
SK/ s.t. SK E SK/ and K’ = (SK/,IK)

Output: the set of possible instance triples Pk of the KB K’

(1) K'=(Sk,Ix);

(2)  Px_add =0;

(3)  Px_pe =0

/* FOR CLASS INSTANCES: */

(4) NC=Ckg\Ck; /* new classes appearing in K’ */

/* PART A: New classes */

(5) For all (¢ € NC) do /* for each new class */

(6) Pr add = Px_aqq U {(O type CI) | o € Instig N URI,
Ve e Ck s.t. ¢ <% cit holds that (o type ¢) € (C;(K’) U Pk), and
(o type ') ¢ Ci(K')};

/* PART B: Existing classes */

(7)  For all (¢; € Ck) do

/* Moving class instance triples from Pg to Mg due to Rule R1. */

(8) Pr pet = Pk _pe U {(O type 01) € Pk | co € Ck, c1 S*l c2, and
(0 type e2) ¢ (Ci(K') U i)}

/* FOR PROPERTIES: */

(9) NP =Prg/ \ Prg; /* new properties appearing in K’ */

/* PART C: New properties */

(10) For all (pr' € NP) do /* for each new property */

(11) Pr_ada = Px_agaU{(opr’ ') | o€ URI, valid(o, pr', o', K'),
Vpr € Prg s.t.pr’ <;, prit holds that (o pr o) € (C:(K') U Pk), and
((opr’ o) ¢ Ci(K')};

/* PART D: Existing properties */

(12) For all (pr; € Prg) do

/* Moving property instance triples from Pg to Mg, due to Rule R2. */

(13) Pr_pet = Pk _pet U{(opry 0') € Pk | pra € Prg, pry <pr Pra, and
pri <5y pra, and (0 pry o) ¢ (C(K') U Pr)}:

(14) Pk _pet = Pr_pet U (Px NCi(K'));
(15) Pgr = Px \ Pk _pel;

(16) Pgr = Px' U Px_add;

(17)  Return Pgr;

existing classes in K, we just have to check whether a triple of the form (o type ) does
not belong to C;(K’) before adding it to Px_sqq-

Part B (lines 7-8), concerns existing classes ¢; € Cg, for which we have to add to
Py pe all those triples (o type ¢1) € Pk, if there is a class ¢y € Ck such that ¢; <} ¢
in K’ and (o type c2) ¢ (C;(K') U Pk). This is because, since Sx C Sk, it holds that
(o type c2) ¢ C;(K). Thus, (o type c2) € Bi \ (Px UC;(K)) = Mg. Therefore, it follows
from Rule R1 of Prop. 5 that (o type ¢1) € Mk:. Note that Px_pe 2 P N M.

Part C (lines 10-11) follows from Prop. 8 and concerns new properties pr’ € NP. If
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a new property pr’ has superproperties pr (which are existing properties in K'), we have
to check if Px or C;(K') includes triples of the form (o pr o') for each superproperty pr.
Only if this is true, it holds that valid(o, pr’, o, K'), and (o pr’ o) does not belong to
C;(K'), we can safely add triples of the form (o pr’ o’) to Px_saqq- In the case that a new
property has no superproperties that are existing properties in K, we just have to check
whether it holds valid(o, pr', o', K') and (o pr’ o') does not belong to C;(K’) before
adding (o pr’ o') to Pk_ada-

Part D (lines 12-13) concerns existing properties pr; € Pr, for which we have to add
to Pk _pe all those triples (o pry o) € Pk, if there is a property pro € Prg such that
pr1 <, pro in K’ and (o pra o) ¢ (Ci(K') U Pk). This is because, since Si & Sk, it
holds that (o pry o) ¢ C;(K). Thus, (o pry o) € Bi \ (Px UC;(K)) = Mg. Therefore, it
follows from Rule R2 of Prop. 5 that (o pry o') € Mg Note that Px pe 2 Px N Mg,

In line 14 of Algorithm 2, we add to Pk _pe the set Px N C;(K'), because all instance
triples that belong to C;(K’) have to be removed from Px. At the end (lines 15-16), we
have to update Px by adding to it the Px_s44 set and by removing from it the Px_p.; set.
Then, we return Pg.. The execution order of the above parts A, B, C, and D does not

matter since in any order the output result Pk is the same.

Example 5 Consider Figure 4.1 and suppose that Py = {(Fiat_1 type Vehicle), (Bob
uses BMW_1), (Alice works at FORTH)}. Executing Algorithm 2, step by step, we have
that:

1
2) Pk Ada =

(1) K (SK’ Ix);

(2)

(3) Pr_pe = 0;

(4) NC = {Van, Jeep, Adult, Institute, University};

(6) Prx_ada = Pk _ada U

{(Fiat_1 type Van), (BMW_1 type Van), (Fiat_1 type Jeep), (BMW_1 type Jeep), (Bob type Adult),
(Alice type Adult), (Computer Science Department type Institute), (FORTH type Institute),
(Computer Science Department type University), (FORTH type University)};

(8) Pr_pet = P_per U{0};

(9) NP = {paid from};
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(11) Px_ada = Pr_ada U {(Alice paid from Computer Science Department), (Bob paid
from FORTH) };

(13) Pk _per = Pr_pei U {(Alice works at FORTH)};

Note that, (Alice related to FORTH) ¢ (PxUC;(K")) and works at <, related to holds
in K’. So, we have to move (Alice works at FORTH) from P to Mg (due to Rule R2).
(14) Py _per = Pi_pe U {(Fiat_1 type Vehicle), (Bob uses BMW_1)};

Note that Pg_pe; is updated by those triples that belong to Py and now belong to C;(K”).
So, we have to remove them from Pp.

(15) Pxr = Pi \ Pk _per =

{(Fiat_1 type Vehicle), (Bob uses BMW_1), (Alice works at FORTH)}\

{(Fiat_1 type Vehicle), (Bob uses BMW_1), (Alice works at FORTH)} = 0);

(16) Px» = {(Fiat_1 type Van), (BMW_1 type Van), (Fiat_1 type Jeep), (BMW_1 type Jeep),
(Bob type Adult), (Alice type Adult), (Computer Science Department type Institute),
(FORTH type Institute), (Computer Science Department type University), (FORTH type
University), (Alice paid from Computer Science Department), (Bob paid from FORTH)};
(17) Return Pgr;

In order to explain line 8 in part B of Algorithm 2, consider Figure 4.1. Suppose that
we have another version Sk = Sk U{(Van <, LoadCarrying Vehicle)}, where we have
a new specialization relationship, i.e. Van <. LoadCarrying Vehicle. Then, according
to line 8 of Algorithm 2, we have that Pk _pe = Px_pe U {(Fiat_1 type Van)}. This is
because it holds that (Fiat_1 type LoadCarrying Vehicle) ¢ Py UC;(K”) and (Van <
LoadCarrying Vehicle) € Sk». So, we have to move (Fiat_1 type Van) from Py to
Mpgn (due to Rule R1). O

Below we present three indicative examples in backwards compatible schema evolution

case.

Example 6 Consider Figure 5.2. It holds that S C Sks. Note that, in K, P = 0. In
Sk, four new classes are added, i.e. {Van, Employee, Graduate, Undergraduate} and also
four new specialization relationships, i.e. Van <, Car, Employee <, Person, Graduate <
Student and Undergraduate <. Student. According to Algorithm 2, in K’ it holds that

Py = {(John type Employee), (John type Graduate), (John type Undergraduate)}. O
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Figure 5.2: Third Instance Migration Scenario

First Version — K Second Version — K’
Sk

knows \\

d r \
J/ \ \
Person \
p e 1
1 \ 1
1 \ 1
1 \ [
1 \ I
1 \ 1
T - =
]

Qo Quary [/

’

’
~ /
~ -
Instances of K (Insty) Instances of K’ (Insty)

Figure 5.3: Fourth Instance Migration Scenario

Example 7 Consider Figure 5.3. It holds that Sx T Sk+. Note that, in K, Px = (). In
Sk, three new classes and one new property are added, i.e. {Van, Employer, Employee,
employs}, and also four new specialization relationships, i.e. Van <, Car, Employer <,

Person, Employee <, Person and employs <,, knows. Note that domain(employs) =
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Person and range(employs) = Person. According to Algorithm 2, in K’ it holds that
Py = {(John type Employer), (John type Employee), (Mary type Employer), (Mary type
Employee), (John employs Mary)}. O

First Version — K Second Version — K’
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Figure 5.4: Fifth Instance Migration Scenario

Example 8 Consider Figure 5.4. It holds that Sx C Sgk/. Note that, in K, Py =
{(John knows Alice)}. In Sk, one new property is added, i.e. {employs} and also one
new specialization relationship, i.e. employs <,, knows. Note that domain(employs) =
Person and range(employs) = Person. According to Algorithm 2, in K’ it holds that
Py = {(John knows Alice), (John employs Mary), (John employs Alice)}. O

Note that if (o type ¢) € C;(K') and (o type ') & C;(K') U Pk, for all ¢ <, ¢ and
c # ¢, then the MSA property holds for the class instance triple (o type c). Similarly, if
(opr o) € Ci(K') and (o pr' o) & C;i(K') U Py, for all pr’ <5 pr and pr’ # pr, then the
MSA property holds for the property instance triple (o pr o').

The following Proposition shows that Algorithm Produce_Possibilities(K, Pk, Sk/) is
correct, i.e. that it produces the same Py as that defined in Def. 8 without the need of
computing By and Mg.
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Prop. 9 Let K = (Sk, Ix) and let Sk be a set of new schema triples s.t. Sk C Sk and
K' = (Sk+, I) then Pxr = Produce_Possibilities(K, P, Sk). O

Prop. 10 The time complexity of Algorithm 2 is O(|Inst g |**|K'|? * (|K'|? + |Px|). O
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Chapter 6

Specificity Life Cycle Management

Algorithm 2 showed how schema changes affect the possibilities. In this chapter, we
will focus on the management of these possibilities, specifically on operations on data that
affect the computed possibilities of the same KB K, describing the specificity lifecycle
management process.

Suppose a number of instance descriptions that are migrated to a new schema version,
and as a consequence our machinery has computed a set of possible instance triples Pg.
If 0 is an instance, let us denote by posTriples(o) all those triples that include o and
belong to Px. Suppose a system that for an instance o shows to the user a set of possible
instance triples U(o) such that U(o) C posTriples(o). The user then decides whether
he/she should add one or more than one of these to the certain knowledge base. After

that we should also update Px. Figure 6.1 (on the right) illustrates the proposed process.

In Figure 6.1, on the left, we can see the current migration process, where the curator
of a KB downloads its latest ontology version, he migrates the instance descriptions to
that version, and then he manually tries to revise some of the migrated descriptions.
On the right, we can see the proposed migration process. After the migration of the
instance descriptions to the latest ontology version, the system computes the possible
instance descriptions by executing either Algorithm 2 (when the new schema is backwards
compatible with the previous one) or Algorithm 7 (when the new schema is not backwards
compatible with the previous one). Then, an iterative procedure starts, where in each
iteration, the curator can select a specific instance and then a ranked subset of its possible

descriptions is displayed. The curator can accept or reject some or all of these possible
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Figure 6.1: Current and Proposed Migration Process

descriptions (of the selected instance) and then the eKB (its certain and possible part)
is updated, analogously. Below, we describe formally the updating of the certain and the

possible part of the eKB.

What we have to ensure is that the update should: (a) respect the user’s request, (b)
reduce uncertainty based on what the user was prompted and decided, and (c) yield a
valid eKB (that respects the constraint of Def. 9). To specify exactly the updating we
need to introduce notations for the possible class instance triples and property instance
triples of an instance o.

posTriples® (o) {(o type ¢) | (o type c¢) € Pk} // cl: instance of class

posTriples™" (o) {(o pr o") | (o pr o) € Pk} // spr: subject of property

posTriples®" (o) {(0" pr o) | (o' pr o) € Pk} // opr: object of property
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We define the SupTriples of an instance triple, as follows:

Sup Triples((o type ¢)) = {(o type ) | ¢ <k '}
SupTriples((o pr o)) = {(opr’ o) | pr <, pr'}
Let A be a set of instance triples. We define!:
Sup Triples(A) = U Sup Triples(t)
teA
Let o be an instance. If the system shows to the user all instance triples in posTriples (o),

where ¢ € {pr, spr,opr}, and he/she decides that none of these should be added then we

should update Py as follows?:
PP = Py \ posTriples' (o)

If the system had prompted to the user only a subset of the possibilities, say U(o) (where
U(o) C posTriples'(0)), and the user had decided that none of these should be added
then?

PP = Pg \ SubTriples(U(0))

This ensures that not only U(o) but also all possibilities which are more “specific” than
those in U(o) will be excluded. Note that the instance triples in U(o) and thus, the
instance triples in Pk N SubTriples(U(0)), are actually moved to M”.

If the user has selected some of the suggested possibilities, say X (o), (X (o) C U(0)),
to be added, then we should update the certain part of the new eKB K"? = K U X (0), as
follows C(K"P) = C(K') U SupTriples(X (o)) (see Prop. 11 below), and then update Pk,

accordingly. The latter can be done as follows:
PP = P\ SupTriples(X(0))
PP = P\ SubTriples(U(o) \ SupTriples(X(0)))
The first step excludes from Py also the newly entailed instance triples from K"P. i.e.

SupTriples (X (o)), (to satisfy the constraint of Def. 9). The second excludes from
PrP the instance triples in U(o) \ SupTriples(X (o)) and their specializations. Note

!Note that SubTriples(A) has been defined in Chapter 3.
*In Pi?, up stands for updated.
3Note that except from U (o), the SubTriples(U(0)) should be removed from Pr.
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that the instance triples in U(o) \ SupTriples(X (o)) and, thus the instance triples in
P 0 SubTriples(U (o) \ Sup Triples(X (0)) are actually moved to M;”.

Prop. 11 Let X C Pg. If K*? = K U X then C(K") = C(K) U SupTriples(X). O

/\ The user rejects all

suggestions

First Version — K Second Version — K’
Sk Sk
'I
{
1
1
. : i { X(John) |
: == :g' i (Postgraduate)s
! A\ AN
1 : S I' A
_____ | I i !
! .‘ : :
! oo - J

¥’/ The user selects to
------------ add Postgraduate

Instances of K (Inst ) Instances of K’ (Inst )

Figure 6.2: Example of the Possibility Resolution Process

Example 9 Consider the scenario of Figure 6.2. Py and pos Tm’plesd(J ohn) contain the
triples: {(John type Employee), (John type Manager), (John type Student), (John type
Postgraduate), (John type PhD Student)} (shown enclosed in a dashed frame)*. If the
system shows to the user all triples in posTriples(John) and the user decides that
none of these should be added, then Py should be updated as follows: P = Pg \
posTriples®(John) = {.

Now suppose that the system had showed to the user only three of the five possible in-
stance triples, such as: U(John) = {(John type Employee), (John type Student), (John
type Postgraduate)}. If the user decides that he/she does not want to add any of these
triples to the certain part of the eKB then Px should be updated as follows:

P? = Pk \ SubTriples({(John type Employee), (John type Student)

(John type Postgraduate)}) =)

However, if the user decides to add one of these three suggested triples, say the triple

X (John) = {(John type Postgraduate)} then the eKB has to be updated such that

“In the figure, posCl(John) denotes the possible classes of John.
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K" = K U {(John)

type Postgraduate)}. Note that SubTriples(X (John)) = {(John type Postgraduate), (John
type PhD_Student)} and SupTriples(X (John)) = {(John type Postgraduate), (John type
Student), (John type Person)}.

The possible part Pk has to be updated as follows:

P = {(John type Employee), (John type Manager), (John type Student),
(John type Postgraduate) (John type PhD_Student)} \ SupTriples(X (John))

= {(John type Employee), (John type Manager), (John type PhD_Student)}

Pr = PP\ SubTriples(U(John) \ SupTriples(X (John)))
= PP\ SubTriples({(John type Employee)})

= {(John type PhD_Student)}

The updated certain part of the eKB K, i.e. K"P, and the updated P;” can now be given
as input to Algorithm 2, in the case that a new set of schema triples Sk is available, for
generating the new Py.. Note that the set of instance triples that is migrated from Sk to

Sk 18 Now I gup.

6.1 Ranking Possibilities

In this section, we discuss methods for ranking the possibilities. In general, we can
exploit such quantification for various kinds of ranking, e.g. for defining a best-match
retrieval model over Semantic Web data, for controlling the amount of possible information
that is kept stored, and for aiding the interaction process described previously.

If t is a triple in Px or C;(K), we could “score” t according to a degree of certainty.
A naive approach would be:

score(t) =

itt e Px

N |—=
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Below we introduce a more sophisticated model for ranking the possible triples. Con-
sider the example of Figure 6.2 and suppose that John was originally classified to the
class Person. We can say that Student and Employee are more probable classes than
Postgraduate, Manager, and PhD_Student. To this end we propose an extension of Py
that we call quantified Py, such that each triple is accompanied by a positive integer that
is interpreted as follows: the less this value is the more possible the triple is.

Let disty(c — ') be the length of the shortest path from class ¢ to class ¢ comprised
from <. relationships (over the reflexive and transitive reduction of <}). If there is no
path from class ¢ to class ¢ comprised from <, relationships then disty(c — ¢) = oco. For
example, if ¢ <., ¢1 <4 3 <4 3 <4 ¢ and there is no shorter path from class ¢ to class
¢ comprised from <, relationships then dist,(c — ¢’) = 4. For each element (o type c)

in Pk, the quantified Py contains an element ((o type c), distClass(o,c)), where:
distClass(o,c¢) = min{disty(c — ') | ¢ € Ck and o € instg ()}

So, distClass(o,c) is the shortest distance of ¢ from one of the certain classes of o.
In the example of Figure 6.2, the possible class instance triples (John type Student)
and (John type Employee) have distClass(John, Student) = 1 and distClass(John,
Employee) = 1, respectively. The possible class instance triples (John type Postgraduate)
and (John type Manager) have
distClass(John, Postgraduate) = 2 and distClass(John, Manager) = 2, respectively.
The possible class instance triple (John type PhD_Student) has distClass(John, PhD_Student)
= 3. A measure, similar to distClass(o, c), appears in [27] for measuring the conceptual
distance between two concepts.

Algorithm 3, which is used in order to quantify all possible class instance triples whose

subject is an instance o, is presented below.

