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Abstract
It is well known that the combination of Space charge and lattice imperfections can put the

beam stability at stake when it has to survive for a large number of turns. In such cases, particles
may exhibit chaotic motion leading to particle losses and beam blow-up. Therefore, tools that
predict at which amplitudes the particle motion becomes chaotic are always useful. There are
already tools of such use, like Frequency Map Analysis. In this study, the newly developed tool,
Chaos Map Analysis, will be reviewed and compared with the former. Instead of determining
the chaotic behaviour of particles with tune diffusion, the Chaos Map Analysis method takes
advantage of the phase-space-difference evolution between two particles presenting visual results
onto a 6D amplitude grid. The results of this study show that the Chaos Map Analysis method
is in great agreement with the Frequency Map Analysis.
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Nomenclature

Acronyms
CERN -European Organization for Nuclear Research
PS -CERN Proton Synchrotron
LHC -CERN Large Hadron Collider

FMA -Frequency Map Analysis
CMA -Chaos Map Analysis
SC -Space Charge
WP -Working Point
DOF -Degree of Freedom
FFT -Fast Fourier Transform
MAD -Methodical Accelerator Design

Constants
c -Speed of light, [3× 108m/s]
m0 -Proton mass, [1.673× 10−27kg]
e -Elementary charge, [1.602× 10−19C]
r0 -Classical radius, [1.54× 10−18m (protons)]
ε0 -Vacuum permittivity, [8.854× 10−12 F/m]
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1 Introduction
In this Thesis, the subject is to investigate particle stability in storage rings. To this end, the

CERN Proton Synchrotron (PS) is taken as an example where particles have to survive for long
times, ie. for many number of passes through the machine, called number of turns.

Single particle stability is limited by non-linear elements that may be required for either ma-
chine control, e.g. chromaticity correction, or through unwanted magnet imperfections. There
are also various collective effects that may lead to instabilities of particle bunches. In this study
only Direct Space Charge (SC) will be considered.

If the non-linearities are significantly strong, they will lead to chaotic motion within the
physical aperture of the beam. It is well-known[1] that particles that exhibit chaotic behaviour
are found at large transverse oscillation amplitudes and are eventually lost as off a certain am-
plitude in phase space. In particular for small storage rings like the PS (628m) and at injection
energy, the SC effect of large intensity beams cannot be ignored. SC in conjunction with the non-
linearities may lead to beam blow-up and losses as well. Even without non-linearities, though,
SC can create resonances on its own.

The goal of this study is to review present tools (Frequency Map Analysis, or FMA in short)
and a newly developed tool (Chaos Map Analysis, or CMA in short) to predict at which ampli-
tudes particle motion becomes chaotic leading to beam blow-up or particle losses. For several
tune working points (WPs) for the PS, the particle stability is presented onto a 6D amplitude
grid such that the amplitude at which motion becomes chaotic can be visually identified.

The difficulty of the grid implementation is that we are dealing with a phase space in 6D.
The most relevant information is to find the strength of resonances in the transverse planes.
Therefore, amplitudes in the transverse planes are sampled in 0.5 sigma steps and 5 ratios of
the horizontal and vertical emittances are used. In the longitudinal phase space 3 Pt values
are chosen for 0.02σl, 1σl and 2σl. For the smallest Pt value, the motion is mainly transverse,
while for Pt = 1σl is at the limit of the beam center. Last, at 2σl one samples the edge of the
longitudinal distribution.

It is well know that the strength of the resonances depend on the tunes rather than phase
advances which may vary strongly. In 6D typically the longitudinal tune Qs is very small, mean-
ing that the synchrotron period is very large. On the other hand, the transverse tunes depend
longitudinally, linearly and even non-linearly on Pt. Therefore, it is required to determine the 6D
tunes over a full number of synchrotron periods for a reliable evaluation of the effect resonances
have on the beam. It is interesting to note that a similar argument holds also for power supply
ripple. Again, one needs to determine the tunes over full ripple periods.

The CMA technique required a reliable measure of when the particle motion is regular or
chaotic. Strong chaotic behaviour can easily be identified by strongly chaotic motion in the phase
space. The problem is to distinguish truly regular from only weakly chaotic motion. This will
be discussed in the thesis and benchmarked with the number of synchrotron periods required to
minimize the error in determining the onset of chaotic motion.
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2 Theory and Background
To this end, some theory needs to be briefly discussed in order to build a basic background

and better understand some concepts that are related to this project. These concepts are the
Betatron Tunes which are frequencies that particles oscillate transversely. The Resonances which
are a major issue that leads to particle losses and sometimes to chaotic behavior. Space Charge
which is a collective effect that causes the tunes to spread and in that way the particles to cross
resonances. Also, Chaos will be briefly mentioned to have an idea about what we study and
last, the FMA method, which is the method that will be reviewed and compared with the newly
developed CMA method.

2.1 Betatron Tunes
The basis of the calculations in linear beam optics[2] are formed by the following two equations

x′′(s) +
(

1
R2(s) − k(s)

)
x(s) = 1

R(s)
∆p
p

(1)

y′′(s) + k(s)y(s) = 0 (2)

with R(s) being the bending radius and k(s) the quadrupole strength. These two equations
are the equations of motion for a particle traveling through the magnetic structure of an accel-
erator. These two coordinates represent the transverse plane of the beam. The extra terms in
the horizontal plane comes from the bending magnets that do not take place in the vertical plane.

If one desires to describe the behavior of the entire composite beam, it has to be assumed
that the bending radius is very large so as 1/R2(s) = 0 and the particles are "on-momentum",
so as ∆p/p = 0. By doing that, the horizontal plane’s equation takes the form of the Hill’s
differential equation of motion

x′′(s)− k(s)x(s) = 0 (3)

The trajectory function x(s) describes a transverse oscillation about the orbit, know as a beta-
tron oscillation, whose amplitude and phase depend on the position s along the orbit. There-
fore, one can solve the equation (3) by using the trial solution

x(s) = Au(s) cos[Ψ(s) + φ] (4)

with the constant amplitude factor A and the phase φ being constants of integration which are
fixed by the initial conditions. Inserting (4) and its second derivative into (3) and simplifying
u(s) to u and Ψ(s) to Ψ, one can get

A
[
u′′ − uΨ′2 − k(s)u

]
cos(Ψ + φ)−A

[
2u′Ψ′ + uΨ′′

]
sin(Ψ + φ) = 0 (5)

Though, A is always non-zero and Ψ(s) takes different values around the orbit, so the only way
to satisfy equation (5) is when

u′′ − uΨ′2 − k(s)u = 0 (6)
2u′Ψ′ + uΨ′′ = 0 (7)
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From equation (7) follows that

2u
′

u
+ Ψ′′

Ψ′ = 0 (8)

which can be integrated directly, giving

Ψ(s) =
∫ s

0

ds

u2(s) . (9)

By inserting this result into (6), follows

u′′ − 1
u3 − k(s)u = 0 (10)

which is a non-linear differential equation with no general analytic solution. It may be evaluated
only by numerical methods which is hardly practical when we have complicated magnet structures
with many individual elements. In order to make things clearer and with some meaning, we
introduce the beta function β(s), also known as amplitude function. Is is defined as

β(s) ≡ u2(s). (11)

Furthermore, the amplitude factor A is replaced by
√
ε. The constant ε is termed the emittance

of the beam. Finally, we can write the solution of the trajectory equation (3) in the following
form

x(s) =
√
ε
√
β(s) cos[Ψ(s) + φ] (12)

with
Ψ(s) =

∫ s

0

ds

β(s) . (13)

Withing the focusing effect of the magnet structure, the particles perform betatron oscillations
with an amplitude that depends on their position. This amplitude is given by

E(s) =
√
εβ(s) (14)

and forms the envelope of the beam as can be seen in the Figure (2.1).

