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Abstract

Semantic Web Ontologies are not static but evolve as the understanding of the domain

(or the domain itself) grows or evolves. This evolution happens independently of the

ontological instance descriptions (for short metadata) which are stored in the various

Metadata Repositories (MRs) or Knowledge Bases (KBs). However, it is a common

practice for a MR/KB to periodically update its ontologies to their latest versions. This

is done by migrating the available metadata to the latest version of the ontology. Usually

such migrations are not difficult because new ontology versions are usually compatible

with the past versions. However such migrations incur gaps regarding the specificity of

migrated metadata. This results in inability to distinguish those metadata that should

be reexamined for possible specialization (as consequence of the migration) from those for

which this is not necessary. For this reason there is a need for principles, techniques, and

tools that can manage the uncertainty incurred by such migrations, specifically techniques

which can identify automatically the descriptions that are candidate for specialization,

compute, rank and recommend possible specializations, and flexible interactive techniques

for updating the metadata repository (and its candidate specializations), after the user

(curator) accepts/rejects such recommendations. This problem is especially important for

curated KBs which have increased quality requirements (e-Science).

This is the first work that elaborates on this problem. It formulates the problem, intro-

duces the notion of extended KB consisting of the certain plus the possible (due to migra-

tion) specialized knowledge, and proposes principles and rules for updating it, assuming

the RDF/S framework. Subsequently, it provides algorithms and reports experimental

results (over real and synthetic datasets) demonstrating the feasibility of the approach.

In addition, a compact representation of the possibilities is proposed for reducing the stor-

age space requirements. Finally, it presents RIMQA (RDF Instance Migration Quality
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Assistant), a tool which has been designed and implemented for supporting the entire

lifecycle. To conclude, the proposed approach can enrich the lifecycle of curated Semantic

Web data with quality management processes appropriate for scenarios where ontologies

evolve frequently and independently from instance descriptions. As a consequence, this

allows adopting iterative and agile ontology modeling approaches, appropriate for open

environments like Linked Open Data (LOD).

Supervisor: Yannis Tzitzikas

Assistant Professor
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Exèlixh Ontologi¸n kai DiaqeÐrish thc Eidikìthtac twn Ontologik¸n

Perigraf¸n

MaÐrh Kampour�kh

Metaptuqiak  ErgasÐa

Tm ma Epist mhc Upologist¸n, Panepist mio Kr thc

PerÐlhyh

Oi ontologÐec tou ShmasiologikoÔ IstoÔ den eÐnai statikèc all� exelÐssontai gia di�fo-

rouc lìgouc, p.q. lìgw emploutismoÔ thc ennoiopoÐhshc (conceptualization) tou pedÐou

efarmog c,   thc exèlixhc tou pedÐou efarmog c autoÔ kaj' eautoÔ. Aut  h exèlixh gÐne-

tai sun jwc anex�rthta apì tic ontologikèc perigrafèc (metadedomèna) pou eÐnai apo-

jhkeumènec sta di�fora Apojet ria Metadedomènwn (Metadata Repositories)   B�seic

Gn¸sewn (Knowledge Bases). ApoteleÐ ìmwc koin  praktik  twn MR/KB h periodik 

epikairopoÐhsh twn ontologi¸n touc kai aut  h an�gkh sun jwc antimetwpÐzetai me th

metan�steush twn  dh ekfrasmènwn ontologik¸n perigraf¸n stic nèec ekdìseic twn on-

tologi¸n. Aut  h met�bash sun jwc den èqei duskolÐec afoÔ oi neìterec ekdìseic sthn

pleioyhfÐa touc eÐnai sumbatèc me tic prohgoÔmenec. Par� taÔta, tètoiec metanasteÔseic ( 

genikìtera ermhneÐec metadedomènwn b�sei neìterwn ekdìsewn), dhmiourgoÔn ken� sqetik�

me thn eidikìthta (specificity) twn perigraf¸n. Autì odhgeÐ se adunamÐa di�krishc twn peri-

graf¸n pou epidèqontai anaje¸rhshc kai pijan c eidÐkeushc, apì ekeÐnec gia tic opoÐec den

up�rqei tètoia an�gkh. Gia to lìgo autì apaitoÔntai arqèc, mhqanismoÐ kai ergaleÐa pou na

mporoÔn autìmata na diaqeiristoÔn thn abebaiìthta pou prokÔptei apì tètoiec metanasteÔ-

seic, sugkekrimèna teqnikèc pou na entopÐzoun autìmata tic perigrafèc pou epidèqontai

exeidÐkeush (katìpin metan�steushc), na upologÐzoun/ katat�ssoun kai sust noun tic pi-

janèc exeidikeÔseic touc, kaj¸c epÐshc kai euèliktec dialogikèc teqnikèc enhmèrwshc thc

b�shc perigraf¸n (kai twn pijan¸n exeidikeÔsewn touc) katìpin apodoq c/apìrriyhc twn

sust�sewn apì ton epimelht  tou apojethrÐou. To prìblhma autì eÐnai shmantikì gia tic

epimelhmènec (curated) B�seic Gn¸sewn, oi opoÐec èqoun auxhmènec apait seic poiìthtac

(p.q. b�seic episthmonik¸n dedomènwn).

H paroÔsa ergasÐa eÐnai h pr¸th pou asqoleÐtai me autì to prìblhma. Arqik� diatup¸nei

tupik� to prìblhma, eis�gei thn ènnoia thc dieurumènhc b�shc gn¸sewn (extended KB)
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apoteloÔmenh apì th sÐgourh gn¸sh kai tic pijanèc (lìgw twn metanasteÔsewn) exeidikeÔ-

seic thc, kai proteÐnei arqèc kai kanìnec pou prèpei na dièpoun thn enhmèrws  thc, epikentr-

wnìmenoi sto plaÐsio RDF/S. En suneqeÐa, dÐdontai oi sqetikoÐ algìrijmoi, apodeiknÔetai

tupik� h orjìtht� touc kai anafèrontai peiramatik� apotelèsmata epÐ pragmatik¸n kai

sunjetik¸n dedomènwn. Sun�ma, kai me stìqo th meÐwsh tou apaitoÔmenou apojhkeu-

tikoÔ q¸rou, proteÐnetai mia sumpag c anapar�stash twn pijan¸n eidikeÔsewn. Tèloc,

parousi�zetai èna ergaleÐo pou sqedi�sthke kai anaptÔqjhke gia th st rixh ìlhc thc

diadikasÐac, onìmati RIMQA (RDF Instance Migration Quality Assistant).

En katakleÐdi, h proteinìmenh prosèggish mporeÐ na emploutÐsei ton kÔklo zw c twn

epimelhmènwn (curated) (meta)dedomènwn tou ShmasiologikoÔ IstoÔ me diadikasÐec diaqeÐrish-

c poiìthtac, kat�llhlec gia sen�ria ìpou oi ontologÐec exelÐssontai suqn� kai anex�rth-

ta apì tic perigrafèc b�sei aut¸n. H prosèggish aut  sun�ma epitrèpei thn uiojèthsh

epanalhptik¸n proseggÐsewn montelopoÐhshc ontologi¸n, oi opoÐec eÐnai kat�llhlec gia

anoiqt� perib�llonta ìpwc ta Diasundedemèna Anoikt� Dedomèna (Linked Open Data).

Epìpthc Kajhght c: Gi�nnhc TzÐtzikac

EpÐkouroc Kajhght c
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Chapter 1

Introduction

Semantic Web is a group of methods and technologies to allow machines to understand

the meaning - or “semantics” - of information on the World Wide Web. The term was

coined by World Wide Web Consortium (W3C) director Tim Berners-Lee [20]. He defines

the Semantic Web as “a web of data that can be processed directly and indirectly by

machines.” While the term “Semantic Web” is not formally defined, it is mainly used to

describe the model and technologies proposed by the W3C. These technologies include

the Resource Description Framework (RDF), a variety of data interchange formats (e.g.

RDF/XML, N3, Turtle, N-Triples), and notations such as RDF Schema (RDFS) and the

Web Ontology Language (OWL), all of which are intended to provide a formal descrip-

tion of concepts, terms, and relationships within a given knowledge domain. As already

mentioned, the Resource Description Framework (RDF) is a family of World Wide Web

Consortium (W3C) specifications originally designed as a metadata data model. It has

come to be used as a general method for conceptual description or modeling of information

that is implemented in web resources, using a variety of syntax formats.

In computer science and information science, an ontology is a formal representation

of knowledge as a set of concepts within a domain, and the relationships between those

concepts. It is used to reason about the entities within that domain, and may be used

to describe the domain. In theory, an ontology is a “formal, explicit specification of a

shared conceptualization” [10]. An ontology provides a shared vocabulary, which can be

used to model a domain, that is, the type of objects and/or concepts that exist, and their
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properties and relations. Ontologies have been used in several domains such as, Artifi-

cial Intelligence, Semantic Web, Configuration Systems, Systems Engineering, Software

Engineering, Information Retrieval, Conceptual Modeling, Library Science, Enterprise

Modeling, e-Learning, e-Government, e-Commerce, Biomedical Informatics, Natural Lan-

guage Processing, and Information Architecture as a form of knowledge representation

about the world or some part of it. The creation of domain ontologies is also fundamental

to the definition and use of an enterprise architecture framework.

As we mentioned above, ontologies provide a shared conceptualization of a domain

by defining the concepts in the domain and describing how those concepts are related to

each other. Several reasons for changing an ontology have been identified in the literature

[8]: an ontology may need to change because it offers a richer conceptualization of the

problem domain, the domain of interest has changed, the perspective under which the

domain is viewed has changed, or the user/application needs have changed.

An important observation is that this evolution happens independently of the ontolog-

ical instance descriptions which are stored in the various Metadata Repositories (MRs)

or Knowledge Bases (KBs). With the term ontological instance description, we refer to

RDF/S [2] descriptions that classify an instance o to a class c or relate two instances

o, o′ with a property pr. With the term MR or KB, we refer to a stored corpus of on-

tological instance descriptions. They can be stored in files or in RDF/S databases (i.e.

RDF triple-stores [23]). The evolution of ontologies1 happens independently of the onto-

logical instance descriptions due to the distributed nature of the Web and the Semantic

Web. For instance, this is the case with ontologies maintained by standardization au-

thorities. However, it is a common practice (mainly for interoperability purposes) for a

KB to periodically update its ontologies to their latest versions by “migrating” the stored

instance descriptions to the latest ontology versions. Such migrations are usually not

difficult, because newer versions are mainly (or constructed to be) compatible with past

ones. Nevertheless, they incur gaps regarding the specificity of the migrated instance

descriptions, i.e. inability to distinguish those that should be reexamined (for possible

specialization as consequence of the migration) from those for which no reexamination is

justified. It follows that quality control is very laborious and error-prone.

1In this work, by the term of ontology we refer only to schema information.
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1.1 Investigating the Problem

To start with, consider a corpus of instance descriptions and suppose that at certain

points in time we can make the assumption that the available instance descriptions are

the most specific and detailed descriptions that are possible with respect to the employed

ontology. For instance, we can make such an assumption after explicit human (e.g. by

the curator of the KB) inspection and verification [3], or in cases where the descriptions

have been produced automatically by a method that is guaranteed to produce specific

descriptions (e.g. by transforming curated relational data to RDF/S descriptions [28], or

by automatic classification to categories each defined by sufficient and necessary condi-

tions, etc.). We will hereafter refer to this assumption by the name maximum specificity

assumption (for short MSA). It is not hard to see that if the new version of the ontology

is richer than the past one, then the corpus of the migrated instance descriptions may no

longer satisfy the MSA with respect to the new ontology. This thesis elaborates on this

problem.

The ability to identify the instance descriptions that satisfy the MSA and those that

do not, is useful in order to address questions of the form: (a) for what descriptions can

we make the MSA? (b) what (class or property) instances should probably be reclassi-

fied (to more refined classes or properties), and (c) which are the candidate new classes

or properties (refinements) of such instances? The above questions are very useful for

curating a corpus of instance descriptions, i.e. for managing its specificity as the corpus

evolves over time. Without special support, such tasks would be unacceptably expensive

and vulnerable to omissions, for large datasets. Just indicatively, CIDOC CRM2 is one

ontology (expressed in RDF/S) which is used by several ongoing EU projects, and it is

curated (i.e. extended) by an authority (community) that is different from the various

communities, curators of repositories, or simple users who keep creating instance descrip-

tions with respect to that ontology. In practice, whenever a new version appears, the

available instance descriptions are migrated to that version, and it is worth noting that

this ontology has been revised at least 5 times the last two years (one recent version is

described at [33]).

2CIDOC CRM (ISO 21127) is a core ontology describing the underlying semantics of data schemata and
structures from all museum disciplines and archives (its RDF representation contains 78 classes and 250 properties
from which 7 are literal-valued) (available from http://www.cidoc-crm.org/).
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1.1.1 Motivating Example

We will explain the main idea of our approach using the toy example depicted at Figure

1.1. Consider an e-commerce portal that sells various kinds of products. Suppose a car

c1 that has been classified under the class Car, and a person p1 that has been classified

under the class Person, defined in an ontology Ont1, and suppose that both classes have

no subclasses. Assume that for the current set of instance descriptions according to Ont1

the MSA holds (i.e. they are complete with respect to specificity). Thus, c1 is not a

Person and p1 is not a Car. Let Ont2 be a new version of that ontology, which among

others, defines the subclasses of the classes Car and Person, shown at Figure 1.1 (right).

Person

c1

Person owns
domain range

Car

sells

domain range

Adult
Ecological

First Version – Ont1

Second Version – Ont2

Car

p1

Diesel

Hybrid Electric

domain range
owns

p1 c1
Instance Descriptions

Ontology 
Evolution

Migration of
Instance 
Descriptions

Instance Descriptions

Figure 1.1: Motivating example

All subclasses of Car are possible classes for c1. Adult is not a possible class for c1,

since c1 was not a person according to Ont1. None of the subclasses of Car is a possible

class for p1, since p1 was not a car according to Ont1. Moreover, notice that Ont1 defines

a property owns and suppose that (p1 owns c1) is an instance description. Also notice

that Ont2 defines a subproperty sells of owns between Person and Car. This property

will be prompted as a possible specialization of the association between p1 and c1.

1.1.2 Supporting the Full Life Cycle

Furthermore, apart from identifying the information that could be further specialized,

we would like to aid making it as specific as possible. Therefore, we should support flexible

and interactive processes for managing the computed possibilities, where the user will be

able to either accept or reject the computed recommendations, and eventually update the

knowledge base reaching to a state where the MSA holds. The ranking of possibilities is

important for designing user-friendly interaction schemes. We propose a process like the
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Instance Selection

Display Possible Changes (ranked)

Accept/Reject Changes

Update KB (its certain and possible 
part)

User

Figure 1.2: The process of exploiting possibilities

one sketched in Figure 1.2 (described in detail in Chapter 6). Specifically, assume that

the user selects some instances then the system displays ranked all or some of the possible

instance descriptions for the selected instances. The user accepts or rejects these instance

descriptions and the system updates appropriately the KB and its possible part. Note that

the possible part of the KB is stored explicitly and separately. Returning to the example

shown in Subsection 1.1.1, this means that we can rank the possible classes for c1, so that

if the user is prompted to select a possible class for c1, then Diesel and Ecological will

be the first classes to be displayed. If the user rejects the class Ecological, then all its

subclasses will be rejected from the possible classes (and this reduces the effort required

for reaching a state where the MSA holds).

1.1.3 The Difficulties

In real cases the computation of possibilities is more complex than the case of the exam-

ple shown in Subsection 1.1.1, as we can have conflicts among (a) new positive knowledge

inferable from the instance descriptions and the new schema, (b) new “negative” infor-

mation inferable from the past negative instance descriptions and the new schema, and

(c) the previously computed possible instance descriptions (possible refinements). In fact,

our approach resolves such conflicts by considering that (a) has higher priority than (b),

and (b) has higher priority than (c).

In addition, it should be possible to update correctly the set of possibilities, at scenarios

with several successive instance migrations interwoven with several (positive or negative)

user feedbacks. Finally, another challenge is to reduce the information that has to be kept

5



to support this scenario. Specifically to avoid having to keep negative information of any

kind, and to devise compact representations for the possibilities.

1.1.4 On MSA, RDF, and Open/Closed World Assumptions

We should clarify that we do not violate the Open World Assumption of RDF/S. It

is the MSA that allows us to infer the negative knowledge of the previous example. Only

if we explicitly make the MSA we can then exploit it (in a Closed World Assumption

manner) in the context of ontology evolution for formalizing the way possibilities are

defined. To clarify that we can also capture the Open World Assumption of RDF, suppose

that we start from an RDF/S KB for which we know nothing regarding its completeness

or specificity. We can capture this case by considering that every instance description,

that can be formed using the ontology and is not certain, is possible. That is, the set

of “negative assertions” is empty (in our example that would mean that Adult can be a

possible class for c1 and Car can be a possible class for p1). Then, we can still use and

exploit our machinery when we migrate our descriptions to subsequent schema versions,

and the steps of the life cycle that we propose can produce the “negative” statements.

If however one knows that one particular RDF/S KB is complete (regarding specificity),

which can be true in the context of curated knowledge bases, then he can “apply” the

MSA. This means that every instance description, that can be formed using the ontology

and is not certain, is negative. Thus, the set of possibilities is empty (in our example that

would mean that Adult is not a possible class for c1 and Car is not a possible class for

p1).

1.2 Real World Ontologies

The proposed instance description quality management can be useful in several sci-

entific domains. Below we present the most prevalent ones along with ontologies which

capture the knowledge of these fields.

• Digital Libraries: Library of Congress Subject Headings (LCSH) comprise a the-

saurus (in the information technology sense) of subject headings, maintained by
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the United States Library of Congress, for use in bibliographic records. LC Sub-

ject Headings are an integral part of bibliographic control, which is the function by

which libraries collect, organize and disseminate documents. The Subject Headings

are published in large red volumes (currently five), which are typically displayed in

the reference sections of research libraries. They may also be searched online in the

Library of Congress Classification Web3, a subscription service, or free of charge

(as individual records) at Library of Congress Authorities. The Library of Congress

issues weekly updates4 (see in Figures 1.3 and 1.4 two parts of subsequent weekly

updates). The data is published for a fee by the Cataloging Distribution Service.

A change log can be found in “https://addons.omeka.org/trac/log/plugins/Lcsh”.

LCSH Authority Records have MARC/XML or MADS/XML format. However, they

can be translated into RDF documents according to the SKOS5 project’s Quick

Guide to Publishing a Thesaurus on the Semantic Web.

• e-Government: oeGOV6 is making and publishing W3C OWL ontologies for e-

Government. The oeGOV ontologies are OWL models of the Organizational struc-

ture of government, the FEA models and QUDT (Quantities, Units, Dimensions and

Data Types). Ontologies expressed in OWL allow data to be interpreted and aggre-

gated across the web. By having foundation ontologies of eGovernment we enable a

web of government data. The first step is an ontology of Government. Next steps

will be to use oeGOV to build OWL maps of who is publishing what. The oeGOV

ontology files have RDF/OWL or N3 format.

• e-Commerce: The Universal Standard Products and Services Classification Code

(UN/SPSC)7 is a freely available class taxonomy classifying products and services.

Many B2B sites are currently using and extending it to better achieve their particular

purposes. The UN/SPSC ontology files have DAML+OIL or RDF format.

• Enterprise Modeling: Ontologies play a major role in this field by creating and main-

taining an organizational memory that lets the different enterprise areas interoperate

3http://www.loc.gov/cds/classweb/
4http://www.loc.gov/aba/cataloging/subject/weeklylists/
5http://www.w3.org/2004/02/skos/
6http://www.oegov.org/
7http://www.unspsc.org
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Figure 1.3: An example of LCSH weekly update

in a common language and with unified roles, for example modeling Business Pro-

cess. They can also be the basis for the agents interoperation language in automated

manufacturing processes. The Enterprise Ontology8 is an example of this kind of

ontologies. The formal Ontolingua encoding of the Enterprise Ontology is held in

the Library of Ontologies maintained by Stanford University’s Knowledge Systems

Lab (KSL).

• Biomedicine/Bioinformatics: In the medical domain, we can find several taxonomies,

as Medical Subject Headings (MeSH)9, which is a comprehensive controlled vocabu-

lary for the purpose of indexing journal articles and books in the life sciences. It can

also serve as a thesaurus that facilitates searching. Created by the United States

National Library of Medicine (NLM), it is used by the MEDLINE/PubMed article

database and by NLM’s catalog of book holdings. MeSH descriptors and qualifiers,

8http://www.aiai.ed.ac.uk/project/enterprise/ontology.html
9http://www.nlm.nih.gov/mesh/
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Figure 1.4: A subsequent weekly update of that shown in Figure 1.3

and Supplementary Concept Records (formerly Supplementary Chemical Records)

are in XML format. Files are updated weekly.

Furthermore, there is a growing number of life science ontologies, e.g., the ontologies

managed in the OBO (Open Biomedical Ontologies) Foundry [30], which provide

a resource where biomedical ontologies are made available in a standard format

that allows systematic updating and versioning on the basis of community feed-

back. Currently, there are nearly 60 ontologies distributed through the OBO web

site10, spanning domains from anatomy (e.g., Mouse adult anatomy) to ethology

(Loggerhead nesting), and from gene and gene product features (Sequence Ontol-

ogy11 and Gene Ontology12) to phenotypic qualities knowledge (Disease Ontology13).

The existing ontologies are not static but are frequently evolved to incorporate the

10http://www.obofoundry.org/
11http://www.sequenceontology.org/
12http://www.geneontology.org/
13http://do-wiki.nubic.northwestern.edu/
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newest knowledge of a domain or to adapt to changing application requirements.

Just indicatively, there are daily new versions for the popular Gene Ontology. Gene

Ontology files are in OBO or RDF/OWL format, while diffs between revisions can

be found in “http://cvsweb.geneontology.org/cgi-bin/cvsweb.cgi/go/ontology/”.

• Natural Language Processing: Ontologies can help the semantic analysis of text by

representing grammatical structures as related concepts in order to reduce the ex-

istent gap in the interpretation of the semantic ambiguity of the natural language.

Since then, ontologies can be useful in text mining and machine translation. Word-

Net14 is an example of such ontologies. WordNet source files are in Prolog. However,

they can be represented in RDF/OWL15 format and a change log can be found in

“http://www.w3.org/TR/wordnet-rdf/#changelog”.

All the ontologies listed above, evolve over time as they are being updated and new

ontology versions are produced. Apart from the expectation of compatible instance mi-

grations between ontology versions, i.e. instance migrations without invalidity problems,

there is a need for quality management over the instance descriptions of the new ontol-

ogy versions. The rising question is how (i.e. based on which rules and principles) the

migrated instance descriptions could become as specific as possible according to the new

ontology versions. This work contributes in this direction by producing the suggestions

that make the instance descriptions as specific as possible and by proposing them to the

users (curators) via a specificity lifecycle management process.

1.3 Contribution of this thesis

The contribution of this thesis lies in:

• Formalizing the notion of (possible) specificity.

• Providing principles, rules, and algorithms for computing possibilities after instance

migrations in backwards compatible schema evolution case and non-backwards com-

patible schema evolution case.

14http://wordnet.princeton.edu/
15http://www.w3.org/TR/wordnet-rdf/
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• Describing a flexible specificity-aware curation process.

• Presenting a tool named RIMQA for demonstrating the proposed approach.

• Proposing a compact representation for storing the produced possibilities.

• Providing experimental results over real and synthetic datasets.

We could say that from a more general perspective, this thesis contributes in enriching

the lifecycle of Semantic Web data with quality management, appropriate for scenarios

where ontologies evolve frequently and independently from instance descriptions. As

a consequence, this allows adopting iterative and agile ontology modeling approaches,

appropriate for open environments like Linked Open Data.

Although we confine ourselves to RDF/S, the results of this work can be applied

to any object-oriented conceptual modeling approach that supports classes, inter-class

associations, specialization/generalization hierarchies (among classes and among inter-

class associations) and instantiation. It could be applied also in object-oriented software

engineering, e.g. to aid software upgrade when new versions of software libraries come

up.

1.4 Organization of this thesis

Chapter 1 is the introductory chapter of the thesis.

Chapter 2 gives the required background information and notations.

Chapter 3 formalizes the problem using what is called X-partition and provides the

fundamentals of our approach.

Chapter 4 describes the transition of X-partitions.

Chapter 5 provides an algorithm for computing the set of possible schema triples of

an RDF/S KB, when the current set of schema triples is backwards compatible with the

previous one.

Chapter 6 describes the specificity lifecycle management process.

Chapter 7 defines the notion of composite possibilities and provides an algorithm for

computing and ranking them.
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Chapter 8 provides an algorithm for computing the set of possible instance triples of

an RDF/S KB, when the current set of schema triples is not backwards compatible with

the previous one.

Chapter 9 describes a prototype system named RIMQA based on the proposed approach,

presents a compact representation for possibilities, and provides experimental results.

Chapter 10 discusses how the sequential migrations between ontology versions can

lead to a different set of possibilities from the one-step migration from the first to the last

ontology version.

Chapter 11 discusses the related work.

Chapter 12 concludes this thesis and identifies issues for further research.

All proofs of Algorithms and Propositions are given in Appendix A. In Appendix B,

we provide the list of symbols used in the thesis.
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Chapter 2

Background

This chapter introduces notions and notations that shall be used in the sequel. Let

URI be the set of URI references and LIT be the set of plain and typed literals. In our

framework, an RDF/S Knowledge Base (KB) is defined by a set of RDF triples of the

form (subject predicate object), where subject, predicate ∈ URI and object ∈ URI ∪LIT .

Let T be the set of all possible triples that can be constructed from a countably infinite

set of URIs, as well as literals (e.g. strings, integers, float numbers) [11]. Then, an RDF/S

KB (for short KB) can be seen as a finite subset K of T , i.e. K ⊆ T . Apart from the

explicitly specified triples of a KB K, other triples can be inferred based on the RDF/S

semantics [13]. For this reason, we introduce the notion of closure.

The closure of a KB K, denoted by C(K), is the set of all triples that either are

explicitly asserted or can be inferred from K based on RDFS-entailment of the RDF/S

semantics [13], with the exceptions that (i) we consider in C(K), extended RDF triples

where literals can be subject of triples and (ii) we remove from the RDF and RDFS

axiomatic triples [13], the ones that rdf : i terms, for i ∈ {1, 2, ...}, appear. The first

exception is due to the fact that later we define the instances of classes using the formula

instK(c) = {o | (o type c) ∈ C(K)} and the instances of classes may contain literals. The

second exception is due to the fact that rdf : i terms are infinite and there are not used

in our theory.

Essentially, the following derivation rules are used1:

(i) if (c1 subClassOf c2) and (c2 subClassOf c3) then (c1 subClassOf c3),

1The full list of derivation rules, that we consider, is found in the proof of Prop. 10 in Appendix A.
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(ii) if (pr1 subPropertyOf pr2) and (pr2 subPropertyOf pr3) then (pr1 subPropertyOf pr3),

(iii) if (o type c1) and (c1 subClassOf c2) then (o type c2),

(iv) if (o pr1 o′) and (pr1 subPropertyOf pr2) then (o pr2 o′), and

(v) if (o pr o′) then (o type domain(pr)) and (o′ type range(pr)).