Algorithm 3 GetAllDistClass(o, C, dist, K, Pk, classRankingMap)

Input: an instance o, a set of classes C, an integer dist, which denotes the distance from the classes
in C to one of the certain classes of the instance o, a KB K, its set of possible instance triples
Py and a map classRankingM ap, which contains possible class instance triples whose subject is
o along with their current ranking value

Output: a map classRankingMap which contains possible class instance triples, whose subject is o,

along with their current ranking value
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(1)  Forall (ceC) do

(2) If ((o type ¢) € Pk) then

(3) If (Bd s.t. ((otype c),d) € classRankingMap) then

(4) classRankingMap = classRankingMap U {((o type ¢), dist)};

(5) else let d s.t. ((o type c¢),d) € classRankingM ap;

(6) If (dist < d) then

(7) classRankingMap = classRankingMap \ {((o type ¢),d)};

(8) classRankingMap = classRankingMap U {((o type ¢), dist)};

/*end If*/
/*end If*/

(9) C'={deCk|d<qck

(10) classRankingMap = GetAllDistClass(o,C’,dist + 1, K, Pk, classRankingMap);
/*end If*/

(11) else if ((o type ¢) € C(K)) then

(12) C'={c eCk | <uc}

(13) classRankingMap = GetAllDistClass(o,C’,1, K, Pk, classRankingMap);
/¥end If*/

/*end For*/
(14) Return classRankingM ap;

At the first call of Algorithm 3, in place of the parameters C, dist, and class Ranking M ap,
we put the direct subclasses of the top class, i.e. Resource, the value 1, and the empty
set, respectively. We use the map classRankingMap in order to store pairs of the form
(key,value), where the key is a possible class instance triple of the form (o type ¢) and
the value is its current ranking value (i.e. the distance from ¢ to one of the certain classes
of 0). Each time we access a possible class instance triple of the form (o type c), we have
to check if the key (o type c) is contained already in the map. If it holds that, we check if
its value is greater than the value of the parameter dist. If this is true, we have to replace
the existing value with the value of the parameter dist in the map.

For each possible class ¢ that we check, we call again Algorithm 3, by replacing the

value of the parameter C' with the direct subclasses of ¢, i.e. C’, and by replacing the
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value of the parameter dist with the same one, increased by one unit. For each certain
class ¢ that we check, we call again Algorithm 3, by replacing the value of the parameter
C with the direct subclasses of ¢, i.e. C’, and by replacing the value of the parameter
dist with the value 1. This is because we want to compute the shortest distance from a
possible class of o to one of its certain classes. So, if we meet a certain class of o, we have
to make the distance dist to be equal to 1.

As we can see, the Algorithm 3 is executed recursively and thus it makes the procedure
faster and more efficient. After the first call, Algorithm 3 returns a map class RankingMap

of all possible class instance triples, whose subject is 0, along with their ranking value.

First Version — K Second Version — K’

Sk

Instances of K (Inst ) Instances of K’ (Inst )

Figure 6.3: Ranking possible class instance triples

Example 10 Consider Figure 6.3. It holds that Sx T Sk. The new set of classes from
K to K’ is {C,D,E,F}. So, according to Algorithm 2, the derived possible class instance
triples are: {(o; type C), (o1 type D), (o1 type E), (o1 type F)}.

If we rank the possible class instance triples of the instance o;, using the above
formula, i.e. distClass(o, ¢), where o corresponds to o; and ¢ corresponds to one of
the possible classes of oy, we get the following quantified possible class instance triples:
{((o1 type C), 1), ((o1 type D), 1), ((o1 type E),2), (o1 type F),2)}.

For example, note that in the case of the possible class instance triple (o; type F),
there are two paths from F to B (which is a certain class of oy). The first one is F <, C
<4 B and the second one is F <4 E <., D <4 B. Thus, disty(F — B) is 2. Additionally,
there are two paths from F to A (which is also certain class of 01). The first one is F <

C <4 B <4 A and the second one is F <, E <4 D <, B <4 A. Thus, disty(F — A) is 3.
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Therefore, distClass(o4,F) = min({2,3}) = 2. O

Similarly, let dist,,(pr — pr') be the length of the shortest path from property pr to
property pr’ comprised from <, relationships (over the reflexive and transitive reduction
of <5, which is unique in our case because <7 is finite and acyclic). If there is no path
from property pr to property pr’ comprised from <, relationships then dist,, (pr — pr') =
oo. For example, if pr <, pr1 <,, pro <, pr3 <, pr’ and there is no shorter path from
property pr to property pr’ comprised from <, relationships then dist,, (pr — pr') = 4.
We define an auxiliary property praumy such that if pr € Prg and there is no pr’ € Prg
s.t. pr <, pr’ then we add pr <, Praumy. For each element (o pr o) in P, the quantified

Pk contains an element ((o pr o), dist Property(o, pr,0’)), where:

.

min{dist,.(pr — pr') | pr’ € Prg, (opr' o) € C(K)}

if 3pr’' € Prg s.t. (opr' o) € C(K
dist Property(o,pr,o) = p K (o pr' o) (K)

[ disty (pr — D aunmy) otherwise

So, dist Property(o, pr,o') is the shortest distance of pr from one of the properties pr’ such
that (o pr’ o) € C(K). In the case that there is no property pr’ such that (o pr’ o) € C(K)
then dist Property(o, pr, o) is the distance of pr from praummy.

The distClass(o) and dist Property(o, o) values can be used for ranking the possible
class instance triples and possible property instance triples, respectively. Such ranking
can aid the interaction described earlier. In the example of Figure 6.2, the system will
suggest first Student and Employee as possible classes of John. If the user will not select
any of these then Py will be updated and Postgraduate, Manager, and PhD_Student will
never be suggested as possible classes (for the instance John).

Algorithm 4, which is used in order to quantify possible property instance triples whose

subject is 0 and object is o', is presented below.

Algorithm 4 GetAllDistProperty(o, o', Pr,dist, K, Pk, propRankingM ap)

Input: a pair of instances o,0’, a set of properties Pr, an integer dist, which denotes the distance
from the properties in Pr to one of the certain properties of the instances o,0’, a KB K, its set
of possible instance triples Px and a map propRankingMap, which contains possible property

instance triples, whose subject is 0 and object is o', along with their current ranking value
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Output: a map propRankingMap of possible property instance triples, whose subject is o and object

is o/, along with their current ranking value.

(1)  For all (pr € Pr) do
(2) If ((opr o) € Pk) then
(3) If (Ads.t. ((opro),d) € propRankingMap) then
(4) propRankingMap = propRankingMap U {((o pr o'),dist)};
(5) else let d s.t. ((opr o'),d) € propRankingM ap;
(6) If (dist < d) then
(7) propRankingMap = propRankingMap \ {((o pr o'),d)};
(8) propRankingMap = propRankingMap U {((o pr o'),dist)};
/*end If*/
/*end If*/
9) Pr' = {pr' € Prg | pr' <p, pr};
(10) propRankingMap = GetAllDistProperty(o,o, Pr’, dist + 1, K, Pk, propRankingMap);
/*end If*/
(11) else if (o pr o) € C(K)) then
(12) Pr' = {pr' € Pri | pr’ <p, pr};
(13) propRankingMap = GetAllDistProperty(o,o, Pr',1, K, Pk, propRankingMap);
/*end If*/

/*end For*/
(14) Return propRankingM ap;

At the first call of Algorithm 4, in place of the parameters Pr, dist, and propRankingMap,
we put the direct subproperties of the top property, i.e. praummy, the value 1, and the empty
set, respectively. We use the map, i.e. propRankingMap, in order to store pairs of the
form (key, value), where the key is a possible property instance triple of the form (o pr o')
and the value is its corresponding ranking value (i.e. the shortest distance from pr to one
of the certain properties of 0,0’). Each time we access a possible property instance triple
of the form (o pr '), we have to check if the key (o pr o) is contained already in the map.

If it holds that then we check if its value is greater than the value of the parameter dist.

If this is true, we have to replace the existing value with the value of the parameter dist
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in the map.

For each possible property pr that we check, we call again Algorithm 4, by replacing
the value of the parameter Pr with the direct subproperties of pr, i.e. Pr’, and by
replacing the value of the parameter dist with the same one, increased by one unit. For
each certain property pr that we check, we call again Algorithm 4, by replacing the value
of the parameter Pr with the direct subclasses of pr, i.e. Pr’, and by replacing the value
of the parameter dist with the value 1. This is because we want to compute the shortest
distance from a possible property of 0,0’ to one of their certain properties. So, if we meet
a certain property of o, 0, we have to make the distance dist to be equal to 1.

As we can see, the Algorithm 4 is executed recursively and thus it makes the procedure
faster and more efficient. After the first call, Algorithm 4 returns a map propRankingMap
of all possible property instance triples, whose subject is 0 and object is o, along with

their ranking value.

o1
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Chapter 7

Composite Possibilities

So far Pk contains individual suggestions for a KB K. In this chapter, we describe
how we can extend Pk and reach a P**, called extended set of possibilities, that contains
also composite suggestions, where a composite suggestion is a set of instance triples. First,

we provide an auxiliary definition.

Def. 10 (Valid Property Set)
We define the valid property set of K, denoted by Valid(K), as follows:
Valid(K) = {(o pr o') € Bk | valid(o,pr, o, K) holds}. O

Specifically, Pg** is not a set of triples like Py, but a family of sets containing:
e one singleton {t}, for each t € P, and
e triple sets of the form {h,t} or {hy,t, ha}, where h, hy, hy are class instance triples
of Pk and t is a property instance triple that (a) it does not belong to Valid(K),
and (b) ¢ would belong to Valid(K) (thus, can be added to K) if h, hy, hy were
added to K.
In other words, the non-singleton elements of Pg** consist of a hypothesis that is
already possible (i.e. h, hy, he) and a consequence of that hypothesis (i.e. ¢ can be added
to K, if h, hy, hy were added to K).

Example 11 To grasp the idea, consider the scenario of Figure 7.1, where (HKR6263 type
Car) is a possible class instance triple in K’. The proposed composite possibility in K’ is:
{(HKR6263 type Car), (Mary drives HKR6263)}. This means that if the user decides to
add the class instance triple (HKR6263 type Car) to K’ then the property instance triple
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(Mary drives HKR6263) can be added to K’. However, if the user does not add HKR6263
as an instance of Car, then (Mary drives HKR6263) would not be added to K’ since this
triple is an element of Invalid(K'), and it belongs to My . In other words, if the user
accepts the proposed composite possibility, both instance triples {(HKR6263 type Car)
and (Mary drives HKR6263)} will be added to K. O

First Version — K Second Version — K’

___r___l____

Instances of K (Inst ) Instances of K’ (Inst )

Figure 7.1: First scenario for Fxtended Possibilities

Before we define, the extended set of possibilities of a KB K, we provide an auxiliary

definition.

Def. 11 Let s, s’ be two sets of instance triples. We define s < " iff (i) they contain the
same property instance triples and (ii) for all class instance triples t € s, it exists ¢’ € &

s.t. t € SubTriples(t’). O

Def. 12 (Extended Set of Possibilities) Let K be a KB. We define the extended set

of possibilities as follows:

Pt = {{p}|pé€ Px}UPZS™, where
P2 = mazimalg({sU{t} | s C Pk,t & Valid(K),t € Valid(K U s), and
t ¢ Valid(KUs')V s C s})O

Let Cl(o) = {c | (o type c¢) € C;(K)} and posCl(o) = {c | (o type ¢) € Px}. By taking

into account Def. 10, we can reach to the following:
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Prop. 12 (Composite possibilities) Let K be a KB. It holds that:

PZ™ = PyUP,U Pj, where:
Py = {{h,t} | t=(oprd) ¢ Valid(K) where o, o' € Insty,pr € Prg,
hy = (o type ¢1) € Pk, where domain(pr) = ¢1, range(pr) € Cl(o')}
Py, = {{t,ha} |t = (0o prd) ¢ Valid(K) where o, o' € Insty,pr € Pr,
hy = (0 type c3) € Py, where range(pr) = ca, domain(pr) € Cl(o)}
Py = {{hi,t,ha} | t = (o pr o) ¢ Valid(K) where o, o' € Insty,pr € Pr,
hy = (o type ¢1) € Pk where domain(pr) = ¢,

hy = (0’ type ¢3) € Pgx where range(pr) = co}

O

It follows that each composite possibility of Pi™® contains either two or three instance

triples.

First Version — K Second Version — K’

Sk

d

@» knows
r

Instances of K (Inst ) Instances of K’ (Inst )

Figure 7.2: Second scenario for Eztended Possibilities

Example 12 The composite possibility of the previous example (Figure 7.1) contains a
pair of instance triples. An example with three instance triples is the scenario of Figure
7.2. Suppose that Employer and Employee are new classes in K’ and hires is a new
property in K’ that specializes the property knows in K. Suppose (John knows Mary) is

a property instance triple included in K. In this case, we have in K’: posCl(John) =
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{Employer, Employee} and posCl(Mary) = {Employer, Employee}, and Pgi* contains
the following composite possibility: {(John type Employer), (John hires Mary), (Mary type
Employee)}. Thus, if the user accepts the composite possibility then all instance triples
(John type Employer), (Mary type Employee), and (John hires Mary) are added to K.
O

There is no need to store composite possibilities as they can be computed on demand.

7.1 Ranking Composite Possibilities

First Version — K Second Version — K’

Instances of K (Inst ) Instances of K’ (Inst )

Figure 7.3: Ranking Composite Possibilities

In this section, we consider the problem of ranking the composite possibilities in Py .
Consider the migration shown in Figure 7.3, in which the set of possible instance triples
in K’ are the class instance triples that (i) relate Mary with the new subclasses of Person
and (ii) relate HKR6263 with the new subclasses of Vehicle. In this scenario, we get the
following composite possibilities in K
s1: {(Mary type Adult), (Mary uses HKR6263), (HKR6263 type Car)} and

So: {(Mary type Millionaire), (Mary drives HKR6263), (HKR6263 type Expensive_car)}.

Consider an element s € P;™, where (o pr o) is the property instance triple that
belongs to s. Intuitively, we want the quantification of s to be low if the certain classes
of the ends (0, 0') are close to the domain/range of pr and high if they are not close.

In particular, we define the distance d of a composite possibility s € P ™, as follows:
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1. If s = {(o type domain(pr)), (o pr o), (o' type range(pr))} then:
d = distClass(o, domain(pr)) + distClass(o', range(pr))

In other words, d is the sum of the shortest distance of the domain of pr from one
of the certain classes of 0 and the shortest distance of the range of pr from one of
the certain classes of o'.

2. If s = {(o type domain(pr)), (o pr o')} then d = distClass(o, domain(pr)).

3. If s ={(oprd), (o type range(pr))} then d = distClass(d', range(pr)).

Note that in cases 2 and 3 above, in order to compute d, we consider only the single
possible class instance triple that belongs to s, since it holds (o’ type range(pr)) € C(K)
and (o type domain(pr)) € C(K), respectively.

Example 13 If we rank the composite possibilities s; and sy derived from Figure 7.3, we
get the distances ds, = 2 and dg, = 4, since dy, = distClass(Mary, Adult)+distClass(HKR6263,
Car) = disty(Adult — Person) + disty(Car — Vehicle) = 1+ 1 = 2 and d,, =
distClass(Mary, Millionaire) +distClass(HKR6263, Expensive Car) = dist.,(Millionaire
— Person) + dist.( Expensive_car — Vehicle) =2+ 2 =4.

So, the composite possibility s, i.e. {(Mary type Adult), (Mary uses HKR6263),
(HKR6263 type Car)}, has higher priority than s, and is presented first to the user in the

lifecycle management process (see Chapter 6). O

Algorithm 6, which is used in order to produce and rank composite possibilities whose
property instance triple has subject or object a specific instance o, is presented below.
We also present one subroutine of Algorithm 6, i.e. Algorithm 5, which computes the
ranking value of a specific possible class instance triple (o type cl).

We define the possible instances of a class ¢ € Ck as posInstk(c) = {o | (o type c) €
Py}

Algorithm 5 GetDistClass(o,cl, C, dist, K, classRankingMap)
Input: an instance o, a class cl s.t. (o type ¢l) € Pk, a set of classes C, which are superclasses of cl,
an integer dist, which denotes the distance from cl to one of the classes in C, a KB K, and a

map classRankingM ap, which contains the possible class instance triple (o type cl) along with its
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current ranking value

Output: a map classRankingMap which contains (o type cl) along with its current ranking value

(1) Forall (ceC) do
(2) If ((o type ¢) € C;(K)) then
(3) If (Bds.t. ((otypecl),d) € classRankingMap) then
(4) classRankingMap = classRankingMap U {((o type cl), dist)};
(5) else let d s.t. ((o type cl),d) € classRankingM ap;
(6) If (dist < d) then
(7) classRankingMap = classRankingMap \ {((o type cl),d)};
(8) classRankingMap = classRankingMap U {((o type cl), dist)};
/*end If*/
/*end If*/
/*end If*/
(9) C'={deCklc<ad}

(10) classRankingMap = GetDistClass(o,cl,C',dist + 1, K, classRankingM ap);
/*end For*/
(11) Return classRankingMap;

Algorithm 5 ranks a specific possible class instance triple (o type ¢l). We use the map,
i.e. classRankingMap, in order to store a pair of the form (key, value), where the key is
(o type cl) and the value is its current ranking value (i.e. the distance from ¢l to one of
the certain classes of 0). At the first call of Algorithm 5, C' contains the direct superclasses
of cl, dist has the value 1, and classRankingMap is the empty set.

For each class ¢ that belongs to the set of classes C, we check if (o type ¢) belongs
to C;(K). If this is true, we have to check if the key (o type cl), is contained already in
the map. If it holds that, we check if the corresponding ranking value is greater than the
value of the parameter dist. If this is true, we have to replace the existing value with
the value of the parameter dist in the map. Otherwise, we just put the pair (key, value),
where the key is (o type cl), and the value is dist, to class RankingM ap.

However, if (o type ¢) does not belong to C;(K), we call recursively Algorithm 5 (line

10), where C’ corresponds to the direct superclasses of class ¢ and dist corresponds to
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the previous value of dist, increased by one unit. If we access all classes in C, then we
return the classRankingMap returned by the recursive calls. As we can see, Algorithm

3 is executed recursively and thus it makes the procedure faster and more efficient.