2.1.1 Periodic Solutions

In circular accelerators such as synchrotrons or storage rings, the beam repeatedly experi-
ences the same magnet structure on every turn. Namely, the forces that the beam encounters
are periodic.

Again the Hill’s differential equation for "on-momentum" particles is

x′′(s) +K(s)x(s) = 0. (15)

As was previously shown, the focusing function is K(s) = 1/R(s)−k(s) and in a circular machine
case, it is periodic with the circumference of the ring L:

K(s+ L) = K(s) (16)

Using Floquet’s theorem[3], one can obtain the same solution as before

x(s) =
√
ε
√
β(s) cos[Ψ(s) + φ] (17)
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Figure 2.1: Particle trajectories x(s) within the envelope E(s) of the beam. The upper figure
shows one single trajectory, while the lower shows 18 different trajectories.

but in this case, the beta function β(s) is also periodic. The resonant behaviour depends crucially
on the betatron phase ∆Ψ = Ψ(s+ L)−Ψ(s) over one complete revolution. Thus, the tune or
Q value of a circular accelerator is defined as

Q ≡ ∆Ψ
2π = 1

2π

∫ L

0

ds

β(s) = 1
2π

∮
ds

β(s) . (18)

Due to the periodicity of β(s), Q is independent of position s. In simple words, the tune
represents the number of betatron oscillations a particle undergoes over one complete revolution.

Figure 2.2: Particle trajectories. With
the solid line is represented the design
orbit, with the dashed line the betatron
oscillations and with the dashed-dotted
line the closed orbit of the particle.
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2.2 Resonances
Perturbation terms in the equation of motion can lead to a special class of beam instability

which is called resonances. Resonances can occur if perturbations act on a particle in synchronism
with its oscillatory motion. The appearance of them is generally restricted only to circular
accelerators due to the fact that the perturbations occur periodically at every turn. One can
Fourier analyze the perturbation with respect to the revolution frequency and if any of the
harmonics of the perturbation terms coincide with the eigenfrequency of the particles, a resonance
can occur and the particles may get lost. Resonances caused by field imperfections are called
structural resonances or lattice resonances.

2.2.1 Conditions of Coupling Resonances

In circular accelerators, betatron motion occurs in both the horizontal and vertical plane. Per-
turbations may be present which depend on the betatron oscillation amplitude in both planes[4].
Such terms are called coupling terms and their lowest order term is caused by rotationally mis-
aligned quadrupoles.

Starting from the general equation of motion, as was done before,

u′′(s) + k(s)u(s) = 0 (19)

and by introducing the Floquet’s coordinates or normalized coordinates through the transforma-
tion

w = u√
β

and ϕ =
∫ s

0

ds

νβ(s) (20)

one would end up with the following of motion

ẅ + ν2
ow = p̄n(ϕ)wn−1. (21)

The equation (21) is for the normalized horizontal coordinates for an nth order perturbation in
an uncoupled case, while the same applies for the vertical coordinates, too. Since a coupled case
is being studied, the same equation of motion for the horizontal plane will be

ẅ + ν2
oxw = p̄nr(ϕ)wn−1 υr−1 (22)

where n, r are integers and w, υ describe the betatron oscillations in horizontal and vertical plane,
respectively and p̄nr(ϕ) represents a general perturbation term. The unperturbed solution of the
equation (22) will be of the form

wo(ϕ) = αeiνoϕ + be−iνoϕ (23)

where α, b are arbitrary constants. The higher order amplitude terms in the perturbation can be
expressed by the appropriate sums of trigonometric expressions:

p̄nr(ϕ) =
∑
m

p̄nrm e
imϕ , (24)

wn−1(ϕ) =
∑
|l|≤n−1

Wl e
ilνoxϕ , (25)

υr−1(ϕ) =
∑
|q|≤r−1

Vq e
iqνoyϕ (26)
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Inserting all the equations above into equation (22) gives

ẅ + ν2
oxw =

∑
p̄nrmWl Vq e

i[(m+lνox+qνoy)ϕ] (27)

where m, l, q are integers. So, the resonance condition is

m+ lνox + qνoy = νox. (28)

If the same expression for the vertical plane is also derived, they can be written in a more
elegant way, as following

kνox + lνoy = iN (29)

or to seem more familiar
kQx + lQy = iN (30)

where k, l, i are integers and N is the periodicity of the lattice. The quantity |l|+ |k| gives us the
order of the coupling resonance. For example, for the PS the periodicity is 50 and so, if the tunes
of a particle satisfy the equation Qx+2Qy = 50, it will be on top of the 3rd order resonance (1, 2).

Plotting all straight lines for different values of k, l, i for a specific betatron tune diagram
produces what is called a resonance diagram. In Fig. 2.3 is presented an example of a resonance
diagram for N = 1 with resonances up to 3rd order.

Figure 2.3: Resonance diagram for a ring with periodicity N = 1.

In the reality, the resonance lines are not mathematically thin lines but they actually have
some thickness, called stop band width which depends on the strength of the resonance since
not every resonance has the same strength and generally their strength decreases as their order
increases.
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2.3 Space Charge
In this section, SC will be briefly introduced which is one of most fundamental collective

effects in particle accelerators. Its impact is generally proportional to the beam intensity and the
main idea is that the charge and current of the beam create self-fields and image fields that alter
the dynamic behavior. This influences the single-particle motion as well as coherent oscillations
of the beam as a whole.

2.3.1 Direct Space Charge

To begin with, direct space charge[5],[6], or the SC that comes from the particles’ self-fields,
is based on the fundamental electromagnetism of Coulomb’s law and Maxwell’s equations. Let’s
suppose that we have two identical particles with charge +e (Figure 2.4). When these two
particles are at rest, they experience a repulsion due to Coulomb’s law. Though, when they are
travelling with velocity v = βc, they create two parallel currents I = ve which create in turn,
a magnetic field making the two particles attract each other. Figure 2.4 shows that the overall
effect is still repulsive but as the velocities grow larger, the effect decreases. Also, as special
relativity implies, the forces becomes equal at the speed of light and thus, they cancel. That is
the reason why SC is negligible in larger accelerators as LHC, for example.

Figure 2.4: Coulomb repulsion and magnetic attraction between two identical particles, at rest
and while travelling.