Def. 1 Let K be a KB. We define the tuple ΓK = ⟨CK , P rK , domain, range, ≤∗
cl, ≤∗

pr⟩,

as follows2:

• CK is the set of classes of C(K),

• PrK is the set of properties of C(K),

• domain is a total function domain : PrK → CK that maps a property in PrK to

its domain,

• range is a total function range : PrK → CK that maps a property in PrK to its

range,

• ≤∗
cl is the subClassOf relation between CK , and

• ≤∗
pr is the subPropertyOf relation between PrK . 2

Below we introduce notations for the resources of K, the instances of K, and the

instances of a class c ∈ CK :

ResK = {o | (o type Resource) ∈ C(K)}

InstK = ResK \ (CK ∪ PrK)

instK(c) = {o | (o type c) ∈ C(K)}

Def. 2 (Valid KB)

We consider a KB K to be valid if:

(i) the relations ≤∗
cl and ≤∗

pr are acyclic,

(ii) if pr ≤∗
pr pr′ then domain(pr) ≤∗

cl domain(pr′) and range(pr) ≤∗
cl range(pr′). 2

Convention: In this paper, we consider only valid KBs.

The triples of T can be partitioned to schema and instance triples, as shown in Table

2.1 (i.e. the RDF triples that are not schema triples, according to Table 2.1, are instance

2Note that according to RDF/S semantics [13], ≤∗
cl and ≤∗

pr are reflexive and transitive relations.
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Schema Triples

triple abbreviation

c type Class

c subClassOf c′ c ≤cl c′

pr type Property

pr subPropertyOf pr ′ pr ≤pr pr′

pr domain c′′ domain(pr) = c′′

pr range c′′ range(pr) = c′′

Instance Triples

o type c

o pr o′

Table 2.1: Schema and Instance Triples

triples). Instance triples can be further partitioned to class instance triples (having the

form (o type c)) and property instance triples (having the form (o pr o′)).
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Chapter 3

The Notion of X-partition

This chapter formalizes the problem that we are going to solve and provides the fun-

damentals of the proposed approach.

Given a KB K, below we define the set of cartesian instance triples of K.

Def. 3 (Cartesian Instance Triples)

Given a KB K, the set of cartesian instance triples of K, denoted by BK
1, is the union

of the class instance triples in InstK × {type} × CK and the property instance triples in

InstK × PrK × InstK . 2

Given a KB K, we can distinguish its set of schema triples SK and its set of instance

triples IK , i.e. K = SK ∪ IK . However, for migration purposes, we need to consider only

instance triples in BK
2, i.e. those in IK ∩BK . For notational simplicity we shall hereafter

assume that IK = IK ∩BK , and we shall use K = (SK , IK). We define Ci(K) as the set of

explicit and inferred instance triples, specifically Ci(K) = C(K) ∩ BK . Clearly, it holds:

IK ⊆ Ci(K) ⊆ BK .

Def. 4 (Valid Property Instance)

We shall call a property instance triple (o pr o′) ∈ BK valid to add, for short valid, if it

satisfies the constraint:

(o ∈ instK(domain(pr))) ∧ ( o′ ∈ instK(range(pr))) (3.1)

1The symbol B in BK stands for Base.
2Note that the rest instance triples, e.g. property instances that connect classes, are not interesting for

migration purposes, and we ignore them.
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Note that if we add to K a property instance triple (o pr o′) that does not satisfy

expression (3.1) of Def. 4, then at least one new class instance triple would be added

to Ci(K), due to derivation rule (v) of RDF/S semantics (see Chapter 2). Furthermore,

we should note that several Semantic Web Repositories for well justified reasons do not

support derivation rule (v), and consequently do not accept the addition of property

instance triples that do not satisfy expression (3.1). To simplify notation, hereafter we

shall use valid(o, pr, o′, K) to denote expression (3.1). We shall also use Invalid(K) to

refer to the invalid property instance triples of BK , i.e.

Invalid(K) = {(o pr o′) ∈ BK | ¬valid(o, pr, o′, K)}

Let us also introduce some auxiliary notations. We will define the SubTriples of an

instance triple as follows:

SubTriples((o type c)) = {(o type c′) | c′ ≤∗
cl c}

SubTriples((o pr o′)) = {(o pr′ o′) | pr′ ≤∗
pr pr}

If A is a set of instance triples, we define:

SubTriples(A) =
∪
t∈A

SubTriples(t)

Given two triples t and t′, we shall write: t ≤ t′ iff t ∈ SubTriples(t′).

Now, we introduce the notion of X-partition which is fundamental for our work. The

main idea is to partition the set of cartesian instance triples BK into three pairwise disjoint

subsets: true, false, and possible instance triples:

• the first comprises IK and the inferred instance triples (i.e. Ci(K)),

• the second comprises instance triples which are not true (denoted by MK), and

• the last comprises instance triples (denoted by PK) that are possible due to schema

evolution.

This is what we will call X-partition.

Def. 5 (X-partition)

An X-partition of BK is a three-fold partition of BK , denoted by (Ci(K), MK , PK), that

satisfies the following:
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(i) Ci(K) = C(K) ∩ BK .

(ii) MK is a lower set wrt ≤3, i.e. SubTriples(MK ) = MK .

(iii) If an element of BK is not valid then it belongs to MK , i.e. Invalid(K ) ⊆ MK . 2

Note that Ci(K) is an upper set wrt ≤4, as consequence the derivation rules (i) and (ii)

of RDF/S semantics (see Chapter 2) and the fact that C(K) is closed with respect to the

closure operator C. Note that (ii) of Def. 5 is reasonable because (a) if (o type c1) ∈ MK

and c2 ≤∗
cl c1 then it should hold (o type c2) ∈ MK and (b) if (o pr1 o′) ∈ MK and

pr2 ≤∗
pr pr1 then it should be (o pr2 o′) ∈ MK . Additionally, note that from (ii) and the

fact that an X-partition is a partition, it follows that it does not exist m ∈ MK and p ∈ PK

such that p ≤ m. Further, from (ii) (and the fact that an X-partition is a partition), it

follows that the triples in PK fall into the following two categories:

1. class instance triples in (InstK × {type} × CK),

2. valid to add property instance triples, i.e. property instance tripls whose addition in

K would not add any inferred class instance triple to Ci(K).

Two useful lemmas follow.

Lemma 1 (PK ∪ Ci(K) is an Upper Set wrt ≤)

1. If (o type c2) ∈ PK and c2 ≤∗
cl c1 then (o type c1) ∈ (PK ∪ Ci(K)).

2. If (o pr2 o′) ∈ PK and pr2 ≤∗
pr pr1 then (o pr1 o′) ∈ (PK ∪ Ci(K)). 2

Lemma 2 (PK is interval-based wrt ≤)

1. If c1 ≤∗
cl c2 ≤∗

cl c3 and (o type c1), (o type c3) ∈ PK then (o type c2) ∈ PK .

2. If pr1 ≤∗
pr pr2 ≤∗

pr pr3 and (o pr1 o′), (o pr3 o′) ∈ PK then (o pr2 o′) ∈ PK . 2

Lemma 2 says that if t and t′ belong to PK then all tx in the interval [t, t′] (assuming the

≤ partial order) belong to PK , too. This lemma can be exploited for specifying compact

3A lower set (else called downward closed set) is a subset Y of a given partially ordered set (X,≤) such that,
for all elements x and y, if x ≤ y and y is an element of Y , then x is also in Y .

4Upper set is the dual notion of lower set.
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(interval-based) representations of PK (see Section 9.2).

Let us now discuss how the notion of X-partition can be used in our scenarios.

[MSA case]. Consider a KB K that satisfies the Maximum Specificity Assumption (MSA),

i.e. all instances have been described with the most specific classes or properties of the

schema that hold in the application domain. We could capture this knowledge by an

X-partition in which PK = ∅. Since an X-partition is a partition, and PK = ∅, it follows

that all elements of BK that are not in Ci(K), should be considered as false (i.e. a form

of closed world assumption), and thus it should be MK = BK \ Ci(K). It is not hard to

see that the resulting partition is an X-partition. Obviously (ii) and (iii) of Def. 5 are

satisfied, and the X-partition of BK is:

(Ci(K),MK , PK) = (Ci(K), BK \ Ci(K), ∅)

Indeed, it holds that SubTriples(BK \ Ci(K)) = BK \ Ci(K). This is because if t ∈

BK \ Ci(K) and t′ ≤ t then t′ ∈ BK \ Ci(K), due to derivation rules (iii) and (iv) of

RDF/S semantics (see Chapter 2). Additionally, note that Ci(K) ∩ Invalid(K ) = ∅, due

to derivation rule (v) of RDF/S semantics. Thus, Invalid(K) ⊆ BK \ Ci(K).

[Open World case]. Now consider the other extreme case, i.e. the case where the MSA

does not hold for any instance. For example consider that we start from a KB for which

we know nothing regarding its completeness or specificity, and we want to consider that

every valid instance triple that can be formed using the ontology and is not certain, it is

possible. We can capture this knowledge by an X-partition whose MK contains only the

invalid instance triples of BK , i.e. MK = Invalid(K). Since an X-partition is a partition

of BK , it follows that PK = BK \(Ci(K)∪MK) = BK \(Ci(K)∪Invalid(K)). This means

that PK contains all valid instance triples of BK that do not belong to Ci(K). It is not

hard to see that the resulting partition is an X-partition. Again (ii) and (iii) of Def. 5

are satisfied5 and the X-partition of BK is:

(Ci(K),MK , PK) = (Ci(K), Invalid(K), BK \ (Ci(K) ∪ Invalid(K)))

5Statement (ii) is satisfied because if it holds that ¬valid(o, pr, o′, K) and pr′ ≤∗
pr pr then certainly it holds

that ¬valid(o, pr′, o′, K), due to (ii) of Def. 2. Thus, SubTriples(Invalid(K )) = Invalid(K ). Statement (iii) is
obvious.
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[Mixed case]. It is not hard to see that we can easily capture various application specific

assumptions, e.g. for the case where we know that MSA holds only for a part of the KB.

Specifically, assume that the MSA holds only for the class instance triples of a subset

O of the instances of K, i.e. O ⊆ InstK . Then, MK = Invalid(K) ∪ {(o type c) ∈

BK \ Ci(K) | o ∈ O}. Analogously, we can express explicitly our assumptions regarding

the specificity of property instance triples. In particular, if the MSA holds only for the

property instance triples whose subject belongs to a subset O of the instances of K then

MK = Invalid(K) ∪ {(o pr o′) ∈ BK \ Ci(K) | o ∈ O}. If the MSA holds only for the

property instance triples whose object belongs to a subset O of the instances of K then

MK = Invalid(K) ∪ {(o′ pr o) ∈ BK \ Ci(K) | o ∈ O}. If the MSA holds only for

the property instance triples whose both subject and object belong to a subset O of the

instances of K then MK = Invalid(K) ∪ {(o pr o′) ∈ BK \ Ci(K) | o, o′ ∈ O}. Finally,

in the case that more than one of the previous conditions hold then MK is the union of

their corresponding “negative statements”. Note that in all cases SubTriples(MK ) = MK

and Invalid(K ) ⊆ MK .
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Chapter 4

Transition of X-partitions

In this chapter, we describe the transition of X-partitions.

Below, we define the notion of backwards compatibility between two sets of schema

triples.

Def. 6 (Backwards Compatibility)

Let S and S ′ be two sets of schema triples. S ′ is backwards compatible with S, denoted

by S ⊑ S ′, iff C(S) ⊆ C(S ′). 2

The following Proposition is used in several of our proofs.

Prop. 1 When a KB K = (SK , IK) evolves to a new KB K ′ = (SK′ , IK′), where IK = IK′ ,

it holds that InstK = InstK′ . 2

Example 1 Figure 4.1 illustrates two KBs K and K ′, each consisting of schema triples

(SK and SK′) and instance triples (IK and IK′). Note that SK ⊑ SK′ . Just indica-

tively in this example we have: (domain(drives) = Person) ∈ SK , (Car ≤∗
cl Vehicle) ∈

SK′ , while (Car ≤∗
cl Vehicle) ̸∈ SK . In addition, in this example we have IK = IK′

and InstK = InstK′ (the instances are shown at the bottom of each KB). For exam-

ple, (Bob drives BMW 1), (Fiat 1 type Car) ∈ IK = IK′ , while InstK = InstK′ =

{Fiat 1, BMW 1, Bob, Alice, Computer Science Department, FORTH}. 2

Consider that we want to migrate the instance triples of a KB K = (SK , IK), to a

schema SK′ ⊒ SK , reaching to a KB K ′ = (SK′ , IK). It is not hard to see that it holds

BK′ ⊇ BK . Since SK′ is backwards compatible with SK , every b that belongs to BK
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Figure 4.1: An instance migration scenario
Classes and class instances are depicted by ovals. Properties are depicted by rectangles and the letters “d” and
“r” are used to denote the domain and the range of a property. Fat arrows denote subClassOf/subPropertyOf

relationships, while dashed arrows denote instanceOf relationships.

certainly belongs to BK′ . The superset relationship between BK and BK′ can be strict

(i.e. BK′ ⊃ BK) because SK′ can contain new elements (classes or properties) that could

be used for generating instance triples to be added to BK′ .

Prop. 2 If SK ⊑ SK′ then BK′ ⊇ BK . 2

We can check if a set of schema triples S ′ is backwards compatible with another set of

schema triples S by computing the Delta function ∆d(S → S ′), defined as follows [39]:

∆d(S → S′) = {Add(t) | t ∈ S′ \ C(S)} ∪

{Del(t) | t ∈ S \ C(S′)}

Note that Add(t) and Del(t) are not functions on t but strings, where t is replaced by

the appropriate schema triple.
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Prop. 3 Let S and S ′ be two sets of schema triples. It holds that: S ⊑ S ′ iff ∆d(S → S ′)

contains only add operations. 2

Suppose that we know the X-partition of K, i.e. (Ci(K),MK , PK). Our objective is

to define the new X-partition, i.e. we want to define the transition:

(Ci(K),MK , PK)  (Ci(K
′),MK′ , PK′)

By migrating IK to SK′ , we can get C(K ′), and consequently Ci(K
′). The rising question

is how MK′ and PK′ are defined. Figure 4.2 illustrates the problem that we are going to

solve.

SK SK’ SK’’

Ci(K)IK

K=(SK , IK), K’=(SK’ , IK), K’’=(SK’’ , IK)

BK

BK’

BK’’

Ci(K)

Ci(K’)

Ci(K’’)

IK Ci(K) MK PK=∅

IK Ci(K’) MK’ PK’

IK Ci(K’’) MK’’ PK’’

MSA holds for K

BK

BK’

BK’’

∆ (S� S’)

∆ (S’� S’’)

?

?

Figure 4.2: X-partition transitions after successive migrations

As we mentioned in Chapter 1, we can have conflicts among (a) new positive knowl-

edge inferable from the instance triples and the new schema, (b) new “negative” infor-

mation inferable from the past negative instance triples and the new schema, and (c)

the previously computed possibilities (possible refinements). We resolve such conflicts by

considering that (a) has higher priority than (b), and (b) has higher priority than (c).

The priorities can be expressed by two postulates.

Def. 7 (X-partition Evolution Postulates)

A transition (Ci(K),MK , PK)  (Ci(K
′),MK′ , PK′) is consistent if the following postu-

lates are satisfied:

(Π1) Ci(K
′) does not depend on MK or PK .

Priority of the positive knowledge inferrable from the instance triples and the new

schema.
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(Π2) MK ∩ PK′ = ∅.

Past negative information cannot become possible.

2

Postulate Π1 gives priority to the new positive knowledge over past negative or possi-

ble knowledge. It is consistent with (and reminiscent of) the principle “Recent knowledge

prevails the old one” (also, called “Principle of Success” [1] and “Primacy of New Infor-

mation” [6]).

Postulate Π2 says that past negative information cannot become possible. It follows

that past negative information is preserved as long as it does not contradict with the new

positive knowledge, as stated by the following proposition.

Prop. 4 (Inertia Rule for Negatives)

In the context of a transition (Ci(K),MK , PK)  (Ci(K
′),MK′ , PK′), it follows that:

MK ∩ PK′ = ∅ (Π2) iff (MK \ Ci(K
′)) ⊆ MK′ . 2

First Version – K Second Version – K’

Amphibian

Frog

SK SK’

Mammal

Whale

Instances of K (Inst K)

PK = ∅

Amphibian

Frog

Mammal
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Instances of K’ (Inst K’)

Animal

Lay Eggs

PK’

Figure 4.3: Motivating example for Postulate Π2

Below, we present an example that justifies Postulate Π2.

Example 2 Consider Figure 4.3. It holds that IK = IK′ = {(Whale type Mammal),

(Frog type Amphibian)}. Assuming that the MSA holds for KB K, it follows that MK =
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{(Whale type Amphibian), (Frog type Mammal)}. In SK′ , two new classes are added

Animal and Lay Eggs, as well as the relationships Mammal ≤cl Animal,Amphibian ≤cl

Animal, and Lay Eggs ≤cl Animal. Obviously, we want MK′ = MK and PK′ = {(Whale type

Lay Eggs), (Frog type Lay Eggs)}. Note that it holds MK ∩ PK′ = ∅. 2

Notational conventions: Assume that there exist two KBs K and K ′. Unless

otherwise indicated, with c we will denote a class in both CK and CK′ , while with c′ we

will denote a class in CK′ (that possibly belongs also to CK). Analogously, with pr we

will denote a property in both PrK and PrK′ , while with pr′ we will denote a property in

PrK′ (that possibly belongs also to PrK). In addition, with ≤∗
cl and ≤∗

pr, we will refer to

the relations of the new schema SK′ . Further, we consider that the ≤∗
cl and ≤∗

pr relations,

used in defining SubTriples(A), refer to the relations of the new schema SK′ .

Prop. 5 (Derivation of Negatives at a Transition)

Consider an X-partition (Ci(K),MK , PK) based on a schema SK and suppose we want to

define the X-partition after migrating IK to a backwards compatible schema SK′ . We can

derive MK′ using the following rules:

(R1) If (o type c) ∈ MK , c′ ≤∗
cl c, and (o type c) /∈ Ci(K

′) then (o type c′) ∈ MK′ .

(R2) If (o pr o′) ∈ MK , pr′ ≤∗
pr pr, and (o pr o′) /∈ Ci(K

′), then (o pr′ o′) ∈ MK′ .

(R3) If (o pr′ o′) ∈ BK′ and ¬valid(o, pr′, o′, K ′) then (o pr′ o′) ∈ MK′ . 2

It is not hard to see that any element of MK′ that will be derived by the above rules

respects the following validity constraints of X-partition (Def. 5): MK′ and Ci(K
′) are

disjoint, MK′ is a lower set, and MK′ contains all invalid property instance triples of BK′ .

Essentially, the above rules produce the following set of instance triples:

MK′ = Invalid(K ′) ∪ SubTriples(MK \ Ci(K
′))

Example 3 Consider, for instance, Figure 4.1. Assume that K satisfies the MSA. In

K, Fiat 1 is not a Person, i.e. (Fiat 1 type Person) ∈ MK . In K ′, we have that

(Fiat 1 type Person) /∈ Ci(K
′). Thus, we have that (Fiat 1 type Person) ∈ MK′ (from

Rule R1). In K, Bob is not a Car, i.e. (Bob type Car) ∈ MK . In K ′, a new class is
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Algorithm 1 MKUpdate(K, MK , SK′)
Input: A KB K, MK , and a set of schema triples SK′ s.t. SK ⊑ SK′

Output: MK′

(1) K ′ = (SK′ , IK);
(2) MK′ = {};
/* Part A: Class Instances */

/* Rule R1 */
(3) For all ((o type c) ∈ MK and (o type c) /∈ Ci(K ′)) do
(4) For all (c′ ∈ CK′ and c′ ≤∗

cl c) do
(5) MK′ = MK′ ∪ {(o type c′)};
/* Part B: Property Instances */

/* Rule R2 */
(6) For all ((o pr o′) ∈ MK and (o pr o′) /∈ Ci(K ′)) do
(7) For all (pr′ ∈ PrK′ and pr′ ≤∗

pr pr) do
(8) MK′ = MK′ ∪ {(o pr′ o′)};

/* Rule R3 */
(9) For all ((o pr o′) s.t. o ∈ InstK′ ∩ URI, o′ ∈ InstK′ , pr ∈ PrK′ , and

¬valid(o, pr, o′, K)) do
(10) MK′ = MK′ ∪ {(o pr′ o′)};
(11) Return MK′ ;

inserted that specializes the class Car, called Van. We have that (Bob type Car) /∈ Ci(K
′).

So, (Bob type Van) ∈ MK′ (from Rule R1).

In K, Alice does not drive a BMW 1, i.e. (Alice drives BMW 1) ∈ MK . In K ′, we

have that (Alice drives BMW 1) /∈ Ci(K
′). Thus, we have that (Alice drives BMW 1)

∈ MK′ (from Rule R2). In K, Alice does not work at FORTH, i.e. (Alice works at

FORTH) ∈ MK . In K ′, a new property is inserted that specializes the property works at,

called paid from. Alice belongs to the instances of the domain of property paid from

and FORTH belongs to the instances of the range of property paid from. We have that

(Alice works at FORTH) /∈ Ci(K
′). So, (Alice paid from FORTH) ∈ MK′ (from Rule R2).

Additionally, note that (Fiat 1 paid from FORTH) ∈ MK′ (due to Rule R3). This is be-

cause (Fiat 1 type Person) ̸∈ Ci(K
′), and thus it holds ¬valid(Fiat 1, paid from, FORTH,

K ′). 2

It follows that from MK , K, and SK′ , we can produce MK′ by Algorithm 1, which is

based on Prop. 5.

Now, for getting the X-partition of BK′ , we define PK′ as the set of those instance

triples in BK′ which are neither in Ci(K
′) nor in MK′ .
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Def. 8 (Deriving PK′ through BK′ , Ci(K
′) and MK′) If we know Ci(K

′) and MK′ ,

then we can derive PK′ as follows: PK′ = BK′ \ (MK′ ∪ Ci(K
′)). 2

Prop. 6 (Transition Correctness)

The derivation of MK′ by the rules of Prop. 5 and of PK′ by Def. 8, yields a three-fold

partition that is an X-partition (according to Def. 5) and respects postulates Π1 and Π2

of Def. 7. 2

Note that due to Prop. 5, MK′ should contain at least the instance triples in Invalid(K ′)

∪SubTriples(MK\Ci(K
′)). This is actually the MK′ of the X-partition produced by Prop.

6. Therefore, we can say that Prop. 6 produces the X-partition that satisfies postulates

Π1 and Π2 and has the minimum set of negatives.

Regarding the size (number of triples) required for keeping PK′ and MK′ , it is not hard

to see that |PK′|, |MK′| ≤ |BK′ \Ci(K
′)|. Since |BK′| ≤ |InstK′| ∗ |CK′|+ |InstK′|2 ∗ |PrK′ |

and |IK′| ≤ |Ci(K
′)|. It follows that in general it holds: 0 ≤ |PK′ |, |MK′| ≤ |InstK′ | ∗

|CK′ | + |InstK′ |2 ∗ |PrK′| − |IK′|.
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Chapter 5

On Managing X-partitions without

M-sets

This chapter provides an algorithm for computing the set of possible instance triples

of a KB, when the current set of schema triples is backwards compatible with the previous

one. Suppose that we want to migrate the instance triples of a K = (SK , IK), to a schema

SK′ such that SK ⊑ SK′ . The question is how we could compute PK′ .

One approach is to apply the method described in the previous chapter. However, the

shortcoming of that approach is that it requires a lot of storage space, since it requires

the computation of the whole X-partition and to keep MK stored. Therefore, below we

will investigate whether we can achieve our goal without having to compute MK′ .

Actually, we prefer an approach requiring only PK . The motivation is that it is rea-

sonable to assume that |PK | < |MK |, meaning that the PK-based approach for computing

PK′ requires less space than the MK-based approach (described in the previous chapter).

After all, the sought state of a curated KB is a state that satisfies the MSA, and such a

state requires keeping only K (since PK is empty at that case). Instead, the alternative

approach would require keeping a non-empty (and possibly very large) MK even if the

MSA holds. In general, the more we approach the MSA, the less storage is required for

the PK-based approach, while the opposite holds for the MK-based approach. Also note

that the lifecycle management process that we propose in Chapter 6 aims at reducing

possibilities and approaching a state satisfying MSA.

Thus, we introduce what we call extended KB.
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Def. 9 (Extended KB)

An extended KB, for short eKB, is a pair E = (K, PK), where K is a KB and PK is a set

of possible instance triples s.t. PK ∩ C(K) = ∅. 2

Below, we will try to compute PK′ just from K, PK , and SK′ . The envisioned process

will be correct if it gives the same result (PK′) as Def. 8.

In general, PK′ can be produced by adding and deleting triples to/from PK , i.e. we

can write

PK′ = (PK \ PK Del) ∪ PK Add

where PK Del are the elements of PK that should be deleted from it and PK Add are the

elements that should be added to PK . Due to priority of new knowledge, we certainly

know that

PK Del ⊇ PK ∩ Ci(K
′)

Car
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Toyota

Car

Toyota Auris

Vehicle

Toyota

Basic Edition Special Edition

Vehicle

Instances of K (InstK) Instances of K’ (InstK’)

SK SK’

PK’

PK

First Version – K Second Version – K’

Figure 5.1: Second Instance Migration Scenario

Example 4 Consider Figure 5.1. It holds that SK ⊑ SK′ . Note that, in K, it holds that

PK = {(Toyota Auris type Vehicle)} while, in K ′, it holds that (Toyota Auris type Vehicle)

∈ Ci(K
′). According to Def. 9, it holds that PK′∩C(K ′) = ∅. So, PK Del = {(Toyota Auris
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type Vehicle)}. Intuitively, PK Add = {(Toyota Auris type Basic Edition), (Toyota Auris

type Special Edition)}. 2

In fact,

PK Del = (PK ∩ Ci(K
′)) ∪ (PK ∩ MK′)

This is because, the only triples that can be deleted from PK belong to Ci(K
′) or MK′ .

Regarding PK Add, it should contain instance triples that involve the new classes and

properties. The following two Propositions indicate the instance triples to be added to

PK Add.