Algorithm 6 ProduceAndRankCompPoss(o, K, P)
Input: an instance o, a KB K, and its set of possible instance triples Py
Output: a map of composite possibilities along with their ranking value, where the property instance

triple of each composite possibility has as subject or object the instance o

(1)  totalDist = 0;

(2)  compPoss = ()

(3)  compPossMap = 0);

/* PART A: For all possible classes of o: */

(4)  For all (¢ € posCl(0)) do

/* SUBPART A.1: For all properties that have as domain a possible class of o, i.e. ¢: */

(5) For all (pr s.t. domain(pr) = ¢) do
(6) For all (o' € instk(range(pr))) do
(7) compPoss = {(o type domain(pr)), (o pr o')};
(8) C' = {d € Ck | domain(pr) <. };
(9) classRankingMap = GetDistClass(o,domain(pr),C’, 1, K,();
(10) Let d s.t. ((o type domain(pr)),d) € classRankingM ap;
(11) compPossMap = compPossMap U {(compPoss,d)};
/*end For*/
(12) For all (o' € posInstk (range(pr))) do
(13) compPoss = {(o type domain(pr)), (o pr o), (o' type range(pr))};
(14) C' = {d € Ck | domain(pr) <. '};
(15) C" = {" € Ck | range(pr) <q '};
(16) classRankingMap = GetDistClass(o,domain(pr),C’ 1, K,();
(17) Let dy s.t. ((o type domain(pr)),di) € classRankingM ap;
(18) classRankingMap = GetDistClass(o',range(pr),C", 1, K,D);
(19) Let dy s.t. ((0o' type range(pr)),dz) € classRankingM ap;
(20) totalDist = dyi + do;
(21) compPossMap = compPossMap U {(compPoss,total Dist)};

/*end For*/
/*end For*/
/* SUBPART A.2: For all properties that have as range a possible class of o, i.e. ¢: */

99



(22) For all (pr s.t. range(pr) = ¢) do
(23) For all (o’ € inst g (domain(pr))) do
(24) compPoss = {(o pr o), (o type range(pr))};
(25) C' = {d € Ck | range(pr) < '};
(26) classRankingMap = GetDistClass(o,range(pr),C’, 1, K, {);
(27) Let d s.t. ((o type range(pr)),d) € classRankingMap;
(28) compPossMap = compPossMap U {(compPoss,d)};
/*end For*/

(29) For all (o’ € posInsty(domain(pr))) do

(30) compPoss = {(0 type domain(pr)), (o' pr o), (o type range(pr))};
(31) C' = {d € Ck | domain(pr) <. '};

(32) C" = {" € Ck | range(pr) <. '};

(33) classRankingMap = GetDistClass(o’, domain(pr),C’,1, K, 0);
(34) Let dy s.t. ((o' type domain(pr)),dy) € classRankingM ap;

(35) classRankingMap = GetDistClass(o,range(pr),C", 1, K,{);
(36) Let dy s.t. ((o type range(pr)),ds) € classRankingM ap;

(37) totalDist = di + da;

(38) compPossMap = compPossMap U {(compPoss, total Dist)};

/*end For*/
/*end For*/
/*end For*/
/* PART B: For all classes of o: */
(39) For all (c € Cl(0))
/* SUBPART B.1: For all properties that have as domain a class of o, i.e. ¢: */

(40) For all (pr s.t. domain(pr) = ¢) do

(41) For all (o’ € posInsty (range(pr))) do

(42) compPoss = {(opr o), (0 type range(pr))};

(43) C' = {d € Ck | range(pr) <q c'};

(44) classRankingMap = GetDistClass(o',range(pr),C’, 1, K, 0);
(45) Let d s.t. ((o' type range(pr)),d) € classRankingM ap

(46) compPossMap = compPossMap U {(compPoss,d)};

/*end For*/
/*end For*/
/* SUBPART B.2: For all properties that have as range a class of o, i.e. ¢: */
(47) For all (pr s.t. range(pr) = c¢) do
(48) For all (o’ € posInsty (domain(pr))) do
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(49) compPoss = {(o type domain(pr)), (o’ pr o)};

(50) C' = {d € Ck | domain(pr) <, '};

(51) classRankingMap = GetDistClass(o',domain(pr),C’ 1, K, {);
(52) Let d s.t. ((o' type domain(pr)),d) € classRankingM ap;

(53) compPossMap = compPossMap U {(compPoss,d)};

/*end For*/
/*end For*/
/*end For*/
(54) Return compPossM ap;

Algorithm 6 produces and ranks all composite possibilities whose property instance
triple has as subject or object a specific instance o. At first (Subpart A.1), for all possible
classes of the instance o, i.e. ¢, we take each property pr that has as domain the class c.
Then, we take all certain and possible instances o’ of the range of pr and we call Algorithm
5 for ranking each possible class instance triple of the composite possibilities in lines 9
and 16. At the end, we put each composite possibility along with its ranking value in the
map compPossMap.

Afterwards (Subpart A.2), for all possible classes of the instance o, i.e. ¢, we take
each property pr that has as range the class ¢. Then, we take all certain and possible
instances o' of the domain of pr and we call Algorithm 5 for ranking each possible class
instance triple of the composite possibilities in lines 26, 33 and 35. At the end, we put
each composite possibility along with its ranking value in the map compPossM ap.

Afterwards (Subpart B.1), for all certain classes of o, i.e. ¢, we take each property pr
that has as range the class ¢. Then, we take all possible instances o' of the domain of
pr and we call Algorithm 5 for ranking the possible class instance triple of the composite
possibility in line 44. At the end, we put the composite possibility along with its ranking
value in the map compPossMap.

Afterwards (Subpart B.2), for all certain classes of o, i.e. ¢, we take each property pr
that has as domain the class ¢. Then, we take all possible instances o' of the range of

pr and we call Algorithm 5 for ranking the possible class instance triple of the composite
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possibility in line 51. At the end, we put the composite possibility along with its ranking
value in the map compPossMap.

Algorithm 6 checks all those cases that produce composite possibilities whose prop-
erty instance triple has as subject or object an instance o and calls a ranking algorithm
(Algorithm 5), which is executed recursively and ranks a specific possible class instance

triple.
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Chapter 8

Non-backwards Compatible Schema

Evolution

This chapter defines and provides an algorithm for computing the set of possible
instance triples of a KB, in the non-backwards compatible schema evolution case.

A frequent situation, is the case where the next schema version Sk of a KB K’ is
not backwards compatible with Sk, i.e. Sk £ Sk (and consequently C(Sx) € C(Sk)),
however the instance triples in I are transferred to K', i.e. K’ = (Sk/, k), and K’ is a
(valid) KB. The elements of I refer to (usually leaf) classes and properties of Sk which
are preserved in K’ automatically by the semantics of RDF/S' [13]. The changes be-
tween Sk and Sk may include deletions of classes, deletions of properties, changes in the
subClassOf/subPropertyOf relations, or changes in the domain and range of properties.

Let K’ = (Sk, [x) be a KB. Obviously, it may hold that Bx € Bg. For example, if
(o type ¢) € Bi and ¢ € Ck \ Cxs then (o type ¢) & Bgr.

Our goal is to describe how the rules that are used to derive My are modified. Def. 7
defining the postulates II1 and I12, Prop. 5 defining the rules R1, R2, and R3, and Def.
8 defining Px+ remain the same. Prop. 4 essentially remains the same, but we have to
replace Mg \ C;(K') C My by (Mg \ C;(K")) N Bg: C M. This is because it may exist
an instance triple t € Mg but t € By, due to deletions of classes and properties in Sk.

Now, we add a new postulate I13 that applies to the non-backwards compatible schema

evolution case. Postulate 113 expresses that if a triple ¢ € By that existed in C;(K), does

Yf (0 type ¢) € K’ then (c type Class) € C(K') and if (o pr o') € K’ then (pr type Property) € C(K').
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not exist in C;(K”) then ¢ should go to M.

Def. 13 (NBC Evolution Postulates) 2

A transition (C;(K), Mg, Px) ~» (Ci(K'), Mg, Pgr) is consistent if, apart from the
postulates 111 and I12 of Def. 7, the following postulate is satisfied.

(T13) All elements t € By s.t. t € C;(K) \ C;(K') are placed to M. O

Note that postulate 113 is not needed in the backwards compatible schema evolution

case, because in this case it holds that C;(K) C C;(K").

Example 14 Consider the scenario shown in Figure 8.1, where Sk £ Sk-.

Suppose that {(John type Full-time Permanent Employee), (John type Technical Staff),
(John type Professor)} € Pk. Note that the specialization relationship University
Employee <., Permanent Employee, which exists in Sk, has been deleted in Sk:. Note
that (John type Permanent Employee) € C;(K), while (John type Permanent Employee)

¢ C;(K’). According to postulate II3, (John type Permanent Employee) should go to
M. O

The following proposition provides an equivalent form of postulate I13.

Prop. 13 In the context of a transition (C;(K), My, Px) ~ (C;(K'), M+, Pk), it follows
that: (C;(K)\ C;(K")) N Bgr C My (I13) iff C;(K) N Pxr = 0. O

Based on 113, we provide the following rules that produce (additionally to rules R1,
R2, and R3) elements of M, for the classes and properties that exist in K.

Prop. 14 (Certain Modification Inheritance Rules) For class and property instance

triples®:
(R4) If (o type c) € C;(K), ¢ <¥ ¢, and (o type ¢) ¢ C;(K’) then (o type ') € M.

(R5) If (o pr o) € Ci(K), pr' <. pr, and (o pr o') ¢ C;(K') then (o pr’ o') € M. O

Obviously, any element of Mg that will be derived by the rules R1-R5 respects the
following validity constraints of X-partition (Def. 5): Mg and C;(K') are disjoint, Mg

2NBC stands for non-backwards compatible.
®The relationships <}, and <}, hold in K.
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First Version — K

Deletion of
University Employee
as subClassOf
Permanent Employee

Second Version — K’

Instances of K (Inst )

Full-time
Permanent

Instances of K’ (Inst )

(John type Permanent Employee) € C(K)

(John type Full-time Permanent Employee) € Py
(John type Technical Staff) € Pg

(John type Professor) e Py

(John type Permanent Employee) ¢ Ci(K’)
(John type Permanent Employee) e My
(John type Full-time Permanent Employee)
(John type Technical Staff) € Py

(John type Professor) € Py

€ Mg

Figure 8.1: Certain Modification Inheritance Rules

is a lower set, and Mg contains all invalid property instance triples of Bg/. Essentially,

rules R1 — R5 produce the following set of instance triples:

My = Invalid(K") U SubTriples((Mg \ C;(K')) N Bgr) U

SubTriples((C;(K) \ C;(K")) N Bgr)

It is easy to see that the derivation of Mg by the rules R1, R2, and R3 of Prop. 5
and R4, R5 of Prop. 14, as well as the derivation of Pg: by Def. 8, yield an X-partition
that respects postulates II1 and 112 of Def. 7 and II3 of Def. 13. This is actually the

X-partition that satisfies all postulates II1, 112, and II3 and has the minimum set of

negatives.

Example 15 Continuing Example 14, according to Rule R4, (John type Permanent
Employee) should go to M. Further, according to Rule R4, (John type Full-time Permanent

Employee) must be moved from Py to M.

Now, similarly to the case of backwards compatible schema evolution, we will try to
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compute Py from K, Pk, and Sk without having to know or compute neither Mg nor
Mp. The envisioned process will be correct if it gives the same result (Pg) as Def. 8.
In general, Pgs can be produced by adding and deleting triples to/from P, i.e. we
can write Px: = (Pg \ Pk _per) U Pi_ada, where P _pe are the elements of Py that should
be deleted from it and Pg s49 are the elements that should be added to Pyx. In fact,
P pa = (Pk NC(K")) U (Px N Myg/)U{t € P | t € Bxs}*. This is because, the only
triples that can be deleted from Py belong to C(K') U Mg or do not belong to Bg:.
Regarding Pk _aqq, it should contain instance triples that involve the new classes and

properties. The following two Propositions indicate the instance triples to be added to

PK,Add-

Prop. 15 The same as Prop. 7 but now applies to KBs K = (Sk, Ix) and K’ = (S, I ),

where Sk and Sk are not necessarily backwards compatible. d

Prop. 16 The same as Prop. 8 but now applies to KBs K = (Sk, Ix) and K" = (S, I ),

where Sk and Sk are not necessarily backwards compatible. d

Below we present Algorithm 7, which takes as input a KB K, its set of possible instance
triples Pk, and a new set of schema triples Sk s.t. K’ = (Sk+, [) is a KB, and produces
the set of possible instance triples Py for the new KB K’. As we can see, the only
differences between Algorithm 7 and Algorithm 2 are the new parts C and F (see bold
lines).

Note that lines (5-8) of Algorithm 7 and lines (5-8) of Algorithm 2, as well as lines
(12-15) of Algorithm 7 and lines (10-13) of Algorithm 2 are the same. However, their
proof is different and can be found in the proof of correctness of the respective algorithms
(in Appendix A). This is because the second ontology version is not necessarily backwards
compatible with the first one and the instance triples (o type ¢3) or (o pre o) may belong
to C;(K') and not to C;(K’).

Part C (lines 9-10) concerns class instance triples of the form (o type ¢) that belong to
Py and refer to classes ¢ that have been deleted in K’. These class instance triples have

to be added to Px _pe set, as they do not belong to Bg:.

4Note that t ¢ By in the case that the class ¢ or property pr appearing in t have been deleted in K'.
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Algorithm 7 Produce_Possibilitiesypc (K, Px, Sk')

Input: a KB K, its set of possible instance triples Pk, and a new set of schema triples Sk s.t.
K = (SK/, IK)

Output: the set of possible instance triples Pg+ of the KB K’

(1) K'=(Sk,Ix);
(2)  Pr_ada =0
(3) Pr.pa=0
/* FOR CLASS INSTANCES: */
(4) NC=Ckg\Ck; /* new classes appearing in K’ */
/* PART A: New classes */
(5)  For all (¢ € NC) do /* for each new class */
(6) Py 4400 = Px_aqq U {(O type C/) | o € Instg N URI,
Ve e Ck s.t. ¢ <} cit holds that (o type ¢) € (C;(K') U Pk), and
(o type ') ¢ Ci(K')};
/* PART B: Existing classes */
(7)  For all (¢; € Ck) do
/* Moving class instance triples from Pk to Mg+ due to Rule R1 and Rule R4. */
(8) Pr pei = Px_pel U {(0 type Cl) € Pg | co € Ck, 1 S*l ca, and
(o type 2) & (Ci(K') U Pro)}:
/* PART C: Removing class instance triples from Px due to removed classes */
(9) For all ((otypec) € Pk) do
(10) If ¢ € Cks then Pk pe) = Pk _pel U {(0 type C)};
/* FOR PROPERTIES: */
(11) NP = Prg/ \ Prg; /* new properties appearing in K’ */
/* PART D: New properties */
(12) For all (pr’ € NP) do /* for each new property */
(13) Pr_ada = Pr_adga U{(opr' o') | o€ URI,
valid(o, pr', o', K'),
Vpr € Pri s.t.pr’ <5 prit holds that(o pr o') € (C;(K') U Pr)), and
(0 pr' o) & Ci(K")}:
/* PART E: Existing properties */
(14) For all (pr; € Prg) do
/* Moving property instance triples from Pg to Mg due to Rule R2 and R5. */
(15) Py _pet = Pr_pet U{(0opri10') € Pi | pra € Pri, pr1 <;,. pra,and
(0prs o) ¢ (Ci(K") U Prc)
/* PART F: Removing property instance triples from Px due to
removed properties, subject out of the domain, or object out of range */
(16) For all ((o pr o) € Px) do
(17) If pr ¢ Prk: or —valid(o, pr, o/, K') then
Pk pel = Pk pe1 U {(0 pr o')};
/* Moving instance triples from Px to C;(K’). */
(18) Pk _pet = Px_pet U (Px NCi(K'));
(19) Pk = Pk \ Px_pei;
(20) Pg = P+ U Pk_aqd;
(21) Return Pg/;
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Part F (lines 16-17) concerns property instance triples of the form (o pr o) that belong
to Py and refer to properties pr that either have been deleted in K’ or it holds that
—walid(o, pr, o, K'), possibly because the domain and/or range of pr has been changed
or specialization relationships between classes that involve (directly or indirectly) the
domain and/or range of pr have been deleted in Sgk/. These property instance triples
have to be added to Pk _pe set because they either do not belong to Bg: or belong to
Invalid(K").

In the case that a property, pr, that appears in Sk and Ik, is removed in Sk and
consequently the statements regarding its domain and range, to restore validity of K’ =
(Sk+, 1), we consider that the domain and range of pr, in K’, is the class Resource.
Consider, for instance, Figure 8.2. The property instance triple (o; pry 0y) € I leads to
an invalid KB because pr; and thus, also its domain and range are deleted in K'. If we

consider that the domain and range of pry, in K, is the class Resource then the validity

of K’ is restored.

1) Addition of /and pr; 2) Addition of G as domain(pr;)
3) Addition of H as range(pr;) 4) Deletion of Fand pr,
5) Deletion of D as domain(pr;)  6) Deletion of E as range(pr;)

7) Deletion of C as subClassOf A 8) Addition of A as subClassOf C
9) Deletion of D as domain(pr,)  10) Addition of G as domain(pr,)
11) Addition of / as subClassOf C  12) Addition of pr; as subPropertyOfpr,
13) Addition of G as subClassOf D 14) Addition of pr; as subPropertyOfpr,

Second Version — K’

First Version — K

o=

1
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1
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Instances of K’ (Inst )

Instances of K (Inst )

Figure 8.2: Non-Backwards Compatible Schema Evolution

Example 16 Consider Figure 8.2. Dashed rectangles denote deleted properties in Sk,
which appear in the instance triples of K’ = (S, Ix). Note that, even though property

pr; is removed in Sk, it still exists in K’ as an unconnected element because the instance
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triple (o4 pry 02) € Ik, and thus (pry type Property) € C(K'), according to the RDF/S

semantics [13]. The domain and range of pr; is the class Resource.

Suppose that Px = {(os type F), (06 type G), (o type J), (o7 type C), (o7 type D),

(o7 type F), (o7 type G), (o1 pr2 02), (05 Prs 04)}.
Executing Algorithm 7, step by step, we have that?:

1 (SK/ Ii);

(1) K

(2) Pg_ada =

(3) Px_per =

(4) NC = {I}

(6) Pk_add = Pr_aaa U {(01 type I), (o5 type I), (0s type I), (06 type I), (o7 type I)};
(8) Pr_pet = P_per U{(0s type G), (o6 type J)};

Note that {(os type D), (0o type A)} & (Px UC;(K")) and G <4 D, J <4 A hold in K’. So,
{(o¢ type G), (os type J)} are moved from Px to M. If fact, (og type G) is moved to
My due to Rule R1 and (o0g type J) is moved to My due to Rule R4.

(10) Px_per = Pr_pet U { (06 type F), (o7 type F)};

Note that class F' is removed in Sk.

(11) NP = {prs};

(13) Px_ada = Pr_aaa U {(03 prs 04)};

(15) Pk _pet = Pr_per U {(0s prs 04)};

Note that (o5 prs 04) € (Px UC;(K’)) and prs <, prs holds in K’. So, (os prs 04) is
moved from Pk to Mk (due to Rule R2).

(17) Pk _pet = Pr_per U {(01 pra 02)};

Note that in K', domain(pry) = G and oy & instg(domain(pry)).

(18) Pk_per = Pr_pet U {(07 type C)};

Note that Py _pe is updated by those triples that belong to Px and now belong to C(K”).
So, we have to remove them from Pp.

(19) Pir = Pic\ P par =

{(0s type F), (06 type G), (os type 3), (o7 type C), (o7 type D), (o7 type F), (or type G),
(01 prz 02), (05 Pr3 04)} \

®Note that (03 type D) € C;(K) due to derivation rule (v) of RDF/S semantics (Chapter 2).
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{(0s type F), (o6 type G), (os type J), (o7 type F), (o7 type C), (01 Prs 02), (05 Prs 0s)};
(20) Pgr = Pgr U Pk aga =

{(o7 type D), (o7 type G)}U{(os type I), (03 type I), (os type I), (06 type I), (o7 type I),
(03 prs 04)};

(21) Return Pgr; O

We would like to note that Algorithm 7 is more general than Algorithm 2 in the sense
that it can be applied even in the backwards compatible schema evolution case. However,
Algorithm 2 has less steps and is more efficient.

The following Proposition shows that Algorithm Produce_Possibilitiesypc (K, Pk, Sk)

18 correct.

Prop. 17 Let K = (Sk,Ik) and let Sk be the new schema version such that K’ =
(Sk+, Ii). Then, Pgr = Produce_Possibilities npo (K, Pi, Sk'). O

Prop. 18 The time complexity of Algorithm 7 is O(|Instk|? * S? x (S? + |Px|), where
S = max(|K|, |K']). 0
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Chapter 9

Implementation and Application

Issues

This chapter describes a prototype system based on the proposed approach, named
RIMQA, proposes a compact representation for possibilities, and provides experimental

results.