Let an unbunched beam of circular cross section with radius α and uniform charge density
n [Cb/m3] be, that moves with velocity v = βc that is constant. The line charge density of that
beam will be λ = πα2n [Cb/m] and its current density will be J = βcn [A/m2] with total current
I = βcλ [A]. Using the cylindrical symmetry and some basic electromagnetism, one can find that
the radial electric field of such beam will be

Er = I

2πε0βc

r

α2 . (31)

Similarly, the azimuthal magnetic field can be calculated as

Bφ = I

2πε0c2
r

α2 . (32)
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As one might notice, both the electric and the magnetic fields vanish at r = 0 and increase
linearly with r up to the edge of the cylinder, r = a.

Let a test particle be somewhere inside the beam where it will experience a force due to the
fields above. This force will be

−→
F = q(−→E +−→v ×−→B )⇒ Fr = eI

2πε0βc

1
γ2

r

α2 (33)

where γ = 1 − β2. Expressing this result with the Cartesian transverse coordinates x, y results
in

Fx = eI

2πε0cβγ2α2x , Fy = eI

2πε0cβγ2α2 y. (34)

SC has a defocussing effect in both planes and if the beam in not uniform, let’s say Gaussian,
then the effect becomes non-linear.

If some more realistic results are needed, then one has to introduce a non-uniform distribution
of the form

n(r) = I

2πβcσ2 e
−r2

2σ2 (35)

where σ denotes the r.m.s. value of the distribution projected on the x or y axis. Following the
same procedure as above, the force will be

Fr = eI

2πε0βcγ2r

(
1− e

−r2

2σ2
)
, (36)

which obviously is no longer linear in r. Just to make some future calculations simpler, this
result has to be linearized for small r. That would be

Fr = eI

2πε0βcγ2
1
r

(
1− 1 + r2

2σ2 − ...
)
≈ eI

2πε0βcγ2
r

2σ2 . (37)

2.3.2 Direct SC : Incoherent Tune Shift

As was mentioned earlier, direct SC leads to defocussing in both planes. Thus, it is expected
that particles in high-intensity beams will experience a lowering of their betatron tunes Q by ∆Q.

Starting again with the Hill’s equation (15) with the addition of a perturbed term KSC(s)
that describes the defocussing effect of SC, as following

x′′(s) +
(
K(s) +KSC(s)

)
x = 0, (38)

one can derive KSC(s) in terms of the force Fx

x′′(s) = d2x

ds2 = 1
β2c2

d2x

dt2
= 1
β2c2

Fx
m0γ

= Ir0

eβ3γ3cσ2x (39)

where r0 = e2/(4πε0m0c
2) is the classical particle radius and is equal to 1.54 × 10−18m for

protons. Also, Fx is the horizontal part of equation (37). So, the Hill’s equation including SC
becomes

x′′(s) +
(
K(s)− Ir0

eβ3γ3cσ2

)
x = 0. (40)

8
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The incoherent tune shift ∆Qx that is introduced is readily calculated, for example in [3], by
integrating the weighted gradient errors around the circumference 2πR:

∆Qx = 1
4π

∫ 2πR

0
Kx(s)βx(s)ds = 1

4π

∫ 2πR

0
KSC(s)βx(s)ds. (41)

Using KSC(s) from equation (40) yields

∆Qx = − r0IR

ecβ3γ3

〈
βx
2σ2

〉
= − r0N

2πβ3γ3
2
Ex

for r � σ (42)

with Ex = 4σ2/βx, the 95% emittance and I = Neβc/(2πR) with N being the number of
particles.
As one might notice:

• the tune shift is proportional to the intensity;

• it scales with 1/γ3, so it is very small for proton enegies beyond ∼ 10GeV and negligible
for electrons;

• it does not depend on the machine radius R.

The Incoherent motion refers to the beam as if it consists of many particles, each of which
moves inside the beam with its indivicual betaltron amplitude, phase and even tune Q. Ampli-
tude and phase are distributed at random over all particles.

2.3.3 A visual example

In order to visualize the effect of SC on the tunes of a real beam, an example of a tune diagram[6]

follows.

Figure 2.5: Tune Diagram
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The red dot represents the WP, namely the tunes that the accelerator is set to work. Due
to SC though, the tunes of the particles are shifted and are spread on top of the green diamond
which is called "necktie". The closer one particle is to the center of the beam, the larger shift it
will experience. As one might notice, the "necktie" crosses many resonances and that might lead
to many particle losses or beam blow-up.

2.4 Chaos
Chaos comes from the ancient Greece where it referred to the void state preceding the creation

of the universe or cosmos in the Greek creation myths. It used to mean vast void, emptiness,
abyss, infinite darkness etc. In the modern world, Chaos has obtained a quite different meaning
which was first seen in Elizabethan Early Modern English. That is the meaning of complete
disorder and confusion.

In physics though, chaos in used to describe the property of a complex system whose behavior
is so unpredictable as to consider it completely random. These kinds of systems show also the
property of having great sensitivity to small changes in the initial conditions.

2.4.1 Deterministic Chaos

The term Deterministic chaos[7] sounds like oxymoron. One would expect chaotic behavior
to stem from randomness since people tend to characterize something that behaves in a very
random manner, as chaotic. Though, even something that is random can follow a simple pattern
making randomness alone an insufficient condition. In fact, it is not even necessary for a dynamic
system to be random in order to be chaotic.

So, what does make a system chaotic? A system is called chaotic when its irregular behav-
ior arises from a strictly deterministic time evolution without any source of noise or external
stochasticity. This irregularity manifests itself in an extremely sensitive dependence of the initial
conditions which makes impossible to predict the future of the system. Most surprisingly, it
turned out that such chaotic behavior can already be found for systems with a very low degree
of freedom.

A dynamical system can be described simply as a system of N first-order differential equations

dxi
dt

= fi(x1, ... , xN , r) , i = 1, ... N , (43)

where the independent variable t can be read as time and the xi(t) are dynamical quantities whose
time dependence is generated by (43), starting from specified initial conditions xi(0) , i = 1, ... , N .
It should be noted that the system (43) is autonomous because it is not explicitly t-dependent.
The fi are nonlinear functions of the xiand are characterized by the parameter(s) r. The equa-
tions lead to chaotic motion, which develops and changes its characteristics with varying control
parameter(s) r. Though, the assumption that the system is autonomous is not necessary since
one can convert it to autonomous simply by introducing the time t as an additional variable xN+1.

In this study, the dynamical system are the particles of an accelerator. Sometimes, under
some circumstances this systems appears to have chaotic behavior, too. The particles may start
all together, very close to each other, but after some time they have completely different orbits
and their distance in phase space may have changed dramatically. This might affect the stability
of the beam and lead to beam loss, emittance growth, tune shifts, etc. In order to investigate if
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there is any chaos there are many tools that one could use such as the Lyapunov exponent which
will be discussed shortly or, in this case, FMA and CMA.