Prop. 7 For a new class c′ ∈ CK′ \ CK , it holds that: (o type c′) ∈ PK′ iff

(i) o ∈ InstK ∩ URI ,

(ii) for all c ∈ CK s.t. c′ ≤∗
cl c, it holds that (o type c) ∈ (Ci(K

′) ∪ PK), and

(iii) (o type c′) /∈ Ci(K
′). 2

Prop. 8 For a new property pr′ ∈ PrK′ \ PrK , it holds that: (o pr′ o′) ∈ PK′ iff:

(i) o ∈ URI and valid(o, pr′, o′, K ′),

(ii) for all pr ∈ PrK s.t. pr′ ≤∗
pr pr, it holds that (o pr o′) ∈ (Ci(K

′) ∪ PK), and

(iii) (o pr′ o′) /∈ Ci(K
′). 2

5.1 Algorithmic Perspective

Below we present Algorithm 2, which takes as input a KB K, its set of possible instance

triples PK , and a new set of schema triples SK′ (s.t. SK ⊑ SK′). It produces the set of

possible instance triples PK′ for the new KB K ′, where K ′ = (SK′ , IK).

Algorithm 2 is applied to compute the set of possible instance triples of the new KB

K ′ = (SK′ , IK) based on the original KB K, the original set of possible instance triples

PK , and the new set of schema triples SK′ , which is backwards compatible with SK .

Part A (lines 5-6) follows from Prop. 7 and concerns new classes c′ ∈ NC. If a new

class c′ has superclasses c (which are existing classes in K), we have to check if PK or

Ci(K
′) includes triples of the form (o type c) for each superclass c, where o ∈ InstK ∩URI .

Only if this is true and (o type c′) does not belong to Ci(K
′), we can safely add triples of

the form (o type c′) to PK Add. In the case that a new class c′ has no superclasses that are
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Algorithm 2 Produce Possibilities(K, PK , SK′)
Input: a KB K, its set of possible instance triples PK , and a set of schema triples

SK′ s.t. SK ⊑ SK′ and K ′ = (SK′ , IK)
Output: the set of possible instance triples PK′ of the KB K ′

(1) K ′ = (SK′ , IK);
(2) PK Add = ∅;
(3) PK Del = ∅;
/* FOR CLASS INSTANCES: */
(4) NC = CK′ \ CK ; /* new classes appearing in K ′ */
/* PART A: New classes */
(5) For all (c′ ∈ NC) do /* for each new class */
(6) PK Add = PK Add ∪ {(o type c′) | o ∈ InstK ∩ URI ,

∀ c ∈ CK s.t. c′ ≤∗
cl c it holds that (o type c) ∈ (Ci(K ′) ∪ PK), and

(o type c′) /∈ Ci(K ′)};
/* PART B: Existing classes */
(7) For all (c1 ∈ CK) do
/* Moving class instance triples from PK to MK′ due to Rule R1. */
(8) PK Del = PK Del ∪ {(o type c1) ∈ PK | c2 ∈ CK , c1 ≤∗

cl c2, and
(o type c2) /∈ (Ci(K ′) ∪ PK)};

/* FOR PROPERTIES: */
(9) NP = PrK′ \ PrK ; /* new properties appearing in K ′ */
/* PART C: New properties */
(10) For all (pr′ ∈ NP ) do /* for each new property */
(11) PK Add = PK Add ∪ {(o pr′ o′) | o ∈ URI , valid(o, pr′, o′,K ′),

∀ pr ∈ PrK s.t. pr′ ≤∗
pr pr it holds that (o pr o′) ∈ (Ci(K ′) ∪ PK), and

((o pr′ o′) /∈ Ci(K ′)};
/* PART D: Existing properties */
(12) For all (pr1 ∈ PrK) do
/* Moving property instance triples from PK to MK′ due to Rule R2. */
(13) PK Del = PK Del ∪ {(o pr1 o′) ∈ PK | pr2 ∈ PrK , pr1 ≤∗

pr pr2, and
pr1 ≤∗

pr pr2, and (o pr2 o′) /∈ (Ci(K ′) ∪ PK)};
(14) PK Del = PK Del ∪ (PK ∩ Ci(K ′));
(15) PK′ = PK \ PK Del;
(16) PK′ = PK′ ∪ PK Add;
(17) Return PK′ ;

existing classes in K, we just have to check whether a triple of the form (o type c′) does

not belong to Ci(K
′) before adding it to PK Add.

Part B (lines 7-8), concerns existing classes c1 ∈ CK , for which we have to add to

PK Del all those triples (o type c1) ∈ PK , if there is a class c2 ∈ CK such that c1 ≤∗
cl c2

in K ′ and (o type c2) /∈ (Ci(K
′) ∪ PK). This is because, since SK ⊑ SK′ , it holds that

(o type c2) /∈ Ci(K). Thus, (o type c2) ∈ BK \ (PK ∪ Ci(K)) = MK . Therefore, it follows

from Rule R1 of Prop. 5 that (o type c1) ∈ MK′ . Note that PK Del ⊇ PK ∩ MK′ .

Part C (lines 10-11) follows from Prop. 8 and concerns new properties pr′ ∈ NP . If
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a new property pr′ has superproperties pr (which are existing properties in K), we have

to check if PK or Ci(K
′) includes triples of the form (o pr o′) for each superproperty pr.

Only if this is true, it holds that valid(o, pr′, o′, K ′), and (o pr′ o′) does not belong to

Ci(K
′), we can safely add triples of the form (o pr′ o′) to PK Add. In the case that a new

property has no superproperties that are existing properties in K, we just have to check

whether it holds valid(o, pr′, o′, K ′) and (o pr′ o′) does not belong to Ci(K
′) before

adding (o pr′ o′) to PK Add.

Part D (lines 12-13) concerns existing properties pr1 ∈ PrK , for which we have to add

to PK Del all those triples (o pr1 o′) ∈ PK , if there is a property pr2 ∈ PrK such that

pr1 ≤∗
pr pr2 in K ′ and (o pr2 o′) /∈ (Ci(K

′) ∪ PK). This is because, since SK ⊑ SK′ , it

holds that (o pr2 o′) /∈ Ci(K). Thus, (o pr2 o′) ∈ BK \ (PK ∪ Ci(K)) = MK . Therefore, it

follows from Rule R2 of Prop. 5 that (o pr1 o′) ∈ MK′ . Note that PK Del ⊇ PK ∩ MK′ .

In line 14 of Algorithm 2, we add to PK Del the set PK ∩ Ci(K
′), because all instance

triples that belong to Ci(K
′) have to be removed from PK . At the end (lines 15-16), we

have to update PK by adding to it the PK Add set and by removing from it the PK Del set.

Then, we return PK′ . The execution order of the above parts A, B, C, and D does not

matter since in any order the output result PK′ is the same.

Example 5 Consider Figure 4.1 and suppose that PK = {(Fiat 1 type Vehicle), (Bob

uses BMW 1), (Alice works at FORTH)}. Executing Algorithm 2, step by step, we have

that:

(1) K ′ = (SK′ , IK);

(2) PK Add = ∅;

(3) PK Del = ∅;

(4) NC = {Van, Jeep, Adult, Institute, University};

(6) PK Add = PK Add ∪

{(Fiat 1 type Van), (BMW 1 type Van), (Fiat 1 type Jeep), (BMW 1 type Jeep), (Bob type Adult),

(Alice type Adult), (Computer Science Department type Institute), (FORTH type Institute),

(Computer Science Department type University), (FORTH type University)};

(8) PK Del = PK Del ∪ {∅};

(9) NP = {paid from};
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(11) PK Add = PK Add ∪ {(Alice paid from Computer Science Department), (Bob paid

from FORTH)};

(13) PK Del = PK Del ∪ {(Alice works at FORTH)};

Note that, (Alice related to FORTH) /∈ (PK∪Ci(K
′)) and works at≤cl related to holds

in K ′. So, we have to move (Alice works at FORTH) from PK to MK′ (due to Rule R2).

(14) PK Del = PK Del ∪ {(Fiat 1 type Vehicle), (Bob uses BMW 1)};

Note that PK Del is updated by those triples that belong to PK and now belong to Ci(K
′).

So, we have to remove them from PK .

(15) PK′ = PK \ PK Del =

{(Fiat 1 type Vehicle), (Bob uses BMW 1), (Alice works at FORTH)}\

{(Fiat 1 type Vehicle), (Bob uses BMW 1), (Alice works at FORTH)} = ∅;

(16) PK′ = {(Fiat 1 type Van), (BMW 1 type Van), (Fiat 1 type Jeep), (BMW 1 type Jeep),

(Bob type Adult), (Alice type Adult), (Computer Science Department type Institute),

(FORTH type Institute), (Computer Science Department type University), (FORTH type

University), (Alice paid from Computer Science Department), (Bob paid from FORTH)};

(17) Return PK′ ;

In order to explain line 8 in part B of Algorithm 2, consider Figure 4.1. Suppose that

we have another version SK′′ = SK′ ∪{(Van ≤cl LoadCarrying Vehicle)}, where we have

a new specialization relationship, i.e. Van ≤cl LoadCarrying Vehicle. Then, according

to line 8 of Algorithm 2, we have that PK Del = PK Del ∪ {(Fiat 1 type Van)}. This is

because it holds that (Fiat 1 type LoadCarrying Vehicle) ̸∈ PK′ ∪Ci(K
′′) and (Van ≤cl

LoadCarrying Vehicle) ∈ SK′′ . So, we have to move (Fiat 1 type Van) from PK′ to

MK′′ (due to Rule R1). 2

Below we present three indicative examples in backwards compatible schema evolution

case.

Example 6 Consider Figure 5.2. It holds that SK ⊑ SK′ . Note that, in K, PK = ∅. In

SK′ , four new classes are added, i.e. {Van, Employee, Graduate, Undergraduate} and also

four new specialization relationships, i.e. Van≤cl Car, Employee≤cl Person, Graduate≤cl

Student and Undergraduate ≤cl Student. According to Algorithm 2, in K ′ it holds that

PK′ = {(John type Employee), (John type Graduate), (John type Undergraduate)}. 2
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Example 7 Consider Figure 5.3. It holds that SK ⊑ SK′ . Note that, in K, PK = ∅. In

SK′ , three new classes and one new property are added, i.e. {Van, Employer, Employee,

employs}, and also four new specialization relationships, i.e. Van ≤cl Car, Employer ≤cl

Person, Employee ≤cl Person and employs ≤pr knows. Note that domain(employs) =

37



Person and range(employs) = Person. According to Algorithm 2, in K ′ it holds that

PK′ = {(John type Employer), (John type Employee), (Mary type Employer), (Mary type

Employee), (John employs Mary)}. 2
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d r
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SK SK’
First Version – K Second Version – K’

Figure 5.4: Fifth Instance Migration Scenario

Example 8 Consider Figure 5.4. It holds that SK ⊑ SK′ . Note that, in K, PK =

{(John knows Alice)}. In SK′ , one new property is added, i.e. {employs} and also one

new specialization relationship, i.e. employs ≤pr knows. Note that domain(employs) =

Person and range(employs) = Person. According to Algorithm 2, in K ′ it holds that

PK′ = {(John knows Alice), (John employs Mary), (John employs Alice)}. 2

Note that if (o type c) ∈ Ci(K
′) and (o type c′) ̸∈ Ci(K

′) ∪ PK′ , for all c′ ≤∗
cl c and

c′ ̸= c, then the MSA property holds for the class instance triple (o type c). Similarly, if

(o pr o′) ∈ Ci(K
′) and (o pr′ o′) ̸∈ Ci(K

′) ∪ PK′ , for all pr′ ≤∗
pr pr and pr′ ̸= pr, then the

MSA property holds for the property instance triple (o pr o′).

The following Proposition shows that Algorithm Produce Possibilities(K ,PK , SK′) is

correct, i.e. that it produces the same PK′ as that defined in Def. 8 without the need of

computing BK′ and MK′ .
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Prop. 9 Let K = (SK , IK) and let SK′ be a set of new schema triples s.t. SK ⊑ SK′ and

K ′ = (SK′ , IK) then PK′ = Produce Possibilities(K, PK , SK′). 2

Prop. 10 The time complexity of Algorithm 2 is O(|InstK |2∗|K ′|2 ∗ (|K ′|2 + |PK |). 2
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Chapter 6

Specificity Life Cycle Management

Algorithm 2 showed how schema changes affect the possibilities. In this chapter, we

will focus on the management of these possibilities, specifically on operations on data that

affect the computed possibilities of the same KB K, describing the specificity lifecycle

management process.

Suppose a number of instance descriptions that are migrated to a new schema version,

and as a consequence our machinery has computed a set of possible instance triples PK .

If o is an instance, let us denote by posTriples(o) all those triples that include o and

belong to PK . Suppose a system that for an instance o shows to the user a set of possible

instance triples U(o) such that U(o) ⊆ posTriples(o). The user then decides whether

he/she should add one or more than one of these to the certain knowledge base. After

that we should also update PK . Figure 6.1 (on the right) illustrates the proposed process.

In Figure 6.1, on the left, we can see the current migration process, where the curator

of a KB downloads its latest ontology version, he migrates the instance descriptions to

that version, and then he manually tries to revise some of the migrated descriptions.

On the right, we can see the proposed migration process. After the migration of the

instance descriptions to the latest ontology version, the system computes the possible

instance descriptions by executing either Algorithm 2 (when the new schema is backwards

compatible with the previous one) or Algorithm 7 (when the new schema is not backwards

compatible with the previous one). Then, an iterative procedure starts, where in each

iteration, the curator can select a specific instance and then a ranked subset of its possible

descriptions is displayed. The curator can accept or reject some or all of these possible
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Figure 6.1: Current and Proposed Migration Process

descriptions (of the selected instance) and then the eKB (its certain and possible part)

is updated, analogously. Below, we describe formally the updating of the certain and the

possible part of the eKB.

What we have to ensure is that the update should: (a) respect the user’s request, (b)

reduce uncertainty based on what the user was prompted and decided, and (c) yield a

valid eKB (that respects the constraint of Def. 9). To specify exactly the updating we

need to introduce notations for the possible class instance triples and property instance

triples of an instance o.

posTriplescl(o) = {(o type c) | (o type c) ∈ PK} // cl: instance of class

posTriplesspr(o) = {(o pr o′) | (o pr o′) ∈ PK} // spr: subject of property

posTriplesopr(o) = {(o′ pr o) | (o′ pr o) ∈ PK} // opr: object of property
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We define the SupTriples of an instance triple, as follows:

SupTriples((o type c)) = {(o type c′) | c ≤∗
cl c′}

SupTriples((o pr o′)) = {(o pr′ o′) | pr ≤∗
pr pr′}

Let A be a set of instance triples. We define1:

SupTriples(A) =
∪
t∈A

SupTriples(t)

Let o be an instance. If the system shows to the user all instance triples in posTriplest(o),

where t ∈ {pr, spr, opr}, and he/she decides that none of these should be added then we

should update PK as follows2:

P up
K = PK \ posTriples t(o)

If the system had prompted to the user only a subset of the possibilities, say U(o) (where

U(o) ⊆ posTriplest(o)), and the user had decided that none of these should be added

then3

P up
K = PK \ SubTriples(U(o))

This ensures that not only U(o) but also all possibilities which are more “specific” than

those in U(o) will be excluded. Note that the instance triples in U(o) and thus, the

instance triples in PK ∩ SubTriples(U(o)), are actually moved to Mup
K .

If the user has selected some of the suggested possibilities, say X(o), (X(o) ⊆ U(o)),

to be added, then we should update the certain part of the new eKB Kup = K ∪X(o), as

follows C(Kup) = C(K) ∪ SupTriples(X(o)) (see Prop. 11 below), and then update PK ,

accordingly. The latter can be done as follows:

P up
K = PK \ SupTriples(X(o))

P up
K = P up

K \ SubTriples(U(o) \ SupTriples(X(o)))

The first step excludes from PK also the newly entailed instance triples from Kup, i.e.

SupTriples (X(o)), (to satisfy the constraint of Def. 9). The second excludes from

P up
K the instance triples in U(o) \ SupTriples(X(o)) and their specializations. Note

1Note that SubTriples(A) has been defined in Chapter 3.
2In P up

K , up stands for updated.
3Note that except from U(o), the SubTriples(U(o)) should be removed from PK .
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that the instance triples in U(o) \ SupTriples(X(o)) and, thus the instance triples in

PK ∩ SubTriples(U(o) \ SupTriples(X(o)) are actually moved to Mup
K .

Prop. 11 Let X ⊆ PK . If Kup = K ∪ X then C(Kup) = C(K) ∪ SupTriples(X ). 2
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Figure 6.2: Example of the Possibility Resolution Process

Example 9 Consider the scenario of Figure 6.2. PK and posTriplescl(John) contain the

triples: {(John type Employee), (John type Manager), (John type Student), (John type

Postgraduate), (John type PhD Student)} (shown enclosed in a dashed frame)4. If the

system shows to the user all triples in posTriplescl(John) and the user decides that

none of these should be added, then PK should be updated as follows: P up
K = PK \

posTriplescl(John) = ∅.

Now suppose that the system had showed to the user only three of the five possible in-

stance triples, such as: U(John) = {(John type Employee), (John type Student), (John

type Postgraduate)}. If the user decides that he/she does not want to add any of these

triples to the certain part of the eKB then PK should be updated as follows:

P up
K = PK \ SubTriples({(John type Employee), (John type Student)

(John type Postgraduate)}) = ∅

However, if the user decides to add one of these three suggested triples, say the triple

X(John) = {(John type Postgraduate)} then the eKB has to be updated such that

4In the figure, posCl(John) denotes the possible classes of John.
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Kup = K ∪ {(John)

type Postgraduate)}. Note that SubTriples(X(John)) = {(John type Postgraduate), (John

type PhD Student)} and SupTriples(X(John)) = {(John type Postgraduate), (John type

Student), (John type Person)}.

The possible part PK has to be updated as follows:

Pup
K = {(John type Employee), (John type Manager), (John type Student),

(John type Postgraduate) (John type PhD Student)} \ SupTriples(X(John))

= {(John type Employee), (John type Manager), (John type PhD Student)}

Pup
K = Pup

K \ SubTriples(U(John) \ SupTriples(X(John)))

= Pup
K \ SubTriples({(John type Employee)})

= {(John type PhD Student)}

2

The updated certain part of the eKB K, i.e. Kup, and the updated P up
K can now be given

as input to Algorithm 2, in the case that a new set of schema triples SK′ is available, for

generating the new PK′ . Note that the set of instance triples that is migrated from SK to

SK′ is now IKup .

6.1 Ranking Possibilities

In this section, we discuss methods for ranking the possibilities. In general, we can

exploit such quantification for various kinds of ranking, e.g. for defining a best-match

retrieval model over Semantic Web data, for controlling the amount of possible information

that is kept stored, and for aiding the interaction process described previously.

If t is a triple in PK or Ci(K), we could “score” t according to a degree of certainty.

A naive approach would be:

score(t) =

1 if t ∈ Ci(K)

1
2

if t ∈ PK

45



Below we introduce a more sophisticated model for ranking the possible triples. Con-

sider the example of Figure 6.2 and suppose that John was originally classified to the

class Person. We can say that Student and Employee are more probable classes than

Postgraduate, Manager, and PhD Student. To this end we propose an extension of PK

that we call quantified PK , such that each triple is accompanied by a positive integer that

is interpreted as follows: the less this value is the more possible the triple is.

Let distcl(c → c′) be the length of the shortest path from class c to class c′ comprised

from ≤cl relationships (over the reflexive and transitive reduction of ≤∗
cl). If there is no

path from class c to class c′ comprised from ≤cl relationships then distcl(c → c′) = ∞. For

example, if c ≤cl c1 ≤cl c2 ≤cl c3 ≤cl c′ and there is no shorter path from class c to class

c′ comprised from ≤cl relationships then distcl(c → c′) = 4. For each element (o type c)

in PK , the quantified PK contains an element ((o type c), distClass(o, c)), where:

distClass(o, c) = min{distcl(c → c′) | c′ ∈ CK and o ∈ instK(c′)}

So, distClass(o, c) is the shortest distance of c from one of the certain classes of o.

In the example of Figure 6.2, the possible class instance triples (John type Student)

and (John type Employee) have distClass(John, Student) = 1 and distClass(John,

Employee) = 1, respectively. The possible class instance triples (John type Postgraduate)

and (John type Manager) have

distClass(John, Postgraduate) = 2 and distClass(John, Manager) = 2, respectively.

The possible class instance triple (John type PhD Student) has distClass(John, PhD Student)

= 3. A measure, similar to distClass(o, c), appears in [27] for measuring the conceptual

distance between two concepts.

Algorithm 3, which is used in order to quantify all possible class instance triples whose

subject is an instance o, is presented below.

Algorithm 3 GetAllDistClass(o, C, dist, K, PK , classRankingMap)

Input: an instance o, a set of classes C, an integer dist, which denotes the distance from the classes

in C to one of the certain classes of the instance o, a KB K, its set of possible instance triples

PK and a map classRankingMap, which contains possible class instance triples whose subject is

o along with their current ranking value

Output: a map classRankingMap which contains possible class instance triples, whose subject is o,

along with their current ranking value
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(1) For all (c ∈ C) do

(2) If ((o type c) ∈ PK) then

(3) If (@ d s.t. ((o type c), d) ∈ classRankingMap) then

(4) classRankingMap = classRankingMap ∪ {((o type c), dist)};

(5) else let d s.t. ((o type c), d) ∈ classRankingMap;

(6) If (dist < d) then

(7) classRankingMap = classRankingMap \ {((o type c), d)};

(8) classRankingMap = classRankingMap ∪ {((o type c), dist)};

/*end If*/

/*end If*/

(9) C ′ = {c′ ∈ CK | c′ ≤cl c};

(10) classRankingMap = GetAllDistClass(o, C ′, dist + 1,K, PK , classRankingMap);

/*end If*/

(11) else if ((o type c) ∈ C(K)) then

(12) C ′ = {c′ ∈ CK | c′ ≤cl c};

(13) classRankingMap = GetAllDistClass(o, C ′, 1,K, PK , classRankingMap);

/*end If*/

/*end For*/

(14) Return classRankingMap;

At the first call of Algorithm 3, in place of the parameters C, dist, and classRankingMap,

we put the direct subclasses of the top class, i.e. Resource, the value 1, and the empty

set, respectively. We use the map classRankingMap in order to store pairs of the form

(key, value), where the key is a possible class instance triple of the form (o type c) and

the value is its current ranking value (i.e. the distance from c to one of the certain classes

of o). Each time we access a possible class instance triple of the form (o type c), we have

to check if the key (o type c) is contained already in the map. If it holds that, we check if

its value is greater than the value of the parameter dist. If this is true, we have to replace

the existing value with the value of the parameter dist in the map.

For each possible class c that we check, we call again Algorithm 3, by replacing the

value of the parameter C with the direct subclasses of c, i.e. C ′, and by replacing the
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value of the parameter dist with the same one, increased by one unit. For each certain

class c that we check, we call again Algorithm 3, by replacing the value of the parameter

C with the direct subclasses of c, i.e. C ′, and by replacing the value of the parameter

dist with the value 1. This is because we want to compute the shortest distance from a

possible class of o to one of its certain classes. So, if we meet a certain class of o, we have

to make the distance dist to be equal to 1.

As we can see, the Algorithm 3 is executed recursively and thus it makes the procedure

faster and more efficient. After the first call, Algorithm 3 returns a map classRankingMap

of all possible class instance triples, whose subject is o, along with their ranking value.

First Version – K Second Version – K’

SK A

o1

SK’

E

F
C

D
B

o1

Instances of K (Inst K) Instances of K’ (Inst K’)

A

B

Figure 6.3: Ranking possible class instance triples

Example 10 Consider Figure 6.3. It holds that SK ⊑ SK′ . The new set of classes from

K to K ′ is {C, D, E, F}. So, according to Algorithm 2, the derived possible class instance

triples are: {(o1 type C), (o1 type D), (o1 type E), (o1 type F)}.

If we rank the possible class instance triples of the instance o1, using the above

formula, i.e. distClass(o, c), where o corresponds to o1 and c corresponds to one of

the possible classes of o1, we get the following quantified possible class instance triples:

{((o1 type C), 1), ((o1 type D), 1), ((o1 type E), 2), ((o1 type F), 2)}.

For example, note that in the case of the possible class instance triple (o1 type F),

there are two paths from F to B (which is a certain class of o1). The first one is F ≤cl C

≤cl B and the second one is F ≤cl E ≤cl D ≤cl B. Thus, distcl(F → B) is 2. Additionally,

there are two paths from F to A (which is also certain class of o1). The first one is F ≤cl

C ≤cl B ≤cl A and the second one is F ≤cl E ≤cl D ≤cl B ≤cl A. Thus, distcl(F → A) is 3.
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Therefore, distClass(o1, F) = min({2, 3}) = 2. 2

Similarly, let distpr(pr → pr′) be the length of the shortest path from property pr to

property pr′ comprised from ≤pr relationships (over the reflexive and transitive reduction

of ≤∗
pr, which is unique in our case because ≤∗

pr is finite and acyclic). If there is no path

from property pr to property pr′ comprised from ≤pr relationships then distpr(pr → pr′) =

∞. For example, if pr ≤pr pr1 ≤pr pr2 ≤pr pr3 ≤pr pr′ and there is no shorter path from

property pr to property pr′ comprised from ≤pr relationships then distpr(pr → pr′) = 4.

We define an auxiliary property prdummy such that if pr ∈ PrK and there is no pr′ ∈ PrK

s.t. pr ≤pr pr′ then we add pr ≤pr prdummy. For each element (o pr o′) in PK , the quantified

PK contains an element ((o pr o′), distProperty(o, pr, o′)), where:

distProperty(o, pr, o′) =



min{distpr(pr → pr′) | pr′ ∈ PrK , (o pr′ o′) ∈ C(K)}

if ∃ pr′ ∈ PrK s.t. (o pr′ o′) ∈ C(K)

distpr(pr → prdummy) otherwise

So, distProperty(o, pr, o′) is the shortest distance of pr from one of the properties pr′ such

that (o pr′ o′) ∈ C(K). In the case that there is no property pr′ such that (o pr′ o′) ∈ C(K)

then distProperty(o, pr, o′) is the distance of pr from prdummy.

The distClass(o) and distProperty(o, o′) values can be used for ranking the possible

class instance triples and possible property instance triples, respectively. Such ranking

can aid the interaction described earlier. In the example of Figure 6.2, the system will

suggest first Student and Employee as possible classes of John. If the user will not select

any of these then PK will be updated and Postgraduate, Manager, and PhD Student will

never be suggested as possible classes (for the instance John).

Algorithm 4, which is used in order to quantify possible property instance triples whose

subject is o and object is o′, is presented below.

Algorithm 4 GetAllDistProperty(o, o′, P r, dist, K, PK , propRankingMap)

Input: a pair of instances o, o′, a set of properties Pr, an integer dist, which denotes the distance

from the properties in Pr to one of the certain properties of the instances o, o′, a KB K, its set

of possible instance triples PK and a map propRankingMap, which contains possible property

instance triples, whose subject is o and object is o′, along with their current ranking value
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Output: a map propRankingMap of possible property instance triples, whose subject is o and object

is o′, along with their current ranking value.