9.1 Prototype System: Architecture

We have implemented a proof-of-concept prototype, called RIMQA (RDF Instance
Migration Quality Assistant)!, and Figures 9.1-9.9 show some indicative screenshots of
the system. The application provides a menu bar, where initially two menus are enabled,
i.e. “File” and “Help”. The “File” menu provides the menu items “New Project”, “Open
Project”, “Save Project”, “Close Project”, and “Exit”, while the “Help” menu provides
a link to the web site of the tool that includes the downloadable tool (.jar file), a manual,
and a demo.

The user selects from the menu “File” of the menu bar either (a) to create a new RIMQA
project (see Figure 9.1) or (b) to open an existing RIMQA project. If the user selects (a),
i.e. to create a new project, a new form becomes visible (see Figure 9.2), where the user
gives the project name and selects the source ontology (.rdfs file) and a file that contains

instance descriptions (.rdf file) with respect to that ontology. Subsequently, the user

!The implementation was based on the RDF Main Memory Model of SWKM
(http://139.91.183.30:9090/SWKM /mainfiles/model.html).
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\é‘ RDF Instance Migration Quality Assistant (RIMQA) =iEl

File| statistics

Curate Help

New Project...

Open Project...

Cirl+Shift-M
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Save Project...

Close Project...
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Figure 9.1: RIMQA: Select to create a new RIMQA project
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Figure 9.2: RIMQA: Create a new RIMQA project and start the Curation Process
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selects the destination ontology (.rdfs file), which is a subsequent version of that ontology
and optionally the user selects a file with possible instance descriptions (.rdf? file) derived
from a previous migration with respect to the source ontology and one of its previous
versions. The user must give the namespace URI of the ontology versions (included in .rdfs
files). The system then automatically migrates the instance descriptions from the source
to the destination ontology. Then, it computes the possible instance triples, according to
Algorithm 2 (if the destination ontology is backwards compatible with the source one)
or Algorithm 7 (if the destination ontology is not backwards compatible with the source
one). After that, if the user presses the “Start Curation” button, the curation process
starts. After the instance migration and computation of the new possibilities, the rest
menus of the menu bar, i.e. “Statistics” and “Curate”, become enabled. If the user selects
the “Statistics” menu, he can see the most indicative statistics about the source and the
destination ontology, i.e. (a) the number of original classes, properties, (explicit) schema
triples, and instance triples in both ontologies, and (b) the number of added classes and
properties, and the number of added and deleted (explicit and inferred) schema triples in
the destination ontology. The user can also get information about the possibilities of the
source and the destination ontology, e.g. the number of original possible class instance
triples and possible property instance triples in both ontologies, and the number of added
and deleted possible class instance triples and possible property instance triples in the

destination ontology (see Figure 9.3).
To curate the resulting descriptions (“Curate” menu), RIMQA allows the user to select
one of the following five choices (see Figure 9.4):

1. Show All Possible Class Instance Triples (see Figure 9.5)3. In this case, all possible
class instance triples are listed and the user is able to add (by pressing the “Accept”
button) one or more possible class instance triples to the certain part of the extended
KB (eKB) *. Subsequently, the selected possible class instance triples and all their
supertriples are added to the certain part of the eKB and they are removed from

the multiple choice list and from the possible part of the eKB. The user can also

2Note that we use the RDF format in order to store possibilities, as they are instance triples.

3For a better graphical representation of the URIs, we replace the namespace URI by its namespace prefix
(wherever possible).

“Recall that eKB = (K, Px) (see Def. 9 in Chapter 5). We refer to K as the certain part of eKB and to P
as the possible part of the eKB.

73



|£| RDF Instance M{ |£| RIMQA : Statistics about Source and Destination Ontology @Elg
File Statistics q
RIMQA Projects { | 1. Information about Source and Destination Ontology :
3 Projects
o= 3 1st_Project! Source Ontology Destination Ontology |
Classes 114 128
Added Classes = 14
Properties 299 309
Added Properties - 10
Instance Triples 3790 3790
Schema Triples 1219 1273
Added Schema Triples - 78
Deleted Schema Triples 0|
I |
2. Information about Possibilities before and after Instance Migration :
Source Ontology Destination Ontology
Possible Class Instance Triples 1290 2540
Added Possible Class Instance Triples - 13250
Deleted Possible Class Instance Triples - 0
Possible Property Instance Triples 97| 194
Added Possible Property Instance Triples 97
Deleted Possible Property Instance Triples - 0
\Pnss'lhle Class and Property Instance Triples 1387 2734
I
Close
Figure 9.3: RIMQA: Statistics
|£| RDF Instance Migration Quality Assistant (RIMQA) l_l_lg":' =
File Statistics | Curate | Help
RIMQA Projects| Show All Possible Class Instance Triples...
] Projects Show All Possible Property Instance Triples...
o 3 1sL_Proje snow All Possible Instance Triples...
Select Instance associated with Possibilities... »| by its URI
Remove All Possibilities... by its Possible Classes

Figure 9.4: RIMQA: Curate the Instance Descriptions

remove (by pressing the “Reject” button) one or more possible class instance triples

from the possible part of the eKB. Subsequently, the selected possible class instance

triples and all their subtriples are removed from the multiple choice list and from
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%] RDF Instance Mg || RIMQA : Show All Possible Class Instance Triples o 0 [

File Statistics
RIMQA Projects
All Possible Class Instance Triples :
3 Projects
o= 1st_Project
Accept exres137 rdf-type exKB_201317_Class0 "
exres746  rdftype  exKB_201317_Class0
Reject exresT46 rdffype exKB_201317_Classh
exres771 rdftype exKB_201317_Class0 |]

exres680  rdftype  exKB_201317_Class0
Save eKB exres410 rdf-type exKB_201317_Class0
exres470  rdftype  exKB_201317_Class0
exresh50 rdftype exKB_201317_Class0
exres827 rdfitype exKB_201317_Class0
exres346 rdf-fype exKB_201317_Class0
exres529  rdftype  exKB_201317_Class0
exres125 rdftype exKB_201317_Class0
exres795  rdftype  exKB_201317_Class0
exres579 rdffype exKB_201317_Class0
exres274 rdftype exKB_201317_Class0
exres2r4 raftype exKB_201317_Classh
exresfid rdftype exKB_201317_Class0
exres161  rdftype  exKB_201317_Class0

exres|132 rdftype ex’KB_201317_Class0

. "_Class60_2
exres3i2d rdf-type exKB_201317_Class0
exres282  rdftype  exKB_201317_Class0
exres2g2 rdf-type exKB_201317_Class94
exres822  rdftype  exKB_201317_Class0
exres900 rdffype exKB_201317_Class0
exresd27  rdftype  exKB_201317_Class0
exresfo2 rdftype exKB_201317_Class0

O o e5092_ rattype _oxKB_201317 _Classs ,

Py T P AAARAT Alemon

Figure 9.5: RIMQA: Show all Possible Class Instance Triples

the possible part of the e KB. After that, the user selects to save the new certain and
possible part of the eKB (by pressing the “Save eKB” button). Note that, in order
to create a more functional user interface, we consider that the user can reject a set
of possibilities. According to Chapter 6, the explicit rejection of possibilities is not
supported, but it is an implicit action, which is derived from the no acceptance of
a set of possibilities from the user (recall the update of P;*’ in the case where the
user accepts a subset X (0) from a proposed set of possibilities U(0), i.e. P = P’
\ SubTriples(U(o) \ SupTriples(X(0)))). In the implemented system, if the user
accepts a set of possibilities, the system does not exclude from the possible part
of the eKB (i) the possibilities that were not selected and do not belong to the
supertriples of the selected possibilities, and (7i) the subtriples of the possibilities in
(i). The system just adds to the certain part of the eKB the selected possibilities
and their supertriples, and then removes only them from the multiple choice list and
from the possible part of the eKB (i.e. P’ = P \ SupTriples(X(0))). Accordingly,

if the user rejects a set of possibilities, the system removes the selected possibilities
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and their subtriples from the multiple choice list and from the possible part of the
eKB (i.e. P = Pg \ SubTriples(X(0))).

. Show All Possible Property Instance Triples (similar graphical interface to the above
choice but for possible property instance triples).

. Show All Possible Instance Triples (similar graphical interface to the above choice
but for all possible (class and property) instance triples).

. Select Instance associated with Possibilities (a) by its URI or (b) by its Possible

Classes.

" [£] RDF Instance Migration Quality Assistant (RIMQA) == = |

File Statistics Curate Help
RIMQA Projects

3 Projects
o~ [ 1st_Project

| %] RIMQA : Select Possible Instance (by its URT) = | (] |

Instances associated with possibilities :

4

Select instance

Select instance
ex:rres3os
ex:ress3
exires268
ex:ressh
ex:res702
ex:res8ss
ex:res7s0

[T

4

View ble cl of the selected inst: | Number of possible triples : SE

View possible property instance triples of the selected instance (as subject:|

View possible property instance triples of the selected instance (as object) |

ite possibilities of the i | Close

View

Figure 9.6: RIMQA: Select a Possible Instance (by its URI)

If the user selects (a) then a new form becomes visible (see Figure 9.6) and the set
of all instances that are associated with possibilities are listed. If the user selects
(b) then a new form becomes visible (see Figure 9.7) and the set of all possible
classes are listed. The user selects one of them, and if he/she presses “View Possible
Class Instances”, then all possible instances associated with the selected class are
computed and shown to the user, and the user selects one of them. Then, the buttons
“View possible classes of the selected instance”, “View possible property instance
triples of the selected instance (as subject)”, “View possible property instance triples

of the selected instance (as object)”, and “View composite possibilities of the selected
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-
| £| RDF Instance Migration Quality Assistant (RIMQA)

=3 = ]

File Statistics Curate Help

RIMQA Projects

] Projects
o~ = 1st_Project

| £| RIMQA : Select Possible Instance (by its Possible Classes)

= | B ||

Classes associated with possibilities :

ex:KB_201317_Class47

Select class

ex:KB_201317_Class84
ex:KB_201317_Class18
ex:KB_201317_Class87
lex:KB_201317_Class47T
ex:KB_201317_Class42
ex:KB_201317_Class94
ex:KB_201317_Class67T

View Possible Class Instances

Possible Instances of the selected Class :

ex:res350

View possible classes of the selected instance

View possible property instance triples of the selected instance (as subject) |

View possible property instance triples of the selected instance (as object) |

View composite possibilities of the selected instance

Humber of possible triples : =

Close

Figure 9.7: RIMQA: Select a Possible Instance (by its Possible Classes)

instance” become enabled. In both cases (a) and (b), the user can select optionally

the number of possible class instance triples or possible property instance triples

(associated with the selected instance) that wants to be shown®. After that, he/she

selects one of the following four choices:

o View possible classes of the selected instance. If the user presses this button,

then a new form is visible (see Figure 9.8). All possible classes of the selected

instance are shown ranked to the user in a multiple choice list, where the user

can add (by pressing the “Accept” button) one or more possible class instance

triples to the certain part of the eKB or the user can remove (by pressing the

“Reject” button) one or more possible class instance triples from the possible

part of the eKB. If the user selects to add one or more possible classes to the

set of certain classes of the selected instance (by pressing the “Accept” button),

then the possibilities are recomputed, i.e. the suggestions in the multiple choice

list are updated, which means that the selected classes and their superclasses

are removed from the multiple choice list and the corresponding possible class

®Note that the possible classes, regarding the selected instance, with rank value equal to 1 are shown to the

user without regard to the given number.
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instance triples are removed from the possible part of the eKB (because they
now belong to the certain part of the eXB). The drop-down list of the form
which contains all the explicit certain classes of the selected instance is updated
analogously. If the user selects to remove one or more possible classes from the
set of possible classes of the selected instance (by pressing the “Reject” button),
then the possibilities are recomputed, i.e. the suggestions in the multiple choice
list are updated, which means that the selected classes and their subclasses
are removed from the multiple choice list and the corresponding possible class
instance triples are removed from the possible part of the eKB. After that, the
user selects to save the new certain and possible part of the eKB (by pressing

the “Save eKB” button).

| 5| RDF Instance Migration Quality Assistant (RIMQA) [=[E] & J
File Statisticy [£] RIMQA : Select Possible Instance (by its Possible Classes) |EIH|
RIMQA Projec ) B

Classes associated with possibilities :
] Projects
o= [ 1st_Pro| |e:KIKB_ZU131T_C|ﬂSS4T ‘v‘
|£: RIMQA : Accept/Reject possible classes associated with an instance =5
Selected Instance: ex:res350
Certain Classes : ex:Class47 | hd ‘

Possible Classes : exKB_201317_Class0

exKB_201317_Classd7
Accept

Reject
Save eKB

Push the "Accept” button if you want to add a possible class to the certain classes of the selected instance
Push the "Reject” button if you want to remove a possible class from the possible classes of the selected instance

Push the "Save eKB" button if you want to save your changes and update the extended KB (eKB) Close

Figure 9.8: RIMQA: View Possible Classes of the selected Instance

View possible property instance triples of the selected instance (as subject) (sim-
ilar graphical interface to the above choice but for possible property instance
triples of the selected instance, as subject).

View possible property instance triples of the selected instance (as object) (sim-
ilar graphical interface to the above choice but for possible property instance

triples of the selected instance, as object).
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o View composite possibilities of the selected instance. If the user presses this

button, then a new form is visible (see Figure 9.9), where the user can add

a property instance triple to the certain part of the eXB if and only if he/she

accepts one or two possible class instance triples to be added to the certain part

of the eKB, as well (as described in Chapter 7). This is achieved by pressing

the “Accept” button.

5. Remove All Possibilities. The user selects to remove all possibilities (see Figure 9.4).

r
£, RDF Instance Migration Quality Assistant (RIMQA] |EIM|
9
=
File Statistics Curate | (4| RIMQA : Select Possible Instance (by its URI) == = |
RIMQA Projects | |
£ RIMQA : Accept Composite Possibilities associated with an instance @EIQ
P P
Selected Instance: ex:resy50
Composite Possibilities :
exeres739  ex:kKB_201317_Prop85  ex:res750 -
EXiTES rdfitype ex:KB_: ’_Class =
750  rdf: KE_201317_Class70 L
-
exwres737  ex:kKB_201317 Prop85  exires750 -
O ex:res750  rdfitype ex:KB_201317_Class70 =
|
exires732  ex:kB_201317_Prop85  ex:ires7s0 -
exires750  rdfitype ex:KB_201317_Class70 |
=
|
ex:res735  rdfitype ex:KB_201317_Class32 =
D exwres735  ex:KB_201317 Prop85  exires750 =|
ex:res750  rdfitype ex:KB_201317_Class70 =
-
ex:res734  rdfitype ex:KB_201317_Classd2 -
ex:res734  ex:kB_201317 Prop85  ex:res750 ;
exires750  rdfitype ex:KB_201317_Class70 =
-
Accept Save eKB Close

Figure 9.9: RIMQA: View Composite Possibilities associated with the selected Instance

Note that in the case where the user selects to save the eKB (by pressing the “Save

eKB” button), we store the new instance triples, i.e. the certain part of the eKB, in a .rdf

file, called “newCertainModel.rdf” and the new possible instance triples, i.e the possible

part of the eKB, in a .rdf file, called “newPossibleModel.rdf”.

Future extensions of the implementation would support a graphical visualization of

the suggested possibilities.



9.2 A Compact Representation for Possibilities

We can greatly reduce the size required for the possible instance triples by exploiting
various properties that hold. For instance, if two classes, say c¢; and ¢, are possible
classes for an instance o and it holds ¢; <}, ¢, then all classes between, i.e. all ¢ such that
o1 < ¢ < co, are also possible classes for o (recall Lemma 2(1)). This allows devising
storage representations based on intervals over the reflexive and transitive reduction of
the <7, relation. For example, if it holds ¢; <g 3 <y ¢35 <o ... <g 10 and all of them are

possible classes for o then we can represent them by the interval [¢1, ¢19].

If for a given instance, o, there are several intervals having a common end (it is more
probable to have a common right end), then we could save space by adopting a more
compact representation, e.g. the intervals [c,c19] and [eg, ¢10] can be represented by
[{c1,e2}, €10]. Moreover, if we have a compact representation of the form [{cy, ..., ¢k}, ]
and {cy,...,c,} are the leaves of the hierarchy rooted at ¢ then we can even omit their
representation and adopt a more declarative method, like [*, ¢|, meaning that all subclasses
of ¢ are possible classes for 0. In case where a class ¢ is a possible class of an instance o
but there are not subclasses of ¢ or superclasses of ¢ that are possible classes of o then the

corresponding compact representation is [c, ¢|, indicated by a point interval [¢], for short.

Accordingly, if two property instance triples, say (o pry o') and (o prg o), are possible
property instance triples for two instances o and o' and it holds pr; <* pry then, for all
properties pr’ such that pry <5 pr’ <* pry, (o pr’ ') is also a possible property instance
triple for o and o’ (recall Lemma 2(2)). This allows devising storage representations based
on intervals over the reflexive and transitive reduction of the <7 relation. For example,
if it holds pri <, pro <p pr3 <pr ... <p prio and (o pr; o), for all i € {1,...,10}, is a
possible property instance triple for o and o/, then we can represent these possible instance
triples by the interval [pry, prig]. The same storage policy (intervals with the same right

end), as in class instance triples above, can be followed in the case of property instance

triples.
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Figure 9.10: Object-centered Compact Storage Policy for Possible Class Instance Triples

pointers

instances pointers AN
(01,0,) — \\ intervals
(01,02 AN [a]
(02!03) ~d [{ bv cC, d }v e]
(03v04) ~ - [{fv g}v h]
\ [*i]
(04,05) ~ [~ -
\\ /

Figure 9.11: Object-centered Compact Storage Policy for Possible Property Instance Triples

9.2.1 Data Structure

Figure 9.10 illustrates a data structure for the compact representation, which follows
an object-centered storage policy (beneficial for the requirements of the life cycle manage-
ment) regarding classes. As we can see, on the left there is a list of all the instances,
lexicographically ordered. In the middle, there is a list of pointers that each points to an
interval on the right (where all the intervals of the compact representation of possibilities
are found). Note that every instance o on the left points to a consecutive list of pointers in
the middle and thus, to a list of intervals on the right. For example, instances o4 and o4, in
Figure 9.10, point to the same intervals, i.e. the first interval [*, A] and the second interval

[{B,C,D},E]. Figure 9.11 illustrates the corresponding data structure for properties. Note
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that two or more pairs of instances may have the same compact representation, so we
make those pairs of instances point to the same compact representation. For example,
(01,02) and (o4, 03), in Figure 9.11, point to the same intervals, i.e. the first interval [a]

and the second interval [{b, c,d},e].

9.2.2 Benefits and Shortcomings

The main advantage of adopting the compact representation described above is the
space saving that we could achieve.

However, if we execute Algorithms 2 and 7 using the compact representation of pos-
sibilities, we can see that the cost of looking for a specific possible instance triple in a
compact representation is higher than in an explicit representation of all possibilities.
The time complexity of looking for an instance triple in an explicit representation of pos-
sibilities is O(loga(| Pk|)), if possibilities are lexicographically sorted and binary search is
used. The time complexity of looking for a possible instance triple in a compact repre-
sentation depends on several factors, presented below.