2.4.2 The Lyapunov Exponent

Chaotic dynamics is characterized by an exponential divergence of initially infinitesimally
close points. This divergence is called in mathematics Lyapunov exponent. Let’s consider the
case of one-dimensional discrete maps on an interval

xn+1 = f(xn) , x ∈ [0, 1] , (44)

and two orbits starting with infinitesimally different initial conditions x0 and x0 + ∆x0. Their
distance after n iterations will be

∆xn = |fn(x0 + ∆x0)− fn(x0)| (45)

which increases exponentially for large n for a chaotic orbit, according to

∆xn ≈ ∆x0e
λLn . (46)

One could easily see that
λL = lim

n→∞

1
n

ln ∆xn
∆x0

(47)

which is the Lyapunov exponent. λL equals to 1 if there is chaos and 0 when there is just a
regular case. In simple words, this exponent "measures" how rapid is the growth of the distance
one is interested into. The CMA method uses the Lyapunov exponent concept, i.e. it studies the
change of distance in phase space as will be shown shortly, but in this project this exponent is
not calculated directly due to practical and numerical reasons.

2.5 Frequency Map Analysis [8],[9],[10],[11],[12]

The FMA method was first introduced by J. Laskar in order to study the stability of the solar
system, as modeled by a reduced 15 degrees of freedom (DOF) system. In this case, frequency
analysis made possible to estimate numerically the size of the chaotic zones in all directions of the
15 DOF and revealed that the inner planets (Mercury to Mars) are in large chaotic zones while
the outer planets (Jupiter to Neptune) are in much smaller chaotic zones. Nowadays, FMA is
widely used in many fields like atomic physics, celestial mechanics, accelerator physics and more.

2.5.1 Frequency analysis

The main idea behind the frequency analysis is the following. Let’s suppose that an experiment
takes place and data for the position and the momentum of a particle are produced. Thus, there
will be the function

f(t) = x(t) + ip(t), (48)

where x(t) can be any of the DOF of the system. If this function is an integratable, quasi-periodic
function, it can be written as

f(t) =
∞∑
k=1

αke
iνkt (49)
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where αk are of decreasing amplitude with k. The frequency analysis is a numerical method to
obtain an approximation

f ′(t) =
N∑
k=1

α′ke
iν′kt (50)

with a given number of turns N . The frequencies ν′k and the complex amplitudes α′k are found
with an iterative scheme. In order to calculate the first frequency ν′1, one have to find the
maximum of the amplitude of the function

φ(σ) = 〈f(t), eiσt〉 = 〈f(t), g(t)〉, (51)

where

〈f(t), g(t)〉 = 1
2T

T∫
−T

f(t) ḡ(t)χ(t) dt (52)

with accuracy of determining the main frequencies proportional to 1/T 2 while an ordinary FFT
method has accuracy proportional to 1/T . By imposing a weight function χ(t) one can make
the method even more accurate. In particular, if one uses the Hanning window filter

χ(t) = 1 + cos(πt/T ) , with
1

2T

T∫
−T

χ(t) dt = 1, (53)

can reach accuracy proportional to 1/T 3. Once the first periodic term eiν
′
1t is found, its complex

amplitude α′1 can be obtained by orthogonal projection, and the process is started again on the
remaining part of the function

f1(t) = f(t)− α′1eiν
′
1t. (54)

If f ′(t) is a good approximation of f(t), a second frequency analysis of f ′(t) can be done in
order to get its approximation that will be of the form

f ′′(t) =
N∑
k=1

α′′ke
iν′′k t. (55)

The quantities δαk = |α′′k −α′k| and δνk = |ν′′k − ν′k| give the exact precision of the determination
of the amplitudes α′k and the frequencies ν′k of f ′(k), as obtained by the application of the
frequency analysis algorithm. If f(t) is close to f ′(t), these same quantities can be considered as
estimates on the precision of the determination of the amplitudes ak and frequencies νk of the
original function f(t).

2.5.2 Maps creation and Diffusion estimation

By following the procedure that was described in the previous subsection, for many different
initial conditions, one can create a frequency map for a specific experiment. There are many
tools that automate the procedure of tune evaluation, like NAFF and SUSSIX. The latter will
be briefly discussed later.

Another feature of the FMA is the diffusion of the frequencies. The diffusion coefficient can
be calculated via the integral (52) with shifted by t limits (t, t+ T ) and find the frequency, let’s
say νt. Thus, the diffusion coefficient will be

D = log(|νt − ν|), (56)
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where ν is the first frequency that was calculated in Eq. (52) for (0, T ). In this project though,
the microscopic diffusion is evaluated and the equation that is mentioned above would be more
useful in the following form

D = log
√

(Q1
x −Q2

x)2 + (Q1
y −Q2

y)2, (57)

where the exponents denote each of the twin particles. In FMA, the stable regions and the
non-linear or chaotic regions, can be easily distinguished. The larger the diffusion coefficient is,
the larger tune shift will experience the specific particle and so, the larger the chaotic region that
it is inside (Fig. 2.6). The whole set of particles creates what we call the ’footprint’.

Figure 2.6: Tune Diagram created with the frequency map analysis method. The black dot
stands for the WP, while the rest dots are the tunes for different initial conditions. The color
bar indicates the diffusion rate. The red color, indicates high diffusion regions or chaotic regions
while blue color indicates lower diffusion regions or stable regions.
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3 CMA Tool - Description
The development of the Chaos Map Analysis (CMA) method is based on the results of a

PS Experiment[13] joined by GSI and CERN that took place in 2012. In this experiment the
purpose was to study the interplay between SC and a coupled 3rd order resonance. To do that,
the tune working point (WP) had to be chosen that it would be well-separated from other excited
resonances. One sextupole has been excited to drive the resonance (1, 2) in a Qx WP regime
of 6.04 − 6.25 while the vertical tune is kept constant at 6.47. It was found that the emittance
blow-up becomes large close to this resonance (see Fig. 3.1).

Figure 3.1: Emittance blow-up due to a coupled resonance in combination
with SC. The 3 working points that will be studied are indicated. The key
words in red will be explained in the text.

Three WPs of the experiment were chosen, as indicated in Figure (3.1), for the development
and testing of the CMA technique. These 3 WPs represent 3 interesting and quite different cases.
The first WP is a tricky case since it is close to the integer. The second WP is of great interest
since it is crossing the resonance (1, 2) being excited by the sextupole, as was in the experiment.
Last, the third WP should be very stable since there are no excited resonances nearby. In this
way we sample a very wide regime of parameters required for starting a new technique.

The feature of the CMA is to run the simulations with the same a distribution of one thou-
sand particles as in the simulations for the experiment, plus two test particles but to save only
the two test particles’ data in order to minimize the storage requirements. Depending on the
evolution of the test particles’ phase space one can conclude if the specific case is regular, weakly
chaotic or strongly chaotic as will be shown in subsection (3.3.4). By combining all different
cases, one can create maps which are expected to be comparable with the ones made with FMA.
A more detailed view of the WPs and the CMA method in general, will be discussed shortly in
the sections that follow.
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3.1 Tools
A various number of tools had to be used for the simulations and the data analysis. The first

one and maybe the most important one is MAD-X with which all the simulations were done.
MAD-X is the 10th version of MAD which was developed at CERN and is a general-purpose tool
for charged-particle optics design and studies in alternating-gradient accelerators and beam lines.
This tool is able to handle from medium to very large machines like LHC and solves various prob-
lems on such machines. More information about MAD-X and how it is used, can be found in [14].