(1) For all (pr ∈ Pr) do

(2) If ((o pr o′) ∈ PK) then

(3) If (@ d s.t. ((o pr o′), d) ∈ propRankingMap) then

(4) propRankingMap = propRankingMap ∪ {((o pr o′), dist)};

(5) else let d s.t. ((o pr o′), d) ∈ propRankingMap;

(6) If (dist < d) then

(7) propRankingMap = propRankingMap \ {((o pr o′), d)};

(8) propRankingMap = propRankingMap ∪ {((o pr o′), dist)};

/*end If*/

/*end If*/

(9) Pr′ = {pr′ ∈ PrK | pr′ ≤pr pr};

(10) propRankingMap = GetAllDistProperty(o, o′, P r′, dist + 1, K, PK , propRankingMap);

/*end If*/

(11) else if (o pr o′) ∈ C(K)) then

(12) Pr′ = {pr′ ∈ PrK | pr′ ≤pr pr};

(13) propRankingMap = GetAllDistProperty(o, o′, P r′, 1,K, PK , propRankingMap);

/*end If*/

/*end For*/

(14) Return propRankingMap;

At the first call of Algorithm 4, in place of the parameters Pr, dist, and propRankingMap,

we put the direct subproperties of the top property, i.e. prdummy, the value 1, and the empty

set, respectively. We use the map, i.e. propRankingMap, in order to store pairs of the

form (key, value), where the key is a possible property instance triple of the form (o pr o′)

and the value is its corresponding ranking value (i.e. the shortest distance from pr to one

of the certain properties of o, o′). Each time we access a possible property instance triple

of the form (o pr o′), we have to check if the key (o pr o′) is contained already in the map.

If it holds that then we check if its value is greater than the value of the parameter dist.

If this is true, we have to replace the existing value with the value of the parameter dist
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in the map.

For each possible property pr that we check, we call again Algorithm 4, by replacing

the value of the parameter Pr with the direct subproperties of pr, i.e. Pr′, and by

replacing the value of the parameter dist with the same one, increased by one unit. For

each certain property pr that we check, we call again Algorithm 4, by replacing the value

of the parameter Pr with the direct subclasses of pr, i.e. Pr′, and by replacing the value

of the parameter dist with the value 1. This is because we want to compute the shortest

distance from a possible property of o, o′ to one of their certain properties. So, if we meet

a certain property of o, o′, we have to make the distance dist to be equal to 1.

As we can see, the Algorithm 4 is executed recursively and thus it makes the procedure

faster and more efficient. After the first call, Algorithm 4 returns a map propRankingMap

of all possible property instance triples, whose subject is o and object is o, along with

their ranking value.
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Chapter 7

Composite Possibilities

So far PK contains individual suggestions for a KB K. In this chapter, we describe

how we can extend PK and reach a P ext
K , called extended set of possibilities, that contains

also composite suggestions, where a composite suggestion is a set of instance triples. First,

we provide an auxiliary definition.

Def. 10 (Valid Property Set)

We define the valid property set of K, denoted by Valid(K), as follows:

Valid(K) = {(o pr o′) ∈ BK | valid(o, pr, o′, K) holds}. 2

Specifically, P ext
K is not a set of triples like PK , but a family of sets containing:

• one singleton {t}, for each t ∈ PK , and

• triple sets of the form {h, t} or {h1, t, h2}, where h, h1, h2 are class instance triples

of PK and t is a property instance triple that (a) it does not belong to Valid(K),

and (b) t would belong to Valid(K) (thus, can be added to K) if h, h1, h2 were

added to K.

In other words, the non-singleton elements of P ext
K consist of a hypothesis that is

already possible (i.e. h, h1, h2) and a consequence of that hypothesis (i.e. t can be added

to K, if h, h1, h2 were added to K).

Example 11 To grasp the idea, consider the scenario of Figure 7.1, where (HKR6263 type

Car) is a possible class instance triple in K ′. The proposed composite possibility in K ′ is:

{(HKR6263 type Car), (Mary drives HKR6263)}. This means that if the user decides to

add the class instance triple (HKR6263 type Car) to K ′ then the property instance triple
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(Mary drives HKR6263) can be added to K ′. However, if the user does not add HKR6263

as an instance of Car, then (Mary drives HKR6263) would not be added to K ′, since this

triple is an element of Invalid(K ′), and it belongs to MK′ . In other words, if the user

accepts the proposed composite possibility, both instance triples {(HKR6263 type Car)

and (Mary drives HKR6263)} will be added to K ′. 2

Person

uses

Vehicle

Mary HKR6263

d r

Person

uses

Vehicle

d r

Car
drives

d

r

HKR6263Mary

First Version – K Second Version – K’

SK SK’

Instances of K (Inst K) Instances of K’ (Inst K’)

Figure 7.1: First scenario for Extended Possibilities

Before we define, the extended set of possibilities of a KB K, we provide an auxiliary

definition.

Def. 11 Let s, s′ be two sets of instance triples. We define s 4 s′ iff (i) they contain the

same property instance triples and (ii) for all class instance triples t ∈ s, it exists t′ ∈ s′

s.t. t ∈ SubTriples(t′). 2

Def. 12 (Extended Set of Possibilities) Let K be a KB. We define the extended set

of possibilities as follows:

Pext
K = {{p} | p ∈ PK} ∪ P comp

K , where

P comp
K = maximal4({s ∪ {t} | s ⊆ PK , t ̸∈ Valid(K), t ∈ Valid(K ∪ s), and

t ̸∈ Valid(K ∪ s′) ∀ s′ ⊂ s})2

Let Cl(o) = {c | (o type c) ∈ Ci(K)} and posCl(o) = {c | (o type c) ∈ PK}. By taking

into account Def. 10, we can reach to the following:
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Prop. 12 (Composite possibilities) Let K be a KB. It holds that:

P comp
K = P1 ∪ P2 ∪ P3, where:

P1 = {{h1, t} | t = (o pr o′) /∈ Valid(K ) where o, o′ ∈ InstK , pr ∈ PrK ,

h1 = (o type c1) ∈ PK , where domain(pr) = c1, range(pr) ∈ Cl(o′)}

P2 = {{t, h2} | t = (o pr o′) /∈ Valid(K ) where o, o′ ∈ InstK , pr ∈ PrK ,

h2 = (o′ type c2) ∈ PK , where range(pr) = c2, domain(pr) ∈ Cl(o)}

P3 = {{h1, t, h2} | t = (o pr o′) /∈ Valid(K ) where o, o′ ∈ InstK , pr ∈ PrK ,

h1 = (o type c1) ∈ PK where domain(pr) = c1,

h2 = (o′ type c2) ∈ PK where range(pr) = c2}

2

It follows that each composite possibility of P comp
K contains either two or three instance

triples.

Person knows

John Mary

d

r

Person

knows

Employer Employee

d r

hires

John Mary

d r

First Version – K Second Version – K’

SK SK’

Instances of K (Inst K) Instances of K’ (Inst K’)

Figure 7.2: Second scenario for Extended Possibilities

Example 12 The composite possibility of the previous example (Figure 7.1) contains a

pair of instance triples. An example with three instance triples is the scenario of Figure

7.2. Suppose that Employer and Employee are new classes in K ′ and hires is a new

property in K ′ that specializes the property knows in K. Suppose (John knows Mary) is

a property instance triple included in K. In this case, we have in K ′: posCl(John) =
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{Employer, Employee} and posCl(Mary) = {Employer, Employee}, and P ext
K′ contains

the following composite possibility: {(John type Employer), (John hires Mary), (Mary type

Employee)}. Thus, if the user accepts the composite possibility then all instance triples

(John type Employer), (Mary type Employee), and (John hires Mary) are added to K ′.

2

There is no need to store composite possibilities as they can be computed on demand.

7.1 Ranking Composite Possibilities

Person Vehicle

Mary HKR6263

Person
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Vehicle

d r Car

drivesd r

HKR6263Mary

Adult

Millionaire Expensive_car

First Version – K Second Version – K’

SK SK’

Instances of K (Inst K) Instances of K’ (Inst K’)

Figure 7.3: Ranking Composite Possibilities

In this section, we consider the problem of ranking the composite possibilities in P comp
K .

Consider the migration shown in Figure 7.3, in which the set of possible instance triples

in K ′ are the class instance triples that (i) relate Mary with the new subclasses of Person

and (ii) relate HKR6263 with the new subclasses of Vehicle. In this scenario, we get the

following composite possibilities in K ′:

s1: {(Mary type Adult), (Mary uses HKR6263), (HKR6263 type Car)} and

s2: {(Mary type Millionaire), (Mary drives HKR6263), (HKR6263 type Expensive car)}.

Consider an element s ∈ P comp
K , where (o pr o′) is the property instance triple that

belongs to s. Intuitively, we want the quantification of s to be low if the certain classes

of the ends (o, o′) are close to the domain/range of pr and high if they are not close.

In particular, we define the distance d of a composite possibility s ∈ P comp
K , as follows:
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1. If s = {(o type domain(pr)), (o pr o′), (o′ type range(pr))} then:

d = distClass(o, domain(pr)) + distClass(o′, range(pr))

In other words, d is the sum of the shortest distance of the domain of pr from one

of the certain classes of o and the shortest distance of the range of pr from one of

the certain classes of o′.

2. If s = {(o type domain(pr)), (o pr o′)} then d = distClass(o, domain(pr)).

3. If s = {(o pr o′), (o′ type range(pr))} then d = distClass(o′, range(pr)).

Note that in cases 2 and 3 above, in order to compute d, we consider only the single

possible class instance triple that belongs to s, since it holds (o′ type range(pr)) ∈ C(K)

and (o type domain(pr)) ∈ C(K), respectively.

Example 13 If we rank the composite possibilities s1 and s2 derived from Figure 7.3, we

get the distances ds1 = 2 and ds2 = 4, since ds1 = distClass(Mary, Adult)+distClass(HKR6263,

Car) = distcl(Adult → Person) + distcl(Car → Vehicle) = 1 + 1 = 2 and ds2 =

distClass(Mary, Millionaire) +distClass(HKR6263, Expensive Car) = distcl(Millionaire

→ Person) + distcl( Expensive car → Vehicle) = 2 + 2 = 4.

So, the composite possibility s1, i.e. {(Mary type Adult), (Mary uses HKR6263),

(HKR6263 type Car)}, has higher priority than s2 and is presented first to the user in the

lifecycle management process (see Chapter 6). 2

Algorithm 6, which is used in order to produce and rank composite possibilities whose

property instance triple has subject or object a specific instance o, is presented below.

We also present one subroutine of Algorithm 6, i.e. Algorithm 5, which computes the

ranking value of a specific possible class instance triple (o type cl).

We define the possible instances of a class c ∈ CK as posInstK(c) = {o | (o type c) ∈

PK}.

Algorithm 5 GetDistClass(o, cl, C, dist, K, classRankingMap)

Input: an instance o, a class cl s.t. (o type cl) ∈ PK , a set of classes C, which are superclasses of cl,

an integer dist, which denotes the distance from cl to one of the classes in C, a KB K, and a

map classRankingMap, which contains the possible class instance triple (o type cl) along with its
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current ranking value

Output: a map classRankingMap which contains (o type cl) along with its current ranking value

(1) For all (c ∈ C) do

(2) If ((o type c) ∈ Ci(K)) then

(3) If (@ d s.t. ((o type cl), d) ∈ classRankingMap) then

(4) classRankingMap = classRankingMap ∪ {((o type cl), dist)};

(5) else let d s.t. ((o type cl), d) ∈ classRankingMap;

(6) If (dist < d) then

(7) classRankingMap = classRankingMap \ {((o type cl), d)};

(8) classRankingMap = classRankingMap ∪ {((o type cl), dist)};

/*end If*/

/*end If*/

/*end If*/

(9) C ′ = {c′ ∈ CK | c ≤cl c′};

(10) classRankingMap = GetDistClass(o, cl, C ′, dist + 1,K, classRankingMap);

/*end For*/

(11) Return classRankingMap;

Algorithm 5 ranks a specific possible class instance triple (o type cl). We use the map,

i.e. classRankingMap, in order to store a pair of the form (key, value), where the key is

(o type cl) and the value is its current ranking value (i.e. the distance from cl to one of

the certain classes of o). At the first call of Algorithm 5, C contains the direct superclasses

of cl, dist has the value 1, and classRankingMap is the empty set.

For each class c that belongs to the set of classes C, we check if (o type c) belongs

to Ci(K). If this is true, we have to check if the key (o type cl), is contained already in

the map. If it holds that, we check if the corresponding ranking value is greater than the

value of the parameter dist. If this is true, we have to replace the existing value with

the value of the parameter dist in the map. Otherwise, we just put the pair (key, value),

where the key is (o type cl), and the value is dist, to classRankingMap.

However, if (o type c) does not belong to Ci(K), we call recursively Algorithm 5 (line

10), where C ′ corresponds to the direct superclasses of class c and dist corresponds to
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the previous value of dist, increased by one unit. If we access all classes in C, then we

return the classRankingMap returned by the recursive calls. As we can see, Algorithm

3 is executed recursively and thus it makes the procedure faster and more efficient.

Algorithm 6 ProduceAndRankCompPoss(o,K, PK)

Input: an instance o, a KB K, and its set of possible instance triples PK

Output: a map of composite possibilities along with their ranking value, where the property instance

triple of each composite possibility has as subject or object the instance o

(1) totalDist = 0;

(2) compPoss = ∅;

(3) compPossMap = ∅;

/* PART A: For all possible classes of o: */

(4) For all (c ∈ posCl(o)) do

/* SUBPART A.1: For all properties that have as domain a possible class of o, i.e. c: */

(5) For all (pr s.t. domain(pr) = c) do

(6) For all (o′ ∈ instK(range(pr))) do

(7) compPoss = {(o type domain(pr)), (o pr o′)};

(8) C ′ = {c′ ∈ CK | domain(pr) ≤cl c′};

(9) classRankingMap = GetDistClass(o, domain(pr), C ′, 1,K, ∅);

(10) Let d s.t. ((o type domain(pr)), d) ∈ classRankingMap;

(11) compPossMap = compPossMap ∪ {(compPoss, d)};

/*end For*/

(12) For all (o′ ∈ posInstK(range(pr))) do

(13) compPoss = {(o type domain(pr)), (o pr o′), (o′ type range(pr))};

(14) C ′ = {c′ ∈ CK | domain(pr) ≤cl c′};

(15) C ′′ = {c′′ ∈ CK | range(pr) ≤cl c′′};

(16) classRankingMap = GetDistClass(o, domain(pr), C ′, 1,K, ∅);

(17) Let d1 s.t. ((o type domain(pr)), d1) ∈ classRankingMap;

(18) classRankingMap = GetDistClass(o′, range(pr), C ′′, 1,K, ∅);

(19) Let d2 s.t. ((o′ type range(pr)), d2) ∈ classRankingMap;

(20) totalDist = d1 + d2;

(21) compPossMap = compPossMap ∪ {(compPoss, totalDist)};

/*end For*/

/*end For*/

/* SUBPART A.2: For all properties that have as range a possible class of o, i.e. c: */
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(22) For all (pr s.t. range(pr) = c) do

(23) For all (o′ ∈ instK(domain(pr))) do

(24) compPoss = {(o′ pr o), (o type range(pr))};

(25) C ′ = {c′ ∈ CK | range(pr) ≤cl c′};

(26) classRankingMap = GetDistClass(o, range(pr), C ′, 1, K, ∅);

(27) Let d s.t. ((o type range(pr)), d) ∈ classRankingMap;

(28) compPossMap = compPossMap ∪ {(compPoss, d)};

/*end For*/

(29) For all (o′ ∈ posInstK(domain(pr))) do

(30) compPoss = {(o′ type domain(pr)), (o′ pr o), (o type range(pr))};

(31) C ′ = {c′ ∈ CK | domain(pr) ≤cl c′};

(32) C ′′ = {c′′ ∈ CK | range(pr) ≤cl c′′};

(33) classRankingMap = GetDistClass(o′, domain(pr), C ′, 1, K, ∅);

(34) Let d1 s.t. ((o′ type domain(pr)), d1) ∈ classRankingMap;

(35) classRankingMap = GetDistClass(o, range(pr), C ′′, 1,K, ∅);

(36) Let d2 s.t. ((o type range(pr)), d2) ∈ classRankingMap;

(37) totalDist = d1 + d2;

(38) compPossMap = compPossMap ∪ {(compPoss, totalDist)};

/*end For*/

/*end For*/

/*end For*/

/* PART B: For all classes of o: */

(39) For all (c ∈ Cl(o))

/* SUBPART B.1: For all properties that have as domain a class of o, i.e. c: */

(40) For all (pr s.t. domain(pr) = c) do

(41) For all (o′ ∈ posInstK(range(pr))) do

(42) compPoss = {(o pr o′), (o′ type range(pr))};

(43) C ′ = {c′ ∈ CK | range(pr) ≤cl c′};

(44) classRankingMap = GetDistClass(o′, range(pr), C ′, 1,K, ∅);

(45) Let d s.t. ((o′ type range(pr)), d) ∈ classRankingMap;

(46) compPossMap = compPossMap ∪ {(compPoss, d)};

/*end For*/

/*end For*/

/* SUBPART B.2: For all properties that have as range a class of o, i.e. c: */

(47) For all (pr s.t. range(pr) = c) do

(48) For all (o′ ∈ posInstK(domain(pr))) do

60



(49) compPoss = {(o′ type domain(pr)), (o′ pr o)};

(50) C ′ = {c′ ∈ CK | domain(pr) ≤cl c′};

(51) classRankingMap = GetDistClass(o′, domain(pr), C ′, 1,K, ∅);

(52) Let d s.t. ((o′ type domain(pr)), d) ∈ classRankingMap;

(53) compPossMap = compPossMap ∪ {(compPoss, d)};

/*end For*/

/*end For*/

/*end For*/

(54) Return compPossMap;

Algorithm 6 produces and ranks all composite possibilities whose property instance

triple has as subject or object a specific instance o. At first (Subpart A.1), for all possible

classes of the instance o, i.e. c, we take each property pr that has as domain the class c.

Then, we take all certain and possible instances o′ of the range of pr and we call Algorithm

5 for ranking each possible class instance triple of the composite possibilities in lines 9

and 16. At the end, we put each composite possibility along with its ranking value in the

map compPossMap.

Afterwards (Subpart A.2), for all possible classes of the instance o, i.e. c, we take

each property pr that has as range the class c. Then, we take all certain and possible

instances o′ of the domain of pr and we call Algorithm 5 for ranking each possible class

instance triple of the composite possibilities in lines 26, 33 and 35. At the end, we put

each composite possibility along with its ranking value in the map compPossMap.

Afterwards (Subpart B.1), for all certain classes of o, i.e. c, we take each property pr

that has as range the class c. Then, we take all possible instances o′ of the domain of

pr and we call Algorithm 5 for ranking the possible class instance triple of the composite

possibility in line 44. At the end, we put the composite possibility along with its ranking

value in the map compPossMap.

Afterwards (Subpart B.2), for all certain classes of o, i.e. c, we take each property pr

that has as domain the class c. Then, we take all possible instances o′ of the range of

pr and we call Algorithm 5 for ranking the possible class instance triple of the composite
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possibility in line 51. At the end, we put the composite possibility along with its ranking

value in the map compPossMap.

Algorithm 6 checks all those cases that produce composite possibilities whose prop-

erty instance triple has as subject or object an instance o and calls a ranking algorithm

(Algorithm 5), which is executed recursively and ranks a specific possible class instance

triple.
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Chapter 8

Non-backwards Compatible Schema

Evolution

This chapter defines and provides an algorithm for computing the set of possible

instance triples of a KB, in the non-backwards compatible schema evolution case.

A frequent situation, is the case where the next schema version SK′ of a KB K ′ is

not backwards compatible with SK , i.e. SK ̸⊑ SK′ (and consequently C(SK) ̸⊆ C(SK′)),

however the instance triples in IK are transferred to K ′, i.e. K ′ = (SK′ , IK), and K ′ is a

(valid) KB. The elements of IK refer to (usually leaf) classes and properties of SK which

are preserved in K ′ automatically by the semantics of RDF/S1 [13]. The changes be-

tween SK′ and SK may include deletions of classes, deletions of properties, changes in the

subClassOf/subPropertyOf relations, or changes in the domain and range of properties.

Let K ′ = (SK′ , IK) be a KB. Obviously, it may hold that BK ̸⊆ BK′ . For example, if

(o type c) ∈ BK and c ∈ CK \ CK′ then (o type c) ̸∈ BK′ .

Our goal is to describe how the rules that are used to derive MK′ are modified. Def. 7

defining the postulates Π1 and Π2, Prop. 5 defining the rules R1, R2, and R3, and Def.

8 defining PK′ remain the same. Prop. 4 essentially remains the same, but we have to

replace MK \ Ci(K
′) ⊆ MK′ by (MK \ Ci(K

′))∩BK′ ⊆ MK′ . This is because it may exist

an instance triple t ∈ MK but t ̸∈ BK′ , due to deletions of classes and properties in SK′ .

Now, we add a new postulate Π3 that applies to the non-backwards compatible schema

evolution case. Postulate Π3 expresses that if a triple t ∈ BK′ that existed in Ci(K), does

1If (o type c) ∈ K′ then (c type Class) ∈ C(K′) and if (o pr o′) ∈ K′ then (pr type Property) ∈ C(K′).
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not exist in Ci(K
′) then t should go to MK′ .

Def. 13 (NBC Evolution Postulates) 2

A transition (Ci(K),MK , PK)  (Ci(K
′),MK′ , PK′) is consistent if, apart from the

postulates Π1 and Π2 of Def. 7, the following postulate is satisfied.

(Π3) All elements t ∈ BK′ s.t. t ∈ Ci(K) \ Ci(K
′) are placed to MK′ . 2

Note that postulate Π3 is not needed in the backwards compatible schema evolution

case, because in this case it holds that Ci(K) ⊆ Ci(K
′).

Example 14 Consider the scenario shown in Figure 8.1, where SK ̸⊑ SK′ .

Suppose that {(John type Full-time Permanent Employee), (John type Technical Staff),

(John type Professor)} ∈ PK . Note that the specialization relationship University

Employee ≤cl Permanent Employee, which exists in SK , has been deleted in SK′ . Note

that (John type Permanent Employee) ∈ Ci(K), while (John type Permanent Employee)

̸∈ Ci(K
′). According to postulate Π3, (John type Permanent Employee) should go to

MK′ . 2

The following proposition provides an equivalent form of postulate Π3.

Prop. 13 In the context of a transition (Ci(K),MK , PK)  (Ci(K
′),MK′ , PK′), it follows

that: (Ci(K) \ Ci(K
′)) ∩ BK′ ⊆ MK′ (Π3) iff Ci(K) ∩ PK′ = ∅. 2

Based on Π3, we provide the following rules that produce (additionally to rules R1,

R2, and R3) elements of MK′ , for the classes and properties that exist in K ′.

Prop. 14 (Certain Modification Inheritance Rules) For class and property instance

triples3:

(R4) If (o type c) ∈ Ci(K), c′ ≤∗
cl c, and (o type c) /∈ Ci(K

′) then (o type c′) ∈ MK′ .

(R5) If (o pr o′) ∈ Ci(K), pr′ ≤∗
pr pr, and (o pr o′) /∈ Ci(K

′) then (o pr′ o′) ∈ MK′ . 2

Obviously, any element of MK′ that will be derived by the rules R1-R5 respects the

following validity constraints of X-partition (Def. 5): MK′ and Ci(K
′) are disjoint, MK′

2NBC stands for non-backwards compatible.
3The relationships ≤∗

cl and ≤∗
pr hold in K′.
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Figure 8.1: Certain Modification Inheritance Rules

is a lower set, and MK′ contains all invalid property instance triples of BK′ . Essentially,

rules R1 − R5 produce the following set of instance triples:

MK′ = Invalid(K ′) ∪ SubTriples((MK \ Ci(K
′)) ∩ BK′) ∪

SubTriples((Ci(K) \ Ci(K
′)) ∩ BK′)

It is easy to see that the derivation of MK′ by the rules R1, R2, and R3 of Prop. 5

and R4, R5 of Prop. 14, as well as the derivation of PK′ by Def. 8, yield an X-partition

that respects postulates Π1 and Π2 of Def. 7 and Π3 of Def. 13. This is actually the

X-partition that satisfies all postulates Π1, Π2, and Π3 and has the minimum set of

negatives.

Example 15 Continuing Example 14, according to Rule R4, (John type Permanent

Employee) should go to MK′ . Further, according to Rule R4, (John type Full-time Permanent

Employee) must be moved from PK to MK′ . 2

Now, similarly to the case of backwards compatible schema evolution, we will try to
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compute PK′ from K, PK , and SK′ without having to know or compute neither MK nor

MK′ . The envisioned process will be correct if it gives the same result (PK′) as Def. 8.

In general, PK′ can be produced by adding and deleting triples to/from PK , i.e. we

can write PK′ = (PK \PK Del)∪PK Add, where PK Del are the elements of PK that should

be deleted from it and PK Add are the elements that should be added to PK . In fact,

PK Del = (PK ∩ C(K ′)) ∪ (PK ∩ MK′) ∪ {t ∈ PK | t ̸∈ BK′}4. This is because, the only

triples that can be deleted from PK belong to C(K ′) ∪ MK′ or do not belong to BK′ .

Regarding PK Add, it should contain instance triples that involve the new classes and

properties. The following two Propositions indicate the instance triples to be added to

PK Add.

Prop. 15 The same as Prop. 7 but now applies to KBs K = (SK , IK) and K ′ = (SK′ , IK),

where SK and SK′ are not necessarily backwards compatible. 2

Prop. 16 The same as Prop. 8 but now applies to KBs K = (SK , IK) and K ′ = (SK′ , IK),

where SK and SK′ are not necessarily backwards compatible. 2

Below we present Algorithm 7, which takes as input a KB K, its set of possible instance

triples PK , and a new set of schema triples SK′ s.t. K ′ = (SK′ , IK) is a KB, and produces

the set of possible instance triples PK′ for the new KB K ′. As we can see, the only

differences between Algorithm 7 and Algorithm 2 are the new parts C and F (see bold

lines).

Note that lines (5-8) of Algorithm 7 and lines (5-8) of Algorithm 2, as well as lines

(12-15) of Algorithm 7 and lines (10-13) of Algorithm 2 are the same. However, their

proof is different and can be found in the proof of correctness of the respective algorithms

(in Appendix A). This is because the second ontology version is not necessarily backwards

compatible with the first one and the instance triples (o type c2) or (o pr2 o′) may belong

to Ci(K) and not to Ci(K
′).

Part C (lines 9-10) concerns class instance triples of the form (o type c) that belong to

PK and refer to classes c that have been deleted in K ′. These class instance triples have

to be added to PK Del set, as they do not belong to BK′ .

4Note that t ̸∈ BK′ in the case that the class c or property pr appearing in t have been deleted in K′.
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Algorithm 7 Produce PossibilitiesNBC(K,PK , SK′)
Input: a KB K, its set of possible instance triples PK , and a new set of schema triples SK′ s.t.