Let P be the compact version of Pg. Let Prompact(0) be the intervals and
| Peompact(0)| be the number of intervals regarding an instance o. If int is an interval
then we define its degree, denoted by degree(int), as the number of classes/properties
(other than x) that occur in int, e.g. degree([{a,b,c},d]) = 4. If int is a point interval
then degree(int)=0. Let tsuren(0) be the time for locating an instance o in the list of
lexicographically ordered instances (see Figure 9.10). Let tseqren(0, 0') be the time for
locating a pair of instances (o, 0') in the list of lexicographically ordered pairs of instances
(see Figure 9.11). Let t}, . be the time for checking a subsumption relationship be-
tween classes. Let ¢&,, -, . be the time for checking a subsumption relationship between
properties.

t .
PP requires locat-

To decide whether a class instance triple (o type ¢) belongs to
ing the instance o and checking every interval which is pointed to by o, i.e. the intervals
in Prompact(0). So, the time complexity of looking for a possible class instance triple is as
follows:

|Pcompact (O)|

?
Time((o type c) € P™*Y) = toearen(0) + Z degree(int;) * tSupcnecks
i=1
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where Prompact(o) = {int1, ..., intx} and k = |Popmpact(0)]-

The above formula calculates the time needed for answering if a specific class instance
triple (o type c) is contained in the compact representation of possibilities. Suppose that
P ompact(0) = {[{ca, c3}, c1]}. To answer this question, at first, we have to find the instance
o in the lexicographically ordered list of instances. Then, we have to scan all intervals of
o until we find one, say [{c,, cs}, ¢y, such that ¢ is subclass of ¢, and c is superclass of

at least one of the classes in {c,, cs}.

Example 17 Consider Figure 9.10. Suppose that we want to find out if the class instance
triple (o; type K) belongs to the compact representation of possibilities. Assume that
C < Kand K <}, E holds. At first, we find o; from the list of instances and then we check
the intervals that oy points to, i.e. [+, A] and [{B, C, D}, E]. Thus, we first check if K <} A
holds. Since this is not true, we check if K <! E and if (B <}, K or C <!, K or D <}, K).

Since these conditions hold, (o; type K) is a possible class instance triple. O

The time complexity tseqren(0) for locating an instance o in the list of lexicographically
ordered instances, if binary search is used, is in O(logs(|Instk|)). The time complexity
of class subsumption checking ¢¢, -, .., if the DFS or BFS graph traversal algorithms are
used (on the graph formed using <. relationships), is in O(| <. |). However, given that
most RDF triple stores currently use labeling schemes for enconding transitive subsump-
tion relationships, ¢S}, ... can be even in O(1) (see [37, 16]).

To decide whether a property instance triple (o pr o) belongs to Py

, requires
locating the pair of instances (o0,0’) and checking every interval which is pointed to by
(0,0'), i.e. the intervals in P.mpact(0,0'). So, the time complexity of looking for a possible

property instance triple is as follows:

|Pcompact(0»0/)|
?
Time((o pr o') € Pf?mpad) = tsearen(0,0') + § degree(int;) * 15, cpecn:
1=1

where Prompact(o, o) = {int1, ..., inty} and k = | Peompact(o, o) -
The above formula calculates the time needed for answering if a specific property
instance triple (o pr 0') is contained in the compact representation of possibilities. Suppose

that P.ompact(0,0) = {[{pr2, prs}, pr1]}. To answer this question, at first, we have to
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find the pair of instances (0, 0’) in the lexicographically ordered list of pairs of instances.
Then, we have to scan all intervals of (o, 0) until we find one, say [{pr2, prs}, pri], such

that pr is subproperty of pry and pr is superproperty of at least one of the properties in

{pr27 pT’g}-

Example 18 Consider Figure 9.11. Suppose that we want to find out if the property
instance triple (o5 a 05) belongs to the compact representation of possibilities. At first,
we find (04, 02) from the list of pairs of instances and check the first interval that (o4, 05)
points to, i.e. [a]. Since the property in this point interval is a, it follows that (o5 a 03)

is a possible property instance triple. O

The time complexity tseqren(0,0’) for locating a pair of instances (o0, 0’) in the list of
lexicographically ordered pairs of instances is in O(logs(|Instg|*)), if binary search is
used. The time complexity of property subsumption checking t%, -, . is in O(| <, |), if
the DFS or BFS graph traversal algorithms are used. However, if labeling is already in

place then ¢, -, . is even in O(1), as mentioned above.

9.3 Experimental Evaluation

We have conducted an experimental evaluation whose objectives is to (a) measure the
size in triples of the computed Pk, and (b) measure the time required to compute Py for
investigating the applicability of this method to large datasets. Regarding datasets and
measurements, we adopt the following methodology. For each dataset we get a sequence
of schema versions, specifically a sequence of the form Sk,, ..., Sk, , where each Sk, is a
set of schema triples, and a set of instance triples I w.r.t. the first version of the schema,
i.e. Sk,. Subsequently, we migrate Ix to each of the subsequent versions of the schema
and for each one we compute the corresponding Pp,. Specifically, we do the migrations
Sk, , — Sk, forall i = 1...n. We use two scenarios: in the first, we consider that Px, , = ()
and thus the computation of Py, depends only on the current migration, i.e. Sk, , — Sk,
while in the second Pk, , has been specified from the migration Sk, , — Sk,_, (or former

migrations).
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The implementation is written in Java in the context of SWKM (Semantic Web Knowl-
edge Middleware)®, and all experiments were carried out in an ordinary laptop with pro-
cessor Pentium(R) Dual-Core CPU T4200 @2.0 Ghz, 2 GB Ram, running Windows Vista.
One important implementation detail is that we do not have to compute the closure of
any of the involved KBs. Instead we check whether a particular triple belongs to the

closure and this is done efficiently by exploiting appropriate labeling schemes [4].

Versions of Music Ontology (.S;)

v.7 v.10 v.12 v.18 v.6 v.28 v.28 v.13

.08 .08 .08 .09 12 .07 .10 .02

.2007 | .2007 | .2007 | .2007 | .2007 | .2008 | .2008 | .2010
|Cs] 113 94 93 93 94 86 124 95
|Ci| — 7 0 0 1 2 39 15
|Ci—1]
| Prs| 147 167 167 167 174 160 160 183
|Pry| — 22 0 0 14 3 1 26
|Prii
|Z;| 26 26 26 26 26 26 26 26
|Si] 1059 1266 1266 1259 1269 1115 1153 1302
|Ss| — 207 0 -7 10 -154 38 149
|Si-1]

Table 9.1: |Cy|, |Pr;|, |I;] and |S;| for each i Music Ontology version

9.3.1 Real Data Set

We used the RDF/S versions of Music Ontology” which is a formal framework for
dealing with music-related information on the Semantic Web, including editorial, cul-
tural and acoustic information. In our experiments, we used the following successive
versions: v.7.08.2007, v.10.08.2007, v.12.08.2007, v.18.09.2007, v.6.12.2007, v.28.07.2008,
v.28.10.2008 and v.13.02.2010. Since each version is not backwards compatible with the

previous ones (although it is migration compatible), Algorithm 7 is used.

Table 9.1 shows the number of classes (i.e. |C;|), the new classes added from Sk to
Sk (ie. |Ci| —|Ci-1|), the number of properties (i.e. |Pr;|), the new properties added
from Sk to S+ (i.e. |Pr;| —|Pr;—1]), the number of explicit instance triples (i.e. |Ix|)
that are migrated and the number of explicit schema triples (i.e. |Sk|) for each version

of the Music Ontology. The last line shows the size difference in schema triples between
S K and S K-

Shttp://athena.ics.forth.gr:9090/SWKM
"http://www.musicontology.com
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| Px/| Sizes (for migrations where Px = ()
| Py | v.7 v.10 v.12 v.18 v.6 v.28 v.28
changes | .08 .08. .08. .09. 12, .07. .10.
at each | .2007 | 2007 | 2007 2007 | 2007 | 2008 2008
part of | — — — — — — —
Alg. 7 v.10 v.12 v.18 v.6 v.28 v.28 v.13
.08. .08. .09. 12, .07. .10. .02.
2007 | 2007 | 2007 | 2007 | 2008 2008 2010
A 0 0 0 +21 +34 +289 | +153
D 0 0 0 0 0 0 0
[ TOTAL [0 [0 [ 0 [21  [34 [289 [153 |

Table 9.2: | Px/| Sizes for Music Ontology migrations. |Px| =0

| Pxc/| Sizes (for migrations where Px # ()

| Prc | v.6.12.2007 v.28.07.2008 | v.28.10.2008

changes — — —

at each | v.28.07.2008 | v.28.10.2008 | v.13.02.2010

part of | Pk Px Pk

Alg. 7 (v.18.09.2007 | (v.6.12.2007 (v.28.07.2008
— — —
v.6.12.2007) v.28.07.2008) | v.28.10.2008)

| Px | 21 34 289

A +34 +289 +153

B 0 0 0

C 0 -17 -289

D 0 0 0

E 0 0 0

F 0 0 0

Line 18 0 0 0

[ TOTAL [ 55 | 306 | 153 |

Table 9.3: | Px/| Sizes for Music Ontology migrations. |Px| # 0

As we can see in Table 9.1, version v.18.09.2007 has less schema triples than version
v.12.08.2007 and version v.28.07.2008 has less schema triples than version v.6.12.2007.
This means that a number of deletions has taken place from v.12.08.2007 to v.18.09.2007
and from v.6.12.2007 to v.28.07.2008, accordingly.

Number of Possible Triples. Table 9.2 shows the number of possible triples (i.e. |Pgk/|)
produced during the migration from Sk to Sks, assuming that Px = (), while in Table
9.3 we consider that Px # () for each migration from Sk to Sks. Specifically in Table
9.3, Pk is the one derived by the previous migration. The last lines of these tables show
the final |Pg/| for each migration Sx — Sk/. As we can see in Table 9.2, during the
migrations v.7.08.2007 — v.10.08.2007, v.10.08.2007 — v.12.08.2007, and v.12.08.2007
— v.18.09.2007, Algorithm 7 does not return any possible triples. Moreover, note that

the only possible triples that are produced, are those after the execution of part A of
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Algorithm 7, i.e. after the update of Py as a consequence of the new classes added from
Sk to Sk. Note that in Table 9.2, only the parts A and D of Algorithm 7 are shown,
because the rest parts do not reduce the possible triples, since Px = (). In Table 9.3, we
can see that possible triples are produced again only by part A and we also have deletions

by part C of Algorithm 7.

Ezecution Times. Tables 9.4 and 9.5 show the execution times, corresponding to the
scenarios of Table 9.2 and 9.3, respectively. We can see that the migration takes just
some milliseconds and mainly depends on the number of the new classes (part A) added

from Sk to Sk.

Pg Execution Times (for migrations where Pk = )

Times v.7 v.10 v.12 v.18 v.6 v.28 v.28
for .08. .08. .08. .09. 2. .07. .10.

parts 2007 | 2007 | 2007 | 2007 | 2007 | 2008 | 2008
of Alg. — — — — — — —

7 v.10 v.12 v.18 v.6 v.28 v.28 v.13
.08. .08. .09. 2. .07. .10. .02.

2007 | 2007 | 2007 | 2007 | 2008 | 2008 | 2010

A 11.0 4.7 0.6 3.3 4.2 88.5 23.8
D 4.7 0.1 0.1 3.9 34 1.3 4.2

[ TOTAL [ 157 [48 Jo07 [72 [76 [898 [27.7 |

Table 9.4: Execution Times (in msec) for Music Ontology migrations for |Px| =0

Py Execution Times (for migrations where Px # (Z))
Times v.6.12.2007 v.28.07.2008 | v.28.10.2008
for each | — — —
part of | v.28.07.2008 | v.28.10.2008 | v.13.02.2010
Alg. 7 Px Pk P
(v.18.09.2007 (v.6.12.2007 (v.28.07.2008
— — —
v.6.12.2007) v.28.07.2008) v.28.10.2008)
A 3.5 167.0 210.9
B 0.6 0.5 1.8
C 0.1 0.5 4.0
D 0.8 0.1 4.0
E 0.2 0.2 0.3
F 0.1 0.1 0.1
LINE 18 0.5 0.6 4.6
[ TOTAL [538 | 169.0 | 225.7 |

Table 9.5: Execution Times (in msec) for Music Ontology migrations for |Px| # 0
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9.3.2 Synthetic Data Set

To conduct experiments over larger datasets and backwards compatible ontologies, we
created and used one synthetic data set. Specifically, using the synthetic KB generator
described in [34], we created a KB, v.K1, with 100 classes and 300 properties. To obtain
a schema whose features resemble those of real ones, the subsumption relation follows a
power law distribution. Specifically and accordingly to the metrics used in [35], we set
the power-law exponent to 0.5 for the total-degree VR® function of the property graph
and to 1.7 for the PDF? function of the descendants distribution. The depth of the class
subsumption hierarchy in the schema is 7. Subsequently, we created three subsequent
schemas of v.K1, namely v.K2, v.K3 and v.K4; v.K2 was derived by adding to v.K1
14 new classes as specializations to randomly selected leaf classes of v.K1 and similarly
10 new properties as specializations to randomly selected properties of v.K1; v.K3 was
derived by adding to v.K2 14 new classes as specializations to randomly selected leaf
classes of v.K2 (where 11 of them existed also in v.K1) and similarly 10 new properties as
specializations to randomly selected properties of v.K2 (where 9 of them existed also in
v.K1); v.K4 was derived by adding to v.K3 14 new classes as specializations to randomly
selected leaf classes of v.K3 (where 13 of them existed also in v.K1) and similarly 10 new
properties as specializations to randomly selected properties of v.K3 (where 9 of them

existed also in v.K1).

For each class of v.K1 we created 100 instances, while for each property of v.K1 we cre-
ated 10 property instance triples, among randomly selected instances of the corresponding
domain and range classes. Table 9.6 shows the features of these schemas and the number

of instance triples.

Number of Possible Triples. Since each version is backwards compatible with the previous
ones, Algorithm 2 is used. Table 9.7 shows the number of possible triples (i.e. |Pg:|)
produced during the migration from Sk to Sgs, assuming that Px = (), while in Table
9.8 we consider that Py # () for each migration from Sk to Sks. Specifically in Table 9.8,

Pk is the one derived by the previous migration. The last lines of these tables show the

8VR stands for Value vs Rank (it measures the relationship between the i*" biggest value and its rank i,
assuming a descending order).
9PDF stands for Probability Density Function.
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Versions of Synthetic Data (.S;)

vKl [vK2 [ vK3 [vK4
ICi 101 | 115 [ 129 | 143
ICi = Cia] 14 14 14
|Pry] 289 | 209 | 309 | 319
|Pri| —[Pri| 10 10 10
|1;] 3790 3790 3790 3790
|S:] 1166 1219 1273 1338
|Si| — |Si—1] 53 54 65

Table 9.6: |C|, |Pri, |1;] and |S;| for each ¢ version of the Synthetic data set

final | Pg/|, for each migration Sx — Sk

| P/ | Sizes (for migrations where Px = )
|Pk/| changes at | vKI — | vK2— | v.K3 —
each part of Alg. 2 | v.K2 v.K3 v.K4
A +1290 4230 +150
C +97 +87 +86
| TOTAL [ 1387 [ 317 | 236 |

Table 9.7: | Px/| Sizes for Synthetic Data migrations. |Px| =0

Note that in Table 9.7, migration v.K2 — v.K3 and v.K3 — v.K4 produce less possible
class instance triples than v.K1 — v.K2. This is because some of the added classes from
v.K2 to v.K3 (or from v.K3 to v.K4 respectively) are subclasses of classes added from
v.K1 to v.K2 (or from v.K1 to v.K2 and from v.K2 to v.K3 respectively), which have no

instances (although the rest classes have instances).

| P/ | Sizes (for migrations where Px # )
|Pgs| changes | v.K2 — v.K3 | v.K3 — v.K4
at each part | Pk Px
of Alg. 2 (v.K1 — v.K2) | (v.K2 — v.K3)
| Px| 1387 317
A +1250 +150
B 0 0
C +97 +86
D 0 0
LINE 14 0 0
[ TOTAL [ 2734 [ 553 |

Table 9.8: | Px/| Sizes for Synthetic Data migrations. |Pg| # 0

Ezecution Times. Tables 9.9 and 9.10 show the execution times, corresponding to the
scenarios of Table 9.7 and 9.8, respectively. We can observe times that range from 4
seconds to 7 minutes and the cost mainly depends on the number of new classes (part A)

and on the number of new properties (part C).
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Py Execution Times (for migrations where Px = )
Times vKlT — |vK2 — |vK3 —
for parts | v.K2 v.K3 v.K4
of Alg. 2
A 1.3 3.0 1.7
C 4.8 3.7 2.6
[ TOTAL [ 6.1 | 6.7 | 4.3 |

Table 9.9: Execution Times (in sec) for Synthetic Data migrations for |Px| =0

Pg Execution Times (for migrations where Pk # ()

Times for | v.K2 — v.K3 | v.K3 — v.K4

each part of | Pk P

Alg. 2 (v.K1 — v.K2) | (v.K2 — v.K3)

A 284.7 52.2

B 1.4 0.03

C 111.9 38.3

D 0.3 0.2

LINE 14 0.04 0.01

| TOTAL | 3985 | 90.74 |

Table 9.10: Execution Times (in sec) for Synthetic Data migrations for |Pg| # 0

Since migration is not an every day task, we can say that the computation of possi-
bilities after a migration takes acceptable time (also take into account that we used an

ordinary laptop).

9.4 Other Applications

Software Engineering. Our approach can be used also in object-oriented software
engineering for upgrading libraries. Commonly, custom software relies on several libraries
usually bundled in the form of jars. Most libraries evolve over time and their versions in
most cases are backwards compatible. A new version of a library usually offers new sub-
classes of existing classes which provide improved/diversified functioning while respecting
the ADT (Abstract Data Type) of the superclass. If the new version of a library is
backwards compatible with the previous version, replacing the old version with the new
version is enough for upgrading a software that depends on that library. However, this
does not allow exploiting the new subclasses of the library: the user has to refer to textual
descriptions and release notes in order to identify the new classes/features. An IDE (Inte-
grated Development Environment) could adopt our approach for aiding the developer to
upgrade his code. Specifically, it could be used for providing suggestions for refinements

for those classes that are used by the code, i.e. those objects that instantiate library
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classes, and this can be done gradually by the lifecycle process. We should also mention
that RDF has been proposed as a data structure for software engineering. As a brief and
very rough example, and assuming a Java library, each Java class corresponds to an RDF
class, each public instance variable of a class A with name v and type B corresponds to
a property v with domain(v) = A and range(v) = B, each object o that instantiates a

class A corresponds to a class instance triple (o type A), etc.
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Chapter 10

Sequences of Transitions

In this chapter, we discuss how the sequential migrations between ontology, i.e. S;,
Sit1, -y Sn_1, Sp can lead to a different set of possibilities from the one-step migration
from the first to the last ontology, i.e. from S; to S,. We introduce how the notion
of “negative prejudgement, due to lack of the final (forthcoming) knowledge” affects this
different result and we discuss how the user/curator can avoid it.