The second most important tool that was used in this project is SUSSIX. Based on the
FORTRAN programming language, SUSSIX has been developed to post-process tracking or ex-
perimental data via frequency analysis. This tool allows to evaluate relevant dynamical quantities
such as detuning, betatron tunes, resonance driving terms and smear directly from the recorded
turn–by–turn data. In this case, it was of great help in evaluating accurately the betatron tunes
in order to make the maps for the CMA and FMA. More information about SUSSIX can be
found in [15].

Besides those two important tools, many other codes were developed in order to carry through
with this project. The amount of different cases and data was enormous, so some codes to
automate the analysis were made. Another code was created in order to scan all the data
determine if there is chaos in any specific case. In addition, some other codes were created to
gather up all the usable data and write them into files so that they can be plotted. All these
codes were in FORTRAN, and LINUX’s bash scripts and cshell scripts.

3.2 CMA Parameters
As was explained in the Introduction (Section 1) CMA had to be applied for many different

parameters to create a 6D grid. As was shown in the beginning of the Section (3), the CMA
technique is applied to three different tunes: one that is close to the integer, one that is crossing
the (1, 2) resonance and one that is considered "safe". The three tunes are the following:

1. Safe Tune : Qx = 6.244, Qy = 6.465
2. Resonance Tune : Qx = 6.104, Qy = 6.476
3. Integer Tune : Qx = 6.039, Qy = 6.479

Typically for a frequency map are required many particles, sometimes of the order of ten
or hundred thousands, in order to create a footprint. In the CMA case though, it is possible
to have much more less particles. To accomplish that, a ”grid” is created, with different initial
conditions of the two test particles.

As far as the transverse coordinates are concerned, five different angles of emittance ratios
were chosen. The five angles are the following

· φ = 15◦ ,

· φ = 30◦ ,

· φ = 45◦ ,

· φ = 60◦ ,

· φ = 75◦ .
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Also for each angle, there were chosen 20 different emittance amplitudes with equal distance
between them (∼ 0.5σ). For any amplitude that is located on top of an arc as is indicated in
figure 3.2, applies that εx + εy = constant.

Figure 3.2: Emittance Rations for five different angles.

As far as the longitudinal coordinate is concerned, the parameter that is easier to be controlled
is the Pt which is a MAD-X canonical variable and is defined as

Pt = ∆E
p0c

, where ∆E = E − E0

E0
. (58)

Pt stands for the position of the particle in the longitudinal distribution. The greater the Pt
is, the more away our particle is from the center of the distribution. For these simulations, 3
different Pt values were used which are the following

Pt = 1.980× 10−5 ∼ 0.02σl,
Pt = 0.975× 10−3 ∼ 1σl,
Pt = 1.950× 10−3 ∼ 2σl.

For each Pt value there will be a different footprint. For the smallest Pt value which can be
considered to be for the "on-momentum" particles since its value is very small and the motion
is mainly transversely, the footprint is expected to be on a perfect grid as shown in figure (3.3).
For the rest 2 values, the footprint will be smaller due to the weaker SC force as one moves out
of the distribution.
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Figure 3.3: Grid of Particles for 0.02σl.

This is how the 6-Dimensional phase space was fully parametrized and this will help examine
how the particles behave depending on their location around the beam distribution for every
combination of the parameters mentioned above.

Last but not least, the CMA technique is applied to two lattices both of which will be shown
later. The first one is a very simple toy lattice (Section 5) and the PS lattice (Section 6).

3.3 CMA Technique
In this chapter, the whole procedure that took place in the CMA technique will be described.

It will be divided into four brief subsections. The first one will be the setting up of the simulations,
the second one will be the description of the data analysis, the third one will be an explanation
of the angular distance of the particles and the forth one will be the procedure that was followed
in order to characterize all of the cases.

3.3.1 Simulation Set-up

In this study there was a great number of different simulations. As was discussed in subsec-
tion (3.2), for each machine there were 3 tunes following with 3 different Pt values and for each
Pt value, 5 angles times 20 amplitudes. All these numbers sum up to 1800 different simulations
which needed a specific procedure to be set up and when done, analyze their data to get the
desired results.

The first thing to be done was to create the lattice input file. In order to use the lattice of
each machine, some arrangements needed to be done first. Some parameters, for example the
beam intensity was kept constant. Though, the lattice input file had to be optimized for each
different tune, since the quadrupole strengths need to change.
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Additionally, a particle distribution needs to be created. To do that, a simple Gaussian distri-
bution was produced that was matched to each tune. In addition, on top of the distribution two
test particles were added arbitrarily with the amplitudes that are shown in figure (3.2) for each
Pt value. Furthermore, these data was in normalized coordinates so they had to be converted to
laboratory’s coordinates of a specific lattice, by using a FORTRAN code that was provided.

After everything was set up, a MAD-X code was used in order to call all the files and do
the tracking correctly. This code simulated the behaviour of the distribution for 12000 turns in
the machine which corresponds to 8 − 10 synchrotron periods. Most of the cases were done in
MAD-X’s adaptive mode in which the emittance of the beam is updated in every turn in order
to change the SC kick. Though, as will be discussed in the text, some cases had to be done in
MAD-X’s frozen mode, too. This mode keeps the SC kick "frozen".

3.3.2 Data Analysis

After all simulations were done, the tracking data had to be analyzed to produce some re-
sults. First of all, the data had to be normalized back again to have less "noise" in the frequency
analysis. After that was done, SUSSIX was used to evaluate the synchrotron tune and afterwards
to calculate the betatron tunes. The betatron tunes were calculated for most of the cases for 8
full synchrotron periods. For some specific reasons, as will be shown in the next section (Section
4) the tunes had to be calculated in some cases for various number of synchrotron periods. Also,
in that section it will become obvious why it was chosen to calculate the tunes for 8 periods and
not for any other smaller number of periods.

In order to do the FMA plots with the diffusion, the procedure that was described in chapter
(2.5) has to be followed. That is, calculating the diffusion between the 2 test particles since
they both start from the same point with infinitesimal difference. For the CMA though, a quite
different procedure has to be followed. With a FORTRAN code, the data was analyzed so as
to create a file that has only the angular distance of the phase space of the two particles with
respect to the turns inside the machine. As will be shown shortly , depending on the behavior
of the angular distance one can conclude if there is chaos or not (Section 3.3.4). By combining
all these results, it is feasible to create the chaos maps.

3.3.3 Angular Distance in Phase Space

In order to understand better the angular distance that is studied to conclude if a case is
chaotic or not, an example will be presented. Let’s suppose that there are two test particles
which are simulated for N turns around the machine with their position in phase spaces (see Fig.
3.4) analyzed. In the horizontal phase space plane there is phase difference or angular difference
ϕx between the two particles, in the vertical plane ϕy and in the longitudinal plane typically the
difference is insignificant.
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4

Figure 3.4: Angular distance between two particles after N turns. a)Horizontal plane, b)Vertical
plane, c)Longitudinal plane.

Subsequently, if these two particles do another N turns, there will be 3 different cases.

First, there is the case of the regular motion (see Fig. 3.5). In this case the two test particles
after 2N turns end up with twice the angular distance values that they had for N turns, namely
2ϕx, 2ϕy while ϕt is still negligible. So the angular distance grows or decreases linearly and
consequently the motion of the two particles is regular.