K ′ = (SK′ , IK)
Output: the set of possible instance triples PK′ of the KB K ′

(1) K ′ = (SK′ , IK);
(2) PK Add = ∅;
(3) PK Del = ∅;
/* FOR CLASS INSTANCES: */
(4) NC = CK′ \ CK ; /* new classes appearing in K ′ */
/* PART A: New classes */
(5) For all (c′ ∈ NC) do /* for each new class */
(6) PK Add = PK Add ∪ {(o type c′) | o ∈ InstK ∩ URI ,

∀ c ∈ CK s.t. c′ ≤∗
cl c it holds that (o type c) ∈ (Ci(K ′) ∪ PK), and

(o type c′) /∈ Ci(K ′)};
/* PART B: Existing classes */
(7) For all (c1 ∈ CK) do
/* Moving class instance triples from PK to MK′ due to Rule R1 and Rule R4. */
(8) PK Del = PK Del ∪ {(o type c1) ∈ PK | c2 ∈ CK , c1 ≤∗

cl c2, and
(o type c2) /∈ (Ci(K ′) ∪ PK)};

/* PART C: Removing class instance triples from PK due to removed classes */
(9) For all ((o type c) ∈ PK) do
(10) If c ̸∈ CK′ then PK Del = PK Del ∪ {(o type c)};
/* FOR PROPERTIES: */
(11) NP = PrK′ \ PrK ; /* new properties appearing in K ′ */
/* PART D: New properties */
(12) For all (pr′ ∈ NP ) do /* for each new property */
(13) PK Add = PK Add ∪ {(o pr′ o′) | o ∈ URI ,

valid(o, pr′, o′, K ′),
∀ pr ∈ PrK s.t. pr′ ≤∗

pr pr it holds that(o pr o′) ∈ (Ci(K ′) ∪ PK)), and
(o pr′ o′) /∈ Ci(K ′)};

/* PART E: Existing properties */
(14) For all (pr1 ∈ PrK) do
/* Moving property instance triples from PK to MK′ due to Rule R2 and R5. */
(15) PK Del = PK Del ∪ {(o pr1 o′) ∈ PK | pr2 ∈ PrK , pr1 ≤∗

pr pr2, and
(o pr2 o′) /∈ (Ci(K ′) ∪ PK)};

/* PART F: Removing property instance triples from PK due to
removed properties, subject out of the domain, or object out of range */
(16) For all ((o pr o′) ∈ PK) do
(17) If pr ̸∈ PrK′ or ¬valid(o, pr, o′, K′) then

PK Del = PK Del ∪ {(o pr o′)};
/* Moving instance triples from PK to Ci(K ′). */
(18) PK Del = PK Del ∪ (PK ∩ Ci(K ′));
(19) PK′ = PK \ PK Del;
(20) PK′ = PK′ ∪ PK Add;
(21) Return PK′ ;
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Part F (lines 16-17) concerns property instance triples of the form (o pr o′) that belong

to PK and refer to properties pr that either have been deleted in K ′ or it holds that

¬valid(o, pr, o′, K ′), possibly because the domain and/or range of pr has been changed

or specialization relationships between classes that involve (directly or indirectly) the

domain and/or range of pr have been deleted in SK′ . These property instance triples

have to be added to PK Del set because they either do not belong to BK′ or belong to

Invalid(K ′).

In the case that a property, pr, that appears in SK and IK , is removed in SK′ and

consequently the statements regarding its domain and range, to restore validity of K ′ =

(SK′ , IK), we consider that the domain and range of pr, in K ′, is the class Resource.

Consider, for instance, Figure 8.2. The property instance triple (o1 pr1 o2) ∈ IK leads to

an invalid KB because pr1 and thus, also its domain and range are deleted in K ′. If we

consider that the domain and range of pr1, in K ′, is the class Resource then the validity

of K ′ is restored.

Second Version – K’First Version – K

A

E
D

H
G

C

F

o6 o1 o3o5o7 o4

SK

1) Addition of I and pr5 2) Addition of G as domain(pr5)                                                      
3) Addition of H as range(pr5) 4) Deletion of F and pr1
5) Deletion of D as domain(pr1) 6) Deletion of E as range(pr1)
7) Deletion of C as subClassOf A 8) Addition of A as subClassOf C
9) Deletion of D as domain(pr2) 10) Addition of G as domain(pr2)
11) Addition of I as subClassOf C     12) Addition of pr5 as subPropertyOf pr2
13) Addition of G as subClassOf D 14) Addition of pr3 as subPropertyOf pr4
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Figure 8.2: Non-Backwards Compatible Schema Evolution

Example 16 Consider Figure 8.2. Dashed rectangles denote deleted properties in SK′ ,

which appear in the instance triples of K ′ = (SK′ , IK). Note that, even though property

pr1 is removed in SK′ , it still exists in K ′ as an unconnected element because the instance
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triple (o1 pr1 o2) ∈ IK , and thus (pr1 type Property) ∈ C(K ′), according to the RDF/S

semantics [13]. The domain and range of pr1 is the class Resource.

Suppose that PK = {(o6 type F), (o6 type G), (o6 type J), (o7 type C), (o7 type D),

(o7 type F), (o7 type G), (o1 pr2 o2), (o5 pr3 o4)}.

Executing Algorithm 7, step by step, we have that5:

(1) K ′ = (SK′ , IK);

(2) PK Add = ∅;

(3) PK Del = ∅;

(4) NC = {I};

(6) PK Add = PK Add ∪ {(o1 type I), (o3 type I), (o5 type I), (o6 type I), (o7 type I)};

(8) PK Del = PK Del ∪ {(o6 type G), (o6 type J)};

Note that {(o6 type D), (o6 type A)} ̸∈ (PK ∪Ci(K
′)) and G ≤cl D, J ≤cl A hold in K ′. So,

{(o6 type G), (o6 type J)} are moved from PK to MK′ . If fact, (o6 type G) is moved to

MK′ due to Rule R1 and (o6 type J) is moved to MK′ due to Rule R4.

(10) PK Del = PK Del ∪ {(o6 type F), (o7 type F)};

Note that class F is removed in SK′ .

(11) NP = {pr5};

(13) PK Add = PK Add ∪ {(o3 pr5 o4)};

(15) PK Del = PK Del ∪ {(o5 pr3 o4)};

Note that (o5 pr4 o4) ̸∈ (PK ∪ Ci(K
′)) and pr3 ≤pr pr4 holds in K ′. So, (o5 pr3 o4) is

moved from PK to MK′ (due to Rule R2).

(17) PK Del = PK Del ∪ {(o1 pr2 o2)};

Note that in K ′, domain(pr2) = G and o1 ̸∈ instK′(domain(pr2)).

(18) PK Del = PK Del ∪ {(o7 type C)};

Note that PK Del is updated by those triples that belong to PK and now belong to C(K ′).

So, we have to remove them from PK .

(19) PK′ = PK \ PK Del =

{(o6 type F), (o6 type G), (o6 type J), (o7 type C), (o7 type D), (o7 type F), (o7 type G),

(o1 pr2 o2), (o5 pr3 o4)} \

5Note that (o3 type D) ∈ Ci(K) due to derivation rule (v) of RDF/S semantics (Chapter 2).
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{(o6 type F), (o6 type G), (o6 type J), (o7 type F), (o7 type C), (o1 pr2 o2), (o5 pr3 o4)};

(20) PK′ = PK′ ∪ PK Add =

{(o7 type D), (o7 type G)}∪{(o1 type I), (o3 type I), (o5 type I), (o6 type I), (o7 type I),

(o3 pr5 o4)};

(21) Return PK′ ; 2

We would like to note that Algorithm 7 is more general than Algorithm 2 in the sense

that it can be applied even in the backwards compatible schema evolution case. However,

Algorithm 2 has less steps and is more efficient.

The following Proposition shows that Algorithm Produce PossibilitiesNBC (K , PK , SK′)

is correct.

Prop. 17 Let K = (SK , IK) and let SK be the new schema version such that K ′ =

(SK′ , IK). Then, PK′ = Produce PossibilitiesNBC(K,PK , SK′). 2

Prop. 18 The time complexity of Algorithm 7 is O(|InstK |2 ∗ S2 ∗ (S2 + |PK |), where

S = max(|K|, |K ′|). 2
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Chapter 9

Implementation and Application

Issues

This chapter describes a prototype system based on the proposed approach, named

RIMQA, proposes a compact representation for possibilities, and provides experimental

results.

9.1 Prototype System: Architecture

We have implemented a proof-of-concept prototype, called RIMQA (RDF Instance

Migration Quality Assistant)1, and Figures 9.1-9.9 show some indicative screenshots of

the system. The application provides a menu bar, where initially two menus are enabled,

i.e. “File” and “Help”. The “File” menu provides the menu items “New Project”, “Open

Project”, “Save Project”, “Close Project”, and “Exit”, while the “Help” menu provides

a link to the web site of the tool that includes the downloadable tool (.jar file), a manual,

and a demo.

The user selects from the menu “File” of the menu bar either (a) to create a new RIMQA

project (see Figure 9.1) or (b) to open an existing RIMQA project. If the user selects (a),

i.e. to create a new project, a new form becomes visible (see Figure 9.2), where the user

gives the project name and selects the source ontology (.rdfs file) and a file that contains

instance descriptions (.rdf file) with respect to that ontology. Subsequently, the user

1The implementation was based on the RDF Main Memory Model of SWKM
(http://139.91.183.30:9090/SWKM/mainfiles/model.html).
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Figure 9.1: RIMQA: Select to create a new RIMQA project

Figure 9.2: RIMQA: Create a new RIMQA project and start the Curation Process
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selects the destination ontology (.rdfs file), which is a subsequent version of that ontology

and optionally the user selects a file with possible instance descriptions (.rdf2 file) derived

from a previous migration with respect to the source ontology and one of its previous

versions. The user must give the namespace URI of the ontology versions (included in .rdfs

files). The system then automatically migrates the instance descriptions from the source

to the destination ontology. Then, it computes the possible instance triples, according to

Algorithm 2 (if the destination ontology is backwards compatible with the source one)

or Algorithm 7 (if the destination ontology is not backwards compatible with the source

one). After that, if the user presses the “Start Curation” button, the curation process

starts. After the instance migration and computation of the new possibilities, the rest

menus of the menu bar, i.e. “Statistics” and “Curate”, become enabled. If the user selects

the “Statistics” menu, he can see the most indicative statistics about the source and the

destination ontology, i.e. (a) the number of original classes, properties, (explicit) schema

triples, and instance triples in both ontologies, and (b) the number of added classes and

properties, and the number of added and deleted (explicit and inferred) schema triples in

the destination ontology. The user can also get information about the possibilities of the

source and the destination ontology, e.g. the number of original possible class instance

triples and possible property instance triples in both ontologies, and the number of added

and deleted possible class instance triples and possible property instance triples in the

destination ontology (see Figure 9.3).

To curate the resulting descriptions (“Curate” menu), RIMQA allows the user to select

one of the following five choices (see Figure 9.4):

1. Show All Possible Class Instance Triples (see Figure 9.5)3. In this case, all possible

class instance triples are listed and the user is able to add (by pressing the “Accept”

button) one or more possible class instance triples to the certain part of the extended

KB (eKB) 4. Subsequently, the selected possible class instance triples and all their

supertriples are added to the certain part of the eKB and they are removed from

the multiple choice list and from the possible part of the eKB. The user can also

2Note that we use the RDF format in order to store possibilities, as they are instance triples.
3For a better graphical representation of the URIs, we replace the namespace URI by its namespace prefix

(wherever possible).
4Recall that eKB = (K, PK) (see Def. 9 in Chapter 5). We refer to K as the certain part of eKB and to PK

as the possible part of the eKB.
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Figure 9.3: RIMQA: Statistics

Figure 9.4: RIMQA: Curate the Instance Descriptions

remove (by pressing the “Reject” button) one or more possible class instance triples

from the possible part of the eKB. Subsequently, the selected possible class instance

triples and all their subtriples are removed from the multiple choice list and from
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Figure 9.5: RIMQA: Show all Possible Class Instance Triples

the possible part of the eKB. After that, the user selects to save the new certain and

possible part of the eKB (by pressing the “Save eKB” button). Note that, in order

to create a more functional user interface, we consider that the user can reject a set

of possibilities. According to Chapter 6, the explicit rejection of possibilities is not

supported, but it is an implicit action, which is derived from the no acceptance of

a set of possibilities from the user (recall the update of P up
K in the case where the

user accepts a subset X(o) from a proposed set of possibilities U(o), i.e. P up
K = P up

K

\ SubTriples(U(o) \ SupTriples(X(o)))). In the implemented system, if the user

accepts a set of possibilities, the system does not exclude from the possible part

of the eKB (i) the possibilities that were not selected and do not belong to the

supertriples of the selected possibilities, and (ii) the subtriples of the possibilities in

(i). The system just adds to the certain part of the eKB the selected possibilities

and their supertriples, and then removes only them from the multiple choice list and

from the possible part of the eKB (i.e. P up
K = PK \ SupTriples(X(o))). Accordingly,

if the user rejects a set of possibilities, the system removes the selected possibilities
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and their subtriples from the multiple choice list and from the possible part of the

eKB (i.e. P up
K = PK \ SubTriples(X(o))).

2. Show All Possible Property Instance Triples (similar graphical interface to the above

choice but for possible property instance triples).

3. Show All Possible Instance Triples (similar graphical interface to the above choice

but for all possible (class and property) instance triples).

4. Select Instance associated with Possibilities (a) by its URI or (b) by its Possible

Classes.

Figure 9.6: RIMQA: Select a Possible Instance (by its URI)

If the user selects (a) then a new form becomes visible (see Figure 9.6) and the set

of all instances that are associated with possibilities are listed. If the user selects

(b) then a new form becomes visible (see Figure 9.7) and the set of all possible

classes are listed. The user selects one of them, and if he/she presses “View Possible

Class Instances”, then all possible instances associated with the selected class are

computed and shown to the user, and the user selects one of them. Then, the buttons

“View possible classes of the selected instance”, “View possible property instance

triples of the selected instance (as subject)”, “View possible property instance triples

of the selected instance (as object)”, and “View composite possibilities of the selected
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Figure 9.7: RIMQA: Select a Possible Instance (by its Possible Classes)

instance” become enabled. In both cases (a) and (b), the user can select optionally

the number of possible class instance triples or possible property instance triples

(associated with the selected instance) that wants to be shown5. After that, he/she

selects one of the following four choices:

• View possible classes of the selected instance. If the user presses this button,

then a new form is visible (see Figure 9.8). All possible classes of the selected

instance are shown ranked to the user in a multiple choice list, where the user

can add (by pressing the “Accept” button) one or more possible class instance

triples to the certain part of the eKB or the user can remove (by pressing the

“Reject” button) one or more possible class instance triples from the possible

part of the eKB. If the user selects to add one or more possible classes to the

set of certain classes of the selected instance (by pressing the “Accept” button),

then the possibilities are recomputed, i.e. the suggestions in the multiple choice

list are updated, which means that the selected classes and their superclasses

are removed from the multiple choice list and the corresponding possible class

5Note that the possible classes, regarding the selected instance, with rank value equal to 1 are shown to the
user without regard to the given number.
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instance triples are removed from the possible part of the eKB (because they

now belong to the certain part of the eKB). The drop-down list of the form

which contains all the explicit certain classes of the selected instance is updated

analogously. If the user selects to remove one or more possible classes from the

set of possible classes of the selected instance (by pressing the “Reject” button),

then the possibilities are recomputed, i.e. the suggestions in the multiple choice

list are updated, which means that the selected classes and their subclasses

are removed from the multiple choice list and the corresponding possible class

instance triples are removed from the possible part of the eKB. After that, the

user selects to save the new certain and possible part of the eKB (by pressing

the “Save eKB” button).

Figure 9.8: RIMQA: View Possible Classes of the selected Instance

• View possible property instance triples of the selected instance (as subject) (sim-

ilar graphical interface to the above choice but for possible property instance

triples of the selected instance, as subject).

• View possible property instance triples of the selected instance (as object) (sim-

ilar graphical interface to the above choice but for possible property instance

triples of the selected instance, as object).
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• View composite possibilities of the selected instance. If the user presses this

button, then a new form is visible (see Figure 9.9), where the user can add

a property instance triple to the certain part of the eKB if and only if he/she

accepts one or two possible class instance triples to be added to the certain part

of the eKB, as well (as described in Chapter 7). This is achieved by pressing

the “Accept” button.

5. Remove All Possibilities. The user selects to remove all possibilities (see Figure 9.4).

Figure 9.9: RIMQA: View Composite Possibilities associated with the selected Instance

Note that in the case where the user selects to save the eKB (by pressing the “Save

eKB” button), we store the new instance triples, i.e. the certain part of the eKB, in a .rdf

file, called “newCertainModel.rdf” and the new possible instance triples, i.e the possible

part of the eKB, in a .rdf file, called “newPossibleModel.rdf”.

Future extensions of the implementation would support a graphical visualization of

the suggested possibilities.
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9.2 A Compact Representation for Possibilities

We can greatly reduce the size required for the possible instance triples by exploiting

various properties that hold. For instance, if two classes, say c1 and c2, are possible

classes for an instance o and it holds c1 ≤∗
cl c2 then all classes between, i.e. all c′ such that

c1 ≤∗
cl c′ ≤∗

cl c2, are also possible classes for o (recall Lemma 2(1)). This allows devising

storage representations based on intervals over the reflexive and transitive reduction of

the ≤∗
cl relation. For example, if it holds c1 ≤cl c2 ≤cl c3 ≤cl ... ≤cl c10 and all of them are

possible classes for o then we can represent them by the interval [c1, c10].

If for a given instance, o, there are several intervals having a common end (it is more

probable to have a common right end), then we could save space by adopting a more

compact representation, e.g. the intervals [c1, c10] and [c2, c10] can be represented by

[{c1, c2}, c10]. Moreover, if we have a compact representation of the form [{c1, ..., ck}, c]

and {c1, ..., ck} are the leaves of the hierarchy rooted at c then we can even omit their

representation and adopt a more declarative method, like [∗, c], meaning that all subclasses

of c are possible classes for o. In case where a class c is a possible class of an instance o

but there are not subclasses of c or superclasses of c that are possible classes of o then the

corresponding compact representation is [c, c], indicated by a point interval [c], for short.

Accordingly, if two property instance triples, say (o pr1 o′) and (o pr2 o′), are possible

property instance triples for two instances o and o′ and it holds pr1 ≤∗ pr2 then, for all

properties pr′ such that pr1 ≤∗
pr pr′ ≤∗

pr pr2, (o pr′ o′) is also a possible property instance

triple for o and o′ (recall Lemma 2(2)). This allows devising storage representations based

on intervals over the reflexive and transitive reduction of the ≤∗
pr relation. For example,

if it holds pr1 ≤pr pr2 ≤pr pr3 ≤pr ... ≤pr pr10 and (o pri o′), for all i ∈ {1, ..., 10}, is a

possible property instance triple for o and o′, then we can represent these possible instance

triples by the interval [pr1, pr10]. The same storage policy (intervals with the same right

end), as in class instance triples above, can be followed in the case of property instance

triples.
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Figure 9.10: Object-centered Compact Storage Policy for Possible Class Instance Triples
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Figure 9.11: Object-centered Compact Storage Policy for Possible Property Instance Triples

9.2.1 Data Structure

Figure 9.10 illustrates a data structure for the compact representation, which follows

an object-centered storage policy (beneficial for the requirements of the life cycle manage-

ment) regarding classes. As we can see, on the left there is a list of all the instances,

lexicographically ordered. In the middle, there is a list of pointers that each points to an

interval on the right (where all the intervals of the compact representation of possibilities

are found). Note that every instance o on the left points to a consecutive list of pointers in

the middle and thus, to a list of intervals on the right. For example, instances o1 and o2, in

Figure 9.10, point to the same intervals, i.e. the first interval [∗, A] and the second interval

[{B, C, D}, E]. Figure 9.11 illustrates the corresponding data structure for properties. Note

81



that two or more pairs of instances may have the same compact representation, so we

make those pairs of instances point to the same compact representation. For example,

(o1, o2) and (o1, o3), in Figure 9.11, point to the same intervals, i.e. the first interval [a]

and the second interval [{b, c, d}, e].

9.2.2 Benefits and Shortcomings

The main advantage of adopting the compact representation described above is the

space saving that we could achieve.

However, if we execute Algorithms 2 and 7 using the compact representation of pos-

sibilities, we can see that the cost of looking for a specific possible instance triple in a

compact representation is higher than in an explicit representation of all possibilities.

The time complexity of looking for an instance triple in an explicit representation of pos-

sibilities is O(log2(|PK |)), if possibilities are lexicographically sorted and binary search is

used. The time complexity of looking for a possible instance triple in a compact repre-

sentation depends on several factors, presented below.

Let P compact
K be the compact version of PK . Let Pcompact(o) be the intervals and

|Pcompact(o)| be the number of intervals regarding an instance o. If int is an interval

then we define its degree, denoted by degree(int), as the number of classes/properties

(other than ∗) that occur in int, e.g. degree([{a, b, c}, d]) = 4. If int is a point interval

then degree(int)=0. Let tsearch(o) be the time for locating an instance o in the list of

lexicographically ordered instances (see Figure 9.10). Let tsearch(o, o′) be the time for

locating a pair of instances (o, o′) in the list of lexicographically ordered pairs of instances

(see Figure 9.11). Let tclsubCheck be the time for checking a subsumption relationship be-

tween classes. Let tprsubCheck be the time for checking a subsumption relationship between

properties.

To decide whether a class instance triple (o type c) belongs to P compact
K , requires locat-

ing the instance o and checking every interval which is pointed to by o, i.e. the intervals

in Pcompact(o). So, the time complexity of looking for a possible class instance triple is as

follows:

Time((o type c)
?
∈ P compact

K ) = tsearch(o) +

|Pcompact(o)|∑
i=1

degree(inti) ∗ tclsubCheck,
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where Pcompact(o) = {int1, ..., intk} and k = |Pcompact(o)|.

The above formula calculates the time needed for answering if a specific class instance

triple (o type c) is contained in the compact representation of possibilities. Suppose that

Pcompact(o) = {[{c2, c3}, c1]}. To answer this question, at first, we have to find the instance

o in the lexicographically ordered list of instances. Then, we have to scan all intervals of

o until we find one, say [{c2, c3}, c1], such that c is subclass of c1 and c is superclass of

at least one of the classes in {c2, c3}.

Example 17 Consider Figure 9.10. Suppose that we want to find out if the class instance

triple (o1 type K) belongs to the compact representation of possibilities. Assume that

C ≤∗
cl K and K ≤∗

cl E holds. At first, we find o1 from the list of instances and then we check

the intervals that o1 points to, i.e. [∗, A] and [{B, C, D}, E]. Thus, we first check if K ≤∗
cl A

holds. Since this is not true, we check if K ≤∗
cl E and if (B ≤∗

cl K or C ≤∗
cl K or D ≤∗

cl K).

Since these conditions hold, (o1 type K) is a possible class instance triple. 2

The time complexity tsearch(o) for locating an instance o in the list of lexicographically

ordered instances, if binary search is used, is in O(log2(|InstK |)). The time complexity

of class subsumption checking tclsubCheck, if the DFS or BFS graph traversal algorithms are

used (on the graph formed using ≤cl relationships), is in O(| ≤cl |). However, given that

most RDF triple stores currently use labeling schemes for enconding transitive subsump-

tion relationships, tclsubCheck can be even in O(1) (see [37, 16]).

To decide whether a property instance triple (o pr o′) belongs to P compact
K , requires

locating the pair of instances (o, o′) and checking every interval which is pointed to by

(o, o′), i.e. the intervals in Pcompact(o, o
′). So, the time complexity of looking for a possible

property instance triple is as follows:

Time((o pr o′)
?
∈ P compact

K ) = tsearch(o, o
′) +

|Pcompact(o,o′)|∑
i=1

degree(inti) ∗ tprsubCheck,

where Pcompact(o, o′) = {int1, ..., intk} and k = |Pcompact(o, o′)|.

The above formula calculates the time needed for answering if a specific property

instance triple (o pr o′) is contained in the compact representation of possibilities. Suppose

that Pcompact(o, o
′) = {[{pr2, pr3}, pr1]}. To answer this question, at first, we have to
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find the pair of instances (o, o′) in the lexicographically ordered list of pairs of instances.

Then, we have to scan all intervals of (o, o′) until we find one, say [{pr2, pr3}, pr1], such

that pr is subproperty of pr1 and pr is superproperty of at least one of the properties in

{pr2, pr3}.

Example 18 Consider Figure 9.11. Suppose that we want to find out if the property

instance triple (o1 a o2) belongs to the compact representation of possibilities. At first,

we find (o1, o2) from the list of pairs of instances and check the first interval that (o1, o2)

points to, i.e. [a]. Since the property in this point interval is a, it follows that (o1 a o2)

is a possible property instance triple. 2

The time complexity tsearch(o, o
′) for locating a pair of instances (o, o′) in the list of

lexicographically ordered pairs of instances is in O(log2(|InstK |2)), if binary search is

used. The time complexity of property subsumption checking tprsubCheck is in O(| ≤pr |), if

the DFS or BFS graph traversal algorithms are used. However, if labeling is already in

place then tprsubCheck is even in O(1), as mentioned above.

9.3 Experimental Evaluation

We have conducted an experimental evaluation whose objectives is to (a) measure the

size in triples of the computed PK′ , and (b) measure the time required to compute PK′ for

investigating the applicability of this method to large datasets. Regarding datasets and

measurements, we adopt the following methodology. For each dataset we get a sequence

of schema versions, specifically a sequence of the form SK0 , . . . , SKn , where each SKi
is a

set of schema triples, and a set of instance triples IK w.r.t. the first version of the schema,

i.e. SK0 . Subsequently, we migrate IK to each of the subsequent versions of the schema

and for each one we compute the corresponding PKi
. Specifically, we do the migrations

SKi−1
→ SKi

for all i = 1...n. We use two scenarios: in the first, we consider that PKi−1
= ∅

and thus the computation of PKi
depends only on the current migration, i.e. SKi−1

→ SKi
,

while in the second PKi−1
has been specified from the migration SKi−2

→ SKi−1
(or former

migrations).
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The implementation is written in Java in the context of SWKM (Semantic Web Knowl-

edge Middleware)6, and all experiments were carried out in an ordinary laptop with pro-

cessor Pentium(R) Dual-Core CPU T4200 @2.0 Ghz, 2 GB Ram, running Windows Vista.

One important implementation detail is that we do not have to compute the closure of

any of the involved KBs. Instead we check whether a particular triple belongs to the

closure and this is done efficiently by exploiting appropriate labeling schemes [4].