Let Ky = (S1,11) be a KB and let S,,...,S, be a sequence of new schema versions,
resulting to KBs K; = (5;, I1), for i = 2, ...,n. Now consider the one-step migration of I

from the first (S7) to the last (S,,) schema, i.e. consider the transition:
(Cl7 M17 Pl) ~ (Cn7 MTH Pn)

where C; is based on S; and I;, and suppose that P, = 0 .
Now consider a sequential migrations scenario where I is migrated to Ss, then to Ss,

and so on, up to 5,. So, the scenario consists of the following sequence of n—1 transitions:

(Cl,M1,P1) ~ ( /27M£’P2,)

s ( ! M/ Pl )

n—1» n—1+* n—1

~ (. M, )

Let us now discuss the relationship between the outcome of the one-step migration,

ie. (Cpn, M,, P,), with respect to the final outcome of the sequential migrations, i.e. with

1To keep notations simple, here and below we omit the subscripts K from the notations of C, P and M.
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(Cl., M/, P"). The main points are:
(a) C, = C,,, i.e. the certain parts of the resulting partitions are the same. This is due to
postulate 111 of Def. 7.
(b) The rest parts of the partitions (i.e. M and P) can be different.

Point (b) can be made evident through a small example, like that of Figure 10.1. The
last row (III) shows the one step migration. The first and the second rows show two
different sequential migrations that lead to the same final schema. Notice that the first

sequence gives the same result with the one step migration, however the second does not.

(1)

(I

()

Figure 10.1: Different sequences of transitions

[Insight]

We could say that this phenomenon is a kind of “negative prejudgement, due to lack of
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the final (forthcoming) knowledge”. In our case, the negative prejudgement is realized by

postulate I12.

Example 19 (Real World Example) A human could also do the same kind of reason-
ing. For instance, suppose that A, B, C' and o of Figure 10.1 correspond to:

A: Animal

B: Human

C: Give Birth to Live Youngs (for short, Give Birth)

and o corresponds to a person, called Peter. In KB K7, Peter is an instance of Human and
assuming that the MSA holds, it follows that M; = {(Peter type Animal)}. Therefore,
P =.

In scenario (I), in KB K, the relationship Human <, Animal is added. Then, since
none of the rules R1 — R5 apply, it follows that P, = {(Peter type Give Birth)}. In KB
K3, the relationship Give Birth <. Animal is added. Then again, since none of the rules
R1 — R5 apply, it follows that P, = {(Peter type Give Birth)}.

Consider now scenario (II), where in KB K3, the relationship Give Birth <, Animal is
added. Then, Rule R1 applies and My = {(Peter type Animal), (Peter type Give Birth)},
while P, = (). In KB K3, the relationship Human <. Animal is added. It holds (Peter type
Animal) € C3. Additionally, it holds that M, = {(Peter type Give Birth)}, due to Rule
R1. Obviously, P; = (.

Consider now scenario (IIT), where in KB K3, the relationships Human <, Animal and
Give Birth <, Animal are added. Then, since none of the rules R1 — R5 apply, it follows
that P; = {(Peter type Give Birth)} (as in scenario (I)). O

[Suggested Policy]

If no user feedback is expected/given after a migration, then there is no need to compute
or store the intermediate P;. Instead, it is better to compute it between the first and
the last schema, and only when needed (i.e. just before the curator starts the lifecycle
process). In this way, we can bypass the “negative prejudgement” due to lack of the

forthcoming knowledge.

Below, we present a proposition that indicates when the one-step migration gives the

same result with the sequential migrations scenario.
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Prop. 19 Let K; = (S1,1;1) be a KB and let S5,..., S, be a sequence of backwards com-
patible schema versions, resulting to KBs K; = (5;, 1), for i = 2,....n. Now consider
the one-step migration of I; from the first (S7) to the last (S,,) schema: (Cy, My, Py) ~~
(Cn, M,,, P,,). Additionally, consider the sequential migrations scenario, where: (Cy, My, P)
~s (Chy MYy, Py) ~s oo~ (CL, M), P TE (a) for all ¢p, ¢ € Cly, it holds that ¢; <J ¢; in
Ky iff ¢; <Y ¢y in Ky, and (b) for all pry,pry € Prg,, it holds that pry <% pro in K iff
pr1 <y, pry in Ky, then (C,,, My, P,) = (C;,, M, F},). O

We would like to note that Prop. 19 does not hold in the case that the sequence of
schema versions is not backwards compatible (see Example 10.2). This happens because
a class or property that exist in a schema version .5;, they may have been removed from

the next schema version S; ;.

(1)

(1)

@ [—--~\

@)
’ —
_ 21 Ml'l'

~-_—,’ Pl =g

Figure 10.2: Different sequences of non-backwards compatible transitions

Example 20 Consider Figure 10.2. In KB K, there exist two classes A and B and o is
an instance of A. Assuming that the MSA holds for K, it follows that P, = () and M, =
{(o type B)}. In scenario (I), in KB K5, a new class C is added, as well as the relationships
C <4 A and C <, B. From Rule R1, it follows that M; = {(o type B), (o type C)}. In
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K3, class B is removed. Thus, M3 = {(o type C)}. In scenario (II), class B is removed
and a new class C is added, along with the relationship C <. A. Then, since none of the
rules R1 — R5 applies, it follows that M3 = () and P; = {(o type C)}. Note that the

non-backwards compatible transitions in scenarios (I) and (II) lead to different results. O
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Chapter 11

Related Work

In this chapter, we discuss about related work to ontology evolution and versioning

and to fuzzy and probabilistic Semantic Web.

11.1 Ontology Evolution

There are several works on ontology evolution and versioning, for a recent overview

see [12]. Below we describe some of these works and we compare them with our work.

[On Backwards Compatible Ontology Evolution)

Klein et al. [17] propose a versioning mechanism for reducing the problems caused by
ontology evolution. They argue that ontology versioning is necessary because changes to
ontologies may cause incompatibilities, and drive to situations where the new (changed)
ontology cannot be used in place of its previous version. They list a number of artifacts
that may depend on an ontology, and thus can become incompatible after ontological
evolution, and data that conforms to an ontology is one of them. When an ontology is
changed, data may get a different interpretation or may use terms that do not exist any
more. The authors introduce various forms of compatibility and one of them is backwards
compatibility. In the same direction, Xuan et al. [38] propose a model to deal with the
problem of asynchronous ontology versions in the context of a materialized integration
system, which is based on the principle of ontological continuity, which refers to the

permanence of classes, properties, and subsumption. This principle is actually what we
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call backwards compatibility.

[Ontology Evolution and Data Validity)

Stojanovic et al. [31] identify a six-phase ontology evolution process and focus on
providing the user with capabilities to control and customize it. In order to enable such
customization of the ontology evolution process, the user may choose an advanced evo-
lution strategy. It represents a mechanism to prioritize and arbitrate among different
evolution strategies available in a particular situation, relieving the user of choosing el-
ementary evolution strategies individually. Advanced evolution strategy automatically
combines available elementary evolution strategies to satisfy user’s criteria. One of the
adopted advanced evolution strategies is the Instance-driven Evolution Strategy. Noy and
Klein [24] present an informal discussion on the differences between ontology evolution
and database schema evolution, and how structural changes in ontologies affect the preser-
vation of their data instances. They focus on whether instance data can still be accessed
through the changed ontology, and they classify the operation effects as information-
preserving changes, translatable changes, and information-loss changes. Now Konstan-
tinidis et al. [19] focus on the effects of a requested change operation, i.e. how the new
ontology version should be after a request for a change, and on its side-effects on the
instance data, i.e. certain additional actions executed to restore validity. They propose
a general-purpose algorithm for determining the effects and side-effects of a requested
elementary or complex change operation, and such works can be used to resolve the con-
flicts. In addition, Qin and Alturi [26] focus on the validity issue of data instances during
ontological evolution. They classify the changes to ontologies into two levels - structural
and semantic. Semantic changes are brought by structural changes and can be further
classified into explicit and implicit changes. They propose an algorithm for evaluating
the structural validity of a data instance and then another algorithm for evaluating the

semantic validity of a data instance.

Note that, in our work, we do not focus on the instance validity caused by ontology
evolution. We consider that the ontology evolution does not effect the instance triples.
In the case where a class ¢ is deleted from one ontology Sk, we consider that, in the new

ontology Sk, the instances o that were explicitly classified in ¢, i.e. (o type ¢) € I, are
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not affected. Thus, ¢ remains in K’ as an unconnected class. Now, in the case where a
property pr is deleted from one ontology Sk (and also the statements regarding its domain
and range are deleted from the initial schema), we consider that, in the new ontology Sk,
the property instance triples (o pr o') € I are not affected. Thus, pr remains in K’ as an
unconnected property and its domain and range is the top class, i.e. Resource. In future
work, it would be worth to investigate, in the non-backwards compatible schema evolution
case, a possible combination of the “repair” of invalid instance descriptions proposed in
[19] with our proposal for computing possible instance descriptions. In conclusion, there
are several works and approaches for dealing with the validity of data during migration,

however there is no work for managing their specificity and quality while ontologies evolve.

11.2 Probabilistic and Uncertain Information

There are several works on probabilistic and uncertain information. Below we discuss
about some of these works and make comments on how we could combine them with our

work.

[Fuzzy/Probabilistic Semantic Web]

At last we could also say that our work is complementary to the works that have been
proposed recently regarding fuzzy or probabilistic Semantic Web. Below, we describe
and comment on some of these approaches. First, we describe extensions with uncertain
information of the web ontology language RDF. For instance, Udrea et al. [36] introduce
a Probabilistic RDF framework (for short pRDF) for expressing probabilistic information
about the relationships expressed in RDF, and provide algorithms to efficiently answer
queries over pRDF ontologies. Mazzieri and Dragoni [22] present an extended syntax to
represent fuzzy membership values within RDF statements, and elaborate on their inter-
pretation. Straccia [32] describes a system for a fragment of fuzzy RDF, and shows how
top-k fuzzy disjunctive queries can be answered by relying on the closure computation
and top-k database engines. Huang and Liu [14] present a general framework for support-
ing SPARQL queries on probabilistic RDF databases, and a query evaluation framework
based on possible world semantics. In general, we could say that the “output” of our work,

i.e. the possibilities (or probabilities, if quantified appropriately), can be considered as
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“input” to such frameworks, which one could use for probabilistic query answering.

[Uncertainty and OWL(Web Ontology Language))

Now, we describe extensions with uncertain information of the web ontology language
OWL. Ding et al. [7] propose a Bayesian network-based extension to OWL. To indicate
the probabilistic extension, the authors introduce three kinds of OWL classes, and they
define a set of translation rules for converting the probabilistically extended OWL ontol-
ogy into the directed acyclic graph (DAG) of a Bayesian Network (BN). Each node in the
DAG represents a variable and is associated with a conditional probability table (CPT),
which defines the probability of each possible value of the node, given each combination
of values for the node’s parents in the DAG. Again, we can say that the “output” of our
work can be used as an input to the above work since RDF is a sublanguage of OWL.
Costa et al. [5] extend OWL with uncertainty based on first-order Bayesian logic. The
possibilities defined by our approach can be expressed as a set of knowledge structures
(called MFrags) which represent probabilistic knowledge about a collection of related hy-
potheses. Scharrenbach and Bernstein [29] introduce Fuzzy OWL, Markov Logic, and
Probabilistic Description Logics (PDL) for handling uncertain data and resolving incon-
sistencies. They propose the concept of defaults which are specific constraints in PDL
that can be used in order to remove incoherence in OWL ontologies. PDL distinguishes
between terminological and assertional probabilistic knowledge, so the authors present a
KB which represents the (assertional) probabilistic knowledge as our eKB does. Koller et
al. [18] and Giungo et al. [9] propose probabilistic extensions of Description Logics (DLs).
Koller et al. [18] present P-CLASSIC, which is a probabilistic extension of the description
logic CLASSIC. Giungo et al. [9] develop a probabilistic extension of DAML+OIL for
representing and reasoning with probabilistic ontologies in the Semantic Web (SW). They
define P-SHOQ(D) as the probabilistic extension of SHOQ-(D), which is the description
logic that provides a formal semantics, and a reasoning support for DAML4-OIL. In [21],
Lukasiewicz presents the expressive probabilistic logics P-SHIF(D) and P-SHOIN(D),
which are probabilistic extensions of the corresponding description logics. These logics
allow for expressing rich terminological probabilistic knowledge about concepts and roles,

as well as assertional probabilistic knowledge about instances of concepts and roles. The
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author presents sound and complete algorithms for the main reasoning problems in the
new probabilistic description logics, which are based on reductions to reasoning in their
classical counterparts, and to solving linear optimization problems. These works concern
Description Logics (DLs). As our work concerns RDF, most of what is proposed in these
works goes beyond the scope of this thesis.

Synopsizing, the above works introduce language constructs for representing uncertain
information, and define the semantics and reasoning services of such knowledge bases. Our
work is complementary, in the sense that we propose a method for deriving uncertainties
based on the evolution of ontologies.

Finally, we should mention the W3C Uncertainty Reasoning for the World Wide Web
(URW3) Incubator group! whose mission is to better define the challenge of reasoning
with, and representing uncertain information available through the World Wide Web and

related WWW technologies.

http://www.w3.org/2005/Incubator/urw3/
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Chapter 12

Concluding Remarks

Current approaches and techniques for ontology evolution, ignore that ontology evo-
lution apart from conflicts it can decrease the specificity of the descriptions that have
been defined using past ontology versions. The rapid evolution of ontologies requires
principles, techniques, and tools for managing the quality of the migrated descriptions,
as well as flexible interactive methods for managing this kind of uncertainty. To the best
of our knowledge this is the first work that exploits ontology evolution for managing the
specificity of instance descriptions. Specifically, in this work we formalized the problem
with the notion of X-partition of the set of cartesian instance triples (Bg) of a KB K,
and we defined the principles and rules that specify how X-partitions should be updated
after instance migrations in ontology evolution. We provided two algorithms that com-
pute the new set of possible instance triples Px+ based just on the previous version of K,
the previous Pk, and the new set of schema triples Sk+. Specifically, the first algorithm
(Algorithm 2) concerns backwards compatible schema evolution, while the second algo-
rithm (Algorithm 7) concerns non-backwards compatible schema evolution. Algorithm 7
is more general than Algorithm 2 and it applies even in the backwards compatible schema
evolution case. However, Algorithm 2 has less steps and is more efficient. Since the ulti-
mate objective is not just the identification of possibilities, but to aid making the instance
descriptions as specific as possible, we proposed a specificity lifecycle management process
that prompts to the user a subset of the possible instance triples (according to certain
criteria) and showed how the extended KB (eKB) should be updated when the user ap-

proves or rejects some of them. Subsequently, we showed how possible instance triples can
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be quantified and ranked for aiding users during the specificity life-cycle process. Further,
we presented a compact (interval-based) representation of the possible instance triples
Py!, appropriate for very large data sets, and a prototype system, called RIMQA. Finally,
we applied our approach on real and synthetic datasets for demonstrating the feasibility
of our approach.

In the future, we plan to generalize our approach of possibilities to the XSD-typed
literal values of property instance triples [25]. Additionally, we plan to investigate a
possible combination of the “repair” of invalid instance descriptions proposed in [19] with
our proposal for computing possible instance descriptions. Further, we plan to improve
our implementation by supporting a graphical visualization of the suggested possibilities.
Finally, we plan to extend our theory such that disjointness conditions between classes

are supported.

!The compact representation of Pk is based on Lemmas 2(1) and 2(2).
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Appendix A: Proofs

In this Appendix, we provide the proof of the Lemmas and Propositions, presented in

this thesis.

Lemma 1
1. If (o type c3) € Pk and ¢ <}, ¢q then (o type ¢1) € (Px UC;(K)).
2. If (o pry 0') € Pg and pry <; pry then (o pry o) € (Px UCi(K)).

Proof:

1) Let (o type c2) € Pk and ¢ <} ¢;. We will show that (o type ¢1) € (C;(K) U Pk).
Certainly, o € Instx N URI. Assume that (o type c¢1) ¢ (C;(K) U Pg). Since o €
Insti N URI and ¢; € Cg, it follows that (o type ¢1) € Bg. Therefore, it follows from
the definition of X-partition (Def. 5) that (o type ¢1) € Mg. It follows from (ii) of
Def. 5 that (o type ca) € Mg. Thus, (o type c3) € Pk, which is impossible. Therefore,
(o type ¢1) € (C;(K) U Pg).

2) Let (o pro ') € Px and pry <5 pri. We will show that (o pry o) € (Ci(K) U Pk).
Since (o pry o) € Pgs, it holds that o € Instx N URI and o € Insty. Therefore,
(0o pr1 o) € Bg. Assume that (o pr; o) € (Ci(K) U Pg). Therefore, it follows from
the definition of X-partition (Def. 5) that (o pry o) € Mg. It follows from (ii) of
Def. 5 that (o pro o) € Mk. Thus, (o pry o) € Pk, which is impossible. Therefore,
(opry 0) € (C;(K) U Pg). O

Lemma 2
1. If g <% co <X c3 and (o type c1), (o type c3) € Pk then (o type c2) € Pk.
2. If pry <5 pro <5, prg and (o pry o), (o prs o) € P then (o pry o) € Pk.
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Proof:

1) Let ¢; <}, co <! ¢35 and (o type ¢1), (o type c3) € Pk, we will show that (o type c2) €
Py. Note that o € Instx N URI and ¢; € Ck. Thus, (o type ¢3) € Bi. Assume that
(o type co) € Pk then (o type c3) € Mg or (o type co) € C;(K). If (o type c3) € Mg
then it follows from (ii) of Def. 5 that (o type ¢;) € My, which is impossible. If
(o type c9) € C;(K) then it follows from the RDF/S semantics that (o type c3) € C;(K),
which is also impossible. Thus, (o type ¢2) € Pk.

2) Let pry <5 pry <5 pr3 and (o pry o), (0 pr3 o) € Px we will show that (o pry o) € Pr-.
Note that o € Instx N URI, o' € Insty, and pro € Prg. Thus, (o pre o) € Bg. Assume
that (o pry 0') € Px. Then, (o pra o) € Mg or (o pry o) € Ci(K). If (0 pry o) € Mk
then it follows from (ii) of Def. 5 that (o pry 0') € M, which is impossible. If (o pry 0') €
Ci(K) then it follows from the RDF/S semantics that (o pr3 o) € C;(K). Therefore,
(opry o) € Pk. O

Prop. 1 When a KB K = (Sk, Ix) evolves to anew KB K’ = (Sk+, [), where I = I,
it holds that Instx = Instg.

Proof: It holds that Instx = Resk \ (Cx U Prg). Since K = (Sk,Ix) and from
the way that instance triples and schema triples are defined, it follows that Instx =
{o| (o type ¢) € I} U{o0,0 | (0o pr o) € Ig. Since Ix = Ix:. It follows that Instx =

]nstK/. O

Prop. 2 If Sx C Sk then B C By

Proof: Let b € Bg. If b is a class instance triple of the form (o type c¢) then o €
Instig N URI and ¢ € Ck. Since Instx = Instg, it follows that o € Instg: N URI.
Additionally, since Sx T Sk, it holds that ¢ € Cks. Thus, b € Bgs. If b is a property
instance triple of the form (o pr o') then o € Instx N URI, o' € Instk, and pr € Prg.
Thus, o € Instg: N URI, o € Insty and, since Sx C Sk, it holds that pr € Prg.. Thus,
b€ Bgr. O
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Prop. 3 Let S and S’ be two sets of schema triples. It holds that: S C S"iff Ay(S — ')

contains only add operations.