The next relevant case is concerned with weakly chaotic motion (see Fig. 3.6). In this
case the angular distances are not exactly twice the initial values but they are a somewhat
larger. That means that the change starts to exhibit weakly chaotic motion non compatible with
regular behaviour or most likely weakly chaotic motion. However, it might also very well be
that over a very long time scale the motion actually remains regular. In fact, the chaotic na-
ture can only be "proven" once it actually exhibits strong chaotic behaviour (see next paragraph).

Last, if the angular distances of the particles after 2N turns are much larger than the ones
that they had for N turns (see Fig.3.7), they exhibit strongly chaotic motion. The property of
this motion is that the angular distance change in a rapid, non-regular way. In fact the motion
is unpredictable or strongly chaotic in a deterministic manner.

Figure 3.5: Angular distance between two particles after 2N turns - Regular Case. a)Horizontal
plane, b)Vertical plane, c)Longitudinal plane.
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Figure 3.6: Angular distance between two particles after 2N turns - Weakly Chaotic Case.
a)Horizontal plane, b)Vertical plane, c)Longitudinal plane.

Figure 3.7: Angular distance between two particles after 2N turns - Strongly Chaotic Case.
a)Horizontal plane, b)Vertical plane, c)Longitudinal plane.
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3.3.4 Chaos Characterization

Particles can exhibit three different kinds of motion. The phase spaces of a particle for each
of these motions are shown in Figure (3.8). The longitudinal phase space is not presented since
for all three cases seems similar.

Figure 3.8: Transverse phase spaces of Regular, Weakly Chaotic and Strongly Chaotic motions.

Regular motion means that particles oscillate in the transverse planes without any significant
amplitude or momentum change. In phase space, this corresponds to a perfect circle as indicated
in the figure. When the particle is located in a weakly chaotic region, its oscillations are not
stable resulting in a small amplitude change. Only after a large number of turns, that amplitude
change becomes noticeable and that is the main reason why the two aforementioned cases are
difficult to be distinguished at an early stage. The strongly chaotic motion results in a rapid
amplitude growth. The oscillation in phase space is no more well defined as was in the regular
motion, and the width of the ring can cover large areas for a small number of turns as indicated
in the last set of diagrams.

Defining an algorithm to identify these three cases is not obvious and in some cases can be an
arduous procedure. There are many methods of identifying the kind of motion like evaluating the
r.m.s. action from the phase spaces. In this study a different approach was chosen to conclude
the nature of motion. In general, the amplitudes of the transverse oscillations evolve very slowly,
as shown in [16]. On the contrary, angular distance evolves much faster making it suitable for
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early chaos detection providing also great sensitivity, even for weak chaos. To this end, it was
chosen to study the angular distance of the twin particles.

A FORTRAN code was used to evaluate the angular distance of the twin particles for each
turn (see Fig. 3.9). These figures indicate the total angular distance for all 3 planes and for all
3 kinds of motion that was described in the last section. Note that the max angular distance of
each plane is normalized so as if we add all 3 together to sum up to 1.

The linear growth of the angular distance (Fig. 3.9.a) corresponds to the regular case.
When the angular distance starts to grow in a non-linear manner, the motion becomes weakly
chaotic ((Fig. 3.9.b). Last, when the angular distance grows or decreases exponentially with an
unpredictable behaviour, then the motion is strongly chaotic (Fig. 3.9.c).

Figure 3.9: Angular distance - Turns diagrams. a)Regular motion, b)Weakly chaotic motion,
c)Strongly chaotic motion.

Another benefit of using this procedure is that the development of a code that distinguishes
the motion of particles, is simpler. This code uses some criteria that have been chosen to make
it possible to determine in which case particles are into without having to look each angular
distance plot separately.

The easiest case to distinguish is the strongly chaotic case. If the total angular distance,
reaches values over 0.5 then it is strong chaos and it will have red color in the chaos plots. Tech-
nically, this means that the twin particles reach maximum angular distance to at least 2 of the
3 planes.

The regular and weakly chaotic cases are difficult to be distinguished and so they are studied
together. It is needed to plot the angular distance in terms of turns on a double-logarithmic-scale
plot and evaluate the slope for different number of synchrotron periods, e.g. slope for the 1st
synchrotron period, then for the first 2 periods, then for the first 3 periods. Plotting the slopes
in terms of the synchrotron periods denotes the motion that the particle is into.

When these slopes converge to 1 (see Fig. 3.10) means that the angular distance grows or
decreases linearly and particles exhibit a regular case. In the CMA plots, green color stands for
regular cases.

If these slopes do not converge to 1 but they increase or decrease, then it will be a weakly
chaotic case. In the CMA plots, the weakly chaotic cases will be presented with a variety of
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colors between green and red depending on their strength. The strength is determined from the
average value of the angular distance over the 8th synchrotron period of the data.

Figure 3.10: Converging slopes for each synchrotron period - Regular Case.
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4 CMA - Benchmarking
The CMA technique is based on the ability to detect even weakly chaotic motion. It is well-

known[1],[17] that a minimum number of turns is required to find the true nature of particle
motion. Additionally, there is the restriction of determining tunes over full synchrotron periods.
Moreover, it is desirable to restrict the simulations to the lowest number of synchrotron periods,
to minimize the simulation effort.

This can be seen as a benchmarking procedure of the CMA technique to determine after
which number of synchrotron oscillations a convergence of the onset of chaos can be reached.
The benchmarking procedure goes as follows: apply the CMA technique to an increasing number
of synchrotron periods until convergence has been reached. To this end, the tunes and the chaos
strength were evaluated first for 1 synchrotron period, then for 2, then for 3, etc. In addition, it
is necessary to do the same thing for the FMA to have a comparison.

First, a problem with the CMA method had to be solved. As was mentioned in section (3.3.4),
to characterize a case as regular or weakly chaotic, a number of different slopes is needed, to see
if they converge or not. For small number of synchrotron periods, it was required to split the
synchrotron periods to smaller, sub-periods. In that way, there are more slope values in order to
apply the usual method. By nature this can only be an approximation since very reliable results
can only be gained from full synchrotron periods.

Figure 4.1: Synchrotron sub-periods.
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The full results of the benchmarking can be summed in the following table.

Synchrotron period number Strongly chaotic particle number Strongly chaotic particle ratio
1 0 0%
2 2 8%
3 11 42%
4 15 58%
5 19 73%
6 21 81%
7 25 96%
8 26 100%

Increasing the number of synchrotron periods, the number of chaotic particles increases, too.
Though, for large number of synchrotron periods there is a convergence in the number of strongly
chaotic particles, especially from 7 synctrotron periods to 8 synchrotron periods there is only
one strongly chaotic particle more. Supposing that the most reliable result is for 8 synchrotron
periods, the third column of the table can be evaluated. The strongly chaotic particle ratio
stands for the reliability of the results for each number of synchrotron periods.