Versions of Music Ontology (Si)

v.7
.08
.2007

v.10
.08
.2007

v.12
.08
.2007

v.18
.09
.2007

v.6
.12
.2007

v.28
.07
.2008

v.28
.10
.2008

v.13
.02
.2010

|Ci| 113 94 93 93 94 86 124 95

|Ci| −
|Ci−1|

7 0 0 1 2 39 15

|Pri| 147 167 167 167 174 160 160 183

|Pri| −
|Pri−1|

22 0 0 14 3 1 26

|Ii| 26 26 26 26 26 26 26 26

|Si| 1059 1266 1266 1259 1269 1115 1153 1302

|Si| −
|Si−1|

207 0 -7 10 -154 38 149

Table 9.1: |Ci|, |Pri|, |Ii| and |Si| for each i Music Ontology version

9.3.1 Real Data Set

We used the RDF/S versions of Music Ontology7 which is a formal framework for

dealing with music-related information on the Semantic Web, including editorial, cul-

tural and acoustic information. In our experiments, we used the following successive

versions: v.7.08.2007, v.10.08.2007, v.12.08.2007, v.18.09.2007, v.6.12.2007, v.28.07.2008,

v.28.10.2008 and v.13.02.2010. Since each version is not backwards compatible with the

previous ones (although it is migration compatible), Algorithm 7 is used.

Table 9.1 shows the number of classes (i.e. |Ci|), the new classes added from SK to

SK′ (i.e. |Ci| − |Ci−1|), the number of properties (i.e. |Pri|), the new properties added

from SK to SK′ (i.e. |Pri| − |Pri−1|), the number of explicit instance triples (i.e. |IK |)

that are migrated and the number of explicit schema triples (i.e. |SK |) for each version

of the Music Ontology. The last line shows the size difference in schema triples between

SK and SK′ .
6http://athena.ics.forth.gr:9090/SWKM
7http://www.musicontology.com
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|PK′ | Sizes (for migrations where PK = ∅)
|PK′ |
changes
at each
part of
Alg. 7

v.7
.08
.2007
→
v.10
.08.
2007

v.10
.08.
2007
→
v.12
.08.
2007

v.12
.08.
2007
→
v.18
.09.
2007

v.18
.09.
2007
→
v.6
.12.
2007

v.6
.12.
2007
→
v.28
.07.
2008

v.28
.07.
2008
→
v.28
.10.
2008

v.28
.10.
2008
→
v.13
.02.
2010

A 0 0 0 +21 +34 +289 +153

D 0 0 0 0 0 0 0

TOTAL 0 0 0 21 34 289 153

Table 9.2: |PK′ | Sizes for Music Ontology migrations. |PK | = 0

|PK′ | Sizes (for migrations where PK ̸= ∅)
|PK′ |
changes
at each
part of
Alg. 7

v.6.12.2007
→
v.28.07.2008
PK

(v.18.09.2007
→
v.6.12.2007)

v.28.07.2008
→
v.28.10.2008
PK

(v.6.12.2007
→
v.28.07.2008)

v.28.10.2008
→
v.13.02.2010
PK

(v.28.07.2008
→
v.28.10.2008)

|PK | 21 34 289

A +34 +289 +153

B 0 0 0

C 0 -17 -289

D 0 0 0

E 0 0 0

F 0 0 0

Line 18 0 0 0

TOTAL 55 306 153

Table 9.3: |PK′ | Sizes for Music Ontology migrations. |PK | ̸= 0

As we can see in Table 9.1, version v.18.09.2007 has less schema triples than version

v.12.08.2007 and version v.28.07.2008 has less schema triples than version v.6.12.2007.

This means that a number of deletions has taken place from v.12.08.2007 to v.18.09.2007

and from v.6.12.2007 to v.28.07.2008, accordingly.

Number of Possible Triples. Table 9.2 shows the number of possible triples (i.e. |PK′ |)

produced during the migration from SK to SK′ , assuming that PK = ∅, while in Table

9.3 we consider that PK ̸= ∅ for each migration from SK to SK′ . Specifically in Table

9.3, PK is the one derived by the previous migration. The last lines of these tables show

the final |PK′ | for each migration SK → SK′ . As we can see in Table 9.2, during the

migrations v.7.08.2007 → v.10.08.2007, v.10.08.2007 → v.12.08.2007, and v.12.08.2007

→ v.18.09.2007, Algorithm 7 does not return any possible triples. Moreover, note that

the only possible triples that are produced, are those after the execution of part A of
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Algorithm 7, i.e. after the update of PK as a consequence of the new classes added from

SK to SK′ . Note that in Table 9.2, only the parts A and D of Algorithm 7 are shown,

because the rest parts do not reduce the possible triples, since PK = ∅. In Table 9.3, we

can see that possible triples are produced again only by part A and we also have deletions

by part C of Algorithm 7.

Execution Times. Tables 9.4 and 9.5 show the execution times, corresponding to the

scenarios of Table 9.2 and 9.3, respectively. We can see that the migration takes just

some milliseconds and mainly depends on the number of the new classes (part A) added

from SK to SK′ .

PK′ Execution Times (for migrations where PK = ∅)
Times
for
parts
of Alg.
7

v.7
.08.
2007
→
v.10
.08.
2007

v.10
.08.
2007
→
v.12
.08.
2007

v.12
.08.
2007
→
v.18
.09.
2007

v.18
.09.
2007
→
v.6
.12.
2007

v.6
.12.
2007
→
v.28
.07.
2008

v.28
.07.
2008
→
v.28
.10.
2008

v.28
.10.
2008
→
v.13
.02.
2010

A 11.0 4.7 0.6 3.3 4.2 88.5 23.8

D 4.7 0.1 0.1 3.9 3.4 1.3 4.2

TOTAL 15.7 4.8 0.7 7.2 7.6 89.8 27.7

Table 9.4: Execution Times (in msec) for Music Ontology migrations for |PK | = 0

PK′ Execution Times (for migrations where PK ̸= ∅)
Times
for each
part of
Alg. 7

v.6.12.2007
→
v.28.07.2008
PK

(v.18.09.2007
→
v.6.12.2007)

v.28.07.2008
→
v.28.10.2008
PK

(v.6.12.2007
→
v.28.07.2008)

v.28.10.2008
→
v.13.02.2010
PK

(v.28.07.2008
→
v.28.10.2008)

A 3.5 167.0 210.9

B 0.6 0.5 1.8

C 0.1 0.5 4.0

D 0.8 0.1 4.0

E 0.2 0.2 0.3

F 0.1 0.1 0.1

LINE 18 0.5 0.6 4.6

TOTAL 5.8 169.0 225.7

Table 9.5: Execution Times (in msec) for Music Ontology migrations for |PK | ≠ 0
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9.3.2 Synthetic Data Set

To conduct experiments over larger datasets and backwards compatible ontologies, we

created and used one synthetic data set. Specifically, using the synthetic KB generator

described in [34], we created a KB, v.K1, with 100 classes and 300 properties. To obtain

a schema whose features resemble those of real ones, the subsumption relation follows a

power law distribution. Specifically and accordingly to the metrics used in [35], we set

the power-law exponent to 0.5 for the total-degree VR8 function of the property graph

and to 1.7 for the PDF9 function of the descendants distribution. The depth of the class

subsumption hierarchy in the schema is 7. Subsequently, we created three subsequent

schemas of v.K1, namely v.K2, v.K3 and v.K4; v.K2 was derived by adding to v.K1

14 new classes as specializations to randomly selected leaf classes of v.K1 and similarly

10 new properties as specializations to randomly selected properties of v.K1; v.K3 was

derived by adding to v.K2 14 new classes as specializations to randomly selected leaf

classes of v.K2 (where 11 of them existed also in v.K1) and similarly 10 new properties as

specializations to randomly selected properties of v.K2 (where 9 of them existed also in

v.K1); v.K4 was derived by adding to v.K3 14 new classes as specializations to randomly

selected leaf classes of v.K3 (where 13 of them existed also in v.K1) and similarly 10 new

properties as specializations to randomly selected properties of v.K3 (where 9 of them

existed also in v.K1).

For each class of v.K1 we created 100 instances, while for each property of v.K1 we cre-

ated 10 property instance triples, among randomly selected instances of the corresponding

domain and range classes. Table 9.6 shows the features of these schemas and the number

of instance triples.

Number of Possible Triples. Since each version is backwards compatible with the previous

ones, Algorithm 2 is used. Table 9.7 shows the number of possible triples (i.e. |PK′ |)

produced during the migration from SK to SK′ , assuming that PK = ∅, while in Table

9.8 we consider that PK ̸= ∅ for each migration from SK to SK′ . Specifically in Table 9.8,

PK is the one derived by the previous migration. The last lines of these tables show the

8VR stands for Value vs Rank (it measures the relationship between the ith biggest value and its rank i,
assuming a descending order).

9PDF stands for Probability Density Function.
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Versions of Synthetic Data (Si)

v.K1 v.K2 v.K3 v.K4

|Ci| 101 115 129 143

|Ci| − |Ci−1| 14 14 14

|Pri| 289 299 309 319

|Pri|−|Pri−1| 10 10 10

|Ii| 3790 3790 3790 3790

|Si| 1166 1219 1273 1338

|Si| − |Si−1| 53 54 65

Table 9.6: |Ci|, |Pri|, |Ii| and |Si| for each i version of the Synthetic data set

final |PK′|, for each migration SK → SK′ .

|PK′ | Sizes (for migrations where PK = ∅)
|PK′ | changes at
each part of Alg. 2

v.K1 →
v.K2

v.K2 →
v.K3

v.K3 →
v.K4

A +1290 +230 +150

C +97 +87 +86

TOTAL 1387 317 236

Table 9.7: |PK′ | Sizes for Synthetic Data migrations. |PK | = 0

Note that in Table 9.7, migration v.K2 → v.K3 and v.K3 → v.K4 produce less possible

class instance triples than v.K1 → v.K2. This is because some of the added classes from

v.K2 to v.K3 (or from v.K3 to v.K4 respectively) are subclasses of classes added from

v.K1 to v.K2 (or from v.K1 to v.K2 and from v.K2 to v.K3 respectively), which have no

instances (although the rest classes have instances).

|PK′ | Sizes (for migrations where PK ̸= ∅)
|PK′ | changes
at each part
of Alg. 2

v.K2 → v.K3
PK

(v.K1 → v.K2)

v.K3 → v.K4
PK

(v.K2 → v.K3)

|PK | 1387 317

A +1250 +150

B 0 0

C +97 +86

D 0 0

LINE 14 0 0

TOTAL 2734 553

Table 9.8: |PK′ | Sizes for Synthetic Data migrations. |PK | ≠ 0

Execution Times. Tables 9.9 and 9.10 show the execution times, corresponding to the

scenarios of Table 9.7 and 9.8, respectively. We can observe times that range from 4

seconds to 7 minutes and the cost mainly depends on the number of new classes (part A)

and on the number of new properties (part C).
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PK′ Execution Times (for migrations where PK = ∅)
Times
for parts
of Alg. 2

v.K1 →
v.K2

v.K2 →
v.K3

v.K3 →
v.K4

A 1.3 3.0 1.7

C 4.8 3.7 2.6

TOTAL 6.1 6.7 4.3

Table 9.9: Execution Times (in sec) for Synthetic Data migrations for |PK | = 0

PK′ Execution Times (for migrations where PK ̸= ∅)
Times for
each part of
Alg. 2

v.K2 → v.K3
PK

(v.K1 → v.K2)

v.K3 → v.K4
PK

(v.K2 → v.K3)

A 284.7 52.2

B 1.4 0.03

C 111.9 38.3

D 0.3 0.2

LINE 14 0.04 0.01

TOTAL 398.5 90.74

Table 9.10: Execution Times (in sec) for Synthetic Data migrations for |PK | ̸= 0

Since migration is not an every day task, we can say that the computation of possi-

bilities after a migration takes acceptable time (also take into account that we used an

ordinary laptop).

9.4 Other Applications

Software Engineering. Our approach can be used also in object-oriented software

engineering for upgrading libraries. Commonly, custom software relies on several libraries

usually bundled in the form of jars. Most libraries evolve over time and their versions in

most cases are backwards compatible. A new version of a library usually offers new sub-

classes of existing classes which provide improved/diversified functioning while respecting

the ADT (Abstract Data Type) of the superclass. If the new version of a library is

backwards compatible with the previous version, replacing the old version with the new

version is enough for upgrading a software that depends on that library. However, this

does not allow exploiting the new subclasses of the library: the user has to refer to textual

descriptions and release notes in order to identify the new classes/features. An IDE (Inte-

grated Development Environment) could adopt our approach for aiding the developer to

upgrade his code. Specifically, it could be used for providing suggestions for refinements

for those classes that are used by the code, i.e. those objects that instantiate library
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classes, and this can be done gradually by the lifecycle process. We should also mention

that RDF has been proposed as a data structure for software engineering. As a brief and

very rough example, and assuming a Java library, each Java class corresponds to an RDF

class, each public instance variable of a class A with name v and type B corresponds to

a property v with domain(v) = A and range(v) = B, each object o that instantiates a

class A corresponds to a class instance triple (o type A), etc.
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Chapter 10

Sequences of Transitions

In this chapter, we discuss how the sequential migrations between ontology, i.e. Si,

Si+1, ..., Sn−1, Sn can lead to a different set of possibilities from the one-step migration

from the first to the last ontology, i.e. from Si to Sn. We introduce how the notion

of “negative prejudgement, due to lack of the final (forthcoming) knowledge” affects this

different result and we discuss how the user/curator can avoid it.

Let K1 = (S1, I1) be a KB and let S2, . . . , Sn be a sequence of new schema versions,

resulting to KBs Ki = (Si, I1), for i = 2, ..., n. Now consider the one-step migration of I1

from the first (S1) to the last (Sn) schema, i.e. consider the transition:

(C1,M1, P1)  (Cn,Mn, Pn)

where C1 is based on S1 and I1, and suppose that P1 = ∅ 1.

Now consider a sequential migrations scenario where I1 is migrated to S2, then to S3,

and so on, up to Sn. So, the scenario consists of the following sequence of n−1 transitions:

(C1,M1, P1)  (C ′
2,M

′
2, P

′
2)

 . . .

 (C ′
n−1,M

′
n−1, P

′
n−1)

 (C ′
n,M ′

n, P ′
n)

Let us now discuss the relationship between the outcome of the one-step migration,

i.e. (Cn,Mn, Pn), with respect to the final outcome of the sequential migrations, i.e. with

1To keep notations simple, here and below we omit the subscripts K from the notations of C, P and M .
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(C ′
n,M ′

n, P ′
n). The main points are:

(a) Cn = C ′
n, i.e. the certain parts of the resulting partitions are the same. This is due to

postulate Π1 of Def. 7.

(b) The rest parts of the partitions (i.e. M and P ) can be different.

Point (b) can be made evident through a small example, like that of Figure 10.1. The

last row (III) shows the one step migration. The first and the second rows show two

different sequential migrations that lead to the same final schema. Notice that the first

sequence gives the same result with the one step migration, however the second does not.

B

A

C

o

P3

B

A

C

o

P2

B

A

o

B

A

o

B

A

o

B

A

C

o

P3

B

A

C

o

P2 = ∅

B

A

C

o

P3 = ∅

(I)

K1 K2 K3

P1 = ∅

P1 = ∅

P1 = ∅

(II)

(III)

Figure 10.1: Different sequences of transitions

[Insight]

We could say that this phenomenon is a kind of “negative prejudgement, due to lack of
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the final (forthcoming) knowledge”. In our case, the negative prejudgement is realized by

postulate Π2.

Example 19 (Real World Example) A human could also do the same kind of reason-

ing. For instance, suppose that A, B, C and o of Figure 10.1 correspond to:

A: Animal

B: Human

C: Give Birth to Live Youngs (for short, Give Birth)

and o corresponds to a person, called Peter. In KB K1, Peter is an instance of Human and

assuming that the MSA holds, it follows that M1 = {(Peter type Animal)}. Therefore,

P1 = ∅.

In scenario (I), in KB K2, the relationship Human ≤cl Animal is added. Then, since

none of the rules R1−R5 apply, it follows that P2 = {(Peter type Give Birth)}. In KB

K3, the relationship Give Birth ≤cl Animal is added. Then again, since none of the rules

R1 − R5 apply, it follows that P2 = {(Peter type Give Birth)}.

Consider now scenario (II), where in KB K2, the relationship Give Birth ≤cl Animal is

added. Then, Rule R1 applies and M2 = {(Peter type Animal), (Peter type Give Birth)},

while P2 = ∅. In KB K3, the relationship Human≤cl Animal is added. It holds (Peter type

Animal) ∈ C3. Additionally, it holds that M2 = {(Peter type Give Birth)}, due to Rule

R1. Obviously, P3 = ∅.

Consider now scenario (III), where in KB K3, the relationships Human ≤cl Animal and

Give Birth ≤cl Animal are added. Then, since none of the rules R1−R5 apply, it follows

that P3 = {(Peter type Give Birth)} (as in scenario (I)). 2

[Suggested Policy]

If no user feedback is expected/given after a migration, then there is no need to compute

or store the intermediate Pi. Instead, it is better to compute it between the first and

the last schema, and only when needed (i.e. just before the curator starts the lifecycle

process). In this way, we can bypass the “negative prejudgement” due to lack of the

forthcoming knowledge.

Below, we present a proposition that indicates when the one-step migration gives the

same result with the sequential migrations scenario.
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Prop. 19 Let K1 = (S1, I1) be a KB and let S2, . . . , Sn be a sequence of backwards com-

patible schema versions, resulting to KBs Ki = (Si, I1), for i = 2, ..., n. Now consider

the one-step migration of I1 from the first (S1) to the last (Sn) schema: (C1,M1, P1)  
(Cn,Mn, Pn). Additionally, consider the sequential migrations scenario, where: (C1, M1, P1)

 (C ′
2,M

′
2, P

′
2)  ... (C ′

n, M
′
n, P ′

n). If (a) for all c1, c2 ∈ CK1 , it holds that c1 ≤∗
cl c2 in

K1 iff c1 ≤∗
cl c2 in Kn, and (b) for all pr1, pr2 ∈ PrK1 , it holds that pr1 ≤∗

pr pr2 in K1 iff

pr1 ≤∗
pr pr2 in Kn, then (Cn,Mn, Pn) = (C ′

n,M ′
n, P ′

n). 2

We would like to note that Prop. 19 does not hold in the case that the sequence of

schema versions is not backwards compatible (see Example 10.2). This happens because

a class or property that exist in a schema version Si, they may have been removed from

the next schema version Si+1.

A

C

o

M3

BA

C

o

M2

A

B

o

(I)
K1 K2 K3

P1 = ∅

(II)

M1

P2 = ∅ P3 = ∅

A

B

o
P1 = ∅

M1

A

C

o

P3

M3 = ∅

Figure 10.2: Different sequences of non-backwards compatible transitions

Example 20 Consider Figure 10.2. In KB K1, there exist two classes A and B and o is

an instance of A. Assuming that the MSA holds for K1, it follows that P1 = ∅ and M1 =

{(o type B)}. In scenario (I), in KB K2, a new class C is added, as well as the relationships

C ≤cl A and C ≤cl B. From Rule R1, it follows that M2 = {(o type B), (o type C)}. In
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K3, class B is removed. Thus, M3 = {(o type C)}. In scenario (II), class B is removed

and a new class C is added, along with the relationship C ≤cl A. Then, since none of the

rules R1 − R5 applies, it follows that M3 = ∅ and P3 = {(o type C)}. Note that the

non-backwards compatible transitions in scenarios (I) and (II) lead to different results. 2
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Chapter 11

Related Work

In this chapter, we discuss about related work to ontology evolution and versioning

and to fuzzy and probabilistic Semantic Web.

11.1 Ontology Evolution

There are several works on ontology evolution and versioning, for a recent overview

see [12]. Below we describe some of these works and we compare them with our work.

[On Backwards Compatible Ontology Evolution]

Klein et al. [17] propose a versioning mechanism for reducing the problems caused by

ontology evolution. They argue that ontology versioning is necessary because changes to

ontologies may cause incompatibilities, and drive to situations where the new (changed)

ontology cannot be used in place of its previous version. They list a number of artifacts

that may depend on an ontology, and thus can become incompatible after ontological

evolution, and data that conforms to an ontology is one of them. When an ontology is

changed, data may get a different interpretation or may use terms that do not exist any

more. The authors introduce various forms of compatibility and one of them is backwards

compatibility. In the same direction, Xuan et al. [38] propose a model to deal with the

problem of asynchronous ontology versions in the context of a materialized integration

system, which is based on the principle of ontological continuity, which refers to the

permanence of classes, properties, and subsumption. This principle is actually what we
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call backwards compatibility.

[Ontology Evolution and Data Validity]

Stojanovic et al. [31] identify a six-phase ontology evolution process and focus on

providing the user with capabilities to control and customize it. In order to enable such

customization of the ontology evolution process, the user may choose an advanced evo-

lution strategy. It represents a mechanism to prioritize and arbitrate among different

evolution strategies available in a particular situation, relieving the user of choosing el-

ementary evolution strategies individually. Advanced evolution strategy automatically

combines available elementary evolution strategies to satisfy user’s criteria. One of the

adopted advanced evolution strategies is the Instance-driven Evolution Strategy. Noy and

Klein [24] present an informal discussion on the differences between ontology evolution

and database schema evolution, and how structural changes in ontologies affect the preser-

vation of their data instances. They focus on whether instance data can still be accessed

through the changed ontology, and they classify the operation effects as information-

preserving changes, translatable changes, and information-loss changes. Now Konstan-

tinidis et al. [19] focus on the effects of a requested change operation, i.e. how the new

ontology version should be after a request for a change, and on its side-effects on the

instance data, i.e. certain additional actions executed to restore validity. They propose

a general-purpose algorithm for determining the effects and side-effects of a requested

elementary or complex change operation, and such works can be used to resolve the con-

flicts. In addition, Qin and Alturi [26] focus on the validity issue of data instances during

ontological evolution. They classify the changes to ontologies into two levels - structural

and semantic. Semantic changes are brought by structural changes and can be further

classified into explicit and implicit changes. They propose an algorithm for evaluating

the structural validity of a data instance and then another algorithm for evaluating the

semantic validity of a data instance.

Note that, in our work, we do not focus on the instance validity caused by ontology

evolution. We consider that the ontology evolution does not effect the instance triples.

In the case where a class c is deleted from one ontology SK , we consider that, in the new

ontology SK′ , the instances o that were explicitly classified in c, i.e. (o type c) ∈ IK , are
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not affected. Thus, c remains in K ′ as an unconnected class. Now, in the case where a

property pr is deleted from one ontology SK (and also the statements regarding its domain

and range are deleted from the initial schema), we consider that, in the new ontology SK′ ,

the property instance triples (o pr o′) ∈ IK are not affected. Thus, pr remains in K ′ as an

unconnected property and its domain and range is the top class, i.e. Resource. In future

work, it would be worth to investigate, in the non-backwards compatible schema evolution

case, a possible combination of the “repair” of invalid instance descriptions proposed in

[19] with our proposal for computing possible instance descriptions. In conclusion, there

are several works and approaches for dealing with the validity of data during migration,

however there is no work for managing their specificity and quality while ontologies evolve.

11.2 Probabilistic and Uncertain Information

There are several works on probabilistic and uncertain information. Below we discuss

about some of these works and make comments on how we could combine them with our

work.

[Fuzzy/Probabilistic Semantic Web]

At last we could also say that our work is complementary to the works that have been

proposed recently regarding fuzzy or probabilistic Semantic Web. Below, we describe

and comment on some of these approaches. First, we describe extensions with uncertain

information of the web ontology language RDF. For instance, Udrea et al. [36] introduce

a Probabilistic RDF framework (for short pRDF) for expressing probabilistic information

about the relationships expressed in RDF, and provide algorithms to efficiently answer

queries over pRDF ontologies. Mazzieri and Dragoni [22] present an extended syntax to

represent fuzzy membership values within RDF statements, and elaborate on their inter-

pretation. Straccia [32] describes a system for a fragment of fuzzy RDF, and shows how

top-k fuzzy disjunctive queries can be answered by relying on the closure computation

and top-k database engines. Huang and Liu [14] present a general framework for support-

ing SPARQL queries on probabilistic RDF databases, and a query evaluation framework

based on possible world semantics. In general, we could say that the “output” of our work,

i.e. the possibilities (or probabilities, if quantified appropriately), can be considered as
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“input” to such frameworks, which one could use for probabilistic query answering.

[Uncertainty and OWL(Web Ontology Language)]

Now, we describe extensions with uncertain information of the web ontology language

OWL. Ding et al. [7] propose a Bayesian network-based extension to OWL. To indicate

the probabilistic extension, the authors introduce three kinds of OWL classes, and they

define a set of translation rules for converting the probabilistically extended OWL ontol-

ogy into the directed acyclic graph (DAG) of a Bayesian Network (BN). Each node in the

DAG represents a variable and is associated with a conditional probability table (CPT),

which defines the probability of each possible value of the node, given each combination

of values for the node’s parents in the DAG. Again, we can say that the “output” of our

work can be used as an input to the above work since RDF is a sublanguage of OWL.

Costa et al. [5] extend OWL with uncertainty based on first-order Bayesian logic. The

possibilities defined by our approach can be expressed as a set of knowledge structures

(called MFrags) which represent probabilistic knowledge about a collection of related hy-

potheses. Scharrenbach and Bernstein [29] introduce Fuzzy OWL, Markov Logic, and

Probabilistic Description Logics (PDL) for handling uncertain data and resolving incon-

sistencies. They propose the concept of defaults which are specific constraints in PDL

that can be used in order to remove incoherence in OWL ontologies. PDL distinguishes

between terminological and assertional probabilistic knowledge, so the authors present a

KB which represents the (assertional) probabilistic knowledge as our eKB does. Koller et

al. [18] and Giungo et al. [9] propose probabilistic extensions of Description Logics (DLs).

Koller et al. [18] present P-CLASSIC, which is a probabilistic extension of the description

logic CLASSIC. Giungo et al. [9] develop a probabilistic extension of DAML+OIL for

representing and reasoning with probabilistic ontologies in the Semantic Web (SW). They

define P-SHOQ(D) as the probabilistic extension of SHOQ-(D), which is the description

logic that provides a formal semantics, and a reasoning support for DAML+OIL. In [21],

Lukasiewicz presents the expressive probabilistic logics P-SHIF(D) and P-SHOIN(D),

which are probabilistic extensions of the corresponding description logics. These logics

allow for expressing rich terminological probabilistic knowledge about concepts and roles,

as well as assertional probabilistic knowledge about instances of concepts and roles. The
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author presents sound and complete algorithms for the main reasoning problems in the

new probabilistic description logics, which are based on reductions to reasoning in their

classical counterparts, and to solving linear optimization problems. These works concern

Description Logics (DLs). As our work concerns RDF, most of what is proposed in these

works goes beyond the scope of this thesis.

Synopsizing, the above works introduce language constructs for representing uncertain

information, and define the semantics and reasoning services of such knowledge bases. Our

work is complementary, in the sense that we propose a method for deriving uncertainties

based on the evolution of ontologies.

Finally, we should mention the W3C Uncertainty Reasoning for the World Wide Web

(URW3) Incubator group1 whose mission is to better define the challenge of reasoning

with, and representing uncertain information available through the World Wide Web and

related WWW technologies.