Proof:

=) Ag(S — 8') = {Add(t) |t € S\ C(S)} U{Del(t) |t € S\ C(S")}. We have to prove
that S\ C(S") = 0. Tt is known from the closure definition that S C C(S). S C S’ means
that C(S) C C(9'), so by transitivity we get that S C C(S5").

<) S\C(S") =0,s0 S CC(S). Thus, C(S) C C(C(S")). Therefore, C(S) C C(S"). By
Definition 6, we get that S C S’. O

Prop. 4 In the context of a transition (C;(K), Mk, Px) ~> (C;(K'), Mg+, Pk), it follows

Proof:

=) Assume that My N Pgr = 0. Let t € Mg \ C;(K’) and assume that ¢t ¢ Mg. Since
Sk C Sk, it holds that ¢ € Bgs. Therefore, based on the definition of X-partition (Def.
5) and the fact t & C;(K’), it holds that ¢ € Pg,. However, in this case, it holds that
My N Pgr # (), which is impossible. Therefore, t € M. Thus, (Mg \ C;(K")) € M.

<) Assume that (Mg \ C;(K’)) € Mg,. Further, assume that it exists ¢ € Mg N Pk.
Then, based on the definition of X-partition (Def. 5), it holds that ¢ &€ C;(K’). Thus,
t € Mg\ Ci(K'). Since (Mg \ C;(K'")) C Mg, it follows that t € Mg,. However, this is
impossible, since t € Pg:. Thus, Mg N Py = (). O

Prop. 5 Consider an X-partition (C;(K), Mk, Px) based on a schema Sk and suppose
we want to define the X-partition after migrating Ix to a backwards compatible schema

Skr. We can derive Mg using the following rules:

(R1) If (o type c¢) € Mg, ¢ <!, ¢, and (o type ¢) ¢ C;(K') then (o type ¢') € M.
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(R2) If (o pr o) € My, pr' <, pr, and (o pr o) ¢ C;(K'), then (o pr’ o) € My,
(R3) If (o pr o) € Bgr and —walid(o, pr, o', K') then (o pr’ o) € M.

Proof: Rule R1 and Rule R2 follow directly from Prop. 4 and (ii) of Def. 5. Rule R3
follows directly from (iii) of Def. 5. O

Prop. 6 The derivation of Mg by the rules of Prop. 5 and of Py by Def. 8, yields a
three-fold partition that is an X-partition (according to Def. 5) and respects postulates
I11 and I12 of Def. 7.

Proof: The sets C;(K’), Mg+, and Py are pairwise disjoint by construction. My is lower
set by construction, and contains all invalid property instance triples of Bg:. Therefore,
(Ci(K"), My, Px+) is an X-partition.

Postulate II1 is satisfied by construction. What is left to prove is that I12 is satisfied
(past negative information cannot become possible), i.e. that Mg N Pg: = (). Suppose
this is not true, i.e. suppose there exist a ¢ such that ¢t € M N Pxr. Then, t € My and
t ¢ C;(K’). Thus, due to Rule R1 and Rule R2 of Prop. 5, ¢ (and its subtriples) would
belong to M. Thus, t cannot belong to P (since Pk as defined by Def. 8 excludes all

elements of Mk). O

Prop. 7 For a new class ¢ € Ck \ Ckg, it holds that: (o type ¢') € Pk iff
(i) o € Instgx N URI,

(ii) for all ¢ € Ck s.t. ¢ <} ¢, it holds that (o type ¢) € (C;(K') U Pk), and
(i) (o type ') ¢ C;(K").

Proof:

=) Let (o type ') € Pg:. Certainly, o € Instx N URI. We will show that for all ¢ € Ck
s.t. ¢ < ¢, it holds that (o type ¢) € (C;(K')UPk) and (o type ') & C;(K'). Assume that
it exists ¢ € Ck s.t. (¢ <} cand (o type ¢) & (C;(K') U Pk)) or (o type ¢) € C;(K'). If it
exists ¢ € Ck s.t. (¢ <% cand (o type ¢) ¢ (C;(K') U Py)) then since C;(K) C C;(K'), it
follows that (o type c¢) € (C;(K)U Pk). Since o € Instx N URI and ¢ € Ck, it follows that

116



(o type ¢) € Bg. Therefore, it follows from Def. 5 that (o type ¢) € M. It follows from
Rule R1 of Prop. 5 that (o type ) € Mg:. Thus, (o type ¢') & Pk, which is impossible.
If (o type ') € C;(K"), it follows from Def. 5 that (o type /) ¢ Pk, which is impossible.

<) Assume that o € Instx N URI and that for all ¢ € Ck s.it. ¢ <! ¢, it holds that
(o type ¢) € (C;(K") U Pk). Additionally, assume that it holds (o type ') ¢ C;(K’). We
will show that (o type ¢’) € Pk-. It follows from Def. 5 that for all ¢ € Ck s.t. ¢ <} ¢, it
holds that (o type ¢) € By \ Mg or (o type ¢) € C;(K"). It follows that (o type ¢) & Mg
(note Rule R1 of Prop. 5 does not apply). Since o € Instx N URI, ¢ € Ck/, and
Insty = Instgs, it follows that (o type ) € Bgr. Now, since (o type ) ¢ C;(K'), it
follows from Def. 5 that (o type ') € Pg. O

Prop. 8 For a new property pr’ € Prg: \ Prg, it holds that: (o pr’ o') € Py iff:
(i) o € URI and valid(o, pr', o', K'),

(ii) for all pr € Prg s.t. pr’ <5 pr, it holds that (o pr o') € (C;(K') U P ), and
(i) (0 pr" o) ¢ Cu(").

Proof:

=) Let (o pr’ o) € Pgs. Since (o pr’ o) € Pg, it follows that valid(o,pr’, o', K').
Additionally, we have o € URI. We will show that for all pr € Prg s.t. pr’ <;_ pr, it
holds that (i) (o pr o') € (C;(K') U Pk) and (ii) (o pr’ o') ¢ C;(K"). Assume that it exists
pr € Pri s.t. (i) pr' <5 proand (o pr o) & (C;(K') U Pk), or (i) (o pr’ o) € C;(K'). If it
exists pr € Pry s.t. pr' <* prand (o pr o) € (Ci(K') U Px) then, since C;(K) C C;(K'),
it follows that pr’ <* prand (o pr o') € (C;(K)U Pk ). Obviously, it holds that (o pr o) €
Bk. Then, it follows from Def. 5 that (o pr o') € Mg. Therefore, it follows from Rule
R2 of Prop. 5 that (o pr’ o') € My. Thus, (o pr’ o') ¢ Pk, which is impossible. If
(opr' o) € C;(K'), it follows from Def. 5 that (o pr’ o') &€ Py, which is impossible.

<) Assume that (i) o € URI and valid(o, pr', o', K'), (ii) for all pr € Prg s.t. pr' <5 pr,
it holds that (o pr o') € (C;(K") U Pk), and (iii) (o pr’ o') ¢ C;(K’). We will show that
(opr' o) € Pg:. It follows from Def. 5 that for all pr € Prg s.t. pr’ < pr, it holds that
(opr o) € Bxk\ Mk or (o pr o) € C;(K'). It follows that (o pr’ o) & My (note that Rule
R2 and Rule R3 of Prop. 5 do not apply). It holds that o € Instgr N URI, o' € Insty,

117



pr € Prigs. Thus, (o pr’ o) € Bgs. Since (o pr’ o) ¢ C;(K’), it follows from Def. 5 that

(opr' o) € Pk 0

Prop. 9 Let K = (Sk,Ix) be a KB and let Sk be a set of new schema triples s.t.
Sk C Sk and K' = (Sk,Ik) be a (valid) KB then Py = Produce_Possibilities(K,
PK7 SK’)

Proof: Initially, Px aqq = 0 and Py pg = 0. For each new class ¢ € NC, Algorithm
Produce_Possibilities(K, P, Sk) inserts to Px_aqq exactly the class instance triples in-
dicated by Prop. 7. For each old class ¢; € Ck, if it exists co € Ck s.t. ¢ <)
and (o type c2) ¢ (Px UC;(K')) then all class instance triples (o type ¢1) € Pk
are added to Pk _pe. Since Sk T Sk, it holds that (o type c3) ¢ C;(K). Thus,
(o type c2) € Bk \ (Px UC;(K)) = Mk and (o type ¢2) ¢ C;(K'). Therefore, due to
Rule R1 of Prop. 5, it holds that (o type ¢1) € Mk.

Similarly, for each new property pr’ € N P, Algorithm Produce_Possibilities(K, Py, Sk),
inserts to Px_aqq €xactly the property instance triples indicated by Prop. 8. For each old
property pri € Prg, if it exists pro € Pry s.t. pry <j pro and (o pry o) € (Px UCi(K'))
then all class instance triples (o pry o') € Pk are added to Pi_pe;. Since (o pry o) € Pk, it
holds that (o pry 0') € Bg. Additionally, since Sk T Sk, it holds that (o pry o) € C;(K).
Therefore, (o pre 0') € Bi \ (Px UCi(K)) = Mg and (o pry o) ¢ C;(K'). Thus, due to
Rule R2 of Prop. 5, it holds that (o pr; o') € M.

All instance triples in Px NC;(K’) are moved to Pk_pe. Finally, P = (Pk \ Px_per) U

Pk _ada-
Prop. 10 The time complexity of Algorithm 2 is O(|Inst g |**|K'|* x (|K'|* + | Px])).

Proof: First, we will prove the following Lemma.

Lemma: Let K be a KB. Then, (i) the size complexity of C(K) is in O(|K|?) and (ii) the
time complexity of C(K) is in O(|K[*).

Proof:

(i) First note that K C C(K). Let T,y denote the RDF and RDFS axiomatic triples [13],
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except the ones that contain rdf: terms, for ¢ € {1,2,...}. It holds that T,4s C C(K).
The inference rules used for the derivation of C(K) are the following:

1) If (¢ <q ) € K UT,y then (¢ < ) € C(K).

If (c type Class) € C(K) then (c < ¢) € C(K).

(1 <o) € C(K) and (2 < c3) € C(K) then (¢1 <} c3) € C(K).
(c type Class) € C(K) then (¢ <% Resource) € C(K).

(o type ¢) € K U T,q then (o type ¢) € C(K).

(o type ¢) € C(K) and (¢ <}, ) € C(K) then (o type ) € C(K).

If (o pr o) € C(K) and (pr domain c¢) € C(K) then (o type ¢) € C(K).
If (o pr o) € C(K) and (pr range ¢) € C(K) then (o' type ¢) € C(K).

(pr <pr pr') € K U Ty, then (pr <5 pr') € C(K).

f (pr type Property) € C(K) then (pr <, pr) € C(K).

f (pr1 <, pro) € C(K) and (pro <5, pr3) € C(K) then (pry <j; pr3) € C(K).

f (opro) € KUT.y and (pr <5, pr') € C(K) then (o pr' o') € C(K).

13) If (o pr o) € K U Ty then (o type Resource), (pr type Resource), (o type
Resource) € C(K).

14) If (o pr o) € K U T,y then (pr type Property) € C(K).

15) If (¢ <y ) € K U Ty then (c type Class), (¢ type Class) € C(K).

16) If (pr <y pr') € K U T,q then (pr type Property), (pr’ type Property) € C(K).

(
(
(
(17) If (pr rdfs:domain c¢) € K U T, then (pr type Property),
(¢ type rdfs:Class) € C(K).

(18) If (pr range ¢) € K U Tyqs then (pr type Property),

(

¢ type rdfs: Class) € C(K).

The number of (¢ <¥ ¢/) triples in C(K) due to rules (1-4) is in O(|Ck|*) = O(|K|?).
The number of (o type ) triples in C(K) due to rules (5-8) is in O(| K| |Ck|) = O(|K|?).
The number of (pr <j pr') triples in C(K) due to rules (9-11) is in O(|Prg|*) = O(|K|?).
The number of (o pr o) triples in C(K) due to rule (12) is in O(|K| = |Prg|) = O(|K|?).
The size complexity due to rules (13-18) is O(|K]). Thus, the total size complexity of
C(K) is in O(|K?).

(ii) Based on the form of the inference rules i(1)-i(18) and the form of the KBs that we

consider, it follows that we can compute C(K) if (i) we execute the rules i(1) and i(3) until
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fixpoint, (ii) we execute the rules i(9) and i(11) until fixpoint, (iii) we execute the rules
i(13)-i(18), (iv) we execute the rules i(5) and i(12), (v) we execute the rules i(7)-i(8), (vi)
we execute the rule i(4), (vii) we execute the rule i(6), and finally (viii) we execute the
rules i(2) and i(10). The time complexity of the steps (i) and (ii) is O(|K|?), because the
time complexity to compute the transitive closure of <, and <, is O(|K?) [15]. Based
on the fact that the size complexity of C(K) is in O(] K|?), the time complexity of the rest
of the steps is O(|K[*).

End Of Lemma

Since Sk C Sk, it holds that |K| < |K’|, assuming that the representation of S and
Sk is redundancy-free, i.e. only the reflexive and transitive reduction of the subClassOf
and subPropertyOf relationships are stated in K and K’'. Now, we will compute the time
complexity of lines (5-6) of the Algorithm. The time for the tests (o type ¢) € (C;(K')UPy)
in line (6) is O(|NC| x |Inst| x |Cx| * (|K'|? + | Px|). The time for the tests in line (6)
(o type ) & Ci(K') is O(|NC| * |Instg| * |K'|?). The time for computing Instx N URI
in line (6), is O(|Instk|). The time for computing {c | ¢ <}, ¢}, for all ¢ € NC, is
O(|NC| * |K'|?) and the time of finding which of the elements of these sets belong to Ck
is O(|NC| * |Cxs| * |K|) = O(|NC| * |K'| x | K|). Thus, the total time complexity for the
lines (5-6) is: O(|NC|*|Instg|*|Cx|*(|K'|>+|Px|) = O(|Inst || K| x| K'|* (| K'|?+| Px|)-

Now, we will compute the time complexity of lines (7-8). The time for computing
{ca | e1 <F e}, for all ¢; € O, is O(|Ck| * |K'|?) and the time of finding which of the
elements of these sets belong to Ck is O(|Ck| * |Ck/| * | K|). The time for checking which
of the instance triples (o type c3) € PxUC;(K") is |Cx| x| Inst i |*|Crc|* (| K'|*+|Pk]|). The
time for checking which of the instance triples (o type ¢1) € Pk is |Ck| * |Inst k| * | Pr|.
Thus, the time complexity of lines (7-8) is O(|Inst | * |K|* * (|K'|* + | Pk|)).

Now, we will compute the time complexity of lines (10-11). The time for the tests
(oprd) € (C;(K')UP,) in line (11) is O(|NP| * |Instg| * | Inst x| % | Pr| * (| K'|? + | Pk|)).
The time for the tests in line (11) (o pr’ o') & C;(K') is O(|N P|* | Inst | * | Inst | x | K'|?).
The time for computing {pr | pr’ <j. pr}, for all pr’ € NP, is O(|NP| * |K'|*) and the
time of finding which of the elements of these sets belong to Prg is O(|NP| x |Prg| *
|K|) = O(]NP| * |K'| x |K|). Thus, the total complexity time for the lines (10-11) is:
O(|NP|  |Instg|? * |Pri| * (|[K'|> + | Px|) = O(|Instg|? * |K| % |K'| % (|K']? + | Px])).

120



Now, we will compute the time complexity of lines (12-13). The time for computing
{pra | pri <, pra}, for all pry € Prg, is O(|Pr |« |K'|?) and the time of finding which
of the elements of these sets belong to Prg is O(|Prg| * |Prg/| * |K]). The time for
checking which of the instance triples (o pry o) € Px UCi(K') is O(|Pri| = |Instg|? *
|Pri|* (|JK'|* + |Pkl|)). The time for checking which of the instance triples (o pry o) €
Pg is O(|Prg| * |Instk|? * |Px|). Thus, the total time complexity of lines (12-13) is
O Instil? | K x (IK'? + | Prl)).

The time complexity of line (14) is O(|Px| * |K'|?). Now, we will compute the time
complexity of line (15). The size of Pg _pe is O(|Instg| x |Cx| + |Instk|? * |Pry|) =
O(|Instk|? * |K|). Thus, the time complexity of line (15) is O(| Px| * | Instx|* x | K]).

As shown in Lemma, the time complexity of computing C(K) and C(K’) is O(|K|*)
and O(|K'|"), respectively.

Therefore, the total time complexity of Algorithm 2 is O(|Inst ic|**| K'|*+ (| K'|?*+|Px])).

Prop. 11: Let X C Pg. If K" = K U X then C(K"P) = C(K) U SupTriples(X).

Proof: If (o type ¢) € X, for ¢ € Ck, then the newly derived triples in C(K“?), due to this
newly added RDF triple to K7, are {(o type ¢) | ¢ <!, '} If (opr o) € X, for pr € Prg,
then the newly derived triples in C(K"?), due to this newly added RDF triple to K"P, are
{(opr” o) [ pr <}, pr'}yU{ (0 type domain(pr')) | pr <, pr'yU{(o’ type range(pr’) | pr <},

pr'}. We will show that { (o type domain(pr’)) | pr <. pr' YU{ (o' type range( pr')) | pr <,
pr'} C C(K). Since (o pr o') € P, it holds from (iii) of Def. 5 that (o type domain(pr)) €
C(K) and (o' type range(pr)) € C(K). If it exists pr’ s.t. pr <% pr’ then, since K is a
valid KB, it holds that (i) domain(pr) <} domain(pr’) and (ii) range(pr) <¥, range(pr’).

—cl

Therefore, (o type domain(pr’)) € C(K) and (o type range(pr’)) € C(K). a
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Prop. 12: Let K be a KB. It holds that:

PZ™ = Py UP,U Py, where:
P = {{h,t}|t=(oprd)¢ Valid(K) where o, o' € Instyx,pr € Prg,
hy = (o type ¢1) € Py, where domain(pr) = ¢1, range(pr) € Cl(d')}
Py, = {{t,ha} | t= (0o prd) ¢ Valid(K) where o, o' € Insty,pr € Prg,
hy = (0’ type c2) € Pk, where range(pr) = ¢, domain(pr) € Cl(o)}
Py = {{hi,t,ha} |t = (0o pr o) ¢ Valid(K) where o, o' € Instg,pr € Pr,
hi = (o type c¢1) € Pk where domain(pr) = ¢,

ho = (0’ type ¢3) € Px where range(pr) = ¢y}

Proof: First, we will prove the following lemma.

Lemma: 1t holds that {s U {t} | s C Pg,t ¢ Valid(K),t € Valid(K) U s), and t ¢
Valid( K Us')V s C s} = P/ U PjU P; where

PZ™ = Py UP,U Py, where:
P, = {{h,t} | t=(oprd) ¢ Valid(K) where o, o' € Instg,pr € Pr,
hy = (o type ¢1) € Pk, where ¢; <}, domain(pr), range(pr) € Cl(d')}
Py = {{t,ha} | t = (0o prd) ¢ Valid(K) where o, o' € Insty,pr € Prg,
hy = (0 type c2) € Py, where ¢y <} range(pr), domain(pr) € Cl(o)}
Py = {{hi,t,ha} | t = (0 pr o) ¢ Valid(K) where o, o' € Insty,pr € Prg,
hy = (o type ¢1) € Pk where ¢; <}, domain(pr),
hy = (0 type c3) € Py where ¢y <}, range(pr),

domain(pr) € Cl(o), and range(pr) € Cl(o')}

Proof.