Thus, as was mentioned in the section (3.3.2), it was decided to apply the CMA method for
8 synchrotron periods since the number of chaotic particles gets saturated after 7 periods and
the data was enough for 8 periods. Therefore, all the results that are going to be presented from
now on, will be for 8 synchrotron periods. All the results results of the benchmarking can be
found in the Appendix A. Additionally, in Appendix A can be found a walk through for all the
plots that are going to follow, as well.
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5 Toy Model
It is prudent to test the CMA technique on a simple machine before applying it to a real,

complex one. Therefore, a toy lattice had to be created which does not possess any non-linearities
that would affect the beam.

In particular, the toy lattice is similar to PS in terms of its length (L = 625m) and its peri-
odicity (P = 50). The significant difference is that the toy consists of 50 identical FODO cells.
That type of cell is one of the simplest ones. It consists of a focusing quadrupole, a defocussing
quadrupole and drift spaces between them. Additionally, a sextupole was added in one of these
cells to drive the resonance that is mentioned in Section (3).

The initial emittance-amplitude-grid that was used is similar to the one that was mentioned
earlier (see Fig. 5.1). The difference in this specific case is that the 1st amplitude of each angle
refrains from the 2nd one ∼ 0.25σ instead of 0.5σ. The amplitudes are sampled to ∼ 15σ on the
vertical plane and 12σ on the horizontal plane. In most of the cases the important part of the
beam distribution is up to roughly 8σ.

Figure 5.1: Initial emittance amplitudes - Toy
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5.1 Resonance Tune
For the toy lattice, only the Resonance Tune case will be presented to see the effect that

the resonance (1, 2) has on the beam. As was mentioned in the section (3.2), the tunes are
Qx = 6.104, Qy = 6.476 for the 3 Pt values 0.02σl, 1σl and 2σl.

Figure 5.2: CMA and FMA footprints for 0.02σl.

Figure 5.3: CMA and FMA footprints for 1σl.
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For the on-momentum case particles are expected to be mostly in regular motion (see Fig.
5.2). In this case, there is no synchrotron motion and the resonance does not have a significant
impact on the particles. There are only some weakly chaotic particles around it. Both CMA and
FMA seem to agree with each other.

For higher longitudinal sigmas due to synchrotron motion, the resonance starts to affect the
particles (see Fig. 5.3). Around the excited resonance appears a strongly chaotic region in the
CMA case and the same region with high diffusion in the FMA case. The rest particles appear
to be mostly regular. Note that for larger longitudinal sigmas, the footprint becomes smaller
due to the weaker SC force.

When the edge of the longitudinal distribution is studied, particles appear to be mostly in
regular and weakly chaotic motion (see Fig. 5.4). Some individual particles appear to be strongly
chaotic, too. Most of the particles are gathered in a small area due to the weak SC force, so
it is difficult to distinguish each particle. The very few cases that are away from this area are
possibly due to numerical errors during the tune evaluation.

Figure 5.4: CMA and FMA footprints for 2σl.

In the toy model, both methods agree in a surprisingly level. Therefore, the CMA technique
works for simple lattices and produces reasonable results. Thus, the CMA technique is rippe to
be applied on a more realistic machine.
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6 PS
The main subject of study of this thesis is the PS machine. In this section will be presented the

results of the CMA technique for this particular lattice. The main difference between the PS and
the toy lattice is that PS uses combined function magnets. The exact lattice can be found online.

For this case, all three tunes mentioned in Section (3.2) will be presented. Note that, again,
there is a sextupole turned on in order to study the effects of the 3rd order resonance (1, 2) in
combination with SC. PS might have some imperfections in contrast to the toy, e.g. field errors,
misaligned elements etc. Thus, there is a possibility of other excited resonances, too.

The initial emittance-amplitude-grid for this case, is the same as the one presented in Section
(3.2) (see Fig. 6.1). The sigmas of the distribution for this case are different due to the different
beta functions of the lattice. For both planes, the first amplitude for every angle is ∼ 0.5σ. On
the horizontal plane the 20th amplitude reaches ∼ 9.5σ while on the vertical plane ∼ 11.5σ.

Figure 6.1: Initial emittance amplitudes - PS

The results for the PS lattice will be presented in the forthcoming sections, starting with the
Safe tune, being the simplest one.
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6.1 Safe Tune
The name of this particular case indicates that is the most regular case of the three. This WP

is away from any dangerous resonance and so, it is not expected to see any significant chaotic
behavior, as will be shown shortly. This was the first case that was studied in PS due to its
simplicity and its predictable results.

Particles in the center of the beam exhibit regular motion (see Fig. 6.2). Though, there are
some weakly chaotic cases, especially on the resonances (1, 6) and (2, 4). Even at the limit of the
beam center or the 1σl of the longitudinal distribution, particles are in regular motion with the
exception of some weakly chaotic ones (see Fig. 6.3).

At the edge of the longitudinal particle distribution there is a large synchrotron motion activ-
ity. In some cases that might affect the particles’ sensitivity to resonances. Though, for the safe
tune, particles seem stable (see Fig. 6.4). Only some particles located on the strong systematic
resonance (8, 0) have chaotic behaviour or large diffusion in the FMA case. For all three sigmas
of the longitudinal distribution, both CMA and FMA seem to agree.

Figure 6.2: CMA and FMA footprints for 0.02σl - Safe tune.
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Figure 6.3: CMA and FMA footprints for 1σl - Safe tune.

Figure 6.4: CMA and FMA footprints for 2σl - Safe tune.
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6.2 Resonance Tune
The resonance tune was maybe the most interesting case and the one that needed the most

attention. Due to SC tune spread, particles cross the (1, 2) resonance which is driven by a sex-
tupole. This results in the creation of a chaotic region close to this resonance. Additionally, this
case had an interesting particularity which will be discussed in the text.

The on-momentum particles whose motion is mainly transverse, exhibit regular motion as
in the safe tune (see Fig. 6.5). Similarly, there are some very weakly chaotic particles, too. In
the 1σl case though, the synchrotron motion starts to have an impact on the particles (see Fig.
6.6). Close to the excited resonance (1, 2) a region is created where all particles have strongly
chaotic motion. There are also chaotic particles above this resonance which might be due to
other resonances or the shrinking of the footprint as time passes by.

At the edge of the longitudinal distribution where particles experience less tune spread, par-
ticles that are found close to the systematic skew resonance (5, 3) exhibit strongly chaotic motion
(see Fig. 6.7). The rest particles appear to be mostly weakly chaotic. In all three cases, the two
methods seems to be in agreement.

Figure 6.5: CMA and FMA footprints for 0.02σl - Resonance tune.
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Figure 6.6: CMA and FMA footprints for 1σl - Resonance tune.

Figure 6.7: CMA and FMA footprints for 2σl - Resonance tune.

During the analysis of these results, which are in MAD-X’s adaptive mode, something peculiar
was noticed. In general, the FMA method was done with two ways. The presented results are
done by evaluating the diffusion between the twin particles while the other way it done by
evaluating the diffusion of a single particle over four synchrotron periods. In this particular case,
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a large diffusion of the on-momentum particles was encountered and had to be examined (see
Fig. 6.8).

Figure 6.8: Different approach of FMA and tune sliding for 0.02σl - Resonance tune - Adaptive
mode.