1http://www.w3.org/2005/Incubator/urw3/
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Chapter 12

Concluding Remarks

Current approaches and techniques for ontology evolution, ignore that ontology evo-

lution apart from conflicts it can decrease the specificity of the descriptions that have

been defined using past ontology versions. The rapid evolution of ontologies requires

principles, techniques, and tools for managing the quality of the migrated descriptions,

as well as flexible interactive methods for managing this kind of uncertainty. To the best

of our knowledge this is the first work that exploits ontology evolution for managing the

specificity of instance descriptions. Specifically, in this work we formalized the problem

with the notion of X-partition of the set of cartesian instance triples (BK) of a KB K,

and we defined the principles and rules that specify how X-partitions should be updated

after instance migrations in ontology evolution. We provided two algorithms that com-

pute the new set of possible instance triples PK′ based just on the previous version of K,

the previous PK , and the new set of schema triples SK′ . Specifically, the first algorithm

(Algorithm 2) concerns backwards compatible schema evolution, while the second algo-

rithm (Algorithm 7) concerns non-backwards compatible schema evolution. Algorithm 7

is more general than Algorithm 2 and it applies even in the backwards compatible schema

evolution case. However, Algorithm 2 has less steps and is more efficient. Since the ulti-

mate objective is not just the identification of possibilities, but to aid making the instance

descriptions as specific as possible, we proposed a specificity lifecycle management process

that prompts to the user a subset of the possible instance triples (according to certain

criteria) and showed how the extended KB (eKB) should be updated when the user ap-

proves or rejects some of them. Subsequently, we showed how possible instance triples can
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be quantified and ranked for aiding users during the specificity life-cycle process. Further,

we presented a compact (interval-based) representation of the possible instance triples

PK
1, appropriate for very large data sets, and a prototype system, called RIMQA. Finally,

we applied our approach on real and synthetic datasets for demonstrating the feasibility

of our approach.

In the future, we plan to generalize our approach of possibilities to the XSD-typed

literal values of property instance triples [25]. Additionally, we plan to investigate a

possible combination of the “repair” of invalid instance descriptions proposed in [19] with

our proposal for computing possible instance descriptions. Further, we plan to improve

our implementation by supporting a graphical visualization of the suggested possibilities.

Finally, we plan to extend our theory such that disjointness conditions between classes

are supported.

1The compact representation of PK is based on Lemmas 2(1) and 2(2).
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Appendix A: Proofs

In this Appendix, we provide the proof of the Lemmas and Propositions, presented in

this thesis.

Lemma 1

1. If (o type c2) ∈ PK and c2 ≤∗
cl c1 then (o type c1) ∈ (PK ∪ Ci(K)).

2. If (o pr2 o′) ∈ PK and pr2 ≤∗
pr pr1 then (o pr1 o′) ∈ (PK ∪ Ci(K)).

Proof:

1) Let (o type c2) ∈ PK and c2 ≤∗
cl c1. We will show that (o type c1) ∈ (Ci(K) ∪ PK).

Certainly, o ∈ InstK ∩ URI . Assume that (o type c1) ̸∈ (Ci(K) ∪ PK). Since o ∈

InstK ∩ URI and c1 ∈ CK , it follows that (o type c1) ∈ BK . Therefore, it follows from

the definition of X-partition (Def. 5) that (o type c1) ∈ MK . It follows from (ii) of

Def. 5 that (o type c2) ∈ MK . Thus, (o type c2) ̸∈ PK , which is impossible. Therefore,

(o type c1) ∈ (Ci(K) ∪ PK).

2) Let (o pr2 o′) ∈ PK and pr2 ≤∗
pr pr1. We will show that (o pr1 o′) ∈ (Ci(K) ∪ PK).

Since (o pr2 o′) ∈ PK′ , it holds that o ∈ InstK ∩ URI and o′ ∈ InstK . Therefore,

(o pr1 o′) ∈ BK . Assume that (o pr1 o′) ̸∈ (Ci(K) ∪ PK). Therefore, it follows from

the definition of X-partition (Def. 5) that (o pr1 o′) ∈ MK . It follows from (ii) of

Def. 5 that (o pr2 o′) ∈ MK . Thus, (o pr2 o′) ̸∈ PK , which is impossible. Therefore,

(o pr1 o′) ∈ (Ci(K) ∪ PK). 2

Lemma 2

1. If c1 ≤∗
cl c2 ≤∗

cl c3 and (o type c1), (o type c3) ∈ PK then (o type c2) ∈ PK .

2. If pr1 ≤∗
pr pr2 ≤∗

pr pr3 and (o pr1 o′), (o pr3 o′) ∈ PK then (o pr2 o′) ∈ PK .
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Proof:

1) Let c1 ≤∗
cl c2 ≤∗

cl c3 and (o type c1), (o type c3) ∈ PK , we will show that (o type c2) ∈

PK . Note that o ∈ InstK ∩ URI and c2 ∈ CK . Thus, (o type c2) ∈ BK . Assume that

(o type c2) ̸∈ PK then (o type c2) ∈ MK or (o type c2) ∈ Ci(K). If (o type c2) ∈ MK

then it follows from (ii) of Def. 5 that (o type c1) ∈ MK , which is impossible. If

(o type c2) ∈ Ci(K) then it follows from the RDF/S semantics that (o type c3) ∈ Ci(K),

which is also impossible. Thus, (o type c2) ∈ PK .

2) Let pr1 ≤∗
pr pr2 ≤∗

pr pr3 and (o pr1 o′), (o pr3 o′) ∈ PK we will show that (o pr2 o′) ∈ PK .

Note that o ∈ InstK ∩ URI , o′ ∈ InstK , and pr2 ∈ PrK . Thus, (o pr2 o′) ∈ BK . Assume

that (o pr2 o′) ̸∈ PK . Then, (o pr2 o′) ∈ MK or (o pr2 o′) ∈ Ci(K). If (o pr2 o′) ∈ MK

then it follows from (ii) of Def. 5 that (o pr1 o′) ∈ MK , which is impossible. If (o pr2 o′) ∈

Ci(K) then it follows from the RDF/S semantics that (o pr3 o′) ∈ Ci(K). Therefore,

(o pr2 o′) ∈ PK . 2

Prop. 1 When a KB K = (SK , IK) evolves to a new KB K ′ = (SK′ , IK′), where IK = IK′ ,

it holds that InstK = InstK′ .

Proof: It holds that InstK = ResK \ (CK ∪ PrK). Since K = (SK , IK) and from

the way that instance triples and schema triples are defined, it follows that InstK =

{o | (o type c) ∈ IK} ∪ {o, o′ | (o pr o′) ∈ IK . Since IK = IK′ . It follows that InstK =

InstK′ . 2

Prop. 2 If SK ⊑ SK′ then BK ⊆ BK′ .

Proof: Let b ∈ BK . If b is a class instance triple of the form (o type c) then o ∈

InstK ∩ URI and c ∈ CK . Since InstK = InstK′ , it follows that o ∈ InstK′ ∩ URI .

Additionally, since SK ⊑ SK′ , it holds that c ∈ CK′ . Thus, b ∈ BK′ . If b is a property

instance triple of the form (o pr o′) then o ∈ InstK ∩ URI , o′ ∈ InstK , and pr ∈ PrK .

Thus, o ∈ InstK′ ∩URI , o′ ∈ InstK′ and, since SK ⊑ SK′ , it holds that pr ∈ PrK′ . Thus,

b ∈ BK′ . 2
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Prop. 3 Let S and S ′ be two sets of schema triples. It holds that: S ⊑ S ′ iff ∆d(S → S ′)

contains only add operations.

Proof:

⇒) ∆d(S → S ′) = {Add(t) | t ∈ S ′ \ C(S)} ∪ {Del(t) | t ∈ S \ C(S ′)}. We have to prove

that S \C(S ′) = ∅. It is known from the closure definition that S ⊆ C(S). S ⊑ S ′ means

that C(S) ⊆ C(S ′), so by transitivity we get that S ⊆ C(S ′).

⇐) S \ C(S ′) = ∅, so S ⊆ C(S ′). Thus, C(S) ⊆ C(C(S ′)). Therefore, C(S) ⊆ C(S ′). By

Definition 6, we get that S ⊑ S ′. 2

Prop. 4 In the context of a transition (Ci(K),MK , PK)  (Ci(K
′),MK′ , PK′), it follows

that: MK ∩ PK′ = ∅ (Π2) iff (MK \ Ci(K
′)) ⊆ MK′ .

Proof:

⇒) Assume that MK ∩ PK′ = ∅. Let t ∈ MK \ Ci(K
′) and assume that t ̸∈ MK′ . Since

SK ⊑ SK′ , it holds that t ∈ BK′ . Therefore, based on the definition of X-partition (Def.

5) and the fact t ̸∈ Ci(K
′), it holds that t ∈ PK′ . However, in this case, it holds that

MK ∩ PK′ ̸= ∅, which is impossible. Therefore, t ∈ MK′ . Thus, (MK \ Ci(K
′)) ⊆ MK′ .

⇐) Assume that (MK \ Ci(K
′)) ⊆ MK′ . Further, assume that it exists t ∈ MK ∩ PK′ .

Then, based on the definition of X-partition (Def. 5), it holds that t ̸∈ Ci(K
′). Thus,

t ∈ MK \ Ci(K
′). Since (MK \ Ci(K

′)) ⊆ MK′ , it follows that t ∈ MK′ . However, this is

impossible, since t ∈ PK′ . Thus, MK ∩ PK′ = ∅. 2

Prop. 5 Consider an X-partition (Ci(K),MK , PK) based on a schema SK and suppose

we want to define the X-partition after migrating IK to a backwards compatible schema

SK′ . We can derive MK′ using the following rules:

(R1) If (o type c) ∈ MK , c′ ≤∗
cl c, and (o type c) /∈ Ci(K

′) then (o type c′) ∈ MK′ .
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(R2) If (o pr o′) ∈ MK , pr′ ≤∗
pr pr, and (o pr o′) /∈ Ci(K

′), then (o pr′ o′) ∈ MK′ .

(R3) If (o pr o′) ∈ BK′ and ¬valid(o, pr, o′, K ′) then (o pr′ o′) ∈ MK′ .

Proof: Rule R1 and Rule R2 follow directly from Prop. 4 and (ii) of Def. 5. Rule R3

follows directly from (iii) of Def. 5. 2

Prop. 6 The derivation of MK′ by the rules of Prop. 5 and of PK′ by Def. 8, yields a

three-fold partition that is an X-partition (according to Def. 5) and respects postulates

Π1 and Π2 of Def. 7.

Proof: The sets Ci(K
′), MK′ , and PK′ are pairwise disjoint by construction. MK′ is lower

set by construction, and contains all invalid property instance triples of BK′ . Therefore,

(Ci(K
′),MK′ , PK′) is an X-partition.

Postulate Π1 is satisfied by construction. What is left to prove is that Π2 is satisfied

(past negative information cannot become possible), i.e. that MK ∩ PK′ = ∅. Suppose

this is not true, i.e. suppose there exist a t such that t ∈ MK ∩ PK′ . Then, t ∈ MK and

t ̸∈ Ci(K
′). Thus, due to Rule R1 and Rule R2 of Prop. 5, t (and its subtriples) would

belong to MK′ . Thus, t cannot belong to PK′ (since PK′ as defined by Def. 8 excludes all

elements of MK′). 2

Prop. 7 For a new class c′ ∈ CK′ \ CK , it holds that: (o type c′) ∈ PK′ iff

(i) o ∈ InstK ∩ URI ,

(ii) for all c ∈ CK s.t. c′ ≤∗
cl c, it holds that (o type c) ∈ (Ci(K

′) ∪ PK), and

(iii) (o type c′) /∈ Ci(K
′).

Proof:

⇒) Let (o type c′) ∈ PK′ . Certainly, o ∈ InstK ∩ URI . We will show that for all c ∈ CK

s.t. c′ ≤∗
cl c, it holds that (o type c) ∈ (Ci(K

′)∪PK) and (o type c′) ̸∈ Ci(K
′). Assume that

it exists c ∈ CK s.t. (c′ ≤∗
cl c and (o type c) ̸∈ (Ci(K

′) ∪ PK)) or (o type c′) ∈ Ci(K
′). If it

exists c ∈ CK s.t. (c′ ≤∗
cl c and (o type c) ̸∈ (Ci(K

′) ∪ PK)) then since Ci(K) ⊆ Ci(K
′), it

follows that (o type c) ̸∈ (Ci(K)∪PK). Since o ∈ InstK ∩URI and c ∈ CK , it follows that
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(o type c) ∈ BK . Therefore, it follows from Def. 5 that (o type c) ∈ MK . It follows from

Rule R1 of Prop. 5 that (o type c′) ∈ MK′ . Thus, (o type c′) ̸∈ PK′ , which is impossible.

If (o type c′) ∈ Ci(K
′), it follows from Def. 5 that (o type c′) ̸∈ PK′ , which is impossible.

⇐) Assume that o ∈ InstK ∩ URI and that for all c ∈ CK s.t. c′ ≤∗
cl c, it holds that

(o type c) ∈ (Ci(K
′) ∪ PK). Additionally, assume that it holds (o type c′) /∈ Ci(K

′). We

will show that (o type c′) ∈ PK′ . It follows from Def. 5 that for all c ∈ CK s.t. c′ ≤∗
cl c, it

holds that (o type c) ∈ BK \ MK or (o type c) ∈ Ci(K
′). It follows that (o type c′) ̸∈ MK′

(note Rule R1 of Prop. 5 does not apply). Since o ∈ InstK ∩ URI , c′ ∈ CK′ , and

InstK = InstK′ , it follows that (o type c′) ∈ BK′ . Now, since (o type c′) /∈ Ci(K
′), it

follows from Def. 5 that (o type c′) ∈ PK′ . 2

Prop. 8 For a new property pr′ ∈ PrK′ \ PrK , it holds that: (o pr′ o′) ∈ PK′ iff:

(i) o ∈ URI and valid(o, pr′, o′, K ′),

(ii) for all pr ∈ PrK s.t. pr′ ≤∗
pr pr, it holds that (o pr o′) ∈ (Ci(K

′) ∪ PK), and

(iii) (o pr′ o′) /∈ Ci(K
′).

Proof:

⇒) Let (o pr′ o′) ∈ PK′ . Since (o pr′ o′) ∈ PK′ , it follows that valid(o, pr′, o′, K ′).

Additionally, we have o ∈ URI . We will show that for all pr ∈ PrK s.t. pr′ ≤∗
pr pr, it

holds that (i) (o pr o′) ∈ (Ci(K
′) ∪ PK) and (ii) (o pr′ o′) /∈ Ci(K

′). Assume that it exists

pr ∈ PrK s.t. (i) pr′ ≤∗
pr pr and (o pr o′) ̸∈ (Ci(K

′) ∪ PK), or (ii) (o pr′ o′) ∈ Ci(K
′). If it

exists pr ∈ PrK s.t. pr′ ≤∗
pr pr and (o pr o′) ̸∈ (Ci(K

′)∪ PK) then, since Ci(K) ⊆ Ci(K
′),

it follows that pr′ ≤∗
pr pr and (o pr o′) ̸∈ (Ci(K)∪PK). Obviously, it holds that (o pr o′) ∈

BK . Then, it follows from Def. 5 that (o pr o′) ∈ MK . Therefore, it follows from Rule

R2 of Prop. 5 that (o pr′ o′) ∈ MK′ . Thus, (o pr′ o′) ̸∈ PK′ , which is impossible. If

(o pr′ o′) ∈ Ci(K
′), it follows from Def. 5 that (o pr′ o′) ̸∈ PK′ , which is impossible.

⇐) Assume that (i) o ∈ URI and valid(o, pr′, o′, K ′), (ii) for all pr ∈ PrK s.t. pr′ ≤∗
pr pr,

it holds that (o pr o′) ∈ (Ci(K
′) ∪ PK), and (iii) (o pr′ o′) /∈ Ci(K

′). We will show that

(o pr′ o′) ∈ PK′ . It follows from Def. 5 that for all pr ∈ PrK s.t. pr′ ≤∗
pr pr, it holds that

(o pr o′) ∈ BK \MK or (o pr o′) ∈ Ci(K
′). It follows that (o pr′ o′) ̸∈ MK′ (note that Rule

R2 and Rule R3 of Prop. 5 do not apply). It holds that o ∈ InstK′ ∩ URI , o′ ∈ InstK′ ,
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pr ∈ PrK′ . Thus, (o pr′ o′) ∈ BK′ . Since (o pr′ o′) /∈ Ci(K
′), it follows from Def. 5 that

(o pr′ o′) ∈ PK′ . 2

Prop. 9 Let K = (SK , IK) be a KB and let SK′ be a set of new schema triples s.t.

SK ⊑ SK′ and K ′ = (SK′ , IK) be a (valid) KB then PK′ = Produce Possibilities(K,

PK , SK′).

Proof: Initially, PK Add = ∅ and PK Del = ∅. For each new class c′ ∈ NC, Algorithm

Produce Possibilities(K, PK , SK′) inserts to PK Add exactly the class instance triples in-

dicated by Prop. 7. For each old class c1 ∈ CK , if it exists c2 ∈ CK s.t. c1 ≤∗
cl c2

and (o type c2) ̸∈ (PK ∪ Ci(K
′)) then all class instance triples (o type c1) ∈ PK

are added to PK Del. Since SK ⊑ SK′ , it holds that (o type c2) ̸∈ Ci(K). Thus,

(o type c2) ∈ BK \ (PK ∪ Ci(K)) = MK and (o type c2) ̸∈ Ci(K
′). Therefore, due to

Rule R1 of Prop. 5, it holds that (o type c1) ∈ MK′ .

Similarly, for each new property pr′ ∈ NP , Algorithm Produce Possibilities(K, PK , SK′),

inserts to PK Add exactly the property instance triples indicated by Prop. 8. For each old

property pr1 ∈ PrK , if it exists pr2 ∈ PrK s.t. pr1 ≤∗
pr pr2 and (o pr2 o′) ̸∈ (PK ∪ Ci(K

′))

then all class instance triples (o pr1 o′) ∈ PK are added to PK Del. Since (o pr1 o′) ∈ PK , it

holds that (o pr1 o′) ∈ BK . Additionally, since SK ⊑ SK′ , it holds that (o pr2 o′) ̸∈ Ci(K).

Therefore, (o pr2 o′) ∈ BK \ (PK ∪ Ci(K)) = MK and (o pr2 o′) ̸∈ Ci(K
′). Thus, due to

Rule R2 of Prop. 5, it holds that (o pr1 o′) ∈ MK′ .

All instance triples in PK ∩Ci(K
′) are moved to PK Del. Finally, PK′ = (PK \PK Del)∪

PK Add. 2

Prop. 10 The time complexity of Algorithm 2 is O(|InstK |2∗|K ′|2 ∗ (|K ′|2 + |PK |)).

Proof: First, we will prove the following Lemma.

Lemma: Let K be a KB. Then, (i) the size complexity of C(K) is in O(|K|2) and (ii) the

time complexity of C(K) is in O(|K|4).

Proof:

(i) First note that K ⊆ C(K). Let Trdfs denote the RDF and RDFS axiomatic triples [13],
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except the ones that contain rdf : i terms, for i ∈ {1, 2, ...}. It holds that Trdfs ⊆ C(K).

The inference rules used for the derivation of C(K) are the following:

(1) If (c ≤cl c′) ∈ K ∪ Trdfs then (c ≤∗
cl c′) ∈ C(K).

(2) If (c type Class) ∈ C(K) then (c ≤∗
cl c) ∈ C(K).

(3) If (c1 ≤∗
cl c2) ∈ C(K) and (c2 ≤∗

cl c3) ∈ C(K) then (c1 ≤∗
cl c3) ∈ C(K).

(4) If (c type Class) ∈ C(K) then (c ≤∗
cl Resource) ∈ C(K).

(5) If (o type c) ∈ K ∪ Trdfs then (o type c) ∈ C(K).

(6) If (o type c) ∈ C(K) and (c ≤∗
cl c′) ∈ C(K) then (o type c′) ∈ C(K).

(7) If (o pr o′) ∈ C(K) and (pr domain c) ∈ C(K) then (o type c) ∈ C(K).

(8) If (o pr o′) ∈ C(K) and (pr range c) ∈ C(K) then (o′ type c) ∈ C(K).

(9) If (pr ≤pr pr′) ∈ K ∪ Trdfs then (pr ≤∗
pr pr′) ∈ C(K).

(10) If (pr type Property) ∈ C(K) then (pr ≤∗
pr pr) ∈ C(K).

(11) If (pr1 ≤∗
pr pr2) ∈ C(K) and (pr2 ≤∗

pr pr3) ∈ C(K) then (pr1 ≤∗
cl pr3) ∈ C(K).

(12) If (o pr o′) ∈ K ∪ Trdfs and (pr ≤∗
pr pr′) ∈ C(K) then (o pr′ o′) ∈ C(K).

(13) If (o pr o′) ∈ K ∪ Trdfs then (o type Resource), (pr type Resource), (o′ type

Resource) ∈ C(K).

(14) If (o pr o′) ∈ K ∪ Trdfs then (pr type Property) ∈ C(K).

(15) If (c ≤cl c′) ∈ K ∪ Trdfs then (c type Class), (c′ type Class) ∈ C(K).

(16) If (pr ≤cl pr′) ∈ K ∪ Trdfs then (pr type Property), (pr′ type Property) ∈ C(K).

(17) If (pr rdfs :domain c) ∈ K ∪ Trdfs then (pr type Property),

(c type rdfs:Class) ∈ C(K).

(18) If (pr range c) ∈ K ∪ Trdfs then (pr type Property),

(c type rdfs:Class) ∈ C(K).

The number of (c ≤∗
cl c′) triples in C(K) due to rules (1-4) is in O(|CK |2) = O(|K|2).

The number of (o type c′) triples in C(K) due to rules (5-8) is in O(|K| ∗ |CK |) = O(|K|2).

The number of (pr ≤∗
pr pr′) triples in C(K) due to rules (9-11) is in O(|PrK |2) = O(|K|2).

The number of (o pr o′) triples in C(K) due to rule (12) is in O(|K| ∗ |PrK |) = O(|K|2).

The size complexity due to rules (13-18) is O(|K|). Thus, the total size complexity of

C(K) is in O(|K|2).

(ii) Based on the form of the inference rules i(1)-i(18) and the form of the KBs that we

consider, it follows that we can compute C(K) if (i) we execute the rules i(1) and i(3) until
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fixpoint, (ii) we execute the rules i(9) and i(11) until fixpoint, (iii) we execute the rules

i(13)-i(18), (iv) we execute the rules i(5) and i(12), (v) we execute the rules i(7)-i(8), (vi)

we execute the rule i(4), (vii) we execute the rule i(6), and finally (viii) we execute the

rules i(2) and i(10). The time complexity of the steps (i) and (ii) is O(|K|3), because the

time complexity to compute the transitive closure of ≤cl and ≤pr is O(|K|3) [15]. Based

on the fact that the size complexity of C(K) is in O(|K|2), the time complexity of the rest

of the steps is O(|K|4).

End Of Lemma

Since SK ⊑ SK′ , it holds that |K| ≤ |K ′|, assuming that the representation of SK and

SK′ is redundancy-free, i.e. only the reflexive and transitive reduction of the subClassOf

and subPropertyOf relationships are stated in K and K ′. Now, we will compute the time

complexity of lines (5-6) of the Algorithm. The time for the tests (o type c) ∈ (Ci(K
′)∪Pk)

in line (6) is O(|NC| ∗ |InstK | ∗ |CK | ∗ (|K ′|2 + |PK |). The time for the tests in line (6)

(o type c′) ̸∈ Ci(K
′) is O(|NC| ∗ |InstK | ∗ |K ′|2). The time for computing InstK ∩ URI

in line (6), is O(|InstK |). The time for computing {c | c′ ≤∗
cl c}, for all c′ ∈ NC, is

O(|NC| ∗ |K ′|2) and the time of finding which of the elements of these sets belong to CK

is O(|NC| ∗ |CK′| ∗ |K|) = O(|NC| ∗ |K ′| ∗ |K|). Thus, the total time complexity for the

lines (5-6) is: O(|NC|∗|InstK |∗|CK |∗(|K ′|2+|PK |) = O(|InstK |∗|K|∗|K ′|∗(|K ′|2+|PK |).

Now, we will compute the time complexity of lines (7-8). The time for computing

{c2 | c1 ≤∗
cl c2}, for all c1 ∈ CK , is O(|CK | ∗ |K ′|2) and the time of finding which of the

elements of these sets belong to CK is O(|CK | ∗ |CK′| ∗ |K|). The time for checking which

of the instance triples (o type c2) ̸∈ PK∪Ci(K
′) is |CK |∗|InstK |∗|CK |∗(|K ′|2+|PK |). The

time for checking which of the instance triples (o type c1) ∈ PK is |CK | ∗ |InstK | ∗ |PK |.

Thus, the time complexity of lines (7-8) is O(|InstK | ∗ |K|2 ∗ (|K ′|2 + |PK |)).

Now, we will compute the time complexity of lines (10-11). The time for the tests

(o pr o′) ∈ (Ci(K
′)∪Pk) in line (11) is O(|NP | ∗ |InstK | ∗ |InstK | ∗ |PrK | ∗ (|K ′|2 + |PK |)).

The time for the tests in line (11) (o pr′ o′) ̸∈ Ci(K
′) is O(|NP | ∗ |InstK | ∗ |InstK | ∗ |K ′|2).

The time for computing {pr | pr′ ≤∗
pr pr}, for all pr′ ∈ NP , is O(|NP | ∗ |K ′|2) and the

time of finding which of the elements of these sets belong to PrK is O(|NP | ∗ |PrK′| ∗

|K|) = O(|NP | ∗ |K ′| ∗ |K|). Thus, the total complexity time for the lines (10-11) is:

O(|NP | ∗ |InstK |2 ∗ |PrK | ∗ (|K ′|2 + |PK |) = O(|InstK |2 ∗ |K| ∗ |K ′| ∗ (|K ′|2 + |PK |)).
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Now, we will compute the time complexity of lines (12-13). The time for computing

{pr2 | pr1 ≤∗
pr pr2}, for all pr1 ∈ PrK , is O(|PrK | ∗ |K ′|2) and the time of finding which

of the elements of these sets belong to PrK is O(|PrK | ∗ |PrK′ | ∗ |K|). The time for

checking which of the instance triples (o pr2 o′) ̸∈ PK ∪ Ci(K
′) is O(|PrK | ∗ |InstK |2 ∗

|PrK | ∗ (|K ′|2 + |PK |)). The time for checking which of the instance triples (o pr1 o′) ∈

PK is O(|PrK | ∗ |InstK |2 ∗ |PK |). Thus, the total time complexity of lines (12-13) is

O(|InstK |2 ∗ |K|2 ∗ (|K ′|2 + |PK |)).

The time complexity of line (14) is O(|PK | ∗ |K ′|2). Now, we will compute the time

complexity of line (15). The size of PK Del is O(|InstK | ∗ |CK | + |InstK |2 ∗ |PrK |) =

O(|InstK |2 ∗ |K|). Thus, the time complexity of line (15) is O(|PK | ∗ |InstK |2 ∗ |K|).