<) Let « € PfU Py U P;,. Then, z = sU {t}, where t = (0 pr o) ¢ Valid(K), for
0,0 € Instx and pr € Prg, and (i) s = {(o type c1)}, where ¢; <} domain(pr),
if v € P[, (ii) s = {(0 type ca)}, where ¢y <} range(pr), if x € Py, and (iii) s =
{(o type c1), (0" type c3)}, where ¢; <¥ domain(pr) and cy <} range(pr), if x € Pj.
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In all cases s C Pg. Since valid(o,pr,o’, K U s), it follows that ¢ € Valid(K U s).
It is easy to see that for all & C s, it holds that ¢t ¢ Valid(K U s’), because it does
not hold walid(o,pr,o’, K U s’). Thus, z € {sU{t} | s C Pg,t ¢ Valid(K),t €
Valid(K U's), and t € Valid(K Us") V ' C s}.

=) Let v € {sU{t} | s C Px,t & Valid(K),t € Valid(K Us), and t € Valid(K U s")
Vs C s}. We will show that € P{UP;UP;. Let © = sU{t}. Since s C Pk, t ¢ Valid(K)
and t € Valid(K U s), it follows that ¢ = (o pr o), where 0,0 € Instyx and pr € Prg.
Since t ¢ Valid(K Us') ¥V s’ C s, it follows that (i) if range(pr) € Cl(0') then s = {h4},
where h; = (o type ¢1) € Pk and ¢; <} domain(pr), (ii) if domain(pr) € Cl(o) then
s = {ha}, where hy = (0’ type ¢3) € Pk and ¢y <}, range(pr), and (ii) if domain(pr) ¢
Cl(o) and range(pr) ¢ Cl(d') then s = {hy, ho}, where hy = (o type ¢1) € Px,hy =
(o type c2) € Pk,c1 <k domain(pr), and co <} range(pr). Therefore, it follows that
r e PlUPyUP;.

End of Lemma

From the above Lemma and Lemma 1(1), Proposition 12 now follows immediately. O

Prop. 13 In the context of a transition (C;(K), Mk, Px) ~» (C;(K'), Mg+, Pk/), it follows

Proof:

=) Assume that (C;(K)\C;(K'))NBgs C M. Further, assume that it exists an instance
triple t € C;(K)N Pks. Since t € Pk, it follows that ¢ € Bg. Further, from the Definition
of X-partition (Def. 5), it follows that ¢ & C;(K’). Thus, t € (C;(K) \ C;(K')) N Bg.
Therefore, t € My, which is impossible. Thus, C;(K) N Py = 0.

<) Assume that C;(K) N Pgr = 0 and let t € (C;(K) \ Ci(K")) N Bg,. We will show
that ¢ € Myg,. Assume that ¢t ¢ M. Then, from the Definition of X-partition (Def.
5), it follows that ¢t € Pg,. Then, t € C;(K) N Pgr. However, this is impossible since
Ci(K)N Pgr = 0. Thus, t € M. O

Prop. 14 For class and property instance triples:
(R4) If (o type c) € C;(K), ¢ <% ¢, and (o type ¢) ¢ C;(K") then (o type ') € Mg.
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(R5) If (o pr o) € Ci(K), pr' <5, pr, and (o pr o) ¢ C;(K') then (o pr’ o') € M.

Proof: Rule R4 and Rule R5 follow directly from Postulate II3 of Def. 13 and (ii) of
Def. 5. O

Prop. 15 The same as Prop. 7 but now applies to KBs K = (Sk, Ix) and K’ = (S, I),

where Sk and Sk are not necessarily backwards compatible.

Proof:

=) Let (o type ') € Pgs. Certainly, o € Instx N URI. We will show that for all ¢ € Ck
s.t. ¢ < ¢, it holds that (o type ¢) € (C;(K')UPk) and (o type ¢') & C;(K'). Assume that
it exists ¢ € Ck s.t. (¢! < cand (o type ¢) & (C;(K')U Pk)) or (o type ') € C;(K'). If it
exists ¢ € Ck s.t. (¢ <% cand (o type ¢) € (Ci(K')U Pk)) then it follows that (o type ¢) &
(C;(K) U Pg) or ((o type ¢) € C;(K) and (o type ¢) & C;(K")). Since o € Instx N URI
and ¢ € Ck, it follows that (o type ¢) € Bk. If (o type ¢) & (C;(K) U Pk) then it follows
from Def. 5 that (o type ¢) € Mk. Therefore, it follows that (o type ¢') € Mg+ (see Rule
R1 of Prop. 5). If (o type ¢) € C;(K) and (o type ¢) ¢ C;(K') then from Def. 14 (Rule
R4) it follows that (o type ¢) € Mgr. Thus, (o type ¢) € Pgs, which is impossible. If

(o type ) € C;(K'), it follows from Def. 5 that (o type ¢) ¢ Pk, which is impossible.

<) Assume that o € Instx N URI and that for all ¢ € Ck s.t. ¢ <% ¢, it holds that
(o type ¢) € (C;(K') U Pk). Additionally, assume that it holds (o type ) ¢ C;(K’).
We will show that (o type ) € Pgs. It follows from Def. 5 that for all ¢ € Ck
s.t. ¢ <! ¢, it holds that (o type ¢) € Bx \ Mk or (o type ¢) € C;(K'). It follows
(o type ¢) & Mg+ (note that Rule R1 of Prop. 5 and Rule R4 of Prop. 14 do not apply).
Since o € Instig N URI, ¢ € Cks, and Instx = Instg, it follows that (o type ¢) € Bg:.

Now, since (o type ) ¢ C;(K’), it follows from Def. 5 that (o type ¢) € Pk:. O

Prop. 16 The same as Prop. 8 but now applies to KBs K = (Sk, Ix) and K’ = (Sk, Ix),

where Sk and Sk are not necessarily backwards compatible.

Proof:
=) Let (o pr’ o) € Py:. Since (o pr’ o') € Pk, it follows that valid(o, pr', o/, K'). We
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will show that for all pr € Prg s.t. pr’ <5 pr, it holds that (i) (o pr o) € (Ci(K') U Px)
and (ii) (o pr' o) ¢ C;(K'). Assume that it exists pr € Prg s.t. (i) (pr' <5, pr and
(0 pr o) & (Ci(K') U Px)), or (i) (o pr' o) € Ci(K'). Tt follows that pr' <5 pr,
and (o pr o) & (Ci(K)U Pk) or ((o pr o) € C;(K) and (o pr o') ¢ C;(K')). Obviously,
(opr o) € Bg. If (o pr o) ¢ (C;(K)UPk) then it follows from Def. 5 that (o pr o) € M.
Therefore, since (o pr o') & C;(K"), it follows that (o pr’ o') € My (see Rule R2 of Prop.
5). If (o pr o) € C;(K) and (o pr o') € C;(K’) then it follows from Prop. 14 (Rule R5)
that (o pr’ o) € Mg. Thus, (o pr’ o) € Pk, which is impossible.

<) Assume that (i) o € URI and valid(o, pr', o', K'), (ii) for all pr € Prg s.t. pr' <5 pr,
it holds that (o pr o') € (C;(K") U Pk), and (iii) (o pr’ o') ¢ C;(K'). We will show that
(o pr' o) € Pg:. It follows from Def. 5 that for all pr € Prg s.t. pr’ <5 pr, it holds
that (o pr o) € (Bx \ Mk) or (o pr o) € C;(K’). It follows that (o pr' o) ¢ Mg
(note that Rule R2 and Rule R3 of Prop. 5 and Rule R5 of Prop. 14 do not apply).
It holds o € Instx: N URI, o' € Instg:, and pr € Prg,. Thus, (o pr’ o) € Bg:. Since
(opr' o) ¢ C;(K'), it follows from Def. 5 that (o pr’ o) € Pk. O

Prop. 17 Let K = (Sk,Ix) be a KB and let Sk be the new schema version such that
K' = (Sk+, Ix) is a (valid) KB. Then, Px: = Produce_Possibilities ypo (K, Pk, Sk').

Proof: Initially, Px aq¢ = 0 and Py pg = 0. For each new class ¢ € NC, Algorithm
Produce_Possibilities ypo (K, Pk, Skr), inserts to Px_aqq exactly the class instance triples

indicated by Prop. 15.

For each old class ¢; € Ck, if it exists co € Ck s.t. ¢ <} ¢ and (o type c3) &
(Pi U C;(K")) then all class instance triples (o type ¢;) € Py are added to Pg_pe. Note
that (o type ¢2) € (C;(K) U Pk) or ((o type ¢3) € C;(K) and (o type c2) ¢ C;(K')). Since
0 € InstgNURI and ¢ € Ck, it follows that (o type cz) € Bk. If (o type ¢3) & (C;(K)UPk)
then it follows from Def. 5 that (o type c2) € Mg. Therefore, since (o type c2) & C;(K'),
it follows that (o type ¢1) € Mg (see Rule R1 of Prop. 5). If (o type ¢3) € C;(K) and
(o type c2) & C;(K') then from Prop. 14 (Rule R4) it follows that (o type ¢1) € M.

Additionally, it adds to Px_pe, all class instance triples (o type ¢) € Pk, where ¢ ¢ C,

because these instance triples do not belong to Bg.
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Similarly, for each new property pr’ € NP, Algorithm Produce_Possibilitiesypc (K,
Pk, Sk+), inserts to Pg_aqq exactly the property instance triples indicated by Prop. 16.
For each old property pri € Pr, if it exists pro € Pry s.t. pry <j pra, and (opre o) &
(P UC;(K')) then all class instance triples (o pr; o) € Pk are added to Pk_pe. Note
that (o pry o) & (C;(K) U Pk) or ((opra o) € C;(K) and (0 pry ') € C;(K")). Obviously,
(opra o) € Bi. If (o pra o) ¢ (C;(K) U Pk) then it follows from Def. 5 that (o pry o) €
My Therefore, since (o pry o) & C;(K'), it follows that (o pry o) € Mg (see Rule R2
of Prop. 5). If (0 pry o) € C;(K) and (0 pry ') & C;(K’) then it follows from Prop. 14
(Rule R5) that (o pri o) € Mg.

Additionally, it adds to Pk _pe all property instance triples (o pr o) € Pk, where
pr & Prg: or —walid(o,pr, o', K"). This is because, in the first case they do not belong to
Bk and, in the second case, they belong to Mg (see Rule R3 of Prop. 5).

All instance triples in P NC;(K') are moved to Px_pe. Finally, Py = (Pk \ Px_per) U

Pr_ada-

Prop. 18 The time complexity of Algorithm 7 is O(|Instx|* x S? * (S* + | Px|)), where
§ = max(|K], [K').

Proof: In the proof of Prop. 10, we have shown that if K is a KB then the size complexity
of C(K) is in O(|K|?) and (ii) the time complexity of computing C(K) is in O(|K[*).
Here, we will provide the complexity of the parts that Algorithm 7 differs from Al-
gorithm 2. The complexity of the parts that Algorithm 7 is the same with Algorithm
2 is provided in the proof of Prop. 10, where we replace |K| and |K'| by S. The time
complexity of lines (9-10) is | Px| * S%. The time complexity of lines (16-17) is |Pg| * S%.
The time complexity to compute C(K) and C(K’) is O(S*). Thus, the total complexity
of Algorithm 7 is O(|Instg|* * S? * (S% + | Pk]|)). ]

Prop. 19 Let K; = (S1,1;) be a KB and let Ss,...,S5, be a sequence of backwards
compatible schema versions, resulting to KBs K; = (S;, I;), for i = 2,...,n. Now consider
the one-step migration of I; from the first (S;) to the last (S,,) schema: (Cy, My, P;) ~~

(Cn, M,,, P,,). Additionally, consider the sequential migrations scenario, where: (Cy, My, Py) ~~
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(Chy My, Py) ~> oo~ (CL, M) P, TE (a) for all ¢p, ¢y € O, it holds that ¢; < ¢y in
Ky iff ¢; <! ¢y in K,,, and (b) for all pry,pry € Prg,, it holds that pry <, pr2 in K, iff
pr1 <5, pro in K, then (Cp, My, P,) = (C,, M}, P;).

Proof: Obviously, C,, = C,,. Let (o type ¢) € M!. Then, there is a class ¢ € Ck, N Ck,
st. ¢ <& ¢ in K; and (o type /) € My N M]. Assume that (o type ¢) ¢ M,. Then,
(o type ¢) € C,, U P,. If (o type ¢) € C, then this is impossible because C,, = C,,. If
(o type ¢) € P, then (o type ) € P, UC,, due to Lemma 1(1). If (o type ¢) € P, then
this is also impossible, because (o type ) € M; and due to Postulate 112 of Def. 7. If
(o type ') € C,, then ¢ € Ck, N Ck,. It holds that it exists ¢; € Ck, s.t. ¢; <f ¢ in K,
and (a) there is (o pr o) € I; and domain(pr) <} ¢; in Ky, or (b) there is (o' pr o) € I
and range(pr) <} ¢; in K, or (c) there is (o type ¢1) € I;. Since ¢1,¢ € Ck, N Ck,, it
follows from the assumption of Prop. 19(a) that ¢; <% ¢ in K;. Thus, (o type ) € Cy,
which is impossible since (o type ¢) € M;. Thus, (o type ¢) € M,

Let (o type ¢) € M,. Then, there is a class ¢ € Ck, N Ck, s.t. ¢ < ¢ in K,, and
(o type ') € My N M,. Assume that (o type ¢) &€ M/. Then, (o type ¢) € C,, U P..
If (o type c¢) € C., then this is impossible because C,, = C. If (o type ¢) € P! then
(o type ') € P, UC!,, due to Lemma 1(1). If (o type /) € P!, this is impossible due to
the fact (o type /) € M; and postulate I12. If (o type ¢) € C|, then ¢ € Ck, N Ck,,.
It holds that it exists ¢; € Ck, s.t. ¢ <} ¢ in K,, and (a) there is (o pr o') € I; and

*

domain(pr) <!, ¢; in Ky, or (b) there is (o' pr o) € I; and range(pr) <} c¢; in K, or
(c) there is (o type ¢1) € I . Since ¢, € Ck, N Ck,, it follows from the assumption
of Prop. 19(a) that ¢; <!, ¢ in K;. Thus, (o type ) € Cy, which is impossible since

(o type ) € My. Thus, (o type ¢) € M].

Let (o pr o) € M;. Then, there is a property pr’ € Prg, N Prg, st. pr < pr'in
K; and (o pr’ o) € My N M]. Assume that (o pr o') € M,. Then, (o pr o) € C, U P,.
If (o pr o) € C, then this is impossible because C, = C,. If (o pr o) € P, then
(o pr' o) € P, UC,, due to Lemma 1(2). If (o pr’ o) € P, then this is also impossible,
because (o pr’ o') € M; and due to Postulate I12 of Def. 7. If (o pr’ o') € C, then
pr' € Prg, N Prg,. It holds that it exists pry € Prg, s.t. pry <. pr’ in K, and
(opry o) € 1. Since pry, pr’ € Prg, NPrg, , it follows from the assumption of Prop. 19(b)
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that pry <f, pr’ in K;. Thus, (o pr’ o') € Cy, which is impossible since (o pr’ o) € M.
Thus, (o pr o) € M,.

Let (o pr o) € M,. Then, there is a property pr’ € Prg, N Pr, s.t. pr <7 pr’ in
K, and (o pr’ o) € My N M,. Assume that (o pr o') € M!. Then, (o pr o') € C,, U P..
If (o pr o) € C), then this is impossible because C, = C,. If (o pr o) € P, then
(o pr' o) € P.UC!, due to Lemma 1(2). If (o pr’ o/) € P!, this is impossible due to
the fact (o pr o’) € My and postulate 112. If (o pr’ o') € C/, then pr’ € Prg, N Prg,.
It holds that it exists pry € Prg, st. pry <5 pr’ in K,, and (o pry o') € I;. Since
pri,pr’ € Prg, N Prg,, it follows from the assumption of Prop. 19(b) that pr; <} pr’ in
Ky. Thus, (o pr’ o') € Cy, which is impossible since (o pr’ o') € M;. Thus, (o pr o) € M!.

Therefore, M,, = M. The fact that P, = P/ follows immediately from the definition
of X-partition (Def. 5). O
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Appendix B: List of Symbols

In this Appendix, we provide the list of symbols used in this thesis.
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List of Symbols

Symbol ‘ Description

C(K) The closure of a KB K

Ck The set of classes of C(K)

Pri The set of classes of C(K)

<k The subClassOf relation between classes in Cx

<pr The subPropertyOf relation between properties in Pryg
Resk The resources of a KB K

Instk The instances of a KB K

instr(c) The instances of a class ¢ of a KB K

Bk The set of cartesian instance triples of a KB K

Sk The set of schema triples of a KB K

% The set of instance triples of a KB K

Ci(K) The instance triples of the closure of a KB K
valid(o,pr, o, K) A walid property instance triple of a KB K
Invalid(K) The set of invalid property instance triples of a KB K

SubTriples((o type c))

The set of subtriples of a class instance triple (o type c¢) of a KB K

SubTriples((o pr 0/))

The set of subtriples of a property instance triple (o pr o') of a KB K

SubTriples(A) The set of subtriples of a set of instance triples A of a KB K

Mg The set of negative(false) instance triples of a KB K

Px The set of possible instance triples of a KB K

Px Add The set of added possible instance triples in Px

Px pel The set of deleted possible instance triples from Pg

poOs Triplesd(o) The set of possible class instance triples of an instance o
posTriples®P" (o) The set of possible property instance triples of an instance o as subject
posTriples®" (o) The set of possible property instance triples of an instance o as object

Sup Triples((o type c))

The set of supertriples of a class instance triple (o type ¢) of a KB K

Sup Triples((o pr o'))

The set of supertriples of a property instance triple (o pr o') of a KB K

SupTriples(A) The set of supertriples of a set of instance triples A of a KB K
KvP The updated certain part of an eKB
pvP The updated possible part of an eKB

diste(c — )

The length of the shortest path from a class c to a class ¢’

distClass(o, c)

The shortest distance of ¢ from one of the certain classes of o

disty(pr — pr')

The length of the shortest path from a property pr to a property pr’

dist Property(o, pr,o’)

The shortest distance of pr from one of the certain properties of (o, 0’)

Valid(K)

The set of valid property instance triples of a KB K

P The set of composite possibilities

pgr The set of extended possibilities including atomic and composite possibilities
Cl(o) The set of all certain classes of an instance o

posCl(o) The set of all possible classes of an instance o

Pffmpad The compact version of Pk

Peompact(0) The intervals regarding an instance o

| Peompact (0)] The number of intervals regarding an instance o

degree(int) The number of classes/properties that occur in an interval int

tseurch (0)

The time for locating an instance o in the list of lexicographically

ordered instances

tsearch (07 Ol)

The time for locating a pair of instances (0, 0’) in the list of lexicographically

ordered pairs of instances

tcl
subCheck

The time for checking a subsumption relationship between classes

=
subCheck

The time for checking a subsumption relationship between properties

Table 1: Symbols and Description
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