Evaluating the tunes of a single particle for a range or turns (0 + i, 1
Qs

+ i) where i =
0, 1, ..., 7

Qs
− 1, 7

Qs
) can create a tune sliding plot (see Fig. 6.8) which shows how the tune of

the particle moves over 8 synchrotron periods. This plot confirms that the tunes of the particles
of the low amplitudes diffuse. A MAD-X’s frozen mode study was done to see if this diffusion
persists.

6.2.1 Frozen Mode

Simulating this case with MAD-X’s Frozen Mode showed that the diffusion of the low ampli-
tude particles has diminished (see Fig. 6.9). The only diffusion that was noticed was on some
resonances, as expected.

The results that were produced with the CMA and the usual FMA method show that the
behaviour of the particles is almost the same as with the MAD-X’s adaptive mode. For the
center of the beam most particles are in regular motion with a new strongly chaotic particle on
the resonance (2, 6) (see Fig. 6.10).

At the 1σl of the longitudinal particle distribution the same strongly chaotic region close to
the excite 3rd order resonace is encountered (see Fig. 6.11).

At the edge of the longitudinal distribution (2σl), particles are found with the same behaviour
as in the adaptive mode (see Fig. 6.12).
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In conclusion, the study of the frozen mode showed that even though the diffusion of a single
particle is mended, the results when studying both particles do not change significantly.

Figure 6.9: Different approach of FMA and Tune sliding for 0.02σl - Resonance tune - Frozen
mode.

Figure 6.10: CMA and FMA footprints for 0.02σl - Frozen mode - Resonance tune.
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Figure 6.11: CMA and FMA footprints for 1σl - Frozen mode - Resonance tune.

Figure 6.12: CMA and FMA footprints for 2σl - Frozen mode - Resonance tune.
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6.3 Integer Tune
The last case that will be presented is the integer tune case which was the most difficult to

analyze due to the very strong integer resonance. The data for this WP was analyzed many
times, with different frequency windows of the frequency analysis due to numerical errors close
to the integer resonance.

Figure 6.13: CMA and FMA footprints for 0.02σl - Integer tune.

Dealing with a WP that is close to the integer resonance is not trivial. For the on-momentum
particles, the ones possessing large amplitudes and so are away from the integer resonance are
expected to be stable or weakly chaotic. Though, particles with small amplitudes will be located
close to the integer resonance due to the SC tune shift. These particles appear to be strongly
chaotic and also the grid is deformed (see Fig. 6.13). Particles that appear to be on the integer
resonance are possibly the result of numerical errors during the frequency analysis.

For the 1σl case, particles have larger frequencies and some of them are crossing the excited
(1, 2) resonance leading to strongly chaotic behaviour and particle spread in the tune diagram
(see Fig. 6.14). Additionally, there are some strongly chaotic particles in the low amplitudes, too.

At the edge of the longitudinal distribution, most of the particles are located close to the
(1, 2) resonance leading to strongly chaotic motion (see Fig. 6.15). Individual particles that
are located away from the majority are possibly the result of numerical errors or strong tune
movement. For this WP, the results of both methods are again in agreement.

37



Michail Zampetakis
University of Crete

CERN
BE-ABP-HSI

Figure 6.14: CMA and FMA footprints for 1σl - Integer tune.

Figure 6.15: CMA and FMA footprints for 2σl - Integer tune.
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7 Conclusions
The goal of this thesis was to review present tools (FMA) and a newly developed tool (CMA)

in order to investigate particle stability in the PS, including SC. The combination of SC and lat-
tice non-linear elements or imperfections can lead to chaotic motion withing the physical aperture
of the beam which in turn will result in beam blow-up or particle loss.

The FMA is a method that evaluates the tune diffusion of the particles, while the CMA
predicts if a particle exhibits regular or chaotic motion. In combination with the systematic way
of the 6D phase space parametrization, the CMA method has to produce similar results to the
one of the FMA.

As was previously shown, these two methods indeed agree with each other especially if we
study cases with more than 7 synchrotron periods. For less periods, both methods seem to be
slightly different but that should be overcome by fine-tuning of these techniques. Consequently,
the CMA method is a nice tool to have in our toolbox.

The analysis of these tools indicate that the CMA method could be improved further. Both
methods are further optimizing the tools and should eventually agree very close. In particular,
the FMA technique now also uses the time evolution of the twin particles which originally are
very close in phase space. Therefore, both methods now use the microscopic nature of either
regular or chaotic motion.
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Appendix A : Benchmarking Plots

Plots walk through

In the figures that are presented in this study various features have to be explained. To
begin with, on the title are shown the WP, over how many synchrotron periods the results are
evaluated and last, the sigma of the longitudinal distribution.

As was shown in Section 2.2, the lines in the tune diagrams represent the resonances. The
blue lines are for non-systematic resonances while the red lines are for systematic resonances.
Systematic resonances are much more dangerous for particle stability since the resonance con-
dition is fulfilled for each optics period which is 50 in the case of PS. Additionaly, the full lines
stand for normal up-right resonances while the dashed lines stand for skew resonances that are
excited from skew magnetic components, e.g. a rotated sextupole. The type of each resonance
is shown in the parenthesis.

Another feature of these plots is that the highest black dot, which is not visible in the plots
below, is the WP of the specific case while the lowest black dot is the maximum SC tune shift.
Also, in the smaller σl cases, as will be shown in some plots, the particles sit on a perfect grid.
In that grid, the lower side is the emittance-ration-angle φ = 15◦ while the higher side is the
angle φ = 75◦. The distance between each arc is roughly 0.5σ.

Additionally, in the CMA case the color-bar represents the chaos strenght while in the FMA
the color-bar represents the diffusion. Notice that is the former case, the color-bar scale is not
symmetrical. This way, the colors are further optimized to match better for both cases.

In the next pages, all the plots that were done for the benchmarking of the CMA method
will be shown. The data that will be presented are from 1 full synchrotron period to 8 full
synchrotron periods and are for a specific case of the PS in which the differences between the
synchrotron periods are easily noticeable.

Figure A.1: Comparison of CMA and FMA over 1 full synchrotron period.
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Figure A.2: Comparison of CMA and FMA over 2 full synchrotron periods.

Figure A.3: Comparison of CMA and FMA over 3 full synchrotron periods.
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Figure A.4: Comparison of CMA and FMA over 4 full synchrotron periods.

Figure A.5: Comparison of CMA and FMA over 5 full synchrotron periods.
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Figure A.6: Comparison of CMA and FMA over 6 full synchrotron periods.

Figure A.7: Comparison of CMA and FMA over 7 full synchrotron periods.
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Figure A.8: Comparison of CMA and FMA over 8 full synchrotron periods.

For 1 synchrotron period there are no strongly chaotic particles in agreement with FMA where
some particles show a little higher diffusion but still, their diffusion coefficients are small (see Fig.
A.1). For 2 synchrotron periods some strongly chaotic particles appear reluctantly, accompanied
by some weakly chaotic particles (see Fig. A.2). Increasing the number of synchrotron periods,
the number of the chaotic particles increases in agreement again with FMA which shows large
diffusion areas wherever we have strong chaotic areas. Even though the FMA seems to be more
sensitive for small number of synchrotron periods, the results of the CMA technique seem to
converge faster.
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