As shown in Lemma, the time complexity of computing C(K) and C(K ′) is O(|K|4)

and O(|K ′|4), respectively.

Therefore, the total time complexity of Algorithm 2 is O(|InstK |2∗|K ′|2∗(|K ′|2+|PK |)).

2

Prop. 11: Let X ⊆ PK . If Kup = K ∪ X then C(Kup) = C(K) ∪ SupTriples(X ).

Proof: If (o type c) ∈ X, for c ∈ CK , then the newly derived triples in C(Kup), due to this

newly added RDF triple to Kup, are {(o type c′) | c ≤∗
cl c′}. If (o pr o′) ∈ X, for pr ∈ PrK ,

then the newly derived triples in C(Kup), due to this newly added RDF triple to Kup, are

{(o pr′ o′) | pr ≤∗
pr pr′}∪{(o type domain(pr′)) | pr ≤∗

pr pr′}∪{(o′ type range(pr′) | pr ≤∗
pr

pr′}. We will show that {(o type domain(pr′)) | pr ≤∗
pr pr′}∪{(o′ type range( pr′)) | pr ≤∗

pr

pr′} ⊆ C(K). Since (o pr o′) ∈ PK , it holds from (iii) of Def. 5 that (o type domain(pr)) ∈

C(K) and (o′ type range(pr)) ∈ C(K). If it exists pr′ s.t. pr ≤∗
pr pr′ then, since K is a

valid KB, it holds that (i) domain(pr) ≤∗
cl domain(pr′) and (ii) range(pr) ≤∗

cl range(pr′).

Therefore, (o type domain(pr′)) ∈ C(K) and (o type range(pr′)) ∈ C(K). 2
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Prop. 12: Let K be a KB. It holds that:

P comp
K = P1 ∪ P2 ∪ P3, where:

P1 = {{h1, t} | t = (o pr o′) /∈ Valid(K ) where o, o′ ∈ InstK , pr ∈ PrK ,

h1 = (o type c1) ∈ PK , where domain(pr) = c1, range(pr) ∈ Cl(o′)}

P2 = {{t, h2} | t = (o pr o′) /∈ Valid(K ) where o, o′ ∈ InstK , pr ∈ PrK ,

h2 = (o′ type c2) ∈ PK , where range(pr) = c2, domain(pr) ∈ Cl(o)}

P3 = {{h1, t, h2} | t = (o pr o′) /∈ Valid(K ) where o, o′ ∈ InstK , pr ∈ PrK ,

h1 = (o type c1) ∈ PK where domain(pr) = c1,

h2 = (o′ type c2) ∈ PK where range(pr) = c2}

Proof: First, we will prove the following lemma.

Lemma: It holds that {s ∪ {t} | s ⊆ PK , t ̸∈ Valid(K), t ∈ Valid(K) ∪ s), and t ̸∈

Valid(K ∪ s′) ∀ s′ ⊂ s} = P ′
1 ∪ P ′

2 ∪ P ′
3 where

P comp
K = P1 ∪ P2 ∪ P3, where:

P ′
1 = {{h1, t} | t = (o pr o′) /∈ Valid(K ) where o, o′ ∈ InstK , pr ∈ PrK ,

h1 = (o type c1) ∈ PK , where c1 ≤∗
cl domain(pr), range(pr) ∈ Cl(o′)}

P ′
2 = {{t, h2} | t = (o pr o′) /∈ Valid(K ) where o, o′ ∈ InstK , pr ∈ PrK ,

h2 = (o′ type c2) ∈ PK , where c2 ≤∗
cl range(pr), domain(pr) ∈ Cl(o)}

P ′
3 = {{h1, t, h2} | t = (o pr o′) /∈ Valid(K ) where o, o′ ∈ InstK , pr ∈ PrK ,

h1 = (o type c1) ∈ PK where c1 ≤∗
cl domain(pr),

h2 = (o′ type c2) ∈ PK where c2 ≤∗
cl range(pr),

domain(pr) ̸∈ Cl(o), and range(pr) ̸∈ Cl(o′)}

Proof:

⇐) Let x ∈ P ′
1 ∪ P ′

2 ∪ P ′
3. Then, x = s ∪ {t}, where t = (o pr o′) /∈ Valid(K ), for

o, o′ ∈ InstK and pr ∈ PrK , and (i) s = {(o type c1)}, where c1 ≤∗
cl domain(pr),

if x ∈ P ′
1, (ii) s = {(o′ type c2)}, where c2 ≤∗

cl range(pr), if x ∈ P ′
2, and (iii) s =

{(o type c1), (o
′ type c2)}, where c1 ≤∗

cl domain(pr) and c2 ≤∗
cl range(pr), if x ∈ P ′

3.
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In all cases s ⊆ PK . Since valid(o, pr, o′, K ∪ s), it follows that t ∈ Valid(K ∪ s).

It is easy to see that for all s′ ⊂ s, it holds that t ̸∈ Valid(K ∪ s ′), because it does

not hold valid(o, pr, o′, K ∪ s′). Thus, x ∈ {s ∪ {t} | s ⊆ PK , t ̸∈ Valid(K ), t ∈

Valid(K ∪ s), and t ̸∈ Valid(K ∪ s ′) ∀ s′ ⊂ s}.

⇒) Let x ∈ {s ∪ {t} | s ⊆ PK , t ̸∈ Valid(K ), t ∈ Valid(K ∪ s), and t ̸∈ Valid(K ∪ s ′)

∀ s′ ⊂ s}. We will show that x ∈ P ′
1∪P ′

2∪P ′
3. Let x = s∪{t}. Since s ⊆ PK , t ̸∈ Valid(K )

and t ∈ Valid(K ∪ s), it follows that t = (o pr o′), where o, o′ ∈ InstK and pr ∈ PrK .

Since t ̸∈ Valid(K ∪ s ′) ∀ s′ ⊂ s, it follows that (i) if range(pr) ∈ Cl(o′) then s = {h1},

where h1 = (o type c1) ∈ PK and c1 ≤∗
cl domain(pr), (ii) if domain(pr) ∈ Cl(o) then

s = {h2}, where h2 = (o′ type c2) ∈ PK and c2 ≤∗
cl range(pr), and (ii) if domain(pr) ̸∈

Cl(o) and range(pr) ̸∈ Cl(o′) then s = {h1, h2}, where h1 = (o type c1) ∈ PK , h2 =

(o′ type c2) ∈ PK , c1 ≤∗
cl domain(pr), and c2 ≤∗

cl range(pr). Therefore, it follows that

x ∈ P ′
1 ∪ P ′

2 ∪ P ′
3.

End of Lemma

From the above Lemma and Lemma 1(1), Proposition 12 now follows immediately. 2

Prop. 13 In the context of a transition (Ci(K),MK , PK)  (Ci(K
′),MK′ , PK′), it follows

that: (Ci(K) \ Ci(K
′)) ∩ BK′ ⊆ MK′ (Π3) iff Ci(K) ∩ PK′ = ∅.

Proof:

⇒) Assume that (Ci(K)\Ci(K
′))∩BK′ ⊆ MK′ . Further, assume that it exists an instance

triple t ∈ Ci(K)∩PK′ . Since t ∈ PK′ , it follows that t ∈ BK′ . Further, from the Definition

of X-partition (Def. 5), it follows that t ̸∈ Ci(K
′). Thus, t ∈ (Ci(K) \ Ci(K

′)) ∩ BK′ .

Therefore, t ∈ MK′ , which is impossible. Thus, Ci(K) ∩ PK′ = ∅.

⇐) Assume that Ci(K) ∩ PK′ = ∅ and let t ∈ (Ci(K) \ Ci(K
′)) ∩ BK′ . We will show

that t ∈ MK′ . Assume that t ̸∈ MK′ . Then, from the Definition of X-partition (Def.

5), it follows that t ∈ PK′ . Then, t ∈ Ci(K) ∩ PK′ . However, this is impossible since

Ci(K) ∩ PK′ = ∅. Thus, t ∈ MK′ . 2

Prop. 14 For class and property instance triples:

(R4) If (o type c) ∈ Ci(K), c′ ≤∗
cl c, and (o type c) /∈ Ci(K

′) then (o type c′) ∈ MK′ .
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(R5) If (o pr o′) ∈ Ci(K), pr′ ≤∗
pr pr, and (o pr o′) /∈ Ci(K

′) then (o pr′ o′) ∈ MK′ .

Proof: Rule R4 and Rule R5 follow directly from Postulate Π3 of Def. 13 and (ii) of

Def. 5. 2

Prop. 15 The same as Prop. 7 but now applies to KBs K = (SK , IK) and K ′ = (SK′ , IK),

where SK and SK′ are not necessarily backwards compatible.

Proof:

⇒) Let (o type c′) ∈ PK′ . Certainly, o ∈ InstK ∩ URI . We will show that for all c ∈ CK

s.t. c′ ≤∗
cl c, it holds that (o type c) ∈ (Ci(K

′)∪PK) and (o type c′) ̸∈ Ci(K
′). Assume that

it exists c ∈ CK s.t. (c′ ≤∗
cl c and (o type c) ̸∈ (Ci(K

′) ∪ PK)) or (o type c′) ∈ Ci(K
′). If it

exists c ∈ CK s.t. (c′ ≤∗
cl c and (o type c) ̸∈ (Ci(K

′)∪PK)) then it follows that (o type c) ̸∈

(Ci(K) ∪ PK) or ((o type c) ∈ Ci(K) and (o type c) ̸∈ Ci(K
′)). Since o ∈ InstK ∩ URI

and c ∈ CK , it follows that (o type c) ∈ BK . If (o type c) ̸∈ (Ci(K) ∪ PK) then it follows

from Def. 5 that (o type c) ∈ MK . Therefore, it follows that (o type c′) ∈ MK′ (see Rule

R1 of Prop. 5). If (o type c) ∈ Ci(K) and (o type c) ̸∈ Ci(K
′) then from Def. 14 (Rule

R4) it follows that (o type c′) ∈ MK′ . Thus, (o type c′) ̸∈ PK′ , which is impossible. If

(o type c′) ∈ Ci(K
′), it follows from Def. 5 that (o type c′) ̸∈ PK′ , which is impossible.

⇐) Assume that o ∈ InstK ∩ URI and that for all c ∈ CK s.t. c′ ≤∗
cl c, it holds that

(o type c) ∈ (Ci(K
′) ∪ PK). Additionally, assume that it holds (o type c′) /∈ Ci(K

′).

We will show that (o type c′) ∈ PK′ . It follows from Def. 5 that for all c ∈ CK

s.t. c′ ≤∗
cl c, it holds that (o type c) ∈ BK \ MK or (o type c) ∈ Ci(K

′). It follows

(o type c′) ̸∈ MK′ (note that Rule R1 of Prop. 5 and Rule R4 of Prop. 14 do not apply).

Since o ∈ InstK ∩ URI , c′ ∈ CK′ , and InstK = InstK′ , it follows that (o type c′) ∈ BK′ .

Now, since (o type c′) /∈ Ci(K
′), it follows from Def. 5 that (o type c′) ∈ PK′ . 2

Prop. 16 The same as Prop. 8 but now applies to KBs K = (SK , IK) and K ′ = (SK′ , IK),

where SK and SK′ are not necessarily backwards compatible.

Proof:

⇒) Let (o pr′ o′) ∈ PK′ . Since (o pr′ o′) ∈ PK′ , it follows that valid(o, pr′, o′, K ′). We
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will show that for all pr ∈ PrK s.t. pr′ ≤∗
pr pr, it holds that (i) (o pr o′) ∈ (Ci(K

′) ∪ PK)

and (ii) (o pr′ o′) /∈ Ci(K
′). Assume that it exists pr ∈ PrK s.t. (i) (pr′ ≤∗

pr pr and

(o pr o′) ̸∈ (Ci(K
′) ∪ PK)), or (ii) (o pr′ o′) ∈ Ci(K

′). It follows that pr′ ≤∗
pr pr,

and (o pr o′) ̸∈ (Ci(K) ∪ PK) or ((o pr o′) ∈ Ci(K) and (o pr o′) ̸∈ Ci(K
′)). Obviously,

(o pr o′) ∈ BK . If (o pr o′) ̸∈ (Ci(K)∪PK) then it follows from Def. 5 that (o pr o′) ∈ MK .

Therefore, since (o pr o′) ̸∈ Ci(K
′), it follows that (o pr′ o′) ∈ MK′ (see Rule R2 of Prop.

5). If (o pr o′) ∈ Ci(K) and (o pr o′) ̸∈ Ci(K
′) then it follows from Prop. 14 (Rule R5)

that (o pr′ o′) ∈ MK′ . Thus, (o pr′ o′) ̸∈ PK′ , which is impossible.

⇐) Assume that (i) o ∈ URI and valid(o, pr′, o′, K ′), (ii) for all pr ∈ PrK s.t. pr′ ≤∗
pr pr,

it holds that (o pr o′) ∈ (Ci(K
′) ∪ PK), and (iii) (o pr′ o′) /∈ Ci(K

′). We will show that

(o pr′ o′) ∈ PK′ . It follows from Def. 5 that for all pr ∈ PrK s.t. pr′ ≤∗
pr pr, it holds

that (o pr o′) ∈ (BK \ MK) or (o pr o′) ∈ Ci(K
′). It follows that (o pr′ o′) ̸∈ MK′

(note that Rule R2 and Rule R3 of Prop. 5 and Rule R5 of Prop. 14 do not apply).

It holds o ∈ InstK′ ∩ URI , o′ ∈ InstK′ , and pr ∈ PrK′ . Thus, (o pr′ o′) ∈ BK′ . Since

(o pr′ o′) /∈ Ci(K
′), it follows from Def. 5 that (o pr′ o′) ∈ PK′ . 2

Prop. 17 Let K = (SK , IK) be a KB and let SK be the new schema version such that

K ′ = (SK′ , IK) is a (valid) KB. Then, PK′ = Produce PossibilitiesNBC(K,PK , SK′).

Proof: Initially, PK Add = ∅ and PK Del = ∅. For each new class c′ ∈ NC, Algorithm

Produce PossibilitiesNBC(K, PK , SK′), inserts to PK Add exactly the class instance triples

indicated by Prop. 15.

For each old class c1 ∈ CK , if it exists c2 ∈ CK s.t. c1 ≤∗
cl c2 and (o type c2) ̸∈

(PK ∪ Ci(K
′)) then all class instance triples (o type c1) ∈ PK are added to PK Del. Note

that (o type c2) ̸∈ (Ci(K) ∪ PK) or ((o type c2) ∈ Ci(K) and (o type c2) ̸∈ Ci(K
′)). Since

o ∈ InstK∩URI and c ∈ CK , it follows that (o type c2) ∈ BK . If (o type c2) ̸∈ (Ci(K)∪PK)

then it follows from Def. 5 that (o type c2) ∈ MK . Therefore, since (o type c2) ̸∈ Ci(K
′),

it follows that (o type c1) ∈ MK′ (see Rule R1 of Prop. 5). If (o type c2) ∈ Ci(K) and

(o type c2) ̸∈ Ci(K
′) then from Prop. 14 (Rule R4) it follows that (o type c1) ∈ MK′ .

Additionally, it adds to PK Del, all class instance triples (o type c) ∈ PK , where c /∈ CK′ ,

because these instance triples do not belong to BK′ .
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Similarly, for each new property pr′ ∈ NP , Algorithm Produce PossibilitiesNBC(K,

PK , SK′), inserts to PK Add exactly the property instance triples indicated by Prop. 16.

For each old property pr1 ∈ PrK , if it exists pr2 ∈ PrK s.t. pr1 ≤∗
pr pr2, and (o pr2 o′) ̸∈

(PK ∪ Ci(K
′)) then all class instance triples (o pr1 o′) ∈ PK are added to PK Del. Note

that (o pr2 o′) ̸∈ (Ci(K) ∪ PK) or ((o pr2 o′) ∈ Ci(K) and (o pr2 o′) ̸∈ Ci(K
′)). Obviously,

(o pr2 o′) ∈ BK . If (o pr2 o′) ̸∈ (Ci(K) ∪ PK) then it follows from Def. 5 that (o pr2 o′) ∈

MK . Therefore, since (o pr2 o′) ̸∈ Ci(K
′), it follows that (o pr1 o′) ∈ MK′ (see Rule R2

of Prop. 5). If (o pr2 o′) ∈ Ci(K) and (o pr2 o′) ̸∈ Ci(K
′) then it follows from Prop. 14

(Rule R5) that (o pr1 o′) ∈ MK′ .

Additionally, it adds to PK Del all property instance triples (o pr o′) ∈ PK , where

pr ̸∈ PrK′ or ¬valid(o, pr, o′, K ′). This is because, in the first case they do not belong to

BK′ and, in the second case, they belong to MK′ (see Rule R3 of Prop. 5).

All instance triples in PK ∩Ci(K
′) are moved to PK Del. Finally, PK′ = (PK \PK Del)∪

PK Add. 2

Prop. 18 The time complexity of Algorithm 7 is O(|InstK |2 ∗ S2 ∗ (S2 + |PK |)), where

S = max(|K|, |K ′|).

Proof: In the proof of Prop. 10, we have shown that if K is a KB then the size complexity

of C(K) is in O(|K|2) and (ii) the time complexity of computing C(K) is in O(|K|4).

Here, we will provide the complexity of the parts that Algorithm 7 differs from Al-

gorithm 2. The complexity of the parts that Algorithm 7 is the same with Algorithm

2 is provided in the proof of Prop. 10, where we replace |K| and |K ′| by S. The time

complexity of lines (9-10) is |PK | ∗ S2. The time complexity of lines (16-17) is |PK | ∗ S2.

The time complexity to compute C(K) and C(K ′) is O(S4). Thus, the total complexity

of Algorithm 7 is O(|InstK |2 ∗ S2 ∗ (S2 + |PK |)). 2

Prop. 19 Let K1 = (S1, I1) be a KB and let S2, . . . , Sn be a sequence of backwards

compatible schema versions, resulting to KBs Ki = (Si, I1), for i = 2, ..., n. Now consider

the one-step migration of I1 from the first (S1) to the last (Sn) schema: (C1,M1, P1)  
(Cn,Mn, Pn). Additionally, consider the sequential migrations scenario, where: (C1, M1, P1)  
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(C ′
2,M

′
2, P

′
2)  ...  (C ′

n,M ′
n, P ′

n). If (a) for all c1, c2 ∈ CK1 , it holds that c1 ≤∗
cl c2 in

K1 iff c1 ≤∗
cl c2 in Kn, and (b) for all pr1, pr2 ∈ PrK1 , it holds that pr1 ≤∗

pr pr2 in K1 iff

pr1 ≤∗
pr pr2 in Kn, then (Cn,Mn, Pn) = (C ′

n,M ′
n, P ′

n).

Proof: Obviously, Cn = C ′
n. Let (o type c) ∈ M ′

n. Then, there is a class c′ ∈ CK1 ∩ CKi

s.t. c ≤∗
cl c′ in Ki and (o type c′) ∈ M1 ∩ M ′

i . Assume that (o type c) ̸∈ Mn. Then,

(o type c) ∈ Cn ∪ Pn. If (o type c) ∈ Cn then this is impossible because Cn = C ′
n. If

(o type c) ∈ Pn then (o type c′) ∈ Pn ∪ Cn, due to Lemma 1(1). If (o type c′) ∈ Pn then

this is also impossible, because (o type c′) ∈ M1 and due to Postulate Π2 of Def. 7. If

(o type c′) ∈ Cn then c′ ∈ CK1 ∩ CKn . It holds that it exists c1 ∈ CK1 s.t. c1 ≤∗
cl c′ in Kn

and (a) there is (o pr o′) ∈ I1 and domain(pr) ≤∗
cl c1 in K1, or (b) there is (o′ pr o) ∈ I1

and range(pr) ≤∗
cl c1 in K1, or (c) there is (o type c1) ∈ I1. Since c1, c

′ ∈ CK1 ∩ CKn , it

follows from the assumption of Prop. 19(a) that c1 ≤∗
cl c′ in K1. Thus, (o type c′) ∈ C1,

which is impossible since (o type c′) ∈ M1. Thus, (o type c) ∈ Mn.

Let (o type c) ∈ Mn. Then, there is a class c′ ∈ CK1 ∩ CKn s.t. c ≤∗
cl c′ in Kn and

(o type c′) ∈ M1 ∩ Mn. Assume that (o type c) ̸∈ M ′
n. Then, (o type c) ∈ C ′

n ∪ P ′
n.

If (o type c) ∈ C ′
n then this is impossible because Cn = C ′

n. If (o type c) ∈ P ′
n then

(o type c′) ∈ P ′
n ∪ C ′

n, due to Lemma 1(1). If (o type c′) ∈ P ′
n, this is impossible due to

the fact (o type c′) ∈ M1 and postulate Π2. If (o type c′) ∈ C ′
n then c′ ∈ CK1 ∩ CKn .

It holds that it exists c1 ∈ CK1 s.t. c1 ≤∗
cl c′ in Kn and (a) there is (o pr o′) ∈ I1 and

domain(pr) ≤∗
cl c1 in K1, or (b) there is (o′ pr o) ∈ I1 and range(pr) ≤∗

cl c1 in K1, or

(c) there is (o type c1) ∈ I1. Since c1, c
′ ∈ CK1 ∩ CKn , it follows from the assumption

of Prop. 19(a) that c1 ≤∗
cl c′ in K1. Thus, (o type c′) ∈ C1, which is impossible since

(o type c′) ∈ M1. Thus, (o type c) ∈ M ′
n.

Let (o pr o′) ∈ M ′
n. Then, there is a property pr′ ∈ PrK1 ∩ PrKi

s.t. pr ≤∗
pr pr′ in

Ki and (o pr′ o′) ∈ M1 ∩ M ′
i . Assume that (o pr o′) ̸∈ Mn. Then, (o pr o′) ∈ Cn ∪ Pn.

If (o pr o′) ∈ Cn then this is impossible because Cn = C ′
n. If (o pr o′) ∈ Pn then

(o pr′ o′) ∈ Pn ∪ Cn, due to Lemma 1(2). If (o pr′ o′) ∈ Pn then this is also impossible,

because (o pr′ o′) ∈ M1 and due to Postulate Π2 of Def. 7. If (o pr′ o′) ∈ Cn then

pr′ ∈ PrK1 ∩ PrKn . It holds that it exists pr1 ∈ PrK1 s.t. pr1 ≤∗
pr pr′ in Kn and

(o pr1 o′) ∈ I1. Since pr1, pr
′ ∈ PrK1∩PrKn , it follows from the assumption of Prop. 19(b)
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that pr1 ≤∗
cl pr′ in K1. Thus, (o pr′ o′) ∈ C1, which is impossible since (o pr′ o′) ∈ M1.

Thus, (o pr o′) ∈ Mn.

Let (o pr o′) ∈ Mn. Then, there is a property pr′ ∈ PrK1 ∩ PrKn s.t. pr ≤∗
pr pr′ in

Kn and (o pr′ o′) ∈ M1 ∩ Mn. Assume that (o pr o′) ̸∈ M ′
n. Then, (o pr o′) ∈ C ′

n ∪ P ′
n.

If (o pr o′) ∈ C ′
n then this is impossible because Cn = C ′

n. If (o pr o′) ∈ P ′
n then

(o pr′ o′) ∈ P ′
n ∪ C ′

n, due to Lemma 1(2). If (o pr′ o′) ∈ P ′
n, this is impossible due to

the fact (o pr o′) ∈ M1 and postulate Π2. If (o pr′ o′) ∈ C ′
n then pr′ ∈ PrK1 ∩ PrKn .

It holds that it exists pr1 ∈ PrK1 s.t. pr1 ≤∗
pr pr′ in Kn and (o pr1 o′) ∈ I1. Since

pr1, pr
′ ∈ PrK1 ∩ PrKn , it follows from the assumption of Prop. 19(b) that pr1 ≤∗

cl pr′ in

K1. Thus, (o pr′ o′) ∈ C1, which is impossible since (o pr′ o′) ∈ M1. Thus, (o pr o′) ∈ M ′
n.

Therefore, Mn = M ′
n. The fact that Pn = P ′

n follows immediately from the definition

of X-partition (Def. 5). 2
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Appendix B: List of Symbols

In this Appendix, we provide the list of symbols used in this thesis.
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List of Symbols

Symbol Description

C(K) The closure of a KB K

CK The set of classes of C(K)

PrK The set of classes of C(K)

≤∗
cl The subClassOf relation between classes in CK

≤∗
pr The subPropertyOf relation between properties in PrK

ResK The resources of a KB K

InstK The instances of a KB K

instK(c) The instances of a class c of a KB K

BK The set of cartesian instance triples of a KB K

SK The set of schema triples of a KB K

IK The set of instance triples of a KB K

Ci(K) The instance triples of the closure of a KB K

valid(o, pr, o′, K) A valid property instance triple of a KB K

Invalid(K) The set of invalid property instance triples of a KB K

SubTriples((o type c)) The set of subtriples of a class instance triple (o type c) of a KB K

SubTriples((o pr o′)) The set of subtriples of a property instance triple (o pr o′) of a KB K

SubTriples(A) The set of subtriples of a set of instance triples A of a KB K

MK The set of negative(false) instance triples of a KB K

PK The set of possible instance triples of a KB K

PK Add The set of added possible instance triples in PK

PK Del The set of deleted possible instance triples from PK

posTriplescl(o) The set of possible class instance triples of an instance o

posTriplesspr(o) The set of possible property instance triples of an instance o as subject

posTriplesopr(o) The set of possible property instance triples of an instance o as object

SupTriples((o type c)) The set of supertriples of a class instance triple (o type c) of a KB K

SupTriples((o pr o′)) The set of supertriples of a property instance triple (o pr o′) of a KB K

SupTriples(A) The set of supertriples of a set of instance triples A of a KB K

Kup The updated certain part of an eKB

P up The updated possible part of an eKB

distcl(c → c′) The length of the shortest path from a class c to a class c′

distClass(o, c) The shortest distance of c from one of the certain classes of o

distpr(pr → pr′) The length of the shortest path from a property pr to a property pr′

distProperty(o, pr, o′) The shortest distance of pr from one of the certain properties of (o, o′)

Valid(K) The set of valid property instance triples of a KB K

Pcomp
K The set of composite possibilities

Pext
K The set of extended possibilities including atomic and composite possibilities

Cl(o) The set of all certain classes of an instance o

posCl(o) The set of all possible classes of an instance o

P compact
K The compact version of PK

Pcompact(o) The intervals regarding an instance o

|Pcompact(o)| The number of intervals regarding an instance o

degree(int) The number of classes/properties that occur in an interval int

tsearch(o) The time for locating an instance o in the list of lexicographically

ordered instances

tsearch(o, o′) The time for locating a pair of instances (o, o′) in the list of lexicographically

ordered pairs of instances

tclsubCheck The time for checking a subsumption relationship between classes

tprsubCheck The time for checking a subsumption relationship between properties

Table 1: Symbols and Description
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